WO2024045743A1 - 散热器及电子设备 - Google Patents

散热器及电子设备 Download PDF

Info

Publication number
WO2024045743A1
WO2024045743A1 PCT/CN2023/098432 CN2023098432W WO2024045743A1 WO 2024045743 A1 WO2024045743 A1 WO 2024045743A1 CN 2023098432 W CN2023098432 W CN 2023098432W WO 2024045743 A1 WO2024045743 A1 WO 2024045743A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
condensation
liquid working
working medium
gaseous working
Prior art date
Application number
PCT/CN2023/098432
Other languages
English (en)
French (fr)
Inventor
段智伟
孙振
徐青松
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024045743A1 publication Critical patent/WO2024045743A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds

Definitions

  • the present application relates to the technical field of radiator design, and in particular to a radiator and electronic equipment.
  • radiator uses the evaporation-condensation cycle of its internal working fluid to achieve rapid heat transfer, and ultimately achieves the purpose of heat dissipation.
  • the 3DVC (3-Dimension Vapor Chamber) radiator is a two-phase radiator that can dissipate heat in a three-dimensional space. Compared with the one-dimensional heat dissipation of heat pipes and the two-dimensional heat dissipation of vapor chambers, the 3DVC radiator has It can dissipate heat in more dimensions, so it has good heat dissipation performance.
  • the working fluid is heated in the evaporation chamber and evaporates into a gaseous state and condenses into a liquid state in the condensation chamber.
  • heat is quickly transferred throughout the 3DVC radiator.
  • the gaseous working medium flows into the condensation chamber and the liquid working medium flows from the condensation chamber to the evaporation chamber, the gaseous working medium and the liquid working medium flow in opposite directions, thus forming shear force.
  • the 3DVC radiator involved in the related technology still has the problem of poor heat dissipation efficiency.
  • the purpose of the embodiments of this application is to disclose a radiator and electronic equipment to solve related technical problems.
  • the heat dissipation effect of the radiator is poor.
  • a radiator includes a base, a condensation part and an isolation part, wherein: the base is provided with an evaporation chamber and a gaseous working medium output port and a liquid working medium return port both connected thereto, and the isolation part is provided with a gaseous working medium return port.
  • Working fluid input channel the first end of the gaseous working fluid input channel is connected to the gaseous working fluid output port; the isolation part is provided in the condensation part, and the outer surface of the isolation part is connected to the gaseous working fluid output port.
  • a liquid working medium return channel is formed between the inner walls of the condensation part.
  • the second end of the gaseous working medium input channel is connected with the first end of the liquid working medium return channel.
  • the third end of the liquid working medium return channel is The two ends are connected with the liquid working fluid return port, and the isolation part isolates the gaseous working fluid output port and the liquid working fluid return port.
  • An electronic device includes a heat source device and a heat sink.
  • the base is provided on the heat source device.
  • the heat sink is the heat sink described above.
  • Figure 1 is a schematic three-dimensional structural diagram of a radiator disclosed in an embodiment of the present application.
  • Figure 2 is a schematic diagram of the exploded structure of the base disclosed in the embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the first cover plate disclosed in the embodiment of the present application.
  • FIG. 4 is a cross-sectional view of the radiator disclosed in the embodiment of the present application.
  • Figure 5 is a cross-sectional view of the heat sink disclosed in the embodiment of the present application from one perspective;
  • FIG. 6 is a cross-sectional view from another perspective of the heat sink disclosed in the embodiment of the present application.
  • An embodiment of the present application discloses a heat sink.
  • the disclosed heat sink includes a base 100 , a condensation part 200 and an isolation part 300 .
  • the base 100 is the base of the radiator and can be used as an installation connection part of the radiator.
  • the base 100 can be connected to the object to be heat dissipated, thereby realizing an assembly connection between the heat sink and the object to be heat dissipated.
  • the base 100 can not only play the role of installation and connection, but also can form other structures.
  • the base 100 is provided with an evaporation chamber 101, a gaseous working fluid output port 102, and a liquid working fluid return port 103.
  • the evaporation chamber 101 is a space where the liquid working medium evaporates. In the evaporation chamber 101, the liquid working medium can evaporate to form a gaseous working medium.
  • the gaseous working fluid output port 102 and the liquid working fluid return port 103 are both connected to the evaporation chamber 101.
  • the gaseous working fluid formed in the evaporation chamber 101 will be discharged out of the evaporation chamber 101 through the gaseous working fluid output port 102 for subsequent heat dissipation. Work.
  • the gaseous working fluid is condensed and turned back into a liquid working fluid, the liquid working fluid will eventually return to the evaporation chamber 101 through the liquid working fluid return port 103 and enter the next evaporation-condensation cycle.
  • the isolation part 300 is provided with a gaseous working fluid input channel 105, and the first end of the gaseous working fluid input channel 105 is connected with the gaseous working fluid output port 102.
  • the gaseous working fluid output from the gaseous working fluid output port 102 can enter the gaseous working fluid input channel 105 through the first end of the gaseous working fluid input channel 105 .
  • the condensation part 200 is provided on the base 100 . Specifically, the condensation part 200 can be fixed on the base 100 .
  • the condensation part 200 performs a condensation function.
  • the condensation part 200 is usually in direct contact with the environment where the radiator is located, so the temperature is relatively low.
  • the isolation part 300 is arranged inside the condensation part 200, and the outer part of the isolation part 300
  • a liquid working medium return channel 104 is formed between the surface and the inner wall of the condensation part 200 .
  • the second end of the gaseous working fluid input channel 105 is connected to the first end of the liquid working fluid return channel 104 , and the second end of the liquid working fluid return channel 104 is connected to the liquid working fluid return port 103 .
  • the gaseous working fluid output port 102, the gaseous working fluid input channel 105, the liquid working fluid return channel 104, the liquid working fluid return port 103 and the evaporation chamber 101 are connected in sequence, thereby forming a working fluid circulation structure.
  • the form of the working fluid will change between gaseous and liquid states during the flow of the working fluid circulation structure.
  • the isolation part 300 plays an isolation role.
  • the isolation part 300 forms a certain isolation between the gaseous working medium input channel 105 and the liquid working medium return channel 104.
  • the isolation part 300 isolates the gaseous working medium output port 102 and the liquid working medium.
  • the return port 103 can prevent the gaseous working fluid output from the gaseous working fluid output port 102 from directly entering the liquid working fluid return port 103, and can also prevent the liquid working fluid that is about to enter the liquid working fluid return port 103 from directly entering the gaseous working fluid.
  • the output port 102 can avoid mutual interference between the liquid working fluid and the gaseous working fluid.
  • the liquid working fluid evaporates in the evaporation chamber 101 of the base 100 and turns into a gaseous working fluid.
  • the gaseous working fluid enters the first port of the gaseous working fluid input channel 105 through the gaseous working fluid output port 102. end, then flows in the gaseous working fluid input channel 105 to the second end of the gaseous working fluid input channel 105, and enters the liquid working fluid return channel 104 through the second end of the gaseous working fluid input channel 105. Since the temperature of the condensation part 200 is low, the gaseous working fluid with a higher temperature will contact the condensing part 200 and condense after entering the liquid working fluid return channel 104, and then change back to a liquid working fluid. The liquid working fluid will eventually return to the evaporation chamber 101 through the second end of the liquid working fluid return channel 104 and the liquid working fluid return port 103 for the next cycle.
  • the heat generated by the object to be dissipated can heat the working fluid through the base 100 to transform the liquid working fluid into a gaseous working fluid.
  • the working fluid will absorb heat.
  • the gaseous working medium is cooled and becomes a liquid working medium in the liquid working medium return channel 104, it will release heat.
  • the heat released by condensation will eventually be dissipated through the condensing part 200 to the environment where the condensing part 200 is located, thereby achieving the purpose of heat dissipation.
  • the radiator transfers the heat generated by the object to be dissipated to the environment where the radiator is located through the shape change of the working fluid, thereby achieving the purpose of dissipating heat from the object to be dissipated.
  • the gaseous working fluid with higher temperature and the liquid working fluid with lower temperature travel respectively in the gaseous working fluid input channel 105 and the liquid working fluid return channel 104 isolated by the isolation part 300, without Contact will occur, which can avoid the contact between the gaseous working fluid and the liquid working fluid in the related technology during the flow process, and can avoid the flow interference caused by the shear force between the gaseous working fluid and the liquid working fluid.
  • This undoubtedly ensures the uninterrupted flow of gaseous and liquid working fluids, thereby improving the heat dissipation effect.
  • the heat sink disclosed in the embodiment of the present application can solve the problem of poor heat dissipation effect of the heat sink in the related art.
  • the first end of the gaseous working fluid input channel 105 refers to the end of the gaseous working fluid input channel 105 adjacent to the evaporation chamber 101 .
  • the second end of the gaseous working fluid input channel 105 refers to the end of the gaseous working fluid input channel 105 away from the evaporation chamber 101 .
  • the first end of the liquid working medium return channel 104 refers to the end of the liquid working medium return channel 104 away from the evaporation chamber 101 .
  • the second end of the liquid working fluid return channel 104 refers to the end of the liquid working fluid return channel 104 adjacent to the evaporation chamber 101 .
  • the gaseous working fluid will be output from the evaporation chamber 101 through the gaseous working fluid output port 102 .
  • the liquid working fluid will flow back into the evaporation chamber 101 through the liquid working fluid return port 103. That is to say, there will be both gaseous working fluid and liquid working fluid in the evaporation chamber 101.
  • the evaporation chamber 101 can have a liquid working medium collection area and an evaporation area.
  • the liquid working medium collection area and the evaporation area are two local spaces of the evaporation chamber 101 .
  • the evaporation zone is connected to the gaseous working fluid output port 102, and the liquid working fluid return port 103 is connected to the liquid working fluid collection area.
  • a capillary structure 400 is provided in the evaporation zone.
  • the capillary structure 400 can evaporate the liquid working fluid in the evaporation zone to form a gaseous working fluid, which is then transported away from the gaseous working fluid output port 102 .
  • the liquid working fluid collection area and the evaporation area are connected, thereby allowing the liquid working fluid that has returned to the evaporation chamber 101 to enter the evaporation area.
  • This kind of partition arrangement can reduce the contact between gaseous working fluid and liquid working fluid to a certain extent, thereby avoiding mutual interference.
  • the base 100 includes an enclosure 110 , which is disposed in the evaporation chamber 101 and surrounding the capillary structure 400 .
  • the space enclosed by the enclosure 110 is the evaporation area.
  • the gas working medium output port 102 is located inside the enclosure 110
  • the liquid working medium return port 103 and the liquid working fluid collection area are located outside the enclosure 110 .
  • the enclosure 110 can better determine the boundary of the evaporation zone and facilitate the accurate installation of the capillary structure 400 .
  • the enclosure 110 can restrain the gaseous working fluid formed in the evaporation zone from being too dispersed, and is more conducive to the gaseous working fluid flowing more concentratedly to the gaseous working fluid output port 102, which can further improve the heat dissipation efficiency of the radiator.
  • the enclosure 110 can isolate the gaseous working fluid output port 102 and the liquid working fluid return port 103, thereby preventing the liquid working fluid from directly flowing back to the evaporation zone and causing adverse effects on evaporation.
  • the fencing 110 does not It will completely isolate the evaporation zone and the liquid working fluid collection zone.
  • the capillary structure 400 can be a metal powder sintered structural part, a metal fiber sintered structural part, a metal foam, a shovel tooth structure, a micro-channel structure, etc., which are not limited in the embodiments of the present application.
  • the base 100 since the base 100 is provided with an evaporation chamber 101, the base 100 can be considered to be a hollow structure. There are many ways to realize the hollow structure. For example, the base 100 can be formed by bending and sealing a whole plate.
  • the base 100 may include a base plate 120 and a first cover plate 130.
  • the base plate 120 may be provided with a groove 121.
  • the first cover plate 130 is connected to the base plate 120 and the first cover plate 130 covers the groove. 121 notch.
  • the first cover plate 130 and the base plate 120 enclose the evaporation chamber 101.
  • the surface of the base plate 120 on which the groove 121 is formed and the first cover plate 130 enclose the evaporation chamber 101.
  • the evaporation chamber 101 can be formed on the base plate 120.
  • the groove 121 is formed by etching, machining, etc., and then the first cover plate 130 covers the notch of the groove 121.
  • a sealant can be provided between the first cover plate 130 and the substrate 120, thereby achieving the two goals. The sealed connection between them ensures the sealing of the evaporation chamber 101.
  • This method has the advantage of convenient manufacturing.
  • the enclosure 110 can be connected to the first cover plate 130.
  • the enclosure 110 and the first cover plate 130 can be connected first, and then the two integrally formed are installed on the base plate 120, which is helpful to simplify assembly.
  • the enclosure 110 and the first cover 130 may be of an integrated structure. In this case, the enclosure 110 can also play a role in strengthening the first cover 130 .
  • the enclosure 110 can also be welded and connected to the first cover plate 130, and the first cover plate 130 can be welded and connected to the base plate 120.
  • the base 100, the isolation part 300 and the condensation part 200 can all be made of copper, aluminum or other materials with good heat dissipation performance.
  • the gaseous working fluid output port 102 and the liquid working fluid return port 103 can be provided on the base plate 120 or on the first cover 130, which are not limited by the embodiment of the present application.
  • this structure can make the structure that needs to be processed or assembled relatively simple. Being centrally located on the first cover plate 130 undoubtedly facilitates centralized processing and thereby improves processing efficiency.
  • both the isolation part 300 and the condensation part 200 can be installed on the base 100 .
  • the isolation part 300 and the condensation part 200 can be fixed on the base 100 .
  • the base 100 is a hollow structure, there may be a problem of insufficient support strength.
  • the base 100 may also include a plurality of support protrusions 140 distributed in an array, and the plurality of support protrusions 140 are supported on the bottom wall of the groove 121 and the first cover 130 between. It should be noted that groove 121 The bottom wall is distributed opposite to the first cover plate 130 .
  • the capillary structure 400 is provided with escape holes 410, and the support protrusions 140 corresponding to the capillary structure 400 are disposed in the corresponding escape holes 410, thereby avoiding the influence of the capillary structure 400 on the arrangement of the support protrusions 140.
  • the plurality of supporting protrusions 140 are supported between the first cover plate 130 and the base plate 120 , thereby improving the strength of the entire base 100 .
  • the plurality of support protrusions 140 can play a role in supporting the first cover 130, thereby better relieving the first cover when the isolation part 300 and the condensation part 200 are installed on the first cover 130.
  • the deformation of the plate 130 further enables the first cover plate 130 to better support the isolation part 300 and the condensation part 200 .
  • the supporting protrusion 140 and the base plate 120 may be an integral structure.
  • the support protrusions 140 and the base plate 120 have an integrated structure, and the support protrusions 140 can also be considered as reinforcing protrusions of the base plate 120 in a disguised manner, thereby improving the deformation resistance of the base plate 120 .
  • the support protrusion 140 and the base plate 120 may also have a split structure, and be fixedly connected through bonding, welding, or other fixing methods.
  • both the condensation part 200 and the isolation part 300 may be one. Of course, there can be multiple condensation parts 200 and isolation parts 300 , and they are all distributed at intervals.
  • the plurality of condensation parts 200 and the plurality of isolation parts 300 correspond one to one to form a plurality of gaseous working medium input channels 105 and a plurality of liquid working medium return channels 104 . This method can improve the heat dissipation capacity of the radiator.
  • each condensation part 200 is spaced on the base 100, each liquid working fluid return channel 104 is connected to the corresponding liquid working fluid return port 103, and each gaseous working fluid input channel 105 is connected to the corresponding gaseous working fluid return port.
  • the quality output port 102 is connected.
  • This structure enables the radiator to form a heat dissipation cycle at multiple locations, thereby improving the heat dissipation capacity of the radiator.
  • the spacing distribution is beneficial to air circulation between adjacent condensation parts 200, thereby improving the condensation and heat dissipation capacity.
  • there can be multiple liquid working fluid return ports 103 and gaseous working fluid output ports 102 and corresponding cooperative relationships can be established with multiple condensation parts 200 and isolation parts 300 .
  • both the condensation part 200 and the isolation part 300 can be considered as hollow components, as long as they can form a heat dissipation structure that satisfies the circulation of the gaseous working fluid and the liquid working fluid mentioned above.
  • the condensation part 200 may include a condensation flat tube 210 and a second cover 220.
  • the isolation part 300 has a plate-like structure.
  • 300 has a gaseous working fluid input channel 105, so in this case, the isolation part 300 is essentially a hollow plate-like structure.
  • the condensation flat tube 210 has a flat structure, and the tube cavity of the condensation flat tube 210 is also a flat space.
  • the plate surface of the isolation part 300 can be parallel to the flat surface of the condensation flat tube 210, thereby enabling isolation.
  • the shape of the portion 300 is better adapted to the flat condensation tube 210 . Since the condensation flat tube 210 has a flat structure, it is easier to form a flat heat exchange surface, which facilitates the design of a larger heat exchange area, thereby improving the heat exchange efficiency.
  • the condensation flat tube 210 allows the condensation part 200 to be designed to a smaller size in one direction, thereby facilitating more layout of the condensation part 200 in a space with a determined size in this direction.
  • the shapes of the first strip port of the condensation flat tube 210, the gaseous working fluid output port 102 and the liquid working fluid return port 103 can be adapted (both are strip structures) and connected.
  • the second cover plate 220 covers the second strip-shaped port of the condensation flat tube 210.
  • the second cover plate 220 is spaced apart from the isolation part 300 and forms a connecting channel 106.
  • a liquid is formed between the isolation part 300 and the inner tube wall of the condensation flat tube 210.
  • the working fluid return channel 104 and the connecting channel 106 connect the liquid working fluid return channel 104 and the gaseous working fluid input channel 105 .
  • This method of forming the connection channel 106 by covering the second strip-shaped port of the condensation flat tube 210 with the second cover plate 220 has a simpler structure and is easier to implement.
  • a communication hole may also be opened in the isolation part 300 , and the connection channel 106 may be replaced by the communication hole, thereby connecting the liquid working fluid return channel 104 and the gaseous working fluid input channel 105 .
  • a liquid working medium return channel 104 surrounding the gaseous working medium input channel 105 is formed between the isolation part 300 and the inner wall of the condensation flat tube 210.
  • This surrounding structure is conducive to the return flow of the liquid working medium.
  • the gaseous working medium output port 102 is a strip-shaped hole that matches the shape of the first strip-shaped port of the condensation flat tube 210. The shape here is matched, which means that they are all strip-shaped structures.
  • the gaseous working medium output port 102 is provided with liquid working fluid return ports 103 on both sides of the length direction.
  • the liquid working fluid return channel 104 has two liquid working fluid return ports located on both sides of the gaseous working fluid output port 102 in the length direction. Port 103 is connected.
  • the liquid working fluid can be refluxed through the two liquid working fluid return ports 103, which can undoubtedly improve the reflux efficiency.
  • the gaseous working medium output port 102 is a strip hole, which can better fit the isolation part 300 with a plate-like structure.
  • the gaseous working medium input channel 105 can be a flat rectangular parallelepiped structure, and the width of the gaseous working medium input channel 105 is not less than 0.5mm.
  • the width of the gaseous working medium input channel 105 refers to It is the dimension perpendicular to the plate surface direction of the isolation part 300 of the plate-like structure.
  • the second cover plates 220 of each condensation part 200 are connected and form an integral structure.
  • the second cover plates 220 of the plurality of condensation parts 200 are formed into an integral structure, so that during the assembly process, the operator can first install the condensation flat tubes 210 of the plurality of condensation parts 200 to the base. 100 seats, and then cover it with a whole board Cover the ports of all condensation flat tubes 210 to form a connecting channel 106 with the isolation portion 300 in each condensation flat tube 210 .
  • This method is undoubtedly beneficial to assembly.
  • the plurality of second cover plates 220 have an integrated structure and essentially connect the plurality of condensation parts 200, which can improve the overall strength of the entire radiator.
  • a plurality of heat dissipation fins 500 may be provided on the outer surface of the condensation part 200, and the plurality of heat dissipation fins 500 may be distributed at intervals.
  • the arrangement of the heat dissipation fins 500 can improve the heat exchange capacity between the condensation part 200 and the environment, thereby helping to improve the condensation capacity.
  • condensation parts 200 there are multiple condensation parts 200, and an isolation part 300 is provided in each condensation part 200.
  • the plurality of condensation parts 200 are spaced on the base 100, and two adjacent condensation parts 200 are located on The heat dissipation fins 500 between the two are connected.
  • the condensing part 200 not only can the condensing part 200 be installed on the base 100, but the condensing parts 200 can also be connected through the heat dissipation fins 500, thereby forming a more stable connection structure, which can improve the strength of the entire radiator.
  • the working fluid involved in the embodiments of this application may be water or oil.
  • the embodiments of this application do not limit the specific type of the working fluid.
  • the width of the gap between the isolation part 300 and the condensation part 200 may be greater than 0.5 mm.
  • the height of the isolation part 300 is preferably greater than 1/2 of the height of the condensation flat tube 210 .
  • the height of the isolation part 300 is at least 5 mm smaller than the height of the condensation flat tube 210.
  • the height here is considered based on the same reference plane on the base 100 (for example, the plane on the base 100 used to support the condensation part 200 and the isolation part 300).
  • the embodiment of the present application further discloses an electronic device.
  • the disclosed electronic device includes a heat source device and a heat sink.
  • the base 100 is provided on the heat source device.
  • the heat sink is the heat sink in the above embodiment.
  • the heat source device here is the object to be heat dissipated as mentioned above.
  • the heat source device involved in the embodiment of the present application may be a processor in a switch, or may be other devices in an electronic device that can generate heat during operation.
  • the embodiment of the present application does not limit this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请实施例公开一种散热器及电子设备,所公开的散热器包括基座、冷凝部和隔离部,基座设有蒸发腔和均与之连通的气态工质输出口和液态工质回流口,隔离部设有气态工质输入通道,气态工质输入通道的第一端部与气态工质输出口连通;隔离部设置于冷凝部之内,且隔离部的外表面与冷凝部的内壁之间形成液态工质回流通道,气态工质输入通道的第二端部与液态工质回流通道的第一端部连通,液态工质回流通道的第二端部与液态工质回流口连通,隔离部隔离气态工质输出口和液态工质回流口。

Description

散热器及电子设备
交叉引用
本申请要求在2022年09月01日提交中国专利局、申请号为202211064954.X、名称为“散热器及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热器设计技术领域,尤其涉及一种散热器及电子设备。
背景技术
随着技术的发展,设备集成的功能器件越来越多,由此导致这些设备的产热量越来越大,进而影响工作性能。为了避免设备工作时温度过高,相关设备通常配置有散热器,散热器利用其内部工质的蒸发-冷凝循环实现热量的快速传递,最终达到散热的目的。
3DVC(3-Dimension Vapor Chamber,三维蒸汽腔)散热器是一种能够在三维空间进行散热的两相散热器,相比于热管的一维散热及均热板的二维散热,3DVC散热器由于能够在更多维度的空间进行散热,因此具有良好的散热性能。
在实际的散热过程中,工质在蒸发腔内受热蒸发成气态以及在冷凝腔内冷凝成液态,通过工质的蒸发-冷凝循环,实现热量在整个3DVC散热器中的快速传递。但是,在气态的工质向冷凝腔内流动以及液态的工质从冷凝腔向蒸发腔内流动的过程中,气态的工质与液态的工质的流动方向相反,从而会形成剪切力,最终会影响液态的工质和气态的工质的各自流动,降低散热效果。由此可见,相关技术涉及的3DVC散热器仍然存在散热效率不佳的问题。
当然,不局限于3DVC散热器,其它类型的散热器也存在相同的问题。
发明内容
本申请实施例的目的是公开一种散热器及电子设备,用以解决相关技术 中散热器的散热效果较差的问题。
为解决上述技术问题,本申请实施例公开如下技术方案:
一种散热器,包括基座、冷凝部和隔离部,其中:所述基座设有蒸发腔和均与之连通的气态工质输出口和液态工质回流口,所述隔离部设有气态工质输入通道,所述气态工质输入通道的第一端部与所述气态工质输出口连通;所述隔离部设于所述冷凝部之内,且所述隔离部的外表面与所述冷凝部的内壁之间形成液态工质回流通道,所述气态工质输入通道的第二端部与所述液态工质回流通道的第一端部连通,所述液态工质回流通道的第二端部与所述液态工质回流口连通,所述隔离部隔离所述气态工质输出口和所述液态工质回流口。
一种电子设备,包括热源器件和散热器,所述基座设置在所述热源器件上,所述散热器为上文所述的散热器。
附图说明
为了更清楚地说明本说明书一个或多个实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书一个或多个实施例中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例公开的散热器的立体结构示意图;
图2是本申请实施例公开的基座的爆炸结构示意图;
图3是本申请实施例公开的第一盖板的结构示意图;
图4是本申请实施例公开的散热器的剖视图;
图5是本申请实施例公开的散热器在一视角下的剖视图;
图6是本申请实施例公开的散热器在另一视角下的剖视图。
附图标记说明:
100-基座、110-围挡、120-基板、121-凹槽、130-第一盖板、140-支撑凸
起、
200-冷凝部、210-冷凝扁管、220-第二盖板、
300-隔离部、
400-毛细结构、410-避让孔、
500-散热翅片、
101-蒸发腔、102-气态工质输出口、103-液态工质回流口、104-液态工质
回流通道、105-气态工质输入通道、106-衔接通道。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
请参考图1至图6,本申请实施例公开一种散热器,所公开的散热器包括基座100、冷凝部200和隔离部300。
基座100为散热器的基部,可以作为散热器的安装连接部。在散热器要安装于待散热对象时,基座100可以与待散热对象进行连接,进而实现散热器与待散热对象之间的装配连接。
当然,基座100不但可以发挥安装连接的作用,而且还可以形成其它结构。在本申请实施例中,基座100设有蒸发腔101、气态工质输出口102和液态工质回流口103。蒸发腔101是液态工质进行蒸发的空间,在蒸发腔101内,液态工质能够蒸发从而形成气态工质。气态工质输出口102和液态工质回流口103均与蒸发腔101连通,蒸发腔101内形成的气态工质会通过气态工质输出口102排出到蒸发腔101之外,进而进行后续的散热工作。在气态工质冷凝后变回液态工质的情况下,这些液态工质最终会通过液态工质回流口103而回到蒸发腔101内,并进入下一次的蒸发-冷凝循环。
隔离部300设有气态工质输入通道105,气态工质输入通道105的第一端部与气态工质输出口102连通。气态工质输出口102输出的气态工质能够通过气态工质输入通道105的第一端部而进入到气态工质输入通道105内。
冷凝部200设于基座100上。具体的,冷凝部200可以固定在基座100上。冷凝部200发挥冷凝作用,冷凝部200通常直接与散热器所处的环境直接接触,因此温度较低。隔离部300设于冷凝部200之内,隔离部300的外 表面与冷凝部200的内壁之间形成液态工质回流通道104。气态工质输入通道105的第二端部与液态工质回流通道104的第一端部连通,液态工质回流通道104的第二端部与液态工质回流口103连通。也就是说,气态工质输出口102、气态工质输入通道105、液态工质回流通道104、液态工质回流口103和蒸发腔101依次连通,从而形成一个工质循环流通结构。当然,工质在工质循环流动结构内流动的过程中形态会在气态与液态之间变化。
在本申请实施例中,隔离部300发挥隔离作用,隔离部300使得气态工质输入通道105和液态工质回流通道104形成一定的隔离,隔离部300隔离气态工质输出口102和液态工质回流口103,从而能够避免从气态工质输出口102输出的气态工质直接进入到液态工质回流口103,也能够避免即将进入到液态工质回流口103的液态工质直接进入气态工质输出口102,从而能够避免液态工质与气态工质之间的相互干扰。
在散热器工作的过程中,液态工质在基座100的蒸发腔101内发生蒸发而变成气态工质,气态工质通过气态工质输出口102进入到气态工质输入通道105的第一端部,紧接着在气态工质输入通道105内流动到气态工质输入通道105的第二端部,并通过气态工质输入通道105的第二端部进入到液态工质回流通道104中。由于冷凝部200的温度较低,温度较高的气态工质进入液态工质回流通道104后会与冷凝部200接触并进行冷凝,进而又变回液态工质。液态工质最终会通过液态工质回流通道104的第二端部和液态工质回流口103返回到蒸发腔101内,以进行下一循环。
当然,此过程中,待散热对象产生的热能够通过基座100加热工质以实现液态工质向气态工质的转变,此过程中,工质会吸热。待气态工质在液态工质回流通道104内冷却变成液态工质时会放热,冷凝放出的热会最终通过冷凝部200而散发到冷凝部200所处的环境中,达到散热的目的。此过程中,散热器将待散热对象产生的热经由工质的形态变化而转移到散热器所处的环境中,达到对待散热对象进行散热的目的。
通过上文所述的散热器工作过程可知,从蒸发腔101输出的气态工质会通过气态工质输入通道105向着液态工质回流通道104流动,而在液态工质回流通道104内形成的液态工质会通过液态工质回流口103流回到蒸发腔101。此过程中,温度较高的气态工质与温度较低的液态工质分别行走在由隔离部300隔离成的气态工质输入通道105和液态工质回流通道104中,而不 会发生接触,进而能避免相关技术中存在的气态工质与液态工质在流动过程中发生接触,进而能够避免气态工质与液态工质之间产生剪切力而带来的流动干扰,这无疑确保气态工质和液态工质不受干扰地流动,进而能够提高散热效果。可见,本申请实施例公开的散热器能够解决相关技术中散热器存在的散热效果较差的问题。
需要说明的是,在本文中,气态工质输入通道105的第一端部,指的是在气态工质输入通道105的邻近蒸发腔101的端部。气态工质输入通道105的第二端部,指的是气态工质输入通道105的远离蒸发腔101的端部。液态工质回流通道104的第一端部,指的是液态工质回流通道104的远离蒸发腔101的端部。液态工质回流通道104的第二端部,指的是液态工质回流通道104的邻近蒸发腔101的端部。
如上文所述,气态工质会通过气态工质输出口102从蒸发腔101内输出。而液态工质会通过液态工质回流口103而回流到蒸发腔101内,也就是说,在蒸发腔101内会同时存在气态工质和液态工质。为了避免相互之间产生过多的干扰,一种可选的方案中,蒸发腔101可以具有液态工质汇集区和蒸发区,液态工质汇集区和蒸发区为蒸发腔101的两个局部空间。蒸发区和气态工质输出口102连通,液态工质回流口103与液态工质汇集区连通。蒸发区内设有毛细结构400,毛细结构400能够将液态工质在蒸发区蒸发形成气态工质,进而从气态工质输出口102输送走。当然,液态工质汇集区和蒸发区连通,进而能够使得回流到蒸发腔101内的液态工质进入到蒸发区。此种分区布置的方式,能够在一定程度上减少气态工质和液态工质的接触,进而避免相互干扰。
在进一步的技术方案中,基座100包括围挡110,围挡110设于蒸发腔101内,且围绕毛细结构400设置。围挡110围成的空间为蒸发区,气态工质输出口102位于围挡110的内侧,液态工质回流口103和液态工质汇集区均位于围挡110的外侧。此种情况下,围挡110能够较好地确定蒸发区的边界,方便毛细结构400的准确安装。更重要的是,围挡110能够约束蒸发区形成的气态工质不会过于分散,更有利于气态工质较为集中地流向气态工质输出口102,这能够进一步提升散热器的散热效率。当然,围挡110能够隔离气态工质输出口102和液态工质回流口103,从而能够避免液态工质直接回流到蒸发区,而对蒸发产生不良影响。当然,需要说明的是,围挡110不 会完全隔离蒸发区和液态工质汇集区。
毛细结构400可以是金属粉末烧结结构件、金属纤维烧结结构件、金属泡沫、铲齿结构、微槽道结构等,本申请实施例对此不做限制。
在本申请实施例中,基座100由于设有蒸发腔101,因此可以认为基座100为中空结构。实现中空结构的方式有多种,例如,可以通过一整块板材通过折弯及密封工艺,来实现基座100的成型。
在一种可行的实施例中,基座100可以包括基板120和第一盖板130,基板120可以开设有凹槽121,第一盖板130与基板120相连,第一盖板130覆盖凹槽121的槽口。第一盖板130与基板120围成蒸发腔101,具体的,基板120上形成凹槽121的表面与第一盖板130围成蒸发腔101,在具体的制造过程中,可以在基板120上通过刻蚀、机加工等方式形成凹槽121,然后再将第一盖板130覆盖凹槽121的槽口,当然,第一盖板130与基板120之间可以设置密封胶,进而来实现两者之间的密封连接,确保蒸发腔101的密封性。此种方式具有方便制造的优势。
围挡110可以与第一盖板130相连,在此种情况下,可以先将围挡110与第一盖板130相连,然后将两者形成的整体安装在基板120上,有利于简化装配。在较为优选的方案中,围挡110与第一盖板130可以为一体式结构,在此种情况下,围挡110还能够发挥加强第一盖板130的强度的作用。
当然,围挡110也可以与第一盖板130焊接相连,第一盖板130可以与基板120焊接相连。为了提高散热能力,基座100、隔离部300和冷凝部200均可以采用铜材、铝材或其他散热性能较好的材料。
气态工质输出口102和液态工质回流口103可以开设在基板120上,也可以开设在第一盖板130上,本申请实施例不进行限制。在气态工质输出口102和液态工质回流口103开设在第一盖板130上,并且围挡110与第一盖板130连接的情况下,此种结构能够使得需要加工或装配的结构较为集中地设于第一盖板130,这无疑方便集中进行加工,进而提高加工效率。
在本申请实施例中,隔离部300和冷凝部200均可以安装于基座100上。具体的,隔离部300和冷凝部200可以固定在基座100上。由于基座100为空心结构,可能会存在支撑强度不足的问题。基于此,在较为优选的方案中,基座100还可以包括呈阵列分布的多个支撑凸起140,所述的多个支撑凸起140支撑于凹槽121的底壁与第一盖板130之间。需要说明的是,凹槽121 的底壁与第一盖板130相对分布。毛细结构400设有避让孔410,与毛细结构400对应的支撑凸起140穿设在对应的避让孔410中,从而避免毛细结构400对支撑凸起140布设的影响。
同时,在此种情况下,所述的多个支撑凸起140支撑于第一盖板130和基板120之间,从而能够提高整个基座100的强度。当然,所述的多个支撑凸起140能够起到支撑第一盖板130的作用,从而在隔离部300和冷凝部200安装于第一盖板130的情况下,较好地缓解第一盖板130的变形,进而使得第一盖板130能够较好地支撑隔离部300和冷凝部200。
为了减少装配操作,在优选的方案中,支撑凸起140与基板120可以为一体式结构。当然,支撑凸起140与基板120为一体式结构,也能够变相地认为支撑凸起140为基板120的加强凸起,进而能够提高基板120的抗变形能力。当然,支撑凸起140与基板120也可以为分体式结构,通过粘接、焊接等固定方式实现固定连接。
在本申请实施例中,冷凝部200和隔离部300均可以为一个。当然,冷凝部200和隔离部300均可以为多个,且均间隔分布。多个冷凝部200和多个隔离部300一一对应,以形成多个气态工质输入通道105和多个液态工质回流通道104。此种方式能够提高散热器的散热能力。
可选地,多个冷凝部200间隔地设于基座100上,每个液态工质回流通道104与相应的液态工质回流口103连通,每个气态工质输入通道105与相应的气态工质输出口102连通。此种结构能够使得散热器在多个位置均形成散热循环,进而能够提高散热器的散热能力。同时,间隔分布有利于相邻的冷凝部200之间的空气流通,进而提高冷凝散热能力。当然,在此种情况下,液态工质回流口103和气态工质输出口102均可以为多个,进而可以与多个冷凝部200和隔离部300建立对应的配合关系。
在本申请实施例中,冷凝部200和隔离部300均可以认为是空心构件,只要能够形成满足上文中气态工质和液态工质的循环流通的散热结构即可。请再次参考图1、图4、图5和图6,一种可选的方案中,冷凝部200可以包括冷凝扁管210和第二盖板220,隔离部300为板状结构,由于隔离部300具有气态工质输入通道105,因此在此种情况下,隔离部300实质为中空的板状结构。冷凝扁管210为扁形结构,冷凝扁管210的管腔也是扁形空间。隔离部300的板面可以与冷凝扁管210的扁平面相平行,从而能够使得隔离 部300的形状较好地适配冷凝扁管210。由于冷凝扁管210为扁平结构,进而较容易形成平整的换热面,进而有利于设计成较大的换热面积,从而来提高换热效率。当然,冷凝扁管210能够使得冷凝部200在一个方向设计成较小的尺寸,进而方便冷凝部200在该方向上尺寸确定的空间内进行更多的布设。
当然,在此种情况下,冷凝扁管210的第一条形端口与气态工质输出口102和液态工质回流口103的形状可以相适配(都是条形结构)、且连通,第二盖板220覆盖冷凝扁管210的第二条形端口,第二盖板220与隔离部300间隔设置,且形成衔接通道106,隔离部300与冷凝扁管210的内侧管壁之间形成液态工质回流通道104,衔接通道106连通液态工质回流通道104和气态工质输入通道105。此种通过第二盖板220覆盖冷凝扁管210的第二条形端口来形成衔接通道106的方式,结构较为简单,也较容易实现。
在其它实施例中,也可以在隔离部300上开设连通孔,通过连通孔来替代衔接通道106,进而来连通液态工质回流通道104和气态工质输入通道105。
在进一步的技术方案中,隔离部300的与冷凝扁管210的内壁之间形成围绕气态工质输入通道105的液态工质回流通道104,此种环绕结构有利于液态工质的回流。气态工质输出口102为冷凝扁管210的第一条形端口形状相适配的条形孔,此处形状相适配,指的是都是条形结构。气态工质输出口102在其长度方向的两侧均设有液态工质回流口103,液态工质回流通道104与位于气态工质输出口102的长度方向的两侧的两个液态工质回流口103均连通。在此种情况下,液态工质能够通过两个液态工质回流口103进行回流,无疑能够提高回流效率。与此同时,气态工质输出口102为条形孔,能够较适配板状结构的隔离部300。
在隔离部300为板状结构的情况下,气态工质输入通道105可以为扁平的长方体结构,气态工质输入通道105的宽度不小于0.5mm,当然,气态工质输入通道105的宽度指的是在垂直于板状结构的隔离部300的板面方向的尺寸。
如上文所述,冷凝部200为多个的情况下,每个冷凝部200的第二盖板220相连,且形成整体式结构。在此种情况下,将多个冷凝部200的第二盖板220形成整体式结构,从而能够使得在装配的过程中,操作人员可以先将多个冷凝部200的冷凝扁管210安装到基座100上,然后再用一整块板子覆 盖在所有的冷凝扁管210的端口上,从而与每个冷凝扁管210内的隔离部300围成衔接通道106。此种方式无疑有利于装配。当然,多个第二盖板220为一体式结构,实质是将多个冷凝部200连接起来,这能够提高整个散热器的整体强度。
为了进一步提高冷凝效果,在本申请实施例中,冷凝部200的外侧表面可以设有多个散热翅片500,所述的多个散热翅片500可以间隔分布。散热翅片500的设置能够提高冷凝部200与环境的换热能力,进而有利于提高冷凝能力。
在较为优选的方案中,冷凝部200为多个,每个冷凝部200内设置有隔离部300,多个冷凝部200间隔地设于基座100上,相邻的两个冷凝部200通过位于两者之间的散热翅片500相连。在此种情况下,冷凝部200不但可以以基座100为安装基础,同时冷凝部200之间可以通过散热翅片500连接,从而形成更稳固的连接结构,这能够提高整个散热器的强度。
本申请实施例中涉及的工质可以是水,也可以是油液,本申请实施例不限制工质的具体种类。
在本申请实施例中,隔离部300与冷凝部200之间的间隙宽度可以大于0.5mm。为了充分发挥分腔效果,隔离部300的高度优选大于冷凝扁管210的高度的1/2。同时为了避免衔接通道106的流阻过大,隔离部300的高度至少比冷凝扁管210的高度小5mm。当然,此处的高度,指的是基于基座100上的同一基准面(例如基座100上用于支撑冷凝部200和隔离部300的平面)上考虑的。
基于本申请实施例公开的散热器,本申请实施例进一步公开一种电子设备,所公开的电子设备包括热源器件和散热器,基座100设置在热源器件上,散热器为上文实施例中任一项所述的散热器。
当然,需要说明的是,此处的热源器件就是上文所述的待散热对象。本申请实施例涉及的热源器件可以是交换机中的处理器,也可以为电子设备中其它在工作时能够产热的器件,本申请实施例对此不做限制。
本申请上文实施例中重点描述的是各个实施例的不同,各个实施例的不同的优化特征只要不矛盾,均可以组合形成更优的实施例,考虑到行文简洁,在此则不再赘述。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域 技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (12)

  1. 一种散热器,包括基座(100)、冷凝部(200)和隔离部(300),其中:
    所述基座(100)设有蒸发腔(101)和均与之连通的气态工质输出口(102)和液态工质回流口(103),
    所述隔离部(300)设有气态工质输入通道(105),所述气态工质输入通道(105)的第一端部与所述气态工质输出口(102)连通;
    所述冷凝部(200)设于所述基座(100)上,所述隔离部(300)设置于所述冷凝部(200)之内,且所述隔离部(300)的外表面与所述冷凝部(200)的内壁之间形成液态工质回流通道(104),所述气态工质输入通道(105)的第二端部与所述液态工质回流通道(104)的第一端部连通,所述液态工质回流通道(104)的第二端部与所述液态工质回流口(103)连通,所述隔离部(300)隔离所述气态工质输出口(102)和所述液态工质回流口(103)。
  2. 根据权利要求1所述的散热器,其中,所述蒸发腔(101)具有液态工质汇集区和蒸发区,所述蒸发区与所述气态工质输出口(102)连通,所述液态工质回流口(103)与所述液态工质汇集区连通,所述蒸发区内设有毛细结构(400),所述基座(100)包括围挡(110),所述围挡(110)设于所述蒸发腔(101)内,且围绕所述毛细结构(400)设置,所述围挡(110)围成的空间为所述蒸发区,所述气态工质输出口(102)位于所述围挡(110)的内侧,所述液态工质回流口(103)和所述液态工质汇集区均位于所述围挡(110)的外侧。
  3. 根据权利要求2所述的散热器,其中,所述基座(100)还包括基板(120)和第一盖板(130),所述基板(120)开设有凹槽(121),所述第一盖板(130)与所述基板(120)相连,所述第一盖板(130)覆盖所述凹槽(121)的槽口,所述第一盖板(130)与所述基板(120)围成 所述蒸发腔(101),所述围挡(110)与所述第一盖板(130)相连,所述气态工质输出口(102)和所述液态工质回流口(103)开设于所述第一盖板(130)上。
  4. 根据权利要求3所述的散热器,其中,所述基座(100)还包括呈阵列分布的多个支撑凸起(140),所述多个支撑凸起(140)支撑于所述凹槽(121)的底壁与所述第一盖板(130)之间,所述毛细结构(400)设有避让孔(410),与所述毛细结构(400)对应的所述支撑凸起(140)穿设在对应的所述避让孔(410)中。
  5. 根据权利要求4所述的散热器,其中,所述支撑凸起(140)与所述基板(120)为一体式结构。
  6. 根据权利要求1所述的散热器,其中,所述冷凝部(200)和隔离部(300)均为多个,且均间隔分布,多个所述冷凝部(200)和多个所述隔离部(300)一一对应,以形成多个气态工质输入通道(105)和多个所述液态工质回流通道(104),
    多个所述冷凝部(200)间隔地设于所述基座(100)上,每个所述液态工质回流通道(104)与相应的所述液态工质回流口(103)连通,每个所述气态工质输入通道(105)与相应的所述气态工质输出口(102)连通。
  7. 根据权利要求1所述的散热器,其中,所述冷凝部(200)包括冷凝扁管(210)和第二盖板(220),所述隔离部(300)为板状结构,所述隔离部(300)的板面与所述冷凝扁管(210)的扁平面平行,所述冷凝扁管(210)的第一条形端口与所述气态工质输出口(102)和所述液态工质回流口(103)的形状相适配、且连通,所述第二盖板(220)覆盖所述冷凝扁管(210)的第二条形端口,所述第二盖板(220)与所述隔离部(300)间隔设置,且形成衔接通道(106),所述隔离部(300)与所述冷凝扁管(210)的内侧管壁之间形成所述液态工质回流通道(104),所述衔接通道(106)连通所述液态工质回流通道(104)和所述气态工质输入通道(105)。
  8. 根据权利要求7所述的散热器,其中,所述隔离部(300)与所述冷凝扁管(210)的内壁之间形成围绕所述气态工质输入通道(105)的所述液态工质回流通道(104),所述气态工质输出口(102)为与所述冷凝扁管(210)的第一条形端口形状相适配的条形孔,所述气态工质输出口(102)在其长度方向的两侧均设有所述液态工质回流口(103),所述液态工质回流通道(104)与位于所述气态工质输出口(102)的长度方向的两侧的两个所述液态工质回流口(103)均连通。
  9. 根据权利要求7或8所述的散热器,其中,所述冷凝部(200)为多个,每个所述冷凝部(200)的所述第二盖板(220)相连,且形成整体式结构。
  10. 根据权利要求1所述的散热器,其中,所述冷凝部(200)的外侧表面设有多个散热翅片(500),所述多个散热翅片(500)间隔分布。
  11. 根据权利要求10所述的散热器,其中,所述冷凝部(200)为多个,多个所述冷凝部(200)间隔地设于所述基座(100)上,相邻的两个所述冷凝部(200)通过位于两者之间的所述散热翅片(500)相连。
  12. 一种电子设备,包括热源器件和散热器,所述基座(100)设置在所述热源器件上,所述散热器为权利要求1至11中任一项所述的散热器。
PCT/CN2023/098432 2022-09-01 2023-06-05 散热器及电子设备 WO2024045743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211064954.X 2022-09-01
CN202211064954.XA CN117425309A (zh) 2022-09-01 2022-09-01 散热器及电子设备

Publications (1)

Publication Number Publication Date
WO2024045743A1 true WO2024045743A1 (zh) 2024-03-07

Family

ID=89521620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098432 WO2024045743A1 (zh) 2022-09-01 2023-06-05 散热器及电子设备

Country Status (2)

Country Link
CN (1) CN117425309A (zh)
WO (1) WO2024045743A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200133107A1 (en) * 2018-10-25 2020-04-30 Seiko Epson Corporation Cooling device and projector
CN112146495A (zh) * 2020-09-25 2020-12-29 奇鋐科技股份有限公司 气液冷凝系统
CN113916027A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 一种散热器及通信设备
CN114727546A (zh) * 2022-02-23 2022-07-08 华为技术有限公司 一种散热装置和电子设备
CN217037749U (zh) * 2021-11-16 2022-07-22 深圳市英维克科技股份有限公司 热虹吸散热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200133107A1 (en) * 2018-10-25 2020-04-30 Seiko Epson Corporation Cooling device and projector
CN113916027A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 一种散热器及通信设备
CN112146495A (zh) * 2020-09-25 2020-12-29 奇鋐科技股份有限公司 气液冷凝系统
CN217037749U (zh) * 2021-11-16 2022-07-22 深圳市英维克科技股份有限公司 热虹吸散热器
CN114727546A (zh) * 2022-02-23 2022-07-08 华为技术有限公司 一种散热装置和电子设备

Also Published As

Publication number Publication date
CN117425309A (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
CN107567248B (zh) 液冷散热装置
US7312994B2 (en) Heat dissipation device with a heat pipe
US7779894B2 (en) Heat dissipation device
CN101193531B (zh) 散热装置
US6006827A (en) Cooling device for computer component
US20060289147A1 (en) Modular heat sink
JP2009198173A (ja) ヒートパイプを備えたヒートシンクおよびその製造方法
US20060273137A1 (en) Heat dissipation device with heat pipes
CN109819635B (zh) 散热装置
TW201947180A (zh) 液、汽分離之迴路均溫板
TWM619163U (zh) 散熱裝置
US10907910B2 (en) Vapor-liquid phase fluid heat transfer module
US20200232717A1 (en) Heat dissipation unit and heat dissipation device using same
US11371784B2 (en) Heat dissipation unit and heat dissipation device using same
US20230184491A1 (en) Three-dimensional heat transfer device
TWI683078B (zh) 重力式液氣循環裝置
WO2024045743A1 (zh) 散热器及电子设备
WO2007124652A1 (en) Micro-slot group integrated heat-pipe radiator
JP3093442B2 (ja) ヒートパイプ式ヒートシンク
WO2023010836A1 (zh) 散热模组和电子设备
TWI839974B (zh) 一種利用兩相流循環蒸氣腔與冷液態流體進行熱交換之散熱模組
CN112512264B (zh) 一种散热装置及散热系统
CN218125285U (zh) 鳍片散热器
CN214155153U (zh) 立体散热器
JP2000183259A (ja) 沸騰冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858782

Country of ref document: EP

Kind code of ref document: A1