WO2024045467A1 - Method for manufacturing semiconductor structure and semiconductor structure - Google Patents

Method for manufacturing semiconductor structure and semiconductor structure Download PDF

Info

Publication number
WO2024045467A1
WO2024045467A1 PCT/CN2023/070311 CN2023070311W WO2024045467A1 WO 2024045467 A1 WO2024045467 A1 WO 2024045467A1 CN 2023070311 W CN2023070311 W CN 2023070311W WO 2024045467 A1 WO2024045467 A1 WO 2024045467A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film layer
layer
semiconductor structure
deposition process
Prior art date
Application number
PCT/CN2023/070311
Other languages
French (fr)
Chinese (zh)
Inventor
吴从军
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2024045467A1 publication Critical patent/WO2024045467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The present disclosure relates to the field of semiconductors, and provides a method for manufacturing a semiconductor structure and a semiconductor structure. The method for manufacturing a semiconductor structure comprises: forming a first thin film layer having an oxyphilic element on the surface of a provided substrate by using a first thin film deposition process; performing surface treatment on the first thin film layer to inhibit oxidation of the first thin film layer; and by using a second thin film deposition process different from the first thin film deposition process, forming a second thin film layer on the surface of the first thin film layer having undergone the surface treatment.

Description

半导体结构的制造方法及半导体结构Manufacturing method of semiconductor structure and semiconductor structure
本公开基于申请号为202211056556.3、申请日为2022年08月31日、申请名称为“半导体结构的制造方法及半导体结构”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。This disclosure is based on a Chinese patent application with application number 202211056556.3, the filing date is August 31, 2022, and the application name is "Manufacturing Method of Semiconductor Structure and Semiconductor Structure", and claims the priority of the Chinese patent application. The Chinese patent The entire contents of this application are hereby incorporated by reference into this disclosure.
技术领域Technical field
本公开实施例涉及但不限于一种半导体结构的制造方法及半导体结构。Embodiments of the present disclosure relate to, but are not limited to, a method of manufacturing a semiconductor structure and a semiconductor structure.
背景技术Background technique
随着半导体制造技术的飞速发展,半导体器件向更高集成度方向发展,半导体器件的性能也越来越优异,具有更快的运算速度、更大的资料存储量以及更多的功能,在半导体器件结构中,往往通过不同的沉积工艺分别形成多种堆叠的材料层,因此,如何在半导体制作工艺中控制材料层之间接触界面性能,以及控制膜层不易变形,从而保证半导体器件的电学性能和良率,是本领域技术人员亟需解决的问题。With the rapid development of semiconductor manufacturing technology, semiconductor devices are developing towards higher integration, and the performance of semiconductor devices is becoming more and more excellent, with faster computing speed, larger data storage capacity and more functions. In the field of semiconductor In the device structure, multiple stacked material layers are often formed through different deposition processes. Therefore, how to control the contact interface properties between material layers in the semiconductor manufacturing process and control the film layer from being easily deformed, thereby ensuring the electrical performance of the semiconductor device. and yield rate are issues that those skilled in the art need to solve urgently.
发明内容Contents of the invention
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。The following is an overview of the subject matter described in detail in this disclosure. This summary is not intended to limit the scope of the claims.
本公开实施例提供一种半导体结构的制造方法及半导体结构。Embodiments of the present disclosure provide a manufacturing method of a semiconductor structure and a semiconductor structure.
根据本公开的第一方面,本公开实施例提供了一种半导体结构的制造方法,包括:提供基底;采用第一薄膜沉积工艺,在所述基底表面形成第一薄膜层,其中,所述第一薄膜层具有亲氧元素;对所述第一薄膜层进行表面处理,以抑制所述第一薄膜层的氧化;采用不同于所述第一薄膜沉积工艺的第二薄膜沉积工艺,在所述表面处理后的第一薄膜层表面形成第二薄膜层。According to a first aspect of the present disclosure, an embodiment of the present disclosure provides a method for manufacturing a semiconductor structure, including: providing a substrate; using a first thin film deposition process to form a first thin film layer on the surface of the substrate, wherein the first thin film layer is formed on the surface of the substrate. A thin film layer has an oxygen-loving element; surface treatment is performed on the first thin film layer to inhibit oxidation of the first thin film layer; a second thin film deposition process different from the first thin film deposition process is used, in the A second film layer is formed on the surface of the first film layer after surface treatment.
在一些实施例中,在进行第二薄膜沉积工艺之前,在对所述第一薄膜层进行表面处理之后,至少将形成有第一薄膜层的半导体结构置于氮气氛围中。In some embodiments, before performing the second thin film deposition process and after performing surface treatment on the first thin film layer, at least the semiconductor structure on which the first thin film layer is formed is placed in a nitrogen atmosphere.
在一些实施例中,所述亲氧元素包括硅,和/或铝。In some embodiments, the oxygen-loving element includes silicon, and/or aluminum.
在一些实施例中,所述第一薄膜层的材料为TiSiN、TiAlN、TiSiAl、TiAlC、TaSiN、TaAlN、TaAlC中的至少一种。In some embodiments, the material of the first thin film layer is at least one of TiSiN, TiAlN, TiSiAl, TiAlC, TaSiN, TaAlN, and TaAlC.
在一些实施例中,对所述第一薄膜层进行表面处理的步骤包括:回刻蚀去除部分厚度的所述第一薄膜层,降低所述第一薄膜层表面的所述亲氧元素含量,以抑制所述第一薄膜层的氧化。In some embodiments, the step of surface treatment of the first thin film layer includes: etching back to remove part of the thickness of the first thin film layer, and reducing the content of the oxygen-loving elements on the surface of the first thin film layer, to inhibit oxidation of the first thin film layer.
在一些实施例中,所述回刻蚀过程的刻蚀液为NH 4OH、H 2O 2以及H 2O的混合液,其中,NH 4OH、H 2O 2以及H 2O的体积比为1:(1~10):(20~50)。 In some embodiments, the etching liquid in the etching back process is a mixed liquid of NH 4 OH, H 2 O 2 and H 2 O, where the volume ratio of NH 4 OH, H 2 O 2 and H 2 O is It is 1: (1~10): (20~50).
在一些实施例中,对所述第一薄膜层进行表面处理的步骤包括:采用氨气对所述第一薄膜层表面进行氮化处理,以抑制所述第一薄膜层的氧化,其中,所述氮化处理的处理温度为300℃~450℃,氨气的流量为2000sccm~3000sccm。In some embodiments, the step of surface treating the first thin film layer includes: nitriding the surface of the first thin film layer with ammonia gas to inhibit oxidation of the first thin film layer, wherein: The treatment temperature of the nitriding treatment is 300°C to 450°C, and the flow rate of ammonia gas is 2000sccm to 3000sccm.
在一些实施例中,对所述第一薄膜进行表面处理的步骤包括:采用浓度小于等于1%的酸性溶液对所述第一薄膜层表面进行清洗处理,以抑制所述第一薄膜层的氧化。In some embodiments, the step of surface treating the first film includes: cleaning the surface of the first film layer with an acidic solution with a concentration of less than or equal to 1% to inhibit oxidation of the first film layer. .
在一些实施例中,所述第二薄膜层为金属层,所述金属层的沉积温度大于等于500℃。In some embodiments, the second thin film layer is a metal layer, and the deposition temperature of the metal layer is greater than or equal to 500°C.
在一些实施例中,所述第一薄膜沉积工艺为化学气相沉积工艺、物理气相沉积工艺、物理化学气相沉积或原子层沉积工艺中的一种;所述第二薄膜沉积工艺为化学气相沉积工 艺、物理气相沉积工艺、物理化学气相沉积或原子层沉积工艺中的一种。In some embodiments, the first thin film deposition process is one of a chemical vapor deposition process, a physical vapor deposition process, a physical and chemical vapor deposition process, or an atomic layer deposition process; and the second thin film deposition process is a chemical vapor deposition process. , one of the physical vapor deposition process, physical chemical vapor deposition or atomic layer deposition process.
在一些实施例中,所述第二薄膜层具有金属元素;在形成所述第二薄膜层之前,还包括:在所述第一薄膜层表面形成过渡层,所述过渡层含有所述亲氧元素以及所述金属元素。In some embodiments, the second thin film layer contains metal elements; before forming the second thin film layer, the method further includes: forming a transition layer on the surface of the first thin film layer, the transition layer containing the oxygen-loving elements as well as the metallic elements.
根据本公开的第二方面,本公开实施例还提供了一种半导体结构,所述半导体结构由本公开第一方面所述的制造方法制造得到,所述半导体结构包括:基底;第一薄膜层,位于所述基底的表面,所述第一薄膜层具有亲氧元素;第二薄膜层,所述第二薄膜层位于所述第一薄膜层表面。According to the second aspect of the present disclosure, embodiments of the present disclosure also provide a semiconductor structure, which is manufactured by the manufacturing method described in the first aspect of the present disclosure. The semiconductor structure includes: a substrate; a first thin film layer, Located on the surface of the substrate, the first film layer has an oxygen-loving element; and the second film layer is located on the surface of the first film layer.
在一些实施例中,所述第一薄膜层的材料为TiSiN、TiAlN、TiSiAl、TiAlC、TaSiN、TaAlN、TaAlC中的至少一种。In some embodiments, the material of the first thin film layer is at least one of TiSiN, TiAlN, TiSiAl, TiAlC, TaSiN, TaAlN, and TaAlC.
在一些实施例中,所述基底和所述第一薄膜层之间具有多晶硅层,所述第一薄膜层包括TiSiN层,所述第二薄膜层包括金属层,其中,所述多晶硅层、TiSiN层、以及所述金属层共同构成栅极结构的一部分。In some embodiments, there is a polysilicon layer between the substrate and the first thin film layer, the first thin film layer includes a TiSiN layer, and the second thin film layer includes a metal layer, wherein the polysilicon layer, TiSiN layer, and the metal layer together form part of the gate structure.
在一些实施例中,所述基底和所述第一薄膜层之间具有多晶硅层,所述第一薄膜层包括TiAlN层,所述第二薄膜层包括金属层,其中,所述多晶硅层、所述TiAlN层以及所述金属层共同构成栅极结构的一部分。本公开实施例提供的技术方案至少具有以下优点:In some embodiments, there is a polysilicon layer between the substrate and the first thin film layer, the first thin film layer includes a TiAlN layer, and the second thin film layer includes a metal layer, wherein the polysilicon layer, the The TiAlN layer and the metal layer together form a part of the gate structure. The technical solution provided by the embodiments of the present disclosure has at least the following advantages:
本公开实施例提供的半导体结构的制造方法中,采用第一薄膜沉积工艺形成第一薄膜层,第一薄膜层具有亲氧元素,亲氧元素易被氧化形成氧化物;对形成的第一薄膜层进行表面处理,能够去除由于亲氧元素被氧化而形成于第一薄膜层表面的氧化物,降低第一薄膜层表面的氧含量,并抑制第一薄膜层被继续氧化,通过不同于第一薄膜沉积工艺的第二薄膜沉积工艺形成第二薄膜层时,能够有效地改善第一薄膜层和第二薄膜氧化层之间的界面性能,避免出现界面层,以及避免引起第二薄膜层的变形,进而改善堆叠层的性能,保证半导体器件的性能。例如,在本公开实施例提供的半导体结构中,半导体第一薄膜层以及第二薄膜层用作栅极结构的一部分时,栅极结构各层之间的界面性能良好,保证栅极结构的性能,栅极结构侧壁的侧墙能够对栅极结构侧壁提供良好的保护作用。In the manufacturing method of a semiconductor structure provided by embodiments of the present disclosure, a first thin film deposition process is used to form a first thin film layer. The first thin film layer contains oxygen-loving elements, and the oxygen-loving elements are easily oxidized to form oxides; for the formed first thin film Surface treatment of the first film layer can remove oxides formed on the surface of the first film layer due to the oxidation of oxygen-loving elements, reduce the oxygen content on the surface of the first film layer, and inhibit the continued oxidation of the first film layer. When the second thin film deposition process of the thin film deposition process forms the second thin film layer, it can effectively improve the interface performance between the first thin film layer and the second thin film oxide layer, avoid the occurrence of the interface layer, and avoid causing deformation of the second thin film layer. , thereby improving the performance of the stacked layer and ensuring the performance of the semiconductor device. For example, in the semiconductor structure provided by the embodiments of the present disclosure, when the semiconductor first thin film layer and the second thin film layer are used as part of the gate structure, the interface performance between the layers of the gate structure is good, ensuring the performance of the gate structure. , the sidewalls on the side walls of the gate structure can provide good protection for the side walls of the gate structure.
在阅读并理解了附图和详细描述后,可以明白其他方面。Other aspects will be apparent after reading and understanding the drawings and detailed description.
附图说明Description of drawings
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with the description, serve to explain principles of the embodiments of the disclosure. In the drawings, similar reference numbers are used to identify similar elements. The drawings in the following description are of some, but not all, embodiments of the disclosure. For those skilled in the art, other drawings can be obtained based on these drawings without exerting creative efforts.
图1为一种半导体结构的制造方法对应的结构示意图;Figure 1 is a schematic structural diagram corresponding to a manufacturing method of a semiconductor structure;
图2至图7为本公开一示例性实施例提供的一种半导体结构的制造方法各步骤对应的结构示意图;2 to 7 are structural schematic diagrams corresponding to each step of a method for manufacturing a semiconductor structure provided by an exemplary embodiment of the present disclosure;
图8为本公开一示例性实施例提供的一种半导体结构的结构示意图。FIG. 8 is a schematic structural diagram of a semiconductor structure provided by an exemplary embodiment of the present disclosure.
附图标记说明:Explanation of reference symbols:
100、基底;101、多晶硅层;102、氧化层;103、第一薄膜层;104、第二薄膜层;105、过渡层;21、第一薄膜沉积工艺;22、回刻蚀;23、氮化处理;24、清洗处理;25、第二薄膜沉积工艺;200、半导体结构。100. Substrate; 101. Polysilicon layer; 102. Oxide layer; 103. First thin film layer; 104. Second thin film layer; 105. Transition layer; 21. First thin film deposition process; 22. Etch back; 23. Nitrogen Chemical treatment; 24. Cleaning treatment; 25. Second thin film deposition process; 200. Semiconductor structure.
具体实施方式Detailed ways
下面将结合本公开实施例中的附图,对公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。The technical solutions in the disclosed embodiments will be clearly and completely described below with reference to the accompanying drawings in the disclosed embodiments. Obviously, the described embodiments are part of the embodiments of the present disclosure, rather than all of the embodiments. Based on the embodiments in this disclosure, all other embodiments obtained by those skilled in the art without making creative efforts fall within the scope of protection of this disclosure. It should be noted that, as long as there is no conflict, the embodiments and features in the embodiments can be arbitrarily combined with each other.
由背景技术可知,目前通过不同种沉积工艺形成堆叠膜层时,第一薄膜层与第二薄膜层具有界面层,且接触界面性能不理想,第二薄膜层变形的现象。It can be known from the background technology that when stacked film layers are currently formed through different deposition processes, the first film layer and the second film layer have an interface layer, and the contact interface performance is not ideal, and the second film layer is deformed.
图1为一种半导体结构的制造方法对应的结构示意图。参考图1,提供基底10;在基底10上依次形成多晶硅层11、第一薄膜层12以及第二薄膜层13,其中,第一薄膜层12以及第二薄膜层13采用不同的沉积工艺形成,第一薄膜层12具有亲氧元素。形成第一薄膜层12的沉积工艺可以为化学气相沉积(CVD,Chemical Vapor Deposition),形成第二薄膜层13的沉积工艺可以为物理气相沉积工艺(PVD,Physical Vapor Deposition)。Figure 1 is a schematic structural diagram corresponding to a manufacturing method of a semiconductor structure. Referring to Figure 1, a substrate 10 is provided; a polysilicon layer 11, a first thin film layer 12 and a second thin film layer 13 are sequentially formed on the substrate 10, wherein the first thin film layer 12 and the second thin film layer 13 are formed using different deposition processes. The first thin film layer 12 has oxygen-loving elements. The deposition process to form the first thin film layer 12 may be chemical vapor deposition (CVD, Chemical Vapor Deposition), and the deposition process to form the second thin film layer 13 may be a physical vapor deposition process (PVD, Physical Vapor Deposition).
第一薄膜层12具有亲氧元素,且第一薄膜层12与第二薄膜层13采用的沉积工艺不同,从而形成第一薄膜层12与第二薄膜层13的腔室不同,易导致在将形成的第一薄膜层12转移至形成第二薄膜层13的腔室过程中,第一薄膜层12与空气接触而被氧化,从而在第一薄膜层12表面形成氧化物,进而导致第一薄膜层12与第二薄膜层13之间存在界面层,第一薄膜层12与第二薄膜层13之间的接触界面性能不理想,粘附性不足,第二薄膜层13变形。例如,当第一薄膜层12为TiSiN层时,亲氧元素为硅,TiSiN层与空气接触后,TiSiN层表面会形成硅氧化物,会致使TiSiN层与第二薄膜层13接触不紧密,第二薄膜层13变形。在一些实施例中,第二薄膜层13可以为金属层,金属层的沉积温度大于等于500℃,例如,金属层的沉积温度可以为500℃、510℃或者520℃,由于金属层的沉积工艺相对较高,较高的温度会促使第一薄膜层12与金属层接触界面的硅元素被氧化,从而影响第一薄膜层12与金属层的界面性能,致使金属层变形。The first thin film layer 12 has oxygen-loving elements, and the deposition processes used in the first thin film layer 12 and the second thin film layer 13 are different, so the chambers used to form the first thin film layer 12 and the second thin film layer 13 are different, which may easily lead to During the transfer of the formed first thin film layer 12 to the chamber for forming the second thin film layer 13, the first thin film layer 12 is oxidized in contact with the air, thereby forming oxides on the surface of the first thin film layer 12, thereby causing the first thin film layer 13 to form. There is an interface layer between the layer 12 and the second film layer 13. The contact interface performance between the first film layer 12 and the second film layer 13 is not ideal, the adhesion is insufficient, and the second film layer 13 is deformed. For example, when the first thin film layer 12 is a TiSiN layer, the oxygen-loving element is silicon. After the TiSiN layer comes into contact with air, silicon oxide will be formed on the surface of the TiSiN layer, which will cause the TiSiN layer and the second thin film layer 13 to not be in close contact. The second thin film layer 13 is deformed. In some embodiments, the second thin film layer 13 may be a metal layer, and the deposition temperature of the metal layer is greater than or equal to 500°C. For example, the deposition temperature of the metal layer may be 500°C, 510°C, or 520°C. Due to the deposition process of the metal layer A relatively high temperature will cause the silicon element at the contact interface between the first thin film layer 12 and the metal layer to be oxidized, thereby affecting the interface properties between the first thin film layer 12 and the metal layer, causing the metal layer to deform.
本公开实施提供一种半导体结构的制造方法,采用第一薄膜沉积工艺形成第一薄膜层,第一薄膜具有亲氧元素,亲氧元素易被氧化形成氧化物;对形成的第一薄膜层进行表面处理,如此,能够改善第一薄膜层表面的氧化物,并抑制第一薄膜氧化层的氧化;采用区别于第一薄膜沉积工艺的第二薄膜沉积工艺形成第二薄膜层,即第一薄膜层与第二薄膜层不在一个制程中进行,以便于控制第一薄膜层的生长情况,并在形成第二薄膜层之前对第一薄膜层进行表面处理。以改善膜层之间的界面性能,降低第一薄膜层的氧含量,并抑制第一薄膜氧化层的氧化,第二薄膜层不易变形,以改善形成的半导体结构的电学性能和良率。The present disclosure provides a method for manufacturing a semiconductor structure. A first thin film deposition process is used to form a first thin film layer. The first thin film contains oxygen-loving elements, and the oxygen-loving elements are easily oxidized to form oxides; the formed first thin film layer is Surface treatment, in this way, can improve the oxide on the surface of the first thin film layer and inhibit the oxidation of the first thin film oxide layer; use a second thin film deposition process that is different from the first thin film deposition process to form the second thin film layer, that is, the first thin film The first thin film layer and the second thin film layer are not carried out in the same process in order to control the growth of the first thin film layer, and perform surface treatment on the first thin film layer before forming the second thin film layer. To improve the interface performance between the film layers, reduce the oxygen content of the first film layer, and inhibit the oxidation of the first film oxide layer, the second film layer is not easily deformed, so as to improve the electrical performance and yield of the formed semiconductor structure.
图2至图7为本公开一实施例提供的一种半导体结构的制造方法各步骤对应的结构示意图。2 to 7 are structural schematic diagrams corresponding to each step of a method for manufacturing a semiconductor structure provided by an embodiment of the present disclosure.
参考图2,提供基底100。Referring to Figure 2, a substrate 100 is provided.
基底100可以为硅基底、锗基底、硅锗基底、碳化硅基底、绝缘体上的硅(SOI,Silicon-On-Insulator)或者绝缘体上的锗(GOI,Germanium-On-Insulator)等,基底100可以为包括其他元素半导体或化合物半导体的基底100,例如砷化镓(GaAs)、磷化铟(InP)或碳化硅(SiC)等。在一些实施例中,基底100的材料可以为硅,基底100上可以形成有多晶硅层101,多晶硅层101的材料可以为多晶硅。在一些实施例中,多晶硅层101的材料可以为掺杂有N型离子的多晶硅,N型离子可以为P离子、As离子或者Sb离子。在另一些实施例中,多晶硅层101的材料也可以为掺杂有P型离子的多晶硅,P型离子可以为B离子、Ga离子或者In离子。The substrate 100 may be a silicon substrate, a germanium substrate, a silicon germanium substrate, a silicon carbide substrate, a silicon-on-insulator (SOI, Silicon-On-Insulator) or a germanium-on-insulator (GOI, Germanium-On-Insulator), etc. The substrate 100 may be It is a substrate 100 including other element semiconductors or compound semiconductors, such as gallium arsenide (GaAs), indium phosphide (InP) or silicon carbide (SiC). In some embodiments, the material of the substrate 100 may be silicon, the polysilicon layer 101 may be formed on the substrate 100, and the material of the polysilicon layer 101 may be polysilicon. In some embodiments, the material of the polysilicon layer 101 may be polysilicon doped with N-type ions, and the N-type ions may be P ions, As ions or Sb ions. In other embodiments, the material of the polysilicon layer 101 may also be polysilicon doped with P-type ions, and the P-type ions may be B ions, Ga ions or In ions.
在一些实施例中,基底100与多晶硅层101之间还可以形成有氧化层102。其中,氧化层102的材料可以为二氧化硅(SiO 2),氧化层102可以通过化学气相沉积、物理气相沉积、涂覆(plating)等工艺形成,氧化层102可以覆盖整个基底100的表面。在另一些实施例中,氧化层102的材料也可以为氮氧化硅。此外,氧化层102表面还可以形成高k介质层,高k介质层的材料为相对介电常数大于氧化硅的相对介电常数的材料,在形成栅极结构时,氧化层102可以作为栅极氧化层。 In some embodiments, an oxide layer 102 may also be formed between the substrate 100 and the polysilicon layer 101 . The material of the oxide layer 102 may be silicon dioxide (SiO 2 ). The oxide layer 102 may be formed through processes such as chemical vapor deposition, physical vapor deposition, and plating. The oxide layer 102 may cover the entire surface of the substrate 100 . In other embodiments, the material of the oxide layer 102 may also be silicon oxynitride. In addition, a high-k dielectric layer can be formed on the surface of the oxide layer 102. The material of the high-k dielectric layer is a material with a relative dielectric constant greater than that of silicon oxide. When forming a gate structure, the oxide layer 102 can serve as a gate electrode. oxide layer.
参考图3,采用第一薄膜沉积工艺21,在基底100表面形成第一薄膜层103,第一薄膜层103具有亲氧元素。Referring to FIG. 3 , a first thin film deposition process 21 is used to form a first thin film layer 103 on the surface of the substrate 100 , and the first thin film layer 103 has an oxygen-loving element.
在一些实施例中,第一薄膜沉积工艺21可以为化学气相沉积工艺、物理气相沉积工艺、物理化学气相沉积(HPCVD,Hybrid Physical Chemical Vapor Deposition)或原子层沉积工艺中的一种。In some embodiments, the first thin film deposition process 21 may be one of a chemical vapor deposition process, a physical vapor deposition process, a physical chemical vapor deposition (HPCVD, Hybrid Physical Chemical Vapor Deposition) or an atomic layer deposition process.
在一些实施例中,第一薄膜沉积工艺21例如为化学气相沉积工艺,采用化学气相沉积形成第一薄膜层103,能够使生成的第一薄膜层103较为致密、厚度均匀且膜层的质量比较稳定。In some embodiments, the first thin film deposition process 21 is, for example, a chemical vapor deposition process. Chemical vapor deposition is used to form the first thin film layer 103 , which can make the generated first thin film layer 103 relatively dense, uniform in thickness, and of relatively high quality. Stablize.
可以理解的是,在一些实施例中,亲氧元素可以包括硅,和/或铝,第一薄膜层103易与空气中的氧气以及水蒸气反应,形成含硅的氧化物和/或铝的氧化物,该氧化物会使得后续形成的第二薄膜层与第一薄膜层103之间存在界面层,影响第二薄膜层与第一薄膜层103之间的界面性能。在一些实施例中,第一薄膜层103的材料例如可以包括TiSiN、TiAlN、TiSiAl、TiAlC、TaSiN、TaAlN、TaAlC中的至少一种。It can be understood that in some embodiments, the oxygen-loving element may include silicon and/or aluminum, and the first thin film layer 103 can easily react with oxygen and water vapor in the air to form silicon-containing oxides and/or aluminum. The oxide will cause an interface layer to exist between the subsequently formed second thin film layer and the first thin film layer 103 , affecting the interface properties between the second thin film layer and the first thin film layer 103 . In some embodiments, the material of the first thin film layer 103 may include, for example, at least one of TiSiN, TiAlN, TiSiAl, TiAlC, TaSiN, TaAlN, and TaAlC.
在一些实施例中,第一薄膜层103为TiSiN层,TiSiN层作为扩散阻挡层,第一薄膜层103能够阻挡多晶硅层101内的掺杂离子扩散至后续形成的金属层内,另一方面,还能够阻挡后续形成的第二薄膜层内的金属离子扩散至多晶硅层101内。采用化学气相沉积工艺21形成的TiSiN层还具有以下优势:TiSiN层的硬度相对较大,不容易发生变形。可以理解的是,在后续通过另外的制程工艺在TiSiN层的表面形成其他薄膜层时,TiSiN层具有亲氧元素硅,从而TiSiN层在由一个制程工艺转向另一个制程工艺时,TiSiN层表面在接触空气中的氧气以及水蒸气时,TiSiN层被氧化以使TiSiN层表面易形成含硅的氧化物等其他化合物,这些化合物会影响TiSiN层与后续形成的第二薄膜层之间界面性能,因此后续会对TiSiN层表面进行处理。In some embodiments, the first thin film layer 103 is a TiSiN layer, and the TiSiN layer serves as a diffusion barrier layer. The first thin film layer 103 can block the diffusion of doped ions in the polysilicon layer 101 to the subsequently formed metal layer. On the other hand, It can also prevent metal ions in the subsequently formed second thin film layer from diffusing into the polysilicon layer 101 . The TiSiN layer formed using the chemical vapor deposition process 21 also has the following advantages: the TiSiN layer is relatively hard and is not prone to deformation. It can be understood that when other thin film layers are subsequently formed on the surface of the TiSiN layer through additional processes, the TiSiN layer has oxygen-loving element silicon. Therefore, when the TiSiN layer switches from one process process to another, the surface of the TiSiN layer is When exposed to oxygen and water vapor in the air, the TiSiN layer is oxidized so that silicon-containing oxides and other compounds are easily formed on the surface of the TiSiN layer. These compounds will affect the interface properties between the TiSiN layer and the subsequently formed second film layer. Therefore, The surface of the TiSiN layer will be processed later.
在一些实施例中,形成TiSiN层的工艺步骤可以包括:进行至少2个循环步骤,以形成TiSiN层;其中,每个循环步骤包括:依次形成层叠的TiN层(未图示)以及SiN层(未图示),在每一循环步骤中,TiN层与SiN层发生化学反应,以形成TiSiN。In some embodiments, the process steps of forming the TiSiN layer may include: performing at least 2 cycle steps to form the TiSiN layer; wherein each cycle step includes: sequentially forming a stacked TiN layer (not shown) and a SiN layer ( (not shown), in each cycle step, the TiN layer chemically reacts with the SiN layer to form TiSiN.
在完成一次循环步骤形成层叠的TiN层以及SiN层之后,重复此循环步骤1~4次,以使多层层叠形成的TiN层和SiN层充分反应以形成TiSiN层。After one cycle step is completed to form the stacked TiN layer and the SiN layer, the cycle step is repeated 1 to 4 times, so that the multi-layer stacked TiN layer and the SiN layer can fully react to form the TiSiN layer.
后续步骤包括:对第一薄膜层103进行表面处理,以抑制第一薄膜层103的氧化。对第一薄膜层103进行表面处理的方法可以包括:回刻蚀、采用氨气进行氮化处理或者采用浓度小于等于1%的酸性溶液进行清洗处理。以下将对第一薄膜层103的处理方式进行详细描述。Subsequent steps include: performing surface treatment on the first thin film layer 103 to inhibit oxidation of the first thin film layer 103 . The surface treatment method for the first thin film layer 103 may include: etching back, nitriding with ammonia gas, or cleaning with an acidic solution with a concentration of less than or equal to 1%. The processing method of the first thin film layer 103 will be described in detail below.
参考图4,在一些实施例中,对第一薄膜层103进行表面处理的步骤可以包括:回刻蚀22去除部分厚度的第一薄膜层103,降低第一薄膜层103表面的亲氧元素含量,以抑制第一薄膜层103的氧化。Referring to FIG. 4 , in some embodiments, the step of surface treatment of the first thin film layer 103 may include: etching back 22 to remove part of the thickness of the first thin film layer 103 and reducing the content of oxygen-loving elements on the surface of the first thin film layer 103 . , to inhibit oxidation of the first thin film layer 103 .
回刻蚀22过程的刻蚀液为NH 4OH、H 2O 2以及H 2O的混合液,其中,NH 4OH、H 2O 2 以及H 2O的体积比为1:(1~10):(20~50),例如,NH 4OH、H 2O 2以及H 2O的体积比可以为1:2:20、1:4:40或者1:5:50。在上述范围内的刻蚀液时,通过回刻蚀一定厚度的第一薄膜层103,腐蚀第一薄膜层103表面的氧化物,并与第一薄膜层103表面的亲氧元素反应,使附着在第一薄膜层103表面的氧化物颗粒落入刻蚀液中,从而能够降低第一薄膜层103表面的亲氧元素的含量,进而达到抑制第一薄膜层103氧化的目的。 The etching liquid in the etching back process 22 is a mixture of NH 4 OH, H 2 O 2 and H 2 O. The volume ratio of NH 4 OH, H 2 O 2 and H 2 O is 1: (1~10 ): (20~50), for example, the volume ratio of NH 4 OH, H 2 O 2 and H 2 O can be 1:2:20, 1:4:40 or 1:5:50. When the etching solution is within the above range, by etching back a certain thickness of the first thin film layer 103, the oxide on the surface of the first thin film layer 103 is corroded and reacts with the oxygen-loving elements on the surface of the first thin film layer 103 to cause adhesion. The oxide particles on the surface of the first thin film layer 103 fall into the etching solution, thereby reducing the content of oxygen-loving elements on the surface of the first thin film layer 103 , thereby achieving the purpose of inhibiting oxidation of the first thin film layer 103 .
参考图5,在另一些实施例中,对第一薄膜层103进行表面处理的步骤还可以包括:采用氨气对第一薄膜层103表面进行氮化处理23,以抑制第一薄膜层103的氧化。Referring to FIG. 5 , in other embodiments, the step of surface treatment of the first thin film layer 103 may also include: using ammonia gas to perform nitriding treatment 23 on the surface of the first thin film layer 103 to inhibit the formation of the first thin film layer 103 . Oxidation.
在一些实施例中,氮化处理23的处理温度可以为300℃~450℃,处理温度可以为320℃、350℃、400℃或者450℃;氨气的流量为2000sccm~3000sccm,例如,氨气的流量可以为2000sccm、2500sccm或者3000sccm。氮化处理23的工艺参数还可以包括:电源功率为450W~550W,例如,电源功率可以为450W、500W或者550W;处理时间为25s~35s,例如,处理时间可以为25s、30s或者35s。In some embodiments, the treatment temperature of the nitriding treatment 23 may be 300°C to 450°C, and the treatment temperature may be 320°C, 350°C, 400°C or 450°C; the flow rate of ammonia gas is 2000 sccm to 3000 sccm, for example, ammonia gas The flow rate can be 2000sccm, 2500sccm or 3000sccm. The process parameters of the nitriding treatment 23 may also include: the power supply is 450W to 550W, for example, the power supply can be 450W, 500W or 550W; the processing time is 25s to 35s, for example, the processing time can be 25s, 30s or 35s.
氨气(NH 3)为具有还原性的气体,可以氮化第一薄膜层103表面的亲氧元素,在采用上述范围内的氨气对第一薄膜层103进行处理时,其可以与亲氧元素反应后转化为气态的氮化物以去除,另一方面,氨气能够抑制氧原子基团继续氧化亲氧元素,如此,能够充分抑制第一薄膜层103的氧化。 Ammonia (NH 3 ) is a reducing gas that can nitride the oxygen-loving elements on the surface of the first thin film layer 103. When the ammonia gas within the above range is used to process the first thin film layer 103, it can interact with the oxygen-loving elements. After the reaction, the elements are converted into gaseous nitrides for removal. On the other hand, ammonia gas can inhibit the oxygen atom groups from continuing to oxidize the oxygen-loving elements. In this way, the oxidation of the first thin film layer 103 can be fully inhibited.
在一些实施例中,第一薄膜层103为TiSiN层,采用氨气对TiSiN层进行氮化处理23还具有如下优点:氨气可以携带前述形成TiSiN层的步骤中未能去除的氯离子离开腔室,并抑制氯离子穿过TiSiN层与多晶硅层101反应形成氯化硅。In some embodiments, the first thin film layer 103 is a TiSiN layer. Using ammonia gas to nitride the TiSiN layer 23 also has the following advantages: the ammonia gas can carry chloride ions out of the cavity that were not removed in the aforementioned step of forming the TiSiN layer. chamber, and inhibit chloride ions from passing through the TiSiN layer and reacting with the polysilicon layer 101 to form silicon chloride.
参考图6,对第一薄膜层103进行表面处理的步骤还可以包括:采用浓度小于等于1%的酸性溶液对第一薄膜层103表面进行清洗处理24,以抑制第一薄膜层103的氧化。Referring to FIG. 6 , the step of surface treatment of the first thin film layer 103 may also include: cleaning 24 the surface of the first thin film layer 103 with an acidic solution having a concentration of less than or equal to 1% to inhibit oxidation of the first thin film layer 103 .
在一些实施例中,当第一薄膜层103为TiSiN层时,亲氧元素为硅元素,第一薄膜层103被氧化后生成的氧化物为SiO 2;浓度小于等于1%的酸性溶液可以为DHF清洗液,DHF清洗液的材料包括:HF和水,DHF清洗液对TiSiN层以及硅氧化物的清洗选择比可以为200:1,HF通过与氧化物反应溶解附着在TiSiN层表面的氧化物,并抑制氧化物的再生成。具体反应式如下: In some embodiments, when the first thin film layer 103 is a TiSiN layer, the oxygen-loving element is silicon, and the oxide generated after the first thin film layer 103 is oxidized is SiO 2 ; the acidic solution with a concentration of less than or equal to 1% can be DHF cleaning solution. The materials of the DHF cleaning solution include: HF and water. The cleaning selectivity ratio of the DHF cleaning solution for the TiSiN layer and silicon oxide can be 200:1. HF dissolves the oxides attached to the surface of the TiSiN layer by reacting with the oxides. , and inhibit the regeneration of oxides. The specific reaction formula is as follows:
SiO 2+4HF=SiF 4↑+2H 2O                      (1) SiO 2 +4HF=SiF 4 ↑+2H 2 O (1)
可以理解的是,通过本公开实施例提供的制备方法,在对第一薄膜层103进行表面处理之后,第一薄膜层103表面的含氧量小于0.01%,相应的,第一薄膜层103为TiSiN层、TiAlN层、TiSiAl层、TiAlC层、TaSiN层、TaAlN层、TaAlC层,这些层表面的含氧量小于0.01%,而不会形成多余的界面层。能够在后续步骤形成第二薄膜层之后,第二薄膜层与第一薄膜层103间的接触界面性能理想,第二薄膜层与第一薄膜层103接触紧密,第二薄膜层不易变形。It can be understood that through the preparation method provided by the embodiment of the present disclosure, after surface treatment of the first thin film layer 103, the oxygen content on the surface of the first thin film layer 103 is less than 0.01%. Correspondingly, the first thin film layer 103 is TiSiN layer, TiAlN layer, TiSiAl layer, TiAlC layer, TaSiN layer, TaAlN layer, TaAlC layer, the oxygen content on the surface of these layers is less than 0.01%, without forming excess interface layers. After the second film layer is formed in subsequent steps, the contact interface performance between the second film layer and the first film layer 103 is ideal, the second film layer and the first film layer 103 are in close contact, and the second film layer is not easily deformed.
可以理解的是,对第一薄膜层103进行表面处理的方法,可以包括上述的回刻蚀22、进行氮化处理23或者清洗处理24中的任一者或者多种组合。It can be understood that the surface treatment method for the first thin film layer 103 may include any one or a combination of the above-mentioned etching back 22, nitriding treatment 23 or cleaning treatment 24.
在一些实施例中,如图7所示,后续步骤包括采用不同于第一薄膜沉积工艺21的第二薄膜沉积工艺25,在第一薄膜层103表面形成第二薄膜层104,其中,第一薄膜层103与第二薄膜层104的形成工艺不同,从而形成第一薄膜层103与第二薄膜层104的腔室也不同,为抑制转移形成有第一薄膜层103的半导体结构至形成第二薄膜层104的腔室过程中,第一薄膜层103接触空气从而表面形成氧化物,导致第一薄膜氧化层103与第二薄膜层104之间形成界面层,在一些实施例中,在进行第二薄膜沉积工艺25之前,在对第一 薄膜层103进行表面处理之后,至少可以将形成有第一薄膜层103的半导体结构置于氮气氛围中,以抑制第一薄膜层103被氧化生成氧化物,从而影响第一薄膜层103与后续生成的第二薄膜层104之间接触界面的质量。In some embodiments, as shown in FIG. 7 , subsequent steps include using a second thin film deposition process 25 different from the first thin film deposition process 21 to form a second thin film layer 104 on the surface of the first thin film layer 103 , where the first The formation processes of the thin film layer 103 and the second thin film layer 104 are different, so the chambers used to form the first thin film layer 103 and the second thin film layer 104 are also different. In order to inhibit the transfer of the semiconductor structure formed with the first thin film layer 103 to the formation of the second During the chamber process of the thin film layer 104, the first thin film layer 103 contacts air so that an oxide is formed on the surface, resulting in the formation of an interface layer between the first thin film oxide layer 103 and the second thin film layer 104. In some embodiments, after performing the Before the second thin film deposition process 25, after surface treatment of the first thin film layer 103, at least the semiconductor structure on which the first thin film layer 103 is formed can be placed in a nitrogen atmosphere to prevent the first thin film layer 103 from being oxidized to generate oxides. , thereby affecting the quality of the contact interface between the first thin film layer 103 and the subsequently generated second thin film layer 104 .
参考图7,采用不同于第一薄膜沉积工艺21的第二薄膜沉积工艺25,在表面处理后的第一薄膜层103表面形成第二薄膜层104。Referring to FIG. 7 , a second thin film deposition process 25 different from the first thin film deposition process 21 is used to form a second thin film layer 104 on the surface of the first thin film layer 103 after surface treatment.
采用不同于第一薄膜沉积工艺21的第二薄膜沉积工艺25,在一些实施例中,第二薄膜沉积工艺25可以为化学气相沉积工艺、物理气相沉积工艺、物理化学气相沉积或原子层沉积工艺中的一种。在一些实施例中,第二薄膜层104为金属层,金属层的沉积温度大于等于500℃,例如,金属层的沉积温度可以为500℃、510℃或者520℃。采用较高的金属层的沉积工艺相对较高,较高的温度会促使第一薄膜层103与金属层接触界面的硅元素被氧化,从而影响第一薄膜层103与金属层的界面性能,致使金属层变形,通过本公开实施例提供的方法,可以适应采用较高的温度沉积金属层,并有效地抑制第一薄膜层103和第二薄膜层104界面的氧化,改善二者之间的界面性能。A second thin film deposition process 25 different from the first thin film deposition process 21 is adopted. In some embodiments, the second thin film deposition process 25 may be a chemical vapor deposition process, a physical vapor deposition process, a physical chemical vapor deposition or an atomic layer deposition process. one of them. In some embodiments, the second thin film layer 104 is a metal layer, and the deposition temperature of the metal layer is greater than or equal to 500°C. For example, the deposition temperature of the metal layer may be 500°C, 510°C, or 520°C. The deposition process of using a higher metal layer is relatively high. The higher temperature will cause the silicon element at the contact interface between the first thin film layer 103 and the metal layer to be oxidized, thereby affecting the interface performance between the first thin film layer 103 and the metal layer, resulting in Metal layer deformation, through the method provided by the embodiment of the present disclosure, can adapt to the use of higher temperatures to deposit the metal layer, and effectively suppress the oxidation of the interface between the first thin film layer 103 and the second thin film layer 104, improving the interface between the two. performance.
第二薄膜层104的材料可以包括铜(Cu)、钨(W)、铝(Al)、银(Ag)、金(Au)、铂(Pt)、铁(Fe)、钴(Co)、镍(Ni)、钼(Mo)、钛(Ti)、钒(V)、铬(Cr)、氮化钨(WN)、氮碳化钨(WCN)、钌(Ru)、氮化钛(TiN)中的至少一种。The material of the second thin film layer 104 may include copper (Cu), tungsten (W), aluminum (Al), silver (Ag), gold (Au), platinum (Pt), iron (Fe), cobalt (Co), nickel (Ni), molybdenum (Mo), titanium (Ti), vanadium (V), chromium (Cr), tungsten nitride (WN), tungsten carbide nitride (WCN), ruthenium (Ru), titanium nitride (TiN) of at least one.
可以理解的是,第二薄膜层104具有金属元素,在形成第二薄膜层104之前,还可以包括:在第一薄膜层103表面形成过渡层105,过渡层105含有亲氧元素以及金属元素。在一些实施例中,当第一薄膜层为TiSiN层,第二薄膜层104为钨层时,过渡层105含有硅元素和钨元素。由于含亲氧元素以及金属元素的存在,过渡层105连接第一薄膜层103以及第二薄膜层104时,过渡层105具有更好的界面改善作用,从而形成的第二薄膜层104更不易变形。It can be understood that the second thin film layer 104 contains metal elements. Before forming the second thin film layer 104, it may also include forming a transition layer 105 on the surface of the first thin film layer 103. The transition layer 105 contains oxygen-loving elements and metal elements. In some embodiments, when the first thin film layer is a TiSiN layer and the second thin film layer 104 is a tungsten layer, the transition layer 105 contains silicon element and tungsten element. Due to the presence of oxygen-loving elements and metal elements, when the transition layer 105 connects the first thin film layer 103 and the second thin film layer 104, the transition layer 105 has a better interface improvement effect, so that the second thin film layer 104 formed is less likely to deform. .
本公开实施例提供的半导体结构的制造方法,采用第一薄膜沉积工艺21形成第一薄膜层103,并在形成第二薄膜层104之前,采用回刻蚀22、氮化处理23或者清洗处理24的方式处理第一薄膜层103表面,以降低第一薄膜层103表面的氧含量,并抑制第一薄膜层103的氧化,消除界面层,之后通过第二薄膜沉积工艺25形成第二薄膜层104,第一薄膜层103与第二薄膜层104之间具有较好的接触界面,第二薄膜层104更不易变形,从而提高半导体结构的电学性能和良率。The manufacturing method of a semiconductor structure provided by an embodiment of the present disclosure uses a first thin film deposition process 21 to form the first thin film layer 103, and before forming the second thin film layer 104, an etching back 22, a nitriding process 23 or a cleaning process 24 is used. The surface of the first thin film layer 103 is treated in a manner to reduce the oxygen content on the surface of the first thin film layer 103, inhibit the oxidation of the first thin film layer 103, and eliminate the interface layer, and then form the second thin film layer 104 through the second thin film deposition process 25. , there is a better contact interface between the first thin film layer 103 and the second thin film layer 104, and the second thin film layer 104 is less likely to deform, thereby improving the electrical performance and yield of the semiconductor structure.
本公开一示例性实施例还提供了一种半导体结构,该半导体结构可由前述实施例提供的半导体结构的制造方法形成。以下将结合附图对本公开另一实施例提供的半导体结构进行详细说明,与前一实施例相同或者相应的部分,可参考前述实施例的相应说明,以下将不做详细赘述。图8为本公开另一实施例提供的一种半导体结构对应的结构示意图。An exemplary embodiment of the present disclosure also provides a semiconductor structure, which can be formed by the manufacturing method of the semiconductor structure provided in the previous embodiment. The semiconductor structure provided by another embodiment of the present disclosure will be described in detail below with reference to the accompanying drawings. For parts that are the same as or corresponding to the previous embodiment, reference can be made to the corresponding description of the previous embodiment and will not be described in detail below. FIG. 8 is a schematic structural diagram corresponding to a semiconductor structure provided by another embodiment of the present disclosure.
参考图8,半导体结构200包括:基底100、第一薄膜层103和第二薄膜层104,其中,第一薄膜层103位于基底100的表面,第一薄膜层103具有亲氧元素。第二薄膜层104位于第一薄膜层103表面。第一薄膜层103的氧含量小于0.01%,第一薄膜层103的厚度为2~50nm,例如为5nm、10nm、15nm、20nm。其中,第一薄膜层103氧化物相对较少,第一薄膜层103与第二薄膜层104之间接触界面理想。Referring to FIG. 8 , the semiconductor structure 200 includes: a substrate 100 , a first thin film layer 103 and a second thin film layer 104 . The first thin film layer 103 is located on the surface of the substrate 100 , and the first thin film layer 103 has an oxygen-loving element. The second thin film layer 104 is located on the surface of the first thin film layer 103 . The oxygen content of the first thin film layer 103 is less than 0.01%, and the thickness of the first thin film layer 103 is 2 to 50 nm, such as 5 nm, 10 nm, 15 nm, or 20 nm. The first thin film layer 103 has relatively few oxides, and the contact interface between the first thin film layer 103 and the second thin film layer 104 is ideal.
在一些实施例中,基底100上设置有多晶硅层101,多晶硅层101位于基底100与第一薄膜层103之间。In some embodiments, a polysilicon layer 101 is provided on the substrate 100 , and the polysilicon layer 101 is located between the substrate 100 and the first thin film layer 103 .
在一些实施例中,基底100与多晶硅层101之间还可以设置有氧化层102。In some embodiments, an oxide layer 102 may also be disposed between the substrate 100 and the polysilicon layer 101 .
第一薄膜层103的材料可以为TiSiN、TiAlN、TiSiAl、TiAlC、TaSiN、TaAlN、TaAlC 中的至少一种。The material of the first thin film layer 103 may be at least one of TiSiN, TiAlN, TiSiAl, TiAlC, TaSiN, TaAlN, and TaAlC.
在一些实施例中,第一薄膜层103包括TiSiN层,第二薄膜层104包括金属层,多晶硅层101、TiSiN层、以及金属层共同构成栅极结构的一部分。TiSiN层具有阻止多晶硅层101中离子与金属层中金属离子相互扩散的作用,采用前述实施例提供的方法形成的TiSiN层的表面与金属层的表面具有较好的界面性能,金属层不易变形,降低栅极与栅极接触插塞之间的接触不良的可能,提高形成外围栅极的电学性能和良率。In some embodiments, the first thin film layer 103 includes a TiSiN layer, the second thin film layer 104 includes a metal layer, and the polysilicon layer 101, the TiSiN layer, and the metal layer together form a part of the gate structure. The TiSiN layer has the function of preventing the mutual diffusion of ions in the polysilicon layer 101 and metal ions in the metal layer. The surface of the TiSiN layer formed by the method provided in the previous embodiment has good interface properties with the surface of the metal layer, and the metal layer is not easily deformed. The possibility of poor contact between the gate and the gate contact plug is reduced, and the electrical performance and yield of forming the peripheral gate are improved.
在一些实施例中,第一薄膜层103可以为TiAlN层,第二薄膜层104可以为金属层,多晶硅层101、TiAlN层和金属层共同构成栅极结构的一部分,由于TiNAl层具有铝元素,调节TiAlN层中铝元素的含量能够调节栅极结构的功函数。In some embodiments, the first thin film layer 103 may be a TiAlN layer, and the second thin film layer 104 may be a metal layer. The polysilicon layer 101, the TiAlN layer and the metal layer together form a part of the gate structure. Since the TiNAl layer contains aluminum elements, Adjusting the aluminum element content in the TiAlN layer can adjust the work function of the gate structure.
在一些实施例中,第一薄膜层103的材料还可以为TiSiAl、TiAlC、TiAlN、TaAlN、TaAlC中的至少一种,第二薄膜层104可以为金属层,相应的,该第一薄膜层103与金属层共同构成栅极结构的一部分。该第一薄膜层103具有铝元素,从而通过调节该第一薄膜层103中铝元素的含量能够调节栅极结构的功函数。In some embodiments, the material of the first thin film layer 103 can also be at least one of TiSiAl, TiAlC, TiAlN, TaAlN, and TaAlC, and the second thin film layer 104 can be a metal layer. Correspondingly, the first thin film layer 103 Together with the metal layer, it forms part of the gate structure. The first thin film layer 103 contains an aluminum element, so that the work function of the gate structure can be adjusted by adjusting the content of the aluminum element in the first thin film layer 103 .
在另一些实施例中,多晶硅层101、第一薄膜层103以及第二薄膜层104作为栅极,第二薄膜层104表面还具有保护层(未图示),以在采用刻蚀工艺处理半导体结构200以形成栅极结构的步骤中,保护层能够保护半导体结构200中不期望被刻蚀的部分。In other embodiments, the polysilicon layer 101, the first thin film layer 103 and the second thin film layer 104 serve as gate electrodes, and the second thin film layer 104 also has a protective layer (not shown) on the surface to process the semiconductor using an etching process. In the step of forming the gate structure 200 , the protective layer can protect portions of the semiconductor structure 200 that are not expected to be etched.
在一些实施例中,第一薄膜层103与第二薄膜层104之间还可以设置有过渡层105,过渡层105含有亲氧元素以及金属元素,亲氧元素的设置辅助过渡层105与第一薄膜层103的结合,金属元素的设置辅助过渡层105与第二薄膜层104的结合,使得过渡层105与第一薄膜层103以及第二薄膜层104的接触界面相对较好。In some embodiments, a transition layer 105 may be provided between the first thin film layer 103 and the second thin film layer 104. The transition layer 105 contains oxygen-loving elements and metal elements. The arrangement of the oxygen-loving elements assists the transition layer 105 to connect with the first thin film layer 104. The combination of the thin film layer 103 and the arrangement of metal elements assist the combination of the transition layer 105 and the second thin film layer 104, so that the contact interface between the transition layer 105 and the first thin film layer 103 and the second thin film layer 104 is relatively good.
在另一些实施例中,多晶硅层101可以包括N型掺杂区、P型掺杂区以及本征区,本征区位于N型掺杂区以及P型掺杂区之间,N型掺杂区可以掺杂有P离子,P型掺杂区可以掺杂有B离子,多晶硅层101的材料可以为多晶硅。由于半导体结构200尺寸微缩,氧化层102的厚度也较薄,从而氧化层102靠近多晶硅层101一侧界面附近处电子易被吸引至多晶硅层101一侧,导致氧化层102与多晶硅层101之间界面处形成耗尽层(多晶硅耗尽效应),通过在在N型掺杂区与P型掺杂区分别掺杂有P离子、B离子可以抑制耗尽层的形成;当第一薄膜层103为TiSiN层时,TiSiN层可以阻止P型掺杂区的B离子通过TiSiN层扩散至N型掺杂区,以及阻止N型掺杂区的P离子通过TiSiN层扩散至P型掺杂区。In other embodiments, the polysilicon layer 101 may include an N-type doped region, a P-type doped region, and an intrinsic region. The intrinsic region is located between the N-type doped region and the P-type doped region. The N-type doped region The region may be doped with P ions, the P-type doped region may be doped with B ions, and the material of the polysilicon layer 101 may be polysilicon. Due to the shrinkage of the semiconductor structure 200, the thickness of the oxide layer 102 is also thinner. Therefore, electrons near the interface on the side of the oxide layer 102 close to the polysilicon layer 101 are easily attracted to the side of the polysilicon layer 101, resulting in a gap between the oxide layer 102 and the polysilicon layer 101. A depletion layer (polysilicon depletion effect) is formed at the interface, and the formation of the depletion layer can be suppressed by doping the N-type doped region and the P-type doped region with P ions and B ions respectively; when the first thin film layer 103 When it is a TiSiN layer, the TiSiN layer can prevent B ions in the P-type doped region from diffusing to the N-type doped region through the TiSiN layer, and prevent P ions in the N-type doped region from diffusing through the TiSiN layer to the P-type doped region.
本公开实施例提供的半导体结构200,包括:基底100、位于基底100表面的第一薄膜层103以及位于第一薄膜层103表面的第二薄膜层104,其中,基底100与第一薄膜层103之间还形成有多晶硅层101,第一薄膜层103能够阻止多晶硅层101内的掺杂离子扩散至第二薄膜层104内,以及阻止第二薄膜层104内的金属离子扩散至多晶硅层101内,且第一薄膜层103的氧含量小于0.01%,而不会产生多余的界面层,第一薄膜层103与第二薄膜层104之间接触界面的质量较好,第二薄膜层104不易变形,继而半导体结构200具有更好的电学性能和良率。例如,多晶硅层101、第一薄膜层103以及第二薄膜层104作为栅极结构时,第一薄膜层103与第二薄膜层104之间的界面性能良好,降低栅极结构与栅极导电插塞接触不良的可能,提高栅极结构的良率。The semiconductor structure 200 provided by the embodiment of the present disclosure includes: a substrate 100, a first thin film layer 103 located on the surface of the substrate 100, and a second thin film layer 104 located on the surface of the first thin film layer 103, wherein the substrate 100 and the first thin film layer 103 A polysilicon layer 101 is also formed in between. The first thin film layer 103 can prevent the doped ions in the polysilicon layer 101 from diffusing into the second thin film layer 104 and prevent the metal ions in the second thin film layer 104 from diffusing into the polysilicon layer 101 , and the oxygen content of the first thin film layer 103 is less than 0.01% without producing an excess interface layer. The quality of the contact interface between the first thin film layer 103 and the second thin film layer 104 is better, and the second thin film layer 104 is not easily deformed. , and then the semiconductor structure 200 has better electrical performance and yield. For example, when the polysilicon layer 101, the first thin film layer 103 and the second thin film layer 104 serve as the gate structure, the interface performance between the first thin film layer 103 and the second thin film layer 104 is good, reducing the conductive insertion between the gate structure and the gate electrode. This eliminates the possibility of poor contact and improves the yield of the gate structure.
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。Each embodiment or implementation mode in this specification is described in a progressive manner. Each embodiment focuses on its differences from other embodiments. The same and similar parts between various embodiments can be referred to each other.
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材 料或者特点包含于本公开的至少一个实施方式或示例中。In the description of this specification, reference to the description of the terms "embodiments," "exemplary embodiments," "some embodiments," "illustrative embodiments," "examples," etc. is intended to be described in connection with the embodiments or examples. A specific feature, structure, material, or characteristic is included in at least one embodiment or example of the present disclosure.
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。In the description of the present disclosure, it should be noted that the terms "center", "upper", "lower", "left", "right", "vertical", "horizontal", "inner", "outer", etc. The indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings. It is only for the convenience of describing the present disclosure and simplifying the description. It does not indicate or imply that the indicated device or element must have a specific orientation or a specific orientation. construction and operation, and therefore should not be construed as limitations on the present disclosure.
可以理解的是,本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另一个结构区分。It will be understood that the terms "first", "second", etc. used in this disclosure may be used to describe various structures in this disclosure, but these structures are not limited by these terms. These terms are used only to distinguish one structure from another.
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。In one or more of the figures, identical elements are designated with similar reference numbers. For the sake of clarity, various parts of the figures are not drawn to scale. Additionally, some well-known parts may not be shown. For the sake of simplicity, the structure obtained after several steps can be described in one figure. Many specific details of the present disclosure are described below, such as device structures, materials, dimensions, processing processes and techniques, to provide a clearer understanding of the present disclosure. However, as one skilled in the art will appreciate, the present disclosure may be practiced without these specific details.
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solution of the present disclosure, but not to limit it; although the present disclosure has been described in detail with reference to the foregoing embodiments, those skilled in the art should understand that it can still be used Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent substitutions are made to some or all of the technical features; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to depart from the scope of the technical solutions of the embodiments of the present disclosure.
工业实用性Industrial applicability
本公开实施例提供的半导体结构的制造方法中,采用第一薄膜沉积工艺形成第一薄膜层,第一薄膜层具有亲氧元素,亲氧元素易被氧化形成氧化物;对形成的第一薄膜层进行表面处理,能够去除由于亲氧元素被氧化而形成于第一薄膜层表面的氧化物,降低第一薄膜层表面的氧含量,并抑制第一薄膜层被继续氧化,通过不同于第一薄膜沉积工艺的第二薄膜沉积工艺形成第二薄膜层时,能够有效地改善第一薄膜层和第二薄膜氧化层之间的界面性能,避免出现界面层,以及避免引起第二薄膜层的变形,进而改善堆叠层的性能,保证半导体器件的性能。在本公开实施例提供的半导体结构中,半导体第一薄膜层以及第二薄膜层用作栅极结构的一部分时,栅极结构各层之间的界面性能良好,保证栅极结构的性能,栅极结构侧壁的侧墙能够对栅极结构侧壁提供良好的保护作用。In the manufacturing method of a semiconductor structure provided by embodiments of the present disclosure, a first thin film deposition process is used to form a first thin film layer. The first thin film layer contains oxygen-loving elements, and the oxygen-loving elements are easily oxidized to form oxides; for the formed first thin film Surface treatment of the first film layer can remove oxides formed on the surface of the first film layer due to the oxidation of oxygen-loving elements, reduce the oxygen content on the surface of the first film layer, and inhibit the continued oxidation of the first film layer. When the second thin film deposition process of the thin film deposition process forms the second thin film layer, it can effectively improve the interface performance between the first thin film layer and the second thin film oxide layer, avoid the occurrence of the interface layer, and avoid causing deformation of the second thin film layer. , thereby improving the performance of the stacked layer and ensuring the performance of the semiconductor device. In the semiconductor structure provided by the embodiment of the present disclosure, when the semiconductor first thin film layer and the second thin film layer are used as part of the gate structure, the interface performance between the layers of the gate structure is good, ensuring the performance of the gate structure, and the gate structure has good performance. The sidewalls on the side walls of the gate structure can provide good protection for the side walls of the gate structure.

Claims (15)

  1. 一种半导体结构的制造方法,所述制造方法包括:A method of manufacturing a semiconductor structure, the manufacturing method comprising:
    提供基底;provide a base;
    采用第一薄膜沉积工艺,在所述基底表面形成第一薄膜层,其中,所述第一薄膜层具有亲氧元素;Using a first thin film deposition process, a first thin film layer is formed on the surface of the substrate, wherein the first thin film layer has an oxygen-loving element;
    对所述第一薄膜层进行表面处理,以抑制所述第一薄膜层的氧化;Perform surface treatment on the first thin film layer to inhibit oxidation of the first thin film layer;
    采用不同于所述第一薄膜沉积工艺的第二薄膜沉积工艺,在所述表面处理后的第一薄膜层表面形成第二薄膜层。Using a second thin film deposition process that is different from the first thin film deposition process, a second thin film layer is formed on the surface of the first thin film layer after surface treatment.
  2. 根据权利要求1所述的半导体结构的制造方法,其中,在进行第二薄膜沉积工艺之前,在对所述第一薄膜层进行表面处理之后,至少将形成有第一薄膜层的半导体结构置于氮气氛围中。The method of manufacturing a semiconductor structure according to claim 1, wherein before performing the second thin film deposition process and after performing surface treatment on the first thin film layer, at least the semiconductor structure formed with the first thin film layer is placed on in nitrogen atmosphere.
  3. 根据权利要求1或2所述的半导体结构的制造方法,其中,所述亲氧元素包括硅,和/或铝。The method of manufacturing a semiconductor structure according to claim 1 or 2, wherein the oxygen-loving element includes silicon and/or aluminum.
  4. 根据权利要求3所述的半导体结构的制造方法,其中,所述第一薄膜层的材料为TiSiN、TiAlN、TiSiAl、TiAlC、TaSiN、TaAlN、TaAlC中的至少一种。The method of manufacturing a semiconductor structure according to claim 3, wherein the material of the first thin film layer is at least one of TiSiN, TiAlN, TiSiAl, TiAlC, TaSiN, TaAlN, and TaAlC.
  5. 根据权利要求4所述的半导体结构的制造方法,其中,对所述第一薄膜层进行表面处理的步骤包括:回刻蚀去除部分厚度的所述第一薄膜层,降低所述第一薄膜层表面的所述亲氧元素含量,以抑制所述第一薄膜层的氧化。The manufacturing method of a semiconductor structure according to claim 4, wherein the step of surface treatment of the first thin film layer includes: etching back to remove a part of the thickness of the first thin film layer, reducing the thickness of the first thin film layer. The content of the oxygen-loving elements on the surface is to inhibit the oxidation of the first thin film layer.
  6. 根据权利要求5所述的半导体结构的制造方法,其中,所述回刻蚀过程的刻蚀液为NH 4OH、H 2O 2以及H 2O的混合液,其中,NH 4OH、H 2O 2以及H 2O的体积比为1:(1~10):(20~50)。 The manufacturing method of a semiconductor structure according to claim 5, wherein the etching liquid in the etching back process is a mixed liquid of NH 4 OH, H 2 O 2 and H 2 O, wherein NH 4 OH, H 2 The volume ratio of O 2 and H 2 O is 1: (1~10): (20~50).
  7. 根据权利要求4所述的半导体结构的制造方法,其中,对所述第一薄膜层进行表面处理的步骤包括:采用氨气对所述第一薄膜层表面进行氮化处理,以抑制所述第一薄膜层的氧化,其中,所述氮化处理的处理温度为300℃~450℃,氨气的流量为2000sccm~3000sccm。The method of manufacturing a semiconductor structure according to claim 4, wherein the step of surface treating the first thin film layer includes: using ammonia gas to nitride the surface of the first thin film layer to suppress the Oxidation of a thin film layer, wherein the processing temperature of the nitriding treatment is 300°C to 450°C, and the flow rate of ammonia gas is 2000sccm to 3000sccm.
  8. 根据权利要求4所述的半导体结构的制造方法,其中,对所述第一薄膜层进行表面处理的步骤包括:采用浓度小于等于1%的酸性溶液对所述第一薄膜层表面进行清洗处理,以抑制所述第一薄膜层的氧化。The manufacturing method of a semiconductor structure according to claim 4, wherein the step of surface treatment of the first thin film layer includes: cleaning the surface of the first thin film layer using an acidic solution with a concentration of less than or equal to 1%, to inhibit oxidation of the first thin film layer.
  9. 根据权利要求1所述的半导体结构的制造方法,其中,所述第二薄膜层为金属层,所述金属层的沉积温度大于等于500℃。The method of manufacturing a semiconductor structure according to claim 1, wherein the second thin film layer is a metal layer, and the deposition temperature of the metal layer is greater than or equal to 500°C.
  10. 根据权利要求1所述的半导体结构的制造方法,其中,所述第一薄膜沉积工艺为化学气相沉积工艺、物理气相沉积工艺、物理化学气相沉积或原子层沉积工艺中的一种;The method of manufacturing a semiconductor structure according to claim 1, wherein the first thin film deposition process is one of a chemical vapor deposition process, a physical vapor deposition process, a physical chemical vapor deposition or an atomic layer deposition process;
    所述第二薄膜沉积工艺为化学气相沉积工艺、物理气相沉积工艺、物理化学气相沉积或原子层沉积工艺中的一种。The second thin film deposition process is one of a chemical vapor deposition process, a physical vapor deposition process, a physical and chemical vapor deposition process, or an atomic layer deposition process.
  11. 根据权利要求1所述的半导体结构的制造方法,其中,所述第二薄膜层具有金属元素;在形成所述第二薄膜层之前,还包括:在所述第一薄膜层表面形成过渡层,所述过渡层含有所述亲氧元素以及所述金属元素。The method of manufacturing a semiconductor structure according to claim 1, wherein the second thin film layer contains a metal element; before forming the second thin film layer, further comprising: forming a transition layer on the surface of the first thin film layer, The transition layer contains the oxygen-loving element and the metal element.
  12. 一种半导体结构,采用权利要求1至11任意一项所述的制造方法制造得到,所 述半导体结构包括:A semiconductor structure manufactured using the manufacturing method described in any one of claims 1 to 11, the semiconductor structure comprising:
    基底;base;
    第一薄膜层,位于所述基底的表面,所述第一薄膜层具有亲氧元素;A first thin film layer is located on the surface of the substrate, and the first thin film layer has an oxygen-loving element;
    第二薄膜层,所述第二薄膜层位于所述第一薄膜层表面。A second thin film layer is located on the surface of the first thin film layer.
  13. 根据权利要求12所述的半导体结构,其中,所述第一薄膜层的材料为TiSiN、TiAlN、TiSiAl、TiAlC、TaSiN、TaAlN、TaAlC中的至少一种。The semiconductor structure according to claim 12, wherein the material of the first thin film layer is at least one of TiSiN, TiAlN, TiSiAl, TiAlC, TaSiN, TaAlN, and TaAlC.
  14. 根据权利要求13所述的半导体结构,其中,所述基底和所述第一薄膜层之间具有多晶硅层,所述第一薄膜层包括TiSiN层,所述第二薄膜层包括金属层,其中,所述多晶硅层、所述TiSiN层以及所述金属层共同构成栅极结构的一部分。The semiconductor structure according to claim 13, wherein there is a polysilicon layer between the substrate and the first thin film layer, the first thin film layer includes a TiSiN layer, and the second thin film layer includes a metal layer, wherein, The polysilicon layer, the TiSiN layer and the metal layer together form a part of the gate structure.
  15. 根据权利要求13所述的半导体结构的半导体,其中,所述基底和所述第一薄膜层之间具有多晶硅层,所述第一薄膜层包括TiAlN层,所述第二薄膜层包括金属层,其中,所述多晶硅层、所述TiAlN层以及所述金属层共同构成栅极结构的一部分。The semiconductor structure of claim 13, wherein there is a polysilicon layer between the substrate and the first thin film layer, the first thin film layer includes a TiAlN layer, and the second thin film layer includes a metal layer, Wherein, the polysilicon layer, the TiAlN layer and the metal layer together form a part of the gate structure.
PCT/CN2023/070311 2022-08-31 2023-01-04 Method for manufacturing semiconductor structure and semiconductor structure WO2024045467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211056556.3A CN115312379A (en) 2022-08-31 2022-08-31 Method for manufacturing semiconductor structure and semiconductor structure
CN202211056556.3 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045467A1 true WO2024045467A1 (en) 2024-03-07

Family

ID=83863899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070311 WO2024045467A1 (en) 2022-08-31 2023-01-04 Method for manufacturing semiconductor structure and semiconductor structure

Country Status (2)

Country Link
CN (1) CN115312379A (en)
WO (1) WO2024045467A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115312379A (en) * 2022-08-31 2022-11-08 长鑫存储技术有限公司 Method for manufacturing semiconductor structure and semiconductor structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741725A (en) * 1995-02-27 1998-04-21 Nec Corporation Fabrication process for semiconductor device having MOS type field effect transistor
US6432801B1 (en) * 1999-04-22 2002-08-13 Hyundai Electronics Industries, Co., Ltd. Gate electrode in a semiconductor device and method for forming thereof
CN107017156A (en) * 2015-10-20 2017-08-04 台湾积体电路制造股份有限公司 Atomic layer deposition method and its structure
US10720431B1 (en) * 2019-01-25 2020-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of fabricating semiconductor devices having gate-all-around structure with oxygen blocking layers
CN115312379A (en) * 2022-08-31 2022-11-08 长鑫存储技术有限公司 Method for manufacturing semiconductor structure and semiconductor structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741725A (en) * 1995-02-27 1998-04-21 Nec Corporation Fabrication process for semiconductor device having MOS type field effect transistor
US6432801B1 (en) * 1999-04-22 2002-08-13 Hyundai Electronics Industries, Co., Ltd. Gate electrode in a semiconductor device and method for forming thereof
CN107017156A (en) * 2015-10-20 2017-08-04 台湾积体电路制造股份有限公司 Atomic layer deposition method and its structure
US10720431B1 (en) * 2019-01-25 2020-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of fabricating semiconductor devices having gate-all-around structure with oxygen blocking layers
CN115312379A (en) * 2022-08-31 2022-11-08 长鑫存储技术有限公司 Method for manufacturing semiconductor structure and semiconductor structure

Also Published As

Publication number Publication date
CN115312379A (en) 2022-11-08

Similar Documents

Publication Publication Date Title
TWI693689B (en) Semiconductor device and method of forming the same
CN111987096B (en) Gate structure of semiconductor device and forming method thereof
CN111128891A (en) Method for manufacturing semiconductor device
WO2024045467A1 (en) Method for manufacturing semiconductor structure and semiconductor structure
JP4493295B2 (en) Method for manufacturing a semiconductor device including a silicon oxide layer
CN103632976B (en) The forming method of transistor
US9590054B2 (en) Low temperature spacer for advanced semiconductor devices
JP4907839B2 (en) Manufacturing method of semiconductor device
CN112530871A (en) Method for forming semiconductor device
US20230215866A1 (en) Integrated circuit devices and methods of manufacturing the same
US20230420565A1 (en) Method for forming dual silicide in manufacturing process of semiconductor structure
TW202238834A (en) Method for forming semiconductor device
CN106653693B (en) Improve the method for core devices and input and output device performance
CN109585549A (en) FinFET and forming method thereof
TW202213744A (en) Confined charge trap layer
TW202230792A (en) Semiconductor device and method of forming same
TW202145560A (en) Semiconductor devices and methods of fabricating the same
TWI813200B (en) Integrated circuit structure and method forming same
CN220172137U (en) Semiconductor device structure
KR100529873B1 (en) Method For Manufacturing Semiconductor Devices
CN220731533U (en) Semiconductor structure
TWI811991B (en) Semiconductor device and method for fabricating the same
TWI807711B (en) An integrated circuit structure and method of forming the same
US20230068965A1 (en) Contact structure for semiconductor device
JP2005236020A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858510

Country of ref document: EP

Kind code of ref document: A1