WO2024046193A1 - 氢气纯化塔和水电解制氢系统 - Google Patents

氢气纯化塔和水电解制氢系统 Download PDF

Info

Publication number
WO2024046193A1
WO2024046193A1 PCT/CN2023/114574 CN2023114574W WO2024046193A1 WO 2024046193 A1 WO2024046193 A1 WO 2024046193A1 CN 2023114574 W CN2023114574 W CN 2023114574W WO 2024046193 A1 WO2024046193 A1 WO 2024046193A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tank
pipe
working chamber
purification tower
Prior art date
Application number
PCT/CN2023/114574
Other languages
English (en)
French (fr)
Inventor
衣美卿
邵长娜
Original Assignee
无锡隆基氢能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡隆基氢能科技有限公司 filed Critical 无锡隆基氢能科技有限公司
Publication of WO2024046193A1 publication Critical patent/WO2024046193A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present application relates to the technical field of gas purification, specifically, to a hydrogen purification tower and a water electrolysis hydrogen production system.
  • heating equipment Since the operation of the deoxidation tower and drying tower has certain process temperature requirements, heating equipment is installed in them. Due to the flammable and explosive nature of hydrogen, in hydrogen purification equipment, especially in large-scale hydrogen production purification equipment, the safety of heating equipment is crucial to the development of technology in the field of hydrogen energy.
  • the purpose of this application is to provide a hydrogen purification tower and a water electrolysis hydrogen production system that can not only meet the safety requirements of large-scale hydrogen purification equipment, but also save installation and maintenance costs.
  • the present application provides a hydrogen purification tower, which includes a tank, a heating jacket, a heat medium input pipe and a heat medium output pipe.
  • a working chamber is formed inside the tank, and the The heating sleeve is arranged in the working chamber and extends along the axial direction of the tank.
  • the heating sleeve includes an outer sleeve and an inner sleeve embedded and connected in the outer sleeve; the heat medium input pipe and the heat medium output pipe respectively extends from the outside of the opposite sides of the tank into the working chamber.
  • the heat medium input pipe is connected to the outer sleeve of the heating sleeve, and the heat medium output pipe is connected to the outer sleeve of the heating sleeve.
  • the inner casing is connected.
  • the top end of the outer sleeve is closed, and the bottom end of the outer sleeve is closedly connected to the inner sleeve.
  • the outer wall of the casing, the top end of the inner casing is open and connected to the outer casing, the heat medium input pipe is connected to the bottom end of the outer casing, and the heat medium output pipe is connected to the inner casing The bottom end is connected.
  • the number of the heating sleeves is multiple, the outer sleeves of the multiple heating sleeves are all connected to the heat medium input pipe, and the multiple outer sleeves are connected to each other through the heat medium input pipe. , and the inner sleeves of the plurality of heating sleeves are all connected with the heat medium output pipe, and the plurality of inner sleeves are connected with each other through the heat medium output pipe.
  • the outer tube includes a hollow cylindrical base tube and fins extending outward from the surface of the cylindrical base tube; wherein the fins are spirally formed integrally around the surface of the cylindrical base tube; or, There are multiple fins, and they are distributed radially with the columnar base tube as the center.
  • the hydrogen purification tower includes a first vent pipe and a second vent pipe connected to the working chamber, and the first vent pipe and the second vent pipe are respectively connected to the top and bottom of the tank.
  • the bottom extends from the outside of the tank into the working chamber, and the portion of the first vent pipe and/or the second vent pipe located in the working chamber is provided with a plurality of openings.
  • a wire mesh and two sieve plates are provided above the second vent pipe, and the two sieve plates are disposed in the working chamber and fixedly connected to the inner wall of the tank, and the two sieve plates are The screen plates are arranged oppositely in the vertical direction and the wire mesh is clamped between the two screen plates.
  • the tank is provided with a first thermometer
  • the first thermometer penetrates the tank and extends to the inside of the working chamber, and the first thermometer is close to the first
  • a vent pipe is provided
  • the tank is provided with a second thermometer.
  • the second thermometer penetrates the tank and extends to the inside of the working chamber, and the second thermometer is close to the second thermometer.
  • the tank is equipped with a pressure gauge that penetrates the tank and extends to the inside of the working chamber, and the pressure gauge is disposed close to the first vent pipe.
  • a gas detection port is also provided on the top of the tank, and the gas detection port is located on the top of the tank and on the opposite side of the tank from the first vent pipe.
  • the top of the tank is provided with a feeding port
  • the bottom of the tank is provided with a discharging port.
  • the feeding port and the discharging port are used for filling and discharging fillers respectively.
  • the water electrolysis hydrogen production system includes a heat source device and the above-mentioned hydrogen purification tower.
  • the heat source device is connected with the heat medium input pipe. To provide hot media.
  • the hydrogen decomposition and production system includes the above-mentioned hydrogen purification tower, and a heat exchanger connected to the hydrogen purification tower.
  • the heat exchanger is used to perform heat exchange between the target gas purified by the hydrogen purification tower and the gas to be operated, And the heat-exchanged gas to be worked is passed into the working chamber for purification.
  • the heat exchanger is connected with the gas outlet end of the working chamber and the gas supply port of the gas to be worked, so as to perform heat exchange between the target gas purified by the hydrogen purification tower and the gas to be worked, so
  • the heat exchanger is also connected to the air inlet end of the working chamber, and passes the heat-exchanged gas to be worked into the working chamber for purification.
  • the heat exchanger includes: a first air inlet pipe, a second air inlet pipe, a first air outlet pipe and a second air outlet pipe;
  • the first air inlet pipe is nested within the second air inlet pipe, or the first air inlet pipe and the second air inlet pipe are arranged independently and closely adjacent;
  • One of the first air inlet pipe and the second air inlet pipe is connected to the air outlet end of the working chamber, and the other is connected to the air supply port of the gas to be worked;
  • One of the first air outlet pipe and the second air outlet pipe is connected with the air inlet end of the working chamber to pass the heat-exchanged gas to be worked into the working chamber for purification, and the other one is connected to the air inlet end of the working chamber.
  • the heat-exchanged target gas is output from the heat exchanger.
  • the first temperature of the purified target gas is higher than the second temperature of the gas to be operated provided by the gas supply port;
  • the third temperature of the target gas after heat exchange is lower than the first temperature
  • the fourth temperature of the gas to be operated after heat exchange is higher than the second temperature.
  • a heating casing composed of an outer casing and an inner casing is installed inside the working chamber.
  • the inner casing is embedded and connected inside the outer casing.
  • the heating medium enters the outer casing through the heat medium input pipe, and enters the inner casing along the inside of the outer casing, thereby heating the heating casing.
  • the gas to be worked is introduced into the working chamber, and the concentration of the gas to be worked is increased through the heating casing.
  • the temperature reaches the deoxidation process temperature or regeneration process temperature.
  • the heating sleeve extends along the axial direction of the tank. The length of the heating sleeve is larger, which can provide a larger heating area.
  • the heat medium input pipe and the heat medium output pipe are installed in the tank respectively.
  • the opposite sides of the tank body extend to the inside of the working chamber.
  • the heating medium moves along a longer path in the tank, which can make full use of the heat of the heating medium.
  • the heating medium is discharged from the inside of the inner tube through the heat medium output pipe.
  • the above-mentioned hydrogen purification device does not need to install a resistance wire heating tube in the working chamber, which avoids the complexity of wiring due to the increase in equipment processing capacity and the increase in resistance wire heating tubes. It can reduce safety hazards and therefore can meet the safety requirements of large-scale hydrogen purification equipment.
  • the hydrogen purification tower provided in this application is heated by the heat medium.
  • the heating sleeve only needs to provide a channel for the circulation of the heat medium. There is no fault or In case of damage, the maintenance cost is reduced.
  • the heating sleeve can be installed integrally and fixedly inside the working chamber, which reduces the installation difficulty.
  • Figure 1 is a schematic structural diagram of a hydrogen purification tower provided by an embodiment of the present application.
  • Figure 2 is a partial structural schematic diagram of a hydrogen purification tower provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the outer casing in the hydrogen purification tower provided by the embodiment of the present application.
  • Figure 4 is a schematic flow diagram of a hydropower hydrogen production system provided by an embodiment of the present application.
  • FIG. 5 is a schematic flow diagram of another hydropower hydrogen production system provided by an embodiment of the present application.
  • the heating equipment of purification deoxygenation towers and drying towers in the field of water electrolysis and hydrogen production uses resistance wire inner cylinder heating methods.
  • the electric heating tube is inserted into a closed stainless steel tube. After power is turned on, the resistance wire heats and radiates heat outward through the stainless steel tube, improving efficiency.
  • the hydrogen temperature reaches the process temperature of deoxidation and regeneration.
  • the applicant found that as the processing capacity of a single set of equipment increases, the number of electric heating tubes in the purification equipment also needs to increase accordingly.
  • the wiring of the electric heating tubes is becoming more and more complicated, and there are many safety hazards, which are difficult to meet. Requirements for explosion-proof mandatory certification, and because the equipment itself is relatively high, once the heating pipe fails, it will be difficult to repair.
  • a hydrogen purification tower including a tank 1, a heating jacket 2, a heat medium input pipe 3 and a heat medium output pipe 4.
  • the tank 1 A working chamber 101 is formed inside.
  • the heating sleeve 2 is arranged in the working cavity 101 and includes an outer sleeve 21 and an inner sleeve 22. Both the outer sleeve 21 and the inner sleeve 22 extend along the axial direction of the tank 1.
  • the axial direction of the tank 1 is the up-down or vertical direction, so the outer sleeve 21 and the inner sleeve 22 both extend in the vertical direction, and the heating sleeve 2 extends along the axial direction of the tank 1.
  • the heating sleeve 2 The length is larger and can provide a larger heating area.
  • the heating sleeve 2 includes an outer sleeve 21 and an inner sleeve 22 embedded and connected in the outer sleeve 21.
  • the heat medium input pipe 3 and the heat medium output pipe 4 are installed respectively.
  • the outer sleeve 21 of the heating sleeve 2 is connected with the heat medium input pipe 3, and the inner sleeve 22 of the heating sleeve 2 is connected with the heat medium output pipe 4. Since the heat medium input pipe 3 and the heat medium output pipe 4 are respectively installed on opposite sides of the tank 1, the heating medium moves along a longer path in the tank 1, and the heat of the heating medium can be fully utilized. After the heat exchange is completed, the heating medium is discharged from the inside of the inner tube through the heat medium output pipe.
  • the above-mentioned hydrogen purification device does not need to set up a resistance wire heating tube in the working chamber, which avoids The increase in equipment processing capacity, the increase in resistance wire heating tubes and the complexity of wiring can reduce safety hazards and thus meet the safety requirements for large-scale hydrogen purification equipment.
  • the hydrogen purification tower provided in this application is heated by a heat medium.
  • the casing only needs to provide a channel for the circulation of heating medium, and there is no fault or damage, thus reducing maintenance costs.
  • the heating casing can be installed integrally and fixedly inside the working chamber, which reduces the installation difficulty.
  • the top end of the outer sleeve 21 is closed and the outer sleeve 21 is sleeved on the outside of the inner sleeve 22 , and the bottom end of the outer sleeve 21 is closedly connected to the outer wall of the inner sleeve 22 to seal the inner sleeve 22 on the outer wall of the outer sleeve 21
  • the top of the inner casing 22 is open and connected to the outer casing 21.
  • the heat medium input pipe 3 extends from the outside of the tank 1 to the working chamber 101 and is connected to the bottom end of the outer casing 21.
  • the heat medium output pipe 4 extends from the tank 1 to the working chamber 101 and is connected to the bottom end of the outer casing 21.
  • the outside of the body 1 extends to the working chamber 101 and is connected with the bottom end of the inner casing 22 .
  • a heating casing 2 composed of an outer casing 21 and an inner casing 22 is installed inside the working chamber 101.
  • the outer casing 21 is sleeved on the inner casing 22. outside and seals the inner casing 22 inside, and the top opening of the inner casing 22 is connected with the outer casing 21.
  • the heating medium enters the outer casing 21 through the heat medium input pipe 3, and rises along the inside of the outer casing 21 to the inner casing 21.
  • the top of the casing 22 enters the inner casing 22 through the top opening of the inner casing 22 to heat the heating sleeve 2.
  • the gas to be operated is passed into the working chamber 101, and the gas to be operated is increased through the heating sleeve 2.
  • the temperature reaches the deoxidation process temperature or the regeneration process temperature.
  • the heating medium is discharged from the inside of the inner tube 22 through the heat medium output pipe 4 .
  • the above-mentioned hydrogen purification device does not need to install a resistance wire heating tube in the working chamber 101, which avoids the complexity of wiring due to the increase in equipment processing capacity and the increase in resistance wire heating tubes. It can reduce safety hazards and therefore can meet the needs of large-scale hydrogen purification equipment.
  • the hydrogen purification tower provided in this application is heated by heat medium.
  • the heating jacket 2 only needs to provide a channel for the heat medium to circulate. There is no failure or damage, thus reducing maintenance costs.
  • the heating sleeve 2 can be installed integrally and fixedly inside the working chamber 101, thereby reducing the difficulty of installation.
  • the number of the heating jacket 2 can be multiple, and can be selected from a feasible range (for example, 1 to 30) according to the required processing capacity of the device. There are no specific restrictions on this application.
  • a plurality of heating jackets 2 are evenly spaced in the working chamber 101, which can fully increase the temperature of the gas to be worked in the working chamber 101.
  • the outer sleeves 21 of the plurality of heating sleeves 2 are all connected to the heat medium input pipe 3 and the plurality of outer sleeves 21 are connected to each other through the heat medium input pipe 3, and the inner sleeves 22 of the plurality of heating sleeves 2 are connected to the heat medium input pipe 3.
  • the heat medium output tubes 4 are connected and have multiple inner casings 22 are connected to each other through the heat medium output pipe 4. In this way, the heating medium can be evenly and quickly passed into the multiple outer tubes 21 through the heat medium input pipe 3, so that the heat in the working chamber 101 is uniform. After the heat exchange is completed, the heating medium is again It is discharged through the heat medium output pipe 4 to perform stable and continuous heat exchange operations.
  • the heating medium can be steam or thermal oil.
  • the outer sleeve 21 can be configured to consist of a cylindrical base pipe 211 and a self-cylindrical base pipe 211.
  • the fins 212 extending outward from the surface of the base tube 211 are combined.
  • the fins 212 may be integrally formed in a spiral shape around the surface of the cylindrical base tube 211 .
  • there may be a plurality of fins 212 there may be a plurality of fins 212 , and the plurality of fins 212 are radially distributed with the columnar base tube 211 as the center.
  • each fin 212 can be configured in a wavy shape to further increase the surface area of the fins 212, increase the heat exchange area of the heating sleeve 2, and improve the heat exchange efficiency.
  • the outer tube 21 can also be configured as a threaded grooved tube, a corrugated tube, etc., which can also achieve the purpose of improving heat exchange efficiency, and this application does not specifically limit this.
  • the hydrogen purification tower includes a first vent pipe 5 and a second vent pipe 6 connected with the working chamber 101 .
  • the first vent pipe 5 and the second vent pipe 6 They are respectively connected to the top and bottom of the tank 1 and extend from the outside of the tank 1 into the working chamber 101. In this way, the gas to be worked can enter the working chamber through the first vent pipe 5 or the second vent pipe 6 according to different functions.
  • the gas to be operated when it needs to undergo a deoxygenation or drying process, it can enter the working chamber 101 from the second vent pipe 6 and be discharged from the first vent pipe 5; when the filler in the working chamber 101 needs to be processed When drying for recycling, the working gas can choose to enter the working chamber from the first vent pipe 5 and be discharged from the second vent pipe 6, so as to better complete the drying of the filler.
  • the portion of the second vent pipe 6 located in the working chamber 101 can be provided with multiple openings, and the openings can be evenly spaced on the outer surface of the second vent pipe 6, so that , so that when the working gas enters through the second vent pipe 6, it can quickly and evenly fill the entire working chamber 101.
  • the opening can also be opened only in the second part of the working chamber 101.
  • the part of the first vent pipe 5 located in the working chamber 101 can also be provided with a plurality of openings, and the openings can be evenly spaced on the outer surface of the first vent pipe 5, so that it is convenient to When the working gas enters through the first vent pipe 5, it can quickly and evenly fill the entire working chamber 101.
  • the openings can also be opened only in the part of the first vent pipe 5 located in the working chamber 101.
  • On the lower surface when the working gas enters the working chamber 101 from the first vent pipe 5, it is discharged downward through the opening. At this time, by continuously introducing the gas, under the action of pressure, the gas can also be made to flow from top to bottom. Fill the entire working chamber 101.
  • a wire mesh 7 and two screen plates 8 are provided above the second ventilation pipe 6 , and the two screen plates 8 are provided in the working chamber 101 and It is fixedly connected to the inner wall of the tank 1, and the two screen plates 8 are arranged oppositely in the vertical direction and the wire mesh 7 is clamped between the two screen plates 8.
  • the filler can be supported without blocking the gas.
  • the powder can fall into the bottom of the second vent 6 through the combination of the sieve plate 8 and the wire mesh 7, that is, the tank
  • the bottom of the body 1 is discharged to the outside of the working chamber 101 through the discharge port 14 to effectively prevent dust from contaminating the gas to be worked.
  • the two screen plates 8 can support and fix the wire mesh 7 without hindering the circulation of the gas to be operated.
  • the number of sieve plates 8 can also be one, and the wire mesh 7 is fixed above the sieve plate 8 and can also play a role of supporting and fixing the wire mesh 7. This application does not specifically limit this.
  • the tank 1 may be provided with a first thermometer 9 , which penetrates the tank 1 and extends to the inside of the working chamber 101 .
  • the first thermometer 9 can be placed close to the first vent pipe 5;
  • the tank 1 can also be provided with a second thermometer 10, the second thermometer 10 penetrates the tank 1 and extends to the inside of the working chamber 101, and the The two thermometers 10 can be placed close to the second vent pipe 6.
  • the first thermometer 9 and the second thermometer 10 can be used to monitor that the first vent pipe 5 and the second vent pipe 6 are located in the working chamber 101 respectively.
  • the gas temperature at the outlet ensures that the gas to be operated meets the optimal process temperature.
  • the working chamber 101 can be discharged from the first vent pipe 5 or the second vent pipe 6, and the temperature at the outlet can more accurately reflect the working conditions in the working chamber 101. Therefore, When the gas is discharged from the first vent pipe 5, it is detected by the first thermometer 9; when the gas is discharged from the second vent pipe 6, it is detected by the second thermometer 10.
  • the tank 1 is equipped with a pressure gauge 11 , which penetrates the tank 1 and extends into the working chamber 101 , and the pressure gauge 11 is close to the first vent pipe 5 setting, due to the upward circulation of the gas to be operated, the pressure at the top of the operating chamber 101 is relatively large, so the measurement
  • the pressure gauge 11 can be placed close to the first ventilation pipe 5 for detecting pressure changes in the working chamber 101 to ensure working safety.
  • a gas detection port 12 is also provided on the top of the tank 1.
  • the gas detection port 12 is located on the top of the tank 1 and is located on the same side of the tank 1 as the first vent pipe 5.
  • the gas detection port 12 is The port 12 is used to analyze the gas to be operated in the operation chamber 101 to determine whether the operation requirements are met.
  • a feeding port 13 is provided on the top of the tank 1
  • a discharge port 14 is provided on the bottom of the tank.
  • the feeding port 13 and the discharge port 14 are respectively used for filling. filling and unloading. In this way, the appropriate medium can be selected to fill the working chamber 101 from the feed port 13 according to the actual application, and discharged from the discharge port 14 when it needs to be replaced.
  • the packing selection is: Palladium contact coal is used for catalytic deoxygenation of the gas to be operated; when the hydrogen purification tower provided in this application is used as a drying tower, the filler is selected as molecular sieve, used for adsorption and drying of the gas to be operated.
  • this application also provides a water electrolysis hydrogen production system 100, which includes a heat source device and the above-mentioned hydrogen purification tower.
  • the heat source device is connected to the heat medium input pipe 3 to provide heat medium.
  • the heating medium can be selected as any suitable medium, such as steam, hot water, oil, etc., which is not specifically limited in this application.
  • the above-mentioned hydrogen purification tower can be used as a deoxygenation tower or a drying tower.
  • the only difference lies in the filler filled in the working chamber 101.
  • the purification process begins, that is, the oxygen and water in the hydrogen are removed through the deoxidation tower and the drying tower respectively.
  • the water electrolysis hydrogen production system 100 includes 1 deoxygenation tower and 3 drying tower systems.
  • the drying towers have three operating states: working, regeneration, and auxiliary working. And each drying tower circulates in the order of work, regeneration, and auxiliary work. Taking drying tower A as the working state, drying tower B as the regeneration state, and drying tower C as the auxiliary working state as an example, hydrogen enters the deoxidizer from the first vent pipe 5 In the tower, the deoxidation tower is in a heating state at this time.
  • this application also provides a water electrolysis hydrogen production system, including the above-mentioned hydrogen purification tower 20, and a heat exchanger 30 connected to the hydrogen purification tower 20.
  • the heat exchanger 30 is used for
  • the target gas purified by the hydrogen purification tower 20 and the gas to be operated are heat exchanged, and the heat-exchanged gas to be operated is passed into the above-mentioned operation chamber for purification.
  • the gas to be processed here is the original gas that needs to be purified by the hydrogen purification tower 20
  • the target gas is the gas obtained after the gas to be processed is purified by the hydrogen purification tower 20 .
  • the target gas includes but is not limited to hydrogen.
  • the operating gas is purified under heating to achieve the purpose of purification. Therefore, the target gas output from the hydrogen purification tower 20 usually has a higher temperature and generally needs to be cooled before it can be purified. Storage or use, etc. Moreover, the gas to be processed needs to be heated to a higher temperature before it can be purified. For example, for the purification of hydrogen, the gas to be processed needs to be heated to a deoxygenation process temperature or a regeneration process temperature. This application uses the output from the hydrogen purification tower 20 The higher temperature target gas is used to heat the gas to be processed. After the heated gas to be processed is passed into the hydrogen purification tower 20, less heat is needed to reach the temperature required for the purification process, which reduces the need for heating the gas to be processed.
  • the temperature of the gas to be operated is usually normal temperature or a lower temperature.
  • This application uses the lower temperature gas to be operated to cool the higher temperature target gas output from the hydrogen purification tower 20, and the temperature of the cooled target gas is reduced. , less cooling energy is required to reach the storage or use temperature, which can reduce the energy used to cool the target gas.
  • the heat exchanger 30 is used to realize heat exchange between the target gas purified by the hydrogen purification tower 20 and the gas to be operated, which can reduce the heat used to heat the gas to be operated and reduce the heat used to cool the target gas, thus saving resources. , reducing costs.
  • the hydrogen purification tower 20 in Figure 5 can be a deoxygenation tower.
  • the oxygen tower is in a heating state, and the operating gas is heated to about 120°C for purification. Therefore, the temperature of the target gas output from the hydrogen purification tower 20 is about 120°C.
  • the temperature of the gas to be operated is about 40°C.
  • Both the target gas of about 120°C and the gas to be operated of about 40°C are passed into the heat exchanger 30 to realize heat exchange.
  • the temperature of the target gas after heat exchange is about 80°C. After heat exchange, the temperature of the target gas is reduced by about 40°C. After heat exchange, the temperature of the gas to be worked is about 80°C.
  • the temperature of the gas to be worked is increased by about 40°C. Subsequently, only about 80°C is needed.
  • the energy required for cooling can be reduced compared to directly cooling the target gas at about 120°C.
  • the gas to be operated at about 80°C is passed into the hydrogen purification tower 20 for purification. It only needs to be heated by about 40°C. Compared with directly passing the gas to be operated at about 40°C into the hydrogen purification tower 20 for purification, The heat or energy required to heat the gas to be worked can be reduced, thereby saving resources or energy and reducing costs.
  • the first temperature of the purified target gas is higher than the second temperature of the gas to be operated provided by the gas supply port 40, and the third temperature of the target gas after heat exchange is lower than the first temperature.
  • Temperature, the fourth temperature of the gas to be operated after heat exchange is higher than the aforementioned second temperature. That is to say, in the hydrogen purification tower 20, the purified target gas has a higher temperature, and the temperature of the gas to be operated provided by the gas supply port 40 is lower. During the process of heat exchange between the two in the heat exchanger, At least part of the heat of the purified target gas will be transferred to the gas to be operated.
  • the higher temperature target gas output from the hydrogen purification tower 20 heats the gas to be operated provided by the gas supply port 40.
  • the heated gas to be worked is passed into the hydrogen purification tower 20, less heat is needed to reach the temperature required for purification treatment, which can reduce the heat or energy used to heat the gas to be worked;
  • the gas supply The gas to be operated provided by the port 40 cools the higher-temperature target gas output from the hydrogen purification tower 20.
  • the temperature of the cooled target gas decreases, and less cooling energy is needed to reach the storage or use temperature. The energy used to cool the target gas can be reduced.
  • the heat exchanger 30 is used to realize heat exchange between the target gas purified by the hydrogen purification tower 20 and the gas to be worked provided by the gas supply port 40, which can reduce the heat used to heat the gas to be worked and reduce the cooling of the target.
  • the heat used by the gas saves resources and reduces costs.
  • the first temperature and the third temperature The difference in temperature and the difference between the fourth temperature and the second temperature are not specifically limited.
  • the third temperature of the target gas after heat exchange and the fourth temperature of the gas to be operated after heat exchange may be equal to or different from each other, and there is no specific limitation on the relative sizes of the two.
  • the first temperature of the target gas output from the hydrogen purification tower 20 is about 120°C.
  • the second temperature of the gas to be operated provided by the air supply port 40 is about 40°C.
  • the third temperature of the target gas after heat exchange is about 80°C, and the fourth temperature of the gas to be operated after heat exchange is about 80°C.
  • the heat exchanger 30 is connected with the gas outlet end of the working chamber 101 and the gas supply port 40 of the gas to be worked, so as to perform heat exchange between the target gas purified by the hydrogen purification tower 20 and the gas to be worked.
  • the heat exchanger 30 is also connected with the working gas.
  • the air inlet end of the chamber 101 is connected, and the heat-exchanged gas to be worked is passed into the working chamber 101 for purification.
  • the air outlet end of the working chamber 101 may be one of the aforementioned first vent pipe 5 or the second vent pipe 6, and the air inlet end of the working chamber 101 may be the other one of the first vent pipe 5 or the second vent pipe 6. .
  • the above-mentioned water electrolysis hydrogen production system is compatible with and utilizes existing components as much as possible.
  • the heat exchanger 30 includes: a first air inlet pipe, a second air inlet pipe, a first air outlet pipe 301 and a second air outlet pipe 302.
  • the first air inlet pipe is nested in the second air inlet pipe, or the first air inlet pipe and the second air inlet pipe are arranged independently and closely adjacent to each other.
  • the above arrangement of the first air inlet pipe and the second air inlet pipe is easy to implement and can achieve good results. heat exchange.
  • One of the first air inlet pipe and the second air inlet pipe is connected to the air outlet end of the working chamber 101, and the other is connected to the air supply port 40 of the gas to be worked.
  • One of the first air outlet pipe 301 and the second air outlet pipe 302 is connected with the air inlet end of the working chamber 101 to pass the heat-exchanged gas to be worked into the working chamber 101 for purification, and the other one passes the heat-exchanged gas to be worked into the working chamber 101 for purification.
  • the target gas is output from the heat exchanger 30, thereby realizing the cyclic use of the heat exchanger 30.
  • the first air outlet pipe 301 is connected with the air inlet end of the working chamber 101, passing the heat-exchanged gas to be worked into the working chamber 101 for purification, and the second air outlet pipe 302 passes the heat-exchanged target gas.
  • the gas is output from the heat exchanger 30, thereby realizing the cyclic use of the heat exchanger 30.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本申请涉及一种氢气纯化塔和水电解制氢系统,氢气纯化塔包括罐体、加热套管、热媒输入管和热媒输出管,罐体的内部形成有作业腔,加热套管设置在作业腔中并且包括外套管和内套管,外套管和内套管均沿竖直方向延伸,外套管的顶端封闭且外套管套设于内套管的外部,并且外套管的底端封闭地连接于内套管的外壁,内套管的顶端为开口并与外套管连通,热媒输入管从罐体的外部延伸至作业腔并与外套管的底端连通,热媒输出管从罐体的外部延伸至作业腔并与内套管的底端连通。通过上述技术方案,本申请提供的氢气纯化塔不仅能够满足氢气纯化设备大型化的安全要求,并且节省了安装和维修成本。

Description

氢气纯化塔和水电解制氢系统
本申请要求在2022年8月31日提交中国专利局、申请号为202222331214.X、名称为″氢气纯化塔和水电解制氢系统″的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及气体纯化技术领域,具体地,涉及一种氢气纯化塔和水电解制氢系统。
背景技术
近年来,随着全球对保护环境达成的共识,可再生能源得到大力发展,氢能以其清洁无污染、储运方便、利用率高的特点,成为可再生能源领域的重要发展方向。其中,较为方便的水电解制氢方法逐渐成为市场需求主体。在充满电解液的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气,并与循环电解液一起,分别进入氢、氧分离洗涤器进行气液分离、洗涤、冷却,随后氢气通入纯化用的脱氧塔和干燥塔中进行脱氧和干燥,由于脱氧塔和干燥塔的工作具有一定的工艺温度要求,因此其中设置有加热设备。由于氢气的易燃易爆性,在氢气纯化设备中,尤其是在大型制氢纯化设备中,加热设备的安全性对于氢能领域技术的发展至关重要。
实用新型内容
本申请的目的在于提供一种氢气纯化塔和水电解制氢系统,该氢气纯化塔和水电解制氢系统不仅能够满足氢气纯化设备大型化的安全要求,并且节省了安装和维修成本。
为了实现上述目的,本申请提供一种氢气纯化塔,所述氢气纯化塔包括罐体、加热套管、热媒输入管和热媒输出管,所述罐体的内部形成有作业腔,所述加热套管设置在所述作业腔中,并且沿所述罐体的轴向延伸,所述加热套管包括外套管及嵌设连接于所述外套管内的内套管;所述热媒输入管及所述热媒输出管分别从所述罐体的相对两侧外部延伸至所述作业腔内,所述热媒输入管与所述加热套管的外套管连通,所述热媒输出管与所述内套管连通。
可选地,所述外套管的顶端封闭,所述外套管的底端封闭地连接于所述内 套管的外壁,所述内套管的顶端为开口并与所述外套管连通,所述热媒输入管与所述外套管的底端连通,所述热媒输出管与所述内套管的底端连通。
可选地,所述加热套管的数量为多个,多个所述加热套管的外套管均与所述热媒输入管连通且多个所述外套管通过所述热媒输入管相互连通,并且,多个所述加热套管的内套管均与所述热媒输出管连通且多个所述内套管通过所述热媒输出管相互连通。
可选地,所述外套管包括中空的柱状基管及自所述柱状基管表面向外延伸的翅片;其中,所述翅片呈螺旋状围绕所述柱状基管表面一体形成;或者,所述翅片为多个,并以所述柱状基管为中心呈辐射状分布。
可选地,所述氢气纯化塔包括与所述作业腔连通的第一通气管和第二通气管,所述第一通气管和所述第二通气管分别连接于所述罐体的顶部和底部并且从所述罐体外部延伸至所述作业腔中,所述第一通气管和/或所述第二通气管位于所述作业腔中的部分设置有多个开孔。
可选地,所述第二通气管的上方设置有丝网和两个筛板,两个所述筛板设置于所述作业腔中并与所述罐体的内壁固定连接,且两个所述筛板沿竖直方向相对布置并将所述丝网夹紧在两个所述筛板之间。
可选地,所述罐体设置有第一测温计,所述第一测温计贯穿所述罐体并延伸至所述作业腔内部,并且所述第一测温计靠近所述第一通气管设置,所述罐体设置有第二测温计,所述第二测温计贯穿所述罐体并延伸至所述作业腔内部,并且所述第二测温计靠近所述第二通气管设置。
可选地,所述罐体安装有测压计,该测压计贯穿所述罐体并延伸至所述作业腔内部,并且所述测压计靠近所述第一通气管设置。
可选地,所述罐体顶部还开设有气体检测口,所述气体检测口位于所述罐体的顶部并与所述第一通气管位于所述罐体的相对一侧。
可选地,所述罐体顶部开设有加料口,所述罐体的底部开设有卸料口,所述加料口和所述卸料口分别用于填料的填装和卸除。
在上述技术方案的基础上,本申请还提供一种水电解制氢系统,所述水电解制氢系统包括热源设备和上述的氢气纯化塔,所述热源设备与所述热媒输入管连通,以提供热媒。
在上述技术方案的基础上,本申请还提供一种水电解制氢系统,所述水电 解制氢系统包括上述的氢气纯化塔,及与所述氢气纯化塔连接的换热器,所述换热器用于对被所述氢气纯化塔纯化后的目标气体和待作业气体进行热交换,并将热交换后的待作业气体通入所述作业腔,以供纯化。
可选地,所述换热器与所述作业腔的出气端,以及待作业气体的供气口联通,以对被所述氢气纯化塔纯化后的目标气体和待作业气体进行热交换,所述换热器还与所述作业腔的进气端联通,将热交换后的待作业气体通入所述作业腔,以供纯化。
可选地,所述换热器包括:第一进气管、第二进气管、第一出气管和第二出气管;
所述第一进气管嵌套设置在所述第二进气管内,或者,所述第一进气管和所述第二进气管独立且紧邻设置;
所述第一进气管和所述第二进气管中的一个,与所述作业腔的出气端联通,另一个与待作业气体的供气口联通;
所述第一出气管和所述第二出气管中的一个,与所述作业腔的进气端联通,将热交换后的待作业气体通入所述作业腔,以供纯化,另一个将热交换后的目标气体输出所述换热器。
可选地,所述氢气纯化塔中,纯化后的目标气体的第一温度,高于由所述供气口提供的待作业气体的第二温度;
热交换后的目标气体的第三温度,低于所述第一温度;
热交换后的待作业气体的第四温度,高于所述第二温度。
通过上述技术方案,在本申请提供的氢气纯化塔中,作业腔内部安装有由外套管和内套管组成的加热套管,其中,内套管嵌设连接于外套管之内,使用时,加热媒介通过热媒输入管进入外套管,沿外套管内部进入内套管,从而对加热套管进行加热,与此同时,将待作业气体通入作业腔,通过加热套管提高待作业气体的温度至脱氧工艺温度或再生工艺温度,加热套管沿罐体的轴向延伸,加热套管的长度较大,能够提供更大的加热面积,热媒输入管和热媒输出管分别安装于罐体的相对两侧,并延伸至作业腔内部,加热媒介在罐体内运动的路径较长,可以充分利用加热媒介的热量,换热完成之后,加热媒介从内管内部通过热媒输出管排出。上述的氢气纯化装置,无需在作业腔内设置电阻丝加热管,避免了因设备处理量增大,电阻丝加热管增多而接线复杂的情况, 能够减少安全隐患,因而能够满足氢气纯化设备大型化的安全要求,并且本申请所提供的氢气纯化塔通过热媒进行加热,加热套管仅需要提供通道供热媒流通即可,不存在故障或者损坏的情况,因此降低了维修成本,此外,加热套管整体固定安装在作业腔的内部即可完成安装,降低了安装难度。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的氢气纯化塔的结构示意图;
图2是本申请实施例提供的氢气纯化塔的部分结构示意图;
图3是本申请实施例提供的氢气纯化塔中的外套管的结构示意图;
图4是本申请实施例提供的一种水电制氢系统的流程示意图;
图5是本申请实施例提供的另一种水电制氢系统的流程示意图。
附图标记说明
1-罐体;101-作业腔;2-加热套管;21-外套管;211-柱状基管;212-翅片;22-内套管;3-热媒输入管;4-热媒输出管;5-第一通气管;6-第二通气管;7-丝网;8-筛板;9-第一测温计;10-第二测温计;11-测压计;12-气体检测口;13-加料口;14-卸料口;100-水电解制氢系统,20-氢气纯化塔;30-换热器;301-第一出气管;302-第二出气管;40-待作业气体的供气口。
具体实施例
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,在未作相反说明的情况下,使用的方位词如“内、外”是指相对于对应部件的自身轮廓而言的“内、外”。本申请所使用的术语“第一”、“第二”等是为了区分一个要素和另一个要素,不具有顺序性和重要性。此外,在下面的描述中,当涉及到附图时,除非另有解释,不同的附图中相同的附图标记表示相同或相似的要素。上述定义仅用于解释和说明本申请,不应当理解为对本申请的限制。
在工业生产中,为了得到符合使用场景要求的高纯度气体,通常会在气体制备完成后进行一系列的气体纯化处理。例如,在通过水电解制氢过程中,首先在充满电解液的电解槽中通入直流电,将水分子分解成氢气和氧气,再分别进入氢、氧分离洗涤器对氢气和氧气进行气液分离、洗涤、冷却,随后氢气通入纯化用的脱氧塔和干燥塔中进行脱氧和干燥
相关技术中,水电解制氢领域纯化脱氧塔和干燥塔加热设备采用电阻丝内筒加热方式,电加热管插入封闭的不锈钢管内,通电后,电阻丝加热,通过不锈钢管向外辐射热,提高氢气温度,达到脱氧和再生的工艺温度。本申请人在研发及生产过程中发现,随着单套设备处理量的增加,纯化设备中的电加热管也需要相应增多,电加热管的接线越来越复杂,安全隐患较多,难以满足防爆强制认证的要求,并且由于设备本身较高,一旦加热管故障,检修难度大。
根据本申请的具体实施方式,参考图1至图4中所示,提供一种氢气纯化塔,包括罐体1、加热套管2、热媒输入管3和热媒输出管4,罐体1的内部形成有作业腔101,加热套管2设置在作业腔101中并且包括外套管21和内套管22,外套管21和内套管22均沿罐体1的轴向延伸,例如,参照图1,罐体1的轴向为上下方向或者竖直方向,则外套管21和内套管22均沿竖直方向延伸,加热套管2沿罐体1的轴向延伸,加热套管2的长度较大,能够提供更大的加热面积,加热套管2包括外套管21及嵌设连接于该外套管21内的内套管22,热媒输入管3和热媒输出管4分别安装于罐体1的相对两侧,并延伸至作业腔101内部,加热套管2的外套管21与热媒输入管3联通,加热套管2的内套管22与热媒输出管4连通。由于热媒输入管3和热媒输出管4分别安装于罐体1的相对两侧,加热媒介在罐体1内运动的路径较长,可以充分利用加热媒介的热量。换热完成之后,加热媒介从内管内部通过热媒输出管排出。上述的氢气纯化装置,无需在作业腔内设置电阻丝加热管,避免了因 设备处理量增大,电阻丝加热管增多而接线复杂的情况,能够减少安全隐患,因而能够满足氢气纯化设备大型化的安全要求,并且本申请所提供的氢气纯化塔通过热媒进行加热,加热套管仅需要提供通道供热媒流通即可,不存在故障或者损坏的情况,因此降低了维修成本,此外,加热套管整体固定安装在作业腔的内部即可完成安装,降低了安装难度。
外套管21的顶端封闭且外套管21套设于内套管22的外部,并且外套管21的底端封闭地连接于内套管22的外壁,以将内套管22封闭在外套管21的内部,内套管22的顶端为开口并与外套管21连通,热媒输入管3从罐体1的外部延伸至作业腔101并与外套管21的底端连通,热媒输出管4从罐体1的外部延伸至作业腔101并与内套管22的底端连通。
通过上述技术方案,在本申请提供的氢气纯化塔中,作业腔101内部安装有由外套管21和内套管22组成的加热套管2,其中,外套管21套设于内套管22之外并将内套管22封闭在其内部,且内套管22的顶端开口与外套管21连通,使用时,加热媒介通过热媒输入管3进入外套管21,沿外套管21内部上升至内套管22顶部,经过内套管22顶部开口进入内套管22从而对加热套管2进行加热,与此同时,将待作业气体通入作业腔101,通过加热套管2提高待作业气体的温度至脱氧工艺温度或再生工艺温度,换热完成之后,加热媒介从内管22内部通过热媒输出管4排出。上述的氢气纯化装置,无需在作业腔101内设置电阻丝加热管,避免了因设备处理量增大,电阻丝加热管增多而接线复杂的情况,能够减少安全隐患,因而能够满足氢气纯化设备大型化的安全要求,并且本申请所提供的氢气纯化塔通过热媒进行加热,加热套管2仅需要提供通道供热媒流通即可,不存在故障或者损坏的情况,因此降低了维修成本,此外,加热套管2整体固定安装在作业腔101的内部即可完成安装,降低了安装难度。
其中,为了提高加热套管2的加热效率,加热套管2的数量可以为多个,可以根据该装置所需处理量的大小在可行的范围(例如1个~30个)中进行选择,本申请对此不作具体限制。多个加热套管2均匀间隔地设置于作业腔101内,可以充分提高作业腔101内待作业气体的温度。此外,多个加热套管2的外套管21均与热媒输入管3连通且多个外套管21通过热媒输入管3相互连通,并且,多个加热套管2的内套管22均与热媒输出管4连通且多个内套管 22通过热媒输出管4相互连通,这样,加热媒介能够均匀快速地通过热媒输入管3通入多个外套管21内,使得作业腔101内热度均匀,待换热完成之后,加热媒介再通过热媒输出管4排出,以此进行稳定持续换热作业。其中,加热媒介可以为蒸汽或导热油。
在本申请提供的具体实施方式中,参考图3中所示,为了能够有效提高加热套管2的换热面积,从而提高换热效率,外套管21可以设置为由柱状基管211和自柱状基管211表面向外延伸的翅片212组合而成。具体地,翅片212可以呈螺旋状围绕柱状基管211表面一体形成。可替换地,翅片212可以为多个,多个翅片212以柱状基管211为中心呈辐射状分布。更进一步地,每个翅片212可以设置为波浪状,以进一步增大翅片212的表面积,提高加热套管2的换热面积,提升换热效率。在其它一些实施方式中,外套管21也可以构造为螺纹槽管、波纹管等,同样能够达到提高换热效率的目的,本申请对此不作具体限制。
在本申请提供的具体实施方式中,参考图1中所示,氢气纯化塔包括与作业腔101连通的第一通气管5和第二通气管6,第一通气管5和第二通气管6分别连接于罐体1的顶部和底部并且从罐体1外部延伸至作业腔101中,这样,待作业的气体可以根据作用不同而选择由第一通气管5或者第二通气管6进入作业腔内,具体地,当该待作业气体需要经过脱氧或者干燥工序时,可以从第二通气管6进入作业腔101,此时由第一通气管5排出;当需要对作业腔101内的填料进行干燥以便循环使用的时候,待作业气体可以选择从第一通气管5进入作业腔,由第二通气管6排出,以此更好地完成对填料的干燥。
在本申请提供的具体实施方式中,第二通气管6位于作业腔101中的部分可以设置有多个开孔,该开孔可以均匀间隔开设于所述第二通气管6的外表面,这样,能够便于待作业气体由第二通气管6进入的时候能够迅速均匀地充满整个作业腔101,在其它一些实施方式中,该开孔也可以选择仅开设于位于作业腔101中的部分第二通气管6的上表面,待作业气体由第二通气管6进入作业腔101的时通过该开孔向上排出,符合气体本身向上流通的情况,同样也能便于待作业气体迅速均匀地充满整个作业腔101。
同样地,第一通气管5位于作业腔101中的部分也可以设置有多个开孔,该开孔可以均匀间隔开设于所述第一通气管5的外表面,这样,能够便于待 作业气体由第一通气管5进入的时候能够迅速均匀地充满整个作业腔101,在其它一些实施方式中,该开孔也可以选择仅开设于位于作业腔101中的部分第一通气管5的下表面,待作业气体由第一通气管5进入作业腔101的时通过该开孔向下排出,此时通过持续通入该气体,在压强的作用下,同样也能使得气体从上到下充满整个作业腔101。
在本申请提供的具体实施方式中,参考图2中所示,第二通气管6的上方设置有丝网7和两个筛板8,两个所述筛板8设置于作业腔101中并与罐体1的内壁固定连接,且两个筛板8沿竖直方向相对布置并将丝网7夹紧在两个筛板8之间,这样,一方面可以在支撑填料同时又不阻碍气体的流动,另一方面,在作业腔101内填料经过长时间使用发生少料粉末化情况之后,粉末可以通过该筛板8与丝网7的组合落入第二通气口6下方,也即罐体1最底部,并通过卸料口14排出到作业腔101的外部,以有效地防止粉尘污染待作业气体。其中,两个筛板8可以在不阻碍待作业气体流通的条件下对丝网7进行支撑与固定。在其它一些实施方式中,筛板8的数量也可以为一个,而丝网7固定于筛板8上方,同样也可以起到支撑固定丝网7的作用,本申请对.此不作具体限制。
在本申请提供的具体实施方式中,参考图1中所示,罐体1可以设置有第一测温计9,第一测温计9贯穿所述罐体1并延伸至作业腔101内部,并且第一测温计9可以靠近第一通气管5设置;罐体1还可以设置有第二测温计10,第二测温计10贯穿罐体1并延伸至作业腔101内部,并且第二测温计10可以靠近第二通气管6设置,这样,第一测温计9和第二测温计10能够分别用来监测第一通气管5和第二通气管6位于作业腔101内出口的气体温度,以确保待作业气体满足最佳工艺温度。在实际应用中,根据待作业气体的不同作用,可选择从第一通气管5或第二通气管6排出作业腔101,而出口处的温度能够较准确反应作业腔101内的作业情况,因此当该气体从第一通气管5排出时,由第一测温计9检测;当该气体从第二通气管6排出时,由第二测温计10检测。
在本申请提供的具体实施方式中,罐体1安装有测压计11,该测压计11贯穿罐体1并延伸至所述作业腔101内,并且测压计11靠近第一通气管5设置,由于待作业气体向上流通,而导致作业腔101内顶部的压强较大,故该测 压计11可以靠近第一通气管5设置,用于检测作业腔101内的压力变化,保证作业安全。
在本申请提供的具体实施方式中,罐体1顶部还开设有气体检测口12,该气体检测口12位于罐体1的顶部并与第一通气管5位于罐体1的同一侧,气体检测口12用于对作业腔101内的待作业气体进行分析以判断是否达到作业要求。
在本申请提供的具体实施方式中,参考图1中所示,罐体1顶部开设有加料口13,罐体的底部开设有卸料口14,加料口13和卸料口14分别用于填料的填装和卸除。这样,可以根据实际应用选择合适的介质从加料口13填充作业腔101,需要更换时从卸料口14卸出,其中,当本申请提供的氢气纯化塔用作脱氧塔时,该填料选择为钯触煤,用于待作业气体的催化脱氧;当本申请提供的氢气纯化塔用作干燥塔时,该填料选择为分子筛,用于待作业气体的吸附干燥。
在上述方案的基础上,本申请还提供一种水电解制氢系统100,包括热源设备和上述氢气纯化塔,热源设备与热媒输入管3连通,以提供热媒。其中,热媒可以选择为任何适合的介质,例如蒸汽、热水、油等,本申请对此不作具体限制。
综上,在本申请提供的具体实施方式中,在水电解制氢系统100中,上述氢气纯化塔既可以用作脱氧塔,也可以用作干燥塔,唯一区别在于作业腔101内填充的填料不同,当电解槽制取的氢气经气液分离处理后开始纯化处理,即先后通过脱氧塔和干燥塔分别去除氢气中的氧气和水。
需要说明的是,本申请提供的氢气纯化塔可以涵盖,与本申请中记载的氢气纯化原理类似的其他气体纯化塔等。
请同时参阅图4,在本申请的一种实施方式中,该水电解制氢系统100包括1个脱氧塔和3个干燥塔系统,干燥塔的作业状态有工作、再生、辅工作三种,且每个干燥塔按照工作、再生、辅工作的顺序循环,以干燥塔A为工作状态、干燥塔B为再生状态、干燥塔C为辅工作状态为例,氢气从第一通气管5进入脱氧塔内,此时脱氧塔内处于加热状态,氢气被加热至催化脱氧所需工艺温度后,向上通过靶触媒催化剂填料,发生化学反应2H2+O2=H2O,完成对氢气的脱氧;氢气在经脱氧塔进行脱氧催化之后,先经冷凝器冷却,再 经过气水分离器除去部分冷凝水,然后从第二通气管6进入干燥塔A,此时干燥塔A不加热,其内部介质分子筛在常温下发挥吸附水分的作用,氢气达到干燥效果之后向上从第一通气管5排出后分为两部分,大部分氢气直接被收集完成作业,小部分氢气从干燥塔B的第一通气管5通入干燥塔B,此时干燥塔B处于加热状态,氢气被加热后向下通过分子筛,该分子筛在之前工作状态下吸附的水被汽化扩散到氢气中,由氢气携带从第二通气管6排出,最后该小部分携带水汽的氢气再经冷凝器冷却、汽水分离器除去部分冷凝水从干燥塔C的第二通气管6进入干燥塔C,此时干燥塔C不加热,氢气向上通过分子筛达到干燥效果,最后从第一通气管5排出后被收集。
在上述方案的基础上,参照图5,本申请还提供一种水电解制氢系统,包括上述氢气纯化塔20,以及与氢气纯化塔20连接的换热器30,该换热器30用于对被氢气纯化塔20纯化后的目标气体和待作业气体进行热交换,并将热交换后的待作业气体通入上述作业腔,以供纯化。具体的,此处的待作业气体就是需要该氢气纯化塔20纯化的原始气体,该目标气体就是该待作业气体被该氢气纯化塔20纯化后得到的气体,该目标气体包括但不限于氢气。在该氢气纯化塔20中,待作业气体在加热情况下进行纯化处理,进而达到纯化的目的,因此从该氢气纯化塔20输出的目标气体通常具有较高的温度,一般需要冷却后,才可以储存或使用等。而且,待作业气体需要被加热至较高温度才可以进行纯化处理,例如,针对氢气的提纯,待作业气体需要加热到脱氧工艺温度或再生工艺温度,本申请借助于从该氢气纯化塔20输出的较高温度的目标气体,对待作业气体进行加热,加热后的待作业气体通入氢气纯化塔20后,只需较少的热量就可以达到纯化处理所需的温度,可以减少加热待作业气体所用的热量或能量。待作业气体的温度通常为常温或温度较低,本申请借助于较低温度的待作业气体,对从该氢气纯化塔20输出的较高温度的目标气体进行冷却,冷却后的目标气体温度降低,只需较少的冷却能量就可以达到储存或使用温度,可以减少冷却该目标气体所用的能量。综上,通过换热器30实现被氢气纯化塔20纯化后的目标气体和待作业气体的热交换,可以减少加热待作业气体所用的热量,并减少冷却该目标气体所用的热量,节省了资源,降低了成本。
例如,针对图4所示的例子,图5中的氢气纯化塔20可以为脱氧塔,脱 氧塔内处于加热状态,待作业气体被加热至120℃左右进行纯化处理,因此,从该氢气纯化塔20输出的目标气体的温度约为120℃左右。待作业气体的温度为40℃左右,将120℃左右的目标气体和40℃左右的待作业气体均通入换热器30,实现热量交换,热量交换后的目标气体的温度为80℃左右,热量交换后的目标气体的温度降低40℃左右,热量交换后的待作业气体的温度为80℃左右,热量交换后的待作业气体的温度升高40℃左右,后续仅需将80℃左右的目标气体进行冷却,相对于直接对120℃左右的目标气体进行冷却而言,可以减少冷却所需的能量。将热量交换后80℃左右的待作业气体通入氢气纯化塔20进行纯化处理,只需再升温40℃左右,相对于直接将40℃左右的待作业气体通入氢气纯化塔20进行纯化处理,可以减少升温待作业气体所需的热量或能量,进而节省了资源或能量,降低了成本。
需要说明的是,图5中,紧邻热量交换后80℃左右的目标气体的曲线是代表简化的意思,就是说图5中,对目标气体的后续处理进行了简化或省略等。
氢气纯化塔20中,纯化后的目标气体的第一温度,高于由该供气口40提供的待作业气体的第二温度,热交换后的目标气体的第三温度,低于该第一温度,热交换后的待作业气体的第四温度,高于前述第二温度。就是说,氢气纯化塔20中,纯化后的目标气体具有较高的温度,由该供气口40提供的待作业气体的温度较低,两者在换热器中进行热交换的过程中,纯化后的目标气体的至少部分热量会传递给待作业气体,一方面,从该氢气纯化塔20输出的较高温度的目标气体,对由该供气口40提供的待作业气体进行了加热,加热后的待作业气体通入氢气纯化塔20后,只需较少的热量就可以达到纯化处理所需的温度,可以减少加热待作业气体所用的热量或能量;另一方面,由该供气口40提供的待作业气体对从该氢气纯化塔20输出的较高温度的目标气体,进行了冷却,冷却后的目标气体温度降低,只需较少的冷却能量就可以达到储存或使用温度,可以减少冷却该目标气体所用的能量。综上,通过换热器30实现被氢气纯化塔20纯化后的目标气体,和该供气口40提供的待作业气体的热交换,可以减少加热待作业气体所用的热量,并减少冷却该目标气体所用的热量,节省了资源,降低了成本。
需要说明的是,对于第一温度和第二温度的差值大小、第一温度和第三温 度的差值大小,以及第四温度和第二温度的差值大小均不作具体限定。热交换后的目标气体的第三温度,和热交换后的待作业气体的第四温度两者可以相等或者不等,对于两者的相对大小不作具体限定。
例如,针对前述例子,该氢气纯化塔20输出的目标气体的第一温度度就是约为120℃左右。由该供气口40提供的待作业气体的第二温度就是40℃左右。热量交换后的目标气体的第三温度为80℃左右,热交换后的待作业气体的第四温度就是80℃左右。
换热器30与作业腔101的出气端,以及待作业气体的供气口40联通,以对被氢气纯化塔20纯化后的目标气体和待作业气体进行热交换,换热器30还与作业腔101的进气端联通,将热交换后的待作业气体通入作业腔101,以供纯化。此处作业腔101的出气端可以为前述的第一通气管5或第二通气管6中的一个,作业腔101的进气端为第一通气管5或第二通气管6中的另一个。上述水电解制氢系统尽可能的兼容并利用了已有的部件。
换热器30包括:第一进气管、第二进气管、第一出气管301和第二出气管302。第一进气管嵌套设置在第二进气管内,或者,第一进气管和第二进气管独立且紧邻设置,第一进气管和第二进气管的上述设置方式易于实现,且能够实现良好的热交换。第一进气管和第二进气管中的一个,与作业腔101的出气端联通,另一个与待作业气体的供气口40联通。第一出气管301和第二出气管302中的一个,与作业腔101的进气端联通,将热交换后的待作业气体通入作业腔101,以供纯化,另一个将热交换后的目标气体输出该换热器30,实现了换热器30的循环使用。
例如,图5中,第一出气管301与作业腔101的进气端联通,将热交换后的待作业气体通入作业腔101,以供纯化,第二出气管302将热交换后的目标气体输出该换热器30,实现了换热器30的循环使用。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本文中所称的″一个实施例″、″实施例″或者″一个或者多个实施例″意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至少一个实施例中。此外,请注意,这里″在一个实施例中″的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种氢气纯化塔,其特征在于,所述氢气纯化塔包括罐体、加热套管、热媒输入管和热媒输出管;
    所述罐体的内部形成有作业腔,所述加热套管设置在所述作业腔中,并且沿所述罐体的轴向延伸,所述加热套管包括外套管及嵌设连接于所述外套管内的内套管;
    所述热媒输入管及所述热媒输出管分别从所述罐体的相对两侧外部延伸至所述作业腔内,所述热媒输入管与所述加热套管的外套管连通,所述热媒输出管与所述内套管连通。
  2. 根据权利要求1所述的氢气纯化塔,其特征在于,所述外套管的顶端封闭,所述外套管的底端封闭地连接于所述内套管的外壁,所述内套管的顶端为开口并与所述外套管连通,所述热媒输入管与所述外套管的底端连通,所述热媒输出管与所述内套管的底端连通。
  3. 根据权利要求2所述的氢气纯化塔,其特征在于,所述加热套管的数量为多个,多个所述加热套管的外套管均与所述热媒输入管连通且多个所述外套管通过所述热媒输入管相互连通,并且,多个所述加热套管的内套管均与所述热媒输出管连通且多个所述内套管通过所述热媒输出管相互连通。
  4. 根据权利要求1-3任一项所述的氢气纯化塔,其特征在于,所述外套管包括中空的柱状基管及自所述柱状基管表面向外延伸的翅片;其中,所述翅片呈螺旋状围绕所述柱状基管表面一体形成;或者,所述翅片为多个,并以所述柱状基管为中心呈辐射状分布。
  5. 根据权利要求1-3任一项所述的氢气纯化塔,其特征在于,所述氢气纯化塔包括与所述作业腔连通的第一通气管和第二通气管,所述第一通气管和所述第二通气管分别连接于所述罐体的顶部和底部并且从所述罐体外部延伸至所述作业腔中,所述第一通气管和/或所述第二通气管位于所述作业腔中的部分设置有多个开孔。
  6. 根据权利要求5所述的氢气纯化塔,其特征在于,所述第二通气管的上方设置有丝网和两个筛板,两个所述筛板设置于所述作业腔中并与所述罐体的内壁固定连接,且两个所述筛板沿竖直方向相对布置并将所述丝网夹紧 在两个所述筛板之间。
  7. 根据权利要求6所述的氢气纯化塔,其特征在于,所述罐体设置有第一测温计,所述第一测温计贯穿所述罐体并延伸至所述作业腔内部,并且所述第一测温计靠近所述第一通气管设置,
    所述罐体设置有第二测温计,所述第二测温计贯穿所述罐体并延伸至所述作业腔内部,并且所述第二测温计靠近所述第二通气管设置。
  8. 根据权利要求6所述的氢气纯化塔,其特征在于,所述罐体安装有测压计,该测压计贯穿所述罐体并延伸至所述作业腔内部,并且所述测压计靠近所述第一通气管设置。
  9. 根据权利要求6所述的氢气纯化塔,其特征在于,所述罐体顶部还开设有气体检测口,所述气体检测口位于所述罐体的顶部并与所述第一通气管位于所述罐体的相对一侧。
  10. 一种水电解制氢系统,其特征在于,所述水电解制氢系统包括热源设备和根据权利要求1-9中任一项所述的氢气纯化塔,所述热源设备与所述热媒输入管连通,以提供热媒。
  11. 一种水电解制氢系统,其特征在于,所述水电解制氢系统包括权1-9任一项所述的氢气纯化塔,及与所述氢气纯化塔连接的换热器,所述换热器用于对被所述氢气纯化塔纯化后的目标气体和待作业气体进行热交换,并将热交换后的待作业气体通入所述作业腔,以供纯化。
  12. 根据权利要求11所述的水电解制氢系统,其特征在于,所述换热器与所述作业腔的出气端,以及待作业气体的供气口联通,以对被所述氢气纯化塔纯化后的目标气体和待作业气体进行热交换,所述换热器还与所述作业腔的进气端联通,将热交换后的待作业气体通入所述作业腔,以供纯化。
  13. 根据权利要求11或12所述的水电解制氢系统,其特征在于,所述换热器包括:第一进气管、第二进气管、第一出气管和第二出气管;
    所述第一进气管嵌套设置在所述第二进气管内,或者,所述第一进气管和所述第二进气管独立且紧邻设置;
    所述第一进气管和所述第二进气管中的一个,与所述作业腔的出气端联通,另一个与待作业气体的供气口联通;
    所述第一出气管和所述第二出气管中的一个,与所述作业腔的进气端联 通,将热交换后的待作业气体通入所述作业腔,以供纯化,另一个将热交换后的目标气体输出所述换热器。
  14. 根据权利要求12所述的水电解制氢系统,其特征在于,所述氢气纯化塔中,纯化后的目标气体的第一温度,高于由所述供气口提供的待作业气体的第二温度;
    热交换后的目标气体的第三温度,低于所述第一温度;
    热交换后的待作业气体的第四温度,高于所述第二温度。
PCT/CN2023/114574 2022-08-31 2023-08-24 氢气纯化塔和水电解制氢系统 WO2024046193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222331214.X 2022-08-31
CN202222331214.XU CN218478535U (zh) 2022-08-31 2022-08-31 氢气纯化塔和水电解制氢系统

Publications (1)

Publication Number Publication Date
WO2024046193A1 true WO2024046193A1 (zh) 2024-03-07

Family

ID=85165652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114574 WO2024046193A1 (zh) 2022-08-31 2023-08-24 氢气纯化塔和水电解制氢系统

Country Status (2)

Country Link
CN (1) CN218478535U (zh)
WO (1) WO2024046193A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218478535U (zh) * 2022-08-31 2023-02-14 无锡隆基氢能科技有限公司 氢气纯化塔和水电解制氢系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972695A (en) * 1975-05-12 1976-08-03 Trienco, Inc. Hydrogen purifier
CN104961097A (zh) * 2015-07-16 2015-10-07 浙江海天气体有限公司 Dcs自动控制氢气纯化系统
CN108328577A (zh) * 2017-03-28 2018-07-27 北京中联电科技术有限公司 一种氢气纯化器
CN110368751A (zh) * 2019-07-18 2019-10-25 大连中鼎化学有限公司 一种气体快速加热纯化装置
CN110526212A (zh) * 2019-10-12 2019-12-03 安泰环境工程技术有限公司 一种带有鱼骨结构的氢气净化装置
CN218478535U (zh) * 2022-08-31 2023-02-14 无锡隆基氢能科技有限公司 氢气纯化塔和水电解制氢系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972695A (en) * 1975-05-12 1976-08-03 Trienco, Inc. Hydrogen purifier
CN104961097A (zh) * 2015-07-16 2015-10-07 浙江海天气体有限公司 Dcs自动控制氢气纯化系统
CN108328577A (zh) * 2017-03-28 2018-07-27 北京中联电科技术有限公司 一种氢气纯化器
CN110368751A (zh) * 2019-07-18 2019-10-25 大连中鼎化学有限公司 一种气体快速加热纯化装置
CN110526212A (zh) * 2019-10-12 2019-12-03 安泰环境工程技术有限公司 一种带有鱼骨结构的氢气净化装置
CN218478535U (zh) * 2022-08-31 2023-02-14 无锡隆基氢能科技有限公司 氢气纯化塔和水电解制氢系统

Also Published As

Publication number Publication date
CN218478535U (zh) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2024046193A1 (zh) 氢气纯化塔和水电解制氢系统
JP2006008480A (ja) 改質器
WO2011107279A1 (en) Apparatus for generating hydrogen from ammonia stored in solid materials and integration thereof into low temperature fuel cells
CN112573482B (zh) 一种制氢装置的制氢管以及制氢装置
CN101170845A (zh) 气体电加热器
CN204022465U (zh) 一种便携式制氢-供氢系统
CN214399817U (zh) 一种制氢装置
CN101813372B (zh) 一种承压高温空气电加热器
CN202460426U (zh) 一种降膜吸收塔
CN214734510U (zh) 一种制氢系统
CN107670592B (zh) 一种管壳式反应器及甲醇合成工艺
CN113091338B (zh) 甲醛生产中反应热回收利用系统
KR101006914B1 (ko) 촉매식 오존분해장치
CN114016084A (zh) 一种铝电解槽余热回收利用系统装置
CN201151701Y (zh) 新型氯乙烯合成转化器
CN207986685U (zh) 双氧水氧化塔
CN201429342Y (zh) 乏风氧化装置换热器
CN206130944U (zh) 一种高效废热锅炉
CN213537768U (zh) 一种氯乙烯合成转化用触媒高效干燥活化反应器
CN218339415U (zh) 能动式氢复合器及消氢系统
CN216260662U (zh) 一种螺旋板式甲醇重整制氢反应器及反应组件
CN115212820B (zh) 反应装置及半导体废气处理系统
KR101632576B1 (ko) 연소식 수소발생장치
CN220878274U (zh) 一种多晶硅尾气吸附柱防渗漏结构
CN210252194U (zh) 一种双侧移热空心柱型羰化或加氢反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859226

Country of ref document: EP

Kind code of ref document: A1