WO2024045507A1 - 基于数据处理的荧光三维成像方法及装置 - Google Patents

基于数据处理的荧光三维成像方法及装置 Download PDF

Info

Publication number
WO2024045507A1
WO2024045507A1 PCT/CN2023/076347 CN2023076347W WO2024045507A1 WO 2024045507 A1 WO2024045507 A1 WO 2024045507A1 CN 2023076347 W CN2023076347 W CN 2023076347W WO 2024045507 A1 WO2024045507 A1 WO 2024045507A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional image
dimensional
fluorescence
image
fluorescent
Prior art date
Application number
PCT/CN2023/076347
Other languages
English (en)
French (fr)
Inventor
蔡惠明
李长流
王子阳
倪轲娜
卢露
Original Assignee
南京诺源医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京诺源医疗器械有限公司 filed Critical 南京诺源医疗器械有限公司
Publication of WO2024045507A1 publication Critical patent/WO2024045507A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering

Definitions

  • the present invention relates to data processing technology, and in particular, to a fluorescence three-dimensional imaging method and device based on data processing.
  • Fluorescence three-dimensional imaging means that the intensity of the fluorescence signal emitted after the fluorescent substance is excited has a linear relationship with the amount of fluorescein within a certain range.
  • Embodiments of the present invention provide a fluorescence three-dimensional imaging method and device based on data processing, which combines the fluorescence image with the white light image, so that the fluorescent area of the diseased part can be directly displayed in the white light image, which facilitates the doctor's observation and can be selected by the doctor.
  • the area will be displayed in detail and the related areas will be displayed, and even the part selected by the doctor and the related area will be spliced together to automatically push the complete lesion part, which is more convenient for the doctor to observe and makes the diagnosis result more accurate.
  • a first aspect of the embodiment of the present invention provides a fluorescence three-dimensional imaging method based on data processing, including:
  • the image of the diseased tissue is extracted under fluorescence and white light, and the fluorescence two-dimensional image and the white light two-dimensional image at different locations of the diseased tissue are obtained, and the generated image is generated based on the fluorescence two-dimensional image and the white light two-dimensional image.
  • the fluorescence three-dimensional fusion image is divided into blocks according to the region position to obtain multiple sub-3D images, a preset storage space corresponding to each sub-3D image is established, and the fluorescence two-dimensional image and the white light two-dimensional image at the corresponding region position are stored in the preset storage space. within the above-mentioned default storage space;
  • Display the fluorescent three-dimensional fusion image and if it is determined that the user selects the first sub-three-dimensional image, retrieve the first fluorescent two-dimensional image and the first white light two-dimensional image corresponding to the first sub-three-dimensional image for display;
  • a plurality of second sub-three-dimensional images are determined according to the regional position of the first sub-three-dimensional image, and at least one third fluorescent two-dimensional image is determined according to the number of fluorescent pixels in the second fluorescent two-dimensional image corresponding to each second sub-three-dimensional image.
  • the fluorescent pixel points are pixel points within a preset fluorescence pixel value interval;
  • An image display frame is generated according to the number of the third fluorescence two-dimensional image. Based on the image display frame, the fluorescence three-dimensional fusion image, the first fluorescence two-dimensional image, the first white light two-dimensional image, the third fluorescence two-dimensional image, and the third A third white light two-dimensional image corresponding to the fluorescent two-dimensional image is displayed.
  • image extraction is performed on the diseased tissue under fluorescence and white light based on a two-dimensional image extraction device, and fluorescence two-dimensional images at different regional locations of the diseased tissue and white light two-dimensional images are obtained.
  • a three-dimensional fluorescent image is generated based on the fluorescent two-dimensional image and the white light two-dimensional image corresponding to the diseased tissue.
  • the fluorescence two-dimensional fusion image is sent to the server for splicing and combination to obtain a fluorescence three-dimensional fusion image.
  • the fluorescence three-dimensional fusion image is divided into blocks according to the region position to obtain a plurality of sub-three-dimensional images, and a preset storage space corresponding to each sub-three-dimensional image is established. , storing the fluorescence two-dimensional image and the white light two-dimensional image of the corresponding region in the preset storage space, including:
  • the fluorescence three-dimensional fusion image is sequentially divided into blocks from top to bottom to obtain multiple sub-three-dimensional images, until the fluorescence three-dimensional fusion image is divided into sub-three-dimensional images, and sequentially numbered according to the division order;
  • a preset storage space corresponding to each number is established, and the fluorescence two-dimensional image and the white light two-dimensional image of the corresponding region are stored in the preset storage space.
  • obtaining the corresponding actual division size according to the actual size of the fluorescence three-dimensional fusion image includes:
  • the actual division size is obtained
  • S actual is the actual division size
  • S pre is the preset division size
  • M actual is the actual size of the fluorescence three-dimensional fusion image
  • M pre is the preset size of the fluorescence three-dimensional fusion image
  • ⁇ 1 is the attribute value of the actual division size.
  • the plurality of second sub-three-dimensional images are determined according to the regional position of the first sub-three-dimensional image, and the second sub-three-dimensional image is determined according to the second sub-three-dimensional image corresponding to each second sub-three-dimensional image.
  • the number of fluorescent pixels in the fluorescent two-dimensional image determines at least a third fluorescent two-dimensional image, including:
  • the second fluorescence two-dimensional image is used as the third fluorescence two-dimensional image.
  • counting the number of fluorescent pixel points directly connected and indirectly connected to the boundary fluorescent pixel point in the second fluorescence two-dimensional image to obtain a first total Quantity including:
  • the first pixel point is directly connected to the boundary fluorescent pixel point, and the second pixel point is indirectly connected to the boundary fluorescent pixel point;
  • the image display frame is generated according to the number of the third fluorescence two-dimensional image, and the fluorescence three-dimensional fusion image and the first fluorescence two-dimensional image are generated based on the image display frame.
  • the first white light two-dimensional image, the third fluorescent two-dimensional image, and the third white light two-dimensional image corresponding to the third fluorescent two-dimensional image are displayed, including:
  • the first fluorescent two-dimensional image and the first white light two-dimensional image are displayed in the white light display area and the fluorescent display area of the first two-dimensional display sub-area
  • the third fluorescent two-dimensional image, the third fluorescent two-dimensional image in the first fluorescence sequence are displayed in sequence.
  • the white light two-dimensional image is displayed in the white light display area and the fluorescent display area of the second two-dimensional display sub-area.
  • a possible implementation of the first aspect also includes:
  • the third fluorescence two-dimensional images are sorted in descending order according to the first total number to obtain the first fluorescence sequence.
  • a possible implementation of the first aspect also includes:
  • the first contour fluorescent pixel point set and the second contour fluorescent pixel point set are spliced based on the positions of the first fluorescent two-dimensional image and the third fluorescent two-dimensional image to obtain a target contour fluorescent two-dimensional image;
  • a third two-dimensional display sub-area is established in the two-dimensional image display area, and the third two-dimensional display sub-area is used to display the target contour fluorescence two-dimensional image.
  • a second aspect of the embodiment of the present invention provides a fluorescence three-dimensional imaging device based on data processing, including:
  • the fusion module is used to extract the image of the diseased tissue under fluorescence and white light based on the two-dimensional image extraction device, and obtain the fluorescence two-dimensional image and the white light two-dimensional image at different regional positions of the diseased tissue. According to the fluorescence two-dimensional image and a white light two-dimensional image to generate a fluorescence three-dimensional fusion image corresponding to the diseased tissue;
  • the dividing module is used to divide the fluorescence three-dimensional fusion image into blocks according to the region position to obtain multiple sub-three-dimensional images, establish a preset storage space corresponding to each sub-three-dimensional image, and combine the fluorescence two-dimensional image and the white light two-dimensional image at the corresponding region position.
  • the dimensional image is stored in the preset storage space;
  • Retrieval module used to display the fluorescent three-dimensional fusion image, and retrieve the first fluorescent two-dimensional image and the first white light two-dimensional image corresponding to the first sub-three-dimensional image if it is determined that the user selects the first sub-three-dimensional image. dimensional images are displayed;
  • Determining module configured to determine a plurality of second sub-three-dimensional images according to the regional position of the first sub-three-dimensional image, and determine at least one based on the number of fluorescent pixels in the second fluorescence two-dimensional image corresponding to each second sub-three-dimensional image.
  • a third fluorescence two-dimensional image, the fluorescence pixel points are pixel points within a preset fluorescence pixel value interval;
  • a display module configured to generate an image display frame according to the number of the third fluorescent two-dimensional image, and based on the image display frame, the fluorescent three-dimensional fusion image, the first fluorescent two-dimensional image, the first white light two-dimensional image, the third fluorescent two-dimensional image, and the third fluorescent two-dimensional image are displayed. image, and a third white light two-dimensional image corresponding to the third fluorescence two-dimensional image are displayed.
  • a third aspect of the embodiment of the present invention provides an electronic device, including: a memory, a processor, and a computer program.
  • the computer program is stored in the memory, and the processor runs the computer program to execute the first step of the present invention.
  • a fourth aspect of the embodiments of the present invention provides a readable storage medium.
  • the readable storage medium stores a computer program.
  • the computer program When the computer program is executed by a processor, it is used to implement the first aspect of the present invention and the first aspect thereof.
  • Various methods may be involved.
  • the invention provides a fluorescence three-dimensional imaging method and device based on data processing, which fuses and splices two-dimensional images of diseased tissue under fluorescence and white light respectively.
  • the obtained fluorescence three-dimensional fusion image allows doctors to directly observe white light
  • the diseased area in the image is convenient for doctors to observe, and the degree of cell disease can be judged directly through the different shades of fluorescence pixel values in the white light image, making it convenient for doctors to perform subsequent surgeries.
  • the present invention will detect the diseased part of the area selected by the doctor based on The image automatically identifies and pushes the surrounding diseased parts associated with it, and displays them in the image display box at the same time, making it convenient for doctors to observe local areas of diseased tissue, so that doctors can make better diagnoses.
  • the technical solution provided by the present invention generates divided areas of different sizes for lesion areas of different sizes, so that the size of the observation area subsequently selected and automatically pushed is moderate, which is more conducive to the doctor's observation.
  • the present invention will determine the boundary of the lesion area selected by the doctor. Fluorescent pixels are automatically pushed as images related to the selected lesion area based on the images of the fluorescent pixels that are directly or indirectly connected to the surrounding adjacent pictures and the border fluorescence pixels, so that the doctor can not only see the selected lesion area Images, you can also see automatically pushed related images, making the doctor's diagnosis more accurate.
  • the technical solution provided by the present invention divides the image display frame into a three-dimensional display area and a two-dimensional display area.
  • the three-dimensional display area is used to display the fluorescent three-dimensional fusion image
  • the two-dimensional display area is used to display the fluorescent and white light images of the area selected by the doctor.
  • fluorescence and white light images of the area associated with the lesion area in the area selected by the doctor will be sorted and displayed according to the severity of the relevant area, and the outline of the selected area and the relevant area will be spliced to form a complete lesion part for display.
  • This allows doctors to not only observe the entire diseased part, but also select selected diseased areas, associated areas and the corresponding spliced parts of the whole, allowing doctors to observe from multiple angles, making the diagnosis relatively objective and accurate.
  • Figure 1 is a flow chart of a fluorescence three-dimensional imaging method based on data processing provided by the present invention
  • Figure 2 is a flow chart of a method for positioning a third fluorescence two-dimensional image provided by the present invention
  • Figure 3 is a schematic structural diagram of a fluorescence three-dimensional imaging device based on data processing provided by the present invention
  • Figure 4 is a schematic diagram of the hardware structure of an electronic device provided by the present invention.
  • the size of the sequence numbers of each process does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the execution order of the embodiments of the present invention.
  • the implementation process constitutes no limitation.
  • “plurality” means two or more.
  • “And/or” is just an association relationship that describes related objects. It means that there can be three kinds of relationships. For example, A and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Condition. The character “/” generally indicates that the related objects are in an "or” relationship. "Includes A, B and C” and “includes A, B, C” means that it includes all three of A, B and C, and “includes A, B or C” means that it includes one of A, B and C. "Including A, B and/or C” means including any one, any two or three of A, B and C.
  • B corresponding to A means that B is associated with A. According to A B can be determined. Determining B based on A does not mean determining B only based on A, but can also determine B based on A and/or other information.
  • the matching between A and B means that the similarity between A and B is greater than or equal to the preset threshold.
  • the present invention provides a fluorescence three-dimensional imaging method based on data processing, as shown in Figure 1, including:
  • Step S110 Extract the image of the diseased tissue under fluorescence and white light based on the two-dimensional image extraction device, and obtain the fluorescence two-dimensional image and the white light two-dimensional image at different regions of the diseased tissue. According to the fluorescence two-dimensional image and the white light two-dimensional image, dimensional image generation and described.
  • the two-dimensional image extraction device controls the incident light at the same incident angle and 360° different angles. Carry out circular scanning at the direction angle, extract images of the diseased tissue under fluorescence and white light respectively, and obtain fluorescence two-dimensional images and white light two-dimensional images at different locations of the diseased tissue. All fluorescence two-dimensional images and white light two-dimensional images are obtained.
  • the three-dimensional images are sent to the server for splicing processing, and the fluorescence three-dimensional fusion image corresponding to the diseased tissue is obtained.
  • step S110 specifically includes:
  • the system will select any pixel point at the same position in the fluorescence two-dimensional image and the white light two-dimensional image as the first coordinate center point.
  • the fluorescence two-dimensional image and the white light two-dimensional image in each area The two-dimensional images are all taken at the same angle and at the same distance, but the light sources are different. Therefore, the fluorescent two-dimensional images and the white light two-dimensional images are the same in size and correspond to each other. Therefore, choose the fluorescent two-dimensional image and the white light two-dimensional image.
  • the same pixel point at any position in the image is used as the first coordinate center point, which facilitates the subsequent establishment of a coordinate system based on the first coordinate center point to obtain the pixel point set of the two-dimensional image.
  • a coordinate system is established at the two-dimensional fluorescence image and the two-dimensional white light image, respectively, to obtain a first fluorescence set and a first white light set.
  • the technical solution provided by the present invention is to establish a coordinate system at the fluorescence two-dimensional image and the white light two-dimensional image respectively according to the first coordinate center point, and decompose the fluorescence two-dimensional image and the white light two-dimensional image according to the coordinate system to obtain the third
  • a fluorescence set and a first white light set facilitate subsequent replacement of fluorescent pixels in the lesion area in the fluorescence two-dimensional image into the white light two-dimensional image, allowing the doctor to directly observe the location and corresponding severity of the lesion area.
  • the system extracts the pixel points within the preset pixel interval in the first fluorescence set to obtain the corresponding target pixel point set.
  • the preset pixel interval is the pixel value of the fluorescent pixel point. interval, all the fluorescent points in the fluorescence two-dimensional image are extracted.
  • the fluorescent pixels are the location of the lesion, and the target pixel points are collected as the lesion area, which facilitates subsequent replacement of the fluorescent pixels to the corresponding area of the white light two-dimensional image, which is convenient for doctors. Check.
  • the pixel value of each pixel point in the target pixel point set is replaced with the pixel value of the pixel point with the same coordinate value in the first white light set to obtain a fluorescence two-dimensional fusion image.
  • the technical solution provided by the present invention replaces the pixel value of each pixel point in the target pixel point set with the pixel value of the pixel point with the same coordinate value in the first white light set.
  • the target pixel point set is the lesion area.
  • replace the lesion area with a white light two-dimensional image so that the lesion area, that is, the fluorescent pixel point part, that is, the lesion area, is directly displayed in the white light two-dimensional image, which is convenient for doctors to observe directly.
  • the fluorescence two-dimensional fusion image is sent to the server for splicing and combination to obtain a fluorescence three-dimensional fusion image.
  • the fluorescence two-dimensional fusion image is sent to the server, and spliced according to the shooting sequence of circular scanning to generate a fluorescence three-dimensional fusion image.
  • Step S120 Divide the fluorescence three-dimensional fusion image into blocks according to the region position to obtain multiple sub-3D images, establish a preset storage space corresponding to each sub-3D image, and combine the fluorescence two-dimensional image and the white light two-dimensional image at the corresponding region position. stored in the preset storage space.
  • the system will divide the fluorescence three-dimensional fusion image into blocks according to the regional position, obtain multiple sub-three-dimensional images correspondingly, establish a preset storage space corresponding to each sub-three-dimensional image, and store the images in the preset storage space.
  • the system will Divide the fluorescence three-dimensional fusion image into blocks of a certain size and divide it into multiple sub-three-dimensional images.
  • Each sub-three-dimensional image has its corresponding storage space.
  • the fluorescence two-dimensional image corresponding to the sub-three-dimensional image is stored in the storage space. and white light two-dimensional image, so that when the doctor subsequently selects the sub-3D image, the corresponding fluorescence two-dimensional image and white light two-dimensional image will be extracted from the storage space for display.
  • step S120 specifically includes:
  • the corresponding actual division size is obtained according to the actual size of the fluorescence three-dimensional fusion image.
  • the technical solution provided by the present invention obtains the corresponding actual division size according to the actual size of the fluorescence three-dimensional fusion image, which facilitates the subsequent image division of the fluorescence three-dimensional fusion image. It is understandable that the actual size of the fluorescence three-dimensional fusion image becomes larger and larger. The larger the corresponding actual division size, the smaller the actual division size of the fluorescence three-dimensional fusion image.
  • the corresponding lesion areas of different diseased tissues are different, so the corresponding sizes are also different. According to the different sizes of the lesion areas Divide different situations so that the divided size conforms to the actual observation situation, which is more convenient for doctors to make corresponding observations.
  • the corresponding actual division size is obtained according to the actual size of the fluorescence three-dimensional fusion image, including:
  • the size coefficient is obtained according to the ratio of the actual size of the fluorescence three-dimensional fusion image to the preset size of the fluorescence three-dimensional fusion image.
  • the system will obtain the corresponding size coefficient based on the ratio of the actual size of the fluorescence three-dimensional fusion image to the preset size of the fluorescence three-dimensional fusion image, so as to facilitate subsequent generation of the corresponding actual division size.
  • the actual division size is obtained.
  • the technical solution provided by the present invention obtains the actual division size corresponding to the current fluorescence three-dimensional fusion image based on the product of the size coefficient and the preset division size.
  • S actual is the actual division size
  • S pre is the preset division size
  • M actual is the actual size of the fluorescence three-dimensional fusion image
  • M pre is the preset size of the fluorescence three-dimensional fusion image
  • ⁇ 1 is the attribute value of the actual division size
  • the size coefficient is the actual size of the fluorescence three-dimensional fusion image.
  • the technical solution provided by the present invention will generate actual division sizes of different sizes according to the different sizes of the fluorescence three-dimensional fusion image, so that the division size changes dynamically and changes accordingly according to the size of the lesion area, making the division area moderate in size and more convenient.
  • the doctor makes observations and adapts them to the actual situation.
  • the fluorescence three-dimensional fusion image is sequentially divided into blocks from top to bottom according to the actual division size to obtain multiple sub-three-dimensional images, until the fluorescence three-dimensional fusion image is divided into sub-three-dimensional images, and are numbered sequentially according to the division order.
  • the technical solution provided by the present invention is to sequentially divide the fluorescence three-dimensional fusion image into blocks from top to bottom according to the actual division size calculated by the system to obtain multiple sub-three-dimensional images until the fluorescence three-dimensional fusion image is divided, and in accordance with the order of division Number the sub-3D images in sequence so that each sub-3D image has a corresponding number, It is convenient to allocate the corresponding storage space according to the number later.
  • a preset storage space corresponding to each number is established, and the fluorescence two-dimensional image and the white light two-dimensional image of the corresponding region are stored in the preset storage space.
  • the system will establish a preset storage space corresponding to each number, and store the fluorescent two-dimensional image and the white light two-dimensional image corresponding to the sub-three-dimensional image corresponding to each number in the preset storage space corresponding to the number.
  • each number corresponds to a sub-3D image and a preset storage space.
  • the preset storage space stores the fluorescence 2D image and the white light 2D image of the sub-3D image to facilitate subsequent selection of the corresponding area. That is, when generating a three-dimensional image, the corresponding fluorescence two-dimensional image and white light two-dimensional image will be automatically retrieved to facilitate the doctor's observation.
  • Step S130 Display the fluorescence three-dimensional fusion image. If it is determined that the user selects the first sub-three-dimensional image, retrieve the first fluorescence two-dimensional image and the first white light two-dimensional image corresponding to the first sub-three-dimensional image. show.
  • the system will display the fluorescence three-dimensional fusion image. If it is determined that the user has selected the first sub-three-dimensional image, it can be understood that the first sub-three-dimensional image is the sub-three-dimensional image selected by the user, and then the The first fluorescent two-dimensional image and the first white light two-dimensional image corresponding to the first sub-three-dimensional image selected by the user are displayed.
  • the doctor can display part of the lesion area, which facilitates the doctor's detailed observation of the local area and makes subsequent diagnosis results Relatively objective.
  • Step S140 Determine a plurality of second sub-three-dimensional images according to the regional position of the first sub-three-dimensional image, and determine at least one third sub-three-dimensional image according to the number of fluorescent pixels in the second fluorescence two-dimensional image corresponding to each second sub-three-dimensional image.
  • Three-dimensional fluorescent two-dimensional image, the fluorescent pixel points are pixel points within a preset fluorescence pixel value interval.
  • the technical solution provided by the present invention determines a plurality of second sub-three-dimensional images according to the regional position of the first sub-three-dimensional image. It can be understood that according to the first sub-three-dimensional image actively selected by the doctor, other adjacent sub-three-dimensional images can be determined according to its position. sub-3D image.
  • the second sub-3D image is the sub-3D image adjacent to the first sub-3D image. Check whether the fluorescent pixels in the second sub-3D image are connected to the edge pixels in the first sub-3D image. If connected pixels appear, the second sub-three-dimensional image is regarded as the third fluorescence two-dimensional image. It can be understood that the third fluorescence two-dimensional image is the fluorescence two-dimensional image related to the lesion area in the first fluorescence two-dimensional image. dimensional image to facilitate subsequent automatic push according to the area selected by the doctor.
  • step S140 specifically includes:
  • Step S1401 Determine the position of the region adjacent to the first sub-three-dimensional image, and use the image of the region position as the second sub-three-dimensional image.
  • the technical solution provided by the present invention determines other sub-three-dimensional images adjacent to the area where the first sub-three-dimensional image is actively selected by the physician, and uses the adjacent sub-three-dimensional images as the second sub-three-dimensional image, so the second sub-three-dimensional image It is a sub-three-dimensional image adjacent to the first sub-three-dimensional image, which facilitates subsequent determination of the image associated with the first sub-three-dimensional image based on its surrounding sub-three-dimensional images.
  • Step S1402 Determine the pixels in the first fluorescence two-dimensional image that are adjacent to the second fluorescence two-dimensional image as boundary fluorescence pixels.
  • the system determines, in the first fluorescent two-dimensional image corresponding to the first sub-three-dimensional image, the pixel points adjacent to the second fluorescent two-dimensional image corresponding to the second sub-three-dimensional image as boundary fluorescent pixels.
  • the boundary fluorescent pixel points are the fluorescent pixel points on the periphery (edge) of the first fluorescent two-dimensional image
  • the fluorescent pixel points are adjacent to the peripheral second fluorescent two-dimensional image.
  • Step S1403 Count the number of fluorescent pixel points directly connected and indirectly connected to the boundary fluorescent pixel point in the second fluorescent two-dimensional image to obtain a first total number.
  • the system will count the number of fluorescent pixel points directly connected and indirectly connected to its corresponding boundary fluorescent pixel point in each second fluorescent two-dimensional image, and obtain the corresponding first total number.
  • the second fluorescence two-dimensional image is adjacent to the first fluorescence two-dimensional image
  • the boundary fluorescence pixels are the surrounding fluorescence pixels in the first fluorescence two-dimensional image.
  • the 1 coordinate is (1,1), and in the second fluorescent two-dimensional image connected to the first fluorescent two-dimensional image on the upper side, there is a fluorescent pixel point directly connected to the boundary fluorescent pixel point.
  • the 2 coordinate is (1,2)
  • a fluorescence pixel point 3 with coordinates (1,3). It can be understood that the boundary fluorescence pixel point 1 and the fluorescence pixel point 2 are directly connected, and the boundary fluorescence pixel point 1 and the fluorescence pixel point 3 are directly connected.
  • the number of directly connected and indirectly connected fluorescent pixels in each second fluorescence two-dimensional image is counted to obtain multiple first total numbers, which facilitates subsequent processing of other data associated with the lesion area selected by the physician based on the first total number. Automatic boosting of areas.
  • the number of fluorescent pixels directly connected and indirectly connected to the boundary fluorescent pixels in the second fluorescence two-dimensional image is counted to obtain a first total number.
  • Fluorescence pixel points adjacent to the boundary fluorescence pixel points in the second fluorescence two-dimensional image are determined to obtain a plurality of first pixel points.
  • the technical solution provided by the present invention determines the fluorescent pixel points adjacent to the boundary fluorescent pixel points in the second fluorescent two-dimensional image corresponding to the second sub-three-dimensional image, and obtains a plurality of first pixel points. It can be understood that the first pixel
  • the relationship between the points and the boundary fluorescent pixels is a direct connection relationship.
  • the technical solution provided by the present invention determines the fluorescent pixel points adjacent to the first pixel point to obtain a plurality of second pixel points. It can be understood that the relationship between the second pixel points and the boundary fluorescent pixel points is an indirect connection relationship. , once again determine the fluorescent pixel points adjacent to the second pixel point, and obtain a plurality of third pixel points. The relationship between the third pixel point and the boundary fluorescent pixel point is an indirect connection relationship, and then the third pixel point is used as the second pixel point. A pixel searches for its adjacent pixels until the second pixel is selected, that is, until no indirectly connected pixels are found.
  • the first pixel point is directly connected to the boundary fluorescent pixel point, and the second pixel point is indirectly connected to the boundary fluorescent pixel point.
  • the first pixel point is directly connected to the boundary fluorescent pixel point
  • the second pixel point is indirectly connected to the boundary fluorescent pixel point
  • both the first pixel point and the second pixel point are connected to the lesion selected by the physician.
  • the regions are related to facilitate subsequent automatic push and display of related images based on the number of the two.
  • the system will count the number of first pixels and second pixels to obtain a first total number. It can be understood that the first total number is the same as the boundary fluorescence pixels in the second fluorescence two-dimensional image. Number of directly and indirectly connected fluorescent pixels.
  • Step S1404 If the first total number is greater than the preset number, use the second fluorescence two-dimensional image as a third fluorescence two-dimensional image.
  • the second sub-three-dimensional image is used as the third fluorescent two-dimensional image. It can be understood that the preset number It can be 0.
  • the preset number It can be 0.
  • Step S150 generate an image display frame according to the number of the third fluorescence two-dimensional image, and based on the image display frame, the fluorescence three-dimensional fusion image, the first fluorescence two-dimensional image, the first white light two-dimensional image, the third fluorescence two-dimensional image, and a third white light two-dimensional image corresponding to the third fluorescence two-dimensional image are displayed.
  • the technical solution provided by the present invention divides the initialization image display frame to generate an image display frame according to the number of third fluorescent two-dimensional images. It can be understood that the greater the number of third fluorescent two-dimensional images, the smaller the display area that needs to be displayed. More, the image display frame displays the fluorescent three-dimensional fusion image, the first fluorescent two-dimensional image, the first white light two-dimensional image, the third fluorescent two-dimensional image, and the third white light two-dimensional image corresponding to the third fluorescent two-dimensional image. , it can be understood that when the doctor selects the lesion area, the system will automatically push the area related to the lesion area. The relevant area is the third fluorescence two-dimensional image and the third white light two-dimensional image corresponding to the third fluorescence two-dimensional image.
  • the image display box will simultaneously display the overall three-dimensional image of the lesion area, that is, the fluorescence three-dimensional fusion image, display the first fluorescence two-dimensional image, the first white light two-dimensional image, that is, the white light and fluorescence image of the area selected by the doctor, and display the third fluorescence two-dimensional image.
  • the third white light two-dimensional image is the lesion area connected to the selected area, and the two are related to the same lesion part.
  • step S150 specifically includes:
  • the technical solution provided by the present invention determines the three-dimensional image display area and the two-dimensional image display area in the initialized image display frame.
  • the initialized image display frame is a blank display frame, and the display area has not been divided. It can be understood that,
  • the image display box is mainly used to display three-dimensional images and two-dimensional images. Therefore, the image display box is divided according to three-dimensional and two-dimensional images to facilitate doctors to observe three-dimensional and selected two-dimensional images at the same time, and to facilitate doctors to make diagnosis.
  • the two-dimensional image display area is divided according to the number of the third fluorescence two-dimensional images to obtain a first two-dimensional display sub-area and a second two-dimensional display sub-area.
  • the system will divide the two-dimensional image display area according to the number of the third fluorescent two-dimensional image. It can be understood that if the number of the third fluorescent two-dimensional image is 1, the two-dimensional image display area will be divided. The area is divided once to obtain a first two-dimensional display sub-area and a second two-dimensional display sub-area. It can be understood that the first two-dimensional display sub-area is used to display the first fluorescent two-dimensional image corresponding to the first sub-three-dimensional image. , the first white light two-dimensional image, and the second two-dimensional display sub-area are used to display the third fluorescent two-dimensional image and the third white light two-dimensional image corresponding to the third sub-three-dimensional image. Doctors can not only observe the fluorescent three-dimensional fusion image, At the same time, the image of the selected area can be observed, and the system will automatically push two-dimensional images related to the selected area to display to the doctor, making the doctor's diagnosis more accurate.
  • a white light display area and a fluorescent display area are respectively established in the first two-dimensional display sub-area and the second two-dimensional display sub-area.
  • a white light display area and a fluorescent display area are respectively established in the first two-dimensional display sub-area and the second two-dimensional display sub-area.
  • the first two-dimensional display sub-area is used to display the first two-dimensional display sub-area.
  • the first fluorescent two-dimensional image and the first white light two-dimensional image corresponding to the sub-three-dimensional image, the second two-dimensional display sub-area is used to display the third fluorescent two-dimensional image and the third white light two-dimensional image corresponding to the third sub-three-dimensional image, Therefore, the white light and fluorescent display areas are divided into blocks.
  • the first fluorescent two-dimensional image and the first white light two-dimensional image are placed in the white light display area of the first two-dimensional display sub-area.
  • the third fluorescent two-dimensional image and the third white light two-dimensional image in the first fluorescent sequence are displayed in the white light display area and the fluorescent display area of the second two-dimensional display sub-area.
  • the technical solution provided by the present invention is to display the first fluorescent two-dimensional image and the first white light two-dimensional image in the white light display area and the fluorescent display area of the first two-dimensional display sub-area, and in sequence in the first fluorescence sequence
  • the third fluorescent two-dimensional image and the third white light two-dimensional image are displayed in the white light display area and the fluorescent display area of the second two-dimensional display sub-area, wherein the first fluorescent sequence is the third fluorescent two-dimensional image by the first total number.
  • Dimensional images are sorted from large to small. It can be understood that the larger the first total number, the higher the correlation.
  • the third fluorescence two-dimensional images are sorted in descending order according to the first total number to obtain the first fluorescence sequence.
  • the third fluorescence two-dimensional images are sorted from large to small according to the first total number corresponding to them, and the first fluorescence sequence is generated. It is understood that the larger the first total number, the higher the degree of correlation and the higher the ranking, which facilitates priority display, allowing doctors to view the most relevant image areas first, which is more suitable for the actual diagnosis process.
  • the system will select the fluorescent pixels adjacent to the non-fluorescent pixels in the first fluorescent two-dimensional image. It can be understood that the fluorescent pixels adjacent to the non-fluorescent pixels are in the diseased area. At the edge, that is, the interface with healthy cells, the first outline fluorescence pixel set can be obtained, which facilitates the subsequent system to splice the diseased area according to the position of the image to generate a complete diseased part.
  • the system will select the fluorescent pixels adjacent to the non-fluorescent pixels in the third fluorescent two-dimensional image.
  • the third fluorescent two-dimensional image is related to the partial area selected by the physician.
  • the fluorescent pixels adjacent to the non-fluorescent pixels are also used as the edge of the diseased area, and the interface with the healthy cells can be obtained, and at least a second outline fluorescent pixel point set can be obtained to facilitate subsequent positioning according to the image.
  • the corresponding contour sets are spliced to obtain a complete lesion part.
  • the system will automatically splice the lesion area to form a complete target lesion area for the physician to observe.
  • the first contour fluorescence pixel point set and the second contour fluorescence pixel point set are spliced based on the positions of the first fluorescence two-dimensional image and the third fluorescence two-dimensional image to obtain a target contour fluorescence two-dimensional image.
  • the technical solution provided by the present invention is to splice the first outline fluorescent pixel point set and the second outline fluorescent pixel point set based on the positions of the first fluorescent two-dimensional image and the third fluorescent two-dimensional image to obtain a complete target.
  • the system will not only automatically push the associated areas, but also splice them into a complete lesion area based on the contours based on the location of the associated areas, such as :
  • the area selected by the doctor is the upper side image
  • the automatically pushed image is the lower side image of the image.
  • the corresponding first contour fluorescent pixel point set is on the upper side
  • the second contour fluorescent pixel point set is on the lower side.
  • the two are spliced.
  • a complete lesion area is formed to facilitate diagnosis by doctors, and after splicing into a complete area, only the lesion part can be displayed, which reduces the display of healthy areas, making the details of the lesion part more fully displayed, making it more convenient for doctors to make diagnosis.
  • a third two-dimensional display sub-area is established in the two-dimensional image display area, and the third two-dimensional display sub-area is used to display the target contour fluorescence two-dimensional image.
  • the technical solution provided by the present invention re-establishes a third two-dimensional display sub-region in the two-dimensional image display area.
  • the third two-dimensional display sub-region is used to display the target contour fluorescence two-dimensional image. It can be understood that the final image display frame The entire 3D image of the lesion area, the first fluorescence 2D image selected by the doctor, the first white light 2D image, the automatically pushed third fluorescence 2D image, the third white light 2D image, and the first fluorescence 2D image will be displayed.
  • the three-dimensional image and the third fluorescence two-dimensional image are spliced into a fluorescence two-dimensional image of the entire lesion area, and all the details of the entire lesion area and the partial lesion area selected by the doctor are displayed to the doctor, making it easier for the doctor to make a better diagnosis.
  • the present invention also provides a fluorescence three-dimensional imaging system based on data processing, as shown in Figure 3, including:
  • the fusion module is used to extract the image of the diseased tissue under fluorescence and white light based on the two-dimensional image extraction device, and obtain the fluorescence two-dimensional image and the white light two-dimensional image at different regional positions of the diseased tissue. According to the fluorescence two-dimensional image and The white light two-dimensional image generates a fluorescence three-dimensional fusion image corresponding to the diseased tissue;
  • the dividing module is used to divide the fluorescence three-dimensional fusion image into blocks according to the region position to obtain multiple sub-three-dimensional images, establish a preset storage space corresponding to each sub-three-dimensional image, and combine the fluorescence two-dimensional image and the white light two-dimensional image at the corresponding region position.
  • the dimensional image is stored in the preset storage space;
  • Retrieval module used to display the fluorescent three-dimensional fusion image, and retrieve the first fluorescent two-dimensional image and the first white light two-dimensional image corresponding to the first sub-three-dimensional image if it is determined that the user selects the first sub-three-dimensional image. dimensional images are displayed;
  • Determining module configured to determine a plurality of second sub-three-dimensional images according to the regional position of the first sub-three-dimensional image, and determine at least one based on the number of fluorescent pixels in the second fluorescence two-dimensional image corresponding to each second sub-three-dimensional image.
  • a third fluorescence two-dimensional image, the fluorescence pixel points are pixel points within a preset fluorescence pixel value interval;
  • a display module configured to generate an image display frame according to the number of the third fluorescent two-dimensional image, and based on the image display frame, the fluorescent three-dimensional fusion image, the first fluorescent two-dimensional image, the first white light two-dimensional image, the third fluorescent two-dimensional image, and the third fluorescent two-dimensional image are displayed. image, and a third white light two-dimensional image corresponding to the third fluorescence two-dimensional image are displayed.
  • the electronic device 50 includes: a processor 51, a memory 52 and a computer program;
  • Memory 52 is used to store the computer program. This memory may also be flash memory.
  • the computer program is, for example, an application program, functional module, etc. that implements the above method.
  • the processor 51 is used to execute the computer program stored in the memory to implement each step performed by the device in the above method. For details, please refer to the relevant descriptions in the previous method embodiments.
  • the memory 52 can be independent or integrated with the processor 51 .
  • the device may also include:
  • Bus 53 is used to connect the memory 52 and the processor 51 .
  • the present invention also provides a readable storage medium.
  • a computer program is stored in the readable storage medium.
  • the computer program is executed by a processor, the computer program is used to implement the methods provided by the above-mentioned various embodiments.
  • the readable storage medium may be a computer storage medium or a communication medium.
  • Communication media includes any medium that facilitates transfer of a computer program from one place to another.
  • Computer storage media can be any available media that can be accessed by a general purpose or special purpose computer.
  • a readable storage medium is coupled to a processor enabling the processor to Information is read from the readable storage medium and information can be written to the readable storage medium.
  • the readable storage medium may also be an integral part of the processor.
  • the processor and the readable storage medium may be located in Application Specific Integrated Circuits (ASIC for short). Additionally, the ASIC can be located in the user equipment.
  • ASIC Application Specific Integrated Circuits
  • the processor and the readable storage medium may also exist as discrete components in the communication device.
  • Readable storage media can be read-only memory (ROM), random-access memory (RAM), CD-ROM, tapes, floppy disks, optical data storage devices, etc.
  • the present invention also provides a program product.
  • the program product includes execution instructions, and the execution instructions are stored in a readable storage medium.
  • At least one processor of the device can read the execution instruction from the readable storage medium, and at least one processor executes the execution instruction to cause the device to implement the methods provided by the various embodiments described above.
  • the processor can be a central processing unit (English: Central Processing Unit, referred to as: CPU), or other general-purpose processor, digital signal processor (English: Digital Signal Processor, referred to as : DSP), application specific integrated circuit (English: Application Specific Integrated Circuit, abbreviation: ASIC), etc.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc. The steps of the method disclosed in the present invention can be directly implemented by a hardware processor, or executed by a combination of hardware and software modules in the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

本发明提供一种基于数据处理的荧光三维成像方法及装置,根据荧光二维图像以及白光二维图像生成与病变组织对应的荧光三维融合图像;对荧光三维融合图像进行划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于预设存储空间内;根据第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像;根据第三荧光二维图像的数量生成图像显示框,基于图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示。

Description

基于数据处理的荧光三维成像方法及装置 技术领域
本发明涉及数据处理技术,尤其涉及一种基于数据处理的荧光三维成像方法及装置。
背景技术
荧光三维成像是荧光物质被激发后所发射的荧光信号的强度在一定的范围内与荧光素的量成线性关系。
目前,通过荧光三维成像装置进行成像后,仅能得到相应的荧光三维图像,用户只能根据得到的荧光三维图像对病灶区域进行整体进行放大以及缩小观察病变区域,无法在显示屏处,同时观察病灶区域部分组织的放大图像以及部分组织相对应的白光图像以及荧光图像,使得医师的诊断效率较为低下,不便于医师的使用。
发明内容
本发明实施例提供一种基于数据处理的荧光三维成像方法及装置,将荧光图像与白光图像结合,使得病变部分的荧光区域可以直接在白光图像中直接显示,方便医师的观察,可以对医师选中区域进行细节展示并且会将相关区域进行展示,甚至将医师选中部分以及相关区域进行拼接结合自动推送完整的病变部分,较好的方便医生进行观察,使得诊断结果较为准确。
本发明实施例的第一方面,提供一种基于数据处理的荧光三维成像方法,包括:
基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,根据所述荧光二维图像以及白光二维图像生成与所述病变组织对应的荧光三维融合图像;
根据所述区域位置对荧光三维融合图像进行区块划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内;
对所述荧光三维融合图像进行显示,若判断用户选择第一子三维图像,则调取与所述第一子三维图像对应的第一荧光二维图像和第一白光二维图像进行显示;
根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像,所述荧光像素点为处于预设荧光像素值区间内的像素点;
根据第三荧光二维图像的数量生成图像显示框,基于所述图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示。
可选地,在第一方面的一种可能实现方式中,基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,根据所述荧光二维图像以及白光二维图像生成与所述病变组织对应的荧光三维 融合图像,包括:
选取所述荧光二维图像以及白光二维图像中任意一个相同位置的像素点作为第一坐标中心点;
根据所述第一坐标中心点分别在所述荧光二维图像以及白光二维图像处建立坐标系,得到第一荧光集合以及第一白光集合;
提取所述第一荧光集合中处于预设荧光像素值区间内的像素点,得到目标像素点集合;
将目标像素点集合中每个像素点的像素值与第一白光集合中相同坐标值的像素点的像素值进行替换,得到荧光二维融合图像;
将所述荧光二维融合图像发送至服务器处进行拼接组合,得到荧光三维融合图像。
可选地,在第一方面的一种可能实现方式中,所述根据所述区域位置对荧光三维融合图像进行区块划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内,包括:
根据所述荧光三维融合图像的实际尺寸得到相对应的实际划分尺寸;
根据所述实际划分尺寸依次对荧光三维融合图像进行从上到下的区块划分得到多个子三维图像,直至荧光三维融合图像均被划分为子三维图像,并按照划分顺序进行依次编号;
建立每个编号所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内。
可选地,在第一方面的一种可能实现方式中,所述根据所述荧光三维融合图像的实际尺寸得到相对应的实际划分尺寸,包括:
根据所述荧光三维融合图像的实际尺寸与荧光三维融合图像的预设尺寸的比值,得到尺寸系数;
根据所述尺寸系数与预设划分尺寸的乘积,得到实际划分尺寸;
通过以下公式得到实际划分尺寸,
其中,Sactual为实际划分尺寸,Spre为预设划分尺寸,Mactual为荧光三维融合图像的实际尺寸,Mpre为荧光三维融合图像的预设尺寸,τ1为实际划分尺寸的属性值。
可选地,在第一方面的一种可能实现方式中,所述根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像,包括:
确定与所述第一子三维图像相邻的区域位置,将所述区域位置的图像作为第二子三维图像;
确定第一荧光二维图像中与第二荧光二维图像相邻的像素点作为边界荧光像素点;
统计所述第二荧光二维图像中与所述边界荧光像素点直接连接和间接连接的荧光像素点数量,得到第一总数量;
若所述第一总数量大于预设数量,则将所述第二荧光二维图像作为第三荧光二维图像。
可选地,在第一方面的一种可能实现方式中,所述统计所述第二荧光二维图像中与所述边界荧光像素点直接连接和间接连接的荧光像素点数量,得到第一总数量,包括:
确定第二荧光二维图像中与所述边界荧光像素点相邻的荧光像素点,得到多个第一像素点;
确定与所述第一像素点相邻的荧光像素点,得到多个第二像素点,确定与所述第二像素点相邻的荧光像素点,得到多个第三像素点,将所述第三像素点作为第二像素点,再次确定与第二像素点连接的第三像素点,直至所有第二像素点选取完毕;
所述第一像素点与所述边界荧光像素点直接连接,所述第二像素点与所述边界荧光像素点间接连接;
统计第一像素点和第二像素点的数量,得到第一总数量。
可选地,在第一方面的一种可能实现方式中,所述根据第三荧光二维图像的数量生成图像显示框,基于所述图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示,包括:
在初始化的图像显示框中确定三维图显示区域以及二维图像显示区域;
根据所述第三荧光二维图的数量对所述二维图像显示区域进行划分,得到第一二维显示子区域和第二二维显示子区域;
在所述第一二维显示子区域和第二二维显示子区域分别建立白光显示区域和荧光显示区域;
将第一荧光二维图像和第一白光二维图像在第一二维显示子区域的白光显示区域和荧光显示区域进行显示,依次将第一荧光序列中的第三荧光二维图像、第三白光二维图像在第二二维显示子区域的白光显示区域和荧光显示区域进行显示。
可选地,在第一方面的一种可能实现方式中,还包括:
若所述第三荧光二维图像的数量大于一,则根据第一总数量对第三荧光二维图像降序排序,得到第一荧光序列。
可选地,在第一方面的一种可能实现方式中,还包括:
选取所述第一荧光二维图像中与非荧光像素点相邻的荧光像素点,得到第一轮廓荧光像素点集合;
选取所述第三荧光二维图像中与非荧光像素点相邻的荧光像素点,得到至少一个第二轮廓荧光像素点集合;
所述第一轮廓荧光像素点集合和所述第二轮廓荧光像素点集合基于第一荧光二维图像和第三荧光二维图像的位置进行拼接,得到目标轮廓荧光二维图像;
在所述二维图像显示区域中建立第三二维显示子区域,所述第三二维显示子区域用于显示目标轮廓荧光二维图像。
本发明实施例的第二方面,提供一种基于数据处理的荧光三维成像装置,包括:
融合模块,用于基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,根据所述荧光二维 图像以及白光二维图像生成与所述病变组织对应的荧光三维融合图像;
划分模块,用于根据所述区域位置对荧光三维融合图像进行区块划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内;
调取模块,用于对所述荧光三维融合图像进行显示,若判断用户选择第一子三维图像,则调取与所述第一子三维图像对应的第一荧光二维图像和第一白光二维图像进行显示;
确定模块,用于根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像,所述荧光像素点为处于预设荧光像素值区间内的像素点;
显示模块,用于根据第三荧光二维图像的数量生成图像显示框,基于所述图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示。
本发明实施例的第三方面,提供一种电子设备,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行本发明第一方面及第一方面各种可能涉及的所述方法。
本发明实施例的第四方面,提供一种可读存储介质,所述可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用于实现本发明第一方面及第一方面各种可能涉及的所述方法。
本发明提供的一种基于数据处理的荧光三维成像方法及装置,会将病变组织分别在荧光和白光照射下的二维图像进行融合拼接,得到的荧光三维融合图像,使得医师可以直接观察到白光图像中的病变区域,方便医师进行观察,并且可以直接通过白光图像中荧光像素值的深浅颜色不同,可以判断细胞病变的程度,方便医师进行后续的手术,本发明会根据医师选中区域的病变部分的图像,自动识别并推送周边与其相关联的病变部分,同时在图像显示框中进行显示,方便医师对病变组织的局部区域进行观察,使得医师可以更好的进行诊断。
本发明提供的技术方案,使得对于不同大小的病变区域生成不同大小的划分区域,使得后续选中以及自动推送的观察区域大小适中,更利于医生进行观察,本发明会确定医师选中的病变区域中边界荧光像素点,根据四周相邻图片与边界荧光像素点直接和间接连接的荧光像素点所处的图像作为与选中病变区域相关的图像进行自动推送,使得医生不仅可以看到选中的部分病变区域的图像,还可以看到自动推送的相关联图像,使得医生的诊断更加准确。
本发明提供的技术方案,会将图像显示框划分为三维显示区域以及二维显示区域,三维显示区域用于显示荧光三维融合图像,二维显示区域分别用于显示医生选中区域的荧光和白光图像,以及与医生选中区域中病变区域相关联区域的荧光和白光图像,并且会按照相关区域的严重程度进行排序显示,并将选中区域与相关区域的轮廓进行拼接形成一个完整的病变部分进行显示,使得医师不仅可以观察到整体的病变部分,还可以对选中的部分病变区域、相关联的区域以及对应的拼接后的部分整体,使得医生可以多角度观察,使得诊断相对客观、准确。
附图说明
图1为本发明所提供的一种基于数据处理的荧光三维成像方法的流程图;
图2为本发明所提供的一种定位第三荧光二维图像方法的流程图;
图3为本发明所提供的一种基于数据处理的荧光三维成像装置的结构示意图;
图4为本发明提供的一种电子设备的硬件结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
应当理解,在本发明的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
应当理解,在本发明中,“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本发明中,“多个”是指两个或两个以上。“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“包含A、B和C”、“包含A、B、C”是指A、B、C三者都包含,“包含A、B或C”是指包含A、B、C三者之一,“包含A、B和/或C”是指包含A、B、C三者中任1个或任2个或3个。
应当理解,在本发明中,“与A对应的B”、“与A相对应的B”、“A与B相对应”或者“B与A相对应”,表示B与A相关联,根据A可以确定B。根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其他信息确定B。A与B的匹配,是A与B的相似度大于或等于预设的阈值。
取决于语境,如在此所使用的“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。
下面以具体地实施例对本发明的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
本发明提供一种基于数据处理的荧光三维成像方法,如图1所示,包括:
步骤S110、基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,根据所述荧光二维图像以及白光二维图像生成与所述。
本发明提供的技术方案,二维图像提取装置控制入射光在同一入射角和360°不同 方向角下进行环状扫描,分别对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,将所有的荧光二维图像以及白光二维图像的发送至服务器进行拼接处理,等到病变组织对应的荧光三维融合图像。
本发明提供的技术方案,在一个可能的实施方式中,步骤S110具体包括:
选取所述荧光二维图像以及白光二维图像中任意一个相同位置的像素点作为第一坐标中心点。
本发明提供的技术方案,系统会选取荧光二维图像以及白光二维图像中任意一个相同位置的像素点作为第一坐标中心点,可以理解的是,每个区域的荧光二维图像和白光二维图像均为同一角度,相同距离拍摄的,仅仅是照射的光源不同,因此荧光二维图像和白光二维图像的图片大小均相同且相互对应,因此,选择荧光二维图像和白光二维图像中任意一个位置相同像素点作为第一坐标中心点,方便后续根据第一坐标中心点建立坐标系得到二维图片的像素点集合。
根据所述第一坐标中心点分别在所述荧光二维图像以及白光二维图像处建立坐标系,得到第一荧光集合以及第一白光集合。
本发明提供的技术方案,根据第一坐标中心点分别在所述荧光二维图像以及白光二维图像处建立坐标系,根据所述坐标系将荧光二维图像以及白光二维图像进行分解得到第一荧光集合以及第一白光集合,方便后续将荧光二维图像中病灶区域的荧光像素点替换至白光二维图像中,便于医生进行直接的观察病灶区域的位置以及相应的严重程度。
提取所述第一荧光集合中处于预设像素区间内的像素点,得到目标像素点集合。
本发明提供的技术方案,系统提取所述第一荧光集合中处于预设像素区间内的像素点,得到对应的目标像素点集合,可以理解的是,预设像素区间是荧光像素点的像素值区间,将荧光二维图像中所有的荧光点提取出来,荧光像素点即为病灶位置,目标像素点集合为病灶区域,方便后续将荧光像素点替换至白光二维图像对应的区域,方便医师的查看。
将目标像素点集合中每个像素点的像素值与第一白光集合中相同坐标值的像素点的像素值进行替换,得到荧光二维融合图像。
本发明提供的技术方案,将目标像素点集合中每个像素点的像素值与第一白光集合中相同坐标值的像素点的像素值进行替换,可以理解的是,目标像素点集合为病灶区域,将病灶区域替换至白光二维图像,使得病灶区域即荧光像素点部分也就是病灶区域直接在白光二维图像中显示,方便医师进行直接观察。
将所述荧光二维融合图像发送至服务器处进行拼接组合,得到荧光三维融合图像。
本发明提供的技术方案,根据所述荧光二维融合图像发送至服务器,按照环状扫描的拍摄顺序进行拼接生成荧光三维融合图像。
步骤S120、根据所述区域位置对荧光三维融合图像进行区块划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内。
本发明提供的技术方案,系统会依据区域位置对荧光三维融合图像进行区块划分,对应得到多个子三维图像,建立与每个子三维图像所对应的预设存储空间,在预设存储空间里存储与其相对应区域位置的荧光二维图像和白光二维图像,可以理解的是,系统会 以一定的尺寸大小对荧光三维融合图像进行区块划分,将其划分为多个子三维图像,每个子三维图像都有与其对应的存储空间,存储空间内存储着子三维图像对应的荧光二维图像和白光二维图像,方便后续医生对子三维图像进行选中时,则会从存储空间中提取相对应的荧光二维图像和白光二维图像进行展示。
本发明提供的技术方案,在一个可能的实施方式中,步骤S120具体包括:
根据所述荧光三维融合图像的实际尺寸得到相对应的实际划分尺寸。
本发明提供的技术方案,根据荧光三维融合图像的实际尺寸的大小得到相对应的实际划分尺寸,方便后续对荧光三维融合图像进行图像的划分,可以理解的是,荧光三维融合图像的实际尺寸越大相对应的实际划分尺寸越大,荧光三维融合图像的实际尺寸越小相对应的实际划分尺寸越小,不同病变组织对应的病变区域不同,因此对应的大小也不同,根据不同大小的病变区域进行不同情况的划分,使得划分后的大小符合实际观察情况,更利于医师进行相应的观察。
本发明提供的技术方案,在一个可能的实施方式中,所述根据所述荧光三维融合图像的实际尺寸得到相对应的实际划分尺寸,包括:
根据所述荧光三维融合图像的实际尺寸与荧光三维融合图像的预设尺寸的比值,得到尺寸系数。
本发明提供的技术方案,系统会根据荧光三维融合图像的实际尺寸的大小与荧光三维融合图像的预设尺寸的大小的比值,得到相应的尺寸系数,方便后续生成对应的实际划分尺寸。
根据所述尺寸系数与预设划分尺寸的乘积,得到实际划分尺寸。
本发明提供的技术方案,根据尺寸系数与预设划分尺寸的乘积,得到当下荧光三维融合图像对应的实际划分尺寸。
通过以下公式得到实际划分尺寸,
其中,Sactual为实际划分尺寸,Spre为预设划分尺寸,Mactual为荧光三维融合图像的实际尺寸,Mpre为荧光三维融合图像的预设尺寸,τ1为实际划分尺寸的属性值,为尺寸系数,可以理解的是,荧光三维融合图像的实际尺寸与实际划分尺寸Sactual成正比,实际划分尺寸的属性值τ1可以是人为预先设置的。
本发明提供的技术方案,会根据荧光三维融合图像的大小不同相应生成不同的大小的实际划分尺寸,使得划分尺寸是动态变化的,依据病灶区的大小相应改变,使得划分区域大小适中,更便于医生进行观察,贴合实际情况。
根据所述实际划分尺寸依次对荧光三维融合图像进行从上到下的区块划分得到多个子三维图像,直至荧光三维融合图像均被划分为子三维图像,并按照划分顺序进行依次编号。
本发明提供的技术方案,根据系统计算得到的实际划分尺寸依次对荧光三维融合图像进行从上到下的区块划分得到多个子三维图像,直到荧光三维融合图像被划分完毕,并按照划分的顺序对子三维图像进行依次编号,使得每个子三维图像都具有对应的编号, 方便后续根据编号分配对应的存储空间。
建立每个编号所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内。
本发明提供的技术方案,系统会建立与每个编号相对应的预设存储空间,将每个编号相对应的子三维图像对应荧光二维图像和白光二维图像存储于编号相对应的预设存储空间内,可以理解的是,每个编号对应一个子三维图像对应一个预设存储空间,预设存储空间内存储着子三维图像的荧光二维图像和白光二维图像,方便后续选中相应区域即子三维图像时会自动调取相对应的荧光二维图像和白光二维图像,方便医生进行观察。
步骤S130、对所述荧光三维融合图像进行显示,若判断用户选择第一子三维图像,则调取与所述第一子三维图像对应的第一荧光二维图像和第一白光二维图像进行显示。
本发明提供的技术方案,系统会对荧光三维融合图像进行显示,如果判断用户选择了第一子三维图像,可以理解的是,第一子三维图像为被用户选中的子三维图像,则调取用户选中的第一子三维图像对应的第一荧光二维图像和第一白光二维图像进行显示,医师可以对病变区域的部分区域进行显示,方便医师对局部进行细微的观察,使得后续诊断结果相对客观。
步骤S140、根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像,所述荧光像素点为处于预设荧光像素值区间内的像素点。
本发明提供的技术方案,根据第一子三维图像的区域位置确定多个第二子三维图像,可以理解的是,根据医师主动选择的第一子三维图像可以根据其位置确定与其相邻的其他子三维图像,第二子三维图像即为与第一子三维图像相邻的子三维图像,查看第二子三维图像中的荧光像素点是否与第一子三维图像中边缘的像素点相连接,如果出现相连接的像素点,则将该第二子三维图像作为第三荧光二维图像,可以理解的是,第三荧光二维图像为与第一荧光二维图像中病变区域相关的荧光二维图像,方便后续根据医生选中区域进行自动推送。
本发明提供的技术方案,在一个可能的实施方式中,如图2所示,步骤S140具体包括:
步骤S1401、确定与所述第一子三维图像相邻的区域位置,将所述区域位置的图像作为第二子三维图像。
本发明提供的技术方案,根据医师主动选中的第一子三维图像所在的区域确定与其相邻的其他子三维图像,将相邻的子三维图像作为第二子三维图像,所以第二子三维图像为与第一子三维图像相邻的子三维图像,方便后续根据其周边的子三维图像去确定与第一子三维图像相关联的图像。
步骤S1402、确定第一荧光二维图像中与第二荧光二维图像相邻的像素点作为边界荧光像素点。
本发明提供的技术方案,系统在第一子三维图像对应的第一荧光二维图像中确定其图像四周与第二子三维图像对应的第二荧光二维图像相邻的像素点作为边界荧光像素点,可以理解的是,边界荧光像素点为第一荧光二维图像中四周(边缘)的荧光像素点,该荧光像素点与周边的第二荧光二维图像相邻。
步骤S1403、统计所述第二荧光二维图像中与所述边界荧光像素点直接连接和间接连接的荧光像素点数量,得到第一总数量。
本发明提供的技术方案,系统会统计每个第二荧光二维图像中与其对应的边界荧光像素点直接连接和间接连接的荧光像素点数量,得到对应的第一总数量,可以理解的是,第二荧光二维图像与第一荧光二维图像相邻,边界荧光像素点为第一荧光二维图像中四周的荧光像素点,例如:第一荧光二维图像的最上侧有边界荧光像素点1坐标为(1,1),上侧与第一荧光二维图像连接的第二荧光二维图像中存在与所述边界荧光像素点直接连接的荧光像素点2坐标为(1,2),第二荧光二维图像中又存在荧光像素点3坐标为(1,3),可以理解的是,边界荧光像素点1与荧光像素点2为直接连接,边界荧光像素点1与荧光像素点3为间接连接,统计每个第二荧光二维图像中直接连接和间接连接的荧光像素点数量,得到多个第一总数量,方便后续根据第一总数量进行与医师选中病变区域相关联的其他区域的自动推动。
本发明提供的技术方案,在一个可能的实施方式中,所述统计所述第二荧光二维图像中与所述边界荧光像素点直接连接和间接连接的荧光像素点数量,得到第一总数量,包括:
确定第二荧光二维图像中与所述边界荧光像素点相邻的荧光像素点,得到多个第一像素点。
本发明提供的技术方案,确定第二子三维图像对应的第二荧光二维图像中与边界荧光像素点相邻的荧光像素点,得到多个第一像素点,可以理解的是,第一像素点与边界荧光像素点的关系为直接连接关系。
确定与所述第一像素点相邻的荧光像素点,得到多个第二像素点,确定与所述第二像素点相邻的荧光像素点,得到多个第三像素点,将所述第三像素点作为第二像素点,再次确定与第二像素点连接的第三像素点,直至所有第二像素点选取完毕。
本发明提供的技术方案,确定与所述第一像素点相邻的荧光像素点,得到多个第二像素点,可以理解的是,第二像素点与边界荧光像素点的关系为间接连接关系,再次确定与所述第二像素点相邻的荧光像素点,得到多个第三像素点,第三像素点与边界荧光像素点的关系为间接连接关系,再将第三像素点作为第二像素点寻找与其相邻的像素点,直到第二像素点选取完毕,也就是直到找不到间接连接的像素点为止。
所述第一像素点与所述边界荧光像素点直接连接,所述第二像素点与所述边界荧光像素点间接连接。
本发明提供的技术方案,第一像素点与所述边界荧光像素点直接连接,第二像素点与所述边界荧光像素点间接连接,第一像素点和第二像素点均与医师选中的病变区域相关联,方便后续根据两者的数量进行相关图像的自动推送展示。
统计第一像素点和第二像素点的数量,得到第一总数量。
本发明提供的技术方案,系统会统计第一像素点和第二像素点的数量,得到第一总数量,可以理解的是,第一总数量为第二荧光二维图像中与边界荧光像素点直接和间接连接的荧光像素点的数量。
步骤S1404、若所述第一总数量大于预设数量,则将所述第二荧光二维图像作为第三荧光二维图像。
本发明提供的技术方案,如果第二荧光二维图像所对应的第一总数量大于预设数量,则将该第二子三维图像作为第三荧光二维图像,可以理解的是,预设数量可以是0,当存在直接连接和/或间接连接的像素点时,则确定该第二荧光二维图像与医师选中的病变区域相关,并将该第二子三维图像作为第三荧光二维图像,方便后续进行自动推送。
步骤S150、根据第三荧光二维图像的数量生成图像显示框,基于所述图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示。
本发明提供的技术方案,根据第三荧光二维图像的数量对初始化图像显示框进行划分生成图像显示框,可以理解的是,第三荧光二维图像的数量越多相对需要展示的显示区域就越多,图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示,可以理解的是,当医生选中病变区域的时候,系统会自动推送与病变区域相关的区域,相关区域为第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像,图像显示框会同时显示病变区域的整体三维图像即荧光三维融合图像,显示第一荧光二维图像、第一白光二维图像即医师选中区域的白光以及荧光图像,显示第三荧光二维图、第三白光二维图像即与选中区域相连接的病变区域,两者相关为同一病变部分。
本发明提供的技术方案,在一个可能的实施方式中,步骤S150具体包括:
在初始化的图像显示框中确定三维图显示区域以及二维图像显示区域。
本发明提供的技术方案,在初始化的图像显示框中确定三维图显示区域以及二维图像显示区域,其中,初始化的图像显示框为空白显示框,尚未进行显示区域的划分,可以理解的是,图像显示框主要用于显示三维图像以及二维图像,因此根据三维以及二维对图像显示框进行划分,方便医师同时观察三维以及选中的二维图像,方便医师进行诊断。
根据所述第三荧光二维图的数量对所述二维图像显示区域进行划分,得到第一二维显示子区域和第二二维显示子区域。
本发明提供的技术方案,系统会根据第三荧光二维图的数量对所述二维图像显示区域进行划分,可以理解的是,第三荧光二维图的数量为1则对二维图像显示区域进行一次划分,得到第一二维显示子区域和第二二维显示子区域,可以理解的是,第一二维显示子区域用于显示第一子三维图像对应的第一荧光二维图像、第一白光二维图像,第二二维显示子区域用于显示第三子三维图像对应的第三荧光二维图像、第三白光二维图像,医师不仅可以对荧光三维融合图像进行观察,同时可以对选中区域的图像进行观察,系统还会自动推送与选中区域相关的二维图像对医师进行展示,使得医师的诊断更为精准。
在所述第一二维显示子区域和第二二维显示子区域分别建立白光显示区域和荧光显示区域。
本发明提供的技术方案,在第一二维显示子区域和第二二维显示子区域分别建立白光显示区域和荧光显示区域,可以理解的是,第一二维显示子区域用于显示第一子三维图像对应的第一荧光二维图像、第一白光二维图像,第二二维显示子区域用于显示第三子三维图像对应的第三荧光二维图像、第三白光二维图像,因此进行白光以及荧光显示区域的区块划分。
将第一荧光二维图像和第一白光二维图像在第一二维显示子区域的白光显示区 域和荧光显示区域进行显示,依次将第一荧光序列中的第三荧光二维图像、第三白光二维图像在第二二维显示子区域的白光显示区域和荧光显示区域进行显示。
本发明提供的技术方案,将第一荧光二维图像和第一白光二维图像在第一二维显示子区域的白光显示区域和荧光显示区域进行显示,并且按照第一荧光序列中的顺序依次将第三荧光二维图像、第三白光二维图像在第二二维显示子区域的白光显示区域和荧光显示区域进行显示,其中,第一荧光序列为通过第一总数量对第三荧光二维图像进行从大到小进行排序,可以理解的是,第一总数量越大对应的关联性越高。
本发明提供的技术方案,在一个可能的实施方式中,还包括:
若所述第三荧光二维图像的数量大于一,则根据第一总数量对第三荧光二维图像降序排序,得到第一荧光序列。
本发明提供的技术方案,如果第三荧光二维图像的数量大于一,则对第三荧光二维图像按照与其对应的第一总数量进行从大到小进行排序,生成第一荧光序列,可以理解的是,第一总数量越大对应的相关程度越高,排列更靠前,进行方便进行优先显示,使得医师可以优先查看最相关的图像区域,更贴合实际诊断过程。
本发明提供的技术方案,在一个可能的实施方式中,还包括:
选取所述第一荧光二维图像中与非荧光像素点相邻的荧光像素点,得到第一轮廓荧光像素点集合。
本发明提供的技术方案,系统会选取与第一荧光二维图像中与非荧光像素点相邻的荧光像素点,可以理解的是,与非荧光像素点相邻的荧光像素点为病变区域的边缘,也就是与健康细胞的交界部分,则可以得到第一轮廓荧光像素点集合,方便后续系统根据图片位置将病变区域进行拼接,生成完整的病变部分。
选取所述第三荧光二维图像中与非荧光像素点相邻的荧光像素点,得到至少一个第二轮廓荧光像素点集合。
本发明提供的技术方案,系统会选取所述第三荧光二维图像中与非荧光像素点相邻的荧光像素点,可以理解的是,第三荧光二维图像为与医师选中部分区域的相关联的区域,同样通过与非荧光像素点相邻的荧光像素点为病变区域的边缘,可以得到与健康细胞的交界部分,得到至少一个第二轮廓荧光像素点集合,方便后续根据图像各自的位置将各自对应的轮廓集合进行拼接得到完整的病变部分,系统会对病变区域进行自动拼接,形成一个完整的目标病变区域方便医师进行观察。
所述第一轮廓荧光像素点集合和所述第二轮廓荧光像素点集合基于第一荧光二维图像和第三荧光二维图像的位置进行拼接,得到目标轮廓荧光二维图像。
本发明提供的技术方案,基于第一荧光二维图像和第三荧光二维图像所在的位置将第一轮廓荧光像素点集合和所述第二轮廓荧光像素点集合进行拼接,得到一个完整的目标轮廓荧光二维图像,可以理解的是,当医师对目标区域进行选择后,系统不仅会自动推送相关联的区域,还会根据相关联区域的位置依据轮廓进行拼接成一个完整的病变区域,例如:医生选中的区域为上侧图像,自动推送的图像为该图像的下侧图像,对应的第一轮廓荧光像素点集合处于上侧,第二轮廓荧光像素点集合处于下侧,两者进行拼接形成一个完整的病变区域,方便医生进行诊断,并且拼接成完整的区域后,可以只对病变部分进行显示,可以减少了对健康区域显示,使得病变部分细节显示更加充分,较为方便医师进行诊断。
在所述二维图像显示区域中建立第三二维显示子区域,所述第三二维显示子区域用于显示目标轮廓荧光二维图像。
本发明提供的技术方案,在二维图像显示区域中再次建立第三二维显示子区域,第三二维显示子区域用于显示目标轮廓荧光二维图像,可以理解的是,最终图像显示框中会显示病变区域整体的三维图像、医生选中的第一荧光二维图像、第一白光二维图像、自动推送的第三荧光二维图像、第三白光二维图像,以及将第一荧光二维图像、第三荧光二维图像进行拼接成为一个整体病灶区域的荧光二维图像,将整体以及医生选中的部分病变区域的所有细节均展示给医师,方便医师较好的进行诊断。
为了更好的实现本发明所提供的一种基于数据处理的荧光三维成像方法,本发明还提供一种基于数据处理的荧光三维成像系统,如图3所示,包括:
融合模块,用于基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,根据所述荧光二维图像以及白光二维图像生成与所述病变组织对应的荧光三维融合图像;
划分模块,用于根据所述区域位置对荧光三维融合图像进行区块划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内;
调取模块,用于对所述荧光三维融合图像进行显示,若判断用户选择第一子三维图像,则调取与所述第一子三维图像对应的第一荧光二维图像和第一白光二维图像进行显示;
确定模块,用于根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像,所述荧光像素点为处于预设荧光像素值区间内的像素点;
显示模块,用于根据第三荧光二维图像的数量生成图像显示框,基于所述图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示。
如图4所示,是本发明实施例提供的一种电子设备的硬件结构示意图,该电子设备50包括:处理器51、存储器52和计算机程序;其中
存储器52,用于存储所述计算机程序,该存储器还可以是闪存(flash)。所述计算机程序例如是实现上述方法的应用程序、功能模块等。
处理器51,用于执行所述存储器存储的计算机程序,以实现上述方法中设备执行的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器52既可以是独立的,也可以跟处理器51集成在一起。
当所述存储器52是独立于处理器51之外的器件时,所述设备还可以包括:
总线53,用于连接所述存储器52和处理器51。
本发明还提供一种可读存储介质,所述可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用于实现上述的各种实施方式提供的方法。
其中,可读存储介质可以是计算机存储介质,也可以是通信介质。通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。计算机存储介质可以是通用或专用计算机能够存取的任何可用介质。例如,可读存储介质耦合至处理器,从而使处理器能够 从该可读存储介质读取信息,且可向该可读存储介质写入信息。当然,可读存储介质也可以是处理器的组成部分。处理器和可读存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称:ASIC)中。另外,该ASIC可以位于用户设备中。当然,处理器和可读存储介质也可以作为分立组件存在于通信设备中。可读存储介质可以是只读存储器(ROM)、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本发明还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得设备实施上述的各种实施方式提供的方法。
在上述设备的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种基于数据处理的荧光三维成像方法,其特征在于,包括:
    基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,根据所述荧光二维图像以及白光二维图像生成与所述病变组织对应的荧光三维融合图像;
    基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,包括:
    基于二维图像提取装置控制入射光在同一入射角和360°不同方向角下进行环状扫描,分别对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像;
    根据所述区域位置对荧光三维融合图像进行区块划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内;
    对所述荧光三维融合图像进行显示,若判断用户选择第一子三维图像,则调取与所述第一子三维图像对应的第一荧光二维图像和第一白光二维图像进行显示;
    根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像,所述荧光像素点为处于预设荧光像素值区间内的像素点,所述第二子三维图像为与第一子三维图像相邻的子三维图像;
    根据第三荧光二维图像的数量生成图像显示框,基于所述图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示;
    所述根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像,包括:
    确定与所述第一子三维图像相邻的区域位置,将所述区域位置的图像作为第二子三维图像;
    确定第一荧光二维图像中与第二荧光二维图像相邻的像素点作为边界荧光像素点;
    统计所述第二荧光二维图像中与所述边界荧光像素点直接连接和间接连接的荧光像素点数量,得到第一总数量;
    若所述第一总数量大于预设数量,则将所述第二荧光二维图像作为第三荧光二维图像。
  2. 根据权利要求1所述的方法,其特征在于,
    基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,根据所述荧光二维图像以及白光二维图像生成与所述病变组织对应的荧光三维融合图像,包括:
    选取所述荧光二维图像以及白光二维图像中任意一个相同位置的像素点作为第一坐标中心点;
    根据所述第一坐标中心点分别在所述荧光二维图像以及白光二维图像处建立坐标系,得到第一荧光集合以及第一白光集合;
    提取所述第一荧光集合中处于预设荧光像素值区间内的像素点,得到目标像素点集合;
    将目标像素点集合中每个像素点的像素值与第一白光集合中相同坐标值的像素点的像素值进行替换,得到荧光二维融合图像;
    将所述荧光二维融合图像发送至服务器处进行拼接组合,得到荧光三维融合图像。
  3. 根据权利要求2所述的方法,其特征在于,
    所述根据所述区域位置对荧光三维融合图像进行区块划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内,包括:
    根据所述荧光三维融合图像的实际尺寸得到相对应的实际划分尺寸;
    根据所述实际划分尺寸依次对荧光三维融合图像进行从上到下的区块划分得到多个子三维图像,直至荧光三维融合图像均被划分为子三维图像,并按照划分顺序进行依次编号;
    建立每个编号所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内。
  4. 根据权利要求3所述的方法,其特征在于,
    所述根据所述荧光三维融合图像的实际尺寸得到相对应的实际划分尺寸,包括:
    根据所述荧光三维融合图像的实际尺寸与荧光三维融合图像的预设尺寸的比值,得到尺寸系数;
    根据所述尺寸系数与预设划分尺寸的乘积,得到实际划分尺寸;
    通过以下公式得到实际划分尺寸,
    其中,Sactual为实际划分尺寸,Spre为预设划分尺寸,Mactual为荧光三维融合图像的实际尺寸,Mpre为荧光三维融合图像的预设尺寸,τ1为实际划分尺寸的属性值。
  5. 根据权利要求4所述的方法,其特征在于,
    所述统计所述第二荧光二维图像中与所述边界荧光像素点直接连接和间接连接的荧光像素点数量,得到第一总数量,包括:
    确定第二荧光二维图像中与所述边界荧光像素点相邻的荧光像素点,得到多个第一像素点;
    确定与所述第一像素点相邻的荧光像素点,得到多个第二像素点,确定与所述第二像素点相邻的荧光像素点,得到多个第三像素点,将所述第三像素点作为第二像素点,再次确定与第二像素点连接的第三像素点,直至所有第二像素点选取完毕;
    所述第一像素点与所述边界荧光像素点直接连接,所述第二像素点与所述边界荧光像素点间接连接;
    统计第一像素点和第二像素点的数量,得到第一总数量。
  6. 根据权利要求5所述的方法,其特征在于,
    所述根据第三荧光二维图像的数量生成图像显示框,基于所述图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示,包括:
    在初始化的图像显示框中确定三维图显示区域以及二维图像显示区域;
    根据所述第三荧光二维图的数量对所述二维图像显示区域进行划分,得到第一二维显示子区域和第二二维显示子区域;
    在所述第一二维显示子区域和第二二维显示子区域分别建立白光显示区域和荧光显示区域;
    将第一荧光二维图像和第一白光二维图像在第一二维显示子区域的白光显示区域和荧光显示区域进行显示,依次将第一荧光序列中的第三荧光二维图像、第三白光二维图像在第二二维显示子区域的白光显示区域和荧光显示区域进行显示。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    若所述第三荧光二维图像的数量大于一,则根据第一总数量对第三荧光二维图像降序排序,得到第一荧光序列。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    选取所述第一荧光二维图像中与非荧光像素点相邻的荧光像素点,得到第一轮廓荧光像素点集合;
    选取所述第三荧光二维图像中与非荧光像素点相邻的荧光像素点,得到至少一个第二轮廓荧光像素点集合;
    所述第一轮廓荧光像素点集合和所述第二轮廓荧光像素点集合基于第一荧光二维图像和第三荧光二维图像的位置进行拼接,得到目标轮廓荧光二维图像;
    在所述二维图像显示区域中建立第三二维显示子区域,所述第三二维显示子区域用于显示目标轮廓荧光二维图像。
  9. 一种基于数据处理的荧光三维成像装置,其特征在于,包括:
    融合模块,用于基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,根据所述荧光二维图像以及白光二维图像生成与所述病变组织对应的荧光三维融合图像;
    基于二维图像提取装置对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像,包括:
    基于二维图像提取装置控制入射光在同一入射角和360°不同方向角下进行环状扫描,分别对病变组织在荧光下和白光下进行图像提取,得到病变组织不同区域位置处的荧光二维图像以及白光二维图像;
    划分模块,用于根据所述区域位置对荧光三维融合图像进行区块划分得到多个子三维图像,建立每个子三维图像所对应的预设存储空间,将相应区域位置的荧光二维图像和白光二维图像存储于所述预设存储空间内;
    调取模块,用于对所述荧光三维融合图像进行显示,若判断用户选择第一子三维图像,则调取与所述第一子三维图像对应的第一荧光二维图像和第一白光二维图像进行显示;
    确定模块,用于根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三 荧光二维图像,所述荧光像素点为处于预设荧光像素值区间内的像素点,所述第二子三维图像为与第一子三维图像相邻的子三维图像;
    显示模块,用于根据第三荧光二维图像的数量生成图像显示框,基于所述图像显示框对荧光三维融合图像、第一荧光二维图像、第一白光二维图像、第三荧光二维图像、及第三荧光二维图像对应的第三白光二维图像进行显示;
    所述根据所述第一子三维图像的区域位置确定多个第二子三维图像,根据每个第二子三维图像所对应第二荧光二维图像中的荧光像素点的数量确定至少一个第三荧光二维图像,包括:
    确定与所述第一子三维图像相邻的区域位置,将所述区域位置的图像作为第二子三维图像;
    确定第一荧光二维图像中与第二荧光二维图像相邻的像素点作为边界荧光像素点;
    统计所述第二荧光二维图像中与所述边界荧光像素点直接连接和间接连接的荧光像素点数量,得到第一总数量;
    若所述第一总数量大于预设数量,则将所述第二荧光二维图像作为第三荧光二维图像。
PCT/CN2023/076347 2022-08-30 2023-02-16 基于数据处理的荧光三维成像方法及装置 WO2024045507A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211043998.4A CN115115755B (zh) 2022-08-30 2022-08-30 基于数据处理的荧光三维成像方法及装置
CN202211043998.4 2022-08-30

Publications (1)

Publication Number Publication Date
WO2024045507A1 true WO2024045507A1 (zh) 2024-03-07

Family

ID=83335486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076347 WO2024045507A1 (zh) 2022-08-30 2023-02-16 基于数据处理的荧光三维成像方法及装置

Country Status (2)

Country Link
CN (1) CN115115755B (zh)
WO (1) WO2024045507A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115115755B (zh) * 2022-08-30 2022-11-08 南京诺源医疗器械有限公司 基于数据处理的荧光三维成像方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1627324A (zh) * 2003-12-08 2005-06-15 西门子公司 用于融合图像显示的方法
CN103491850A (zh) * 2011-04-28 2014-01-01 奥林巴斯株式会社 荧光观察装置及其图像显示方法
US20140133721A1 (en) * 2012-03-30 2014-05-15 Bruker Biospin Corporation Comparative image display system and a molecular imaging device containing this system
CN104188628A (zh) * 2014-09-16 2014-12-10 中国科学院自动化研究所 三维光学分子影像导航系统和方法
CN109497955A (zh) * 2018-12-18 2019-03-22 聚品(上海)生物科技有限公司 人体自发荧光照明激发及图像处理系统及方法
CN111528770A (zh) * 2019-06-20 2020-08-14 深圳迈瑞生物医疗电子股份有限公司 内窥镜摄像系统、图像处理方法及可读存储介质
CN113614486A (zh) * 2019-01-17 2021-11-05 大学健康网络 用于创伤和组织标本的三维成像、测量和显示的系统、方法和设备
CN114569070A (zh) * 2022-01-29 2022-06-03 上海交通大学 指环式一体化荧光造影手术成像引导系统及应用
CN114882093A (zh) * 2022-07-12 2022-08-09 广东欧谱曼迪科技有限公司 术中三维点云生成方法、装置和术中局部结构导航方法
CN115115755A (zh) * 2022-08-30 2022-09-27 南京诺源医疗器械有限公司 基于数据处理的荧光三维成像方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159504A1 (ko) * 2015-04-02 2016-10-06 을지대학교 산학협력단 복강경 수술중 감시림프절 절제술을 위한 삼중 융합 영상장치
CN108185974A (zh) * 2018-02-08 2018-06-22 北京数字精准医疗科技有限公司 一种内窥式荧光超声融合造影导航系统
EP3911918A4 (en) * 2019-01-17 2022-09-21 University Health Network MULTIMODAL SYSTEM FOR VISUALIZATION AND ANALYSIS OF SURGICAL SAMPLES
CN111513660B (zh) * 2020-04-28 2024-05-17 深圳开立生物医疗科技股份有限公司 一种应用于内窥镜的图像处理方法、装置及相关设备
CN113962947B (zh) * 2021-10-11 2023-04-18 南京诺源医疗器械有限公司 适用于荧光断层图像和切缘信息的存储方法及装置
CN114298980A (zh) * 2021-12-09 2022-04-08 杭州海康慧影科技有限公司 一种图像处理方法、装置及设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1627324A (zh) * 2003-12-08 2005-06-15 西门子公司 用于融合图像显示的方法
CN103491850A (zh) * 2011-04-28 2014-01-01 奥林巴斯株式会社 荧光观察装置及其图像显示方法
US20140133721A1 (en) * 2012-03-30 2014-05-15 Bruker Biospin Corporation Comparative image display system and a molecular imaging device containing this system
CN104188628A (zh) * 2014-09-16 2014-12-10 中国科学院自动化研究所 三维光学分子影像导航系统和方法
CN109497955A (zh) * 2018-12-18 2019-03-22 聚品(上海)生物科技有限公司 人体自发荧光照明激发及图像处理系统及方法
CN113614486A (zh) * 2019-01-17 2021-11-05 大学健康网络 用于创伤和组织标本的三维成像、测量和显示的系统、方法和设备
CN111528770A (zh) * 2019-06-20 2020-08-14 深圳迈瑞生物医疗电子股份有限公司 内窥镜摄像系统、图像处理方法及可读存储介质
CN114569070A (zh) * 2022-01-29 2022-06-03 上海交通大学 指环式一体化荧光造影手术成像引导系统及应用
CN114882093A (zh) * 2022-07-12 2022-08-09 广东欧谱曼迪科技有限公司 术中三维点云生成方法、装置和术中局部结构导航方法
CN115115755A (zh) * 2022-08-30 2022-09-27 南京诺源医疗器械有限公司 基于数据处理的荧光三维成像方法及装置

Also Published As

Publication number Publication date
CN115115755A (zh) 2022-09-27
CN115115755B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US11701064B2 (en) Method and system for rule based display of sets of images
WO2021057538A1 (zh) 基于人工智能的图像处理方法、显微镜、系统和介质
TWI573454B (zh) 電子裝置及其影像合成方法
US5896463A (en) Method and apparatus for automatically locating a region of interest in a radiograph
US7564999B2 (en) Method for identifying markers in radiographic images
WO2024045507A1 (zh) 基于数据处理的荧光三维成像方法及装置
WO2018095346A1 (zh) 一种基于hmds的医学成像系统
EP2380140B1 (en) Generating views of medical images
WO2018163633A1 (ja) 類似症例画像検索プログラム、類似症例画像検索装置及び類似症例画像検索方法
WO2021258579A1 (zh) 图像拼接方法、装置、计算机设备和存储介质
JP2012010275A (ja) 情報処理装置、情報処理方法、及びそのプログラム
US20050141765A1 (en) Toboggan-based shape characterization
KR100849163B1 (ko) 디지털 좌우 유방 영상들을 자동으로 유두의 높이를 맞추어 좌우 대칭으로 배치하는 영상 처리방법
WO2021261323A1 (ja) 情報処理装置、情報処理方法、プログラム及び情報処理システム
JP7312026B2 (ja) 画像処理装置、画像処理方法およびプログラム
WO2020173055A1 (zh) VRDS 4D医学影像多设备Ai联动显示方法及产品
CN111223192B (zh) 一种图像处理方法及其应用方法、装置及设备
WO2019080257A1 (zh) 电子装置、车祸现场全景图像展示方法和存储介质
JP2022121091A (ja) 口腔粘膜疾患診断支援システム,方法およびプログラム
JP2006280713A (ja) 異常陰影候補検出方法及び医用画像システム
JPH09322059A (ja) 画像合成装置及び撮像装置
JP2019144958A (ja) 画像処理装置、画像処理方法およびプログラム
WO2023228659A1 (ja) 画像処理装置及び内視鏡システム
CN118279226A (zh) 三维模型的重建方法和内窥镜系统
AU2022208508A1 (en) Systems and methods for extracting headshots from images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858550

Country of ref document: EP

Kind code of ref document: A1