WO2023134473A1 - Uwb中的测距信号传输方法、装置及可读存储介质 - Google Patents

Uwb中的测距信号传输方法、装置及可读存储介质 Download PDF

Info

Publication number
WO2023134473A1
WO2023134473A1 PCT/CN2022/143865 CN2022143865W WO2023134473A1 WO 2023134473 A1 WO2023134473 A1 WO 2023134473A1 CN 2022143865 W CN2022143865 W CN 2022143865W WO 2023134473 A1 WO2023134473 A1 WO 2023134473A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging
signal
sequence
communication device
configuration information
Prior art date
Application number
PCT/CN2022/143865
Other languages
English (en)
French (fr)
Inventor
孙黎
刘鹏
王宇威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023134473A1 publication Critical patent/WO2023134473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/104Location integrity, e.g. secure geotagging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a distance measurement signal transmission method, device and readable storage medium in ultra wideband (UWB).
  • UWB ultra wideband
  • Ranging and positioning technologies are important technologies in the field of communication perception, and are highly concerned by international standardization organizations such as the Institute of Electrical and Electronics Engineers (IEEE).
  • IEEE 802.15.4z also known as impulse radio (IR) ultra-wideband, or IR-UWB
  • IR-UWB impulse radio
  • the communicating parties know the distance between the two devices by sending the ranging sequence, so as to perform high-precision position estimation.
  • This technology has many needs and applications in the positioning of factory personnel, cargo positioning in logistics and warehousing, and intelligent perception of car door locks. While the demand for positioning and ranging is increasing rapidly, security issues are also arising.
  • the IEEE 802.15.4z standard proposes to encrypt the ranging sequence, which is used to combat early detect/late commit (ED/LC) attacks It is effective. But for other types of distance-reduction attacks, such as Cicada, Cicada++, and ghostPeak, the way of encrypting the ranging sequence cannot guarantee security.
  • the distance reduction attack is to use the interference signal to make the estimated signal arrival time of the device receiving the ranging signal earlier than the real time, so that the ranging parties mistakenly believe that the distance is very close when the actual distance is far away.
  • the existing IEEE 802.15.4z standard only provides a confidentiality protection mechanism for ranging signals, but does not provide integrity protection (integrity can be understood as: preventing tampering of ranging signals). Therefore, how to perform integrity protection on ranging signals has not yet been resolved.
  • the embodiment of the present application provides a distance measurement signal transmission method, device and readable storage medium in UWB, which can enable the receiving end to have the ability to detect whether the distance measurement process is interfered, ensure the integrity of the distance measurement signal, and not lose the system ranging performance.
  • the first device and the second device may be different roles played by the same device at different times. That is to say, the first device is the sending end at a certain moment and performs the operation of the sending end; but may be the receiving end at another moment and performs the operation of the receiving end.
  • the second device is the same as the first device, that is to say, the second device is the sending end at a certain moment and performs the operation of the sending end; but at another moment it may be the receiving end and performs the operation of the receiving end.
  • the following description will be made by taking the first device performing the operation of the sending end and the second device performing the operation of the receiving end as an example.
  • the present application provides a method for transmitting ranging signals in ultra-wideband, the method comprising: a first device receives a first signal from a second device, and preprocesses the first signal to obtain a second signal , the preprocessing is channel estimation or power normalization; the first device at least generates a first ranging signal according to the second signal, wherein the first ranging signal conforms to the time reversal of the second signal, or time reversal The signal after convoluting with the original ranging signal after conjugation and conjugate processing, or the first ranging signal conforms to the time-reversed signal of the second signal, or the signal after time-reversing and conjugate processing; the first device At least part of the first ranging signal is sent, the at least part of the first ranging signal supports the integrity protection function and the ranging function.
  • the first device uses the signal from the second device to preprocess it, and then constructs a new physical layer ranging signal through time inversion and conjugation.
  • This signal has integrity protection function, which can make the receiving
  • the end has the ability to detect whether the ranging process is interfered, to ensure the integrity of the ranging signal, and not to lose the ranging performance of the system.
  • the above-mentioned first signal includes pilot information, such as a preamble; the above-mentioned preprocessing is channel estimation, and the above-mentioned second signal is the first Channel impulse response. That is to say, the first device performs preprocessing on the first signal to obtain the second signal, including: the first device uses the pilot information contained in the first signal to perform channel estimation, and obtains the first signal from the second device to the first device. Channel impulse response.
  • the first device generates the first ranging signal according to the second signal, including: the first device performs first processing on the first channel impulse response (that is, the second signal), and then obtains the second channel impulse response, and the first processing Including time reversal, or time reversal and conjugate processing; the first device obtains the first ranging signal after performing convolution processing according to the second channel impulse response and the original ranging signal.
  • the first device performs convolution processing on the second channel impulse response and the original ranging signal to obtain the first ranging signal, including: normalizing the second channel impulse response and the original ranging signal
  • the first ranging signal is obtained after convolution processing.
  • the first device uses the channel impulse response of the channel between itself and the second device to construct the ranging signal waveform through time inversion, so as to realize the matching between the ranging signal and the channel; so that the receiving end has the ability to detect whether the ranging process is affected
  • the ability of jamming ensures the integrity of the ranging signal without losing the ranging performance of the system.
  • the first signal is obtained after the original ranging signal is transmitted through a wireless channel, and the preprocessing is power normalization. That is to say, the first device preprocessing the first signal to obtain the second signal includes: the first device performs power normalization on the first signal to obtain the second signal.
  • the generating of the first ranging signal by the first device according to the second signal includes: the first device performs time inversion on the second signal, or obtains the first ranging signal after time inversion and conjugate processing.
  • the first device performs power normalization on the received first signal and then directly performs inversion and conjugation to obtain a signal with integrity protection and ranging functions (that is, the above-mentioned first ranging signal) and send it; It can enable the receiving end to detect whether the ranging process suffers from interference, and provide integrity protection for the ranging signal; it can also not lose the ranging performance of the system.
  • this solution does not need to perform channel estimation, and the ranging performance is not affected by channel estimation errors.
  • the length of at least part of the first ranging signal is equal to the length of the original ranging signal. Or, the length of at least part of the first ranging signal is greater than the length of the original ranging signal.
  • At least part of the first ranging signal is carried in a ranging radio frame.
  • the method further includes: the first device receives ranging configuration information, or the first device sends ranging configuration information information; wherein, the ranging configuration information is used to configure one or more of the following information: whether the ranging signal sent during the ranging process supports the integrity protection function, the format of the ranging wireless frame carrying the ranging signal, and the ranging The length of the ranging signal during the pulse repetition frequency mode.
  • the above ranging configuration information is carried in the ranging channel and preamble selection information unit, or the ranging response time negotiation information unit.
  • This solution provides a negotiation method of configuration information for newly added signals or wireless frames that support both the ranging function and the integrity protection function, laying the foundation for the subsequent ranging process.
  • the present application provides a method for transmitting ranging signals in ultra-wideband, the method comprising: the second device sends a signal, and the signal is used to generate a first ranging signal; the second device receives the signal used for ranging , the signal used for ranging is obtained after at least part of the first ranging signal is transmitted through a wireless channel, and the at least part of the first ranging signal supports an integrity protection function and a ranging function; the second device converts the original ranging
  • the signal and the signal used for ranging are input to the correlator to perform correlation calculations, and the first moment at which the maximum output of the correlator is obtained is obtained.
  • the original ranging signal is generated based on the first sequence; the second device is used for ranging.
  • the integrity check is performed on the signal to obtain the check result; if the check result is that the signal used for ranging passes the integrity check, then the second device determines the first moment as the signal used for ranging The arrival time of the signal.
  • the verification result means that the signal used for ranging has passed the integrity verification.
  • the correlation operation result obtained by performing correlation operation on the second sequence and the verification sequence is smaller than the preset threshold, the verification result is that the signal used for distance measurement fails the integrity verification.
  • the second sequence is the first sequence, or the second sequence is a time-reversed sequence of the first sequence.
  • the check sequence is obtained by taking the real part of the signal for distance measurement and then sampling at equal intervals. The starting moment of the equal interval sampling is the first moment, and the length of the check sequence is the same as the length of the first sequence. equal.
  • the second device sends a signal for the first device to generate the first ranging signal; the second device checks the integrity of the received signal to determine whether the ranging process is interfered, so as to realize the integrity of the ranging signal sexual protection.
  • the foregoing signal includes pilot information, and the foregoing second sequence is the same as the first sequence.
  • the above-mentioned signal is an original ranging signal
  • the above-mentioned second sequence is a time-reversed sequence of the first sequence.
  • the above-mentioned verification sequence is obtained by taking the real part of the signal for ranging and then sampling at equal intervals, including: the verification sequence is generated based on the polarity of the sample sequence , the sample sequence is obtained after taking the real part of the signal used for distance measurement and then sampling at equal intervals.
  • the length of at least part of the first ranging signal is equal to the length of the original ranging signal.
  • the at least part of the first ranging signal is carried in a ranging radio frame.
  • the method before the second device receives the ranging signal, the method further includes: the second device sends ranging configuration information, or the second device receives ranging configuration information ;
  • the ranging configuration information is used to configure one or more of the following information: whether the ranging signal sent during the ranging process supports the integrity protection function, the format of the ranging wireless frame carrying the ranging signal, and the ranging process The length of the ranging signal sent in the PRF mode.
  • the present application provides a communication device, and the communication device may be a first device or a chip in the first device, such as a Wi-Fi chip.
  • the communication device includes: a transceiver module, configured to receive a first signal; a processing module, configured to preprocess the first signal to obtain a second signal, where the preprocessing includes channel estimation or power normalization; the processing module, It is also used to generate a first ranging signal at least according to the second signal, wherein the first ranging signal conforms to the time-reversed or time-reversed and conjugated processing of the second signal and is convolved with the original ranging signal.
  • the first ranging signal conforms to the signal obtained after time-reversal or time-reversal and conjugate processing of the second signal; the transceiver module is also used to send at least part of the first The ranging signal, at least part of the first ranging signal supports the integrity protection function and the ranging function.
  • the first signal includes pilot information
  • the preprocessing includes channel estimation
  • the second signal is a first channel impulse response from the second device to the first device .
  • the processing module is specifically configured to: obtain a second channel impulse response after first processing the first channel impulse response, the first processing includes time inversion, or time inversion and conjugate processing; according to the second The channel impulse response is convolved with the original ranging signal.
  • the processing module is specifically configured to perform convolution processing with the original ranging signal after normalizing the second channel impulse response.
  • the first signal is obtained after the original ranging signal is transmitted through a wireless channel, and the preprocessing includes power normalization.
  • the processing module is specifically configured to: perform time inversion, or time inversion and conjugate processing on the second signal, to obtain the first ranging signal.
  • the length of at least part of the first ranging signal is equal to the length of the original ranging signal.
  • At least part of the first ranging signal is carried in a ranging radio frame.
  • the above-mentioned transceiver module is configured to receive ranging configuration information, or send ranging configuration information; wherein, the ranging configuration information is used to configure one or more of the following Item information: Whether the ranging signal sent during the ranging process supports the integrity protection function, the format of the ranging wireless frame carrying the ranging signal, the length of the ranging signal during the ranging process, and the pulse repetition frequency mode.
  • the present application provides a communication device, and the communication device may be a second device or a chip in the second device, such as a Wi-Fi chip.
  • the communication device includes: a transceiver module, used to send a signal, and the signal is used to generate a first ranging signal; the transceiver module is also used to receive a signal used for ranging, and the signal used for ranging is at least part of the second A distance measurement signal is obtained after being transmitted through a wireless channel, at least part of the first distance measurement signal supports the integrity protection function and the distance measurement function; a correlation operation module is used to correlate the original distance measurement signal with the signal input for distance measurement The correlator performs a correlation operation to obtain the first moment where the maximum value of the correlator output is, and the original ranging signal is generated based on the first sequence; the integrity verification module is used to perform integrity verification on the signal used for ranging verification to obtain a verification result; wherein, when the correlation operation result obtained by performing correlation operations between the second sequence and the verification
  • the foregoing signal includes pilot information, and the second sequence is the same as the first sequence.
  • the foregoing signal is an original ranging signal
  • the second sequence is a time-reversed sequence of the first sequence.
  • the above-mentioned verification sequence is obtained by taking the real part of the signal for distance measurement and then sampling at equal intervals, including: the verification sequence is generated based on the polarity of the sample sequence, The sample sequence is obtained after the real part of the signal used for distance measurement is taken and then sampled at equal intervals.
  • the length of at least part of the first ranging signal is equal to the length of the original ranging signal.
  • At least part of the first ranging signal is carried in a ranging radio frame.
  • the above-mentioned transceiver module is further configured to send ranging configuration information, or receive ranging configuration information; wherein, the ranging configuration information is used to configure one or more of the following Item information: Whether the ranging signal sent during the ranging process supports the integrity protection function, the format of the ranging wireless frame carrying the ranging signal, the length of the ranging signal sent during the ranging process, and the pulse repetition frequency mode.
  • the present application provides a method for transmitting ranging configuration information.
  • the method includes: a communication device sending ranging configuration information, or a communication device receiving ranging configuration information.
  • the ranging configuration information includes the type of the ranging wireless frame, and the type of the ranging wireless frame is a wireless frame type supporting a ranging function, or a wireless frame type supporting both a ranging function and an integrity protection function.
  • This solution provides a negotiation method of configuration information for newly added signals or wireless frames that support both the ranging function and the integrity protection function, laying the foundation for the subsequent ranging process.
  • the present application provides a communication device, which includes: a transceiver module, configured to send ranging configuration information, or receive ranging configuration information.
  • the ranging configuration information includes the type of the ranging wireless frame, and the type of the ranging wireless frame is a wireless frame type supporting a ranging function, or a wireless frame type supporting both a ranging function and an integrity protection function.
  • the above-mentioned ranging configuration information further includes one or more of the following: the format of the ranging radio frame, the information supporting the ranging function and/or the integrity protection function Signal length, pulse repetition frequency mode.
  • the foregoing ranging configuration information is carried in a ranging channel and preamble selection information unit, or a ranging response time negotiation information unit.
  • the present application provides a communications apparatus, specifically a first device, including a processor and a transceiver.
  • the transceiver is configured to receive a first signal; the processor is configured to preprocess the first signal to obtain a second signal, and the preprocessing includes channel estimation or power normalization; the processor is also configured to Generating a first ranging signal at least according to the second signal, wherein the first ranging signal complies with the second signal after time inversion, or time inversion and conjugate processing, and after convolution processing with the original ranging signal or, the first ranging signal conforms to the signal obtained after time-reversal or time-reversal and conjugate processing of the second signal; the transceiver is also used to transmit at least part of the first ranging signal , the at least part of the first ranging signal supports an integrity protection function and a ranging function.
  • the communication device further includes a memory, where the memory is used to store a computer program, where the computer program includes program instructions.
  • the embodiment of the present application provides a communications apparatus, specifically a second device, including a processor and a transceiver.
  • the transceiver is used to send a signal, and the signal is used to generate a first ranging signal; the transceiver is also used to receive a signal used for ranging, and the signal used for ranging is at least part of the first ranging signal Obtained after wireless channel transmission, the at least part of the first ranging signal supports an integrity protection function and a ranging function;
  • the processor is configured to input the original ranging signal and the signal used for ranging into a correlator for correlation calculation , the first moment at which the maximum value of the correlator output is obtained, the original ranging signal is generated based on the first sequence; the processor is also used to perform integrity check on the signal used for ranging, and obtain the check Result; the processor is further configured to determine the first moment as the arrival moment of the ranging signal when the verification result is that the ranging signal passes the integrity verification.
  • the check result when the correlation operation result obtained by performing the correlation operation between the second sequence and the check sequence is greater than or equal to the preset threshold, the check result is that the signal used for ranging passes the integrity check; when the second sequence and When the correlation operation result obtained by performing the correlation operation on the check sequence is less than the preset threshold, the check result is that the signal used for ranging has not passed the integrity check; the second sequence is the first sequence, or the The second sequence is the sequence after the time-reversal processing of the first sequence; the verification sequence is obtained by taking the real part of the signal for ranging and then sampling at equal intervals, and the starting time of the equal-interval sampling is the At the first moment, the length of the check sequence is equal to the length of the first sequence.
  • the communication device further includes a memory, where the memory is used to store a computer program, where the computer program includes program instructions.
  • the embodiment of the present application provides a communication device, which is implemented in the form of a chip, and includes a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor uses The code instruction is executed to execute the distance-measuring signal transmission method in UWB described in the above-mentioned first aspect, or the above-mentioned second aspect, or any possible implementation manner of any one of them.
  • the communication device further includes a memory, and the memory is connected to the processor through a circuit.
  • the processor and the memory may be physically independent units, or the memory may also be integrated with the processor.
  • the embodiment of the present application provides a communication device, which is implemented in the product form of a chip, and includes a processor and an interface circuit; the interface circuit is used to receive code instructions and transmit them to the processor; the processor uses The code instruction is executed to execute the distance measurement configuration information transmission method described in the fifth aspect or any possible implementation manner of the fifth aspect.
  • the communication device further includes a memory, and the memory is connected to the processor through a circuit.
  • the processor and the memory may be physically independent units, or the memory may also be integrated with the processor.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and when the program instructions are run on the computer, the computer executes The ranging signal transmission method in the UWB described in the above first aspect or the above second aspect.
  • the embodiment of the present application provides a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer is made to execute the distance measurement configuration information transmission method described in the above first aspect or the above second aspect. .
  • the embodiment of the present application provides a communication system
  • the communication system includes the first device described in the above-mentioned first aspect or the above-mentioned third aspect or the above-mentioned fifth aspect or the above-mentioned sixth aspect, and the above-mentioned second aspect or the above-mentioned The second device described in the fourth aspect.
  • Implementing the embodiment of the present application can enable the receiving end to have the ability to detect whether the ranging process is interfered, ensure the integrity of the ranging signal, and not lose the ranging performance of the system.
  • FIG. 1 is a schematic diagram of the ranging principle provided by the embodiment of the present application.
  • FIG. 2 is an architecture diagram of a ranging and positioning system provided by an embodiment of the present application
  • FIG. 3 is a first schematic flowchart of a ranging signal transmission method in UWB provided by an embodiment of the present application
  • Fig. 4 is a second schematic flow chart of the ranging signal transmission method in UWB provided by the embodiment of the present application.
  • Figure 5a is a schematic diagram of the comparison of the attack success rate provided by the embodiment of the present application with and without integrity protection;
  • Figure 5b is a schematic diagram of a comparison of ranging error rates with and without integrity protection provided by the embodiment of the present application;
  • Figure 5c shows the detection rate of ranging events with and without integrity protection provided by the embodiment of the present application
  • FIG. 6 is a third schematic flow chart of a ranging signal transmission method in UWB according to an embodiment of the present application.
  • FIG. 7 is a fourth schematic flowchart of a ranging signal transmission method in UWB according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a frame format of a ranging wireless frame provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the frame format of STS+ in the ranging radio frame provided by the embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for transmitting ranging configuration information provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device 2 provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • At least one item (unit) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • words such as “exemplary” or “for example” are used to mean an example, illustration or description. Any embodiment or design described in this application as “exemplary”, “for example” or “such as” is not to be construed as preferred or advantageous over other embodiments or designs. Rather, use of words such as “exemplary,” “for example,” or “such as” is intended to present related concepts in a specific manner.
  • a corresponds to B means that there is a corresponding relationship between A and B, and B can be determined according to A.
  • determining (or generating) B according to (or based on) A does not mean determining (or generating) B only according to (or based on) A, and may also determine (or generate) according to (or based on) A and/or other information ( or generate) B.
  • FIG. 1 is a schematic diagram of a ranging principle provided by an embodiment of the present application.
  • the first device sends a ranging signal 1 at time t1, and reaches the second device at time t2; after the second device processes the received ranging signal, the second device sends a signal to the first device at time t3
  • the device sends a ranging signal 2, which arrives at the first device at time t4.
  • the ranging signal is obtained after the ranging sequence is pulse-shaped and modulated, such as pulse position modulation (pulse position modulation, PPM), pulse amplitude modulation (pulse amplitude modulation, PAM) and so on.
  • the distance d between the first device and the second device can be calculated according to the following formulas (1-1) and (1-2):
  • c represents the speed of light
  • t RTT represents the round-trip time of the ranging signal (or message).
  • Distance-reduction attack is a common attack method for the above-mentioned ranging process (that is, the ranging process shown in Figure 1 above), which can be implemented in various forms, such as Cicada attack, Cicada++ attack, For the ghostPeak attack, etc., the specific attack method can refer to the description of the prior art, which is not described in detail in this application.
  • the attacker's goal is: by generating interference signals, the device that receives the ranging signal estimates that the signal arrival time is earlier than the real time, resulting in When the actual distance is far away, the two sides of the distance measurement mistakenly think that the distance is very close, which will cause property damage in applications such as intelligent perception of car door locks and location-based contactless payment.
  • An early detect/late commit (ED/LC) attack is also a common attack method against the above-mentioned ranging process (such as the ranging process shown in Figure 1 above).
  • the attacker uses the predictability of the ranging signal structure to infer the entire ranging signal in advance according to the received ranging signal fragments, and sends it to the receiver, so that the receiver can understand the signal There was an error in the estimated time of arrival.
  • the IEEE 802.15.4z standard proposes a scheme for encrypting the ranging sequence, which mainly uses a 128-bit key to perform advanced encryption standard (AES) encryption on the 128-bit ranging sequence to obtain a 128-bit random sequence, and the random sequence is pulse-shaped and modulated and sent.
  • AES advanced encryption standard
  • the attacker cannot deduce the entire ranging signal from the received ranging signal fragments, so the scheme of encrypting the ranging sequence can resist ED/LC attack.
  • the scheme of encrypting the ranging sequence cannot resist distance reduction attacks such as Cicada, Cicada++, and ghostPeak, because in these attack forms, the attacker does not need to decode and infer the legal ranging signal, but only needs to send random interference
  • the attack can be completed by the signal, so the scheme of encrypting the ranging sequence cannot resist this kind of attack.
  • the receiving end it is possible to set an appropriate MPEP threshold at the receiving end to reduce the probability that the receiving end misjudges the illegal peak (that is, the redundant peak that appears before the maximum peak of the correlator output due to the interference signal) as the first path , so as to resist the range reduction attack (or against the jamming of the jamming signal).
  • this method can resist distance reduction attacks to a certain extent, the performance of this method depends on the selection of MPEP threshold.
  • the selection of the MPEP threshold is usually selected through experiments or actual measurements. Due to the complexity of the wireless propagation environment and the randomness of interference signals, even empirical values obtained through repeated experiments may not be able to effectively reduce the probability of misjudging illegal peaks as the first path.
  • this method increases security at the cost of ranging performance degradation. In other words, if you choose a smaller MPEP threshold, it may have a better resistance to distance reduction attacks, but it will often cause the receiving end The head path is missed, which reduces the ranging accuracy.
  • the first device can generate an MTAC signal according to the ranging sequence and the key agreed by the ranging parties (ie, the first device and the second device), and can send the MTAC signal to the second device.
  • the MTAC signal can be used for ranging and calibration.
  • the second device After receiving the MTAC signal, the second device demodulates and decodes the MTAC signal to recover a ranging sequence, which is used for ranging; device and the second device) to reconstruct the MTAC signal with the key agreed upon.
  • the second device can compare the difference between the reconstructed MTAC signal and the received MTAC signal (for example: make a difference between the two signals and calculate the power of the difference signal), and if the difference is greater than a certain threshold, check If it fails, it indicates that the ranging signal is under attack.
  • the received MTAC signal will be distorted, and the channel estimation may be inaccurate (for example, under low signal-to-noise ratio conditions), resulting in decoding errors likely to have a higher rate. Therefore, in this case, the reconstructed MTAC signal may be quite different from the received MTAC signal, which may cause the verification to fail. Therefore, it is impossible to accurately determine whether the ranging process is attacked according to the MTAC.
  • the above-mentioned method of detecting whether the ranging process is attacked by distance reduction through MTAC depends on the detection and judgment of the receiver (such as demodulating and decoding the MTAC signal). In multipath channels, channel equalization is required before signal detection and judgment , the implementation complexity of the channel equalization process is high, which will lead to a sharp increase in system implementation costs.
  • the method of encrypting the ranging sequence (the third point above) can realize the confidentiality protection of the ranging signal; but it cannot resist the distance reduction attack.
  • the method of setting an appropriate MPEP threshold at the receiving end (the fourth point above) can realize the integrity protection of the ranging signal, but there is no general threshold selection method and it is difficult to balance security and ranging performance.
  • the method of MTAC detection (the fifth point above) cannot accurately determine whether the ranging process is attacked, and cannot guarantee the integrity of the MTAC signal.
  • confidentiality can refer to the characteristic that cannot be used or known by unauthorized individuals, entities or processes.
  • Integrity can refer to the characteristics of keeping information from being destroyed or modified, not lost and not being changed without authorization during the process of information transmission, exchange, storage and processing.
  • confidentiality can be understood as: except for the ranging parties, other devices cannot know the characteristics of the ranging sequence carried in the ranging signal; integrity can be understood as: except for the ranging parties, other devices cannot tamper with the ranging Characteristics of the ranging sequence carried in the signal.
  • Confidentiality protection can be understood as: preventing other devices except the ranging parties from knowing the ranging sequence carried in the ranging signal.
  • Integrity protection can be understood as: judging whether the ranging sequence in the ranging signal has been tampered with by other devices, or judging the credibility of the ranging sequence.
  • An embodiment of the present application provides a method for transmitting a ranging signal in UWB.
  • the receiving end can have the ability to detect whether the ranging process is interfered with, thereby ensuring the integrity of the ranging signal, and No loss of ranging performance of the system.
  • the technical solution provided by the embodiment of the present application may be applied in a wireless communication-aware ranging and positioning scenario.
  • the communication parties can establish a wireless communication connection through authentication and negotiation according to relevant protocols.
  • the sending end sends a wireless ranging frame to the receiving end, and the receiving end receives the wireless ranging frame.
  • the round-trip time of the message such as the aforementioned formula (1-2)
  • the distance between the two ie, the sending end and the receiving end
  • the aforementioned formula (1-1) is calculated to complete the ranging process.
  • FIG. 2 is an architecture diagram of a ranging and positioning system provided by an embodiment of the present application.
  • the ranging and positioning system includes at least two devices, such as a first device and a second device.
  • the first device and the second device may be different roles played by the same device at different times. That is to say, the first device is the sending end at a certain moment and performs the operation of the sending end; but may be the receiving end at another moment and performs the operation of the receiving end.
  • the second device is the same as the first device, that is to say, the second device is the sending end at a certain moment and performs the operation of the sending end; but at another moment it may be the receiving end and performs the operation of the receiving end.
  • FIG. 2 takes the first device as the sending end and the second device as the receiving end as an example.
  • the first device includes: a signal preprocessing module, an inversion and conjugate module, and a signal generation module.
  • a signal preprocessing module configured to estimate a channel impulse response (channel impulse response, CIR) between the second device and the first device, or perform a power normalization operation on the received signal waveform. If the second device sends a channel measurement signal, the signal preprocessing module performs an operation of estimating the CIR; if the second device sends an original ranging signal, the signal preprocessing module performs a power normalization operation.
  • the reverse and conjugate module is used to perform time reverse and conjugate operations on the preprocessed waveform.
  • the signal generating module is configured to generate an original ranging signal, such as a scrambled timestamp sequence (Scrambled timestamp sequence, STS) in the IEEE 802.15.4z standard.
  • the signal generation module is also used to generate a distance measurement signal with an integrity protection function and a distance measurement function. If the second device sends a channel measurement signal, the ranging signal is obtained by performing convolution operations on the original ranging signal and the inverted and conjugated CIR. If the second device sends the original ranging signal, the ranging signal is an output signal of the inversion and conjugate module.
  • the ranging signal with the integrity protection function and the ranging function is sent to the second device through the antenna.
  • the second device includes: a signal sending module, a Time of Arrival (TOA) estimation module, and an integrity verification module.
  • the signal sending module is used to send a channel measurement signal or an original ranging signal, and the signal is sent from the antenna port to the first device.
  • the ToA estimating module is configured to use the ranging signal sent by the first device to perform ToA estimation to obtain a time stamp, and the time stamp is used for ranging or positioning.
  • the integrity check module is used to sample the received signal and perform a correlation operation with the local ranging signal to determine whether the received signal has been tampered with.
  • the dotted line part of the original ranging signal in FIG. 2 above indicates that the first device and the second device obtain the same original ranging signal (for example, STS in the IEEE 802.15.4z standard) by using the same operation.
  • both the first device and the second device shown in FIG. 2 above have multiple antennas, but in practical applications, the first device can be configured with multiple antennas or a single antenna; similarly, the second device can be configured with a single antenna , and multiple antennas may also be configured; this embodiment of the present application does not limit it.
  • the following embodiments all take the first device as the sending end (referring to the party sending the ranging signal), and the second device as the receiving end (referring to the party receiving the ranging signal) as an example for illustration .
  • the first device and the second device may be different roles played by the same device at different times. That is to say, the first device is the sending end at a certain moment and performs the operation of the sending end; but may be the receiving end at another moment and performs the operation of the receiving end.
  • the second device is the same as the first device.
  • Both the first device and the second device in this application support the 802.15.4z standard, and may also support the next generation standard of the 802.15.4z standard.
  • the first device and the second device may also support narrowband communication standards, such as Wi-Fi standards (ie, 802.11 series standards), Bluetooth standards, or Zigbee.
  • FIG. 3 is a first schematic flow chart of a ranging signal transmission method in UWB provided by an embodiment of the present application.
  • the ranging signal transmission method in the UWB includes but is not limited to the following steps:
  • the second device sends a third signal, where the third signal is used to generate a first ranging signal.
  • the foregoing third signal may be an original ranging signal, and its generation method may refer to the description of the following embodiments, and no further description is made here.
  • the above-mentioned third signal is a channel measurement signal, which includes pilot information, such as a preamble.
  • the pilot information can be used for channel estimation.
  • the first device receives the first signal.
  • the signal when the signal is transmitted in the wireless channel, it will be reflected, diffracted, and scattered by various obstacles, which will cause some changes when the signal sent by the sending end reaches the receiving end. Therefore, although the second device sends the third signal, what the second device receives is the first signal after transmission through the wireless channel.
  • the waveforms of the first signal and the third signal may change, but the information they carry is the same.
  • the first device performs preprocessing on the first signal to obtain a second signal, where the preprocessing includes channel estimation or power normalization.
  • the first device performs channel estimation to estimate the channel impulse response (CIR) from the second device to the first device; for specific implementation, reference may be made to the corresponding description of Embodiment 2 below, which will not be described here.
  • the first device performs a power normalization operation on the received first signal. For specific implementation, reference may be made to the corresponding description in Embodiment 3 below, and no further description is given here.
  • the first device generates a first ranging signal at least according to the second signal, wherein the first ranging signal conforms to the time-reversed or time-reversed and conjugated processing of the second signal and performs a process with the original ranging signal.
  • the signal after convolution processing, or the first ranging signal conforms to the signal obtained after time inversion or time inversion and conjugate processing of the second signal.
  • the first device performs inversion and conjugate operations on the preprocessed signal (that is, the second signal), so as to generate the first ranging signal.
  • the preprocessed signal that is, the second signal
  • the first device performs inversion and conjugate operations on the preprocessed signal (that is, the second signal), so as to generate the first ranging signal.
  • the first device sends at least part of the first ranging signal, where the at least part of the first ranging signal supports an integrity protection function and a ranging function.
  • the first device may directly send the first ranging signal, or may truncate the first ranging signal before sending it.
  • the truncated length is the length of the original ranging signal.
  • the tail of the first ranging signal is reserved, and the tail is equal to the length of the original ranging signal.
  • the at least part of the first ranging signal may be carried in a ranging radio frame and sent.
  • the second device receives a signal for ranging, where the signal for ranging is obtained after at least part of the first ranging signal is transmitted through a wireless channel.
  • the second device inputs the original ranging signal and the signal used for ranging into a correlator to perform a correlation operation, and obtains a first moment at which the maximum output of the correlator is located.
  • the second device uses the peak ranging algorithm to perform ToA estimation, that is, the original ranging signal and the signal used for ranging are input to the correlator to perform correlation calculations, and the moment at which the maximum output of the correlator is obtained (that is, the first a moment).
  • the second device performs an integrity check on the signal used for ranging, and obtains a check result.
  • the second device determines the first time as the arrival time of the signal for ranging.
  • the second device samples the signal used for ranging, and judges to obtain a check sequence; performs a correlation operation on the check sequence and the first sequence to obtain a correlation operation result; compares the correlation operation result with the preset
  • the size relationship of the threshold determines whether the signal used for ranging passes the integrity check. In one example, if the result of the correlation operation is greater than the preset threshold, it means that the ranging process is not disturbed, and the ranging result is credible; The results are not believable.
  • the specific integrity verification method refer to the description of the second embodiment or the third embodiment below, and no further description is given here.
  • the signal from the second device is used to preprocess it, and then through time inversion and conjugation to construct a new physical layer ranging signal.
  • the signal has an integrity protection function and can make the receiving end It has the ability to detect whether the ranging process is interfered, ensures the integrity of the ranging signal, and does not lose the ranging performance of the system.
  • FIG. 4 is a second schematic flowchart of a ranging signal transmission method in UWB provided by an embodiment of the present application. It mainly introduces the generation and integrity protection of ranging signals based on channel impulse response (CIR) inversion.
  • the ranging signal transmission method in the UWB includes but is not limited to the following steps:
  • the second device sends a channel measurement signal, where the channel measurement signal includes pilot information.
  • the first device receives the channel measurement signal.
  • the second device may carry pilot information (Any signal that includes preamble) in any signal sent to the first device.
  • the signal carrying pilot information is called a channel measurement signal.
  • the second device sends a channel measurement signal (ie, the third signal including pilot information) to the first device, and correspondingly, the first device receives the channel measurement signal (ie, the first signal including pilot information). That is to say, the channel measurement signal includes pilot information, such as a preamble.
  • the first device sends a request signal to the second device, and the request signal can be used to request to perform the ranging process (or to request to start the ranging process); after receiving the request signal, the second device sends a request to the first
  • the device feeds back an acknowledgment signal (that is, a channel measurement signal), and the acknowledgment signal includes pilot information (such as a preamble).
  • the first device uses the channel measurement signal to perform channel estimation to obtain a first channel impulse response from the second device to the first device.
  • the first device performs first processing on the first channel impulse response to obtain the second channel impulse response, where the first processing includes time reversal processing, or time reversal processing and conjugate processing.
  • the first device generates a first ranging signal according to the second channel impulse response and the original ranging signal, and the first ranging signal is obtained after convolution processing of the second channel impulse response and the original ranging signal .
  • the first device sends at least part of the first ranging signal, where the at least part of the first ranging signal supports an integrity protection function and a ranging function.
  • the first device may use the pilot information in the channel measurement signal to perform channel estimation (channel estimation) to obtain the first channel from the second device to the first device shock response.
  • channel estimation channel estimation
  • the first channel impulse response is denoted as h 21 (t).
  • the first device may perform time reversal (Time-reverse) on the first channel impulse response to obtain the second channel impulse response; or, the first device may perform time reversal and conjugate (Time-reverse) on the first channel impulse response. reverse and Conjugate), the second channel impulse response is obtained.
  • the first channel impulse response is a real number
  • the conjugate operation is performed on them.
  • the second channel impulse response is recorded as h' 21 (-t); h' 21 (t) means that h 21 (t) takes the conjugate.
  • the first device may generate a raw ranging signal according to the first sequence.
  • the first sequence may be a sequence that both the first device and the second device can know, for example, a sequence determined through negotiation between the first device and the second device, a preset or predefined sequence, a public sequence, a standard-defined sequence, etc. wait.
  • the first sequence may be a scrambled timestamp sequence (scrambled timestamp sequence, STS).
  • STS scrambled timestamp sequence
  • p(t) represents the original ranging signal
  • X[k] represents the first sequence
  • g(t) represents the rectangular window function
  • T represents the interval between adjacent symbols in the first sequence.
  • the first device After the first device generates the original ranging signal, it may perform convolution on the second channel impulse response and the original ranging signal to generate the first ranging signal. Alternatively, the first device may perform normalization processing on the second channel impulse response and perform convolution with the original ranging signal to generate the first ranging signal.
  • the first ranging signal has or supports an integrity protection function and a ranging function, or the first ranging signal supports integrity checking and ranging.
  • the mathematical expression of the first ranging signal is the following formula (2-2):
  • s(t) represents the first ranging signal
  • T s represents the duration of the h' 21 (-t) waveform.
  • the first device has two processing methods.
  • the first device may intercept the first ranging signal, obtain and send part of the first ranging signal.
  • the truncation method is: retaining the tail of the first ranging signal, and the tail is equal to the length of the original ranging signal p(t).
  • the first device may not truncate the first ranging signal, but directly send the first ranging signal. The at least part of the first ranging signal supports the integrity protection function and the ranging function.
  • the second device receives a signal for ranging, where the signal for ranging is obtained after at least part of the first ranging signal is transmitted through a wireless channel.
  • the signal when the signal is transmitted in the wireless channel, it will be reflected, diffracted, and scattered by various obstacles, which will cause some changes when the signal sent by the sending end reaches the receiving end. Therefore, at least part of the first ranging signal sent by the first device has undergone some changes after being transmitted through the wireless channel.
  • at least part of the first ranging signal is transmitted to the second device through the wireless channel.
  • ranging signal The second device receives a signal for ranging.
  • the signal used for distance measurement received by the second device is denoted as y(t).
  • the second device inputs the original ranging signal and the signal used for ranging into a correlator to perform a correlation operation, and obtains a first moment at which a maximum value output by the correlator is located.
  • the second device may input the original ranging signal p(t) and the signal y(t) for ranging into a correlator for correlation calculation to obtain the correlation
  • the first moment at which the maximum value of the converter output is located (denoted as t 2 ).
  • the generation method of the original ranging signal may be as shown in the foregoing formula (2-1).
  • the second device uses the locally stored first sequence (such as STS) to generate the original ranging signal p(t), and performs a correlation operation between the original ranging signal p(t) and the received signal y(t) , and record the time when the correlation peak is located, which is the first time t 2 .
  • the second device performs an integrity check on the signal used for ranging, and obtains a check result.
  • the second device may perform the received ranging signal
  • the real part of the signal y(t) is taken, and then sampled at equal intervals to obtain a sample sequence.
  • the sampling start time is the first time (t 2 )
  • the sampling interval is T (that is, the interval between adjacent symbols in the first sequence).
  • the length of the sample sequence is equal to the total length of the first sequence. For example, if the length of the STS is 128 bits, the length of the sample sequence (or the total number of samples) is also 128 bits.
  • the second device may directly use the sample sequence as a check sequence (denoted as Y[k]).
  • the second device after obtaining the sample sequence, the second device generates a check sequence (denoted as Y[k]) according to the polarity of each sample. If the polarity of the sample in the sample sequence is positive, the corresponding element in the check sequence is 1; otherwise, that is, if the polarity of the sample in the sample sequence is negative, the corresponding element in the check sequence is -1.
  • the second device may perform a correlation operation on the verification sequence (Y[k]) and the locally stored first sequence X[k] to obtain a correlation operation result (denoted as z).
  • the correlation operation result z is expressed as:
  • N represents the length of the check sequence Y[k].
  • the second device may compare the correlation operation result z with a preset threshold to obtain a verification result.
  • the verification result is that the signal used for ranging has passed the integrity check, that is, the ranging process is not interfered by interference signals.
  • the correlation calculation result z is smaller than the preset threshold, the verification result is that the signal used for ranging fails the integrity check, that is, the ranging process is interfered by an interference signal.
  • the absolute value of the preset threshold is equal to the length of the first sequence, and if the first sequence is 128 bits, the preset threshold may be ⁇ 128.
  • the second device determines the first moment as an arrival time of the signal used for ranging.
  • the second device may use the first moment (t 2 ) as the The moment of arrival of the signal used for ranging. If the result of the above check is that the signal used for ranging has not passed the integrity check, it means that the ranging process has been interfered by an interference signal; then the second device can inform the first device to resend a new ranging signal, or interval Resend the ranging signal for a period of time, or do nothing.
  • the first device uses the CIR of the channel between itself and the second device (that is, the first channel impulse response) to construct the waveform of the ranging signal through time inversion, so as to realize the matching between the ranging signal and the channel; the second Based on the received signal, the device completes the time of flight (ToF) measurement through correlation calculations, and judges whether the ranging process is interfered with through sampling, judgment, and correlation calculations, thereby realizing the integrity protection of the ranging signal .
  • the embodiment of the present application uses time reversal to enable the receiving end to detect whether the ranging process suffers from interference, and provides integrity protection for the ranging signal; and the receiver only needs to complete simple correlation operations, and the implementation complexity is low.
  • ranging and integrity protection are both completed based on the same sequence (ie, the first sequence), and the additional overhead introduced by the integrity protection mechanism is small.
  • the ranging at the receiving end no longer depends on the fallback search algorithm, which can not only improve the ranging accuracy in the non-line-of-sight (NLOS) environment, but also solve the problem caused by the inability to distinguish between multipath and interference. Correlation peak conundrum.
  • Embodiment 1 of the present application can enable the receiving end to have the ability to detect whether the ranging process is interfered is analyzed separately in the following two situations of interference and non-interference in the ranging process, that is, this application The reason why the technical solution provided by the first embodiment can realize the integrity protection of the ranging signal.
  • h 12 (t) represents a channel impulse response (channel impulse response, CIR) from the first device to the second device
  • he (t) represents the channel impulse response (CIR) of the equivalent channel experienced by the original ranging signal p(t).
  • CIR channel impulse response
  • the ranging signal generated by the embodiment of the present application that is, the above-mentioned first ranging signal
  • additive white Gaussian noise additive white gaussian noise
  • additive Gaussian white noise is a noise signal whose power spectrum function is constant (ie, white noise) and whose amplitude follows a Gaussian distribution.
  • the channel from the second device to the first device is different from the channel from the first device to the second device.
  • the difference between is small, so he (t) still has a time-focusing effect. That is to say, the equivalent channel experienced by the original ranging signal p(t) can also be approximated as an additive white Gaussian noise channel.
  • the interference behavior may be carried out in two stages: (1) use the interference signal to interfere with the channel measurement signal sent in the above step S101, that is, interfere with the channel estimation process; (2) use the interference signal to interfere with the above step S105 The transmitted at least part of the first ranging signal interferes with the ranging process.
  • the channel estimation process is disturbed, the channel estimation result of the first device will be wrong, that is, the accurate estimation of h 21 (t) cannot be obtained. In this way, he (t) in the above formula (2-6) no longer has the effect of time focusing, so that p(t) generates intersymbol interference at the receiving end.
  • the received signal that is, the signal y(t) used for ranging
  • the sample sequence obtained by sampling will be different from the locally stored first sequence.
  • the correlation calculation value is very low (the value of z is small), so that the integrity check fails.
  • each element in the final check sequence Y[k] will not only contain the sampling value of the original ranging signal, but also contain the interference signal The sampling value of , which will cause the correlation operation result z of Y[k] and X[k] to be lower than the preset threshold, so that the integrity check fails.
  • the above content analyzes the reasons why the technical solution provided by the embodiment of the present application can realize the integrity protection of the ranging signal.
  • the technical effect that the embodiment of the present application can achieve is described below through exemplary simulation data.
  • simulation parameters are as follows: 128-bit STS packet (128bits STS packet with configuration three), eighth order Butterworth pulse (8th order Butterworth pulse), length of 31-bit synchronous preamble 1 ( SYNC Preamble Code 1 (length 31)), sampling frequency 500MHz (Sampling frequency 500MHz), peak pulse repetition frequency (pulse repetition frequency, PRF) 499.2MHz (also supports 124.8MHz PRF), 6-bit DAC (also supports 2, 4, 12), 802.15.4a ultra-wideband channel model (walking line-of-sight mode), 100 channel implementation, no frequency offset and perfect timing (No frequency offset and perfect timing).
  • FIG. 5 a is a schematic diagram of a comparison of the attack success rate provided by the embodiment of the present application with and without integrity protection.
  • the vertical axis represents the attack success rate in percentage (%)
  • the horizontal axis represents the signal-to-noise ratio (SNR) in decibel (dB).
  • SNR signal-to-noise ratio
  • FIG. 5b is a schematic diagram of a comparison of ranging error rates with and without integrity protection provided by the embodiment of the present application.
  • a ranging error is identified.
  • the vertical axis represents the ranging error rate in percentage (%)
  • the horizontal axis represents the signal-to-noise ratio (SNR) in decibel (dB).
  • SNR signal-to-noise ratio
  • FIG. 5c shows the detection rate of ranging events with and without integrity protection provided by the embodiment of the present application.
  • a ranging event is detected if the correlator can output a peak value above a threshold and the sanity check passes.
  • the vertical axis represents ranging error rate in percentage (%)
  • the horizontal axis represents signal-to-noise ratio (SNR) in decibel (dB).
  • FIG. 6 is a third schematic flowchart of a ranging signal transmission method in UWB according to an embodiment of the present application. It mainly introduces the generation and integrity protection of ranging signal with received waveform inversion.
  • the ranging signal transmission method in the UWB includes but is not limited to the following steps:
  • the second device sends an original ranging signal, where the original ranging signal is generated based on a first sequence.
  • the first sequence may be a sequence determined through negotiation between the first device and the second device, a preset or predefined sequence, a public sequence, a standard-defined sequence, and the like.
  • the first sequence can be STS.
  • the first device may send a request signal to the second device, and the request signal may be used to request to perform a ranging process (or to request to start a ranging process); after receiving the request signal, the second device sends a request to the second device.
  • a device feeds back an acknowledgment signal, and the acknowledgment signal includes an original ranging waveform.
  • the first device receives a first signal, where the first signal is obtained after the original ranging signal is transmitted through a wireless channel.
  • the second device when the signal is transmitted in the wireless channel, it will be reflected, diffracted, and scattered by various obstacles, which will cause some changes when the signal sent by the sending end reaches the receiving end. Therefore, although the second device sends the original ranging signal, what the second device receives is the first signal, and the first signal is obtained after the original ranging signal is transmitted through the wireless channel.
  • the first signal received by the first device is denoted as y 1 (t).
  • the mathematical expression of y 1 (t) is as follows:
  • h 21 (t) represents the channel impulse response from the second device to the first device
  • n 1 (t) represents the receiver noise of the first device
  • the first device performs time inversion, or time inversion and conjugate processing on the first signal, to obtain a first ranging signal.
  • the first device sends at least part of the first ranging signal, where the at least part of the first ranging signal supports an integrity protection function and a ranging function.
  • the first device may perform time reversal on the first signal y 1 (t) to obtain the first ranging signal.
  • the first device obtains the first ranging signal after performing power normalization, time inversion, and conjugate processing on the first signal y 1 (t).
  • the first ranging signal has or supports an integrity protection function and a ranging function, or the first ranging signal supports integrity checking and ranging.
  • the first ranging signal is denoted as s(t).
  • the first ranging signal is shown in the following formula (2-9):
  • represents a power normalization factor, which is used to perform power normalization processing on the first signal y 1 (t).
  • y' 1 (t) means that y 1 (t) takes the conjugate.
  • the first device may use the first ranging signal s(t) as a signal having an integrity protection function and a ranging function, and send it to the second device.
  • the first device has two processing methods.
  • the first device may intercept the first ranging signal, obtain and send part of the first ranging signal.
  • the truncation method is: retaining the tail of the first ranging signal, and the tail is equal to the length of the original ranging signal p(t).
  • the first device may not truncate the first ranging signal, but directly send the first ranging signal. The at least part of the first ranging signal supports the integrity protection function and the ranging function.
  • the second device receives the signal for ranging, where the signal for ranging is obtained after at least part of the first ranging signal is transmitted through a wireless channel.
  • the second device inputs the original ranging signal and the signal used for ranging into a correlator to perform a correlation operation, and obtains a first moment at which a maximum value output by the correlator is located.
  • step S205-step S206 in the embodiment of the present application, reference may be made to the implementation manner of step S106-step S107 in the second embodiment above, and details are not repeated here.
  • the second device performs an integrity check on the signal used for ranging, and obtains a check result.
  • the second device may perform the signal used for ranging (Denoted as y(t)) to take the real part, and then sample at equal intervals to obtain the sample sequence.
  • the sampling start time is the first time (marked as t 2 )
  • the sampling interval is T (that is, the interval between adjacent symbols in the first sequence).
  • the length of the sample sequence is equal to the total length of the first sequence. For example, if the length of the STS is 128 bits, the length of the sample sequence (or the total number of samples) is also 128 bits.
  • the second device may directly use the sample sequence as a check sequence (denoted as Y[k]).
  • the second device after obtaining the sample sequence, the second device generates a check sequence (denoted as Y[k]) according to the polarity of each sample. If the polarity of the sample in the sample sequence is positive, the corresponding element in the check sequence is 1; otherwise, that is, if the polarity of the sample in the sample sequence is negative, the corresponding element in the check sequence is -1.
  • the second device can perform a correlation operation on the X[-k] obtained after time-reversing the first sequence X[k] stored locally with the verification sequence (Y[k]), and obtain the correlation operation result (denoted as z ).
  • the correlation operation result z is expressed as:
  • N represents the length of the check sequence Y[k].
  • the second device may compare the correlation operation result z with a preset threshold to obtain a verification result.
  • the verification result is that the signal used for ranging has passed the integrity check, that is, the ranging process is not interfered by interference signals.
  • the correlation calculation result z is smaller than the preset threshold, the verification result is that the signal used for ranging fails the integrity check, that is, the ranging process is interfered by an interference signal. It should be understood that when the correlation operation result z is equal to the preset threshold, whether the check result is passed or failed may be determined according to actual conditions, which is not limited in this embodiment of the present application.
  • the second device determines the first moment as an arrival time of the signal used for ranging.
  • the second device may use the first moment (t 2 ) as the The moment of arrival of the signal used for ranging. If the result of the above check is that the signal used for ranging has not passed the integrity check, it means that the ranging process has been interfered by an interference signal; then the second device can inform the first device to resend a new ranging signal, or interval Resend the ranging signal for a period of time, or do nothing.
  • the first device performs power normalization on the received first signal and directly performs inversion and conjugation to obtain a signal with integrity protection and ranging functions (that is, the above-mentioned first ranging signal) and send; the second device completes the time of flight (ToF) measurement through correlation calculations based on the received signal, and makes a judgment on whether the ranging process is interfered with through sampling, judgment, and correlation calculations, thereby realizing ranging Signal integrity protection.
  • the receiving end be able to detect whether the ranging process suffers from interference, but also provide integrity protection for the ranging signal; it can also not lose the ranging performance of the system.
  • the embodiment of the present application does not need to perform channel estimation, and ranging performance is not affected by channel estimation errors.
  • Embodiment 2 of the present application can enable the receiving end to have the ability to detect whether the ranging process is interfered with the two situations of interference and non-interference in the ranging process is respectively analyzed, that is, the present application
  • n e (t) represents receiver equivalent noise of the second device.
  • n e (t) is expressed as:
  • he (t) represents the channel impulse response (CIR) of the equivalent channel experienced by the original ranging signal p(t) after time reversal and conjugate p'(-t).
  • CIR channel impulse response
  • the ranging signal generated by the embodiment of the present application that is, the first ranging signal above
  • AWGN additive white Gaussian noise
  • the interference behavior may be carried out in two stages: (1) use the interference signal to interfere with the original ranging signal sent in the above step S201; (2) use the interference signal to interfere with at least part of the distance measurement signal sent in the above step S204 A ranging signal, which interferes with the ranging process.
  • each element in the finally obtained check sequence Y[k] will not only contain the sampled value of p'(-t), but also contain the sampled value of the interference signal. It will cause the correlation operation result z of Y[k] and X[-k] to be lower than the preset threshold, so that the integrity check fails.
  • each element in the final check sequence Y[k] will not only contain the sampling value of p'(-t), but also contain the interference signal The sampling value of , which will cause the correlation operation result z of Y[k] and X[-k] to be lower than the preset threshold, so that the integrity check fails.
  • Embodiment 4 of the present application may be implemented together with any one of the foregoing Embodiments 1 to 3, or may be implemented independently, which is not limited in this embodiment of the present application.
  • FIG. 7 is a fourth schematic flowchart of a ranging signal transmission method in UWB according to an embodiment of the present application.
  • This paper mainly introduces a wireless frame with integrity protection function and ranging function.
  • the ranging signal transmission method in the UWB includes but is not limited to the following steps:
  • the first device generates a ranging radio frame, where the ranging radio frame carries a signal supporting an integrity protection function and a ranging function.
  • the first device sends the ranging wireless frame.
  • the signal supporting the integrity protection function and the ranging function carried in the ranging radio frame is denoted as STS+.
  • the STS+ may be at least part of the first ranging signal.
  • the frame format of the ranging radio frame may be multiplexed with the physical layer frame format in 802.15.4z.
  • FIG. 8 is a schematic diagram of a frame format of a ranging radio frame provided by an embodiment of the present application.
  • 8a, 8b, and 8c in FIG. 8 show three formats of ranging radio frames.
  • the ranging wireless frame includes one or more of the following: synchronization (synchronization, SYNC) field, frame start delimiter (start-of-frame delimiter, SFD), STS+ (that is, support integrity protection function and ranging function signal), physical layer header (physical layer header, PHR) field, physical layer load (physical layer payload).
  • the STS+ (that is, the signal supporting the integrity protection function and the ranging function) has two formats, format 1 and format 2 respectively.
  • FIG. 9 is a schematic diagram of a frame format of the STS+ in the ranging radio frame provided by the embodiment of the present application. It can be seen from the foregoing embodiments 1 and 2 that the STS+ segment (STS+segment) is obtained by convolution of the STS segment and other signals, so the STS+segment will be longer than the STS segment.
  • the embodiment of the present application provides two processing methods, truncating the STS+segment to make it as long as the STS segment, that is, format 1; not truncating the STS+segment, that is, format 2.
  • the truncation method is to delete the head of the STS+ signal obtained after convolution, and retain the part whose tail is equal to the length of the STS segment.
  • the STS+segment in format 2 is longer than the STS+segment in format 1, the length of STS+segment in format 2 is L1+L2-1, and the length of STS+segment in format 1 is L1.
  • FIG. 9 takes the frame format shown in 8a of FIG. 8 as an example.
  • the two formats of STS+ provided in the embodiment of the present application can be applied to any frame format in FIG. 8 .
  • the pulse repetition frequency (pulse repetition frequency, PRF) of STS+ (that is, the signal supporting the integrity protection function and the ranging function) may be higher than that of the STS (that is, The PRF of the signal that only supports the ranging function), so for the signal that supports the integrity protection function and the ranging function at the same time, a new PRF mode can be added, including but not limited to 249.6MHz and 499.2MHz.
  • the second device receives the ranging wireless frame.
  • the second device parses the ranging wireless frame.
  • the second device parses the ranging radio frame, and obtains the signal supporting the integrity protection function and the ranging function carried in the ranging radio frame.
  • the embodiment of the present application provides a wireless frame with an integrity protection function and a ranging function, which is beneficial to realize the integrity protection of the ranging signal.
  • Embodiment 5 of the present application may be implemented together with any one or more of the preceding Embodiments 1 to 4, or may be implemented independently, which is not limited in this embodiment of the present application.
  • FIG. 10 is a schematic flowchart of a method for transmitting ranging configuration information provided by an embodiment of the present application.
  • the ranging configuration information transmission method includes but is not limited to the following steps:
  • the communication device sends ranging configuration information, where the ranging configuration information includes the type of a ranging wireless frame, and the type of the ranging wireless frame is a wireless frame type supporting a ranging function, or simultaneously supporting a ranging function and integrity The radio frame type of the protection function.
  • other communication devices receive the ranging configuration information.
  • the ranging parties may negotiate some configuration information during the ranging process.
  • the communication device sends ranging configuration information to the second device.
  • the ranging configuration information may include the type of the ranging radio frame.
  • the type of the ranging radio frame is a radio frame type supporting a ranging function, or a radio frame type supporting both a ranging function and an integrity protection function. That is to say, whether the ranging radio frame is a conventional ranging radio frame or a ranging radio frame having both a ranging function and an integrity protection function.
  • the ranging configuration information includes: whether the ranging signal sent during the ranging process supports the integrity protection function.
  • the foregoing ranging configuration information may also include an STS configuration format, or a format of a ranging radio frame.
  • STS configuration format For conventional ranging wireless frames (that is, wireless frames that only support the ranging function), there are three STS configuration formats, namely STS configuration 1 to STS configuration 3 (the specific format can refer to the description of the 802.15.4z standard, which is not described here. expand the description).
  • STS configuration 1 to STS configuration 3 the specific format can refer to the description of the 802.15.4z standard, which is not described here. expand the description.
  • the ranging radio frame having both the ranging function and the integrity protection function its format is shown in FIG. 8 above.
  • the foregoing ranging configuration information may also include an STS+ format (that is, a truncated format or a non-truncated format), that is, the length of the ranging signal during the ranging process.
  • STS+ format that is, a truncated format or a non-truncated format
  • the length of the ranging signal is greater than the length of the original ranging signal (the signal generated by the above formula (2-1)); for the truncated format, the length of the ranging signal is equal to the length of the original ranging signal.
  • the foregoing ranging configuration information may also include PRF modes (including but not limited to 124.8MHz, 249.6MHz, and 499.2MHz).
  • the above ranging configuration information may be carried in a ranging channel and preamble code selection information element (Ranging Channel and Preamble Code Selection Information Element, RPCCS IE), such as extending the existing field of RCPCS IE, for carrying the above measuring distance configuration information.
  • RPCCS IE Ranging Channel and Preamble Code Selection Information Element
  • a new information element can also be defined to carry the above-mentioned ranging configuration information, for example, it can be called a ranging frame configuration selection information element (Ranging Frame Configuration Selection Information Element, RFCS IE), and the above-mentioned ranging configuration information Carried in the newly defined RFCS IE.
  • the above-mentioned ranging configuration information may be carried in a ranging response time negotiation information element (Ranging Reply Time Negotiation Information Element, RRTN IE), such as extending an existing field of the RRTN IE, to carry the ranging configuration information.
  • a new information element can also be defined, for example, it can be called the ranging frame configuration selection information element (Ranging Frame Configuration Selection Information Element, RFCS IE), and the ranging configuration information is carried in the newly defined RFCS IE .
  • the other communication device reports the ranging configuration information to the upper layer after receiving the ranging configuration information, and feeds back an acknowledgment (Acknowledgment, ACK) signal frame to the communication device.
  • the ranging parties will complete the ranging according to the above agreed ranging frame.
  • the embodiment of the present application provides a configuration information negotiation method for newly added signals or wireless frames that support both the ranging function and the integrity protection function, laying a foundation for the subsequent ranging process.
  • the functional modules of the first device and the second device can be divided according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 11 and FIG. 13 . Wherein, the communication device is the first device or the second device, further, the communication device may be a device in the first device; or, the communication device is a device in the second device.
  • FIG. 11 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • the communication device 1 includes a transceiver module 11 and a processing module 12 .
  • the transceiver module 11 is used to receive a first signal; the processing module 12 is used to preprocess the first signal to obtain a second signal, and the preprocessing includes channel estimation or power normalization; the processing The module 12 is further configured to generate a first ranging signal at least according to the second signal, wherein the first ranging signal conforms to the time reversal of the second signal, or the original ranging signal after time reversal and conjugate processing The signal after the convolution processing of the signal, or the signal obtained after the first ranging signal conforms to the second signal through time reversal, or time reversal and conjugate processing; the transceiver module 11 is also used to send at least Part of the first ranging signal, the at least part of the first ranging signal supports the integrity protection function and the ranging function.
  • the above-mentioned communication device 1 can correspondingly execute any one of the aforementioned embodiments 1 to 3, and the above-mentioned operations or functions of each unit in the communication device 1 are respectively in order to realize the first For the sake of brevity, the corresponding operation of a device will not be repeated here.
  • the processing module 12 is configured to generate a ranging radio frame, and the ranging radio frame carries a signal supporting the integrity protection function and the ranging function; the transceiver module 11 is configured to send the ranging radio frame.
  • the above-mentioned communication device 1 can correspondingly execute the above-mentioned fourth embodiment, and the above-mentioned operations or functions of each unit in the communication device 1 are respectively to realize the corresponding operation of the first device in the above-mentioned fourth embodiment. Let me repeat.
  • the transceiver module 11 is configured to send ranging configuration information, or receive ranging configuration information; wherein, the ranging configuration information includes a type of a ranging radio frame, and the type of the ranging radio frame supports The radio frame type of the ranging function, or the radio frame type supporting both the ranging function and the integrity protection function.
  • the processing module 12 is configured to generate ranging configuration information.
  • the above-mentioned communication device 1 can correspondingly execute the aforementioned fifth embodiment, and the above-mentioned operations or functions of each unit in the communication device 1 are respectively to realize the corresponding operation of the first device in the aforementioned fifth embodiment. Let me repeat.
  • FIG. 12 is a schematic structural diagram of a communication device 2 provided by an embodiment of the present application.
  • the communication device 2 includes a transceiver module 21 , a correlation calculation module 22 , an integrity check module 23 and a determination module 24 .
  • the transceiver module 21 is used to send a signal, and the signal is used to generate a first ranging signal; the transceiver module 21 is also used for a ranging signal, and the ranging signal is at least part of the first ranging signal.
  • a ranging signal is obtained after being transmitted through a wireless channel, and at least part of the first ranging signal supports the integrity protection function and the ranging function;
  • the correlation calculation module 22 is used to combine the original ranging signal and the signal used for ranging Input the correlator to perform a correlation operation, and obtain the first moment at which the maximum value of the correlator output is located, and the original ranging signal is generated based on the first sequence; the integrity check module 23 is used to perform the signal used for ranging.
  • Integrity verification obtaining a verification result; wherein, when the correlation operation result obtained by performing a correlation operation between the second sequence and the verification sequence is greater than or equal to a preset threshold, the verification result is that the signal used for ranging has passed the Integrity check; when the correlation calculation result of the second sequence and the check sequence is less than the preset threshold, the check result is that the signal used for ranging has not passed the integrity check; the first The second sequence is the first sequence, or the second sequence is a time-reversed sequence of the first sequence; the verification sequence is obtained by taking the real part of the signal for ranging and then sampling at equal intervals, The starting moment of the equally spaced sampling is the first moment, and the length of the verification sequence is equal to the length of the first sequence; the determination module 24 is used for when the verification result is that the signal for ranging passes through the During the integrity check, the first moment is determined as the arrival moment of the signal used for ranging.
  • the above-mentioned correlation operation module 22, the above-mentioned integrity check module 23, and the above-mentioned determination module 24 may be integrated into one module, such as a processing module.
  • the above-mentioned communication device 2 can correspondingly execute any one of the aforementioned embodiments 1 to 3, and the above-mentioned operations or functions of each unit in the communication device 2 are respectively in order to realize the first step in any one of the aforementioned embodiments 1-3.
  • the corresponding operations of the second device will not be repeated here.
  • the first device and the second device in the embodiment of the present application are described above, and possible product forms of the first device and the second device are introduced below. It should be understood that all products of any form having the functions of the first device described above in FIG. 11 and products of any form having the functions of the second device described above in FIG. 12 fall within the scope of the embodiments of the present application. protected range. It should also be understood that the following introduction is only an example, and product forms of the first device and the second device in the embodiment of the present application are not limited thereto.
  • the first device and the second device described in the embodiment of the present application may be implemented by a general bus architecture.
  • FIG. 13 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication apparatus 1000 may be the first device or the second device, or a chip therein.
  • FIG. 13 shows only the main components of the communication device 1000 .
  • the communication device may further include a memory 1003 and an input and output device (not shown in the figure).
  • the processor 1001 is mainly used to process communication protocols and communication data, control the entire communication device, execute software programs, and process data of the software programs.
  • the memory 1003 is mainly used to store software programs and data.
  • the transceiver 1002 may include a control circuit and an antenna, and the control circuit is mainly used for converting a baseband signal to a radio frequency signal and processing the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1001 performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit, and the radio frequency circuit performs radio frequency processing on the baseband signal, and sends the radio frequency signal through the antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1001, and the processor 1001 converts the baseband signal into data and processes the data deal with.
  • the radio frequency circuit and the antenna can be set independently from the processor for baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the processor 1001, the transceiver 1002, and the memory 1003 may be connected through a communication bus.
  • the communication device 1000 can be used to perform the functions of the first device in the foregoing embodiment 1: the processor 1001 can be used to perform steps S3-S4 in FIG. 3 , and/or to perform the Other processes for the techniques; the transceiver 1002 may be used to perform steps S2 and S5 in FIG. 3, and/or for other processes for the techniques described herein.
  • the communication device 1000 may be used to perform the functions of the second device in the first embodiment above: the processor 1001 may be used to perform steps S7-S9 in FIG. 3 , and/or to perform the functions described herein. Other processes of the technology; the transceiver 1002 may be used to perform steps S1 and S6 in FIG. 3, and/or other processes for the technology described herein.
  • the communication device 1000 may be used to perform the functions of the first device in the second embodiment above: the processor 1001 may be used to perform steps S102-S104 in FIG. 4, and/or to perform the Other processes of the technology; the transceiver 1002 may be used to perform step S105 in FIG. 4, and/or for other processes of the technology described herein.
  • the communication device 1000 may be used to perform the functions of the second device in the second embodiment above: the processor 1001 may be used to perform steps S107-S109 in FIG. 4, and/or to perform the Other processes of the technology; the transceiver 1002 may be used to perform step S101 and step S106 in FIG. 4, and/or other processes for the technology described herein.
  • the communication device 1000 may be used to perform the functions of the first device in the foregoing third embodiment: the processor 1001 may be used to perform step S203 in FIG. 6 , and/or other devices for performing the technology described herein Process; The transceiver 1002 may be used to perform steps S202 and S204 in FIG. 6, and/or other processes for the techniques described herein.
  • the communication device 1000 may be used to perform the functions of the second device in the foregoing third embodiment: the processor 1001 may be used to perform steps S206-S208 in FIG. 6 , and/or to perform the Other processes of the technology; the transceiver 1002 may be used to perform steps S201 and S205 in FIG. 6, and/or for other processes of the technology described herein.
  • the communication device 1000 may be used to perform the functions of the first device in the foregoing fourth embodiment: the processor 1001 may be used to perform step S301 in FIG. 7 , and/or other devices for performing the technology described herein Process; Transceiver 1002 may be used to perform step S302 in FIG. 7, and/or other processes for the techniques described herein.
  • the communication device 1000 may be used to perform the functions of the second device in the foregoing fourth embodiment: the processor 1001 may be used to perform step S304 in FIG. 7 , and/or other devices for performing the technology described herein Process; the transceiver 1002 may be used to perform step S303 in FIG. 7, and/or other processes for the techniques described herein.
  • the communication device 1000 may be used to perform the functions of the first device in the foregoing fifth embodiment: the processor 1001 may be used to generate the ranging configuration information in FIG. 10 , and/or to perform the technology described herein other processes; the transceiver 1002 may be used to perform step S401 in FIG. 10, and/or other processes for the techniques described herein.
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuit, interface or interface circuit used to realize the receiving and sending functions can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1001 may store instructions, the instructions may be computer programs, and the computer programs run on the processor 1001 to enable the communication device 1000 to execute the methods described in any of the above method embodiments.
  • the computer program may be fixed in the processor 1001, and in this case, the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and the transceiver described in the embodiment of the present application can be implemented in an integrated circuit (integrated circuit, IC), an analog IC, a radio frequency integrated circuit (radio frequency integrated circuit, RFIC), a mixed signal IC, an application specific integrated circuit (application specific integrated circuit, ASIC), printed circuit board (printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the first device and the second device described in the embodiment of the present application may be implemented by a general-purpose processor.
  • the general-purpose processor implementing the first device includes processing circuitry and an input-output interface in internal communication with said processing circuitry.
  • the general-purpose processor may be used to execute the functions of the first device in the first embodiment above.
  • the processing circuit can be used to perform steps S3-S4 in FIG. 3, and/or other processes for performing the techniques described herein;
  • the input-output interface can be used to perform steps S2 and S5 in FIG. 3 , and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to execute the functions of the first device in the foregoing second embodiment.
  • the processing circuit may be used to perform steps S102-S104 in FIG. 4, and/or other processes for performing the technology described herein;
  • the input-output interface may be used to perform step S105 in FIG. 4, and/or Or other procedures for the techniques described herein.
  • the general-purpose processor may be used to execute the functions of the first device in the foregoing third embodiment.
  • the processing circuit may be used to perform step S203 in FIG. 6, and/or other processes for performing the technology described herein;
  • the input-output interface may be used to perform step S202 and step S204 in FIG. 6, and/or Or other procedures for the techniques described herein.
  • the general-purpose processor may be used to execute the functions of the first device in the foregoing fourth embodiment.
  • the processing circuit may be used to execute step S301 in FIG. 7, and/or to execute other processes of the technology described herein;
  • the input-output interface may be used to execute step S302 in FIG. 7, and/or to Other procedures of the techniques described herein.
  • the general-purpose processor may be used to execute the functions of the first device in the foregoing fifth embodiment.
  • the processing circuit may be used to generate the ranging configuration information in FIG. 10, and/or be used to perform other processes of the technology described herein; the input and output interface may be used to perform step S401 in FIG. 10, and/or Other procedures for the techniques described herein.
  • the general-purpose processor implementing the second device includes processing circuitry and an input-output interface in internal communication with said processing circuitry.
  • the general-purpose processor may be used to execute the functions of the second device in the first embodiment above.
  • the processing circuit can be used to perform steps S7-S9 in FIG. 3, and/or other processes for performing the technology described herein;
  • the input-output interface can be used to perform steps S1 and S6 in FIG. 3 , and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to execute the functions of the second device in the foregoing second embodiment.
  • the processing circuit may be used to perform steps S107-S109 in FIG. 4, and/or other processes for performing the technology described herein;
  • the input-output interface may be used to perform steps S101 and S106 in FIG. 4, and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to execute the functions of the second device in the foregoing third embodiment.
  • the processing circuit may be used to perform steps S206-S208 in FIG. 6, and/or other processes for performing the technology described herein;
  • the input-output interface may be used to perform steps S201 and S205 in FIG. 6, and/or other processes for the techniques described herein.
  • the general-purpose processor may be used to execute the functions of the second device in Embodiment 4 above.
  • the processing circuit can be used to execute step S304 in FIG. 7, and/or be used to execute other processes of the techniques described herein;
  • the input-output interface can be used to execute step S303 in FIG. 7, and/or be used in this paper Other procedures for the techniques described.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored, and when the above-mentioned processor executes the computer program code, the electronic device executes the method in any one of the above-mentioned embodiments.
  • An embodiment of the present application further provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the preceding embodiments.
  • the embodiment of the present application also provides a communication device, which can exist in the product form of a chip.
  • the structure of the communication device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit, so that the communication
  • the device executes the method in any one of the preceding embodiments.
  • An embodiment of the present application further provides a wireless communication system, including a first device and a second device, where the first device and the second device can execute the method in any one of the preceding embodiments.
  • the steps of the methods or algorithms described in connection with the disclosure of this application can be implemented in the form of hardware, or can be implemented in the form of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (Random Access Memory, RAM), flash memory, erasable programmable read-only memory (Erasable Programmable ROM, EPROM), electrically erasable Programmable read-only memory (Electrically EPROM, EEPROM), registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist in the core network interface device as discrete components.
  • Computer-readable media includes both computer-readable storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请涉及无线通信领域,应用于支持802.15.4z标准的无线局域网中,尤其涉及一种UWB中的测距信号传输方法、装置及可读存储介质,该方法包括:第一设备利用自身与第二设备之间信道的信道冲击响应或者接收到的第二设备发送的信号,通过时间反转构造测距信号波形,实现测距信号与信道的匹配;第二设备基于接收信号,通过相关运算完成ToF测量,并通过采样、判决、相关操作对测距过程是否被干扰做出判断,实现测距信号的完整性保护。采用本申请实施例,可以使接收端具有检测测距过程是否受到干扰的能力,保证测距信号的完整性,并且不损失系统的测距性能。

Description

UWB中的测距信号传输方法、装置及可读存储介质
本申请要求于2022年01月15日提交中国专利局、申请号为202210045268.1、申请名称为“UWB中的测距信号传输方法、装置及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种超宽带(ultra wideband,UWB)中的测距信号传输方法、装置及可读存储介质。
背景技术
随着移动通信和互联网技术的快速发展,人们对于位置服务的需求与日俱增。测距和定位技术是通信感知领域的重要技术,并受到国际标准化组织(如电气与电子工程师协会(institute of electrical and electronics engineers,IEEE))的高度关注。例如,IEEE 802.15.4z(也称为脉冲无线电(impulse radio,IR)超宽带,即IR-UWB)标准旨在将测距通信过程标准化,通过安全测距和测距结果的交换确定设备的位置。具体来说,通信双方通过发送测距序列获知两设备之间的距离远近,从而执行高精度的位置估计。该技术在工厂人员定位、物流仓储中的货物定位、汽车门锁的智能感知等方面有着诸多的需求与应用。在定位和测距需求飞速增长的同时,其中的安全问题也随之产生。
针对测距和定位过程中的安全性问题,IEEE 802.15.4z标准提出对测距序列进行加密,此方式用于对抗提前检测/延迟提交(early detect/late commit,ED/LC)攻击(attack)是有效的。但对于其他类型的距离缩减攻击(distance-reduction attack),如Cicada,Cicada++,GhostPeak,对测距序列进行加密的方式无法保证安全性。距离缩减攻击是利用干扰信号使得收到测距信号的设备估计出的信号到达时间比真实时间提前,从而导致在实际距离很远的情况下测距双方误认为距离很近。也就是说,现有IEEE 802.15.4z标准仅提供了对测距信号的机密性保护机制,而没有提供完整性保护(完整性可以理解为:防止对测距信号进行篡改)。因此,如何对测距信号进行完整性保护尚未解决。
发明内容
本申请实施例提供一种UWB中的测距信号传输方法、装置及可读存储介质,可以使接收端具有检测测距过程是否受到干扰的能力,保证测距信号的完整性,并且不损失系统的测距性能。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
本申请中,第一设备和第二设备可能是同一设备在不同时刻担任的不同角色。也就是说,第一设备在某一时刻是发送端,执行发送端的操作;但在另一时刻可能是接收端,执行接收端的操作。第二设备与第一设备同理,也就是说,第二设备在某一时刻是发送端,执行发送端的操作;但在另一时刻可能是接收端,就执行接收端的操作。下文以第一设备执行发送端的操作,第二设备执行接收端的操作为例进行描述。
第一方面,本申请提供一种超宽带中的测距信号传输方法,该方法包括:第一设备接收来自第二设备的第一信号,并对该第一信号进行预处理,获得第二信号,该预处理为信道估 计或功率归一化;第一设备至少根据第二信号生成第一测距信号,其中,该第一测距信号符合该第二信号经过时间反转,或者时间反转和共轭处理后与原始测距信号进行卷积处理后的信号,或者该第一测距信号符合该第二信号经过时间反转,或者时间反转和共轭处理后的信号;第一设备发送至少部分第一测距信号,该至少部分第一测距信号支持完整性保护功能和测距功能。
本方案第一设备利用来自第二设备的信号,对其进行预处理,再通过时间反转和共轭,构造一种新的物理层测距信号,该信号具有完整性保护功能,可以使接收端具有检测测距过程是否受到干扰的能力,保证测距信号的完整性,并且不损失系统的测距性能。
结合第一方面,在一种可能的实现方式中,上述第一信号中包含导频信息,如前导码;上述预处理为信道估计,上述第二信号为第二设备到第一设备的第一信道冲击响应。也就是说,第一设备对第一信号进行预处理,获得第二信号,包括:第一设备利用第一信号中包含的导频信息进行信道估计,获得第二设备到第一设备的第一信道冲击响应。第一设备根据该第二信号生成第一测距信号,包括:第一设备对该第一信道冲击响应(即第二信号)进行第一处理后,获得第二信道冲击响应,该第一处理包括时间反转,或者时间反转和共轭处理;第一设备根据该第二信道冲击响应和原始测距信号进行卷积处理后获得第一测距信号。
可选的,第一设备根据该第二信道冲击响应和原始测距信号进行卷积处理后获得第一测距信号,包括:归一化处理该第二信道冲击响应后与该原始测距信号进行卷积处理后获得第一测距信号。
本方案中第一设备利用自身和第二设备之间信道的信道冲击响应,通过时间反转构造测距信号波形,实现测距信号与信道的匹配;从而使接收端具有检测测距过程是否受到干扰的能力,保证测距信号的完整性,并且不损失系统的测距性能。
结合第一方面,在一种可能的实现方式中,上述第一信号为原始测距信号经过无线信道传输后获得,上述预处理为功率归一化。也就是说,第一设备对第一信号进行预处理,获得第二信号,包括:第一设备对第一信号进行功率归一化,获得第二信号。第一设备根据该第二信号生成第一测距信号,包括:第一设备对第二信号进行时间反转,或者时间反转和共轭处理后,获得第一测距信号。
本方案中第一设备对接收到的第一信号进行功率归一化后直接进行反转和共轭,获得具有完整性保护和测距功能的信号(即上述第一测距信号)并发送;可以使得接收端能够对测距过程是否遭受干扰进行检测,对测距信号提供了完整性保护;还可以不损失系统的测距性能。另外,本方案不用进行信道估计,测距性能不受信道估计误差的影响。
结合第一方面,在一种可能的实现方式中,上述至少部分第一测距信号的长度与原始测距信号的长度相等。或者,上述至少部分第一测距信号的长度大于原始测距信号的长度。
结合第一方面,在一种可能的实现方式中,上述至少部分第一测距信号携带于测距无线帧中。
结合第一方面,在一种可能的实现方式中,第一设备发送至少部分第一测距信号之前,该方法还包括:第一设备接收测距配置信息,或者,第一设备发送测距配置信息;其中,该测距配置信息用于配置以下一项或多项信息:测距过程中发送的测距信号是否支持完整性保护功能,携带测距信号的测距无线帧的格式,测距过程中测距信号的长度,脉冲重复频率模式。
可选的,上述测距配置信息携带于测距信道与前导码选择信息单元,或测距响应时间协商信息单元中。
本方案针对新增的同时支持测距功能和完整性保护功能的信号或无线帧,提供一种配置信息的协商方式,为后续的测距过程奠定基础。
第二方面,本申请提供一种超宽带中的测距信号传输方法,该方法包括:第二设备发送信号,该信号用于生成第一测距信号;第二设备接收用于测距的信号,该用于测距的信号为至少部分该第一测距信号经过无线信道传输后获得,该至少部分该第一测距信号支持完整性保护功能和测距功能;第二设备将原始测距信号和该用于测距的信号输入相关器进行相关运算,获得该相关器输出的最大值所在的第一时刻,该原始测距信号基于第一序列生成;第二设备对该用于测距的信号进行完整性校验,获得校验结果;若该校验结果为该用于测距的信号通过该完整性校验,则该第二设备将该第一时刻确定为该用于测距的信号的到达时刻。其中,当第二序列和校验序列进行相关运算获得的相关运算结果大于或等于预设门限时,该校验结果为该用于测距的信号通过该完整性检验。当该第二序列和该校验序列进行相关运算获得的相关运算结果小于该预设门限时,该校验结果为该用于测距的信号未通过该完整性检验。该第二序列为该第一序列,或者该第二序列为该第一序列经过时间反转处理后的序列。该校验序列为该用于测距的信号经过取实部后再等间隔采样获得,该等间隔采样的起始时刻为该第一时刻,该校验序列的长度与该第一序列的长度相等。
本方案第二设备发送信号,用于第一设备生成第一测距信号;第二设备对接收到的信号进行完整性校验,以判断测距过程是否受到干扰,从而实现测距信号的完整性保护。
结合第二方面,在一种可能的实现方式中,上述信号中包含导频信息,上述第二序列与第一序列相同。
结合第二方面,在一种可能的实现方式中,上述信号为原始测距信号,上述第二序列为第一序列经过时间反转处理后的序列。
结合第二方面,在一种可能的实现方式中,上述校验序列为该用于测距的信号经过取实部后再等间隔采样获得,包括:该校验序列基于样本序列的极性生成,该样本序列为该用于测距的信号经过取实部后再等间隔采样后得到。
结合第二方面,在一种可能的实现方式中,上述至少部分第一测距信号的长度与该原始测距信号的长度相等。
结合第二方面,在一种可能的实现方式中,该至少部分第一测距信号携带于测距无线帧中。
结合第二方面,在一种可能的实现方式中,第二设备接收用于测距的信号之前,该方法还包括:第二设备发送测距配置信息,或者,第二设备接收测距配置信息;其中,该测距配置信息用于配置以下一项或多项信息:测距过程中发送的测距信号是否支持完整性保护功能,携带测距信号的测距无线帧的格式,测距过程中发送的测距信号的长度,脉冲重复频率模式。
第三方面,本申请提供一种通信装置,该通信装置可以是第一设备或第一设备中的芯片,比如Wi-Fi芯片。该通信装置包括:收发模块,用于接收第一信号;处理模块,用于对该第一信号进行预处理,获得第二信号,该预处理包括信道估计或功率归一化;该处理模块,还用于至少根据该第二信号生成第一测距信号,其中,该第一测距信号符合该第二信号经过时间反转、或者时间反转和共轭处理后与原始测距信号进行卷积处理后的信号,或者,该第一测距信号符合该第二信号经过时间反转、或者时间反转和共轭处理后获得的信号;该收发模块,还用于发送至少部分该第一测距信号,该至少部分该第一测距信号支持完整性保护功能和测距功能。
结合第三方面,在一种可能的实现方式中,上述第一信号中包含导频信息,上述预处理包括信道估计,该第二信号为第二设备到该第一设备的第一信道冲击响应。该处理模块,具体用于:对该第一信道冲击响应进行第一处理后,获得第二信道冲击响应,该第一处理包括时间反转,或者时间反转和共轭处理;根据该第二信道冲击响应和该原始测距信号进行卷积处理。
可选的,该处理模块,具体用于:归一化处理该第二信道冲击响应后,与该原始测距信号进行卷积处理。
结合第三方面,在一种可能的实现方式中,上述第一信号为原始测距信号经过无线信道传输后获得,该预处理包括功率归一化。该处理模块,具体用于:对该第二信号进行时间反转,或者时间反转和共轭处理后,获得该第一测距信号。
结合第三方面,在一种可能的实现方式中,上述至少部分该第一测距信号的长度与该原始测距信号的长度相等。
结合第三方面,在一种可能的实现方式中,上述至少部分该第一测距信号携带于测距无线帧中。
结合第三方面,在一种可能的实现方式中,上述收发模块,该用于接收测距配置信息,或者,发送测距配置信息;其中,该测距配置信息用于配置以下一项或多项信息:测距过程中发送的测距信号是否支持完整性保护功能,携带测距信号的测距无线帧的格式,测距过程中测距信号的长度,脉冲重复频率模式。
第四方面,本申请提供一种通信装置,该通信装置可以是第二设备或第二设备中的芯片,比如Wi-Fi芯片。该通信装置包括:收发模块,用于发送信号,该信号用于生成第一测距信号;该收发模块,还用于接收用于测距的信号,该用于测距的信号为至少部分第一测距信号经过无线信道传输后获得,该至少部分第一测距信号支持完整性保护功能和测距功能;相关运算模块,用于将原始测距信号和该用于测距的信号输入相关器进行相关运算,获得该相关器输出的最大值所在的第一时刻,该原始测距信号基于第一序列生成;完整性校验模块,用于对该用于测距的信号进行完整性校验,获得校验结果;其中,当第二序列和校验序列进行相关运算获得的相关运算结果大于或等于预设门限时,该校验结果为该用于测距的信号通过该完整性检验;当该第二序列和该校验序列进行相关运算获得的相关运算结果小于该预设门限时,该校验结果为该用于测距的信号未通过该完整性检验;该第二序列为该第一序列,或者该第二序列为该第一序列经过时间反转处理后的序列;该校验序列为该用于测距的信号经过取实部后再等间隔采样获得,该等间隔采样的起始时刻为该第一时刻,该校验序列的长度与该第一序列的长度相等;确定模块,用于当该校验结果为该用于测距的信号通过该完整性校验时,将该第一时刻确定为该用于测距的信号的到达时刻。
结合第四方面,在一种可能的实现方式中,上述信号中包含导频信息,该第二序列与第一序列相同。
结合第四方面,在一种可能的实现方式中,上述信号为原始测距信号,该第二序列为第一序列经过时间反转处理后的序列。
结合第四方面,在一种可能的实现方式中,上述校验序列为该用于测距的信号经过取实部后再等间隔采样获得,包括:校验序列基于样本序列的极性生成,该样本序列为该用于测距的信号经过取实部后再等间隔采样后得到。
结合第四方面,在一种可能的实现方式中,上述至少部分该第一测距信号的长度与该原始测距信号的长度相等。
结合第四方面,在一种可能的实现方式中,上述至少部分该第一测距信号携带于测距无线帧中。
结合第四方面,在一种可能的实现方式中,上述收发模块,还用于发送测距配置信息,或者,接收测距配置信息;其中,该测距配置信息用于配置以下一项或多项信息:测距过程中发送的测距信号是否支持完整性保护功能,携带测距信号的测距无线帧的格式,测距过程中发送的测距信号的长度,脉冲重复频率模式。
第五方面,本申请提供一种测距配置信息传输方法,该方法包括:通信装置发送测距配置信息,或者,通信装置接收测距配置信息。其中,该测距配置信息包括测距无线帧的类型,该测距无线帧的类型为支持测距功能的无线帧类型,或同时支持测距功能和完整性保护功能的无线帧类型。
本方案针对新增的同时支持测距功能和完整性保护功能的信号或无线帧,提供一种配置信息的协商方式,为后续的测距过程奠定基础。
第六方面,本申请提供一种通信装置,该通信装置包括:收发模块,用于发送测距配置信息,或者,接收测距配置信息。其中,该测距配置信息包括测距无线帧的类型,该测距无线帧的类型为支持测距功能的无线帧类型,或同时支持测距功能和完整性保护功能的无线帧类型。
结合第五或第六方面,在一种可能的实现方式中,上述测距配置信息还包括以下一项或多项:测距无线帧的格式,支持测距功能和/或完整性保护功能的信号的长度,脉冲重复频率模式。
结合第五或第六方面,在一种可能的实现方式中,上述测距配置信息携带于测距信道与前导码选择信息单元,或测距响应时间协商信息单元中。
第七方面,本申请提供一种通信装置,具体为第一设备,包括处理器和收发器。该收发器,用于接收第一信号;该处理器,用于对该第一信号进行预处理,获得第二信号,该预处理包括信道估计或功率归一化;该处理器,还用于至少根据该第二信号生成第一测距信号,其中,该第一测距信号符合该第二信号经过时间反转、或者时间反转和共轭处理后与原始测距信号进行卷积处理后的信号,或者,该第一测距信号符合该第二信号经过时间反转、或者时间反转和共轭处理后获得的信号;该收发器,还用于发送至少部分该第一测距信号,该至少部分该第一测距信号支持完整性保护功能和测距功能。
可选的,该通信装置还包括存储器,该存储器用于存储计算机程序,该计算机程序包括程序指令。
第八方面,本申请实施例提供一种通信装置,具体为第二设备,包括处理器和收发器。该收发器,用于发送信号,该信号用于生成第一测距信号;该收发器,还用于接收用于测距的信号,该用于测距的信号为至少部分第一测距信号经过无线信道传输后获得,该至少部分第一测距信号支持完整性保护功能和测距功能;该处理器,用于将原始测距信号和该用于测距的信号输入相关器进行相关运算,获得该相关器输出的最大值所在的第一时刻,该原始测距信号基于第一序列生成;该处理器,还用于对该用于测距的信号进行完整性校验,获得校验结果;该处理器,还用于当该校验结果为该用于测距的信号通过该完整性校验时,将该第一时刻确定为该用于测距的信号的到达时刻。其中,当第二序列和校验序列进行相关运算获得的相关运算结果大于或等于预设门限时,该校验结果为该用于测距的信号通过该完整性检 验;当该第二序列和该校验序列进行相关运算获得的相关运算结果小于该预设门限时,该校验结果为该用于测距的信号未通过该完整性检验;该第二序列为该第一序列,或者该第二序列为该第一序列经过时间反转处理后的序列;该校验序列为该用于测距的信号经过取实部后再等间隔采样获得,该等间隔采样的起始时刻为该第一时刻,该校验序列的长度与该第一序列的长度相等。
可选的,该通信装置还包括存储器,该存储器用于存储计算机程序,该计算机程序包括程序指令。
第九方面,本申请实施例提供一种通信装置,该通信装置以芯片的产品形态实现,包括处理器和接口电路;该接口电路,用于接收代码指令并传输至该处理器;该处理器用于运行该代码指令以执行上述第一方面,或上述第二方面,或其中任一方面的任一种可能的实现方式所述的UWB中的测距信号传输方法。可选的,该通信装置还包括存储器,该存储器与该处理器通过电路连接。可选的,该处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
第十方面,本申请实施例提供一种通信装置,该通信装置以芯片的产品形态实现,包括处理器和接口电路;该接口电路,用于接收代码指令并传输至该处理器;该处理器用于运行该代码指令以执行上述第五方面或上述第五方面的任一种可能的实现方式所述的测距配置信息传输方法。可选的,该通信装置还包括存储器,该存储器与该处理器通过电路连接。可选的,该处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
第十一方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,该计算机程序包括程序指令,当该程序指令在计算机上运行时,使得计算机执行上述第一方面、或上述第二方面所述的UWB中的测距信号传输方法。
第十二方面,本申请实施例提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行上述第一方面、或上述第二方面所述的测距配置信息传输方法。
第十三方面,本申请实施例提供一种通信系统,该通信系统包括上述第一方面或上述第三方面或上述五方面或上述第六方面描述的第一设备,和上述第二方面或上述第四方面描述的第二设备。
实施本申请实施例,可以使接收端具有检测测距过程是否受到干扰的能力,保证测距信号的完整性,并且不损失系统的测距性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的测距原理示意图;
图2是本申请实施例提供的测距定位系统的架构图;
图3是本申请实施例提供的UWB中的测距信号传输方法的第一种示意流程图;
图4是本申请实施例提供的UWB中的测距信号传输方法的第二种示意流程图;
图5a是本申请实施例提供有完整性保护和没有完整性保护下的攻击成功率对比示意图;
图5b是本申请实施例提供有完整性保护和没有完整性保护下的测距误差率对比示意图;
图5c是本申请实施例提供有完整性保护和没有完整性保护下的测距事件检测率;
图6是本申请实施例的UWB中的测距信号传输方法的第三种示意流程图;
图7是本申请实施例的UWB中的测距信号传输方法的第四种示意流程图;
图8是本申请实施例提供的测距无线帧的帧格式示意图;
图9是本申请实施例提供的测距无线帧中STS+的帧格式示意图;
图10是本申请实施例提供的测距配置信息传输方法的示意流程图;
图11是本申请实施例提供的通信装置1的结构示意图;
图12是本申请实施例提供的通信装置2的结构示意图;
图13是本申请实施例提供的通信装置1000的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c可以是单个,也可以是多个。
在本申请的描述中,“第一”、“第二”等字样仅用于区别不同对象,并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”、“举例来说”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“举例来说”或者“例如”等词旨在以具体方式呈现相关概念。
应理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非表示“一个且仅一个”,除非有特别说明。
可以理解,在本申请各实施例中,“A对应的B”表示A与B存在对应关系,根据A可以确定B。但还应理解,根据(或基于)A确定(或生成)B并不意味着仅仅根据(或基于)A确定(或生成)B,还可以根据(或基于)A和/或其它信息确定(或生成)B。
下面对本申请涉及到的一些相关内容、术语或名词进行简要介绍。
一、测距的基本原理
测距的基本原理是:通信双方通过测量消息的往返时间来计算二者之间的距离。其中,发送端发送的测距序列经过脉冲成型和调制后到达接收端,接收端将收到的测距序列与本地 存储的序列进行相关运算,根据相关峰的位置获得到达时间(即t2和t4)。参见图1,图1是本申请实施例提供的测距原理示意图。如图1所示,第一设备在t1时刻发送测距信号1,在t2时刻到达第二设备;第二设备对接收到的测距信号进行处理后,第二设备再在t3时刻向第一设备发送测距信号2,在t4时刻到达第一设备。其中,测距信号是测距序列经过脉冲成型和调制后得到的,比如脉冲位置调制(pulse position modulation,PPM)、脉冲幅度调制(pulse amplitude modulation,PAM)等。根据下述公式(1-1)和(1-2)可计算出第一设备和第二设备之间的距离d:
Figure PCTCN2022143865-appb-000001
t RTT=(t4-t1)-(t3-t2)..................................................................................................(1-2)
其中,c表示光速,t RTT表示测距信号(或消息)的往返时间。
二、距离缩减攻击(distance-reduction attack)
距离缩减攻击(distance-reduction attack)是针对上述测距过程(即上述图1所示的测距过程)的一种常见的攻击方式,具体可以有多种实现形式,例如Cicada攻击、Cicada++攻击、GhostPeak攻击等等,具体攻击方式可参考现有技术的描述,本申请不做详细说明。在上述攻击形式(如Cicada攻击、Cicada++攻击、GhostPeak攻击等)中,攻击者的目标是:通过产生干扰信号,使得收到测距信号的设备估计出的信号到达时间比真实时间提前,从而导致在实际距离很远的情况下测距双方误认为距离很近,这在汽车门锁的智能感知、基于位置的无接触式支付等应用中会造成财产损失。
三、IEEE 802.15.4z标准中的安全测距方案
提前检测/延迟提交(early detect/late commit,ED/LC)攻击(attack)也是针对上述测距过程(如上述图1所示的测距过程)的一种常见的攻击方式。在ED/LC攻击中,攻击者利用测距信号结构上的可预测性,根据接收到的测距信号片段提前推断出整个测距信号,并且将其发送给接收者,以使得接收者对信号到达时间的估计发生错误。
IEEE 802.15.4z标准提出一种对测距序列进行加密的方案,其主要使用128位的密钥对128位的测距序列进行高级加密标准(advanced encryption standard,AES)加密,得到128比特的随机序列,并对该随机序列进行脉冲成型和调制后发送。具体的加密过程可参考802.15.4z标准的相关描述,本申请不赘述。
因为测距序列是加密的,所以攻击者无法根据接收到的测距信号片段推断出整个测距信号,故对测距序列进行加密的方案可以对抗ED/LC攻击。但是对测距序列进行加密的方案无法对抗Cicada、Cicada++、GhostPeak等距离缩减攻击,因为在这些攻击形式中,攻击者并不需要对合法的测距信号进行解码和推断,只需要发送随机的干扰信号就可以完成攻击,所以对测距序列进行加密的方案无法对抗此类攻击。
四、最大峰-提前峰功率比(maximum peak to early peak ratio,MPEP)
针对上述距离缩减攻击,可以通过在接收端设置合适的MPEP阈值来降低接收端将非法峰(即:因为干扰信号造成的在相关器输出的最大峰之前出现的多余尖峰)误判为首径的概率,从而对抗距离缩减攻击(或对抗干扰信号的干扰)。此方法虽然可以在一定程度上对抗距离缩减攻击,但该方法的性能依赖于MPEP阈值的选取。而MPEP阈值的选取通常通过实验 或实测选择经验值。由于无线传播环境的复杂性和干扰信号的随机性,即使是通过反复实验得到的经验值也可能无法有效减少将非法峰误判为首径的概率。
此外,该方法是以测距性能的下降为代价来换取安全性的提升,换句话说,如果选择较小的MPEP阈值可能对距离缩减攻击有较好的对抗效果,但也往往会造成接收端漏掉首径,从而使得测距精度下降。
五、消息到达时间码(message time of arrival codes,MTAC)
针对上述距离缩减攻击,可以通过消息到达时间码(MTAC)来检测测距过程是否受到距离缩减攻击。以上述图1为例,第一设备可以根据测距序列和测距双方(即第一设备和第二设备)约定的密钥生成MTAC信号,并可以将该MTAC信号发送给第二设备。该MTAC信号可以用于测距和校验。第二设备接收到MTAC信号后,对该MTAC信号进行解调和解码,恢复出测距序列,该测距序列用于测距;并且使用恢复出的测距序列和测距双方(即第一设备和第二设备)约定的密钥重构MTAC信号。第二设备可以对比重构出的MTAC信号与接收到的MTAC信号之间的差异(例如:对两个信号做差,并计算差值信号的功率),如果差异大于某一门限,则校验不通过,表明测距信号受到攻击。
但是,在复杂的多径传播环境中,即使不存在距离缩减攻击,接收到的MTAC信号也会发生畸变,且信道估计有可能不准确(例如在低信噪比条件下),从而存在解码错误率较高的可能。因此这种情况下,重构出的MTAC信号有可能与接收到的MTAC信号差异较大,从而导致校验不通过。故,根据MTAC无法准确判断测距过程是否遭受攻击。另外,上述通过MTAC来检测测距过程是否受到距离缩减攻击的方法依赖于接收机的检测判决(如对MTAC信号进行解调和解码),在多径信道下,信号检测判决之前需要进行信道均衡,信道均衡过程的实现复杂度高,将会导致系统实现成本的激增。
综上,对测距序列进行加密的方法(上述第三点),可以实现对测距信号的机密性保护;但无法对抗距离缩减攻击。在接收端设置合适的MPEP阈值的方法(上述第四点),可以实现对该测距信号的完整性保护,但没有通用的阈值选择方法且难以平衡安全性和测距性能。MTAC检测的方法(上述第五点),不能准确判断测距过程是否遭受到攻击,不能保证MTAC信号的完整性。
其中,机密性可以指不能被未授权的个人、实体或者过程利用或知悉的特性。完整性可以指信息在传输、交换、存储和处理过程中,保持信息不被破坏或修改、不丢失和信息未经授权不能改变的特性。
本申请中,机密性可以理解为:除测距双方外,其他设备无法获知测距信号中携带的测距序列的特性;完整性可以理解为:除测距双方外,其他设备不能篡改测距信号中携带的测距序列的特性。机密性保护可以理解为:除测距双方外,防止其他设备获知测距信号中携带的测距序列。完整性保护可以理解为:判断测距信号中的测距序列是否被其他设备篡改,或者判断测距序列的可信性。
本申请实施例提供一种UWB中的测距信号传输方法,通过对测距信号的波形进行改造,可以使接收端具有检测测距过程是否受到干扰的能力,保证测距信号的完整性,并且不损失系统的测距性能。
本申请实施例提供的技术方案可以应用于无线通信感知的测距定位场景中。在测距定位场景中,通信双方可以根据相关协议经过认证和协商建立无线通信连接,在建立无线通信连 接后,发送端发送无线测距帧到达接收端,接收端收到该无线测距帧后计算到达时间,并向发送端回复另一测距无线帧。通过计算消息往返时间(如前述公式(1-2)),来计算二者(即发送端和接收端)之间的距离(如前述公式(1-1)),完成测距过程。
参见图2,图2是本申请实施例提供的测距定位系统的架构图。如图2所示,该测距定位系统包括至少两个设备,如第一设备和第二设备。实际应用中第一设备和第二设备可能是同一设备在不同时刻担任的不同角色。也就是说,第一设备在某一时刻是发送端,执行发送端的操作;但在另一时刻可能是接收端,执行接收端的操作。第二设备与第一设备同理,也就是说,第二设备在某一时刻是发送端,执行发送端的操作;但在另一时刻可能是接收端,就执行接收端的操作。图2是以第一设备为发送端,第二设备为接收端为例。
其中,第一设备包括:信号预处理模块,反转与共轭模块,信号生成模块。信号预处理模块,用于估计第二设备到第一设备之间的信道冲击响应(channel impulse response,CIR),或者对接收到的信号波形进行功率归一化操作。如果第二设备发送的是信道测量信号,则信号预处理模块执行估计CIR的操作;如果第二设备发送的是原始测距信号,则信号预处理模块执行功率归一化操作。反转与共轭模块,用于将预处理后的波形进行时间反转和共轭操作。信号生成模块,用于生成原始测距信号,例如IEEE 802.15.4z标准中的加扰的时间戳序列(scrambled timestamp sequence,STS)。该信号生成模块,还用于生成具有完整性保护功能和测距功能的测距信号。如果第二设备发送的是信道测量信号,则该测距信号由原始测距信号与反转和共轭后的CIR进行卷积运算后获得。如果第二设备发送的是原始测距信号,则该测距信号是反转与共轭模块的输出信号。具有完整性保护功能和测距功能的测距信号经天线发送到第二设备。
第二设备包括:信号发送模块,到达时间(Time of Arrival,TOA)估计模块,完整性校验模块。信号发送模块,用于发送信道测量信号或原始测距信号,该信号从天线口发出,发送给第一设备。ToA估计模块,用于利用第一设备发送的测距信号进行ToA估计,获得时间戳,该时间戳用于测距或者定位。完整性校验模块,用于将接收到的信号采样后与本地的测距信号进行相关运算判断接收到的信号是否被篡改。
上述图2中原始测距信号的虚线部分表示第一设备和第二设备采用相同的操作得到相同的原始测距信号(例如IEEE 802.15.4z标准中的STS)。
应理解,上述图2所示的第一设备和第二设备均是多天线,但实际应用中,第一设备可以配置多天线,也可以配置单天线;同理,第二设备可以配置单天线,也可以配置多天线;本申请实施例不做限制。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请中,除特殊说明外,各个实施例或实现方式之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。以下所述的本申请实施方式并不构成对本申请保护范围的限定。
为便于描述本申请提供的技术方案,下文实施例均以第一设备为发送端(指发送测距信号的一方),第二设备为接收端(指接收测距信号的一方)为例进行说明。但实际应用中第一 设备和第二设备可能是同一设备在不同时刻担任的不同角色。也就是说,第一设备在某一时刻是发送端,执行发送端的操作;但在另一时刻可能是接收端,执行接收端的操作。第二设备与第一设备同理。
本申请中的第一设备和第二设备均支持802.15.4z标准,还可以支持802.15.4z标准的下一代标准。当然第一设备和第二设备还可以支持窄带通信标准,如Wi-Fi标准(即802.11系列标准)、蓝牙标准、或Zigbee等。
实施例一
参见图3,图3是本申请实施例提供的UWB中的测距信号传输方法的第一种示意流程图。如图3所示,该UWB中的测距信号传输方法包括但不限于以下步骤:
S1,第二设备发送第三信号,该第三信号用于生成第一测距信号。
可选的,上述第三信号可以为原始测距信号,其生成方式可参考下文实施例的描述,此处不展开说明。或者,上述第三信号为信道测量信号,其包含导频信息,如前导码。该导频信息可以用于进行信道估计。
S2,第一设备接收第一信号。
可选的,因为信号在无线信道中传输时,会被各种障碍物反射、衍射以及散射等,从而导致发送端发送的信号到达接收端时会发生一些变化。所以,虽然第二设备发送的是第三信号,但经过无线信道传输后,第二设备接收到的是第一信号。第一信号和第三信号的波形可能发生变化,但其携带的信息是相同的。
S3,第一设备对该第一信号进行预处理,获得第二信号,该预处理包括信道估计或功率归一化。
可选的,第一设备执行信道估计,估计第二设备到第一设备的信道冲击响应(CIR);具体实现可参考下文实施例二的相应描述,此处不展开说明。或者,第一设备对接收到的第一信号进行功率归一化操作,具体实现可参考下文实施例三的相应描述,此处不展开说明。
S4,第一设备至少根据该第二信号生成第一测距信号,其中,该第一测距信号符合第二信号经过时间反转、或者时间反转和共轭处理后与原始测距信号进行卷积处理后的信号,或者,该第一测距信号符合第二信号经过时间反转、或者时间反转和共轭处理后获得的信号。
可选的,第一设备对预处理后的信号(即第二信号)进行反转和取共轭操作,以生成第一测距信号。第一测距信号的具体生成方式可参见下文实施例二或实施例三的描述,此处不展开说明。
S5,第一设备发送至少部分第一测距信号,该至少部分第一测距信号支持完整性保护功能和测距功能。
可选的,第一设备可以直接发送第一测距信号,也可以对该第一测距信号进行截断后再发送。截断的长度为原始测距信号的长度,示例性的,保留第一测距信号的尾部,且该尾部与原始测距信号等长。其中,该至少部分第一测距信号可以携带于测距无线帧中发送。
S6,第二设备接收用于测距的信号,该用于测距的信号为至少部分第一测距信号经过无线信道传输后获得。
S7,第二设备将原始测距信号和该用于测距的信号输入相关器进行相关运算,获得该相关器输出的最大值所在的第一时刻。
可选的,第二设备采用峰值测距算法进行ToA估计,即将原始测距信号和该用于测距的信号输入相关器进行相关运算,获得该相关器输出的最大值所在的时刻(即第一时刻)。
S8,第二设备对该用于测距的信号进行完整性校验,获得校验结果。
S9,若该校验结果为该用于测距的信号通过完整性校验,则第二设备将第一时刻确定为该用于测距的信号的到达时刻。
可选的,第二设备对该用于测距的信号进行采样,并判决得到校验序列;将校验序列和第一序列进行相关运算,获得相关运算结果;在比较相关运算结果与预设门限的大小关系,确定该用于测距的信号是否通过完整性检验。一个示例中,如果相关运算结果大于预设门限,则表示测距过程没有受到干扰,测距结果可信;否则,即如果相关运算结果小于预设门限,则表示测距过程受到干扰,测距结果不可信。具体的完整性校验方式参考下文实施例二或实施例三的描述,此处不展开说明。
本申请实施例利用来自第二设备的信号,对其进行预处理,再通过时间反转和共轭,构造一种新的物理层测距信号,该信号具有完整性保护功能,可以使接收端具有检测测距过程是否受到干扰的能力,保证测距信号的完整性,并且不损失系统的测距性能。
实施例二
参见图4,图4是本申请实施例提供的UWB中的测距信号传输方法的第二种示意流程图。主要介绍基于信道冲击响应(channel impulse response,CIR)反转的测距信号的生成和完整性保护。如图4所示,该UWB中的测距信号传输方法包括但不限于以下步骤:
S101,第二设备发送信道测量信号,该信道测量信号包含导频信息。相应地,第一设备接收该信道测量信号。
可选的,第二设备可以在发送给第一设备的任意信号中携带导频信息(Any signal that includes preamble),本申请实施例将携带导频信息的信号称为信道测量信号。第二设备向第一设备发送信道测量信号(即包含导频信息的第三信号),相应地,第一设备接收该信道测量信号(即包含导频信息的第一信号)。也就是说,该信道测量信号中包括导频信息,如前导码(preamble)。示例性的,第一设备向第二设备发送请求信号,该请求信号可以用于请求进行测距过程(或者用于请求开始测距过程);第二设备接收到该请求信号后,向第一设备反馈确认信号(即信道测量信号),该确认信号中包含导频信息(如preamble)。
S102,第一设备利用该信道测量信号进行信道估计,获得第二设备到第一设备的第一信道冲击响应。
S103,第一设备对第一信道冲击响应进行第一处理,获得第二信道冲击响应,该第一处理包括时间反转处理,或者时间反转处理和共轭处理。
S104,第一设备根据该第二信道冲击响应和原始测距信号,生成第一测距信号,该第一测距信号为该第二信道冲击响应与该原始测距信号进行卷积处理后获得。
S105,第一设备发送至少部分第一测距信号,该至少部分第一测距信号支持完整性保护功能和测距功能。
可选的,第一设备接收到来自第二设备的信道测量信号后,可以利用该信道测量信号中的导频信息进行信道估计(channel estimation),获得第二设备到第一设备的第一信道冲击响应。为便于描述,将第一信道冲击响应记为h 21(t)。第一设备可以对该第一信道冲击响应进行时间反转(Time-reverse)获得第二信道冲击响应;或者,第一设备对该第一信道冲击响应进行时间反转和取共轭(Time-reverse and Conjugate)后,获得第二信道冲击响应。应理解,如果第一信道冲击响应为实数,因为对实数取共轭为其本身,所以也可以无需对第一信道冲击响应进行取共轭操作;当然也可以不论第一信道冲击响应是实数还是复数,都对其执行取共 轭操作。为便于描述,将第二信道冲击响应记为h' 21(-t);h' 21(t)表示h 21(t)取共轭。第一设备可以根据第一序列生成原始测距信号。该第一序列可以为第一设备和第二设备都能够获知的序列,比如,第一设备和第二设备协商确定的序列,预设或预定义的序列,公开的序列,标准定义的序列等等。举例来说,第一序列可以是加扰的时间戳序列(scrambled timestamp sequence,STS)。该原始测距信号的生成方式可以如下述公式(2-1)所示:
p(t)=∑ kX[k]g(t-kT)................................................................................................(2-1)
其中,p(t)表示原始测距信号,X[k]表示第一序列,g(t)表示矩形窗函数,T表示第一序列中相邻码元的间隔。
第一设备生成原始测距信号之后,可以将该第二信道冲击响应与该原始测距信号进行卷积,生成第一测距信号。或者,第一设备可以将该第二信道冲击响应经过归一化处理后与该原始测距信号进行卷积,生成第一测距信号。其中,该第一测距信号具有或支持完整性保护功能和测距功能,或者说该第一测距信号支持完整性校验和测距。示例性的,该第一测距信号的数学表达式为下述公式(2-2):
Figure PCTCN2022143865-appb-000002
其中,s(t)表示第一测距信号,T s表示h' 21(-t)波形的持续期。应理解,因为上述公式(2-2)中进行了卷积运算,所以第一测距信号的持续期长于原始测距信号的持续期。也就是说,第一测距信号的长度大于原始测距信号的长度。
因此,对于该第一测距信号,第一设备有两种处理方式。一种实现方式中,第一设备可以对该第一测距信号进行截断,获得部分第一测距信号并发送。示例性的,截断方式为:保留第一测距信号的尾部,且该尾部与原始测距信号p(t)等长。另一种实现方式中,第一设备也可以不对该第一测距信号进行截断,直接发送该第一测距信号。该至少部分第一测距信号支持完整性保护功能和测距功能。
S106,第二设备接收用于测距的信号,该用于测距的信号为至少部分第一测距信号经过无线信道传输后获得。
可选的,因为信号在无线信道中传输时,会被各种障碍物反射、衍射以及散射等,从而导致发送端发送的信号到达接收端时会发生一些变化。因此,第一设备发送的至少部分第一测距信号经过无线信道传输后产生了一些变化,本申请实施例将至少部分第一测距信号经过无线信道传输至第二设备的信号称为用于测距的信号。第二设备接收用于测距的信号。为便于描述,本申请实施例将第二设备接收到的用于测距的信号记为y(t)。
S107,第二设备将原始测距信号和该用于测距的信号输入相关器进行相关运算,获得该相关器输出的最大值所在的第一时刻。
可选的,第二设备接收到该用于测距的信号后,可以将原始测距信号p(t)和该用于测距的信号y(t)输入相关器进行相关运算,获得该相关器输出的最大值所在的第一时刻(记为t 2)。其中,该原始测距信号的生成方式可以如前述公式(2-1)所示。换句话说,第二设备利用本地存储的第一序列(如STS)生成原始测距信号p(t),并将原始测距信号p(t)与接收到的信号y(t)做相关运算,并记录相关峰所在的时刻,该时刻即为第一时刻t 2
S108,第二设备对该用于测距的信号进行完整性校验,获得校验结果。
可选的,为了检验测距过程是否受到干扰信号的干扰(即:第二设备接收到的用于测距 的信号是否被干扰信号干扰),第二设备可以对接收到的用于测距的信号y(t)取实部,再进行等间隔采样,获得样本序列。其中,采样起始时刻为第一时刻(t 2),采样间隔为T(即第一序列中相邻码元的间隔)。样本序列的长度等于第一序列的总长度,例如STS的长度为128位,则样本序列的长度(或样本总数)也为128位。一种实现方式中,第二设备可以将该样本序列直接作为校验序列(记为Y[k])。另一种实现方式中,第二设备得到该样本序列后,根据每个样本的极性生成校验序列(记为Y[k])。若样本序列中样本的极性为正,则校验序列中对应元素为1;否则,即若样本序列中样本的极性为负,则校验序列中对应元素为-1。第二设备可以将该校验序列(Y[k])与本地存储的第一序列X[k]进行相关运算,获得相关运算结果(记为z)。该相关运算结果z表示为:
Figure PCTCN2022143865-appb-000003
其中,N表示校验序列Y[k]的长度。
第二设备可以将相关运算结果z与预设门限比较,获得校验结果。其中,当该相关运算结果z大于或等于该预设门限时,该校验结果为上述用于测距的信号通过完整性检验,也就是说,测距过程未受到干扰信号的干扰。当该相关运算结果z小于该预设门限时,该校验结果为上述用于测距的信号未通过完整性检验,也就是说,测距过程受到了干扰信号的干扰。应理解,当该相关运算结果z等于该预设门限时,该校验结果是通过还是不通过可根据实际情况确定,本申请实施例不做限制。示例性的,该预设门限的绝对值等于第一序列的长度,若第一序列为128位,则预设门限可以为±128。
S109,若该校验结果为该用于测距的信号通过完整性校验,则第二设备将该第一时刻确定为该用于测距的信号的到达时刻。
可选的,如果上述校验结果为上述用于测距的信号通过完整性校验,说明测距过程未受到干扰信号的干扰;则第二设备可以将上述第一时刻(t 2)作为该用于测距的信号的到达时刻。如果上述校验结果为上述用于测距的信号未通过完整性校验,说明测距过程受到了干扰信号的干扰;则第二设备可以告知第一设备重发新的测距信号,或者间隔一段时间重发测距信号,或者不做任何操作等。
本申请实施例中第一设备利用自身和第二设备之间信道的CIR(即上述第一信道冲击响应),通过时间反转构造测距信号波形,实现测距信号与信道的匹配;第二设备基于接收到的信号,通过相关运算完成飞行时间(time of flight,ToF)测量,并通过采样、判决、相关运算对测距过程是否受到干扰做出判断,从而实现测距信号的完整性保护。本申请实施例通过时间反转,使得接收端能够对测距过程是否遭受干扰进行检测,对测距信号提供了完整性保护;并且接收机仅需要完成简单的相关运算,实现复杂度低。另外,测距和完整性保护均基于同一序列(即第一序列)完成,完整性保护机制引入的额外开销小。接收端测距也不再依赖于回退搜索算法,既能够提高非视距(Non-Line-of-Sight,NLOS)环境下的测距准确度,又能够解决无法区分多径和干扰造成的相关峰的难题。
下面分别就测距过程中存在干扰和不存在干扰这两种情况,分别分析本申请实施例一提供的技术方案能够使接收端具有检测测距过程是否受到干扰的能力的原因,也就是本申请实施例一提供的技术方案能够实现测距信号完整性保护的原因。
1、在无干扰情况下,第二设备接收到的用于测距的信号y(t)的数学表达式如下述公式(2-4)所示:
Figure PCTCN2022143865-appb-000004
其中,h 12(t)表示第一设备到第二设备的信道冲击响应(channel impulse response,CIR),n 2(t)表示第二设备的接收机噪声。假设信道满足互易性,即h 12(t)=h 21(t);也就是说,第一设备到第二设备的信道冲击响应等于第二设备到第一设备的信道冲击响应。将公式(2-2)带入上述公式(2-4),可得公式(2-5):
Figure PCTCN2022143865-appb-000005
为便于描述,引入如下表达式:
Figure PCTCN2022143865-appb-000006
其中,h e(t)表示原始测距信号p(t)所经历的等效信道的信道冲击响应(CIR)。对于UWB系统,由于其宽带特性,h e(t)具有显著的时间聚焦效果,即:当t=0时,h e(t)为一尖峰;当t≠0时,h e(t)的值接近于0。这样可以近似地认为:本申请实施例生成的测距信号(即上述第一测距信号),能够使得原始测距信号p(t)经历的等效信道近似为加性高斯白噪声(additive white gaussian noise,AWGN)信道。
应理解,加性高斯白噪声是一种功率谱函数为常数(即白噪声),且幅度服从高斯分布的噪声信号。
还应理解,即使信道不满足互易性,但因为本申请实施例中步骤S101和步骤S106的时间间隔很短,所以第二设备到第一设备的信道与第一设备到第二设备的信道之间的差异小,故而h e(t)仍然有时间聚焦效果。也就是说,原始测距信号p(t)所经历的等效信道也可以近似为加性高斯白噪声信道。
2、在有干扰的情况下,干扰行为可能针对两个阶段进行:(1)利用干扰信号干扰上述步骤S101发送的信道测量信号,即干扰信道估计过程;(2)利用干扰信号干扰上述步骤S105发送的至少部分第一测距信号,即干扰测距过程。
如果信道估计过程受到干扰,则会导致第一设备的信道估计结果出错,即:无法获得准确的h 21(t)的估值。这样,上述公式(2-6)中的h e(t)就不再具有时间聚焦效果,从而使得p(t)在接收端产生码间串扰。当采用本申请实施例的方法对接收信号(即用于测距的信号y(t))进行采样后,由于码间串扰的存在,会使得采样得到的样本序列与本地存储的第一序列的相关运算值很低(z的值小),从而使得完整性校验不通过。
如果测距过程受到干扰,则在有干扰的情况下,第二设备接收到的用于测距的信号y(t)的数学表达式如下述公式(2-7)所示:
Figure PCTCN2022143865-appb-000007
其中,s a(t)表示干扰信号,h a2(t)表示干扰信号的发送方到第二设备间的信道冲击响应。按照本申请实施例提供的完整性校验,最终得到的校验序列Y[k]中每个元素将不仅含有原始测距信号的采样值,还含有干扰信号
Figure PCTCN2022143865-appb-000008
的采样值,这会导致Y[k]与X[k]的相关运算结果z低于预设门限,从而使得完整性校验不通过。
上述内容分析了本申请实施例提供的技术方案能够实现测距信号完整性保护的原因,下面通过示例性的仿真数据说明本申请实施例能够实现的技术效果。
举例来说,仿真参数(simulation parameters)如下:128位的STS数据包(128bits STS packet with configuration three),八阶巴特沃斯脉冲(8th order Butterworth pulse),长度为31位的同 步前导码1(SYNC Preamble Code 1(length 31)),采样频率500MHz(Sampling frequency 500MHz),峰值脉冲重复频率(pulse repetition frequency,PRF)499.2MHz(也支持124.8MHz PRF),6位DAC(也支持2、4、12),802.15.4a超宽带信道模型(步行视距模式)、100信道实现,没有频率偏移和完美的定时(No frequency offset and perfect timing)。
参见图5a,图5a是本申请实施例提供有完整性保护和没有完整性保护下的攻击成功率对比示意图。如图5a所示,其纵轴表示攻击成功率,单位为百分比(%),横轴表示信噪比(SNR),单位为分贝(dB)。由图5a可知,在没有完整性保护的情况下,攻击成功率大约为50%。而有完整性保护的情况下(即采用本申请实施例提供的方法),攻击成功率很低,未超过10%。
参见图5b,图5b是本申请实施例提供有完整性保护和没有完整性保护下的测距误差率对比示意图。其中,如果ToA测量值与真实ToA之间的差值大于6ns(即1.8m距离误差),则识别测距误差。如图5b所示,其纵轴表示测距误差率,单位为百分比(%),横轴表示信噪比(SNR),单位为分贝(dB)。由图5b可知,有干扰情况下,采用本申请实施例提供的方法(即有完整性保护的测距信号),测距误差率显著降低。
参见图5c,图5c是本申请实施例提供有完整性保护和没有完整性保护下的测距事件检测率。其中,如果相关器可以输出高于阈值的峰值,并且完整性检查通过,则检测到测距事件。如图5c所示,其纵轴表示测距误差率,单位为百分比(%),横轴表示信噪比(SNR),单位为分贝(dB)。由图5c可知,有完整性保护的情况下(即采用本申请实施例提供的方法),相对于没有完整性保护的情况下,测距事件检测率(The ranging event detection rate)不会严重降低。而测距事件检测率的轻微下降是由信道估计误差导致的。
实施例三
参见图6,图6是本申请实施例的UWB中的测距信号传输方法的第三种示意流程图。主要介绍接收波形反转的测距信号的生成和完整性保护。如图6所示,该UWB中的测距信号传输方法包括但不限于以下步骤:
S201,第二设备发送原始测距信号,该原始测距信号基于第一序列生成。
可选的,第二设备生成原始测距信号p(t)的方式如前述公式(2-1)所示,此处不再赘述。其中,第一序列可以是第一设备和第二设备协商确定的序列,预设或预定义的序列,公开的序列,标准定义的序列等等。举例来说,第一序列可以是STS。
可选的,第一设备可以向第二设备发送请求信号,该请求信号可以用于请求进行测距过程(或者用于请求开始测距过程);第二设备接收到该请求信号后,向第一设备反馈确认信号,该确认信号中包含原始测距波形。
S202,第一设备接收第一信号,该第一信号为该原始测距信号经过无线信道传输后获得。
可选的,因为信号在无线信道中传输时,会被各种障碍物反射、衍射以及散射等,从而导致发送端发送的信号到达接收端时会发生一些变化。所以,虽然第二设备发送的是原始测距信号,但第二设备接收到的是第一信号,该第一信号为该原始测距信号经过无线信道传输后获得。为便于描述,本申请实施例将第一设备接收到的第一信号记为y 1(t)。y 1(t)的数学表达式如下:
Figure PCTCN2022143865-appb-000009
其中,h 21(t)表示第二设备到第一设备的信道冲击响应,n 1(t)表示第一设备的接收机噪声。
S203,第一设备对该第一信号进行时间反转,或者时间反转和共轭处理后,获得第一测 距信号。
S204,第一设备发送至少部分第一测距信号,该至少部分第一测距信号支持完整性保护功能和测距功能。
可选的,第一设备接收到该第一信号后,可以对该第一信号y 1(t)进行时间反转,得到第一测距信号。或者,第一设备对该第一信号y 1(t)进行功率归一化、时间反转、以及取共轭等处理后,获得第一测距信号。其中,该第一测距信号具有或支持完整性保护功能和测距功能,或者说该第一测距信号支持完整性校验和测距。为便于描述,第一测距信号记为s(t)。示例性的,第一测距信号如下述公式(2-9)所示:
Figure PCTCN2022143865-appb-000010
其中,α表示功率归一化因子,用于将第一信号y 1(t)进行功率归一化处理。y' 1(t)表示y 1(t)取共轭。第一设备可以使用第一测距信号s(t)作为具有完整性保护功能和测距功能的信号,并将其发送给第二设备。
由上述公式(2-9)可知,第一测距信号的持续期长于原始测距信号的持续期。也就是说,第一测距信号的长度大于原始测距信号的长度。因此,对于该第一测距信号,第一设备有两种处理方式。一种实现方式中,第一设备可以对该第一测距信号进行截断,获得部分第一测距信号并发送。示例性的,截断方式为:保留第一测距信号的尾部,且该尾部与原始测距信号p(t)等长。另一种实现方式中,第一设备也可以不对该第一测距信号进行截断,直接发送该第一测距信号。该至少部分第一测距信号支持完整性保护功能和测距功能。
S205,第二设备接收该用于测距的信号,该用于测距的信号为至少部分第一测距信号经过无线信道传输后获得。
S206,第二设备将该原始测距信号和该用于测距的信号输入相关器进行相关运算,获得相关器输出的最大值所在的第一时刻。
可选的,本申请实施例中步骤S205-步骤S206的实现方式可参考前述实施例二中步骤S106-步骤S107的实现方式,此处不再赘述。
S207,第二设备对该用于测距的信号进行完整性校验,获得校验结果。
可选的,为了检验测距过程是否受到干扰信号的干扰(即:第二设备接收到的用于测距的信号是否被干扰信号干扰),第二设备可以对该用于测距的信号(记为y(t))取实部,再进行等间隔采样,获得样本序列。其中,采样起始时刻为第一时刻(记为t 2),采样间隔为T(即第一序列中相邻码元的间隔)。样本序列的长度等于第一序列的总长度,例如STS的长度为128位,则样本序列的长度(或样本总数)也为128位。一种实现方式中,第二设备可以将该样本序列直接作为校验序列(记为Y[k])。另一种实现方式中,第二设备得到该样本序列后,根据每个样本的极性生成校验序列(记为Y[k])。若样本序列中样本的极性为正,则校验序列中对应元素为1;否则,即若样本序列中样本的极性为负,则校验序列中对应元素为-1。第二设备可以将本地存储的第一序列X[k]经过时间反转后得到的X[-k]与该校验序列(Y[k])进行相关运算,获得相关运算结果(记为z)。该相关运算结果z表示为:
Figure PCTCN2022143865-appb-000011
其中,N表示校验序列Y[k]的长度。
第二设备可以将相关运算结果z与预设门限比较,获得校验结果。其中,当该相关运算结果z大于或等于该预设门限时,该校验结果为上述用于测距的信号通过完整性检验,也就 是说,测距过程未受到干扰信号的干扰。当该相关运算结果z小于该预设门限时,该校验结果为上述用于测距的信号未通过完整性检验,也就是说,测距过程受到了干扰信号的干扰。应理解,当该相关运算结果z等于该预设门限时,该校验结果是通过还是不通过可根据实际情况确定,本申请实施例不做限制。
S208,若该校验结果为该用于测距的信号通过完整性校验,则第二设备将该第一时刻确定为该用于测距的信号的到达时刻。
可选的,如果上述校验结果为上述用于测距的信号通过完整性校验,说明测距过程未受到干扰信号的干扰;则第二设备可以将上述第一时刻(t 2)作为该用于测距的信号的到达时刻。如果上述校验结果为上述用于测距的信号未通过完整性校验,说明测距过程受到了干扰信号的干扰;则第二设备可以告知第一设备重发新的测距信号,或者间隔一段时间重发测距信号,或者不做任何操作等。
本申请实施例中,第一设备对接收到的第一信号进行功率归一化后直接进行反转和共轭,获得具有完整性保护和测距功能的信号(即上述第一测距信号)并发送;第二设备基于接收到的信号,通过相关运算完成飞行时间(time of flight,ToF)测量,并通过采样、判决、相关运算对测距过程是否受到干扰做出判断,从而实现测距信号的完整性保护。不仅可以使得接收端能够对测距过程是否遭受干扰进行检测,对测距信号提供了完整性保护;还可以不损失系统的测距性能。另外,本申请实施例不用进行信道估计,测距性能不受信道估计误差的影响。
下面分别就测距过程中存在干扰和不存在干扰这两种情况,分别分析本申请实施例二提供的技术方案能够使接收端具有检测测距过程是否受到干扰的能力的原因,也就是本申请实施例二提供的技术方案能够实现测距信号完整性保护的原因。
1、在无干扰情况下,第二设备接收到的用于测距的信号y(t)的数学表达式如前述公式(2-4)所示。假设信道满足互易性,即h 12(t)=h 21(t);也就是说,第一设备到第二设备的信道冲击响应等于第二设备到第一设备的信道冲击响应。将公式(2-9)带入上述公式(2-4),可得公式(2-11):
Figure PCTCN2022143865-appb-000012
其中,n e(t)表示第二设备的接收机等效噪声。n e(t)表达为:
Figure PCTCN2022143865-appb-000013
为便于描述,引入如下表达式:
Figure PCTCN2022143865-appb-000014
其中,h e(t)表示原始测距信号p(t)经过时间反转和取共轭后p'(-t)所经历的等效信道的信道冲击响应(CIR)。对于UWB系统,由于其宽带特性,h e(t)具有显著的时间聚焦效果,即:当t=0时,h e(t)为一尖峰;当t≠0时,h e(t)的值接近于0。这样可以近似地认为:本申请实施例生成的测距信号(即上述第一测距信号),能够使得p'(-t)经历的等效信道近似为加性高斯白噪声(AWGN)信道。
应理解,即使信道不满足互易性,但因为本申请实施例中步骤S201和步骤S204的时间间隔很短,所以第二设备到第一设备的信道与第一设备到第二设备的信道之间的差异小,故而h e(t)仍然有时间聚焦效果。也就是说,p'(-t)所经历的等效信道也可以近似为加性高斯白噪声信道。
2、在有干扰的情况下,干扰行为可能针对两个阶段进行:(1)利用干扰信号干扰上述步 骤S201发送的原始测距信号;(2)利用干扰信号干扰上述步骤S204发送的至少部分第一测距信号,即干扰测距过程。
如果原始测距信号受到干扰,则会导致第一设备接收到的第一信号y 1(t)中存在干扰信号。y 1(t)经过第一设备处理(即功率归一化,时间反转以及取共轭)后发送,其中的干扰信号会出现在第二设备接收到的用于测距的信号y(t)中。那么,按照本申请实施例提供的完整性校验,最终得到的校验序列Y[k]中每个元素将不仅含有p'(-t)的采样值,还含有干扰信号的采样值,这会导致Y[k]与X[-k]的相关运算结果z低于预设门限,从而使得完整性校验不通过。
如果测距过程受到干扰,则在有干扰的情况下,第二设备接收到的用于测距的信号y(t)的数学表达式如前述公式(2-7)所示。按照本申请实施例提供的完整性校验,最终得到的校验序列Y[k]中每个元素将不仅含有p'(-t)的采样值,还含有干扰信号
Figure PCTCN2022143865-appb-000015
的采样值,这会导致Y[k]与X[-k]的相关运算结果z低于预设门限,从而使得完整性校验不通过。
实施例四
本申请实施例四可以与前述实施例一至三中任一个实施例一起实施,也可以单独实施,本申请实施例不做限制。
参见图7,图7是本申请实施例的UWB中的测距信号传输方法的第四种示意流程图。主要介绍一种具有完整性保护功能和测距功能的无线帧。如图7所示,该UWB中的测距信号传输方法包括但不限于以下步骤:
S301,第一设备生成测距无线帧,该测距无线帧中携带支持完整性保护功能和测距功能的信号。
S302,第一设备发送该测距无线帧。
可选的,为便于描述,上述测距无线帧中携带的支持完整性保护功能和测距功能的信号记为STS+。该STS+可以是至少部分第一测距信号,具体生成方式可参考前述实施例二中的相应描述,或者前述实施例三中的相应描述;此处不再赘述。该测距无线帧的帧格式可以复用802.15.4z中物理层帧格式。
参见图8,图8是本申请实施例提供的测距无线帧的帧格式示意图。其中,图8的8a、8b、8c示出了三种测距无线帧的格式。如图8所示,该测距无线帧包括以下一项或多项:同步(synchronization,SYNC)字段,帧起始定界符(start-of-frame delimiter,SFD),STS+(即支持完整性保护功能和测距功能的信号),物理层头部(physical layer header,PHR)字段,物理层负载(physical layer payload)。
其中,STS+(即支持完整性保护功能和测距功能的信号)有两种格式,分别为格式1和格式2。参见图9,图9是本申请实施例提供的测距无线帧中STS+的帧格式示意图。由前述实施例一和实施例二可知,STS+分段(STS+segment)由STS segment和其他信号卷积获得,所以STS+segment会比STS segment长。对此,本申请实施例提供两种处理方法,截断STS+segment使其与STS segment等长,即为格式1;不对STS+segment进行截断,即为格式2。对于格式1,截断的方法是删除卷积后所得的STS+信号的头部,保留其尾部和STS segment长度相等的部分。如图9所示,格式2的STS+segment比格式1的STS+segment长,格式2中STS+segment的长度为L1+L2-1,格式1的STS+segment的长度为L1。L1为STS的长度,L2为信道冲击响应的长度。但是无论采用哪种格式,接收端均采用相同的处理。图9是以图8的8a所示帧格式为例,本申请实施例提供的STS+的两种格式可以应用于任何图8中的任一种帧格式。
可选的,为了不影响测距性能的同时具备完整性保护功能,STS+(即支持完整性保护功能和测距功能的信号)的脉冲重复频率(pulse repetition frequency,PRF)可能高于STS(即仅支持测距功能的信号)的PRF,所以对于同时支持完整性保护功能和测距功能的信号,可以增加新的PRF模式,包括但不限于249.6MHz、499.2MHz。
S303,第二设备接收测距无线帧。
S304,第二设备解析该测距无线帧。
可选的,第二设备接收到该测距无线帧后,解析该测距无线帧,获得该测距无线帧中携带的支持完整性保护功能和测距功能的信号。
本申请实施例提供一种具有完整性保护功能和测距功能的无线帧,有利于实现对测距信号的完整性保护。
实施例五
本申请实施例五可以与前述实施例一至实施例四中任一个或多个实施例一起实施,也可以单独实施,本申请实施例不做限制。
参见图10,图10是本申请实施例提供的测距配置信息传输方法的示意流程图。如图10所示,该测距配置信息传输方法包括但不限于以下步骤:
S401,通信装置发送测距配置信息,所述测距配置信息包括测距无线帧的类型,该测距无线帧的类型为支持测距功能的无线帧类型,或同时支持测距功能和完整性保护功能的无线帧类型。
相应地,其他通信装置接收该测距配置信息。
可选的,在测距过程之前,测距双方可以协商一些测距过程中的配置信息。一种实现方式中,通信装置发送测距配置信息给第二设备。该测距配置信息可以包括测距无线帧的类型。该测距无线帧的类型为支持测距功能的无线帧类型,或同时支持测距功能和完整性保护功能的无线帧类型。也就是说,该测距无线帧是常规的测距无线帧还是同时具有测距功能和完整性保护功能的测距无线帧。换句话说,该测距配置信息包括:测距过程中发送的测距信号是否支持完整性保护功能。
可选的,上述测距配置信息还可以包括STS配置格式,或者说测距无线帧的格式。对于常规的测距无线帧(即仅支持测距功能的无线帧),其STS配置格式有三种,分别是STS配置1~STS配置3(具体格式可参考802.15.4z标准的描述,此处不展开说明)。对于同时具有测距功能和完整性保护功能的测距无线帧,其格式如前述图8所示。
可选的,上述测距配置信息还可以包括STS+格式(即截断格式或非截断格式),也就是测距过程中测距信号的长度。对于非截断格式,测距信号的长度大于原始测距信号(采用上述公式(2-1)生成的信号)的长度;对于截断格式,测距信号的长度等于原始测距信号的长度。
可选的,因为同时具有完整性保护功能和测距功能的信号的PRF可能高于仅支持测距功能的信号的PRF,所以还需要配置PRF模式。因此,上述测距配置信息还可以包括PRF模式(包括但不限于124.8MHz、249.6MHz、499.2MHz)。
可选的,上述测距配置信息可以携带于测距信道与前导码选择信息单元(Ranging Channel and Preamble Code Selection Information Element,RCPCS IE)中,比如扩展RCPCS IE的现有字段,用于携带上述测距配置信息。或者,也可以定义一个新的信息单元来携带上述测距配置信息,例如,可将其称为测距帧配置选择信息单元(Ranging Frame Configuration Selection  Information Element,RFCS IE),将上述测距配置信息携带于新定义的RFCS IE中。
可选的,上述测距配置信息可以携带于测距响应时间协商信息单元(Ranging Reply Time Negotiation Information Element,RRTN IE)中,比如扩展RRTN IE的现有字段,用于携带该测距配置信息。或者,也可以定义一个新的信息单元,例如,可将其称为测距帧配置选择信息单元(Ranging Frame Configuration Selection Information Element,RFCS IE),将测距配置信息携带于新定义的RFCS IE中。
可选的,其他通信装置收到该测距配置信息后将其上报给上层,并且向该通信装置反馈确认(Acknowledgement,ACK)信号帧。在随后的测距过程中,测距双方将根据上述约定的测距帧完成测距。
本申请实施例针对新增的同时支持测距功能和完整性保护功能的信号或无线帧,提供一种配置信息的协商方式,为后续的测距过程奠定基础。
上述内容详细阐述了本申请实施例提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对第一设备和第二设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图11和图13详细描述本申请实施例的通信装置。其中,该通信装置是第一设备或第二设备,进一步的,该通信装置可以为第一设备中的装置;或者,该通信装置为第二设备中的装置。
在采用集成的单元的情况下,参见图11,图11是本申请实施例提供的通信装置1的结构示意图。如图11所示,该通信装置1包括收发模块11和处理模块12。
一种设计中,收发模块11,用于接收第一信号;处理模块12,用于对该第一信号进行预处理,获得第二信号,该预处理包括信道估计或功率归一化;该处理模块12,还用于至少根据该第二信号生成第一测距信号,其中,该第一测距信号符合该第二信号经过时间反转,或者时间反转和共轭处理后与原始测距信号进行卷积处理后的信号,或者,该第一测距信号符合该第二信号经过时间反转,或者时间反转和共轭处理后获得的信号;该收发模块11,还用于发送至少部分第一测距信号,该至少部分第一测距信号支持完整性保护功能和测距功能。
应理解,上述通信装置1可对应执行前述实施例一至三的任一个实施例,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例一至三的任一个实施例中第一设备的相应操作,为了简洁,在此不再赘述。
另一种设计中,处理模块12,用于生成测距无线帧,该测距无线帧中携带支持完整性保护功能和测距功能的信号;收发模块11,用于发送该测距无线帧。
应理解,上述通信装置1可对应执行前述实施例四,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例四中第一设备的相应操作,为了简洁,在此不再赘述。
又一种设计中,收发模块11,用于发送测距配置信息,或者,接收测距配置信息;其中,该测距配置信息包括测距无线帧的类型,该测距无线帧的类型为支持测距功能的无线帧类型,或同时支持测距功能和完整性保护功能的无线帧类型。可选的,处理模块12,用于生成测距配置信息。
应理解,上述通信装置1可对应执行前述实施例五,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例五中第一设备的相应操作,为了简洁,在此不再赘述。
参见图12,图12是本申请实施例提供的通信装置2的结构示意图。如图12所示,该通信装置2包括收发模块21,相关运算模块22,完整性校验模块23,确定模块24。
一种设计中,收发模块21,用于发送信号,该信号用于生成第一测距信号;该收发模块21,还用于测距的信号,该用于测距的信号为至少部分该第一测距信号经过无线信道传输后获得,该至少部分该第一测距信号支持完整性保护功能和测距功能;相关运算模块22,用于将原始测距信号和该用于测距的信号输入相关器进行相关运算,获得该相关器输出的最大值所在的第一时刻,该原始测距信号基于第一序列生成;完整性校验模块23,用于对该用于测距的信号进行完整性校验,获得校验结果;其中,当第二序列和校验序列进行相关运算获得的相关运算结果大于或等于预设门限时,该校验结果为该用于测距的信号通过该完整性检验;当该第二序列和该校验序列进行相关运算获得的相关运算结果小于该预设门限时,该校验结果为该用于测距的信号未通过该完整性检验;该第二序列为该第一序列,或者该第二序列为该第一序列经过时间反转处理后的序列;该校验序列为该用于测距的信号经过取实部后再等间隔采样获得,该等间隔采样的起始时刻为该第一时刻,该校验序列的长度与该第一序列的长度相等;确定模块24,用于当该校验结果为该用于测距的信号通过该完整性校验时,将该第一时刻确定为该用于测距的信号的到达时刻。
其中,上述相关运算模块22,上述完整性校验模块23,以及上述确定模块24可以集成为一个模块,如处理模块。
应理解,上述通信装置2可对应执行前述实施例一至三的任一个实施例,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例一至三的任一个实施例中第二设备的相应操作,为了简洁,在此不再赘述。
以上介绍了本申请实施例的第一设备和第二设备,以下介绍所述第一设备和第二设备可能的产品形态。应理解,但凡具备上述图11所述的第一设备的功能的任何形态的产品,和但凡具备上述图12所述的第二设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的第一设备和第二设备的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的第一设备和第二设备,可以由一般性的总线体系结构来实现。
为了便于说明,参见图13,图13是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以为第一设备或第二设备,或其中的芯片。图13仅示出了通信装置1000的主要部件。除处理器1001和收发器1002之外,所述通信装置还可以进一步包括存储器1003、以及输入输出装置(图未示意)。
处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。收发器1002可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
其中,处理器1001、收发器1002、以及存储器1003可以通过通信总线连接。
一种设计中,通信装置1000可以用于执行前述实施例一中第一设备的功能:处理器1001可以用于执行图3中的步骤S3-步骤S4,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图3中的步骤S2和步骤S5,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例一中第二设备的功能:处理器1001可以用于执行图3中的步骤S7-步骤S9,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图3中的步骤S1和步骤S6,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例二中第一设备的功能:处理器1001可以用于执行图4中的步骤S102-步骤S104,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图4中的步骤S105,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例二中第二设备的功能:处理器1001可以用于执行图4中步骤S107-步骤S109,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图4中的步骤S101和步骤S106,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例三中第一设备的功能:处理器1001可以用于执行图6中的步骤S203,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图6中的步骤S202和步骤S204,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例三中第二设备的功能:处理器1001可以用于执行图6中步骤S206-步骤S208,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图6中的步骤S201和步骤S205,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例四中第一设备的功能:处理器1001可以用于执行图7中的步骤S301,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图7中的步骤S302,和/或用于本文所描述的技术的其它过程。
另一种设计中,通信装置1000可以用于执行前述实施例四中第二设备的功能:处理器1001可以用于执行图7中步骤S304,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图7中的步骤S303,和/或用于本文所描述的技术的其它过程。
一种设计中,通信装置1000可以用于执行前述实施例五中第一设备的功能:处理器1001可以用于生成图10中的测距配置信息,和/或用于执行本文所描述的技术的其它过程;收发器1002可以用于执行图10中的步骤S401,和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发 电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述任方法实施例中描述的方法。计算机程序可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请实施例中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、无线射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请实施例中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的第一设备和第二设备,可以由通用处理器来实现。
实现第一设备的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中第一设备的功能。具体地,处理电路可以用于执行图3中的步骤S3-步骤S4,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图3中的步骤S2和步骤S5,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例二中第一设备的功能。具体地,处理电路可以用于执行图4中的步骤S102-步骤S104,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图4中的步骤S105,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例三中第一设备的功能。具体地,处理电路可以用于执行图6中的步骤S203,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图6中的步骤S202和步骤S204,和/或用于本文所描述的技术的其它 过程。
一种设计中,该通用处理器可以用于执行前述实施例四中第一设备的功能。具体地,处理电路可以用于执行图7中的步骤S301,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图7中的步骤S302,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例五中第一设备的功能。具体地,处理电路可以用于生成图10中的测距配置信息,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图10中的步骤S401,和/或用于本文所描述的技术的其它过程。
实现第二设备的通用处理器包括处理电路和与所述处理电路内部连接通信的输入输出接口。
一种设计中,该通用处理器可以用于执行前述实施例一中第二设备的功能。具体地,处理电路可以用于执行图3中的步骤S7-步骤S9,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图3中的步骤S1和步骤S6,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例二中第二设备的功能。具体地,处理电路可以用于执行图4中步骤S107-步骤S109,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图4中的步骤S101和步骤S106,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例三中第二设备的功能。具体地,处理电路可以用于执行图6中步骤S206-步骤S208,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图6中的步骤S201和步骤S205,和/或用于本文所描述的技术的其它过程。
一种设计中,该通用处理器可以用于执行前述实施例四中第二设备的功能。具体地,处理电路可以用于执行图7中步骤S304,和/或用于执行本文所描述的技术的其它过程;输入输出接口可以用于执行图7中的步骤S303,和/或用于本文所描述的技术的其它过程。
应理解,上述各种产品形态的通信装置,具有上述任一实施例中第一设备或第二设备的任意功能,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,电子设备执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该通信装置可以以芯片的产品形态存在,该通信装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该通信装置执行前述任一实施例中的方法。
本申请实施例还提供一种无线通信系统,包括第一设备和第二设备,该第一设备和第二设备可以执行前述任一实施例中的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读 取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机可读存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (38)

  1. 一种超宽带中的测距信号传输方法,其特征在于,包括:
    通信装置接收第一信号;
    所述通信装置对所述第一信号进行预处理,获得第二信号,所述预处理包括信道估计或功率归一化;
    所述通信装置至少根据所述第二信号生成第一测距信号,其中,所述第一测距信号符合所述第二信号经过时间反转、或者时间反转和共轭处理后与原始测距信号进行卷积处理后的信号,或者,所述第一测距信号符合所述第二信号经过时间反转、或者时间反转和共轭处理后获得的信号;
    所述通信装置发送至少部分所述第一测距信号,所述至少部分所述第一测距信号支持完整性保护功能和测距功能。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号中包含导频信息,所述预处理包括信道估计,所述第二信号为通信装置到所述通信装置的第一信道冲击响应;
    所述生成所述第一测距信号,包括:
    所述通信装置对所述第一信道冲击响应进行第一处理后,获得第二信道冲击响应,所述第一处理包括时间反转,或者时间反转和共轭处理;
    所述通信装置根据所述第二信道冲击响应和所述原始测距信号进行卷积处理。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第二信道冲击响应和所述原始测距信号进行卷积处理包括:
    归一化处理所述第二信道冲击响应后,与所述原始测距信号进行卷积处理。
  4. 根据权利要求1所述的方法,其特征在于,所述第一信号为原始测距信号经过无线信道传输后获得,所述预处理包括功率归一化;
    所述生成所述第一测距信号包括:
    所述通信装置对所述第二信号进行时间反转,或者时间反转和共轭处理后,获得所述第一测距信号。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述至少部分所述第一测距信号的长度与所述原始测距信号的长度相等。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述至少部分所述第一测距信号携带于测距无线帧中。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述通信装置发送至少部分所述第一测距信号之前,所述方法还包括:
    通信装置接收测距配置信息,或者,所述通信装置发送测距配置信息;
    其中,所述测距配置信息用于配置以下一项或多项信息:测距过程中发送的测距信号是否支持完整性保护功能,携带测距信号的测距无线帧的格式,测距过程中测距信号的长度, 脉冲重复频率模式。
  8. 一种超宽带中的测距信号传输方法,其特征在于,包括:
    通信装置发送信号,所述信号用于生成第一测距信号;
    通信装置接收用于测距的信号,所述用于测距的信号为至少部分所述第一测距信号经过无线信道传输后获得,所述至少部分所述第一测距信号支持完整性保护功能和测距功能;
    所述通信装置将原始测距信号和所述用于测距的信号输入相关器进行相关运算,获得所述相关器输出的最大值所在的第一时刻,所述原始测距信号基于第一序列生成;
    所述通信装置对所述用于测距的信号进行完整性校验,获得校验结果;
    其中,当第二序列和校验序列进行相关运算获得的相关运算结果大于或等于预设门限时,所述校验结果为所述用于测距的信号通过所述完整性检验;当所述第二序列和所述校验序列进行相关运算获得的相关运算结果小于所述预设门限时,所述校验结果为所述用于测距的信号未通过所述完整性检验;所述第二序列为所述第一序列,或者所述第二序列为所述第一序列经过时间反转处理后的序列;所述校验序列为所述用于测距的信号经过取实部后再等间隔采样获得,所述等间隔采样的起始时刻为所述第一时刻,所述校验序列的长度与所述第一序列的长度相等;
    若所述校验结果为所述用于测距的信号通过所述完整性校验,则所述通信装置将所述第一时刻确定为所述用于测距的信号的到达时刻。
  9. 根据权利要求8所述的方法,其特征在于,所述信号中包含导频信息,所述第二序列与所述第一序列相同。
  10. 根据权利要求8所述的方法,其特征在于,所述信号为原始测距信号,所述第二序列为所述第一序列经过时间反转处理后的序列。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,所述校验序列为所述用于测距的信号经过取实部后再等间隔采样获得,包括:
    所述校验序列基于样本序列的极性生成,所述样本序列为所述用于测距的信号经过取实部后再等间隔采样后得到。
  12. 根据权利要求8-11中任一项所述的方法,其特征在于,所述至少部分所述第一测距信号携带于测距无线帧中。
  13. 根据权利要求8-12中任一项所述的方法,其特征在于,所述通信装置接收用于测距的信号之前,所述方法还包括:
    通信装置发送测距配置信息,或者,所述通信装置接收测距配置信息;
    其中,所述测距配置信息用于配置以下一项或多项信息:测距过程中发送的测距信号是否支持完整性保护功能,携带测距信号的测距无线帧的格式,测距过程中发送的测距信号的长度,脉冲重复频率模式。
  14. 一种测距配置信息传输方法,其特征在于,包括:
    通信装置发送测距配置信息,或者,所述通信装置接收测距配置信息;
    其中,所述测距配置信息包括测距无线帧的类型,该测距无线帧的类型为支持测距功能的无线帧类型,或同时支持测距功能和完整性保护功能的无线帧类型。
  15. 根据权利要求14所述的方法,其特征在于,所述测距配置信息还包括以下一项或多项:测距无线帧的格式,支持测距功能和/或完整性保护功能的信号的长度,脉冲重复频率模式。
  16. 根据权利要求14或15所述的方法,其特征在于,所述测距配置信息携带于测距信道与前导码选择信息单元,或测距响应时间协商信息单元中。
  17. 一种通信装置,其特征在于,包括:
    收发模块,用于接收第一信号;
    处理模块,用于对所述第一信号进行预处理,获得第二信号,所述预处理包括信道估计或功率归一化;
    所述处理模块,还用于至少根据所述第二信号生成第一测距信号,其中,所述第一测距信号符合所述第二信号经过时间反转、或者时间反转和共轭处理后与原始测距信号进行卷积处理后的信号,或者,所述第一测距信号符合所述第二信号经过时间反转、或者时间反转和共轭处理后获得的信号;
    所述收发模块,还用于发送至少部分所述第一测距信号,所述至少部分所述第一测距信号支持完整性保护功能和测距功能。
  18. 根据权利要求17所述的通信装置,其特征在于,所述第一信号中包含导频信息,所述预处理包括信道估计,所述第二信号为通信装置到所述通信装置的第一信道冲击响应;
    所述处理模块,具体用于:对所述第一信道冲击响应进行第一处理后,获得第二信道冲击响应,所述第一处理包括时间反转,或者时间反转和共轭处理;根据所述第二信道冲击响应和所述原始测距信号进行卷积处理。
  19. 根据权利要求18所述的通信装置,其特征在于,所述处理模块,具体用于:归一化处理所述第二信道冲击响应后,与所述原始测距信号进行卷积处理。
  20. 根据权利要求17所述的通信装置,其特征在于,所述第一信号为原始测距信号经过无线信道传输后获得,所述预处理包括功率归一化;
    所述处理模块,具体用于对所述第二信号进行时间反转,或者时间反转和共轭处理后,获得所述第一测距信号。
  21. 根据权利要求17-20中任一项所述的通信装置,其特征在于,所述至少部分所述第一测距信号的长度与所述原始测距信号的长度相等。
  22. 根据权利要求17-21中任一项所述的通信装置,其特征在于,所述至少部分所述第一测距信号携带于测距无线帧中。
  23. 根据权利要求17-22中任一项所述的通信装置,其特征在于,所述收发模块,还用于接收测距配置信息,或者,发送测距配置信息;
    其中,所述测距配置信息用于配置以下一项或多项信息:测距过程中发送的测距信号是否支持完整性保护功能,携带测距信号的测距无线帧的格式,测距过程中测距信号的长度,脉冲重复频率模式。
  24. 一种通信装置,其特征在于,包括:
    收发模块,用于发送信号,所述信号用于生成第一测距信号;
    所述收发模块,还用于接收用于测距的信号,所述用于测距的信号为至少部分所述第一测距信号经过无线信道传输后获得,所述至少部分所述第一测距信号支持完整性保护功能和测距功能;
    相关运算模块,用于将原始测距信号和所述用于测距的信号输入相关器进行相关运算,获得所述相关器输出的最大值所在的第一时刻,所述原始测距信号基于第一序列生成;
    完整性校验模块,用于对所述用于测距的信号进行完整性校验,获得校验结果;
    其中,当第二序列和校验序列进行相关运算获得的相关运算结果大于或等于预设门限时,所述校验结果为所述用于测距的信号通过所述完整性检验;当所述第二序列和所述校验序列进行相关运算获得的相关运算结果小于所述预设门限时,所述校验结果为所述用于测距的信号未通过所述完整性检验;所述第二序列为所述第一序列,或者所述第二序列为所述第一序列经过时间反转处理后的序列;所述校验序列为所述用于测距的信号经过取实部后再等间隔采样获得,所述等间隔采样的起始时刻为所述第一时刻,所述校验序列的长度与所述第一序列的长度相等;
    确定模块,用于当所述校验结果为所述用于测距的信号通过所述完整性校验时,将所述第一时刻确定为所述用于测距的信号的到达时刻。
  25. 根据权利要求24所述的通信装置,其特征在于,所述信号中包含导频信息,所述第二序列与所述第一序列相同。
  26. 根据权利要求24所述的通信装置,其特征在于,所述信号为原始测距信号,所述第二序列为所述第一序列经过时间反转处理后的序列。
  27. 根据权利要求24-26中任一项所述的通信装置,其特征在于,所述校验序列为所述用于测距的信号经过取实部后再等间隔采样获得,包括:
    所述校验序列基于样本序列的极性生成,所述样本序列为所述用于测距的信号经过取实部后再等间隔采样后得到。
  28. 根据权利要求24-27中任一项所述的通信装置,其特征在于,所述至少部分所述第一测距信号携带于测距无线帧中。
  29. 根据权利要求24-28中任一项所述的通信装置,其特征在于,所述收发模块,还用于发送测距配置信息,或者,接收测距配置信息;
    其中,所述测距配置信息用于配置以下一项或多项信息:测距过程中发送的测距信号是否支持完整性保护功能,携带测距信号的测距无线帧的格式,测距过程中发送的测距信号的长度,脉冲重复频率模式。
  30. 一种通信装置,其特征在于,包括:
    收发模块,用于发送测距配置信息,或者,接收测距配置信息;
    其中,所述测距配置信息包括测距无线帧的类型,该测距无线帧的类型为支持测距功能的无线帧类型,或同时支持测距功能和完整性保护功能的无线帧类型。
  31. 根据权利要求30所述的通信装置,其特征在于,所述测距配置信息还包括以下一项或多项:测距无线帧的格式,支持测距功能和/或完整性保护功能的信号的长度,脉冲重复频率模式。
  32. 根据权利要求30或31所述的通信装置,其特征在于,所述测距配置信息携带于测距信道与前导码选择信息单元,或测距响应时间协商信息单元中。
  33. 一种通信装置,其特征在于,包括处理器和收发器,其中所述收发器用于收发信号,所述处理器用于执行程序指令,以使得所述通信装置执行如权利要求1-13中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括处理器和收发器,其中所述收发器用于收发信息,所述处理器用于执行程序指令,以使得所述通信装置执行如权利要求14-16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时使所述计算机执行如权利要求1-13中任一项所述的方法。
  36. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时使所述计算机执行如权利要求14-16中任一项所述的方法。
  37. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-13中任一项所述的方法。
  38. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求14-16中任一项所述的方法。
PCT/CN2022/143865 2022-01-15 2022-12-30 Uwb中的测距信号传输方法、装置及可读存储介质 WO2023134473A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210045268.1A CN116489597A (zh) 2022-01-15 2022-01-15 Uwb中的测距信号传输方法、装置及可读存储介质
CN202210045268.1 2022-01-15

Publications (1)

Publication Number Publication Date
WO2023134473A1 true WO2023134473A1 (zh) 2023-07-20

Family

ID=87216474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143865 WO2023134473A1 (zh) 2022-01-15 2022-12-30 Uwb中的测距信号传输方法、装置及可读存储介质

Country Status (3)

Country Link
CN (1) CN116489597A (zh)
TW (1) TW202334667A (zh)
WO (1) WO2023134473A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631306A (zh) * 2009-08-17 2010-01-20 中兴通讯股份有限公司 空口密钥的更新方法、终端以及基站
US20170123045A1 (en) * 2015-10-29 2017-05-04 Industrial Bank Of Korea Mobile apparatus for measuring relative location based on uwb and method thereof
CN106664119A (zh) * 2014-05-23 2017-05-10 德卡维务有限责任公司 在超宽带通信系统中测量入射角
CN110535546A (zh) * 2019-07-22 2019-12-03 西安交通大学 一种基于稀疏多径感知的滑动互相关帧检测方法
CN112141169A (zh) * 2019-06-28 2020-12-29 比亚迪股份有限公司 校验方法、装置、存储介质、列车及电子设备
CN112995081A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 一种测距的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631306A (zh) * 2009-08-17 2010-01-20 中兴通讯股份有限公司 空口密钥的更新方法、终端以及基站
CN106664119A (zh) * 2014-05-23 2017-05-10 德卡维务有限责任公司 在超宽带通信系统中测量入射角
US20170123045A1 (en) * 2015-10-29 2017-05-04 Industrial Bank Of Korea Mobile apparatus for measuring relative location based on uwb and method thereof
CN112141169A (zh) * 2019-06-28 2020-12-29 比亚迪股份有限公司 校验方法、装置、存储介质、列车及电子设备
CN110535546A (zh) * 2019-07-22 2019-12-03 西安交通大学 一种基于稀疏多径感知的滑动互相关帧检测方法
CN112995081A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 一种测距的方法和装置

Also Published As

Publication number Publication date
TW202334667A (zh) 2023-09-01
CN116489597A (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN105162778B (zh) 基于射频指纹的跨层认证方法
Xu et al. Pyramid: Real-time lora collision decoding with peak tracking
Flury et al. Effectiveness of distance-decreasing attacks against impulse radio ranging
Hancke et al. An RFID distance bounding protocol
JP4814324B2 (ja) 秘匿uwb測距のためのデバイス、方法及びプロトコル
Singh et al. Security analysis of IEEE 802.15. 4z/HRP UWB time-of-flight distance measurement
Singh et al. {UWB-ED}: Distance Enlargement Attack Detection in {Ultra-Wideband}
Leu et al. Message time of arrival codes: A fundamental primitive for secure distance measurement
US20180367994A1 (en) Method, device and system for secure distance measurement
US10887863B2 (en) Receiver for secure time-of-arrival calculation
EP3386218B1 (en) Range determining module
Leu et al. Ghost Peak: Practical Distance Reduction Attacks Against {HRP}{UWB} Ranging
Taponecco et al. On the feasibility of overshadow enlargement attack on IEEE 802.15. 4a distance bounding
WO2023134473A1 (zh) Uwb中的测距信号传输方法、装置及可读存储介质
US11489680B2 (en) Method, device and system for secure distance measurement
US10931708B2 (en) Secure ranging wireless communication
Hussain et al. TIGHT: A cross-layer RF distance bounding realization for passive wireless devices
US10158997B2 (en) Wireless system with secure range determination
Anliker et al. Time for Change: How Clocks Break {UWB} Secure Ranging
Abidin et al. Secure, accurate, and practical narrow-band ranging system
CN114980080A (zh) 一种基于动态响应信号的安全测距方法
Tippenhauer et al. Physical-layer integrity for wireless messages
Tippenhauer Physical-Layer Security Aspects of Wireless Localization
Joo et al. Protecting HRP UWB Ranging System Against Distance Reduction Attacks
Hussein et al. Robust multiple frequency multiple power localization schemes in the presence of multiple jamming attacks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920103

Country of ref document: EP

Kind code of ref document: A1