WO2024046090A1 - Modular ship motion control debugging system and ship motion control debugging method - Google Patents

Modular ship motion control debugging system and ship motion control debugging method Download PDF

Info

Publication number
WO2024046090A1
WO2024046090A1 PCT/CN2023/112520 CN2023112520W WO2024046090A1 WO 2024046090 A1 WO2024046090 A1 WO 2024046090A1 CN 2023112520 W CN2023112520 W CN 2023112520W WO 2024046090 A1 WO2024046090 A1 WO 2024046090A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
control
motion
module
speed
Prior art date
Application number
PCT/CN2023/112520
Other languages
French (fr)
Chinese (zh)
Inventor
夏天
刘序辰
王波
陶江平
尤德武
谢新
蒋荣勤
史艳龙
郭彦军
谢宇
周谊
刘晗
许威
焉诗萌
梁伟
沈璐璐
Original Assignee
上海船舶工艺研究所(中国船舶集团有限公司第十一研究所)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) filed Critical 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所)
Publication of WO2024046090A1 publication Critical patent/WO2024046090A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0213Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24065Real time diagnostics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

A modular ship motion control debugging system and a ship motion control debugging method. The ship motion control debugging system comprises a motion control unit (1), a motion simulation unit (2) and a debugging interface (3). Secondary development and debugging requirements of normal-speed and low-speed ship motion control may be met. Motion change trends when control parameters change may be compared and analyzed, thereby guiding the direction of debugging and improving debugging efficiency. A modular design is used, allowing the system to configure different ship motion types and control types and be applicable to secondary development of motion control on different ships. The debugging interface (3) may issue a desired pose to the motion control unit, may also set control parameters of the motion control unit, and may further perform graphical display to enable visualization of debugging information, facilitating insight into motion trends and influence patterns caused by parameter changes, guiding debugging concepts, avoiding invalid tests during a debugging process, reducing feelings of boredom and disorder during the debugging process, and improving the debugging experience and efficiency.

Description

模块化的船舶运动控制调试系统及船舶运动控制调试方法Modular ship motion control debugging system and ship motion control debugging method 技术领域Technical field
本发明涉及船舶运动控制领域,具体为适用于实验室仿真的一种模块化的船舶运动控制调试系统及船舶运动控制调试方法。The invention relates to the field of ship motion control, specifically a modular ship motion control debugging system and a ship motion control debugging method suitable for laboratory simulation.
背景技术Background technique
船舶在大海中航行或者作业时,由于其运动特性具有强非线性,且海洋环境复杂多变,因此在对其进行运动控制时,需要针对不同的船舶和运动类型,建立对应的船舶运动数学模型,设计对应的运动控制方法。由于船舶进行水平面运动时,其三个自由度上的运动相互耦合。因此控制参数变化时的各自由度运动趋势不容易观察,调试规律不易获取,需要反复试凑调试,导致控制参数调试过程繁杂无序,调试效率较低。此外进行实船海上试验调试时,耗时长、费用高、机会少等,因此必须提前进行充分的仿真试验调试。When a ship sails or operates in the sea, its motion characteristics are highly nonlinear and the ocean environment is complex and changeable. Therefore, when controlling its motion, it is necessary to establish corresponding mathematical models of ship motion for different ships and motion types. , design the corresponding motion control method. When a ship moves in the horizontal plane, its motions in three degrees of freedom are coupled to each other. Therefore, the motion trends of each degree of freedom when the control parameters change are not easy to observe, and the debugging rules are not easy to obtain. Repeated trials and debugging are required, resulting in a complicated and disorderly debugging process of control parameters and low debugging efficiency. In addition, sea trials and debugging of real ships are time-consuming, expensive, and have few opportunities. Therefore, sufficient simulation trials and debugging must be carried out in advance.
发明内容Contents of the invention
针对上述问题,本发明提供了一种模块化的船舶运动控制仿真调试系统及船舶运动控制调试方法,可满足常速和低速船舶运动控制的二次开发和调试需求,可对比分析控制参数变化时的运动变化趋势,引导调试方向,提高调试效率。In view of the above problems, the present invention provides a modular ship motion control simulation debugging system and ship motion control debugging method, which can meet the secondary development and debugging needs of normal speed and low speed ship motion control, and can compare and analyze changes in control parameters. The movement change trend guides the debugging direction and improves debugging efficiency.
所述船舶运动控制调试系统包括运动控制单元、运动模拟单元和调试界面;The ship motion control debugging system includes a motion control unit, a motion simulation unit and a debugging interface;
所述运动控制单元包括多个模块,用于模拟船舶的运动控制方式,所述船舶的运动控制方式包括常速船舶的欠驱动控制、低速船舶的动力定位控制或选择添加的可编辑式运动控制算法;The motion control unit includes multiple modules for simulating the motion control mode of the ship. The motion control mode of the ship includes under-actuation control of normal-speed ships, dynamic positioning control of low-speed ships, or optionally added editable motion control. algorithm;
所述运动模拟单元包括多个模块,用于模拟具有各种主尺度和桨舵配置的船舶的运动状态;The motion simulation unit includes a plurality of modules for simulating the motion state of ships with various main scales and propeller and rudder configurations;
所述调试界面用于通过绘图显示多次模拟船舶的运动状态变化曲线和相轨迹,通过对比多次模拟结果进行所述运动控制单元和/或所述运动模拟单元的各模块的参数调整。The debugging interface is used to display the motion state change curves and phase trajectories of the multiple simulated ships through drawings, and adjust parameters of the motion control unit and/or each module of the motion simulation unit by comparing the multiple simulation results.
进一步的,在进行仿真模拟之前,需要对所述运动控制单元和所述运动模拟单元的各模块的参数进行配置,在配置完成之后进行仿真模拟,并将配置参数保存入配置文件。Further, before performing the simulation, it is necessary to configure the parameters of each module of the motion control unit and the motion simulation unit. After the configuration is completed, the simulation is performed, and the configuration parameters are saved in the configuration file.
进一步的,所述运动控制单元包括测量模块、估计模块和控制模块;Further, the motion control unit includes a measurement module, an estimation module and a control module;
所述测量模块用于模拟罗经来获取位置参考系统,对所述运动模拟单元传送来的船舶运动状态、推进器运行状态和海洋环境状态的数据进行分析和处理,然后传送给估计模块;The measurement module is used to simulate a compass to obtain a position reference system, analyze and process the data on ship motion status, propeller operating status and marine environment status transmitted by the motion simulation unit, and then transmit it to the estimation module;
所述估计模块用于对所述测量模块传送过来的数据进行处理,以计算船舶的运动状态;所述估计模块包括可选择设置的真值模式和滤波模式;所述估计模块默认为真值模式,直接使用测量值计算船舶的运动状态;所述滤波模式包括可选择设置的中值滤波、Alpha-Beta滤 波、EKF滤波、无源观测器,所述滤波模式用于通过滤波器及估计器对所述测量模块传送过来的数据进行滤波和估计,以获取平滑数据;The estimation module is used to process the data transmitted from the measurement module to calculate the motion state of the ship; the estimation module includes a true value mode and a filtering mode that can be optionally set; the estimation module defaults to the true value mode , directly using the measured values to calculate the motion state of the ship; the filtering mode includes optionally set median filtering, Alpha-Beta filtering Wave, EKF filtering, passive observer, the filtering mode is used to filter and estimate the data transmitted from the measurement module through the filter and estimator to obtain smooth data;
所述控制模块用于配置船舶的运动控制类型及其控制方法和参数;所述船舶的运动控制类型包括常速控制和低速控制;所述常速控制以舵角为控制变量,默认为PID控制,且可调整控制参数,可自定义添加或编辑控制方法;所述低速控制以三自由度的广义控制力为控制变量,默认为PID控制,可调整控制参数,可自定义添加或编辑控制方法;所述控制模块根据所述估计模块计算的船舶运动状态和所选的船舶的运动控制类型及其控制方法和参数,计算出控制指令,并传送给船舶运动模拟单元。The control module is used to configure the motion control type of the ship and its control methods and parameters; the motion control type of the ship includes normal speed control and low speed control; the normal speed control uses the rudder angle as the control variable, and the default is PID control , and the control parameters can be adjusted, and the control method can be customized to be added or edited; the low-speed control uses the generalized control force of three degrees of freedom as the control variable, and the default is PID control, the control parameters can be adjusted, and the control method can be customized to be added or edited. ; The control module calculates the control instructions based on the ship motion state calculated by the estimation module and the selected ship motion control type and its control method and parameters, and transmits it to the ship motion simulation unit.
进一步的,所述运动控制单元还包括前馈模块;Further, the motion control unit also includes a feedforward module;
所述前馈模块用于补偿环境干扰数据;所述前馈模块包括无前馈模式和风前馈模式,其默认为无前馈模式,可选择设置风前馈模式。The feedforward module is used to compensate for environmental interference data; the feedforward module includes no feedforward mode and wind feedforward mode. The default is no feedforward mode, and the wind feedforward mode can be optionally set.
进一步的,所述船舶运动模拟单元包括指令模块、桨舵模块、环境模块、船体模块;Further, the ship motion simulation unit includes a command module, a propeller and rudder module, an environment module, and a hull module;
所述指令模块可选择设置的控制力指令模式和桨舵指令模式;所述控制力指令模式为从船舶运动控制单元接收三自由度广义控制力指令,并传送给桨舵模块;所述桨舵指令模式为从船舶运动控制单元接收各桨舵指令,并传送给桨舵模块;The command module can optionally set the control force command mode and the propeller rudder command mode; the control force command mode is to receive a three-degree-of-freedom generalized control force command from the ship motion control unit and transmit it to the propeller rudder module; the propeller rudder module The command mode is to receive each propeller rudder command from the ship motion control unit and transmit it to the propeller rudder module;
所述桨舵模块包括可选择设置的抽象桨舵模块和模拟桨舵模块;所述抽象桨舵模块模拟广义控制力的动态特性,根据广义控制力指令更新广义控制力,并传送给船体模块;所述模拟桨舵模块模拟各桨舵动态特性,配置各桨舵的类型、尺度、位置,根据桨舵指令更新桨舵状态,并根据桨舵模型计算得出各桨舵合力作为广义控制力,传送给船体模块;The propeller rudder module includes an optional abstract propeller rudder module and a simulated propeller rudder module; the abstract propeller rudder module simulates the dynamic characteristics of the generalized control force, updates the generalized control force according to the generalized control force instructions, and transmits it to the hull module; The simulated propeller rudder module simulates the dynamic characteristics of each propeller rudder, configures the type, scale, and position of each propeller rudder, updates the propeller rudder status according to the propeller rudder instructions, and calculates the resultant force of each propeller rudder as a generalized control force based on the propeller rudder model. transmitted to the hull module;
所述船体模块包括可选择设置的常速模块和低速模块,用于常速船舶的运动模拟或用于低速船舶的运动模拟,可选择或添加适用不同环境的船舶数学模型模块;在所述常速模块中通过输入船舶主尺度参数后生成模拟船舶常速运动数学模型;在所述选低速模块中输入船舶质量和阻尼参数后生成模拟船舶低速运动数学模型;所述船体模块接收桨舵控制力,并根据对应的船舶数学模型更新船舶运动状态。The hull module includes a normal speed module and a low speed module that can be optionally set, and are used for motion simulation of normal speed ships or for motion simulation of low speed ships. Ship mathematical model modules suitable for different environments can be selected or added; in the normal speed module, In the speed module, a mathematical model for simulating the ship's normal speed motion is generated by inputting the main scale parameters of the ship; after inputting the ship mass and damping parameters into the low-speed module, a mathematical model for simulating the low-speed motion of the ship is generated; the hull module receives the propeller rudder control force , and update the ship motion status according to the corresponding ship mathematical model.
进一步的,所述常速模块包括井上模型和桨舵模型;所述常速模块通过设置自由舵方式进行常速控制;Further, the normal speed module includes an uphole model and a propeller rudder model; the normal speed module performs constant speed control by setting a free rudder mode;
所述低速模块包括船体模型和控制力模型;所述低速模块通过设置自动方向和自动定位方式进行低速控制。The low-speed module includes a hull model and a control force model; the low-speed module performs low-speed control by setting automatic direction and automatic positioning methods.
进一步的,所述船舶运动模拟单元还包括环境模块;Further, the ship motion simulation unit also includes an environment module;
所述环境模块包括可选择设置的风模型、浪模型、流模型;在所述风模型中,可设置平均风的绝对风速、绝对风向、风压系数、阵风参数、随机风参数;在所述浪模型中,可设置有义浪高、绝对浪向、波浪谱;在所述流模型中,可设置绝对流速、绝对流向、流力表;所述环境模块根据选选择的参数配置和船舶运动状态,计算出作用于船体的环境干扰力,并传送给船体模块;The environment module includes optionally set wind models, wave models, and flow models; in the wind model, the absolute wind speed, absolute wind direction, wind pressure coefficient, gust parameters, and random wind parameters of the average wind can be set; in the In the wave model, significant wave height, absolute wave direction, and wave spectrum can be set; in the flow model, absolute flow speed, absolute flow direction, and flow force tables can be set; the environment module is configured according to the selected parameters and ship motion. status, calculate the environmental interference force acting on the hull, and transmit it to the hull module;
所述船体模块接收桨舵控制力和环境干扰力,根据对应船舶数学模型更新船舶运动状态。 The hull module receives the propeller rudder control force and environmental interference force, and updates the ship's motion status according to the corresponding ship mathematical model.
进一步的,所述调试界面包括配置区、绘图区和仿真倍速控制区;Further, the debugging interface includes a configuration area, a drawing area and a simulation speed control area;
所述配置区用于对仿真时间、控制单元、模拟单元进行配置;The configuration area is used to configure the simulation time, control unit, and simulation unit;
所述绘图区用于展示艏向、纵向、横向的运动状态和相平面图;The drawing area is used to display the heading, longitudinal, and transverse motion states and phase plane diagrams;
所述仿真倍速控制区用于控制仿真模拟过程中的倍速。The simulation speed doubling control area is used to control the speed doubling during the simulation process.
进一步的,所述配置区还设有刷新按钮,其默认值设置为不刷新,用以展示多次模拟船舶的运动状态变化曲线和相轨迹,方便对比分析;当点击刷新后,所述绘图区内的数据清零。Furthermore, the configuration area is also equipped with a refresh button, whose default value is set to not refresh, to display the motion state change curves and phase trajectories of multiple simulated ships to facilitate comparison and analysis; when refresh is clicked, the drawing area The data inside is cleared.
本申请还提供一种船舶运动控制调试方法,包括步骤:This application also provides a ship motion control debugging method, including the steps:
根据前文所述的模块化的船舶运动控制调试系统配置一号船方案,载入常速船舶运动数学模型及其基于PID的自动舵控制方案,可直接运行;According to the modular ship motion control debugging system configuration No. 1 ship plan mentioned above, the normal speed ship motion mathematical model and its PID-based autopilot control plan are loaded and can be run directly;
基于一号船的配置方案,修改船舶配置对其他需要的船舶进行自动舵控制;Based on the configuration plan of the No. 1 ship, modify the ship configuration to perform autopilot control on other required ships;
获取一号船方案的运动状态和相平面图,分析一号船方案的缺陷,对该船舶的自动舵功能的控制算法进行二次开发和参数调整;Obtain the motion state and phase plane diagram of the No. 1 ship plan, analyze the flaws of the No. 1 ship plan, and conduct secondary development and parameter adjustment of the control algorithm of the ship's autopilot function;
根据前所述的模块化的船舶运动控制调试系统配置二号船方案,载入低速船舶运动数学模型及其基于PID的自动定向和/或自动定位的控制方案,可直接运行;According to the modular ship motion control debugging system configuration plan for ship No. 2 mentioned above, the low-speed ship motion mathematical model and its PID-based automatic orientation and/or automatic positioning control scheme are loaded and can be run directly;
基于二号船的配置方案,修改船舶配置对其他需要的船舶进行自动定向和/或自动定位控制;Based on the configuration plan of the No. 2 ship, modify the ship configuration to perform automatic orientation and/or automatic positioning control for other required ships;
获取二号船方案的运动状态和相平面图,分析二号船方案的缺陷,对该船舶的自动定向和/或自动定位控制算法进行二次开发和参数调整;Obtain the motion status and phase plan diagram of the No. 2 ship plan, analyze the flaws of the No. 2 ship plan, and conduct secondary development and parameter adjustment of the automatic orientation and/or automatic positioning control algorithm of the ship;
对比一号船方案及其调整方案和二号船方案及其调整方案的运动状态和相平面图,扩展新的控制算法并通过仿真模拟找到最优解,保存自定义配置的最优解方案。Compare the motion status and phase plane diagram of the No. 1 ship plan and its adjustment plan with the No. 2 ship plan and its adjustment plan, expand the new control algorithm and find the optimal solution through simulation, and save the optimal solution of the customized configuration.
本发明提供了一种模块化的船舶运动控制仿真调试系统及船舶运动控制调试方法,可满足常速和低速船舶运动控制的二次开发和调试需求,可对比分析控制参数变化时的运动变化趋势,引导调试方向,提高调试效率。本申请采用模块化设计,使其可配置不同的船舶运动类型和控制类型,适用于对不同船舶进行运动控制的二次开发。调试界面可以向运动控制单元下达期望位姿,也可以设定其控制参数,同时还可以绘图显示,使调试信息形象化,方便洞察参数变化引起的运动趋势和影响规律,指导调试思路,避免调试过程中的无效试凑,降低调试过程中的枯燥感和混乱感,提高调试体验和效率。The invention provides a modular ship motion control simulation debugging system and a ship motion control debugging method, which can meet the secondary development and debugging needs of normal-speed and low-speed ship motion control, and can comparatively analyze the motion change trends when control parameters change. , guide the debugging direction and improve debugging efficiency. This application adopts a modular design so that it can be configured with different ship motion types and control types, and is suitable for secondary development of motion control for different ships. The debugging interface can issue the desired pose to the motion control unit, and can also set its control parameters. It can also be displayed graphically to visualize the debugging information, facilitate insight into the movement trends and influence patterns caused by parameter changes, guide debugging ideas, and avoid debugging. Invalid trial and error in the process reduces the boredom and confusion during the debugging process, and improves the debugging experience and efficiency.
附图说明Description of drawings
图1是本发明的模块化的船舶运动控制调试系统的技术路线图;Figure 1 is a technical roadmap of the modular ship motion control debugging system of the present invention;
图2是本发明的模块化的船舶运动控制调试系统的部分框架结构图;Figure 2 is a partial frame structure diagram of the modular ship motion control debugging system of the present invention;
图3是本发明的调试界面的示意图;Figure 3 is a schematic diagram of the debugging interface of the present invention;
图4是本发明采用的坐标参考系统的示意图;Figure 4 is a schematic diagram of the coordinate reference system used in the present invention;
图5是本发明的模块化的船舶运动控制调试系统的框架结构图;Figure 5 is a frame structure diagram of the modular ship motion control debugging system of the present invention;
图6是本发明的模块化的船舶运动控制调试系统的动控制单元、运动模拟单元和调试界 面之间的数据信号连接关系示意图;Figure 6 shows the dynamic control unit, motion simulation unit and debugging interface of the modular ship motion control debugging system of the present invention. Schematic diagram of the data signal connection relationship between surfaces;
图7是本发明的船舶运动控制调试方法的流程图。Figure 7 is a flow chart of the ship motion control debugging method of the present invention.
具体实施方式Detailed ways
下面结合附图对本公开实施例进行详细描述。The embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
实施例1Example 1
在实施例1中提供一种模块化的船舶运动控制仿真调试系统,可满足常速和低速船舶运动控制的二次开发和调试需求,可对比分析控制参数变化时的运动变化趋势,引导调试方向,提高调试效率。该调试系统主要具有以下功能:In Embodiment 1, a modular ship motion control simulation debugging system is provided, which can meet the secondary development and debugging needs of normal-speed and low-speed ship motion control, can compare and analyze the motion change trend when the control parameters change, and guide the debugging direction. , improve debugging efficiency. The debugging system mainly has the following functions:
(1)船舶运动类型的选择。本调试系统提供常速船舶和低速船舶两个类型的运动控制,使用者可以根据需要进行选择。(1) Selection of ship movement type. This debugging system provides two types of motion control for normal-speed ships and low-speed ships, and users can choose according to their needs.
(2)船舶运动数学模型的选择。根据船舶运动类型的不同,使用者可以选择不同类型的船舶运动数学模型。常速船舶运动数学模型,适用于常速运动控制如自动舵,包括纵向模型、井上模型、主推模型、舵模型等;低速船舶运动数学模型,适用于低速运动控制如自动定向和自动定位等,包括船体解析模型、控制力模型等。此外还可以根据需要选择海洋环境的干扰模型,包括风模型、浪模型和流模型。(2) Selection of ship motion mathematical model. Depending on the type of ship motion, users can choose different types of ship motion mathematical models. The mathematical model of normal-speed ship motion is suitable for normal-speed motion control such as autopilot, including longitudinal model, uphole model, main thrust model, rudder model, etc.; the mathematical model of low-speed ship motion is suitable for low-speed motion control such as automatic orientation and automatic positioning, etc. Including hull analytical model, control force model, etc. In addition, you can select interference models for the marine environment as needed, including wind models, wave models, and current models.
(3)控制功能的选择。本系统提供基本的控制功能,如常速船舶的自动舵、低速船舶的自动定向和自动定位。此外还可以基于此系统对其他功能进行二次开发。(3) Selection of control functions. This system provides basic control functions, such as automatic steering of normal-speed ships, automatic orientation and automatic positioning of low-speed ships. In addition, other functions can be secondary developed based on this system.
(4)控制算法的选择。本系统提供PID控制算法,适用于自动舵、自动定向和自动定位。如需要其他控制算法,可基于PID算法格式进行自定义添加。(4) Selection of control algorithm. This system provides PID control algorithm, suitable for autopilot, automatic orientation and automatic positioning. If other control algorithms are needed, they can be customized and added based on the PID algorithm format.
(5)调试过程易于重复进行。本系统提供调试界面,通过界面可灵活配置控制系统。配置完成后,对某一控制参数进行调试时,只需改变界面上的控制参数,然后运行即可,调试过程易于重复进行。仿真初始条件不变,易于对比分析控制效果。(5) The debugging process is easy to repeat. This system provides a debugging interface through which the control system can be flexibly configured. After the configuration is completed, when debugging a certain control parameter, you only need to change the control parameters on the interface and then run it. The debugging process is easy to repeat. The initial conditions of the simulation remain unchanged, making it easy to compare and analyze the control effects.
(6)调试信息方便对比分析。调试界面支持多次仿真显示在同一绘图里,以利于观察控制参数的变化引起的船舶运动变化,引导调试者发现调试规律。调试界面还支持显示相轨迹图,相轨迹可以清楚地反映系统的状态变化,更直观的显示船舶运动的变化规律,方便参数调试。调试界面支持手动刷新绘图区,清空已显示数据。(6) Debugging information facilitates comparative analysis. The debugging interface supports multiple simulations to be displayed in the same drawing to facilitate observation of ship motion changes caused by changes in control parameters and guide the debugger to discover debugging rules. The debugging interface also supports the display of phase trajectory diagrams. The phase trajectory can clearly reflect the status changes of the system, more intuitively display the changing rules of ship motion, and facilitate parameter debugging. The debugging interface supports manually refreshing the drawing area and clearing the displayed data.
根据功能描述,本发明的技术方案包括功能设计和模块化设计:According to the functional description, the technical solution of the present invention includes functional design and modular design:
功能设计。该调试系统包括仿真的船舶运动控制单元、仿真的船舶运动模拟单元和调试界面。船舶运动控制单元的功能包括:确定控制类型,选择控制功能及其控制算法,接收控制算法参数;根据测量信息和期望位姿,计算控制指令。船舶运动模拟单元的功能包括:确定运动类型,选择船体模型、桨舵模型和环境模型,接收控制指令,根据数学模型更新船舶运动状态、桨舵信息和环境信息。调试界面的功能包括:配置船舶运动控制单元;配置船舶运动模拟单元;配置仿真条件;绘图显示多次仿真结果和调试信息,供调试者对比分析和决策。各功能的技术路线如图1所示。 feature design. The debugging system includes a simulated ship motion control unit, a simulated ship motion simulation unit and a debugging interface. The functions of the ship motion control unit include: determining the control type, selecting the control function and its control algorithm, receiving control algorithm parameters; and calculating control instructions based on the measurement information and desired posture. The functions of the ship motion simulation unit include: determining the motion type, selecting the hull model, propeller and rudder model and environment model, receiving control instructions, and updating the ship motion status, propeller and rudder information and environmental information according to the mathematical model. The functions of the debugging interface include: configuring the ship motion control unit; configuring the ship motion simulation unit; configuring simulation conditions; drawing and displaying multiple simulation results and debugging information for the debugger to compare, analyze and make decisions. The technical route of each function is shown in Figure 1.
模块化设计。本发明的特征是模块化,模块化设计的技术路线如图2所示。不管是常速船舶的运动模拟,还是低速船舶的运动模拟,其运动模拟的共同特征是,可将运动模拟单元划分为三个部分,执行机构、被控对象和环境干扰。基于这些共同特征,对各部分进行模块化设计,以实现不同运动类型的船舶运动模拟,具体的模块化方法如下:Modular design. The feature of the present invention is modularization, and the technical route of modular design is shown in Figure 2. Whether it is the motion simulation of a normal-speed ship or a low-speed ship, the common feature of the motion simulation is that the motion simulation unit can be divided into three parts, the actuator, the controlled object and environmental interference. Based on these common characteristics, each part is modularly designed to realize ship motion simulation of different motion types. The specific modularization method is as follows:
(1)执行机构包括桨舵模块和控制力模块,可通过配置单选。(1) The actuator includes a propeller rudder module and a control force module, which can be selected through configuration.
(2)被控对象包括井上模型模块和解析模型模块,可通过配置单选。(2) The controlled objects include the well model module and the analytical model module, which can be selected through configuration.
(3)环境干扰包括风模块、浪模块、流模块,可通过配置多选。(3) Environmental interference includes wind module, wave module, and flow module, and multiple selections can be made through configuration.
根据船舶运动的类型不同,船舶运动控制也分为两类:常速船舶运动控制和低速船舶运动控制。对于常速船舶运动控制,控制功能包括自动舵、自动航迹等,其中自动舵功能是基本功能。对于低速船舶运动控制,控制功能包括自定定向、自动定位、低速路径跟踪、低速轨迹跟踪等,其中自动定向和自动定位是基本功能。本实施例实现基本功能,对于其他功能,可基于本调试系统进行二次开发。以上控制功能的共同特征是,其控制单元包括三个部分,测量系统、滤波/估计和控制算法,各部分可进行模块化设计,即可实现以上控制功能。根据此特征,对船舶的运动控制单元进行模块化设计,具体内容如下:According to the different types of ship motion, ship motion control is also divided into two categories: normal speed ship motion control and low speed ship motion control. For normal-speed ship motion control, the control functions include autopilot, automatic track, etc., among which the autopilot function is the basic function. For low-speed ship motion control, the control functions include self-defined orientation, automatic positioning, low-speed path tracking, low-speed trajectory tracking, etc., among which automatic orientation and automatic positioning are the basic functions. This embodiment implements basic functions. For other functions, secondary development can be carried out based on this debugging system. The common feature of the above control functions is that the control unit includes three parts, measurement system, filtering/estimation and control algorithm. Each part can be modularized to realize the above control functions. Based on this feature, the ship's motion control unit is modularly designed, with the specific contents as follows:
(1)测量系统包括真值模式和模拟模式;如果选择真值模式,则测量系统直接获取船舶的运动状态;如果选择模拟模式,则模拟所配置位置参考系统、罗经等传感器对船舶运动状态进行测量获取。(1) The measurement system includes true value mode and simulation mode; if the true value mode is selected, the measurement system directly obtains the ship's motion state; if the simulation mode is selected, the configured position reference system, compass and other sensors are simulated to measure the ship's motion state. Measurement acquisition.
(2)滤波/估计包括多种模块,可根据需要单选,默认无需滤波和估计。(2) Filtering/estimation includes a variety of modules, which can be selected as needed. Filtering and estimation are not required by default.
(3)控制算法包括多种模块,默认为PID算法模块,也可根据需要自主添加其他控制算法模块。(3) The control algorithm includes a variety of modules, the default is the PID algorithm module, and other control algorithm modules can be added as needed.
本发明的有益效果是,与传统的控制参数调试工作相比,该调试系统不需要进行代码修改和调整,只需要在调试界面上配置相应的参数就可以观测调试效果,大大提升了调试工作的效率,满足不同船舶的运动控制设计和调试需求。本发明提供两种可使用的配置方案,可通过如图3所示的调试界面直接读取使用,或者基于此两种配置在调试界面进行简单的配置即可实现多种用法:The beneficial effect of the present invention is that compared with the traditional control parameter debugging work, the debugging system does not need to modify and adjust the code. It only needs to configure the corresponding parameters on the debugging interface to observe the debugging effect, which greatly improves the efficiency of the debugging work. efficiency to meet the motion control design and debugging needs of different ships. The present invention provides two usable configuration solutions, which can be directly read and used through the debugging interface as shown in Figure 3, or based on these two configurations, simple configuration on the debugging interface can achieve multiple usages:
(1)读取配置方案“一号船”,即可载入其常速船舶运动数学模型及其基于PID的自动舵控制方案,可直接运行;(1) After reading the configuration plan "Ship No. 1", you can load its normal-speed ship motion mathematical model and its PID-based autopilot control plan, which can be run directly;
(2)基于一号船的配置方案,可对其他需要的船舶进行自动舵控制,只需修改船舶配置即可进行控制参数调试;(2) Based on the configuration plan of the No. 1 ship, other required ships can be controlled automatically, and the control parameters can be debugged by simply modifying the ship configuration;
(3)基于一号船的配置方案,可对该船舶的自动舵功能的控制算法进行二次开发和参数调试;(3) Based on the configuration plan of the No. 1 ship, the control algorithm of the ship’s autopilot function can be re-developed and parameter debugged;
(4)读取配置方案“二号船”,即可载入其低速船舶运动数学模型及其基于PID的自动定向和/或自动定位的控制方案,可直接运行;(4) After reading the configuration plan "Ship No. 2", you can load its low-speed ship motion mathematical model and its PID-based automatic orientation and/or automatic positioning control plan, which can be run directly;
(5)基于二号船的配置方案,可对其需要的船舶进行自动定向和/或自动定位控制,只需修改船舶配置即可进行控制参数调试; (5) Based on the configuration plan of the No. 2 ship, automatic orientation and/or automatic positioning control can be performed on the required ships, and the control parameters can be debugged simply by modifying the ship configuration;
(6)基于二号船的配置方案,可对该船舶的自动定位功能进行新控制算法的二次开发和参数调试;(6) Based on the configuration plan of the No. 2 ship, the secondary development of the new control algorithm and parameter debugging of the automatic positioning function of the ship can be carried out;
(7)调试界面可扩展新的控制算法,配置方便,可保存自定义配置方案。(7) The debugging interface can be expanded with new control algorithms, easy to configure, and can save customized configuration plans.
实施例2Example 2
本发明实施例2中提供一种模块化的船舶运动控制仿真调试系统,主要包括三个部分:船舶运动模拟单元、船舶运动控制单元和调试界面。下面将结合本发明的附图,对本发明各部分的技术方案进行清楚、完整地描述。Embodiment 2 of the present invention provides a modular ship motion control simulation and debugging system, which mainly includes three parts: a ship motion simulation unit, a ship motion control unit and a debugging interface. The technical solutions of each part of the present invention will be clearly and completely described below with reference to the accompanying drawings of the present invention.
(一)船舶运动模拟单元。(1) Ship motion simulation unit.
船舶运动模拟单元的功能是模拟船舶的运动特性,为常速和低速船舶的运动控制调试提供实船的仿真模拟。本模块涉及的技术内容如图1所示,主要包括:The function of the ship motion simulation unit is to simulate the motion characteristics of the ship and provide simulation of the real ship for the motion control debugging of normal-speed and low-speed ships. The technical content involved in this module is shown in Figure 1, and mainly includes:
(1)船舶常速运动数学模型,主要为贵岛模型;(1) Mathematical model of ship's constant speed motion, mainly Guidao model;
(2)船舶低速运动数学模型,主要为解析模型;(2) Mathematical model of ship's low-speed motion, mainly analytical model;
(3)桨模型,主要为调速螺旋桨模型,通常为主推;(3) Propeller model, mainly a speed-controlled propeller model, usually the main thruster;
(4)舵模型,通常位于主推后面;(4) Rudder model, usually located behind the main thruster;
(5)控制力模型,通常适用于低速操纵;(5) Control force model, usually suitable for low-speed control;
(6)环境干扰模型,通常包括风、浪、流对船体的影响。(6) Environmental interference model, usually including the impact of wind, waves and currents on the hull.
描述船舶运动时涉及的坐标参考系统有两种:一种是固定坐标系NED,属于惯性坐标系;一种是随船坐标系,属于附体坐标系。坐标参考系统示意图如附图4所示。以O′X′Y′Z′表示固定于地球表面的惯性坐标系统,并规定:O′X′轴指向正北,O′Y′轴指向正东,O′Z′轴指向地心。以OXYZ表示固定于船舶上某点的附体坐标系统,并规定:OX轴指向船首,OY轴指向右舷,OZ轴垂直指向龙骨。描述船舶运动时需要用到其运动学方程和动力学方程。运动学方程表示船舶运动在两种坐标系下的相互转换关系;动力学方程描述船舶受到的各种影响力,及其如何随之变化的规律。There are two coordinate reference systems involved in describing ship motion: one is the fixed coordinate system NED, which belongs to the inertial coordinate system; the other is the ship-borne coordinate system, which belongs to the attached coordinate system. The schematic diagram of the coordinate reference system is shown in Figure 4. Let O'X'Y'Z' represent the inertial coordinate system fixed on the earth's surface, and stipulate that the O'X' axis points to true north, the O'Y' axis points to true east, and the O'Z' axis points to the center of the earth. OXYZ represents the appendage coordinate system fixed at a certain point on the ship, and stipulates that the OX axis points to the bow, the OY axis points to the starboard side, and the OZ axis points vertically to the keel. When describing the motion of a ship, its kinematic equations and dynamic equations are needed. The kinematic equation represents the mutual conversion relationship between the ship's motion in the two coordinate systems; the dynamic equation describes the various influences on the ship and how they change accordingly.
假设船舶航行在无限深广水域,且自由液面为静水面,视船体为刚体。船舶处于航向保持、航迹保持或中等强度以下的操纵状态时,主要考虑其在水平面内的三自由度运动特性。我们在讨论船舶运动时,主要是考虑船舶重心G的运动规律,因此在建立船舶运动数学模型时,将船舶随船坐标系的原点O取在船舶重心处,根据坐标系和变量定义,船舶三自由度水平面操纵的运动学方程表示为
Assume that the ship sails in infinitely deep and wide waters, and the free liquid surface is a still water surface, and the hull is regarded as a rigid body. When the ship is in a maneuvering state of course maintenance, track maintenance, or less than moderate intensity, its three-degree-of-freedom motion characteristics in the horizontal plane are mainly considered. When we discuss ship motion, we mainly consider the motion law of the ship's center of gravity G. Therefore, when establishing a mathematical model of ship motion, the origin O of the ship's coordinate system is taken at the ship's center of gravity. According to the coordinate system and variable definitions, the ship's three The kinematic equation of horizontal plane manipulation of degrees of freedom is expressed as
式中:In the formula:
x,船体重心处的北向位置坐标;x, the north position coordinate of the ship's center of gravity;
y,船体重心处的东向位置坐标;y, the eastward position coordinate of the ship's center of gravity;
ψ,船舶艏向; ψ, ship heading;
u,船体纵向线速度;u, longitudinal linear velocity of the hull;
v,船体横向线速度;v, hull transverse linear velocity;
r,船体绕重心回转角速度。r, the angular velocity of the hull around the center of gravity.
应用牛顿刚体力学的动量定理和动量矩定理对船舶的动态进行分析,可以得到船舶的动力学方程
Applying the momentum theorem and momentum moment theorem of Newtonian rigid body mechanics to analyze the dynamics of the ship, the dynamic equation of the ship can be obtained
动力学方程以流体惯性力、粘性力、桨舵力和环境干扰力来驱动船舶的运动状态变化,式中:The dynamic equation uses fluid inertia force, viscosity force, propeller rudder force and environmental interference force to drive the change of the ship's motion state, where:
m,船体质量;m, hull mass;
mx,船体纵向附加质量;m x , the longitudinal additional mass of the hull;
my,船体横向附加质量;m y , the transverse additional mass of the hull;
Izz,船体绕z轴的转动惯量;I zz , the moment of inertia of the hull around the z-axis;
Jzz,船体绕z轴附加转动惯量;J zz , the additional moment of inertia of the hull around the z-axis;
X,表示船体受到的纵向力;X, represents the longitudinal force on the hull;
Y,表示船体受到的横向力;Y, represents the lateral force on the hull;
N,表示船体受到的回转力矩;N, represents the rotational moment on the hull;
下标H,表示裸船体粘性流体力;The subscript H represents the viscous fluid force of the bare hull;
下标P,表示船体受到的推进器推力;The subscript P indicates the thrust of the propeller on the hull;
下标R,表示船体受到的舵力;The subscript R indicates the rudder force on the hull;
下标E,表示船体受到的海洋环境干扰力;The subscript E indicates the interference force of the marine environment to the hull;
xG,重心距船舯距离,重心在前为正。x G is the distance between the center of gravity and amidships, and the center of gravity is forward.
船舶流体惯性力作用的结果相当于物体的质量和惯性矩增加了某一数值,称为附加质量和附加惯性矩。从实用计算的角度来看,船舶的附加质量和附加惯性矩通常采用周昭明对日本著名的元良图谱进行的多元回归分析获取的近似估算公式


The result of the ship's fluid inertia force is equivalent to the mass and moment of inertia of the object increasing by a certain value, which is called the additional mass and additional moment of inertia. From a practical calculation point of view, the ship's additional mass and additional moment of inertia are usually approximated by the approximate estimation formula obtained by Zhou Zhaoming's multiple regression analysis of Japan's famous Genliang diagram.


式中:In the formula:
L,垂线间长; L, length between vertical lines;
B,船宽;B, ship’s width;
d,吃水;d, draft;
Cb,方形系数。C b , square coefficient.
计算船体粘性类流体动力时需要考虑船舶的操纵速度。通常,速度高于5节的船舶操纵属于常速域船舶运动类型,采用贵岛模型。贵岛模型的裸船体模型结构为
The maneuvering speed of the ship needs to be taken into account when calculating the viscous hydrodynamic forces of the hull. Generally, ship maneuvers with speeds higher than 5 knots belong to the normal speed range ship motion type and adopt the Guidao model. The structure of the bare hull model of the Guidao model is
式中:In the formula:
X′uu为直航阻力系数;X′ uu is the resistance coefficient of direct navigation;
X′vv、X′vr、X′rr为纵向耦合水动力导数;X′ vv , X′ vr , X′ rr are longitudinal coupling hydrodynamic derivatives;
Y′v、Y′r、N′v、N′r为线性水动力导数;Y′ v , Y′ r , N′ v , N′ r are linear hydrodynamic derivatives;
Y′vv、Y′rr、Y′vvr、Y′vrr、N′vv、N′rr、N′vvr、N′vrr为非线性水动力导数。Y′ vv , Y′ rr , Y′ vvr , Y′ vrr , N′ vv , N′ rr , N′ vvr , N′ vrr are nonlinear hydrodynamic derivatives.
速度低于3节的船舶操作属于低速域船舶运动类型,采用低速的解析模型。船舶低速数学模型的裸船体模型结构如下
Ship operations with speeds below 3 knots belong to the low-speed domain ship motion type and adopt low-speed analytical models. The bare hull model structure of the ship's low-speed mathematical model is as follows
式中:In the formula:
m为船体质量;m is the hull mass;
Izz为船体绕Z轴转动惯量; Izz is the moment of inertia of the hull around the Z axis;
mx、my和附加惯量Jzz为船体惯性类流体动力系数,可以通过CFD技术计算;m x , m y and additional inertia J zz are the hydrodynamic coefficients of hull inertia, which can be calculated by CFD technology;
X|u|u、Y|v|v、N|r|r为船体粘性类流体动力系数,可以通过CFD技术计算然后拟合得到。X |u|u , Y |v|v , and N |r|r are the viscous hydrodynamic coefficients of the hull, which can be calculated through CFD technology and then fitted.
螺旋桨推力计算方法一般是用敞水螺旋桨的实验结果,再考虑船体对螺旋桨的影响以及螺旋桨对船体的影响,再计入舵对螺旋桨的干扰。推力计算公式为
The propeller thrust calculation method generally uses the experimental results of open water propellers, then considers the impact of the hull on the propeller and the impact of the propeller on the hull, and then takes into account the interference of the rudder on the propeller. The thrust calculation formula is
式中:In the formula:
XP为纵向推力,N;X P is the longitudinal thrust, N;
ρ为流体密度,kg/m3ρ is the fluid density, kg/m 3 ;
n为螺旋桨转速,rpm;n is the propeller speed, rpm;
Dp为螺旋桨直径,m;D p is the propeller diameter, m;
kT为敞水螺旋桨的推力系数;k T is the thrust coefficient of the open water propeller;
tp为推力减额。t p is the thrust reduction.
作用于舵上的流体动力模型为 The hydrodynamic model acting on the rudder is
XR=(1-tR)FN sinδX R =(1-t R )F N sinδ
YR=(1+aH)FN cosδY R =(1+a H )F N cosδ
NR=(xR+aHxH)FN cosδN R =(x R +a H x H )F N cosδ
式中:In the formula:
XR、YR、NR分别为打舵引起的流体反作用于船体的纵向力、横向力和回转力矩;X R , Y R , and NR are respectively the longitudinal force, transverse force, and rotational moment caused by the fluid reaction on the hull caused by steering;
δ为舵角;δ is the rudder angle;
FN为舵受到的正压力;F N is the positive pressure on the rudder;
tR、aH、xH用来表征舵对船体的干扰系数。t R , a H , x H are used to represent the interference coefficient of the rudder to the hull.
风对船体的作用力计算模型为
The calculation model of the force exerted by the wind on the hull is
式中:In the formula:
Va为风速;V a is the wind speed;
ρa为空气密度;ρ a is the air density;
Af为水线以上船舶正投影面积;A f is the orthographic projection area of the ship above the waterline;
As为水线以上船舶侧投影面积;A s is the projected area of the ship side above the waterline;
αR为风舷角;α R is the wind angle;
CWx、CWy、CWn分别为各自由度上的风压力(矩)系数。C Wx , C Wy , and C Wn are the wind pressure (moment) coefficients on each degree of freedom respectively.
不规则波的波浪漂移力估算公式为


The wave drift force estimation formula of irregular waves is:


式中:In the formula:
ρ,表示海水密度;ρ, represents the density of seawater;
L,表示船长;L, means captain;
g,表示重力加速度;g, represents the acceleration of gravity;
λ,表示波长λ, represents the wavelength
χ,表示相对浪向;χ, represents the relative wave direction;
m,表示规则波成分的数目;m, represents the number of regular wave components;
ωi,表示某规则波成分的圆频率;ω i , represents the circular frequency of a certain regular wave component;
Δωi,表示相邻频率的规则波的频率差;Δω i , represents the frequency difference between regular waves of adjacent frequencies;
Sζζ,表示波浪谱密度;S ζζ , represents the wave spectral density;
表示试验系数。 Represents the test coefficient.
流作用于船舶上的流体动力模型大多采用定常和均匀的假设,这种假设只适用于海洋上 的操纵模拟,不适用于港湾、航道、近海、浅水等处。根据杨盐生的研究,均匀流对船舶操纵影响只是运动学上的。Most hydrodynamic models of flow acting on ships adopt steady and uniform assumptions, which are only applicable to oceans. The control simulation is not suitable for harbors, waterways, offshore, shallow water, etc. According to Yang Yansheng's research, the impact of uniform flow on ship maneuvering is only kinematic.
均匀流对船舶的流体动力模型为


The hydrodynamic model of a ship with uniform flow is


式中:In the formula:
下标H表示粘性水动力;The subscript H represents the viscous hydrodynamic force;
下标PR表示桨舵引起的流体动力。The subscript PR indicates the hydrodynamic force caused by the propeller rudder.
(二)船舶运动控制单元。(2) Ship motion control unit.
控制单元通过读取配置文件,获得控制器等相关参数;然后根据用户设定得期望位置、速度、加速度等信息,以及传感器测得的船舶位置、艏向及风速风向等信息作为控制单元的输入;为了保证控制指令光滑平稳,可以对各种信息进行滤波和估计处理,然后根据需要确定是否实现风前馈控制;并根据调试信息调整控制参数,计算控制指令。The control unit obtains the controller and other related parameters by reading the configuration file; then based on the expected position, speed, acceleration and other information set by the user, as well as the ship's position, heading, wind speed and direction measured by the sensor as input to the control unit ; In order to ensure that the control instructions are smooth and stable, various information can be filtered and estimated, and then it is determined whether to implement wind feedforward control as needed; and the control parameters are adjusted according to the debugging information and the control instructions are calculated.
船舶运动控制单元可实现常速船舶的自动舵、低速船舶的自动定向和自动定位功能。对于常速船舶,其自动舵功能的运行步骤如下:The ship motion control unit can realize the automatic steering of normal-speed ships and the automatic orientation and automatic positioning functions of low-speed ships. For normal-speed ships, the operation steps of the autopilot function are as follows:
(1)配置当前功能;(1) Configure current functions;
(2)初始化;(2)Initialization;
(3)测量当前艏向;(3) Measure the current heading;
(4)接收期望艏向;(4) Receive the desired heading;
(5)根据当前艏向和期望艏向,通过控制算法,计算出舵角指令;(5) Calculate the rudder angle command through the control algorithm based on the current heading and desired heading;
(6)转入步骤(3),循环运行,直至运行结束。(6) Go to step (3) and run in a loop until the end of the operation.
对于低速船舶,其自动定向功能的运行步骤如下:For low-speed ships, the operation steps of its automatic orientation function are as follows:
(1)配置当前功能;(1) Configure current functions;
(2)初始化;(2)Initialization;
(3)测量当前艏向;(3) Measure the current heading;
(4)接收期望艏向;(4) Receive the desired heading;
(5)根据当前艏向和期望艏向,通过控制算法,计算出控制力指令;(5) Calculate the control force command through the control algorithm based on the current heading and desired heading;
(6)转入步骤(3),循环运行,直至运行结束。(6) Go to step (3) and run in a loop until the end of the operation.
对于低速船舶,如果有必要,自动定向的同时,还可以进行自动定位。自动定位功能的运行步骤如下:For low-speed ships, if necessary, automatic positioning can also be performed while automatically orienting. The operation steps of the automatic positioning function are as follows:
(1)配置当前功能;(1) Configure current functions;
(2)初始化;(2)Initialization;
(3)测量当前北东位置,并转化为纵向和横向位置;(3) Measure the current northeast position and convert it into vertical and horizontal positions;
(4)接收期望北东位置,并转化为纵向和横向位置;(4) Receive the desired northeast position and convert it into vertical and horizontal positions;
(5)根据当前纵横位置和期望纵横位置,通过控制算法,计算出控制力指令; (5) Based on the current vertical and horizontal position and the expected vertical and horizontal position, the control force command is calculated through the control algorithm;
(6)转入步骤(3),循环运行,直至运行结束。(6) Go to step (3) and run in a loop until the end of the operation.
根据自动舵、自动定向和自动定位等控制功能的运行步骤,可以看出,整个控制单元的核心在于控制算法,算法以函数呈现,函数功能包括:According to the operation steps of control functions such as autopilot, automatic orientation and automatic positioning, it can be seen that the core of the entire control unit lies in the control algorithm. The algorithm is presented as a function. The function functions include:
(1)接收接口参数,包括当前状态和期望状态;(1) Receive interface parameters, including current status and expected status;
(2)读取控制参数;(2) Read control parameters;
(3)运行控制主体。(3) Operation control subject.
控制主体中执行各控制算法的控制律。The control law that executes each control algorithm in the control subject.
比例(P)积分(I)微分(D)控制,简称PID控制,是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好、可靠性高,被广泛应用船舶运动控制领域。PID控制器是一种线性控制器,它根据给定期望值r(t)与当前实际输出值c(t)构成偏差:e(t)=r(t)-c(t)。将偏差的比例、积分和微分通过线性组合构成控制量,对船舶的运动进行控制。其控制主体中执行的控制规律为:
Proportional (P) integral (I) differential (D) control, referred to as PID control, is one of the earliest developed control strategies. Due to its simple algorithm, good robustness, and high reliability, it is widely used in the field of ship motion control. The PID controller is a linear controller that forms a deviation based on the given expected value r(t) and the current actual output value c(t): e(t)=r(t)-c(t). The proportion, integral and differential of the deviation are linearly combined to form a control quantity to control the movement of the ship. The control rules implemented in its control subject are:
其他控制算法,如LQR、MPC等,可以方便地进行自定义添加。Other control algorithms, such as LQR, MPC, etc., can be easily customized and added.
(三)调试界面。(3) Debugging interface.
界面具有三种功能:(1)控制仿真过程,可调节仿真时长和仿真倍速;(2)可配置船舶运动控制单元、运动模拟单元,实现各种船舶的控制功能;(3)提供调试接口和调试信息,其中调试信息包括运动状态变化曲线和相轨迹,如图3所示。The interface has three functions: (1) controls the simulation process, and can adjust the simulation duration and simulation speed; (2) can configure the ship motion control unit and motion simulation unit to realize the control functions of various ships; (3) provides a debugging interface and Debugging information, where the debugging information includes motion state change curves and phase trajectories, as shown in Figure 3.
界面的实现过程应该方便扩展,在界面上添加其他数学模型或者控制算法不会影响到现有功能。基于此思想进行界面设计时,将界面设计分为以下模块:GUI模块、设置模块、配置模块、绘图模块、数据模块、通信模块。各模块功能如下:The implementation process of the interface should be easy to expand. Adding other mathematical models or control algorithms to the interface will not affect existing functions. When designing the interface based on this idea, the interface design is divided into the following modules: GUI module, setting module, configuration module, drawing module, data module, and communication module. The functions of each module are as follows:
GUI模块,用于调试者与仿真过程进行交互,基于MATLABDesignApp实现,方便快捷;The GUI module is used for the debugger to interact with the simulation process. It is implemented based on MATLAB DesignApp and is convenient and fast;
设置模块,包括仿真时长和仿真倍速的设置;Setting module, including settings of simulation duration and simulation speed;
配置模块,用于船舶运动控制单元和运动模拟单元的配置、读取、保存等,适用于多种船舶、多种控制功能,方便各种船舶和各种控制功能的自定义扩展添加;The configuration module is used for configuring, reading, and saving ship motion control units and motion simulation units. It is suitable for a variety of ships and a variety of control functions, and facilitates the custom expansion and addition of various ships and various control functions;
绘图模块,形象地显示运行信息和调试信息,方便调试者观察,引导调试方向;The drawing module vividly displays running information and debugging information, making it easier for the debugger to observe and guide the debugging direction;
数据模块,用于传递和存储各种数据。Data module, used to transfer and store various data.
实施例3Example 3
在实施例3中提供一种模块化的船舶运动控制仿真调试系统,所述船舶运动控制调试系统包括运动控制单元、运动模拟单元和调试界面;所述运动控制单元基于模块化设计,既适用于常速船舶的欠驱动控制,也适用于低速船舶的动力定位(DP)控制,还可以选择和添加不同的控制算法;所述运动模拟单元基于模块化设计,以适用于各种主尺度和桨舵配置的船舶运动控制;所述调试界面可以设置参数和控制方式,同时绘图显示船舶运动状态和相关的信息,利于调试过程。 In Embodiment 3, a modular ship motion control simulation debugging system is provided. The ship motion control debugging system includes a motion control unit, a motion simulation unit and a debugging interface; the motion control unit is based on modular design and is suitable for Underactuated control of normal-speed ships is also suitable for dynamic positioning (DP) control of low-speed ships, and different control algorithms can also be selected and added; the motion simulation unit is based on a modular design to be suitable for various main scales and propellers. Ship motion control with rudder configuration; the debugging interface can set parameters and control methods, and at the same time draw and display the ship motion status and related information, which is beneficial to the debugging process.
在仿真之前需要对该单元各模块进行配置,包括测量模块、估计模块、前馈模块、控制模块;配置完成之后才可以运行仿真,可将配置参数保存入配置文件,可读取已存储的配置文件;各模块特征如下:Before the simulation, each module of the unit needs to be configured, including the measurement module, estimation module, feedforward module, and control module. The simulation can be run only after the configuration is completed. The configuration parameters can be saved into the configuration file and the stored configuration can be read. file; the characteristics of each module are as follows:
测量模块:模拟罗经、位置参考系统、风传感器、桨舵装置的反馈等,对船舶运动模拟单元传送来的船舶运动状态、推进器运行状态和海洋环境状态,进行测量和相应的处理,然后传送给估计模块;Measurement module: Analog compass, position reference system, wind sensor, propeller and rudder device feedback, etc., measure and process the ship motion status, propeller operating status and marine environment status transmitted from the ship motion simulation unit, and then transmit to the estimation module;
估计模块:对测量模块传送过来的数据进行滤波和估计,以获取平滑数据和不可测量数据;默认为真值模式,直接使用测量值,不进行滤波器或者估计器的设计;其他模式可选择中值滤波、Alpha-Beta滤波、EKF滤波、无源观测器;Estimation module: Filters and estimates the data transmitted from the measurement module to obtain smooth data and unmeasurable data; the default is true value mode, using measured values directly without designing filters or estimators; other modes can be selected Value filtering, Alpha-Beta filtering, EKF filtering, passive observer;
前馈模块:可以补偿可测的快速变化的环境干扰;其默认为无前馈模式,可选择风前馈模式;Feedforward module: can compensate for measurable rapidly changing environmental interference; its default is no feedforward mode, and wind feedforward mode can be selected;
控制模块:可配置船舶的运动控制类型及其控制方法和参数;控制类型包括常速控制和低速控制;常速控制以舵角为控制变量,默认为PID控制,可调试控制参数,可自定义添加其他需要调试的控制方法;低速控制以三自由度的广义控制力为控制变量,默认为PID控制,可调试控制参数,可自定义添加其他需要调试的控制方法;根据估计模块计算的船舶运动状态和所选的控制方法,控制模块计算出控制指令,并传送给船舶运动模拟单元。Control module: The ship's motion control type and its control methods and parameters can be configured; the control type includes normal speed control and low speed control; the normal speed control uses the rudder angle as the control variable, the default is PID control, the control parameters can be debugged, and can be customized Add other control methods that need to be debugged; low-speed control uses the generalized control force of three degrees of freedom as the control variable. The default is PID control. The control parameters can be debugged. Other control methods that need to be debugged can be customized; ship motion calculated based on the estimation module status and selected control method, the control module calculates the control instructions and transmits them to the ship motion simulation unit.
在仿真之前需要对该单元各模块进行配置,包括指令模块、桨舵模块、环境模块、船体模块;配置完成才可运行仿真,可将配置参数保存入配置文件,可读取已存储的配置文件;各模块特征如下:Before simulation, each module of the unit needs to be configured, including the command module, propeller and rudder module, environment module, and hull module. The simulation can only be run after the configuration is completed. The configuration parameters can be saved into the configuration file and the stored configuration file can be read. ;The characteristics of each module are as follows:
指令模块可选择控制力指令模式或者桨舵指令模式;控制力指令模式,从船舶运动控制单元接收三自由度广义控制力指令,并传送给桨舵模块;桨舵指令模式,从船舶运动控制单元接收各桨舵指令,并传送给桨舵模块;The command module can select the control force command mode or the propeller rudder command mode; the control force command mode receives the three-degree-of-freedom generalized control force command from the ship motion control unit and transmits it to the propeller rudder module; the propeller rudder command mode receives the three-degree-of-freedom generalized control force command from the ship motion control unit. Receive each propeller rudder command and transmit it to the propeller rudder module;
桨舵模块包括抽象桨舵模块和模拟桨舵模块,可单选;抽象桨舵模块模拟广义控制力的动态特性,可根据广义控制力指令更新广义控制力,并传送给船体模块;模拟桨舵模块模拟各桨舵动态特性,可以配置各桨舵的类型、尺度、位置,可根据桨舵指令更新桨舵状态,并根据桨舵模型计算得出各桨舵合力,即广义控制力,传送给船体模块;The propeller rudder module includes the abstract propeller rudder module and the simulated propeller rudder module, which can be selected individually; the abstract propeller rudder module simulates the dynamic characteristics of the generalized control force, and can update the generalized control force according to the generalized control force instructions and transmit it to the hull module; simulated propeller rudder The module simulates the dynamic characteristics of each propeller rudder, and can configure the type, scale, and position of each propeller rudder. It can update the propeller rudder status according to the propeller rudder instructions, and calculate the resultant force of each propeller rudder based on the propeller rudder model, that is, the generalized control force, and transmit it to hull module;
环境模块可配置海洋环境,选择是否加入风、浪、流的影响,可多选;勾选风,可继续设置平均风的绝对风速、绝对风向、风压系数、阵风参数、随机风参数;勾选浪,可继续设置有义浪高、绝对浪向、波浪谱;勾选流,可继续设置绝对流速、绝对流向、流力表;环境模块根据以上配置和船舶运动状态,计算出作用于船体的环境干扰力,并传送给船体模块;The environment module can configure the ocean environment, and choose whether to add the influence of wind, waves, and currents. Multiple selections are possible; if you check wind, you can continue to set the absolute wind speed, absolute wind direction, wind pressure coefficient, gust parameters, and random wind parameters of the average wind; check If you select Wave, you can continue to set the meaningful wave height, absolute wave direction, and wave spectrum; if you select Flow, you can continue to set the absolute flow speed, absolute flow direction, and flow force table; the environment module calculates the effects on the hull based on the above configuration and the ship's motion status. The environmental interference force is transmitted to the hull module;
船体模块可以配置船舶的运动类型,既适用于常速船舶的运动模拟,也适用于低速船舶的运动模拟,还可以选择和添加不同的船舶数学模型模块,适用于开阔深海海域的船舶运动模拟;勾选常速模块后,输入船舶主尺度参数进行配置得到模拟对应船舶常速运动数学模型;勾选低速模块后,输入船舶质量和阻尼参数进行配置得到模拟对应船舶低速运动数学模型;船体模块接收桨舵控制力和环境干扰力,根据对应船舶数学模型更新船舶运动状态。 The hull module can configure the motion type of the ship, which is suitable for the motion simulation of both normal-speed ships and low-speed ships. Different ship mathematical model modules can also be selected and added, which is suitable for ship motion simulation in open deep sea areas; After selecting the normal speed module, enter the main scale parameters of the ship for configuration to obtain a mathematical model that simulates the normal speed motion of the ship; after selecting the low speed module, enter the ship mass and damping parameters for configuration to obtain a mathematical model that simulates the low speed motion of the ship; the hull module receives The propeller rudder control force and environmental interference force update the ship's motion status according to the corresponding ship mathematical model.
所述调试界面包括配置区、绘图区和仿真倍速控制区;配置区对仿真时间、控制单元、模拟单元进行配置;绘图区可以展示艏向、纵向、横向的运动状态和相平面图,设有刷新按钮,默认不刷新,可以展示多次调试效果,方便对比分析。The debugging interface includes a configuration area, a drawing area and a simulation multi-speed control area; the configuration area configures the simulation time, control unit, and simulation unit; the drawing area can display the heading, longitudinal, and transverse motion status and phase plan, and is equipped with refresh The button is not refreshed by default and can display multiple debugging effects to facilitate comparison and analysis.
实施例4Example 4
在实施例4中提供一种模块化的船舶运动控制仿真调试系统,如图5所示,所述模块化的船舶运动控制调试系统包括运动控制单元1、运动模拟单元2和调试界面3。如图6所示,为所述模块化的船舶运动控制调试系统的动控制单元1、运动模拟单元2和调试界面3之间的数据信号连接关系。In Embodiment 4, a modular ship motion control simulation debugging system is provided. As shown in FIG. 5 , the modular ship motion control debugging system includes a motion control unit 1 , a motion simulation unit 2 and a debugging interface 3 . As shown in Figure 6, it is the data signal connection relationship between the dynamic control unit 1, the motion simulation unit 2 and the debugging interface 3 of the modular ship motion control debugging system.
所述运动控制单元1包括多个模块,用于模拟船舶的运动控制方式,所述船舶的运动控制方式包括常速船舶的欠驱动控制、低速船舶的动力定位控制或选择添加的可编辑式运动控制算法。The motion control unit 1 includes a plurality of modules for simulating the motion control mode of a ship. The motion control mode of the ship includes under-actuation control of a normal-speed ship, dynamic positioning control of a low-speed ship, or optionally added editable motion. control algorithm.
所述运动模拟单元2包括多个模块,用于模拟具有各种主尺度和桨舵配置的船舶的运动状态。The motion simulation unit 2 includes multiple modules for simulating the motion states of ships with various main dimensions and propeller and rudder configurations.
所述调试界面3用于通过绘图显示多次模拟船舶的运动状态变化曲线和相轨迹,通过对比多次模拟结果进行所述运动控制单元和/或所述运动模拟单元的各模块的参数调整。The debugging interface 3 is used to display the motion state change curves and phase trajectories of the multiple simulated ships through drawings, and adjust the parameters of the motion control unit and/or each module of the motion simulation unit by comparing the multiple simulation results.
进一步的,在进行仿真模拟之前,需要对所述运动控制单元1和所述运动模拟单元3的各模块的参数进行配置,在配置完成之后进行仿真模拟,并将配置参数保存入配置文件。Further, before performing the simulation, it is necessary to configure the parameters of each module of the motion control unit 1 and the motion simulation unit 3. After the configuration is completed, the simulation is performed and the configuration parameters are saved in the configuration file.
如图5所示,所述运动控制单元1包括测量模块11、估计模块12、前馈模块13和控制模块14。As shown in FIG. 5 , the motion control unit 1 includes a measurement module 11 , an estimation module 12 , a feedforward module 13 and a control module 14 .
所述测量模块11用于模拟罗经来获取位置参考系统,对所述运动模拟单元传送来的船舶运动状态、推进器运行状态和海洋环境状态的数据进行分析和处理,然后传送给估计模块。The measurement module 11 is used to simulate a compass to obtain a position reference system, analyze and process the data on ship motion status, propeller operating status and marine environment status transmitted by the motion simulation unit, and then transmit it to the estimation module.
所述估计模块12用于对所述测量模块传送过来的数据进行处理,以计算船舶的运动状态;所述估计模块包括可选择设置的真值模式和滤波模式;所述估计模块默认为真值模式,直接使用测量值计算船舶的运动状态;所述滤波模式包括可选择设置的中值滤波、Alpha-Beta滤波、EKF滤波、无源观测器,所述滤波模式用于通过滤波器及估计器对所述测量模块传送过来的数据进行滤波和估计,以获取平滑数据。The estimation module 12 is used to process the data transmitted from the measurement module to calculate the motion state of the ship; the estimation module includes a true value mode and a filtering mode that can be optionally set; the estimation module defaults to the true value mode, directly using measured values to calculate the motion state of the ship; the filtering mode includes optionally set median filtering, Alpha-Beta filtering, EKF filtering, and passive observer, and the filtering mode is used to pass filters and estimators Filter and estimate the data transmitted from the measurement module to obtain smooth data.
所述前馈模块13用于补偿环境干扰数据;所述前馈模块13包括无前馈模式和风前馈模式,其默认为无前馈模式,可选择设置风前馈模式。The feedforward module 13 is used to compensate for environmental interference data; the feedforward module 13 includes a no feedforward mode and a wind feedforward mode. The default is the no feedforward mode, and the wind feedforward mode can be optionally set.
所述控制模块14用于配置船舶的运动控制类型及其控制方法和参数;所述船舶的运动控制类型包括常速控制和低速控制;所述常速控制以舵角为控制变量,默认为PID控制,且可调整控制参数,可自定义添加或编辑控制方法;所述低速控制以三自由度的广义控制力为控制变量,默认为PID控制,可调整控制参数,可自定义添加或编辑控制方法;所述控制模块根据所述估计模块计算的船舶运动状态和所选的船舶的运动控制类型及其控制方法和参数,计算出控制指令,并传送给船舶运动模拟单元。The control module 14 is used to configure the motion control type of the ship and its control methods and parameters; the motion control type of the ship includes normal speed control and low speed control; the normal speed control uses the rudder angle as the control variable, and the default is PID control, and the control parameters can be adjusted, and the control method can be customized to be added or edited; the low-speed control uses the generalized control force of three degrees of freedom as the control variable, and the default is PID control, the control parameters can be adjusted, and the control can be customized to be added or edited. Method; the control module calculates the control instructions based on the ship motion state calculated by the estimation module and the selected ship motion control type and its control method and parameters, and transmits it to the ship motion simulation unit.
如图5所示,所述船舶运动模拟单元2包括指令模块21、桨舵模块22、船体模块24。 As shown in FIG. 5 , the ship motion simulation unit 2 includes a command module 21 , a propeller module 22 , and a hull module 24 .
所述指令模块21可选择设置的控制力指令模式和桨舵指令模式;所述控制力指令模式为从船舶运动控制单元接收三自由度广义控制力指令,并传送给桨舵模块;所述桨舵指令模式为从船舶运动控制单元接收各桨舵指令,并传送给桨舵模块。The command module 21 can optionally set the control force command mode and the propeller rudder command mode; the control force command mode is to receive a three-degree-of-freedom generalized control force command from the ship motion control unit and transmit it to the propeller rudder module; the propeller rudder module The rudder command mode is to receive each propeller rudder command from the ship motion control unit and transmit it to the propeller rudder module.
所述桨舵模块22包括可选择设置的抽象桨舵模块和模拟桨舵模块;所述抽象桨舵模块模拟广义控制力的动态特性,根据广义控制力指令更新广义控制力,并传送给船体模块;所述模拟桨舵模块模拟各桨舵动态特性,配置各桨舵的类型、尺度、位置,根据桨舵指令更新桨舵状态,并根据桨舵模型计算得出各桨舵合力作为广义控制力,传送给船体模块。The propeller rudder module 22 includes an optional abstract propeller rudder module and a simulated propeller rudder module; the abstract propeller rudder module simulates the dynamic characteristics of the generalized control force, updates the generalized control force according to the generalized control force instructions, and transmits it to the hull module ; The simulated propeller rudder module simulates the dynamic characteristics of each propeller rudder, configures the type, scale, and position of each propeller rudder, updates the propeller rudder status according to the propeller rudder instructions, and calculates the resultant force of each propeller rudder as a generalized control force based on the propeller rudder model. , transmitted to the hull module.
所述船体模块24包括可选择设置的常速模块241和低速模块242,用于常速船舶的运动模拟或用于低速船舶的运动模拟,可选择或添加适用不同环境的船舶数学模型模块;在所述常速模块中通过输入船舶主尺度参数后生成模拟船舶常速运动数学模型;在所述选低速模块中输入船舶质量和阻尼参数后生成模拟船舶低速运动数学模型;所述船体模块接收桨舵控制力,并根据对应的船舶数学模型更新船舶运动状态。The hull module 24 includes a normal speed module 241 and a low speed module 242 that can be optionally set, and are used for motion simulation of normal speed ships or for motion simulation of low speed ships, and ship mathematical model modules suitable for different environments can be selected or added; In the normal speed module, a mathematical model of simulated ship normal speed motion is generated by inputting the main scale parameters of the ship; in the low speed selection module, a mathematical model of simulated ship low speed motion is generated after inputting ship mass and damping parameters; the hull module receives a propeller rudder control force, and the ship motion status is updated according to the corresponding ship mathematical model.
如图5所示,所述常速模块241包括井上模型2411和桨舵模型2412;所述常速模块24通过设置自由舵方式进行常速控制;所述低速模块242包括船体模型2421和控制力模型2422;所述低速模块通过设置自动方向和自动定位方式进行低速控制。As shown in Figure 5, the normal speed module 241 includes an well model 2411 and a propeller rudder model 2412; the normal speed module 24 performs normal speed control by setting a free rudder mode; the low speed module 242 includes a hull model 2421 and a control force Model 2422; the low-speed module performs low-speed control by setting automatic direction and automatic positioning methods.
如图5所示,所述船舶运动模拟单元还包括环境模块23;所述环境模块23包括可选择设置的风模型231、浪模型232、流模型233;在所述风模型231中,可设置平均风的绝对风速、绝对风向、风压系数、阵风参数、随机风参数;在所述浪模型232中,可设置有义浪高、绝对浪向、波浪谱;在所述流模型233中,可设置绝对流速、绝对流向、流力表;所述环境模块23根据选选择的参数配置和船舶运动状态,计算出作用于船体的环境干扰力,并传送给船体模块24;所述船体模块24接收桨舵控制力和环境干扰力,根据对应船舶数学模型更新船舶运动状态。As shown in Figure 5, the ship motion simulation unit also includes an environment module 23; the environment module 23 includes a wind model 231, a wave model 232, and a flow model 233 that can be optionally set; in the wind model 231, The absolute wind speed, absolute wind direction, wind pressure coefficient, gust parameters, and random wind parameters of the average wind; in the wave model 232, meaningful wave height, absolute wave direction, and wave spectrum can be set; in the flow model 233, Absolute flow speed, absolute flow direction, and flow force tables can be set; the environment module 23 calculates the environmental interference force acting on the hull according to the selected parameter configuration and the ship's motion state, and transmits it to the hull module 24; the hull module 24 Receive the propeller rudder control force and environmental interference force, and update the ship's motion status according to the corresponding ship mathematical model.
如图5所示,所述调试界面3包括配置区31、绘图区32和仿真倍速控制区33。As shown in FIG. 5 , the debugging interface 3 includes a configuration area 31 , a drawing area 32 and a simulation speed control area 33 .
所述配置区31用于对仿真时间、控制单元、模拟单元进行配置;所述绘图区32用于展示艏向、纵向、横向的运动状态和相平面图;所述仿真倍速控制区33用于控制仿真模拟过程中的倍速。The configuration area 31 is used to configure the simulation time, control unit, and simulation unit; the drawing area 32 is used to display the heading, longitudinal, and transverse motion states and phase plane diagrams; the simulation speed control area 33 is used to control Double speed during simulation.
进一步的,所述配置区31还设有刷新按钮,其默认值设置为不刷新,用以展示多次模拟船舶的运动状态变化曲线和相轨迹,方便对比分析;当点击刷新后,所述绘图区内的数据清零。Furthermore, the configuration area 31 is also provided with a refresh button, the default value of which is set to not refresh, to display the motion state change curves and phase trajectories of multiple simulated ships to facilitate comparison and analysis; when refresh is clicked, the drawing The data in the area is cleared.
如图7所示,本申请还提供一种船舶运动控制调试方法,包括步骤:As shown in Figure 7, this application also provides a ship motion control debugging method, including the steps:
S1、根据前文所述的模块化的船舶运动控制调试系统配置一号船方案,载入常速船舶运动数学模型及其基于PID的自动舵控制方案,可直接运行;S1. According to the modular ship motion control debugging system configuration No. 1 ship plan mentioned above, load the normal speed ship motion mathematical model and its PID-based autopilot control plan, which can be run directly;
S2、基于一号船的配置方案,修改船舶配置对其他需要的船舶进行自动舵控制;S2. Based on the configuration plan of ship No. 1, modify the ship configuration to perform autopilot control on other required ships;
S3、获取一号船方案的运动状态和相平面图,分析一号船方案的缺陷,对该船舶的自动舵功能的控制算法进行二次开发和参数调整; S3. Obtain the motion state and phase plane diagram of the No. 1 ship plan, analyze the flaws of the No. 1 ship plan, and conduct secondary development and parameter adjustment of the control algorithm of the ship's autopilot function;
S4、根据前所述的模块化的船舶运动控制调试系统配置二号船方案,载入低速船舶运动数学模型及其基于PID的自动定向和/或自动定位的控制方案,可直接运行;S4. According to the modular ship motion control debugging system configuration plan for ship No. 2 mentioned above, load the low-speed ship motion mathematical model and its PID-based automatic orientation and/or automatic positioning control plan, which can be run directly;
S5、基于二号船的配置方案,修改船舶配置对其他需要的船舶进行自动定向和/或自动定位控制;S5. Based on the configuration plan of the No. 2 ship, modify the ship configuration to perform automatic orientation and/or automatic positioning control for other required ships;
S6、获取二号船方案的运动状态和相平面图,分析二号船方案的缺陷,对该船舶的自动定向和/或自动定位控制算法进行二次开发和参数调整;以及S6. Obtain the motion status and phase plane diagram of the No. 2 ship plan, analyze the flaws of the No. 2 ship plan, and conduct secondary development and parameter adjustment of the automatic orientation and/or automatic positioning control algorithm of the ship; and
S7、对比一号船方案及其调整方案和二号船方案及其调整方案的运动状态和相平面图,扩展新的控制算法并通过仿真模拟找到最优解,保存自定义配置的最优解方案。S7. Compare the motion state and phase plane diagram of the No. 1 ship plan and its adjustment plan with the No. 2 ship plan and its adjustment plan, expand the new control algorithm and find the optimal solution through simulation, and save the customized configured optimal solution. .
本发明提供了一种模块化的船舶运动控制仿真调试系统及船舶运动控制调试方法,可满足常速和低速船舶运动控制的二次开发和调试需求,可对比分析控制参数变化时的运动变化趋势,引导调试方向,提高调试效率。本申请采用模块化设计,使其可配置不同的船舶运动类型和控制类型,适用于对不同船舶进行运动控制的二次开发。调试界面可以向运动控制单元下达期望位姿,也可以设定其控制参数,同时还可以绘图显示,使调试信息形象化,方便洞察参数变化引起的运动趋势和影响规律,指导调试思路,避免调试过程中的无效试凑,降低调试过程中的枯燥感和混乱感,提高调试体验和效率。The invention provides a modular ship motion control simulation debugging system and a ship motion control debugging method, which can meet the secondary development and debugging needs of normal-speed and low-speed ship motion control, and can comparatively analyze the motion change trends when control parameters change. , guide the debugging direction and improve debugging efficiency. This application adopts a modular design so that it can be configured with different ship motion types and control types, and is suitable for secondary development of motion control for different ships. The debugging interface can issue the desired pose to the motion control unit, and can also set its control parameters. It can also be displayed graphically to visualize the debugging information, facilitate insight into the movement trends and influence patterns caused by parameter changes, guide debugging ideas, and avoid debugging. Invalid trial and error in the process reduces the boredom and confusion during the debugging process, and improves the debugging experience and efficiency.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,在不脱离本发明的原理和精神的情况下,可以对这些实施例进行多种变化、修改、替换和变型。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 Although the embodiments of the present invention have been shown and described, those of ordinary skill in the art can make various changes, modifications, substitutions and changes to these embodiments without departing from the principles and spirit of the invention. transform. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

Claims (10)

  1. 一种模块化的船舶运动控制调试系统,其特征在于:A modular ship motion control debugging system, which is characterized by:
    所述船舶运动控制调试系统包括运动控制单元、运动模拟单元和调试界面;The ship motion control debugging system includes a motion control unit, a motion simulation unit and a debugging interface;
    所述运动控制单元包括多个模块,用于模拟船舶的运动控制方式,所述船舶的运动控制方式包括常速船舶的欠驱动控制、低速船舶的动力定位控制或选择添加的可编辑式运动控制算法;The motion control unit includes multiple modules for simulating the motion control mode of the ship. The motion control mode of the ship includes under-actuation control of normal-speed ships, dynamic positioning control of low-speed ships, or optionally added editable motion control. algorithm;
    所述运动模拟单元包括多个模块,用于模拟具有各种主尺度和桨舵配置的船舶的运动状态;The motion simulation unit includes a plurality of modules for simulating the motion state of ships with various main scales and propeller and rudder configurations;
    所述调试界面用于通过绘图显示多次模拟船舶的运动状态变化曲线和相轨迹,通过对比多次模拟结果进行所述运动控制单元和/或所述运动模拟单元的各模块的参数调整。The debugging interface is used to display the motion state change curves and phase trajectories of the multiple simulated ships through drawings, and adjust parameters of the motion control unit and/or each module of the motion simulation unit by comparing the multiple simulation results.
  2. 根据权利要求1所述的模块化的船舶运动控制调试系统,其特征在于:The modular ship motion control debugging system according to claim 1, characterized in that:
    在进行仿真模拟之前,需要对所述运动控制单元和所述运动模拟单元的各模块的参数进行配置,在配置完成之后进行仿真模拟,并将配置参数保存入配置文件。Before performing the simulation, it is necessary to configure the parameters of each module of the motion control unit and the motion simulation unit. After the configuration is completed, the simulation is performed and the configuration parameters are saved into a configuration file.
  3. 根据权利要求2所述的模块化的船舶运动控制调试系统,其特征在于:The modular ship motion control debugging system according to claim 2, characterized in that:
    所述运动控制单元包括测量模块、估计模块和控制模块;The motion control unit includes a measurement module, an estimation module and a control module;
    所述测量模块用于模拟罗经来获取位置参考系统,对所述运动模拟单元传送来的船舶运动状态、推进器运行状态和海洋环境状态的数据进行分析和处理,然后传送给估计模块;The measurement module is used to simulate a compass to obtain a position reference system, analyze and process the data on ship motion status, propeller operating status and marine environment status transmitted by the motion simulation unit, and then transmit it to the estimation module;
    所述估计模块用于对所述测量模块传送过来的数据进行处理,以计算船舶的运动状态;所述估计模块包括可选择设置的真值模式和滤波模式;所述估计模块默认为真值模式,直接使用测量值计算船舶的运动状态;所述滤波模式包括可选择设置的中值滤波、Alpha-Beta滤波、EKF滤波、无源观测器,所述滤波模式用于通过滤波器及估计器对所述测量模块传送过来的数据进行滤波和估计,以获取平滑数据;The estimation module is used to process the data transmitted from the measurement module to calculate the motion state of the ship; the estimation module includes a true value mode and a filtering mode that can be optionally set; the estimation module defaults to the true value mode , directly use the measured values to calculate the motion state of the ship; the filtering mode includes optionally set median filtering, Alpha-Beta filtering, EKF filtering, and passive observer, and the filtering mode is used to pass the filter and estimator to The data transmitted by the measurement module is filtered and estimated to obtain smooth data;
    所述控制模块用于配置船舶的运动控制类型及其控制方法和参数;所述船舶的运动控制类型包括常速控制和低速控制;所述常速控制以舵角为控制变量,默认为PID控制,且可调整控制参数,可自定义添加或编辑控制方法;所述低速控制以三自由度的广义控制力为控制变量,默认为PID控制,可调整控制参数,可自定义添加或编辑控制方法;所述控制模块根据所述估计模块计算的船舶运动状态和所选的船舶的运动控制类型及其控制方法和参数,计算出控制指令,并传送给船舶运动模拟单元。The control module is used to configure the motion control type of the ship and its control methods and parameters; the motion control type of the ship includes normal speed control and low speed control; the normal speed control uses the rudder angle as the control variable, and the default is PID control , and the control parameters can be adjusted, and the control method can be customized to be added or edited; the low-speed control uses the generalized control force of three degrees of freedom as the control variable, and the default is PID control, the control parameters can be adjusted, and the control method can be customized to be added or edited. ; The control module calculates the control instructions based on the ship motion state calculated by the estimation module and the selected ship motion control type and its control method and parameters, and transmits it to the ship motion simulation unit.
  4. 根据权利要求3所述的模块化的船舶运动控制调试系统,其特征在于:The modular ship motion control debugging system according to claim 3, characterized in that:
    所述运动控制单元还包括前馈模块;The motion control unit also includes a feedforward module;
    所述前馈模块用于补偿环境干扰数据;所述前馈模块包括无前馈模式和风前馈模式,其默认为无前馈模式,可选择设置风前馈模式。The feedforward module is used to compensate for environmental interference data; the feedforward module includes no feedforward mode and wind feedforward mode. The default is no feedforward mode, and the wind feedforward mode can be optionally set.
  5. 根据权利要求2所述的模块化的船舶运动控制调试系统,其特征在于:The modular ship motion control debugging system according to claim 2, characterized in that:
    所述船舶运动模拟单元包括指令模块、桨舵模块、环境模块、船体模块;The ship motion simulation unit includes a command module, a propeller and rudder module, an environment module, and a hull module;
    所述指令模块可选择设置的控制力指令模式和桨舵指令模式;所述控制力指令模式为从船舶运动控制单元接收三自由度广义控制力指令,并传送给桨舵模块;所述桨舵指令模式为 从船舶运动控制单元接收各桨舵指令,并传送给桨舵模块;The command module can optionally set a control force command mode and a propeller rudder command mode; the control force command mode is to receive a three-degree-of-freedom generalized control force command from the ship motion control unit and transmit it to the propeller rudder module; the propeller rudder The command mode is Receive each propeller rudder command from the ship motion control unit and transmit it to the propeller rudder module;
    所述桨舵模块包括可选择设置的抽象桨舵模块和模拟桨舵模块;所述抽象桨舵模块模拟广义控制力的动态特性,根据广义控制力指令更新广义控制力,并传送给船体模块;所述模拟桨舵模块模拟各桨舵动态特性,配置各桨舵的类型、尺度、位置,根据桨舵指令更新桨舵状态,并根据桨舵模型计算得出各桨舵合力作为广义控制力,传送给船体模块;The propeller rudder module includes an optional abstract propeller rudder module and a simulated propeller rudder module; the abstract propeller rudder module simulates the dynamic characteristics of the generalized control force, updates the generalized control force according to the generalized control force instructions, and transmits it to the hull module; The simulated propeller rudder module simulates the dynamic characteristics of each propeller rudder, configures the type, scale, and position of each propeller rudder, updates the propeller rudder status according to the propeller rudder instructions, and calculates the resultant force of each propeller rudder as a generalized control force based on the propeller rudder model. transmitted to the hull module;
    所述船体模块包括可选择设置的常速模块和低速模块,用于常速船舶的运动模拟或用于低速船舶的运动模拟,可选择或添加适用不同环境的船舶数学模型模块;在所述常速模块中通过输入船舶主尺度参数后生成模拟船舶常速运动数学模型;在所述选低速模块中输入船舶质量和阻尼参数后生成模拟船舶低速运动数学模型;所述船体模块接收桨舵控制力,并根据对应的船舶数学模型更新船舶运动状态。The hull module includes a normal speed module and a low speed module that can be optionally set, and are used for motion simulation of normal speed ships or for motion simulation of low speed ships. Ship mathematical model modules suitable for different environments can be selected or added; in the normal speed module, In the speed module, a mathematical model for simulating the ship's normal speed motion is generated by inputting the main scale parameters of the ship; after inputting the ship mass and damping parameters into the low-speed module, a mathematical model for simulating the low-speed motion of the ship is generated; the hull module receives the propeller rudder control force , and update the ship motion status according to the corresponding ship mathematical model.
  6. 根据权利要求5所述的模块化的船舶运动控制调试系统,其特征在于:The modular ship motion control debugging system according to claim 5, characterized in that:
    所述常速模块包括井上模型和桨舵模型;所述常速模块通过设置自由舵方式进行常速控制;The normal speed module includes an uphole model and a propeller rudder model; the normal speed module performs normal speed control by setting a free rudder mode;
    所述低速模块包括船体模型和控制力模型;所述低速模块通过设置自动方向和自动定位方式进行低速控制。The low-speed module includes a hull model and a control force model; the low-speed module performs low-speed control by setting automatic direction and automatic positioning methods.
  7. 根据权利要求5所述的模块化的船舶运动控制调试系统,其特征在于:The modular ship motion control debugging system according to claim 5, characterized in that:
    所述船舶运动模拟单元还包括环境模块;The ship motion simulation unit also includes an environment module;
    所述环境模块包括可选择设置的风模型、浪模型、流模型;在所述风模型中,可设置平均风的绝对风速、绝对风向、风压系数、阵风参数、随机风参数;在所述浪模型中,可设置有义浪高、绝对浪向、波浪谱;在所述流模型中,可设置绝对流速、绝对流向、流力表;所述环境模块根据选选择的参数配置和船舶运动状态,计算出作用于船体的环境干扰力,并传送给船体模块;The environment module includes optionally set wind models, wave models, and flow models; in the wind model, the absolute wind speed, absolute wind direction, wind pressure coefficient, gust parameters, and random wind parameters of the average wind can be set; in the In the wave model, significant wave height, absolute wave direction, and wave spectrum can be set; in the flow model, absolute flow speed, absolute flow direction, and flow force tables can be set; the environment module is configured according to the selected parameters and ship motion. status, calculate the environmental interference force acting on the hull, and transmit it to the hull module;
    所述船体模块接收桨舵控制力和环境干扰力,根据对应船舶数学模型更新船舶运动状态。The hull module receives the propeller rudder control force and environmental interference force, and updates the ship's motion status according to the corresponding ship mathematical model.
  8. 根据权利要求1所述的模块化的船舶运动控制调试系统,其特征在于:The modular ship motion control debugging system according to claim 1, characterized in that:
    所述调试界面包括配置区、绘图区和仿真倍速控制区;The debugging interface includes a configuration area, a drawing area and a simulation speed control area;
    所述配置区用于对仿真时间、控制单元、模拟单元进行配置;The configuration area is used to configure the simulation time, control unit, and simulation unit;
    所述绘图区用于展示艏向、纵向、横向的运动状态和相平面图;The drawing area is used to display the heading, longitudinal, and transverse motion states and phase plane diagrams;
    所述仿真倍速控制区用于控制仿真模拟过程中的倍速。The simulation speed doubling control area is used to control the speed doubling during the simulation process.
  9. 根据权利要求8所述的模块化的船舶运动控制调试系统,其特征在于:The modular ship motion control debugging system according to claim 8, characterized in that:
    所述配置区还设有刷新按钮,其默认值设置为不刷新,用以展示多次模拟船舶的运动状态变化曲线和相轨迹,方便对比分析;当点击刷新后,所述绘图区内的数据清零。The configuration area is also equipped with a refresh button, whose default value is set to not refresh, to display the motion state change curves and phase trajectories of multiple simulated ships to facilitate comparison and analysis; when refresh is clicked, the data in the drawing area Clear.
  10. 一种船舶运动控制调试方法,其特征在于,包括步骤:A ship motion control debugging method, characterized by including the steps:
    根据权利要求1至9任一项所述的模块化的船舶运动控制调试系统配置一号船方案,载入常速船舶运动数学模型及其基于PID的自动舵控制方案,可直接运行;According to any one of claims 1 to 9, the modular ship motion control debugging system configures the No. 1 ship plan, loads the normal speed ship motion mathematical model and its PID-based autopilot control plan, and can be run directly;
    基于一号船的配置方案,修改船舶配置对其他需要的船舶进行自动舵控制; Based on the configuration plan of the No. 1 ship, modify the ship configuration to perform autopilot control on other required ships;
    获取一号船方案的运动状态和相平面图,分析一号船方案的缺陷,对该船舶的自动舵功能的控制算法进行二次开发和参数调整;Obtain the motion state and phase plane diagram of the No. 1 ship plan, analyze the flaws of the No. 1 ship plan, and conduct secondary development and parameter adjustment of the control algorithm of the ship's autopilot function;
    根据权利要求1至9任一项所述的模块化的船舶运动控制调试系统配置二号船方案,载入低速船舶运动数学模型及其基于PID的自动定向和/或自动定位的控制方案,可直接运行;According to the modular ship motion control debugging system configuration No. 2 ship plan according to any one of claims 1 to 9, loading the low-speed ship motion mathematical model and its PID-based automatic orientation and/or automatic positioning control plan can run directly;
    基于二号船的配置方案,修改船舶配置对其他需要的船舶进行自动定向和/或自动定位控制;Based on the configuration plan of the No. 2 ship, modify the ship configuration to perform automatic orientation and/or automatic positioning control for other required ships;
    获取二号船方案的运动状态和相平面图,分析二号船方案的缺陷,对该船舶的自动定向和/或自动定位控制算法进行二次开发和参数调整;Obtain the motion status and phase plan diagram of the No. 2 ship plan, analyze the flaws of the No. 2 ship plan, and conduct secondary development and parameter adjustment of the automatic orientation and/or automatic positioning control algorithm of the ship;
    对比一号船方案及其调整方案和二号船方案及其调整方案的运动状态和相平面图,扩展新的控制算法并通过仿真模拟找到最优解,保存自定义配置的最优解方案。 Compare the motion status and phase plane diagram of the No. 1 ship plan and its adjustment plan with the No. 2 ship plan and its adjustment plan, expand the new control algorithm and find the optimal solution through simulation, and save the optimal solution of the customized configuration.
PCT/CN2023/112520 2022-08-31 2023-08-11 Modular ship motion control debugging system and ship motion control debugging method WO2024046090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211057856.3A CN115629590A (en) 2022-08-31 2022-08-31 Modularized ship motion control debugging system and ship motion control debugging method
CN202211057856.3 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024046090A1 true WO2024046090A1 (en) 2024-03-07

Family

ID=84903365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/112520 WO2024046090A1 (en) 2022-08-31 2023-08-11 Modular ship motion control debugging system and ship motion control debugging method

Country Status (2)

Country Link
CN (1) CN115629590A (en)
WO (1) WO2024046090A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629590A (en) * 2022-08-31 2023-01-20 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) Modularized ship motion control debugging system and ship motion control debugging method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150189A (en) * 1987-12-08 1989-06-13 Mitsui Zosen Akishima Kenkiyuushiyo:Kk Mini navigation simulator
CN104483845A (en) * 2014-11-21 2015-04-01 大连海事大学 Ship autopilot algorithm testing simulation system
CN105676871A (en) * 2016-01-19 2016-06-15 武汉理工大学 Model ship based autonomous navigation control simulation system and method of under-actuated unmanned ship
CN108897322A (en) * 2018-07-18 2018-11-27 大连海事大学 Unmanned boat autonomous navigation Track In Track controller test emulation platform and working method
CN113110468A (en) * 2021-04-22 2021-07-13 中国船舶重工集团公司第七0七研究所九江分部 Control method applied to autonomous berthing of under-actuated double-paddle double-rudder ship
CN115629590A (en) * 2022-08-31 2023-01-20 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) Modularized ship motion control debugging system and ship motion control debugging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150189A (en) * 1987-12-08 1989-06-13 Mitsui Zosen Akishima Kenkiyuushiyo:Kk Mini navigation simulator
CN104483845A (en) * 2014-11-21 2015-04-01 大连海事大学 Ship autopilot algorithm testing simulation system
CN105676871A (en) * 2016-01-19 2016-06-15 武汉理工大学 Model ship based autonomous navigation control simulation system and method of under-actuated unmanned ship
CN108897322A (en) * 2018-07-18 2018-11-27 大连海事大学 Unmanned boat autonomous navigation Track In Track controller test emulation platform and working method
CN113110468A (en) * 2021-04-22 2021-07-13 中国船舶重工集团公司第七0七研究所九江分部 Control method applied to autonomous berthing of under-actuated double-paddle double-rudder ship
CN115629590A (en) * 2022-08-31 2023-01-20 上海船舶工艺研究所(中国船舶集团有限公司第十一研究所) Modularized ship motion control debugging system and ship motion control debugging method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YAO HUA HU: "A simulation system for ship motion control", JOURNAL OF DALIAN MARITIME UNIVERSITY, vol. 26, no. 2, 15 June 2000 (2000-06-15), pages 25 - 28, XP093142957 *

Also Published As

Publication number Publication date
CN115629590A (en) 2023-01-20

Similar Documents

Publication Publication Date Title
CN106292287B (en) A kind of UUV path following method based on adaptive sliding-mode observer
CN107168312B (en) Space trajectory tracking control method for compensating UUV kinematic and dynamic interference
CN105843233B (en) A kind of Autonomous Underwater Vehicle motion control method based on nonlinear observer
CN107957727B (en) Underwater robot control system and dynamic positioning method
Skjetne et al. A nonlinear ship manoeuvering model: Identification and adaptive control with experiments for a model ship
Dukan et al. Dynamic positioning system for a small size ROV with experimental results
Hegrenaes et al. Comparison of mathematical models for the HUGIN 4500 AUV based on experimental data
WO2024046090A1 (en) Modular ship motion control debugging system and ship motion control debugging method
WO2015134759A1 (en) Sailing user interface systems and methods
JP2017206154A (en) Underwater sailing body control device, underwater sailing system, underwater sailing body control method and program
Barisic et al. Sigma-point Unscented Kalman Filter used for AUV navigation
CN110083057A (en) PID control method based on hydrofoil athletic posture
CN112015086B (en) Feedback control method for limited-time path tracking output of under-actuated surface ship
Zhou et al. Dynamic modeling and motion control of a novel conceptual multimodal underwater vehicle for autonomous sampling
CN114721298A (en) Virtual simulation control system of small unmanned ship
CN109521798A (en) AUV motion control method based on finite time extended state observer
CN116482984B (en) Model self-adaptive optimal control method and system based on ship towing rope tension monitoring
CN113467231A (en) Unmanned ship path tracking method based on sideslip compensation ILOS guidance law
CN106773740B (en) A kind of near space aerostatics wind field self-adapting adjusting apparatus and method
Lind et al. Simulation and control of submarines
Steenson et al. Maneuvering of an over-actuated autonomous underwater vehicle using both through-body tunnel thrusters and control surfaces
Cutipa-Luque et al. Robust control of an underactuated auv
Bühler et al. Dynamic simulation model for an autonomous sailboat
Avizzano et al. Design of a motion based sailing simulator
Smierzchalski The structure of the control system for a dynamically positioned ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859124

Country of ref document: EP

Kind code of ref document: A1