WO2024045834A1 - Uwb中的测距信号的传输方法及相关设备 - Google Patents

Uwb中的测距信号的传输方法及相关设备 Download PDF

Info

Publication number
WO2024045834A1
WO2024045834A1 PCT/CN2023/103318 CN2023103318W WO2024045834A1 WO 2024045834 A1 WO2024045834 A1 WO 2024045834A1 CN 2023103318 W CN2023103318 W CN 2023103318W WO 2024045834 A1 WO2024045834 A1 WO 2024045834A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
signal
ranging
pseudo
ranging signal
Prior art date
Application number
PCT/CN2023/103318
Other languages
English (en)
French (fr)
Inventor
孙黎
刘鹏
王宇威
吴宽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024045834A1 publication Critical patent/WO2024045834A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • Embodiments of the present application relate to the field of wireless communications, and in particular, to a method of transmitting ranging signals in ultra wideband (UWB) and related equipment.
  • UWB ultra wideband
  • Ranging and positioning technology is an important technology in the field of communication sensing, and has received great attention from international standardization organizations (such as the Institute of Electrical and Electronics Engineers (IEEE)).
  • IEEE 802.15.4z also known as impulse radio (IR) ultra-wideband, or IR-UWB
  • IR-UWB impulse radio
  • both communicating parties learn the distance between the two devices by sending ranging sequences, thereby performing high-precision position estimation.
  • This technology has many needs and applications in factory personnel positioning, cargo positioning in logistics and warehousing, and intelligent sensing of car door locks. While the demand for positioning and ranging is growing rapidly, security issues have also arisen.
  • the IEEE 802.15.4z standard proposes to encrypt the ranging sequence. This method can solve the problem of incorrect measurement results due to early detection/late commit (ED/LC). The problem. However, the method of encrypting the ranging sequence cannot solve the problem of erroneous measurement results due to injection of random interference or relay forwarding.
  • This application provides a transmission method and related equipment for ranging signals in UWB, which can solve the problem of error in measurement results due to injection of random interference or relay forwarding.
  • the first aspect is to provide a method for transmitting ranging signals in ultra-wideband.
  • the method includes the following steps:
  • the first communication device receives the first ranging signal.
  • the first communication device determines the first sequence based on the first ranging signal.
  • the first sequence is a sequence of all or part of the scrambled time stamp sequence STS signal segments in the first ranging signal after time reversal and quantization processing.
  • the first communication device determines a second ranging signal based on the first sequence and the pseudo-random sequence.
  • the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on a key and an encryption algorithm, or the pseudo-random sequence is obtained based on a seed and a pseudo-random number generation algorithm.
  • the first communication device sends the second ranging signal.
  • all or part of the STS signal segments in the first ranging signal are time-reversed and quantized to obtain the first sequence, so that the second ranging signal determined based on the first sequence has an integrity protection function; and
  • the second ranging signal is determined based on the first sequence and the pseudo-random sequence. Since the pseudo-random sequence cannot be reproduced, errors in measurement results due to relay forwarding can be avoided, further improving the integrity protection function of the second ranging signal. Simply put, using this solution, the integrity of the ranging signal can be effectively ensured.
  • the above ranging signal transmission method further includes:
  • the first communication device uses the first ranging signal to perform time-of-arrival ToA estimation to obtain the first arrival time of the first ranging signal. Next, the first communication device determines the STS signal segment based on the first arrival time.
  • the first ranging signal is first used to estimate the first arrival time, and then the signal segment corresponding to the STS in the first ranging signal, that is, the STS signal segment, is determined based on the first arrival time.
  • the method before the first communication device sends the second ranging signal, the method further includes: the first communication device receives ranging configuration information, or the first communication device sends the ranging configuration. information.
  • the ranging configuration information refers to various configuration information related to the transmission process of the ranging signal.
  • the specific number of configuration information can be one or more, and there is no limit to this.
  • Both the first communication device and the second communication device can obtain the ranging configuration information, so as to complete the above-mentioned ranging signal transmission method according to the ranging configuration information.
  • the ranging configuration information may be determined by the first communication device or the second communication device or a trusted third party control node. Specifically, when the ranging configuration information is determined by the first communication device, the first communication device sends the ranging configuration information to other devices (such as the second communication device) after determining the ranging configuration information. When the ranging configuration information is determined by the second communication device or the trusted third party control node, the first communication device receives the ranging configuration information sent by the second communication device or the trusted third party control node.
  • the above ranging configuration information includes one or more of the following information: the length of the partial STS signal segment, and the position of the partial STS signal segment in the first ranging signal.
  • the length of the partial STS signal segment can be understood as the length of the partial STS, that is, the length of the STS that needs to be intercepted.
  • the position of the partial STS signal segment in the first ranging signal can be understood as the position of the partial STS in the entire STS segment, that is, the position of the STS that needs to be intercepted.
  • the above-mentioned first communication device determines the first sequence based on the first ranging signal, including: the first communication device determines the first sequence based on the first ranging signal and ranging configuration information. .
  • the position of the partial STS signal segment in the first ranging signal can be known according to the length of the partial STS signal segment included in the ranging configuration information.
  • the length and position of the STS that needs to be intercepted that is, the length and position of the STS signal segment that needs to be intercepted.
  • the above ranging configuration information includes one or more of the following information: the ranging frame format corresponding to the second ranging signal, the first sequence in the second ranging signal corresponding to the ranging frame format. The position in the ranging frame, the length of the pseudo-random sequence, and the position of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal.
  • the first communication device determines the second ranging signal based on the first sequence and the pseudo-random sequence, including: the first communication device determines the second ranging signal based on the first sequence, the pseudo-random sequence and the ranging configuration information.
  • the ranging frame format corresponding to the second ranging signal refers to the specific frame format of the ranging signal. Taking the IEEE 802.15.4z standard as an example, it includes three frame formats: Configuration 1, Configuration 2 and Configuration 3.
  • the second ranging signal is determined by the first sequence and the pseudo-random sequence. It can be understood that the first sequence and the pseudo-random sequence are combined to obtain a fourth sequence, and then the second ranging signal is determined based on the fourth sequence.
  • the fourth sequence is used to replace the STS part in the frame format given by the 802.15.4z standard. Therefore, the position of the first sequence in the ranging frame corresponding to the second ranging signal can be understood as the position of the first sequence in the fourth sequence.
  • the position of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal can be understood as the position of the pseudo-random sequence in the fourth sequence.
  • the first communication device can determine the second ranging signal based on the first sequence, the pseudo-random sequence and the ranging configuration information.
  • the above ranging configuration information includes one or more of the following information: preset sequence, key and encryption algorithm, seed and pseudo-random number generation algorithm.
  • the first communication device can determine the pseudo-random sequence according to the preset sequence in the ranging configuration information, or the key and encryption algorithm, or the seed and pseudo-random number generation algorithm.
  • the length of the combination of the above-mentioned first sequence and the pseudo-random sequence is the same as the length of the STS.
  • the length of the ranging frame corresponding to the first ranging signal is the same as the length of the ranging frame corresponding to the second ranging signal. It can also be understood that the length of the combination of the first sequence and the pseudo-random sequence is the same as the length of the STS. Same length.
  • this application also provides a method for transmitting ranging signals in ultra-wideband.
  • the method includes the following steps:
  • the second communication device sends a third ranging signal. Then, the second communication device receives a fourth ranging signal, and the fourth ranging signal is a signal after the second ranging signal is transmitted through the wireless channel.
  • the second ranging signal is a signal determined based on the first sequence and the pseudo-random sequence.
  • the first sequence is a sequence of all or part of the scrambled timestamp sequence STS signal segment in the first ranging signal after time reversal and quantization processing.
  • the first ranging signal is the third ranging signal after being transmitted through the wireless channel. signal of.
  • the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on a key and an encryption algorithm, or the pseudo-random sequence is obtained based on a seed and a pseudo-random number generation algorithm.
  • the second communication device uses the first signal segment and the second signal segment in the fourth ranging signal to perform integrity check respectively.
  • the first signal segment is the signal segment corresponding to the first sequence in the fourth ranging signal
  • the second signal segment is the signal segment corresponding to the pseudo-random sequence in the fourth ranging signal.
  • the second communication device sends a third ranging signal
  • the first communication device receives the third ranging signal transmitted through the wireless channel, that is, the first ranging signal.
  • the first communication device then obtains a second ranging signal based on the first ranging signal.
  • the second communication device receives the second ranging signal transmitted through the wireless channel, that is, the fourth ranging signal.
  • the second communication device performs integrity verification on the first signal segment and the second signal segment in the fourth ranging signal to obtain the verification result, because the first signal segment corresponds to the first sequence with the integrity protection function.
  • Signal segment integrity check can be completed based on the first signal segment.
  • the second signal segment is a signal segment corresponding to the pseudo-random sequence. Based on the second signal segment, the detection of relay forwarding interference can be completed, further improving the integrity check performance of the fourth ranging signal.
  • the method before the second communication device receives the fourth ranging signal, the method further includes: the second communication device receives ranging configuration information. Alternatively, the second communication device sends ranging configuration information.
  • the ranging configuration information refers to various configuration information related to the transmission process of the ranging signal.
  • the specific number of configuration information can be more than one, and there is no limit to this.
  • Both the first communication device and the second communication device can obtain the ranging configuration information, so as to complete the above-mentioned ranging signal transmission method according to the ranging configuration information.
  • the above ranging configuration information includes one or more of the following information: the length of the partial STS signal segment, the position of the partial STS signal segment in the first ranging signal, the second The format of the ranging frame corresponding to the ranging signal, the position of the first sequence in the ranging frame corresponding to the second ranging signal, the length of the pseudo-random sequence, and the length of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal. Locations, preset sequences, keys and encryption algorithms, seeds and pseudo-random number generation algorithms.
  • the above ranging signal transmission method further includes: the second communication device determines the first signal segment and the second signal segment based on the fourth ranging signal and the ranging configuration information.
  • the first signal segment and the second signal segment may be extracted from the fourth ranging signal based on the fourth ranging signal and the ranging configuration information.
  • the above-mentioned ranging signal transmission method further includes:
  • the second communication device determines the third moment as the arrival of the fourth ranging signal. time.
  • the third moment is the moment when the fifth ranging signal and the fourth ranging signal are input into the correlator for correlation operation to obtain the maximum value of the correlator output.
  • the fifth ranging signal is the elapsed time of all or part of the third ranging signal. Invert and quantize the processed signal.
  • the third time is a trusted time.
  • the above-mentioned second communication device uses the first signal segment to perform integrity verification, including: when the correlation operation result obtained by performing a correlation operation on the second sequence and the first check sequence is greater than or equal to the first preset threshold, the second communication device determines that the verification result of the first signal segment passes the integrity verification. When the correlation operation result obtained by the correlation operation between the second sequence and the first verification sequence is less than the first preset threshold, the second communication device determines that the verification result of the first signal segment fails the integrity verification.
  • the second sequence is obtained after time reversal of all or part of the third sequence
  • the third sequence is a sequence used to generate a third ranging signal.
  • the first check sequence is a sequence after the first signal segment has been sampled, or the first check sequence is a sequence after the first signal segment has been sampled and then quantized.
  • the starting time of sampling is the third time.
  • the length of the first check sequence is equal to the length of the second sequence.
  • the first verification sequence is obtained based on the first signal segment, and the second sequence and the first verification sequence are used to perform integrity verification to determine whether the ranging process is subject to interference.
  • the first sequence is a sequence obtained by time reversal and quantization processing of part of the STS signal segments in the first ranging signal
  • a sequence corresponding to the above part of the STS is extracted from the third sequence as the second sequence.
  • the above-mentioned second communication device uses the second signal segment to perform integrity verification, including:
  • the second communication device determines that the check result of the second signal segment passes the integrity check.
  • the correlation operation result obtained by performing a correlation operation between the pseudo-random sequence and the second check sequence is less than the second preset threshold, the second communication device determines that the check result of the second signal segment fails the integrity check.
  • the second check sequence is a sequence of the second signal segment that has been sampled, or the second check sequence is a sequence of the second signal segment that has been sampled and then quantized.
  • the starting time of sampling is the second arrival time of the second signal segment.
  • the second arrival time is obtained based on the third time.
  • the length of the second check sequence is equal to the length of the pseudo-random sequence.
  • the second check sequence is obtained based on the second signal segment, and the pseudo-random sequence and the second check sequence are used to perform integrity check to determine whether the second signal segment is relayed.
  • this application also provides a communication device, including:
  • a determination module configured to determine a first sequence based on the first ranging signal, where the first sequence is a sequence of all or part of the scrambled timestamp sequence STS signal segments in the first ranging signal after time reversal and quantization processing;
  • the determination module is also used to determine the second ranging signal based on the first sequence and the pseudo-random sequence; wherein the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on the key and encryption algorithm, or the pseudo-random sequence is based on Seeds and pseudo-random number generation algorithms are obtained;
  • a sending module configured to send a second ranging signal.
  • the above communication device further includes:
  • An estimation module configured to perform time-of-arrival ToA estimation using the first ranging signal to obtain the first arrival moment of the first ranging signal.
  • the determining module is also used to determine the STS signal segment based on the first arrival time.
  • the above-mentioned receiving module is also used to receive ranging configuration information, or the above-mentioned sending module is also used to send ranging configuration information.
  • the above ranging configuration information includes one or more of the following information: partial STS signal segments The length, the position of the partial STS signal segment in the first ranging signal.
  • the above determination module is specifically used to determine the first sequence based on the first ranging signal and ranging configuration information.
  • the above ranging configuration information includes one or more of the following information: the ranging frame format corresponding to the second ranging signal, the first sequence in the second ranging signal corresponding to the ranging frame format. The position in the ranging frame, the length of the pseudo-random sequence, and the position of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal.
  • the above-mentioned determination module is specifically used to determine the second ranging signal based on the first sequence, the pseudo-random sequence and the ranging configuration information.
  • the above ranging configuration information includes one or more of the following information: preset sequence, key and encryption algorithm, seed and pseudo-random number generation algorithm.
  • the length of the combination of the above-mentioned first sequence and the pseudo-random sequence is the same as the length of the STS.
  • this application also provides a communication device, including:
  • the receiving module is configured to receive a fourth ranging signal.
  • the fourth ranging signal is the signal after the second ranging signal is transmitted through the wireless channel;
  • the second ranging signal is a signal determined based on the first sequence and the pseudo-random sequence.
  • One sequence is a sequence of all or part of the scrambled timestamp sequence STS signal segment in the first ranging signal after time reversal and quantization processing.
  • the first ranging signal is the third ranging signal after being transmitted through the wireless channel.
  • the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on the key and encryption algorithm, or the pseudo-random sequence is obtained based on the seed and pseudo-random number generation algorithm;
  • a verification module configured to perform integrity verification using the first signal segment and the second signal segment in the fourth ranging signal respectively; the first signal segment is the signal segment corresponding to the first sequence in the fourth ranging signal, The second signal segment is a signal segment corresponding to the pseudo-random sequence in the fourth ranging signal.
  • the above-mentioned receiving module is also used to receive ranging configuration information, or the above-mentioned sending module is also used to send ranging configuration information.
  • the above ranging configuration information includes one or more of the following information: the length of part of the STS signal segment, the position of the part of the STS signal segment in the first ranging signal, the second The format of the ranging frame corresponding to the ranging signal, the position of the first sequence in the ranging frame corresponding to the second ranging signal, the length of the pseudo-random sequence, and the length of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal. Locations, preset sequences, keys and encryption algorithms, seeds and pseudo-random number generation algorithms.
  • the above communication device further includes:
  • a determining module configured to determine the first signal segment and the second signal segment based on the fourth ranging signal and the ranging configuration information.
  • the above-mentioned determining module is also configured to: if the verification result of the first signal segment passes the integrity verification, and the verification result of the second signal segment passes the integrity verification If verified, the third moment is determined as the arrival moment of the fourth ranging signal.
  • the third moment is the moment when the fifth ranging signal and the fourth ranging signal are input into the correlator for correlation operation to obtain the maximum value of the correlator output.
  • the fifth ranging signal is the elapsed time of all or part of the third ranging signal. Invert and quantize the processed signal.
  • the above-mentioned verification module is specifically used to perform integrity verification using the first signal segment: when the correlation operation obtained by performing a correlation operation between the second sequence and the first verification sequence is When the operation result is greater than or equal to the first preset threshold, it is determined that the verification result of the first signal segment passes the integrity verification. When the correlation operation result obtained by the correlation operation between the second sequence and the first verification sequence is less than the first preset threshold, it is determined that the verification result of the first signal segment fails the integrity verification.
  • the second sequence is obtained after time reversal of all or part of the third sequence
  • the third sequence is a sequence used to generate a third ranging signal.
  • the first check sequence is a sequence after the first signal segment has been sampled, or the first check sequence is a sequence after the first signal segment has been sampled and then quantized.
  • the starting time of sampling is the third time.
  • the length of the first check sequence is equal to the length of the second sequence.
  • the above-mentioned verification module is specifically used to perform integrity verification using the second signal segment:
  • the correlation operation result obtained by performing a correlation operation between the pseudo-random sequence and the second check sequence is greater than or equal to the second preset threshold, it is determined that the check result of the second signal segment passes the integrity check.
  • the correlation operation result obtained by performing a correlation operation between the pseudo-random sequence and the second check sequence is less than the second preset threshold, it is determined that the check result of the second signal segment fails the integrity check.
  • the second check sequence is a sequence of the second signal segment that has been sampled, or the second check sequence is a sequence of the second signal segment that has been sampled and then quantized.
  • the starting time of sampling is the second arrival time of the second signal segment.
  • the second arrival time is obtained based on the third time.
  • the length of the second check sequence is equal to the length of the pseudo-random sequence.
  • this application also provides a chip including a transceiver component and a data processing component.
  • a data processing component is used to receive the first ranging signal in ultra-wideband through the transceiver component.
  • the data processing component is also configured to determine a first sequence based on the first ranging signal, where the first sequence is the time reversal and quantization process of all or part of the scrambled timestamp sequence STS signal segment in the first ranging signal. sequence.
  • the data processing component is also used to determine the second ranging signal based on the first sequence and the pseudo-random sequence; wherein the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on the key and encryption algorithm, or the pseudo-random sequence Obtained based on seed and pseudo-random number generation algorithm.
  • the data processing component is also used to send the second ranging signal through the transceiver component.
  • this application also provides a chip including a transceiver component and a data processing component.
  • the data processing component is used to send the third ranging signal in ultra-wideband through the transceiver component.
  • the data processing component is also used to receive the fourth ranging signal through the transceiver component.
  • the fourth ranging signal is the signal after the second ranging signal is transmitted through the wireless channel; the second ranging signal is based on the first sequence and the pseudo-random sequence.
  • the determined signal, the second sequence includes the first sequence and the pseudo-random sequence, the first sequence is the sequence of all or part of the scrambled timestamp sequence STS signal segment in the first ranging signal after time reversal and quantization processing,
  • the first ranging signal is the signal after the third ranging signal is transmitted through the wireless channel;
  • the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on a key and an encryption algorithm, or the pseudo-random sequence is based on a seed and pseudo-random Obtained by number generation algorithm.
  • a data processing component configured to perform integrity verification using the first signal segment and the second signal segment in the fourth ranging signal respectively; the first signal segment is the signal segment corresponding to the first sequence in the fourth ranging signal, The second signal segment is a signal segment corresponding to the pseudo-random sequence in the fourth ranging signal.
  • the present application also provides a communication device, including a processor and a memory, wherein the memory is used to store computer program instructions, and the processor is used to execute the computer program instructions, so that the communication device executes as The method described in the first aspect.
  • the present application further provides a communication device, including a processor and a memory, wherein the memory is used to store computer program instructions, and the processor is used to execute the computer program instructions, so that the communication device executes as follows: The method described in the second aspect.
  • the present application further provides a computer-readable storage medium that stores a computer program.
  • the computer program includes program instructions that when executed by a computer, cause the computer to execute The method described in the first aspect or the second aspect.
  • the present application also provides a computer program product, which when the computer program product is run on a computer, causes the computer to execute the method described in the first aspect or the second aspect.
  • Figure 1 is a schematic diagram of the ranging principle provided by the embodiment of the present application.
  • Figure 2 is an architectural diagram of a ranging and positioning system provided by an embodiment of the present application.
  • Figure 3 is a method flow chart of a method for transmitting ranging signals in UWB provided by an embodiment of the present application
  • Figure 4 is an interactive schematic diagram of a method for transmitting ranging signals in UWB provided by an embodiment of the present application
  • Figure 5a is a schematic structural diagram of a ranging frame of a ranging signal provided by an embodiment of the present application
  • Figure 5b is a schematic diagram of the ranging frame structure of another ranging signal provided by an embodiment of the present application.
  • Figure 5c is a schematic diagram of the ranging frame structure of another ranging signal provided by an embodiment of the present application.
  • Figure 6a is a schematic diagram of an STS signal segment provided by an embodiment of the present application.
  • Figure 6b is a schematic diagram of a fourth sequence provided by an embodiment of the present application.
  • Figure 6c is a schematic diagram of the ranging frame structure of another ranging signal provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • At least one mentioned in the embodiments of this application means one or more, and “multiple” means two or more. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can represent: a, b, c, (a and b), (a and c), (b and c), or (a and b and c), where a, b, c can be single or multiple.
  • “And/or” describes the relationship between related objects, indicating that there can be three relationships.
  • a and/or B can mean: A alone exists, A and B exist simultaneously, and B exists alone, where A and B can be Singular or plural.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • the sequence numbers of the steps (such as step S1, step S21, etc.) in the embodiments of this application are only to distinguish different steps and do not limit the execution order between the steps.
  • first and second in the embodiments of this application is used to distinguish multiple objects and is not used to limit the order, timing, priority or importance of multiple objects. degree.
  • first device and the second device are just for convenience of description and do not indicate the difference in structure, importance, etc. of the first device and the second device.
  • the first device and the second device It can also be the same device.
  • a corresponds to B means that A and B have a corresponding relationship, and B can be determined based on A.
  • determining (or generating) B according to (or based on) A does not mean only determining (or generating) B according to (or based on) A. It can also be determined according to (or based on) A and/or other information. or generate)B.
  • the signal x(-t) can be obtained after time reversal.
  • quantization refers to the process of approximating the continuous values of a signal (or a large number of possible discrete values) into a finite number (or fewer) discrete values.
  • Quantization can be multi-bit quantization, such as 1-bit quantization, 2-bit quantization, 3-bit quantization, 4-bit quantization, 6-bit quantization, 8-bit quantization, etc., which is not particularly limited.
  • 1-bit quantization is binary quantization, that is, the quantized value of each sampling point of the signal is recorded using 1-bit data. For example, the quantized value is 0/1 or 1/-1.
  • the threshold ⁇ the signal x at a certain point can be binary quantized to obtain the corresponding quantized value F(x). If the signal x at a certain point is greater than ⁇ , then the quantized value F(x) corresponding to the point is 1. ; And if the signal x at a certain point is less than ⁇ , then F(x) is 0.
  • 2-bit quantization is three-value quantization, and the values after quantization can be -1, 0 and 1.
  • the basic principle of ranging is: both communicating parties calculate the distance between them by measuring the round-trip time of the message. Among them, the ranging sequence sent by the transmitter reaches the receiving end after pulse shaping and modulation. The receiving end performs correlation operations on the received ranging sequence and the locally stored sequence, and obtains the arrival time (i.e. t2 and t4) based on the position of the correlation peak. ).
  • Figure 1 is a schematic diagram of the ranging principle provided by an embodiment of the present application. As shown in Figure 1, in the first stage of the ranging process, the first device sends a ranging signal 1 at time t1 and reaches the second device at time t2.
  • the second device sends the ranging signal 2 to the first device at time t3, and reaches the first device at time t4.
  • the ranging signal is obtained after the ranging sequence is pulse shaped and modulated, such as pulse position modulation (PPM), pulse amplitude modulation (PAM), etc.
  • PPM pulse position modulation
  • PAM pulse amplitude modulation
  • c represents the speed of light
  • t RTT represents the round-trip time of the ranging signal (or message).
  • Distance-reduction attack is a common attack method against the above ranging process (that is, the ranging process shown in Figure 1 above). It can also be understood as an interference method. It can be implemented in various forms. For example, relay forwarding attack, Cicada attack, Cicada++ attack, ghostPeak attack, etc. For specific attack methods, please refer to the description of the existing technology, and this application will not provide a detailed description.
  • a relay-forward attack the attacker directly forwards the received ranging signal, causing the estimated signal arrival time to be earlier than the real time.
  • the attacker's goal is to generate interference signals so that the device that receives the ranging signal estimates the arrival time of the signal earlier than the real time, thus causing the distance to be lower than the actual distance.
  • the distance is very far, both parties mistakenly believe that the distance is very close, which can cause property damage in applications such as intelligent sensing of car door locks and location-based contactless payment.
  • ED/LC Early detect/late commit attacks are also targeted at the above ranging process (as mentioned above A common distance reduction attack method is the ranging process shown in Figure 1).
  • the attacker takes advantage of the predictability of the ranging signal structure, infers the entire ranging signal in advance based on the received ranging signal fragments, and sends it to the receiver, so that the receiver is aware of the signal. An error occurred in the estimated time of arrival.
  • the IEEE 802.15.4z standard proposes a scheme to encrypt the ranging sequence. It mainly uses a 128-bit key to encrypt the 128-bit ranging sequence with the Advanced Encryption Standard (AES) to obtain a 128-bit random sequence, and pulse shaping and modulating the random sequence before sending.
  • AES Advanced Encryption Standard
  • the solution of encrypting the ranging sequence can resist ED/LC attacks.
  • the solution of encrypting the ranging sequence cannot solve the problem of erroneous measurement results due to injection of random interference or relay forwarding.
  • Embodiments of this application provide a method for transmitting ranging signals in UWB.
  • the receiving end can have the ability to detect whether the ranging process is subject to distance reduction attacks, ensuring the integrity of the ranging signals. And without losing the ranging performance of the system.
  • the technical solutions provided by the embodiments of this application can be applied in wireless communication sensing ranging and positioning scenarios.
  • the communicating parties can establish a wireless communication connection through authentication and negotiation according to relevant protocols.
  • the sender After establishing the wireless communication connection, the sender sends a wireless ranging frame to the receiving end, and the receiving end receives the wireless ranging frame.
  • the message round-trip time such as the aforementioned formula (1-2)
  • the distance between the two i.e., the sending end and the receiving end
  • the aforementioned formula (1-1) is calculated to complete the ranging process.
  • the ranging and positioning system includes at least two devices, such as a first communication device and a second communication device.
  • the first communication device is the sending end at a certain moment and performs the operations of the sending end. But at another moment it may be the receiving end, performing the operations of the receiving end.
  • the second communication device is the same as the first communication device. That is to say, the second communication device is the sending end at a certain time and performs the operations of the sending end; but at another time, it may be the receiving end and performs the operations of the receiving end.
  • the second communication device includes a signal sending module, a time of arrival (Time of Arrival, TOA) estimation module, and an integrity check module.
  • a signal sending module is used to send a third ranging signal, which is sent from the antenna port to the first communication device.
  • the TOA estimation module is used to perform TOA estimation using the fourth ranging signal and obtain a timestamp, which is used for ranging or positioning.
  • the fourth ranging signal is a signal received by the second communication device after the second ranging signal sent by the first communication device is transmitted through the wireless channel.
  • the integrity check module is used to perform a correlation operation on the fourth ranging signal and the local template to determine whether the fourth ranging signal is subject to a distance reduction attack.
  • the second communication device may also generate a third ranging signal, for example, using the method in the IEEE 802.15.4z standard, which will not be described again here.
  • the first communication device may obtain the third ranging signal using the same operation as the second communication device.
  • the first communication device includes a TOA estimation module, a time reversal and quantization module, and a signal generation module.
  • the TOA estimation module is configured to use the first ranging signal to perform TOA estimation and obtain a timestamp, which is used for ranging or positioning.
  • the first ranging signal is a signal received by the first communication device after the third ranging signal sent by the second communication device is transmitted through a wireless channel.
  • the time reversal and quantization module is used to perform time reversal and quantization processing on all or part of the scrambled timestamp sequence (Scrambled timestamp sequence, STS) signal segments in the first ranging signal to obtain the first sequence.
  • the first sequence is used to generate a second ranging signal.
  • the signal generation module is configured to determine a second ranging signal based on the first sequence and the pseudo-random sequence.
  • the pseudo-random sequence is a sequence that can be learned by both the first communication device and the second communication device.
  • both the first communication device and the second communication device shown in Figure 2 are single antennas, but in actual applications, the first communication device can be configured with multiple antennas or a single antenna; similarly, the second communication device A single antenna or multiple antennas may be configured; there are no limitations in the embodiments of this application.
  • the first communication device is the sending end at a certain time and performs the operations of the sending end; but at another time, it may be the receiving end and performs the operations of the receiving end.
  • the second communication device is the same as the first communication device.
  • Both the first communication device and the second communication device in this application support the 802.15.4z standard, and may also support the next generation standard of the 802.15.4z standard.
  • the first communication device and the second communication device may also support narrowband communication standards, such as Wi-Fi standards (ie, 802.11 series standards), Bluetooth standards, or Zigbee, etc.
  • Embodiments of the present application provide a method for transmitting ranging signals in ultra-wideband.
  • the method is applied to a ranging and positioning system, which includes a first communication device and a second communication device.
  • Figure 3 is a method flow chart of a method for transmitting a ranging signal in UWB provided by an embodiment of the present application.
  • Figure 4 is a flow chart of a method of transmitting a ranging signal in UWB provided by an embodiment of the present application. Interaction diagram of transfer methods.
  • the above-mentioned ranging signal transmission method includes the following steps:
  • the first communication device receives the first ranging signal.
  • the second communication device determines the third ranging signal and sends the third ranging signal.
  • the first ranging signal is the signal after the third ranging signal is transmitted through the wireless channel.
  • the third ranging signal does not change after being transmitted through the wireless channel, it can be considered that the third ranging signal and the first ranging signal are the same. That is, in the embodiment of the present application, the third side ranging signal may be the same as or different from the first ranging signal.
  • the third ranging signal can be generated using a generation method in the prior art, which is not particularly limited.
  • the third ranging signal can be generated using a method in the IEEE802.15.4z standard.
  • the third ranging signal is generally generated based on a sequence, which is a third sequence.
  • the third sequence is a sequence that can be learned by both the first communication device and the second communication device.
  • the first communication device and the second communication device The communication device negotiates a determined sequence, a preset or predefined sequence, a published sequence, a sequence defined by a standard, etc. More specifically, the first communication device and the second communication device can obtain the third sequence according to the agreed key and encryption algorithm, or the agreed random seed and pseudo-random number generation algorithm. In this case, the third sequence can be understood as a pseudo-random number generation algorithm. Random sequence.
  • the first communication device may use the same operation as the second communication device to obtain the third ranging signal.
  • the first communication device determines the first sequence based on the first ranging signal.
  • the first sequence is a sequence in which all or part of the STS signal segments in the first ranging signal have been time-reversed and quantized.
  • the quantization process can be any quantization method such as 1-bit quantization, 2-bit quantization, 3-bit quantization, etc., and is not particularly limited.
  • the number of STS signal segments in the first ranging signal may be one or more.
  • the first communication device determines the second ranging signal based on the first sequence and the pseudo-random sequence.
  • the first communication device and the second communication device can learn the corresponding pseudo-random sequence.
  • the pseudo-random sequence may be a preset sequence, or the pseudo-random sequence may be obtained based on a key and an encryption algorithm, or the pseudo-random sequence may be obtained based on a seed and a pseudo-random number generation algorithm.
  • the pseudo-random sequence here and the above-mentioned third sequence may be the same or different. They may be set according to the actual situation and are not particularly limited. Specifically, both the first communication device and the second communication device can learn the key and the encryption algorithm, or the seed and the pseudo-random number generation algorithm.
  • the first communication device and the second communication device can each obtain the same pseudo-random sequence based on the key and encryption algorithm, or the seed and pseudo-random number generation algorithm.
  • the first sequence is used to verify whether the ranging process is subject to at least one distance reduction attack detection among Cicada, Cicada++, and ghostPeak. In other words, it is used to determine whether in the first stage or the second stage of the ranging process, Whether there is interference; and the pseudo-random sequence is used to verify whether the ranging process is subject to a relay forwarding attack, that is, it is used to determine whether the signal received by the second communication device is sent by a third-party relay forwarding attacker. of.
  • the number of pseudo-random sequences may be one or more, and may be set according to the actual situation.
  • the first communication device sends a second ranging signal.
  • the second communication device receives the fourth ranging signal
  • the fourth ranging signal is the signal after the second ranging signal is transmitted through the wireless channel. Because when signals are transmitted in wireless channels, they will be reflected, diffracted, and scattered by various obstacles, which may cause some changes in the signal sent by the sender when it reaches the receiver. Therefore, the fourth ranging signal is the signal after the second ranging signal is transmitted through the wireless channel. In the embodiment of the present application, if the second ranging signal does not change after being transmitted through the wireless channel, the fourth ranging signal and the second ranging signal can be considered to be the same. That is, in the embodiment of the present application, the fourth side ranging signal may be the same as or different from the second ranging signal.
  • the second communication device respectively uses the first signal segment and the second signal segment in the fourth ranging signal to perform integrity verification.
  • the first signal segment is the signal segment corresponding to the first sequence in the fourth ranging signal
  • the second signal segment is the signal segment corresponding to the pseudo-random sequence in the fourth ranging signal.
  • all or part of the STS signal segments in the first ranging signal are time-reversed and quantized to obtain the first sequence
  • the second ranging signal determined based on the first sequence has an integrity protection function; while the second ranging signal is determined based on the first sequence and the pseudo-random sequence, since the pseudo-random sequence cannot be reproduced, it is possible to avoid errors caused by relays.
  • the forwarding causes errors in the measurement results, further improving the integrity protection function of the second ranging signal.
  • the second communication device performs integrity verification on the first signal segment and the second signal segment in the fourth ranging signal to obtain the verification result, because the first signal segment has an integrity protection function.
  • the integrity check of the signal segment corresponding to the first sequence can be completed based on the first signal segment.
  • the second signal segment is a signal segment corresponding to the pseudo-random sequence. Based on the second signal segment, the detection of relay forwarding interference can be completed, further improving the integrity check performance of the fourth ranging signal.
  • the ranging signal transmission method in the embodiment of the present application can resist various distance reduction attacks, so that the ranging signal is more secure.
  • the second ranging signal contains the first signal segment corresponding to the first sequence. After integrity verification based on the first signal segment, Cicada attacks and their variants (such as Cicada++, ghostPeak) will be discovered.
  • the embodiments of this application can resist relay forwarding attacks.
  • the fourth ranging signal is the signal after the second ranging signal is transmitted through the wireless channel, that is, the second ranging signal also has a corresponding first signal segment and a second signal segment, and the second ranging signal includes the first signal segment and the second signal segment. For the second signal segment, even if the relay forwarding attacker can forward the first signal segment, he cannot reproduce the second signal segment, so the relay forwarding attack cannot succeed.
  • both the third ranging signal and the second ranging signal include signal segments corresponding to the pseudo-random sequence, because the pseudo-random sequence is generated based on an encryption algorithm or a pseudo-random number generation algorithm, and the inputs of these algorithms include only The key or random seed shared between the first communication device and the second communication device cannot be obtained by a third-party attacker. Therefore, the attacker cannot successfully implement the ED/LC attack.
  • the ranging signal transmission method of the embodiment of the present application is relatively simple to implement and has low complexity. There is no need to send multiple ranging sequences and verify the consistency of multiple measurement results to determine whether the ranging process is subject to a distance reduction attack.
  • the above ranging signal transmission method also includes:
  • the first communication device uses the first ranging signal to perform ToA estimation to obtain the first arrival time of the first ranging signal.
  • the first communication device finds the first path position based on the first ranging signal and the reverse search method.
  • the first path is the line of sight (Line of Sight, LOS) path.
  • the first path can also be understood as the second device communication and the first path.
  • the time corresponding to the first path position is the first arrival time, and the first arrival time is also the time starting point of the ranging frame corresponding to the first ranging signal.
  • the third ranging signal and the first ranging signal are input into the correlator for correlation operation, and the time at which the maximum value of the correlator output is obtained is obtained, and then the first path position can be determined by going back from this time and performing a reverse search.
  • the first communication device determines the STS signal segment based on the first arrival time.
  • the first ranging signal is first used to estimate the first arrival time, and then the signal segment corresponding to the STS in the first ranging signal, that is, the STS signal segment, is determined based on the first arrival time. Specifically, since the first communication device knows the frame structure of the ranging frame of the first ranging signal, the signal segment corresponding to the STS in the first ranging signal can be obtained according to the first arrival time and the frame structure.
  • the method for transmitting the ranging signal further includes:
  • the first communication device receives the ranging configuration information, or the first communication device sends the ranging configuration information.
  • the ranging configuration information refers to various configuration information related to the transmission process of the ranging signal.
  • the specific number of configuration information can be one or more, and there is no limit to this.
  • Both the first communication device and the second communication device can obtain the ranging configuration information, so as to complete the above-mentioned ranging signal transmission method according to the ranging configuration information.
  • the ranging configuration information may be determined by the first communication device or the second communication device or a trusted third party control node. Specifically, when the ranging configuration information is determined by the first communication device, the first communication device sends the ranging configuration information to other devices (such as the second communication device) after determining the ranging configuration information. When the ranging configuration information is determined by the second communication device or the trusted third party control node, the first communication device receives the ranging configuration information sent by the second communication device or the trusted third party control node.
  • the above ranging configuration information is determined by the first communication device or the second communication device, or can also be understood as determined by negotiation between the first communication device and the second communication device. When using the negotiation method, the first communication device and the second communication device determine the ranging configuration information through interaction. The interaction can be completed through the UWB system band, or through out-band (narrowband, such as Bluetooth, WiFi, etc.) Finish.
  • the above ranging configuration information includes one or more of the following information: the length of the partial STS signal segment, the position of the partial STS signal segment in the first ranging signal, and the ranging frame format corresponding to the second ranging signal. , the position of the first sequence in the ranging frame corresponding to the second ranging signal, the length of the pseudo-random sequence, the position of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal, the preset sequence, the key and Encryption algorithms, seeds and pseudo-random number generation algorithms.
  • the length of the partial STS signal segment can be understood as the length of the partial STS, that is, the length of the STS that needs to be intercepted.
  • the position of the partial STS signal segment in the first ranging signal can be understood as the position of the partial STS in the entire STS segment, that is, the position of the STS that needs to be intercepted.
  • the first communication device determines the first sequence based on the first ranging signal and the ranging configuration information.
  • the first sequence When the column is obtained based on a partial STS signal segment, according to the length of the partial STS signal segment included in the ranging configuration information and the position of the partial STS signal segment in the first ranging signal, the length and position of the STS that needs to be intercepted can be known. , that is, the length and position of the STS signal segment that needs to be intercepted. After performing time reversal and quantization processing on some of the intercepted STS signal segments, the first sequence can be obtained.
  • the ranging frame format corresponding to the second ranging signal refers to the specific physical layer frame format of the ranging signal.
  • the frame format of the ranging frame of the second ranging signal can reuse the existing physical layer frame format.
  • Taking the IEEE 802.15.4z standard as an example refer to Figure 5a, Figure 5b, and Figure 5c to show the ranging frame structure of the ranging signal, including configuration 1 (shown in Figure 5a), configuration 2 (shown in Figure 5b) and configuration 3 (shown in Figure 5c) three physical layer frame formats.
  • the ranging frame in Figure 5a includes one or more of the following: synchronization (SYNC) field, frame start setting Delimiter (start-of-frame delimiter, SFD), STS (i.e., signal that supports ranging function), physical layer header (physical layer header, PHR) field, physical layer payload (physical layer payload, PHY payload).
  • SYNC synchronization
  • SFD frame start setting Delimiter
  • STS i.e., signal that supports ranging function
  • physical layer header physical layer header, PHR
  • PHY payload physical layer payload
  • the second ranging signal is determined by the first sequence and the pseudo-random sequence. It can be understood that the first sequence and the pseudo-random sequence are combined to obtain the fourth sequence, and then the second ranging signal is determined based on the fourth sequence, as shown in Figure 5a
  • the fourth sequence is used to replace the STS part in the frame format given by the 802.15.4z standard.
  • the first communication device may determine the second ranging signal based on the first sequence, the pseudo-random sequence and the ranging configuration information. Therefore, the position of the first sequence in the ranging frame corresponding to the second ranging signal can be understood as the position of the first sequence in the fourth sequence.
  • the position of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal can be understood as the position of the pseudo-random sequence in the fourth sequence.
  • the first communication device can determine the second ranging signal based on the first sequence, the pseudo-random sequence and the ranging configuration information.
  • the fourth sequence is the STS signal segment in the frame format of the second ranging signal.
  • the above ranging signal transmission method also includes:
  • the second communication device determines the first signal segment and the second signal segment based on the fourth ranging signal and the ranging configuration information.
  • the first signal segment and the second signal segment may be extracted from the fourth ranging signal based on the fourth ranging signal and the ranging configuration information. Specifically, after the arrival time of the fourth ranging signal is obtained, the first signal segment and the second signal segment can be extracted based on the arrival time and the frame structure of the fourth ranging signal.
  • the first communication device or the second communication device may determine the pseudo-random sequence according to a preset sequence in the ranging configuration information, or a key and an encryption algorithm, or a seed and a pseudo-random number generation algorithm.
  • the above-mentioned encryption algorithms include AES algorithm, Zu Chongzhi ZUC algorithm, Snowflake SNOW algorithm, etc.
  • Pseudo-random number generation algorithms include linear congruence method, Mattset rotation algorithm, WELL algorithm, etc.
  • the length of the combination of the above-mentioned first sequence and the pseudo-random sequence is the same as the length of the STS in the first ranging signal.
  • the length of the ranging frame corresponding to the first ranging signal is the same as the length of the ranging frame corresponding to the second ranging signal.
  • the length of the combination of the first sequence and the pseudo-random sequence is the same as the length of the first ranging frame.
  • the STS in the ranging signal have the same length.
  • the length of the above combination can also be longer or shorter than STS, and is not particularly limited.
  • Step 1 The first communication device extracts the STS signal segment in the first ranging signal based on the estimated arrival time of the first ranging signal and the known frame structure of the first ranging signal.
  • the STS signal segment is divided into N STS sub-segments (mini-segments).
  • Select K segment from N STS sub-segments as the signal segment to be inverted, K satisfies 1 ⁇ K ⁇ N, where N is the number of STS sub-segments included in the STS signal segment (as shown in Figure 6a).
  • the value of K and the sequence number of the signal segment to be inverted are determined through negotiation between the first communication device and the second communication device, or specified by a trusted third-party control node.
  • K as 2 taking K as 2 as an example, STS sub-segment 2 and STS sub-segment 3 are selected as the signal segments to be inverted.
  • the position of some STS signal segments in the ranging configuration information in the first ranging signal can be understood as the sequence number of K segments of STS sub-segments selected from N STS sub-segments, such as m 1 , m 2 , ..., mK .
  • Step 2 Exemplarily, perform time reversal and 1-bit quantization processing on the signal segment to be inverted to obtain the first sequence.
  • the first communication device performs time reversal and 1-bit quantization on the signals of each STS subsection in the signal section to be inverted.
  • this operation can be performed on the entire signal segment to be inverted as a whole.
  • the sequence number of the signal segment corresponding to the signal segment to be inverted is known, and the operation can be performed as a whole; it can also be performed on each STS sub-segment one by one. .
  • Step 3 Generate the second ranging signal.
  • the length of the ranging frame corresponding to the second ranging signal is the same as the length of the ranging frame corresponding to the first ranging signal, and also includes N signal segments.
  • the first communication device puts the K signal segments (that is, the first sequence) obtained after time reversal and 1-bit quantization into the ranging frame corresponding to the second ranging signal.
  • the specific positions where the K signal segments are placed are given by
  • the first communication device and the second communication device are determined through negotiation or specified by a trusted third-party control node. After that, the first communication device uses the AES algorithm or the pseudo-random number generation algorithm to generate NK pseudo-random sequences, and puts them correspondingly into the remaining NK signal segments in the ranging frame of the second ranging signal.
  • the resulting second ranging message The ranging frame of the number is shown in Figure 6b, in which both STS subsection 2 and STS subsection 3 are time-reversed versions (referring to the versions after time reversal and quantization processing). Among them, it is also possible to split a pseudo-random sequence into NK parts, and then put the NK sequence segments into NK sub-segments correspondingly. After the corresponding positions of the above-mentioned first sequence and the pseudo-random sequence are determined, they can be combined to obtain a fourth sequence.
  • the position of the first sequence in the ranging configuration information in the ranging frame corresponding to the second ranging signal can be understood as the position of the K STS sub-segments in the second ranging signal after time reversal and quantization processing.
  • the position in the N signal segments for example, n 1 , n 2 ,..., n K . Among them, n 1 , n 2 ,..., n K and m 1 , m 2 ,..., m K may be the same or different.
  • the position of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal is the position of the remaining signal segments in the N signal segments.
  • a second ranging signal can be generated.
  • a pulse signal generating circuit can be used to generate the second ranging signal from the fourth sequence. For example, if the corresponding symbol in the fourth sequence is +1, then the corresponding pulse in the generated second ranging signal is s(t). If the corresponding symbol in the fourth sequence is -1, then in the generated second ranging signal The corresponding pulse is -s(t).
  • s(t) is the pulse waveform, and the specific form is determined by the pulse signal generating circuit.
  • Figure 6a There may be a gap between each signal segment in Figure 6a and Figure 6b, that is, no signal is sent.
  • Figure 6c which is a schematic structural diagram of a ranging frame of another ranging signal provided by an embodiment of the present application; when there are multiple STS signal segments in the ranging frame corresponding to the second ranging signal, multiple There may also be gaps between STS signal segments. In this case, it is only necessary to apply the above method in the embodiment of the present application to each STS signal segment respectively.
  • the position of the first sequence in the ranging frame corresponding to the second ranging signal For example, for the position of the partial STS signal segment in the first ranging signal, the position of the first sequence in the ranging frame corresponding to the second ranging signal, and the position of the pseudo-random sequence in the ranging frame corresponding to the second ranging signal.
  • the process of determining the position in the frame takes the determination of the first communication device as an example.
  • the length of the combination of the first sequence and the pseudo-random sequence is the same as the length of the STS in the first ranging signal. Specifically, described as follows:
  • Step 1 The first communication device randomly selects an integer K from 1 to N-1, using K as the number of signal segments to be inverted, and N as the number of signal segments of the first ranging signal.
  • Step 2 The first communication device randomly selects K signal segments from the N signal segments of the first ranging signal as signal segments to be inverted, and the serial numbers of the K signal segments are m 1 , m 2 ,..., mK .
  • Step 3 The first communication device randomly selects K signal segments from the N signal segments as the signal segments used to put the inverted signal segments in the ranging frame of the second ranging signal.
  • the serial numbers of the K signal segments are recorded as n 1 , n 2 ,..., n K .
  • n 1 , n 2 ,..., n K and m 1 , m 2 ,..., m K may be the same or different.
  • Step 4 The first communication device encrypts m 1 , m 2 , ..., m K , n 1 , n 2 , ..., n K and sends them to the second communication device (UWB or narrowband transmission can be used; the encryption algorithm can use An existing encryption algorithm, such as AES), is used to inform the second communication device about the parameters of the ranging frame of the second ranging signal.
  • UWB or narrowband transmission can be used;
  • An existing encryption algorithm, such as AES is used to inform the second communication device about the parameters of the ranging frame of the second ranging signal.
  • the roles of the first communication device and the second communication device are interchangeable, that is, the second communication device determines the format and parameters of the second ranging frame and notifies the first communication device; in addition, the second ranging frame
  • the format and parameters may also be specified by a trusted third-party control node and notified to the first communication device and the second communication device.
  • K, m 1 , m 2 , ..., m K , n 1 , n 2 , ..., n K and other parameters can also be determined by the first communication device and the second communication device according to the pre-shared key and counter. Synchronously generated.
  • the above-mentioned ranging signal transmission method further includes:
  • the second communication device inputs the fifth ranging signal and the fourth ranging signal into the correlator for correlation operation to obtain the time at which the maximum value of the correlator output is located, that is, the third time.
  • the fifth ranging signal is all or part of the third time.
  • the ranging signal is the signal after time reversal and quantization processing.
  • the above-mentioned third moment is the arrival moment of the estimated fourth ranging signal.
  • the third moment is a credible moment. Otherwise, if the fourth ranging signal does not Passing the integrity check indicates that the ranging process is subject to a distance reduction attack; at this time, for example, the second communication device can inform the first communication device to resend a new ranging signal, or resend the second ranging signal after a period of time. signal, or do nothing, etc.
  • the first ranging signal is the signal after the third ranging signal is transmitted through the wireless channel. Therefore, when the first sequence is obtained according to part of the STS signal segment in the first ranging signal, the third ranging signal and Those signal segments corresponding to the first sequence are time-reversed and quantized to obtain the fifth ranging signal.
  • the above ranging signal transmission method also includes:
  • the second communication device determines the third moment as the arrival of the fourth ranging signal. time.
  • the third time is a trusted time.
  • the above-mentioned second communication device uses the first signal segment to perform integrity verification, including:
  • the second communication device determines that the verification result of the first signal segment passes the integrity verification.
  • the second communication device determines that the verification result of the first signal segment fails the integrity verification.
  • the second sequence is obtained after time reversal of all or part of the third sequence
  • the third sequence is a sequence used to generate a third ranging signal.
  • the first sequence is a sequence of partial STS signal segments in the first ranging signal that has been time-reversed and quantized
  • the sequence corresponding to the above-mentioned partial STS is extracted from the third sequence and time-reversed as Second sequence.
  • the first check sequence is a sequence after the first signal segment has been sampled, or the first check sequence is a sequence after the first signal segment has been sampled and then quantized.
  • the starting time of sampling is the third time.
  • the length of the first check sequence is equal to the length of the second sequence.
  • the first verification sequence is obtained based on the first signal segment, and the second sequence and the first verification sequence are used to perform integrity verification to determine whether the first signal segment is subject to a distance reduction attack.
  • the second communication device can compare the correlation operation result z with the preset threshold to obtain the verification result.
  • the correlation operation result z is greater than or equal to the preset threshold
  • the verification result is that the first signal segment passes the integrity check, that is, the ranging process is not subject to a distance reduction attack.
  • the correlation operation result z is less than the preset threshold
  • the verification result is that the first signal segment fails the integrity check, that is, the ranging process is subject to a distance reduction attack.
  • the absolute value of the preset threshold is equal to the length of the second sequence. If the second sequence is 128 bits, the preset threshold may be ⁇ 128.
  • the above-mentioned second communication device uses the second signal segment to perform integrity verification, including:
  • the second communication device determines that the check result of the second signal segment passes the integrity check.
  • the second communication device determines that the check result of the second signal segment fails the integrity check.
  • the second check sequence is a sequence of the second signal segment that has been sampled, or the second check sequence is a sequence of the second signal segment that has been sampled and then quantized.
  • the starting time of sampling is the second arrival time of the second signal segment.
  • the second arrival time is obtained based on the third time, and the above second arrival time can be deduced based on the third time and the frame structure of the second ranging signal.
  • the length of the second check sequence is equal to the length of the pseudo-random sequence.
  • the second check sequence is obtained based on the second signal segment, and the pseudo-random sequence and the second check sequence are used to perform an integrity check to determine whether the second signal segment is interfered by relay forwarding.
  • the method of using the pseudo-random sequence and the second check sequence for integrity verification is: input the pseudo-random sequence and the second check sequence into the correlator to perform a correlation operation. If the result of the correlation operation is greater than or equal to the preset threshold, it is determined that the integrity check has passed; if the result of the relevant operation is less than the preset threshold, it is determined that the integrity check has not passed.
  • the embodiments of the present application also provide corresponding devices or equipment.
  • Embodiments of the present application can divide the first communication device and the second communication device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one in the processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIGS. 7 and 8 .
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 700 includes a receiving module 701 , a determining module 702 and a sending module 703 .
  • the receiving module 701 is used to receive the first ranging signal in ultra-wideband.
  • Determining module 702 configured to determine a first sequence based on the first ranging signal, where the first sequence is all or part of the scrambled sequence in the first ranging signal.
  • the time stamp sequence STS signal segment is a sequence after time reversal and quantization processing.
  • the determination module 702 is also used to determine the second ranging signal based on the first sequence and the pseudo-random sequence; wherein the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on the key and encryption algorithm, or the pseudo-random sequence Obtained based on seed and pseudo-random number generation algorithm.
  • the sending module 703 is used to send the second ranging signal.
  • the above-mentioned communication device 700 can correspond to the operations performed by the first communication device in the ranging signal transmission method of the previous embodiments.
  • the above-mentioned operations or functions of each unit in the communication device 700 can refer to the corresponding records of the above-mentioned embodiments. , for the sake of brevity, will not be repeated here.
  • Figure 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device 800 includes a sending module 801, a receiving module 802, and a verification module 803.
  • Transmitting module 801 used to transmit the third ranging signal in ultra-wideband
  • the receiving module 802 is used to receive a fourth ranging signal.
  • the fourth ranging signal is the signal after the second ranging signal is transmitted through the wireless channel;
  • the second ranging signal is a signal determined based on the first sequence and the pseudo-random sequence,
  • the first sequence is a sequence of all or part of the scrambled timestamp sequence STS signal segment in the first ranging signal after time reversal and quantization processing.
  • the first ranging signal is the third ranging signal after being transmitted through the wireless channel. signal;
  • the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on the key and encryption algorithm, or the pseudo-random sequence is obtained based on the seed and pseudo-random number generation algorithm;
  • the verification module 803 is configured to perform integrity verification using the first signal segment and the second signal segment in the fourth ranging signal respectively; the first signal segment is the signal segment corresponding to the first sequence in the fourth ranging signal. , the second signal segment is the signal segment corresponding to the pseudo-random sequence in the fourth ranging signal.
  • the above-mentioned communication device 800 can correspond to the operations performed by the second communication device side in the ranging signal transmission method of the previous embodiments.
  • the above-mentioned operations or functions of each unit in the communication device 800 can refer to the corresponding operations of the above-mentioned embodiments. Records, for the sake of brevity, will not be repeated here.
  • the first communication device and the second communication device according to the embodiment of the present application are introduced above.
  • the possible product forms of the first communication device and the second communication device are introduced below. It should be understood that any form of product that has the function of the first communication device described in FIG. 7 and any form of product that has the function of the second communication device described in FIG. 8 fall within the scope of this application. Example of protection scope. It should also be understood that the following description is only an example, and does not limit the product forms of the first communication device and the second communication device in the embodiments of the present application to this.
  • the first communication device and the second communication device described in the embodiments of the present application can be implemented by a general bus architecture.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device 900 may be a first communication device or a second communication device, or a chip therein.
  • the communication device 900 includes a memory 901, a processor 902, a communication interface 904 and a bus 903. Among them, the memory 901, the processor 902, and the communication interface 904 implement communication connections between each other through the bus 903.
  • the memory 901 may be a read-only memory (Read Only Memory, ROM), a static storage device, a dynamic storage device or a random access memory (Random Access Memory, RAM).
  • the memory 901 can store programs. When the program stored in the memory 901 is executed by the processor 902, the processor 902 is used to perform various steps of the ranging signal transmission method described in any of the above embodiments.
  • the processor 902 may be a general central processing unit (Central Processing Unit, CPU), a microprocessor, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a graphics processor (graphics processing unit, GPU) or one or more An integrated circuit is used to execute relevant programs to implement the ranging signal transmission method described in any of the above embodiments.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • GPU graphics processing unit
  • An integrated circuit is used to execute relevant programs to implement the ranging signal transmission method described in any of the above embodiments.
  • the processor 902 may also be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the ranging signal transmission method described in any embodiment of the present application can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 902 .
  • the above-mentioned processor 902 can also be a general-purpose processor, a digital signal processor (Digital Signal Processing, DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices. , discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processing
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the data processing method described in any embodiment of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 901, and the processor 902 reads the information in the memory 901, and completes the ranging signal transmission method described in any of the above embodiments in combination with its hardware.
  • the communication interface 904 uses a transceiver device such as but not limited to a transceiver to realize the communication between the communication device 900 and other devices or communication networks. communication between.
  • the communication device 900 can obtain the second data through the communication interface 904 and so on.
  • Bus 903 may include a path for transferring information between various components of communication device 900 (eg, memory 901, processor 902, communication interface 904).
  • the communication device 900 shown in FIG. 9 only shows a memory, a processor, and a communication interface, during specific implementation, those skilled in the art will understand that the communication device 900 also includes necessary components for normal operation. Other devices. At the same time, according to specific needs, those skilled in the art should understand that the communication device 900 may also include hardware devices that implement other additional functions. In addition, those skilled in the art should understand that the communication device 900 may only include components necessary to implement the embodiments of the present application, and does not necessarily include all components shown in FIG. 9 .
  • the scope of the communication device described in the embodiment of the present application is not limited thereto, and the structure of the communication device may not be limited by FIG. 9 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • Access point equipment, receivers, terminals such as mobile phones, tablets, smart tags, etc.
  • smart terminals such as mobile phones, tablets, smart tags, etc.
  • cellular phones wireless devices, handheld machines, mobile units, vehicle-mounted equipment, network equipment, cloud equipment, artificial intelligence Equipment, etc.
  • An embodiment of the present application also provides a chip, including a transceiver component and a data processing component.
  • a data processing component is used to receive the first ranging signal in ultra-wideband through the transceiver component.
  • the data processing component is also configured to determine a first sequence based on the first ranging signal, where the first sequence is the time reversal and quantization process of all or part of the scrambled timestamp sequence STS signal segment in the first ranging signal. sequence.
  • the data processing component is also used to determine the second ranging signal based on the first sequence and the pseudo-random sequence; wherein the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on the key and encryption algorithm, or the pseudo-random sequence Obtained based on seed and pseudo-random number generation algorithm.
  • the data processing component is also used to send the second ranging signal through the transceiver component.
  • the above-mentioned chip can correspond to the operations performed by the first communication device side in the ranging signal transmission method of the previous embodiment.
  • the specific description of the chip reference can be made to the corresponding records of the above-mentioned embodiment. For the sake of brevity, it will not be repeated here. Repeat.
  • An embodiment of the present application also provides a chip, including a transceiver component and a data processing component.
  • the data processing component is used to send the third ranging signal in ultra-wideband through the transceiver component.
  • the data processing component is also used to receive the fourth ranging signal through the transceiver component.
  • the fourth ranging signal is the signal after the second ranging signal is transmitted through the wireless channel; the second ranging signal is based on the first sequence and the pseudo-random sequence.
  • the determined signal, the second sequence includes the first sequence and the pseudo-random sequence, the first sequence is the sequence of all or part of the scrambled timestamp sequence STS signal segment in the first ranging signal after time reversal and quantization processing,
  • the first ranging signal is the signal after the third ranging signal is transmitted through the wireless channel;
  • the pseudo-random sequence is a preset sequence, or the pseudo-random sequence is obtained based on a key and an encryption algorithm, or the pseudo-random sequence is based on a seed and pseudo-random Obtained by number generation algorithm.
  • a data processing component configured to perform integrity verification using the first signal segment and the second signal segment in the fourth ranging signal respectively; the first signal segment is the signal segment corresponding to the first sequence in the fourth ranging signal, The second signal segment is a signal segment corresponding to the pseudo-random sequence in the fourth ranging signal.
  • the above-mentioned chip can correspond to the operations performed by the second communication device side in the ranging signal transmission method of the previous embodiment.
  • the specific description of the chip reference can be made to the corresponding records of the above-mentioned embodiment. For the sake of brevity, it will not be repeated here. Repeat.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of this patent application can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, solid state drive), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种UWB中的测距信号的传输方法及相关设备,涉及无线通信领域;该方法中,第一通信装置接收第一测距信号。第一通信装置基于第一测距信号确定第一序列。第一通信装置基于第一序列和伪随机序列确定第二测距信号。伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。第一通信装置发送第二测距信号。对第一测距信号中的全部或部分STS信号段进行时间反转和量化处理后得到第一序列,使得基于第一序列确定的第二测距信号具有完整性保护功能;而基于第一序列和伪随机序列确定第二测距信号,由于伪随机序列无法被复现,因此,可以避免由于中继转发导致测量结果出错。

Description

UWB中的测距信号的传输方法及相关设备
本申请要求于2022年08月31日提交中国专利局、申请号为202211064816.1、申请名称为“UWB中的测距信号的传输方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及无线通信领域,尤其涉及一种超宽带(ultra wideband,UWB)中的测距信号的传输方法及相关设备。
背景技术
随着移动通信和互联网技术的快速发展,人们对于位置服务的需求与日俱增。测距和定位技术是通信感知领域的重要技术,并受到国际标准化组织(如电气与电子工程师协会(institute of electrical and electronics engineers,IEEE))的高度关注。例如,IEEE 802.15.4z(也称为脉冲无线电(impulse radio,IR)超宽带,即IR-UWB)标准旨在将测距通信过程标准化,通过安全测距和测距结果的交换确定设备的位置。具体来说,通信双方通过发送测距序列获知两设备之间的距离远近,从而执行高精度的位置估计。该技术在工厂人员定位、物流仓储中的货物定位、汽车门锁的智能感知等方面有着诸多的需求与应用。在定位和测距需求飞速增长的同时,其中的安全问题也随之产生。
针对测距和定位过程中的安全性问题,IEEE 802.15.4z标准提出对测距序列进行加密,此方式可以解决由于提前检测/延迟提交(early detect/late commit,ED/LC)使得测量结果出错的问题。但对测距序列进行加密的方式无法解决由于注入随机干扰或中继转发导致测量结果出错的问题。
发明内容
本申请提供一种UWB中的测距信号的传输方法及相关设备,可以解决由于注入随机干扰或中继转发导致测量结果出错的问题。
第一方面,提供一种超宽带中的测距信号的传输方法。该方法包括以下步骤:
第一通信装置接收第一测距信号。接着,第一通信装置基于第一测距信号确定第一序列。第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列。第一通信装置再基于第一序列和伪随机序列确定第二测距信号。其中,伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。最后,第一通信装置发送第二测距信号。
本方案中,对第一测距信号中的全部或部分STS信号段进行时间反转和量化处理后得到第一序列,使得基于第一序列确定的第二测距信号具有完整性保护功能;而基于第一序列和伪随机序列确定第二测距信号,由于伪随机序列无法被复现,因此,可以避免由于中继转发导致测量结果出错,进一步提升第二测距信号的完整性保护功能。简单地说,利用本方案,可以有效地确保测距信号的完整性。
在第一方面的一种可能的实施方式中,上述测距信号的传输方法还包括:
第一通信装置利用第一测距信号进行到达时间ToA估计,以获得第一测距信号的第一到达时刻。接着,第一通信装置基于第一到达时刻确定STS信号段。
本实施方式中,先利用第一测距信号估计第一到达时刻,再基于第一到达时刻确定第一测距信号中对应STS的信号段,即STS信号段。
在第一方面的一种可能的实施方式中,上述第一通信装置发送第二测距信号之前,方法还包括:第一通信装置接收测距配置信息,或者,第一通信装置发送测距配置信息。
本实施方式中,测距配置信息是指与测距信号的传输过程相关的各种配置信息,配置信息的具体个数可以为一个或者一个以上,对此不作限制。第一通信装置和第二通信装置都可以获知该测距配置信息,以根据该测距配置信息完成上述测距信号的传输方法。
进一步地,测距配置信息可以由第一通信装置或第二通信装置或可信第三方控制节点来确定。具体地,当测距配置信息由第一通信装置来确定时,第一通信装置确定了测距配置信息后,向其他设备(如第二通信装置)发送测距配置信息。而测距配置信息由第二通信装置或可信第三方控制节点来确定时,第一通信装置接收第二通信装置或可信第三方控制节点发送的测距配置信息。
在第一方面的一种可能的实施方式中,上述测距配置信息包括以下一项或多项信息:部分STS信号段的长度,部分STS信号段在第一测距信号中的位置。
本实施方式中,部分STS信号段的长度可以理解为部分STS的长度,即需要截取的STS的长度。而部分STS信号段在第一测距信号中的位置可以理解为部分STS在整段STS中的位置,也即需要截取的STS的所在位置。
在第一方面的一种可能的实施方式中,上述第一通信装置基于第一测距信号确定第一序列,包括:第一通信装置基于第一测距信号和测距配置信息确定第一序列。
本实施方式中,当第一序列是基于部分STS信号段而得到时,根据测距配置信息所包括的部分STS信号段的长度,部分STS信号段在第一测距信号中的位置,可以知晓需要截取的STS的长度和位置,也即需要截取的STS信号段的长度和位置。对截取得到的部分STS信号段进行时间反转和量化处理后,可以得到第一序列。
在第一方面的一种可能的实施方式中,上述测距配置信息包括以下一项或多项信息:第二测距信号对应的测距帧格式,第一序列在第二测距信号对应的测距帧中的位置,伪随机序列的长度,伪随机序列在第二测距信号对应的测距帧中的位置。第一通信装置基于第一序列和伪随机序列确定第二测距信号,包括:第一通信装置基于第一序列和伪随机序列以及测距配置信息确定第二测距信号。
本实施方式中,第二测距信号对应的测距帧格式是指测距信号具体的帧格式,以IEEE 802.15.4z标准为例,包括配置1、配置2和配置3三种帧格式。而第二测距信号是由第一序列和伪随机序列来确定的,可以理解为第一序列和伪随机序列组合得到第四序列,再根据第四序列确定第二测距信号。第四序列用于替换802.15.4z标准给出的帧格式中的STS部分。因此,第一序列在第二测距信号对应的测距帧中的位置可以理解为第一序列在第四序列中的位置。伪随机序列在第二测距信号对应的测距帧中的位置可以理解为伪随机序列在第四序列中的位置。这样,第一通信装置基于第一序列和伪随机序列以及测距配置信息可以确定第二测距信号。
在第一方面的一种可能的实施方式中,上述测距配置信息包括以下一项或多项信息:预设序列,密钥和加密算法,种子和伪随机数生成算法。
本方案中,第一通信装置根据测距配置信息中的预设序列,或者,密钥和加密算法,或者,种子和伪随机数生成算法可以确定伪随机序列。
在第一方面的一种可能的实施方式中,上述第一序列和伪随机序列的组合的长度与STS的长度相同。
本实施方式中,第一测距信号对应的测距帧的长度和第二测距信号对应的测距帧的长度相同,也可以理解为第一序列和伪随机序列的组合的长度与STS的长度相同。
第二方面,本申请还提供一种超宽带中的测距信号的传输方法。该方法包括以下步骤:
第二通信装置发送第三测距信号。接着,第二通信装置接收第四测距信号,第四测距信号为第二测距信号经过无线信道传输后的信号。第二测距信号为基于第一序列和伪随机序列确定的信号。第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列,第一测距信号为第三测距信号经过无线信道传输后的信号。伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。接着,第二通信装置分别利用第四测距信号中的第一信号段和第二信号段进行完整性校验。第一信号段为第四测距信号中与第一序列对应的信号段,第二信号段为第四测距信号中与伪随机序列对应的信号段。
本方案中,第二通信装置发出第三测距信号,第一通信装置接收到经过无线信道传输后的第三测距信号,即第一测距信号。第一通信装置再基于第一测距信号得到第二测距信号。第二通信装置接收经过无线信道传输后的第二测距信号,即第四测距信号。第二通信装置对第四测距信号中的第一信号段和第二信号段进行完整性校验,以得到校验结果,由于第一信号段是具有完整性保护功能的第一序列对应的信号段,基于第一信号段可以完成完整性校验。另外,第二信号段是伪随机序列对应的信号段,基于第二信号段可以完成对中继转发干扰的检测,进一步提升第四测距信号的完整性检验性能。
在第二方面的一种可能的实施方式中,上述第二通信装置接收第四测距信号之前,方法还包括:第二通信装置接收测距配置信息。或者,第二通信装置发送测距配置信息。
本实施方式中,测距配置信息是指与测距信号的传输过程相关的各种配置信息,配置信息的具体个数可以为一个以上,对此不作限制。第一通信装置和第二通信装置都可以获知该测距配置信息,以根据该测距配置信息完成上述测距信号的传输方法。
在第二方面的一种可能的实施方式中,上述测距配置信息包括以下一项或多项信息:部分STS信号段的长度,部分STS信号段在第一测距信号中的位置,第二测距信号对应的测距帧格式,第一序列在第二测距信号对应的测距帧中的位置,伪随机序列的长度,伪随机序列在第二测距信号对应的测距帧中的位置,预设序列,密钥和加密算法,种子和伪随机数生成算法。
在第二方面的一种可能的实施方式中,上述测距信号的传输方法还包括:第二通信装置基于第四测距信号和测距配置信息确定第一信号段和第二信号段。
本实施方式中,由于测距配置信息配置了第一序列在第二测距信号对应的测距帧中的位置,以及伪随机序列在第二测距信号对应的测距帧中的位置,因此,基于第四测距信号和测距配置信息可以从第四测距信号中提取出第一信号段和第二信号段。
在第二方面的一种可能的实施方式中,上述测距信号的传输方法还包括:
若第一信号段的校验结果为通过完整性校验,且第二信号段的校验结果为通过完整性校验,则第二通信装置将第三时刻确定为第四测距信号的到达时刻。第三时刻为将第五测距信号和第四测距信号输入相关器进行相关运算,获得相关器输出的最大值所在的时刻,第五测距信号为全部或部分第三测距信号经过时间反转和量化处理后的信号。
本实施方式中,在第四测距信号的第一信号段和第二信号段均通过完整性校验之后,第三时刻为可信的时刻。
在第二方面的一种可能的实施方式中,上述第二通信装置利用第一信号段进行完整性校验,包括:当第二序列和第一校验序列进行相关运算获得的相关运算结果大于或等于第一预设门限时,第二通信装置确定第一信号段的校验结果为通过完整性校验。当第二序列和第一校验序列进行相关运算获得的相关运算结果小于第一预设门限时,第二通信装置确定第一信号段的校验结果为未通过完整性校验。
其中,第二序列为全部或部分第三序列经过时间反转后获得,第三序列为用于生成第三测距信号的序列。第一校验序列为第一信号段经过采样后的序列,或者,第一校验序列为第一信号段经过采样后再进行量化后的序列。采样的起始时刻为第三时刻。第一校验序列的长度与第二序列的长度相等。
本实施方式中,基于第一信号段得到第一校验序列,并利用第二序列和第一校验序列进行完整性校验,可以确定测距过程是否遭受干扰。其中,当第一序列为第一测距信号中的部分STS信号段经过时间反转和量化处理后的序列时,从第三序列中提取与上述部分STS对应的序列作为第二序列。
在第二方面的一种可能的实施方式中,上述第二通信装置利用第二信号段进行完整性校验,包括:
当伪随机序列和第二校验序列进行相关运算获得的相关运算结果大于或等于第二预设门限时,第二通信装置确定第二信号段的校验结果为通过完整性校验。当伪随机序列和第二校验序列进行相关运算获得的相关运算结果小于第二预设门限时,第二通信装置确定第二信号段的校验结果为未通过完整性校验。
其中,第二校验序列为第二信号段经过采样后的序列,或者,第二校验序列为第二信号段经过采样后再进行量化后的序列。采样的起始时刻为第二信号段的第二到达时刻。第二到达时刻基于第三时刻获得。第二校验序列的长度与伪随机序列的长度相等。
本实施方式中,基于第二信号段得到第二校验序列,并利用伪随机序列和第二校验序列进行完整性校验,可以确定第二信号段是否遭受中继转发。
第三方面,本申请还提供一种通信装置,包括:
接收模块,用于接收超宽带中的第一测距信号;
确定模块,用于基于第一测距信号确定第一序列,第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列;
确定模块,还用于基于第一序列和伪随机序列确定第二测距信号;其中,伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得;
发送模块,用于发送第二测距信号。
在第三方面的一种可能的实施方式中,上述通信装置还包括:
估计模块,用于利用第一测距信号进行到达时间ToA估计,以获得第一测距信号的第一到达时刻。
而确定模块,还用于基于第一到达时刻确定STS信号段。
在第三方面的一种可能的实施方式中,上述接收模块,还用于接收测距配置信息,或者,上述发送模块,还用于发送测距配置信息。
在第三方面的一种可能的实施方式中,上述测距配置信息包括以下一项或多项信息:部分STS信号段 的长度,部分STS信号段在第一测距信号中的位置。上述确定模块在基于第一测距信号确定第一序列方面,具体用于:基于第一测距信号和测距配置信息确定第一序列。
在第三方面的一种可能的实施方式中,上述测距配置信息包括以下一项或多项信息:第二测距信号对应的测距帧格式,第一序列在第二测距信号对应的测距帧中的位置,伪随机序列的长度,伪随机序列在第二测距信号对应的测距帧中的位置。上述确定模块在基于第一序列和伪随机序列确定第二测距信号方面,具体用于:基于第一序列和伪随机序列以及测距配置信息确定第二测距信号。
在第三方面的一种可能的实施方式中,上述测距配置信息包括以下一项或多项信息:预设序列,密钥和加密算法,种子和伪随机数生成算法。
在第三方面的一种可能的实施方式中,上述第一序列和伪随机序列的组合的长度与STS的长度相同。
第四方面,本申请还提供一种通信装置,包括:
发送模块,用于发送超宽带中的第三测距信号;
接收模块,用于接收第四测距信号,第四测距信号为第二测距信号经过无线信道传输后的信号;第二测距信号为基于第一序列和伪随机序列确定的信号,第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列,第一测距信号为第三测距信号经过无线信道传输后的信号;伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得;
校验模块,用于分别利用第四测距信号中的第一信号段和第二信号段进行完整性校验;第一信号段为第四测距信号中与第一序列对应的信号段,第二信号段为第四测距信号中与伪随机序列对应的信号段。
在第四方面的一种可能的实施方式中,上述接收模块,还用于接收测距配置信息,或者,上述发送模块,还用于发送测距配置信息。
在第四方面的一种可能的实施方式中,上述测距配置信息包括以下一项或多项信息:部分STS信号段的长度,部分STS信号段在第一测距信号中的位置,第二测距信号对应的测距帧格式,第一序列在第二测距信号对应的测距帧中的位置,伪随机序列的长度,伪随机序列在第二测距信号对应的测距帧中的位置,预设序列,密钥和加密算法,种子和伪随机数生成算法。
在第四方面的一种可能的实施方式中,上述通信装置还包括:
确定模块,用于基于第四测距信号和测距配置信息确定第一信号段和第二信号段。
在第四方面的一种可能的实施方式中,上述确定模块,还用于若第一信号段的校验结果为通过完整性校验,且第二信号段的校验结果为通过完整性校验,则将第三时刻确定为第四测距信号的到达时刻。第三时刻为将第五测距信号和第四测距信号输入相关器进行相关运算,获得相关器输出的最大值所在的时刻,第五测距信号为全部或部分第三测距信号经过时间反转和量化处理后的信号。
在第四方面的一种可能的实施方式中,上述校验模块在利用第一信号段进行完整性校验方面,具体用于:当第二序列和第一校验序列进行相关运算获得的相关运算结果大于或等于第一预设门限时,则确定第一信号段的校验结果为通过完整性校验。当第二序列和第一校验序列进行相关运算获得的相关运算结果小于第一预设门限时,则确定第一信号段的校验结果为未通过完整性校验。
其中,第二序列为全部或部分第三序列经过时间反转后获得,第三序列为用于生成第三测距信号的序列。第一校验序列为第一信号段经过采样后的序列,或者,第一校验序列为第一信号段经过采样后再进行量化后的序列。采样的起始时刻为第三时刻。第一校验序列的长度与第二序列的长度相等。
在第四方面的一种可能的实施方式中,上述校验模块在利用第二信号段进行完整性校验方面,具体用于:
当伪随机序列和第二校验序列进行相关运算获得的相关运算结果大于或等于第二预设门限时,则确定第二信号段的校验结果为通过完整性校验。当伪随机序列和第二校验序列进行相关运算获得的相关运算结果小于第二预设门限时,则确定第二信号段的校验结果为未通过完整性校验。
其中,第二校验序列为第二信号段经过采样后的序列,或者,第二校验序列为第二信号段经过采样后再进行量化后的序列。采样的起始时刻为第二信号段的第二到达时刻。第二到达时刻基于第三时刻获得。第二校验序列的长度与伪随机序列的长度相等。
第五方面,本申请还提供一种芯片,包括收发组件和数据处理组件。
数据处理组件,用于通过收发组件接收超宽带中的第一测距信号。
数据处理组件,还用于基于第一测距信号确定第一序列,第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列。
数据处理组件,还用于基于第一序列和伪随机序列确定第二测距信号;其中,伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。
数据处理组件,还用于通过收发组件发送第二测距信号。
第六方面,本申请还提供一种芯片,包括收发组件和数据处理组件。
数据处理组件,用于通过收发组件发送超宽带中的第三测距信号。
数据处理组件,还用于通过收发组件接收第四测距信号,第四测距信号为第二测距信号经过无线信道传输后的信号;第二测距信号为基于第一序列和伪随机序列确定的信号,第二序列包括第一序列和伪随机序列,第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列,第一测距信号为第三测距信号经过无线信道传输后的信号;伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。
数据处理组件,用于分别利用第四测距信号中的第一信号段和第二信号段进行完整性校验;第一信号段为第四测距信号中与第一序列对应的信号段,第二信号段为第四测距信号中与伪随机序列对应的信号段。
第七方面,本申请还提供一种通信装置,包括处理器和存储器,其中所述存储器用于存储计算机程序指令,所述处理器用于执行所述计算机程序指令,以使得所述通信装置执行如第一方面所述的方法。
第八方面,本申请还提供一种通信装置,包括处理器和存储器,其中所述存储器用于存储计算机程序指令,所述处理器用于执行所述计算机程序指令,以使得所述通信装置执行如第二方面所述的方法。
第九方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时使所述计算机执行如第一方面或第二方面所述的方法。
第十方面,本申请还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如第一方面或第二方面所述的方法。
附图说明
下面对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的测距原理示意图;
图2是本申请实施例提供的一种测距定位系统的架构图;
图3是本申请实施例提供的一种UWB中的测距信号的传输方法的方法流程图;
图4是本申请实施例提供的一种UWB中的测距信号的传输方法的交互示意图;
图5a是本申请实施例提供的一种测距信号的测距帧结构示意图;
图5b是本申请实施例提供的另一种测距信号的测距帧结构示意图;
图5c是本申请实施例提供的另一种测距信号的测距帧结构示意图;
图6a是本申请实施例提供的一种STS信号段的示意图;
图6b是本申请实施例提供的一种第四序列的示意图;
图6c是本申请实施例提供的另一种测距信号的测距帧结构示意图;
图7是本申请实施例提供的一种通信装置的结构示意图;
图8是本申请实施例提供的另一种通信装置的结构示意图;
图9是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中实施例提到的“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b、或c中的至少一项(个),可以表示:a、b、c、(a和b)、(a和c)、(b和c)、或(a和b和c),其中a、b、c可以是单个,也可以是多个。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B这三种情况,其中A、B可以是 单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。而本申请中实施例的步骤的序号(如步骤S1、步骤S21等)只为了区分不同的步骤,不对步骤之间的先后执行顺序造成限定。
以及,除非有相反的说明,本申请实施例使用“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一设备和第二设备,只是为了便于描述,而并不是表示这第一设备和第二设备的结构、重要程度等的不同,在某些实施例中,第一设备和第二设备还可以是同样的设备。
可以理解,在本申请各实施例中,“A对应的B”表示A与B存在对应关系,根据A可以确定B。但还应理解,根据(或基于)A确定(或生成)B并不意味着仅仅根据(或基于)A确定(或生成)B,还可以根据(或基于)A和/或其它信息确定(或生成)B。
上述实施例中所用,根据上下文,术语“当……时”可以被解释为意思是“如果……”或“在……后”或“响应于确定……”或“响应于检测到……”。以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
由于本申请实施例涉及的应用,为了便于理解,下面先对本申请实施例涉及的相关术语等相关概念进行介绍。
(1)、时间反转
假设对于一个信号x(t),其经过时间反转后可以得到信号x(-t)。
(2)、量化
量化在数字信号处理领域,是指将信号的连续取值(或者大量可能的离散取值)近似为有限多个(或较少的)离散值的过程。量化可以为多bit量化,例如1bit量化、2bit量化、3bit量化、4bit量化、6bit量化、8bit量化等,对此不做特别限定。
1bit量化就是二值量化,即对于信号的每个采样点的量化值采用1位数据来记录,示例性地,量化后的取值为0/1或者1/-1。进一步示例性地,通过设置阈值△可以对某点信号x进行二值量化得到对应的量化值F(x),如某点信号x大于△,则该点对应的量化值F(x)为1;而某点信号x小于△,则F(x)为0。
而2bit量化为三值量化,量化后的取值可以为-1、0和1。
(3)、测距的基本原理
测距的基本原理是:通信双方通过测量消息的往返时间来计算二者之间的距离。其中,发送端发送的测距序列经过脉冲成型和调制后到达接收端,接收端将收到的测距序列与本地存储的序列进行相关运算,根据相关峰的位置获得到达时间(即t2和t4)。参见图1,图1是本申请实施例提供的测距原理示意图。如图1所示,在测距过程的第一阶段中,第一设备在t1时刻发送测距信号1,在t2时刻到达第二设备。在测距过程的第二阶段中,第二设备对接收到的测距信号进行处理后,第二设备再在t3时刻向第一设备发送测距信号2,在t4时刻到达第一设备。其中,测距信号是测距序列经过脉冲成型和调制后得到的,比如脉冲位置调制(pulse position modulation,PPM)、脉冲幅度调制(pulse amplitude modulation,PAM)等。根据下述公式(1-1)和(1-2)可计算出第一设备和第二设备之间的距离d:

tRTT=(t4-t1)-(t3-t2)................................................................................................(1-2)
其中,c表示光速,tRTT表示测距信号(或消息)的往返时间。
(4)、距离缩减攻击(distance-reduction attack)
距离缩减攻击(distance-reduction attack)是针对上述测距过程(即上述图1所示的测距过程)的一种常见的攻击方式,也可以理解为干扰方式,具体可以有多种实现形式,例如中继转发攻击、Cicada攻击、Cicada++攻击、GhostPeak攻击等等,具体攻击方式可参考现有技术的描述,本申请不做详细说明。在中继转发攻击中,攻击者直接转发接收到的测距信号,从而导致估计出的信号到达时间比真实时间提前。而在如Cicada攻击、Cicada++攻击、GhostPeak攻击等方式中,攻击者的目标是:通过产生干扰信号,使得收到测距信号的设备估计出的信号到达时间比真实时间提前,从而导致在实际距离很远的情况下测距双方误认为距离很近,这在汽车门锁的智能感知、基于位置的无接触式支付等应用中会造成财产损失。
(5)、IEEE 802.15.4z标准中的安全测距方案
提前检测/延迟提交(early detect/late commit,ED/LC)攻击(attack)也是针对上述测距过程(如上述 图1所示的测距过程)的一种常见的距离缩减攻击方式。在ED/LC攻击中,攻击者利用测距信号结构上的可预测性,根据接收到的测距信号片段提前推断出整个测距信号,并且将其发送给接收者,以使得接收者对信号到达时间的估计发生错误。
IEEE 802.15.4z标准提出一种对测距序列进行加密的方案,其主要使用128位的密钥对128位的测距序列进行高级加密标准(advanced encryption standard,AES)加密,得到128比特的随机序列,并对该随机序列进行脉冲成型和调制后发送。具体的加密过程可参考802.15.4z标准的相关描述,本申请不赘述。
因为测距序列是加密的,所以攻击者无法根据接收到的测距信号片段推断出整个测距信号,故对测距序列进行加密的方案可以对抗ED/LC攻击。但是对测距序列进行加密的方案无法解决由于注入随机干扰或中继转发导致测量结果出错的问题。
本申请实施例提供一种UWB中的测距信号的传输方法,通过对测距信号进行改造,可以使接收端具有检测测距过程是否遭受距离缩减攻击的能力,保证测距信号的完整性,并且不损失系统的测距性能。
本申请实施例提供的技术方案可以应用于无线通信感知的测距定位场景中。在测距定位场景中,通信双方可以根据相关协议经过认证和协商建立无线通信连接,在建立无线通信连接后,发送端发送无线测距帧到达接收端,接收端收到该无线测距帧后计算到达时间,并向发送端回复另一测距无线帧。通过计算消息往返时间(如前述公式(1-2)),来计算二者(即发送端和接收端)之间的距离(如前述公式(1-1)),完成测距过程。
参见图2,图2是本申请实施例提供的测距定位系统的架构图。如图2所示,该测距定位系统包括至少两个装置,如第一通信装置和第二通信装置。在实际应用中,第一通信装置在某一时刻是发送端,执行发送端的操作。但在另一时刻可能是接收端,执行接收端的操作。第二通信装置与第一通信装置同理,也就是说,第二通信装置在某一时刻是发送端,执行发送端的操作;但在另一时刻可能是接收端,就执行接收端的操作。
其中,第二通信装置包括信号发送模块,到达时间(Time of Arrival,TOA)估计模块,完整性校验模块。
信号发送模块,用于发送第三测距信号,该信号从天线口发出,发送给第一通信装置。
TOA估计模块,用于利用第四测距信号进行TOA估计,获得时间戳,该时间戳用于测距或者定位。其中,第四测距信号为第一通信装置发送的第二测距信号经过无线信道传输后、第二通信装置接收到的信号。
完整性校验模块,用于将第四测距信号与本地的模板进行相关运算以判断第四测距信号是否遭受距离缩减攻击。
示例性地,第二通信装置还可以生成第三测距信号,例如采用IEEE 802.15.4z标准中的做法来生成,在此不做赘述。第一通信装置可以采用与第二通信装置相同的操作得到第三测距信号。
而第一通信装置包括TOA估计模块,时间反转与量化模块,信号生成模块。
TOA估计模块,用于利用第一测距信号进行TOA估计,获得时间戳,该时间戳用于测距或者定位。其中,第一测距信号为第二通信装置发送的第三测距信号经过无线信道传输后、第一通信装置接收到的信号。
时间反转与量化模块,用于对第一测距信号中的全部或部分加扰的时间戳序列(Scrambled timestamp sequence,STS)信号段进行时间反转和量化处理,以得到第一序列,该第一序列用于生成第二测距信号。
信号生成模块用于基于第一序列和伪随机序列确定第二测距信号。其中,该伪随机序列为第一通信装置和第二通信装置都能够获知的序列。
应理解,上述图2所示的第一通信装置和第二通信装置均是单天线,但实际应用中,第一通信装置可以配置多天线,也可以配置单天线;同理,第二通信装置可以配置单天线,也可以配置多天线;本申请实施例不做限制。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请中,除特殊说明外,各个实施例或实现方式之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据 其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
为便于描述本申请提供的技术方案,下文实施例中,第一通信装置在某一时刻是发送端,执行发送端的操作;但在另一时刻可能是接收端,执行接收端的操作。第二通信装置与第一通信装置同理。
本申请中的第一通信装置和第二通信装置均支持802.15.4z标准,还可以支持802.15.4z标准的下一代标准。当然第一通信装置和第二通信装置还可以支持窄带通信标准,如Wi-Fi标准(即802.11系列标准)、蓝牙标准、或Zigbee等。
本申请实施例提供一种超宽带中的测距信号的传输方法。该方法应用于测距定位系统,该测距定位系统包括第一通信装置和第二通信装置。
参考图3和图4,图3是本申请实施例提供的一种UWB中的测距信号的传输方法的方法流程图,图4是本申请实施例提供的一种UWB中的测距信号的传输方法的交互示意图。
上述测距信号的传输方法包括以下步骤:
301、第一通信装置接收第一测距信号。
相应地,第二通信装置确定第三测距信号,以及发送第三测距信号。其中,因为信号在无线信道中传输时,会被各种障碍物反射、衍射以及散射等,从而导致发送端发送的信号到达接收端时可能会发生一些变化。因此,第一测距信号为第三测距信号经过无线信道传输后的信号。
在本申请的实施例中,若第三测距信号经过无线信道传输后,未发生变化,则可以认为第三测距信号和第一测距信号相同。即,在本申请的实施例中,第三侧测距信号可以与第一测距信号相同或者不同。
具体地,第三测距信号可以采用现有技术中的生成方法来生成,对此不做特别限定,例如,采用IEEE802.15.4z标准中的做法来生成。其中,一般是基于一个序列来生成第三测距信号,该序列为第三序列,第三序列是第一通信装置和第二通信装置都可以获知的序列,比如,第一通信装置和第二通信装置协商确定的序列,预设或预定义的序列,公开的序列,标准定义的序列等等。更具体地,第一通信装置和第二通信装置可以根据约定好的密钥和加密算法,或者约定好的随机种子和伪随机数生成算法获得第三序列,此时第三序列可以理解为伪随机序列。在本申请的实施例中,第一通信装置可以采用与第二通信装置相同的操作得到第三测距信号。
302、第一通信装置基于第一测距信号确定第一序列。
其中,第一序列为第一测距信号中的全部或部分STS信号段经过时间反转和量化处理后的序列。具体地,量化处理可以为1bit量化、2bit量化、3bit量化等任意一种量化方式,不做特别限定。而第一测距信号中的STS信号段的个数可以为一个或多个。
303、第一通信装置基于第一序列和伪随机序列确定第二测距信号。
其中,在每次测距信号传输过程中,第一通信装置和第二通信装置都可以获知相应的伪随机序列。伪随机序列可以为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。此处的伪随机序列和上述第三序列可以相同,也可以不相同,可以根据实际情况进行设置,不做特别限定。具体地,第一通信装置和第二通信装置都可以获知密钥和加密算法,或者,种子和伪随机数生成算法。这样,在每一次测距信号传输过程中,第一通信装置和第二通信装置可以各自依据密钥和加密算法,或者种子和伪随机数生成算法获得相同的伪随机序列。进一步地,第一序列用于校验测距过程是否遭受Cicada、Cicada++、GhostPeak中的至少一种距离缩减攻击检测,也就是说,用来确定在测距过程的第一阶段或第二阶段,是否有干扰存在;而伪随机序列用于校验测距过程是否遭受中继转发攻击,也就是说,用来确定第二通信装置收到的信号是否是由第三方中继转发攻击者发来的。
示例性地,伪随机序列的个数可以为一个或多个,具体可以根据实际情况进行设置。
304、第一通信装置发送第二测距信号。
相应地,第二通信装置接收第四测距信号,第四测距信号为第二测距信号经过无线信道传输后的信号。因为信号在无线信道中传输时,会被各种障碍物反射、衍射以及散射等,从而导致发送端发送的信号到达接收端时可能会发生一些变化。因此,第四测距信号为第二测距信号经过无线信道传输后的信号。在本申请的实施例中,若第二测距信号经过无线信道传输后,未发生变化,则可以认为第四测距信号和第二测距信号相同。即,在本申请的实施例中,第四侧测距信号可以与第二测距信号相同或者不同。
第二通信装置分别利用第四测距信号中的第一信号段和第二信号段进行完整性校验。第一信号段为第四测距信号中与第一序列对应的信号段,第二信号段为第四测距信号中与伪随机序列对应的信号段。
本实施例中,对第一测距信号中的全部或部分STS信号段进行时间反转和量化处理后得到第一序列, 使得基于第一序列确定的第二测距信号具有完整性保护功能;而基于第一序列和伪随机序列确定第二测距信号,由于伪随机序列无法被复现,因此,可以避免由于中继转发导致测量结果出错,进一步提升第二测距信号的完整性保护功能。简单地说,利用本方案,可以有效地确保测距信号的完整性。
本实施例中,第二通信装置对第四测距信号中的第一信号段和第二信号段进行完整性校验,以得到校验结果,由于第一信号段是具有完整性保护功能的第一序列对应的信号段,基于第一信号段可以完成完整性校验。另外,第二信号段是伪随机序列对应的信号段,基于第二信号段可以完成对中继转发干扰的检测,进一步提升第四测距信号的完整性检验性能。
本申请实施例的测距信号的传输方法能够对抗多种距离缩减攻击,从而测距信号的安全性更高。第一,第二测距信号中包含与第一序列对应的第一信号段,基于第一信号段进行完整性校验之后,将能够发现Cicada攻击及其变形(如Cicada++,GhostPeak)。第二,本申请实施例能够对抗中继转发攻击。第四测距信号是第二测距信号经过无线信道传输后的信号,即第二测距信号也有对应的第一信号段和第二信号段,第二测距信号包括第一信号段和第二信号段,中继转发攻击者即使能够转发第一信号段,但无法复现第二信号段,从而中继转发攻击不能成功。
进一步的,第三测距信号和第二测距信号中均包含与伪随机序列对应的信号段,由于伪随机序列是根据加密算法或者伪随机数生成算法生成,而这些算法的输入包含仅在第一通信装置和第二通信装置间共享的密钥或随机种子,第三方攻击者无法获得,因此,攻击者无法成功实现ED/LC攻击。
此外,本申请实施例的测距信号的传输方法实现较为简单,复杂度低,无需通过发送多个测距序列并校验多次测量结果的一致性来判断测距过程是否遭受距离缩减攻击。
示例性地,上述测距信号的传输方法还包括:
第一通信装置利用第一测距信号进行ToA估计,以获得第一测距信号的第一到达时刻。
具体地,第一通信装置基于第一测距信号和反向搜索方法找到首径位置,首径即视距(Line of Sight,LOS)径,首径也可以理解为第二装置通信和第一通信装置之间传播时延最短的路径。首径位置对应的时刻即为第一到达时刻,第一到达时刻也即为第一测距信号对应的测距帧的时间起点。
进一步地,将第三测距信号和第一测距信号输入相关器进行相关运算,获得相关器输出的最大值所在的时刻,再从该时刻回退进行反向搜索,可以确定首径位置。
接着,第一通信装置基于第一到达时刻确定STS信号段。
本实施方式中,先利用第一测距信号估计第一到达时刻,再基于第一到达时刻确定第一测距信号中对应STS的信号段,即STS信号段。具体地,由于第一通信装置已知第一测距信号的测距帧的帧结构,则根据第一到达时刻和帧结构可以得到第一测距信号中对应STS的信号段。
示例性地,上述第一通信装置发送第二测距信号之前,测距信号的传输方法还包括:
第一通信装置接收测距配置信息,或者,第一通信装置发送测距配置信息。
本实施方式中,测距配置信息是指与测距信号的传输过程相关的各种配置信息,配置信息的具体个数可以为一个或者一个以上,对此不作限制。第一通信装置和第二通信装置都可以获知该测距配置信息,以根据该测距配置信息完成上述测距信号的传输方法。
进一步地,测距配置信息可以由第一通信装置或第二通信装置或可信第三方控制节点来确定。具体地,当测距配置信息由第一通信装置来确定时,第一通信装置确定了测距配置信息后,向其他设备(如第二通信装置)发送测距配置信息。而测距配置信息由第二通信装置或可信第三方控制节点来确定时,第一通信装置接收第二通信装置或可信第三方控制节点发送的测距配置信息。上述的测距配置信息由第一通信装置或第二通信装置来确定,也可以理解为由第一通信装置和第二通信装置协商确定。在采用协商的方式时,第一通信装置和第二通信装置之间通过交互来确定测距配置信息,交互可以通过UWB系统带内完成,也可以通过带外(窄带,比如蓝牙、WiFi等)完成。
示例性地,上述测距配置信息包括以下一项或多项信息:部分STS信号段的长度,部分STS信号段在第一测距信号中的位置,第二测距信号对应的测距帧格式,第一序列在第二测距信号对应的测距帧中的位置,伪随机序列的长度,伪随机序列在第二测距信号对应的测距帧中的位置,预设序列,密钥和加密算法,种子和伪随机数生成算法。
本实施方式中,部分STS信号段的长度可以理解为部分STS的长度,即需要截取的STS的长度。而部分STS信号段在第一测距信号中的位置可以理解为部分STS在整段STS中的位置,也即需要截取的STS的所在位置。
示例性地,第一通信装置基于第一测距信号和测距配置信息确定第一序列。本实施方式中,当第一序 列是基于部分STS信号段而得到时,根据测距配置信息所包括的部分STS信号段的长度,部分STS信号段在第一测距信号中的位置,可以知晓需要截取的STS的长度和位置,也即需要截取的STS信号段的长度和位置。对截取得到的部分STS信号段进行时间反转和量化处理后,可以得到第一序列。
示例性地,第二测距信号对应的测距帧格式是指测距信号具体的物理层帧格式。第二测距信号的测距帧的帧格式可以复用已有的物理层帧格式。以IEEE 802.15.4z标准为例,参考图5a、图5b、图5c示出了测距信号的测距帧结构,包括配置1(如图5a所示)、配置2(如图5b所示)和配置3(如图5c所示)三种物理层帧格式,以图5a为例,图5a中的测距帧包括以下一项或多项:同步(synchronization,SYNC)字段,帧起始定界符(start-of-frame delimiter,SFD),STS(即支持测距功能的信号),物理层头部(physical layer header,PHR)字段,物理层负载(physical layer payload,PHY payload)。
而第二测距信号是由第一序列和伪随机序列来确定的,可以理解为第一序列和伪随机序列组合得到第四序列,再根据第四序列确定第二测距信号,以图5a为例,第四序列用于替换802.15.4z标准给出的帧格式中的STS部分。本实施方式中,第一通信装置基于第一序列和伪随机序列以及测距配置信息可以确定第二测距信号。因此,第一序列在第二测距信号对应的测距帧中的位置可以理解为第一序列在第四序列中的位置。伪随机序列在第二测距信号对应的测距帧中的位置可以理解为伪随机序列在第四序列中的位置。这样,第一通信装置基于第一序列和伪随机序列以及测距配置信息可以确定第二测距信号。在本申请的实施例中,第四序列即第二测距信号的帧格式中的STS信号段。
示例性地,上述测距信号的传输方法还包括:
第二通信装置基于第四测距信号和测距配置信息确定第一信号段和第二信号段。
本实施方式中,由于测距配置信息配置了第一序列在第二测距信号对应的测距帧中的位置,以及伪随机序列在第二测距信号对应的测距帧中的位置,因此,基于第四测距信号和测距配置信息可以从第四测距信号中提取出第一信号段和第二信号段。具体地,当得到第四测距信号的到达时刻之后,根据到达时刻和第四测距信号的帧结构,可以提取出第一信号段和第二信号段。
示例性地,第一通信装置或第二通信装置根据测距配置信息中的预设序列,或者,密钥和加密算法,或者,种子和伪随机数生成算法可以确定伪随机序列。
示例性地,上述加密算法包括AES算法、祖冲之ZUC算法、雪花SNOW算法等。伪随机数生成算法包括线性同余法、马特赛特旋转演算法、WELL算法等。
示例性地,上述第一序列和伪随机序列的组合的长度与第一测距信号中的STS的长度相同。本实施方式中,第一测距信号对应的测距帧的长度和第二测距信号对应的测距帧的长度相同,也可以理解为第一序列和伪随机序列的组合的长度与第一测距信号中的STS的长度相同。当然,上述组合的长度也可以比STS更长或者更短,不做特别限定。
进一步地,以第一测距信号中具有1个STS信号段(STS Segments)为例,对得到第四序列的具体过程进行说明:
步骤一:第一通信装置根据估计出第一测距信号的到达时刻和已知的第一测距信号的帧结构,提取出第一测距信号中的STS信号段。STS信号段被划分得到N个STS子段(mini-segments)。从N个STS子段中选取K段作为待反转信号段,K满足1≤K<N,这里N为STS信号段中包含的STS子段的数目(如图6a所示)。其中,K的取值以及待反转信号段的序号由第一通信装置和第二通信装置协商确定,或通过可信的第三方控制节点指定。图6a中,以K为2为例,此时选中了STS子段2和STS子段3作为待反转信号段。
本实施例中,测距配置信息中部分STS信号段在第一测距信号中的位置可以理解为从N个STS子段中选择的K段STS子段的序号,例如m1,m2,……,mK
步骤二:示例性地,对待反转信号段进行时间反转与1bit量化处理得到第一序列。在一种可能的实现方式中,第一通信装置将待反转信号段中各个STS子段的信号进行时间反转和1bit量化处理。在另一种可能的实现方式中,该操作可对整个待反转信号段整体进行,待反转信号段对应的信号段的序号已知,可以整体操作;也可对各个STS子段逐一进行。
步骤三:第二测距信号生成。第二测距信号对应的测距帧的长度与第一测距信号对应的测距帧的长度相同,也包含N个信号段。第一通信装置将时间反转和1bit量化后得到的K个信号段(也即第一序列)放入第二测距信号对应的测距帧中,上述K个信号段放入的具体位置由第一通信装置和第二通信装置协商确定,或者通过可信的第三方控制节点指定。之后,第一通信装置利用AES算法或伪随机数生成算法生成N-K个伪随机序列,将其对应放入第二测距信号的测距帧中剩余的N-K个信号段中,所得到的第二测距信 号的测距帧如图6b所示,其中,STS子段2和STS子段3均为时间反转版本(指时间反转和量化处理后的版本)。其中,也可以是将一个伪随机序列拆分成N-K份,再将N-K份序列段对应放入N-K个子段中。上述第一序列和伪随机序列确定相应的位置后,可以组合得到第四序列。
本实施例中,测距配置信息中第一序列在第二测距信号对应的测距帧中的位置可以理解为经过时间反转和量化处理后的K个STS子段在第二测距信号的N段信号段中的位置,例如,n1,n2,……,nK。其中,n1,n2,……,nK与m1,m2,……,mK可能相同也可能不同。而伪随机序列在第二测距信号对应的测距帧中的位置即为N段信号段中的剩余信号段所在的位置。
进一步地,根据由第一序列和伪随机序列组合得到的第四序列,可以生成第二测距信号,具体地,可利用脉冲信号发生电路由第四序列生成第二测距信号,例如,若第四序列中对应的符号为+1,则生成的第二测距信号中对应的脉冲为s(t),若第四序列中对应的符号为-1,则生成的第二测距信号中对应的脉冲为-s(t)。这里,s(t)为脉冲波形,具体的形式由脉冲信号发生电路决定。
图6a和图6b中各个信号段之间可以有空隙(Gap),即不发送信号。另外,参考图6c,图6c是本申请实施例提供的另一种测距信号的测距帧结构示意图;当第二测距信号对应的测距帧中有多个STS信号段时,多个STS信号段之间也可以空隙,此时,只需将上述本申请实施例的方法分别用于每个STS信号段即可。
示例性地,对于部分STS信号段在第一测距信号中的位置,第一序列在第二测距信号对应的测距帧中的位置,伪随机序列在第二测距信号对应的测距帧中的位置的确定过程,以第一通信装置确定为例,本实施例中,以第一序列和伪随机序列的组合的长度与第一测距信号中的STS的长度相同为例,具体说明如下:
步骤一:第一通信装置从1到N-1之间随机选取一个整数K,将K作为待反转的信号段数目,而N为第一测距信号的信号段的个数。
步骤二:第一通信装置在第一测距信号的N个信号段中随机选取K个信号段作为待反转的信号段,记K个信号段的序号为m1,m2,……,mK
步骤三:第一通信装置在N个信号段中随机选取K个信号段作为第二测距信号的测距帧中用于放入反转信号段的信号段,记K个信号段的序号为n1,n2,……,nK。其中,n1,n2,……,nK与m1,m2,……,mK可能相同也可能不同。
步骤四:第一通信装置将m1,m2,……,mK,n1,n2,……,nK加密发送给第二通信装置(可采用UWB或窄带发送;加密算法可使用现有加密算法,如AES),以告知第二通信装置关于第二测距信号的测距帧的参数。
上述方法中第一通信装置和第二通信装置的角色可互换,即:由第二通信装置确定第二测距帧的格式和参数,并通知第一通信装置;此外,第二测距帧的格式和参数也可以由可信的第三方控制节点指定,并通知第一通信装置和第二通信装置。
另外,上述K,m1,m2,……,mK,n1,n2,……,nK等参数也可以由第一通信装置和第二通信装置根据预先共享的密钥和计数器同步生成。
采用上述方法,可以计算出,第二测距信号的测距帧可能的格式种数为:
若N=16,则若N=64,则
由上述分析可知,第二测距信号的测距帧的格式的可能性非常多,在不知道m1,m2,…,mK,n1,n2,…,nK等参数的情况下,攻击者无法得知第二测距信号的测距帧的结构,从而进一步降低了其攻击成功的概率。
示例性地,上述测距信号的传输方法还包括:
第二通信装置将第五测距信号和第四测距信号输入相关器进行相关运算,获得相关器输出的最大值所在的时刻,即第三时刻,第五测距信号为全部或部分第三测距信号经过时间反转和量化处理后的信号。
具体地,上述第三时刻为估计的第四测距信号的到达时刻,当第四测距信号经过完整性校验,则第三时刻为可信的时刻,否则,如果第四测距信号未通过完整性校验,说明测距过程受到了距离缩减攻击;此时,示例性地,第二通信装置可以告知第一通信装置重发新的测距信号,或者间隔一段时间重发第二测距信号,或者不做任何操作等。
其中,第一测距信号是第三测距信号经过无线信道传输后的信号,因此,当根据第一测距信号中的部分STS信号段得到第一序列时,对第三测距信号中与第一序列对应的那些信号段进行时间反转和量化处理得到第五测距信号。
示例性地,上述测距信号的传输方法还包括:
若第一信号段的校验结果为通过完整性校验,且第二信号段的校验结果为通过完整性校验,则第二通信装置将第三时刻确定为第四测距信号的到达时刻。
本实施方式中,在第四测距信号的第一信号段和第二信号段均通过完整性校验之后,第三时刻为可信的时刻。
示例性地,上述第二通信装置利用第一信号段进行完整性校验,包括:
当第二序列和第一校验序列进行相关运算获得的相关运算结果大于或等于第一预设门限时,第二通信装置确定第一信号段的校验结果为通过完整性校验。
当第二序列和第一校验序列进行相关运算获得的相关运算结果小于第一预设门限时,第二通信装置确定第一信号段的校验结果为未通过完整性校验。
其中,第二序列为全部或部分第三序列经过时间反转后获得,第三序列为用于生成第三测距信号的序列。其中,当第一序列为第一测距信号中的部分STS信号段经过时间反转和量化处理后的序列时,从第三序列中提取与上述部分STS对应的序列并进行时间反转后作为第二序列。
第一校验序列为第一信号段经过采样后的序列,或者,第一校验序列为第一信号段经过采样后再进行量化后的序列。采样的起始时刻为第三时刻。第一校验序列的长度与第二序列的长度相等。
本实施方式中,基于第一信号段得到第一校验序列,并利用第二序列和第一校验序列进行完整性校验,可以确定第一信号段是否受到距离缩减攻击。
具体地,第二通信装置可以将相关运算结果z与预设门限比较,获得校验结果。其中,当该相关运算结果z大于或等于该预设门限时,该校验结果为第一信号段通过完整性检验,也就是说,测距过程未受到距离缩减攻击。当该相关运算结果z小于该预设门限时,该校验结果为第一信号段未通过完整性检验,也就是说,测距过程受到了距离缩减攻击。应理解,当该相关运算结果z等于该预设门限时,该校验结果是通过还是不通过可根据实际情况确定,本申请实施例不做限制。示例性的,该预设门限的绝对值等于第二序列的长度,若第二序列为128位,则预设门限可以为±128。
示例性地,上述第二通信装置利用第二信号段进行完整性校验,包括:
当伪随机序列和第二校验序列进行相关运算获得的相关运算结果大于或等于第二预设门限时,第二通信装置确定第二信号段的校验结果为通过完整性校验。
当伪随机序列和第二校验序列进行相关运算获得的相关运算结果小于第二预设门限时,第二通信装置确定第二信号段的校验结果为未通过完整性校验。
其中,第二校验序列为第二信号段经过采样后的序列,或者,第二校验序列为第二信号段经过采样后再进行量化后的序列。采样的起始时刻为第二信号段的第二到达时刻。第二到达时刻基于第三时刻获得,根据第三时刻和第二测距信号的帧结构可以推出上述第二到达时刻。第二校验序列的长度与伪随机序列的长度相等。
本实施方式中,基于第二信号段得到第二校验序列,并利用伪随机序列和第二校验序列进行完整性校验,可以确定第二信号段是否遭受中继转发干扰。
具体地,利用伪随机序列和第二校验序列进行完整性校验的方法为:将伪随机序列和第二校验序列输入到相关器进行相关运算,若相关运算的结果大于或等于预设门限,则判定通过完整性校验;若相关运算的结果小于预设门限,则判定未通过完整性校验。
上述内容详细阐述了本申请实施例提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对第一通信装置和第二通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图7和图8详细描述本申请实施例的通信装置。
参见图7,图7是本申请实施例提供的一种通信装置的结构示意图。如图7所示,通信装置700包括接收模块701、确定模块702和发送模块703。
接收模块701,用于接收超宽带中的第一测距信号。
确定模块702,用于基于第一测距信号确定第一序列,第一序列为第一测距信号中的全部或部分加扰 的时间戳序列STS信号段经过时间反转和量化处理后的序列。
确定模块702,还用于基于第一序列和伪随机序列确定第二测距信号;其中,伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。
发送模块703,用于发送第二测距信号。
应理解,上述通信装置700可对应执行前述实施例的测距信号的传输方法中的第一通信装置执行的操作,通信装置700中的各个单元的上述操作或功能可以参考上述实施例的相应记载,为了简洁,在此不再赘述。
参见图8,图8是本申请实施例提供的另一种通信装置的结构示意图。如图8所示,通信装置800包括发送模块801,接收模块802,校验模块803。
发送模块801,用于发送超宽带中的第三测距信号;
接收模块802,用于接收第四测距信号,第四测距信号为第二测距信号经过无线信道传输后的信号;第二测距信号为基于第一序列和伪随机序列确定的信号,第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列,第一测距信号为第三测距信号经过无线信道传输后的信号;伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得;
校验模块803,用于分别利用第四测距信号中的第一信号段和第二信号段进行完整性校验;第一信号段为第四测距信号中与第一序列对应的信号段,第二信号段为第四测距信号中与伪随机序列对应的信号段。
应理解,上述通信装置800可对应执行前述实施例的测距信号的传输方法中的第二通信装置侧执行的操作,通信装置800中的各个单元的上述操作或功能可以参考上述实施例的相应记载,为了简洁,在此不再赘述。
以上介绍了本申请实施例的第一通信装置和第二通信装置,以下介绍所述第一通信装置和第二通信装置可能的产品形态。应理解,但凡具备上述图7所述的第一通信装置的功能的任何形态的产品,和但凡具备上述图8所述的第二通信装置的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一通信装置和第二通信装置的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的第一通信装置和第二通信装置,可以由一般性的总线体系结构来实现。
为了便于说明,参见图9,图9是本申请实施例提供的通信装置900的结构示意图。该通信装置900可以为第一通信装置或第二通信装置,或其中的芯片。
通信装置900包括存储器901、处理器902、通信接口904以及总线903。其中,存储器901、处理器902、通信接口904通过总线903实现彼此之间的通信连接。
存储器901可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器901可以存储程序,当存储器901中存储的程序被处理器902执行时,处理器902用于执行上述任意实施例所述的测距信号的传输方法的各个步骤。
处理器902可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现上述任一实施例所述的测距信号的传输方法。
处理器902还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请任一实施例所述的测距信号的传输方法的各个步骤可以通过处理器902中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器902还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请任一实施例所述的数据处理方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器901,处理器902读取存储器901中的信息,结合其硬件完成上述任一实施例所述的测距信号的传输方法。
通信接口904使用例如但不限于收发器一类的收发装置,来实现通信装置900与其他设备或通信网络 之间的通信。例如,通信装置900可以通过通信接口904获取第二数据等。
总线903可包括在通信装置900各个部件(例如,存储器901、处理器902、通信接口904)之间传送信息的通路。
应注意,尽管图9所示的通信装置900仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,通信装置900还包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,通信装置900还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,通信装置900也可仅仅包括实现本申请实施例所必须的器件,而不必包括图9中所示的全部器件。
本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图9的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接入点设备、接收机、终端(如手机、平板、智能标签等等)、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
本申请实施例还提供一种芯片,包括收发组件和数据处理组件。
数据处理组件,用于通过收发组件接收超宽带中的第一测距信号。
数据处理组件,还用于基于第一测距信号确定第一序列,第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列。
数据处理组件,还用于基于第一序列和伪随机序列确定第二测距信号;其中,伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。
数据处理组件,还用于通过收发组件发送第二测距信号。
应理解,上述芯片可对应执行前述实施例的测距信号的传输方法中的第一通信装置侧执行的操作,关于芯片的具体描述可以参考上述实施例的相应记载,为了简洁,在此不再赘述。
本申请实施例还提供一种芯片,包括收发组件和数据处理组件。
数据处理组件,用于通过收发组件发送超宽带中的第三测距信号。
数据处理组件,还用于通过收发组件接收第四测距信号,第四测距信号为第二测距信号经过无线信道传输后的信号;第二测距信号为基于第一序列和伪随机序列确定的信号,第二序列包括第一序列和伪随机序列,第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列,第一测距信号为第三测距信号经过无线信道传输后的信号;伪随机序列为预设序列,或者,伪随机序列基于密钥和加密算法获得,或者,伪随机序列基于种子和伪随机数生成算法获得。
数据处理组件,用于分别利用第四测距信号中的第一信号段和第二信号段进行完整性校验;第一信号段为第四测距信号中与第一序列对应的信号段,第二信号段为第四测距信号中与伪随机序列对应的信号段。
应理解,上述芯片可对应执行前述实施例的测距信号的传输方法中的第二通信装置侧执行的操作,关于芯片的具体描述可以参考上述实施例的相应记载,为了简洁,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本专利申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现 时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种超宽带中的测距信号的传输方法,其特征在于,包括:
    第一通信装置接收第一测距信号;
    所述第一通信装置基于所述第一测距信号确定第一序列,所述第一序列为所述第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列;
    所述第一通信装置基于所述第一序列和伪随机序列确定第二测距信号;其中,所述伪随机序列为预设序列,或者,所述伪随机序列基于密钥和加密算法获得,或者,所述伪随机序列基于种子和伪随机数生成算法获得;
    所述第一通信装置发送所述第二测距信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置利用所述第一测距信号进行到达时间ToA估计,以获得所述第一测距信号的第一到达时刻;
    所述第一通信装置基于所述第一到达时刻确定所述STS信号段。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一通信装置发送所述第二测距信号之前,所述方法还包括:
    所述第一通信装置接收测距配置信息,或者,所述第一通信装置发送测距配置信息。
  4. 根据权利要求3所述的方法,其特征在于,所述测距配置信息包括以下一项或多项信息:所述部分STS信号段的长度,所述部分STS信号段在所述第一测距信号中的位置。
  5. 根据权利要求4所述的方法,其特征在于,所述第一通信装置基于所述第一测距信号确定第一序列,包括:
    所述第一通信装置基于所述第一测距信号和所述测距配置信息确定所述第一序列。
  6. 根据权利要求3至5任一项所述的方法,其特征在于,所述测距配置信息包括以下一项或多项信息:所述第二测距信号对应的测距帧格式,所述第一序列在所述第二测距信号对应的测距帧中的位置,所述伪随机序列的长度,所述伪随机序列在所述第二测距信号对应的测距帧中的位置;
    所述第一通信装置基于所述第一序列和伪随机序列确定第二测距信号,包括:
    所述第一通信装置基于所述第一序列和所述伪随机序列以及所述测距配置信息确定所述第二测距信号。
  7. 根据权利要求3至6任一项所述的方法,其特征在于,所述测距配置信息包括以下一项或多项信息:所述预设序列,所述密钥和加密算法,所述种子和伪随机数生成算法。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一序列和所述伪随机序列的组合的长度与所述STS的长度相同。
  9. 一种超宽带中的测距信号的传输方法,其特征在于,包括:
    第二通信装置发送第三测距信号;
    所述第二通信装置接收第四测距信号,所述第四测距信号为第二测距信号经过无线信道传输后的信号;所述第二测距信号为基于第一序列和伪随机序列确定的信号,所述第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列,所述第一测距信号为所述第三测距信号经过无线信道传输后的信号;所述伪随机序列为预设序列,或者,所述伪随机序列基于密钥和加密算法获得,或者,所述伪随机序列基于种子和伪随机数生成算法获得;
    所述第二通信装置分别利用所述第四测距信号中的第一信号段和第二信号段进行完整性校验;所述第一信号段为所述第四测距信号中与所述第一序列对应的信号段,所述第二信号段为所述第四测距信号中与 所述伪随机序列对应的信号段。
  10. 根据权利要求9所述的方法,其特征在于,所述第二通信装置接收所述第四测距信号之前,所述方法还包括:
    所述第二通信装置接收测距配置信息,或者,所述第二通信装置发送测距配置信息。
  11. 根据权利要求10所述的方法,其特征在于,所述测距配置信息包括以下一项或多项信息:所述部分STS信号段的长度,所述部分STS信号段在所述第一测距信号中的位置,所述第二测距信号对应的测距帧格式,所述第一序列在所述第二测距信号对应的测距帧中的位置,所述伪随机序列的长度,所述伪随机序列在所述第二测距信号对应的测距帧中的位置,所述预设序列,所述密钥和加密算法,所述种子和伪随机数生成算法。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置基于所述第四测距信号和所述测距配置信息确定所述第一信号段和所述第二信号段。
  13. 根据权利要求9至12任一项所述的方法,其特征在于,所述方法还包括:
    若所述第一信号段的校验结果为通过完整性校验,且所述第二信号段的校验结果为通过完整性校验,则所述第二通信装置将第三时刻确定为所述第四测距信号的到达时刻;所述第三时刻为将第五测距信号和所述第四测距信号输入相关器进行相关运算,获得所述相关器输出的最大值所在的时刻,所述第五测距信号为全部或部分所述第三测距信号经过时间反转和量化处理后的信号。
  14. 根据权利要求13所述的方法,其特征在于,所述第二通信装置利用所述第一信号段进行完整性校验,包括:
    当第二序列和第一校验序列进行相关运算获得的相关运算结果大于或等于第一预设门限时,所述第二通信装置确定所述第一信号段的校验结果为通过完整性校验;当所述第二序列和所述第一校验序列进行相关运算获得的相关运算结果小于所述第一预设门限时,所述第二通信装置确定所述第一信号段的校验结果为未通过完整性校验;
    其中,所述第二序列为全部或部分第三序列经过时间反转后获得,所述第三序列为用于生成所述第三测距信号的序列;所述第一校验序列为所述第一信号段经过采样后的序列,或者,所述第一校验序列为所述第一信号段经过采样后再进行量化后的序列;所述采样的起始时刻为所述第三时刻,所述第一校验序列的长度与所述第二序列的长度相等。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第二通信装置利用所述第二信号段进行完整性校验,包括:
    当所述伪随机序列和第二校验序列进行相关运算获得的相关运算结果大于或等于第二预设门限时,所述第二通信装置确定所述第二信号段的校验结果为通过完整性校验;当所述伪随机序列和所述第二校验序列进行相关运算获得的相关运算结果小于所述第二预设门限时,所述第二通信装置确定所述第二信号段的校验结果为未通过完整性校验;
    其中,所述第二校验序列为所述第二信号段经过采样后的序列,或者,所述第二校验序列为所述第二信号段经过采样后再进行量化后的序列;所述采样的起始时刻为所述第二信号段的第二到达时刻,所述第二到达时刻基于所述第三时刻获得,所述第二校验序列的长度与所述伪随机序列的长度相等。
  16. 一种通信装置,其特征在于,包括:
    接收模块,用于接收超宽带中的第一测距信号;
    确定模块,用于基于所述第一测距信号确定第一序列,所述第一序列为所述第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列;
    所述确定模块,还用于基于所述第一序列和伪随机序列确定第二测距信号;其中,所述伪随机序列为预设序列,或者,所述伪随机序列基于密钥和加密算法获得,或者,所述伪随机序列基于种子和伪随机数 生成算法获得;
    发送模块,用于发送所述第二测距信号。
  17. 一种通信装置,其特征在于,包括:
    发送模块,用于发送超宽带中的第三测距信号;
    接收模块,用于接收第四测距信号,所述第四测距信号为第二测距信号经过无线信道传输后的信号;所述第二测距信号为基于第一序列和伪随机序列确定的信号,所述第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列,所述第一测距信号为所述第三测距信号经过无线信道传输后的信号;所述伪随机序列为预设序列,或者,所述伪随机序列基于密钥和加密算法获得,或者,所述伪随机序列基于种子和伪随机数生成算法获得;
    校验模块,用于分别利用所述第四测距信号中的第一信号段和第二信号段进行完整性校验;所述第一信号段为所述第四测距信号中与所述第一序列对应的信号段,所述第二信号段为所述第四测距信号中与所述伪随机序列对应的信号段。
  18. 一种芯片,其特征在于,包括收发组件和数据处理组件,
    所述数据处理组件,用于通过所述收发组件接收超宽带中的第一测距信号;
    所述数据处理组件,还用于基于所述第一测距信号确定第一序列,所述第一序列为所述第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列;
    所述数据处理组件,还用于基于所述第一序列和伪随机序列确定第二测距信号;其中,所述伪随机序列为预设序列,或者,所述伪随机序列基于密钥和加密算法获得,或者,所述伪随机序列基于种子和伪随机数生成算法获得;
    所述数据处理组件,还用于通过所述收发组件发送所述第二测距信号。
  19. 一种芯片,其特征在于,包括收发组件和数据处理组件,
    所述数据处理组件,用于通过所述收发组件发送超宽带中的第三测距信号;
    所述数据处理组件,还用于通过所述收发组件接收第四测距信号,所述第四测距信号为第二测距信号经过无线信道传输后的信号;所述第二测距信号为基于第一序列和伪随机序列确定的信号,所述第一序列为第一测距信号中的全部或部分加扰的时间戳序列STS信号段经过时间反转和量化处理后的序列,所述第一测距信号为所述第三测距信号经过无线信道传输后的信号;所述伪随机序列为预设序列,或者,所述伪随机序列基于密钥和加密算法获得,或者,所述伪随机序列基于种子和伪随机数生成算法获得;
    所述数据处理组件,用于分别利用所述第四测距信号中的第一信号段和第二信号段进行完整性校验;所述第一信号段为所述第四测距信号中与所述第一序列对应的信号段,所述第二信号段为所述第四测距信号中与所述伪随机序列对应的信号段。
  20. 一种通信装置,其特征在于,包括处理器和存储器,其中所述存储器用于存储计算机程序指令,所述处理器用于执行所述计算机程序指令,以使得所述通信装置执行如权利要求1至8中任一项所述的方法。
  21. 一种通信装置,其特征在于,包括处理器和存储器,其中,所述存储器用于存储计算机程序指令,所述处理器用于执行所述计算机程序指令,以使得所述通信装置执行如权利要求9至15中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时使所述计算机执行如权利要求1至15中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至15中任一项所述的方法。
PCT/CN2023/103318 2022-08-31 2023-06-28 Uwb中的测距信号的传输方法及相关设备 WO2024045834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211064816.1A CN117675099A (zh) 2022-08-31 2022-08-31 Uwb中的测距信号的传输方法及相关设备
CN202211064816.1 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045834A1 true WO2024045834A1 (zh) 2024-03-07

Family

ID=90066880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103318 WO2024045834A1 (zh) 2022-08-31 2023-06-28 Uwb中的测距信号的传输方法及相关设备

Country Status (2)

Country Link
CN (1) CN117675099A (zh)
WO (1) WO2024045834A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181132A2 (en) * 2016-04-14 2017-10-19 Apple Inc. Methods and architectures for secure ranging
CN114509748A (zh) * 2020-10-29 2022-05-17 清研讯科(北京)科技有限公司 测距方法、装置、存储介质及设备
CN114980080A (zh) * 2022-05-18 2022-08-30 西安交通大学 一种基于动态响应信号的安全测距方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017181132A2 (en) * 2016-04-14 2017-10-19 Apple Inc. Methods and architectures for secure ranging
CN114509748A (zh) * 2020-10-29 2022-05-17 清研讯科(北京)科技有限公司 测距方法、装置、存储介质及设备
CN114980080A (zh) * 2022-05-18 2022-08-30 西安交通大学 一种基于动态响应信号的安全测距方法

Also Published As

Publication number Publication date
CN117675099A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
RU2685982C2 (ru) Способ генерирования секретного криптографического ключа в сети
JP2020017947A (ja) 超広帯域セキュア測距
EP3425867A1 (en) Communication devices and associated method
US11156704B2 (en) Method, device and system for secure distance measurement
Zhu et al. Using wireless link dynamics to extract a secret key in vehicular scenarios
US8270602B1 (en) Communication systems, transceivers, and methods for generating data based on channel characteristics
CN112788599B (zh) 一种基于信道状态信息的物理层密钥生成方法
CN108768927B (zh) 保密通信方法和装置
US11166159B1 (en) Methods and apparatus for secure fine timing measurement with encoded long training fields
JP2007274300A (ja) 共通鍵暗号通信における同期処理方法
US10129022B1 (en) Secret key for wireless communication in cyber-physical automotive systems
CN112202511B (zh) 基于信道特征的物理层密钥生成方法及系统
CN113848771B (zh) 一种uwb锚点自动配置方法、装置、设备及储存介质
EP4095553A1 (en) Method for transceiving a message for uwb distance measurement, method and system for distance measurement and transceiver for uwb distance measurement
Fragkiadakis et al. Lightweight and secure encryption using channel measurements
Abdelgader et al. Exploiting the physical layer security for providing a simple user privacy security system for vehicular networks
WO2024045834A1 (zh) Uwb中的测距信号的传输方法及相关设备
CN106658494B (zh) 一种基于信号强度轨迹的无线设备密钥建立方法
CN113765541B (zh) 一种无人机跳频通信方法、装置、计算机设备及存储介质
CN108683500B (zh) 一种基于信道特性的wban隐私保护方法
US11223956B2 (en) Dynamic data sequence puncturing
WO2023134473A1 (zh) Uwb中的测距信号传输方法、装置及可读存储介质
WO2023142970A1 (zh) Uwb中的测距方法、装置及可读存储介质
Smolyakov et al. Experimental verification of possibility of secret encryption keys distribution with a phase method in a multipath environment
Lopez Physical layer key generation for wireless communication security in automotive cyber-physical systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858872

Country of ref document: EP

Kind code of ref document: A1