WO2024045323A1 - 电动汽车电液复合制动控制方法、系统及电动汽车 - Google Patents

电动汽车电液复合制动控制方法、系统及电动汽车 Download PDF

Info

Publication number
WO2024045323A1
WO2024045323A1 PCT/CN2022/129724 CN2022129724W WO2024045323A1 WO 2024045323 A1 WO2024045323 A1 WO 2024045323A1 CN 2022129724 W CN2022129724 W CN 2022129724W WO 2024045323 A1 WO2024045323 A1 WO 2024045323A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
control signal
signal
front axle
hydraulic
Prior art date
Application number
PCT/CN2022/129724
Other languages
English (en)
French (fr)
Inventor
黄励昊
付傲然
Original Assignee
上海智能制造功能平台有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海智能制造功能平台有限公司 filed Critical 上海智能制造功能平台有限公司
Publication of WO2024045323A1 publication Critical patent/WO2024045323A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/665Electrical control in fluid-pressure brake systems the systems being specially adapted for transferring two or more command signals, e.g. railway systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters

Definitions

  • the present invention relates to the field of automobile control technology, and specifically to an electric vehicle electro-hydraulic composite braking control method and system and an electric vehicle.
  • Regenerative braking plays an extremely important role in improving vehicle range.
  • the vehicle's braking energy can be recovered and battery energy can be utilized more efficiently.
  • introducing a regenerative braking system based on the vehicle's original hydraulic braking system will inevitably have an impact on the vehicle, affecting battery life, vehicle braking safety, etc. Therefore, the two braking systems need to coordinate with each other. It is particularly important to adopt different braking force distribution strategies for different braking conditions.
  • braking control strategies can be divided into two categories based on different basic starting points: one is the control strategy for maximum energy recovery.
  • the basic starting point of this strategy is to increase the recovery and reuse of the vehicle's mechanical energy as much as possible, as long as the vehicle's braking performance meets the requirements.
  • the other is that the basic starting point of the strategy is to ensure the vehicle braking efficiency to the greatest extent, and the energy recovery efficiency is low.
  • the above two control strategies require separate control of various braking forces and require high accuracy. Therefore, the structures of these two types of control systems are relatively complex and costly.
  • the purpose of the present invention is to provide an electro-hydraulic composite braking control method and system for electric vehicles and an electric vehicle.
  • an electro-hydraulic composite braking control method for an electric vehicle includes: acquiring a braking signal of the vehicle, and dividing the braking signal into different braking tasks according to the braking intensity. condition;
  • front axle brake control signal braking signal, motor operating condition and battery operating condition information, a front axle regenerative braking control signal and a front axle hydraulic brake control signal are obtained.
  • the braking signal is divided into different braking conditions according to the magnitude of the braking intensity, including:
  • the braking intensity z 0 ⁇ 0.18, which is a low-intensity braking condition
  • the braking intensity z 0.18 ⁇ 0.55, which is a medium-intensity braking condition
  • the braking intensity z 0.55 ⁇ 0.7, which belongs to the medium intensity braking condition
  • the braking intensity z 0.7 ⁇ 0.1, which belongs to the emergency braking condition.
  • the method of allocating the braking force according to the braking conditions corresponding to the braking signal to obtain the front axle brake control signal and the rear axle braking control signal includes: determining the braking conditions corresponding to the braking signal. ; Distribute the front axle braking force and the rear axle braking force according to the braking conditions corresponding to the braking signal, and obtain the front axle braking control signal and the rear axle braking control signal respectively.
  • the method of allocating the front axle braking force and the rear axle braking force according to the braking conditions corresponding to the braking signal to obtain the front axle braking control signal and the rear axle braking control signal respectively includes: adopting comprehensive consideration of the ideal system.
  • the power distribution strategy, motor regenerative braking characteristics, ECE braking regulation restrictions and braking intensity control strategy determine the front axle braking control signal and the rear axle braking control signal.
  • obtaining the front axle regenerative braking control signal and the front axle hydraulic brake control signal based on the front axle braking control signal, braking signal, motor operating condition and battery operating condition information includes: determining the braking Whether the intensity is greater than the braking intensity threshold; if so, only the hydraulic brake control signal is output; if not, it is judged according to the motor working condition whether the motor speed is less than the motor speed threshold; if so, only the hydraulic brake control signal is output; if not, Then judge whether the battery SOC exceeds the battery SOC threshold according to the battery working condition; if so, only the hydraulic brake control signal is output, if not, the regenerative brake control signal and hydraulic brake control signal are normally output, thereby determining the front axle regenerative braking control signal and front axle hydraulic brake control signal.
  • an electro-hydraulic composite braking control system for an electric vehicle.
  • the system includes: a first signal acquisition module for acquiring a braking signal, and dividing the braking signal into categories according to the braking intensity.
  • the front and rear axle braking force distribution module is used to distribute the braking force according to the braking conditions corresponding to the braking signal, and obtain the front axle braking control signal and the rear axle braking control signal; the second signal
  • the acquisition module is used to obtain motor working condition and battery working condition information, and receive various braking force control signals;
  • the front axle electro-hydraulic braking force distribution module is used to obtain the motor working condition and battery working condition information according to the front axle braking control signal, braking signal, motor working condition and
  • the battery operating condition information is used to obtain the front axle regenerative braking control signal and the front axle hydraulic braking control signal.
  • the first signal acquisition module obtains the vehicle braking signal by collecting the output signal of the angular displacement sensor at the brake pedal; the braking conditions include light braking, moderate braking and emergency braking conditions. .
  • the front and rear axle braking force distribution module includes: a braking intensity stage judger for judging the braking conditions corresponding to the braking signal; and a front and rear axle braking force controller for determining the braking force according to the braking force.
  • the front axle braking force and the rear axle braking force are allocated to the braking conditions corresponding to the dynamic signal, and the front axle braking control signal and the rear axle braking control signal are obtained respectively.
  • the front axle electro-hydraulic braking force distribution module includes: a braking strength judger, used to judge whether the braking strength is greater than the braking strength threshold; a motor working condition judger, used to judge whether the motor speed is based on the motor working condition. Less than the motor speed threshold; the battery SOC judger is used to judge whether the battery SOC exceeds the battery SOC threshold according to the battery working condition; the determination module is used to judge whether the battery SOC exceeds the battery SOC threshold according to the braking intensity judger, the motor working condition judger and the battery SOC judger. Based on the judgment result, the front axle regenerative braking control signal and the front axle hydraulic braking control signal are determined.
  • an electric vehicle which electric vehicle includes the above-mentioned electric vehicle electro-hydraulic composite braking control system.
  • the present invention has at least one of the following beneficial effects:
  • This invention controls the braking force of the front and rear axles of the vehicle in stages based on the strength of the braking signal, while coordinating the regenerative braking characteristics of the motor, the ideal braking force distribution strategy and the restrictions of ECE braking regulations to ensure vehicle braking safety while improving Improves vehicle braking stability and gives the driver a good braking feeling.
  • the present invention comprehensively considers the influence of motor characteristics, battery SOC, brake safety requirements and other factors on regenerative braking.
  • the braking force control signal is corrected in real time to meet the vehicle's braking force needs while giving full play to the advantages of regenerative braking, maximizing the recovery efficiency of braking energy and improving the economy of electric vehicles.
  • Figure 1 is a schematic flow chart of front axle electro-hydraulic braking force distribution control in an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of an electro-hydraulic composite braking system according to an embodiment of the present invention.
  • An embodiment of the present invention provides an electro-hydraulic composite braking control method for an electric vehicle, which method includes:
  • the vehicle braking demand is determined by collecting the output signal of the angular displacement sensor at the brake pedal. According to the braking intensity, the braking signal is divided into light braking, moderate braking and emergency braking conditions.
  • the braking force is distributed according to the braking conditions corresponding to the braking signal
  • the step of obtaining the front axle braking control signal and the rear axle braking control signal is performed in the front and rear axle braking force distribution module.
  • the process includes: judging the braking conditions corresponding to the braking signal; allocating the front axle braking force and the rear axle braking force according to the working conditions corresponding to the braking signal, and obtaining the front axle braking control signal and the rear axle braking control signal respectively. .
  • the braking signal is divided into light braking, moderate braking and emergency braking conditions according to the braking intensity.
  • the front axle braking force and the rear axle braking force are allocated to obtain the front axle braking control signal and the rear axle braking control signal respectively, including: adopting a comprehensive consideration of the ideal braking force distribution strategy, motor regenerative braking
  • the front axle brake control signal and the rear axle brake control signal are determined based on the control strategy of dynamic characteristics, ECE brake regulation restrictions and braking intensity.
  • the control strategy is divided into the following four stages as the braking intensity increases:
  • the braking intensity z 0 ⁇ 0.18, which is a low-intensity braking condition, that is, a light braking condition; the rear axle does not provide braking force. Because the required braking force is small, the resistance generated by the motor can already meet the demand, and the hydraulic braking system does not need to be involved.
  • the braking intensity z 0.18 ⁇ 0.55, which is a medium-intensity braking condition; on the premise of meeting ECE regulations, the braking force is distributed to the front axle as much as possible to maximize braking energy recovery .
  • the braking intensity z 0.55 ⁇ 0.7, which is still a medium-intensity braking condition; but at this time, the regenerative braking force provided by the front axle motor has reached the maximum value.
  • the front axle braking force is kept unchanged, and all insufficient braking force is allocated to the rear axle to make up for it.
  • the embodiment of the present invention controls the braking force of the front and rear axles of the vehicle in stages based on the braking signal strength, and coordinates the regenerative braking characteristics of the motor, the ideal braking force distribution strategy and the restrictions of ECE braking regulations to ensure the safety of vehicle braking. Improves vehicle braking stability and gives the driver a good braking feeling.
  • the front axle regenerative braking control signal and the front axle hydraulic brake control signal are obtained based on the front axle braking control signal, braking signal, motor operating condition and battery operating condition information, including: first Step 1, determine whether the braking signal intensity output by the driver model is greater than the braking intensity threshold; if so, only the hydraulic brake control signal is output, that is, regenerative braking does not work; if not, proceed to the second step of judgment; the second step, based on The motor working condition determines whether the motor speed is less than the motor speed threshold; if so, it means that the regenerative braking cannot work normally, and only the hydraulic brake control signal is output; if not, proceed to the third step of judgment; the third step, determine the battery SOC according to the battery working condition Whether it exceeds the battery SOC threshold; if so, it means that the current battery status does not support regenerative braking and only hydraulic brake control signals are output; if not, regenerative braking and hydraulic brake control signals are normally output.
  • the braking force of the vehicle's front axle is distributed, that is, the ratio of regenerative braking force and hydraulic braking force is determined, and the corresponding front axle regenerative braking control signal and front axle are generated. Hydraulic brake control signal.
  • the braking force control signal is modified according to the real-time operating conditions of the motor.
  • the counter electromotive force generated by the rotor armature will gradually approach zero as the speed decreases, and the regenerative braking torque will decrease sharply. This situation occurs at the end of the vehicle braking process, when the vehicle speed is relatively high. If the motor speed is low, the corresponding motor speed will be insufficient, which will harm the braking stability and safety of the vehicle. Therefore, in some preferred embodiments, a motor speed threshold of 300 r/min is set. When the motor speed is detected to be lower than the threshold, regenerative braking stops working, and the front axle braking force will be fully borne by the hydraulic braking force.
  • the braking force control signal is modified according to the real-time charge state of the battery.
  • the SOC threshold is set to 90%, and when the battery SOC exceeds the threshold, the regenerative braking system stops working.
  • the vehicle is in an emergency braking condition.
  • the premise of the braking force control strategy is to ensure the braking of the vehicle. Safety, therefore all the total braking demand is allocated to the safer and more stable hydraulic braking system to meet the driver's braking needs.
  • the braking force distribution must meet the restrictions of ECE braking regulations, otherwise dangerous conditions will occur when the vehicle is braking.
  • the pedal opening signal is collected to detect whether the vehicle speed V is greater than the vehicle speed threshold V lim (the vehicle speed is proportional to the motor speed). If it is greater than the vehicle speed threshold (that is, the motor speed is greater than the threshold), regenerative braking can work normally ), then detect whether the battery SOC is less than the battery SOC threshold SOC im . If it is less than the battery SOC threshold, calculate the braking intensity z and determine which braking condition the current braking intensity belongs to. According to small intensity braking, medium intensity braking and emergency braking, the front axle regenerative braking control signal and the front axle hydraulic braking control signal are determined respectively.
  • Treg Treq
  • Thyd 0
  • Treg min(Tregmax,Treq)
  • the vehicle speed is not greater than the vehicle speed threshold
  • Treq is the braking force requirement of the front axle, that is, the total braking force of the front axle; Treg is the regenerative braking force of the front axle; Thyd is the hydraulic braking force of the front axle; Tregmax is the maximum regenerative braking force that the motor can provide under the current working conditions. ; The unit of each symbol is N/m.
  • the embodiment of the present invention comprehensively considers the impact of motor characteristics, battery SOC, braking safety requirements and other factors on regenerative braking, and corrects the braking force control signal in real time under actual braking conditions to meet the vehicle braking force requirements. At the same time, it gives full play to the advantages of regenerative braking, maximizes the recovery efficiency of braking energy, and improves the economy of electric vehicles.
  • the embodiment of the present invention first distributes the braking force to the front and rear axles of the vehicle, and then coordinates the motor speed, battery SOC, braking intensity and other parameters to determine the distribution ratio of the regenerative braking force and the hydraulic braking force on the vehicle's front axle.
  • the present invention implements staged control over the braking force distribution and makes full use of the regenerative braking of the motor, thereby improving the recovery efficiency of battery energy while ensuring that the vehicle has sufficient braking performance.
  • the system includes a first signal acquisition module , front and rear axle braking force distribution module, second signal acquisition module and front axle electro-hydraulic braking force distribution module, where: the first signal acquisition module is the driver model in the vehicle model in Figure 2, used to acquire the braking signal, and The braking signal is divided into different braking conditions according to the braking intensity; the front and rear axle braking force distribution modules are used to distribute the braking force according to the braking conditions corresponding to the braking signal to obtain the front axle braking control signal and the rear axle brake control signal; the second signal acquisition module is the body model in the vehicle model in Figure 2, which is used to obtain the motor working condition and battery working condition information, and receive the braking force control signal to control the vehicle; the front axle The electro-hydraulic braking force distribution module is used to obtain the front axle regenerative braking control signal and the front axle
  • the first signal acquisition module obtains the vehicle braking signal by collecting the output signal of the angular displacement sensor at the brake pedal to determine the vehicle braking demand; depending on the braking intensity, the braking conditions include Light braking, moderate braking and emergency braking conditions.
  • the front and rear axle braking force distribution modules include: a braking intensity stage judger, used to judge the braking conditions corresponding to the braking signal; a front and rear axle braking force controller, used to determine the braking condition according to the braking intensity.
  • the braking conditions corresponding to the signals distribute the front axle braking force and the rear axle braking force, and obtain the front axle braking control signal and the rear axle braking control signal respectively.
  • the front and rear axle braking force distribution module comprehensively considers the ideal front and rear axle braking force distribution strategy to maximize vehicle road adhesion, ECE brake regulation restrictions, motor regenerative braking characteristics, and divides the braking control strategy into three categories based on the strength of the braking signal. Four stages realize staged control of the braking force of the vehicle's front and rear axles.
  • the front axle electro-hydraulic braking force distribution module comprehensively considers the impact of braking intensity, battery SOC, and motor operating conditions on regenerative braking, corrects the electro-hydraulic braking force distribution control signal, and adjusts the regenerative braking force and hydraulic pressure on the vehicle's front axle. Power is distributed.
  • the front axle electro-hydraulic braking force distribution module includes: a braking strength judger, used to judge whether the braking strength is greater than the braking strength threshold; a motor working condition judger, used to judge based on the motor working conditions Whether the motor speed is less than the motor speed threshold; the battery SOC judger is used to judge whether the battery SOC exceeds the battery SOC threshold according to the battery working condition; the determination module is used to judge whether the battery SOC exceeds the battery SOC threshold according to the braking intensity judger, the motor working condition judger and the battery SOC judger The judgment result determines the front axle regenerative braking control signal and the front axle hydraulic braking control signal.
  • Another embodiment of the present invention also provides an electric vehicle, which includes the electric vehicle electro-hydraulic composite braking control system in the above embodiment. Since the electro-hydraulic composite braking control system of the electric vehicle in the above embodiment has the above technical effect, the electric vehicle in this embodiment should also have the same technical effect, which will not be described again here.

Abstract

本发明提供一种电动汽车电液复合制动控制方法、系统及电动汽车,该方法包括:获取车辆的制动信号,并按照制动强度的大小将制动信号分为不同的制动工况;根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号;获取电机工况和电池工况信息;根据所述前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号。本发明在电液复合制动过程中,对制动力分配实现分阶段控制,充分利用电机的再生制动,能够在保证车辆拥有足够的制动效能的前提下,提高电池能量的回收效率。

Description

电动汽车电液复合制动控制方法、系统及电动汽车 技术领域
本发明涉及汽车控制技术领域,具体地,涉及一种电动汽车电液复合制动控制方法、系统及电动汽车。
背景技术
在过去的几十年时间里,社会和经济的进步带动了汽车产业的快速发展,但汽车为人们生活提供便利的同时,也对环境造成了巨大的伤害。在此背景下,电动汽车逐渐成为乘用车市场的热点。
但续航里程不足的问题是制约电动汽车发展的一大痛点。由于化学电池充电时间长,充电配套设施还不完善,显然无法满足用户驾驶纯电动汽车长途行驶的需求,影响了一部分用户的购买欲望。
再生制动在提高车辆续航这一问题中扮演了极其重要的角色。通过再生制动技术,汽车的制动能量得以回收,电池能量的利用实现高效化。但在车辆本来的液压制动系统的基础上引入再生制动系统势必会对车辆产生冲击,对电池寿命、车辆制动安全性等都会造成影响,因此,实现两套制动系统相互协调配合,针对不同的制动工况采用不同的制动力分配策略尤为重要。
目前,制动控制策略根据基本出发点的不同,可以分为两类:一种是最大能量回收的控制策略。这种策略的基本出发点是尽可能地增加车辆机械能的回收再利用,而车辆的制动效能满足要求即可。另一种是策略的基本出发点是最大程度地保证车辆制动效能,能量回收效率较低。以上两种控制策略需要对各类制动力进行单独控制,且精度要求较高。因此,这两类控制系统结构都较为复杂,成本高昂。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种电动汽车电液复合制动控制方法、系统及电动汽车。
根据本发明的第一方面,提供一种电动汽车电液复合制动控制方法,该方法包括:获取车辆的制动信号,并按照制动强度的大小将制动信号分为不同的制动工况;
根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号;
获取电机工况和电池工况信息;
根据所述前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号。
进一步地,所述按照制动强度的大小将制动信号分为不同的制动工况,包括:
第一阶段,制动强度z=0~0.18,属于小强度制动工况;
第二阶段,制动强度z=0.18~0.55,属于中等强度制动工况;
第三阶段,制动强度z=0.55~0.7,属于中等强度制动工况;
第四阶段,制动强度z=0.7~0.1,属于紧急制动工况。
进一步地,所述根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号,包括:判断所述制动信号所对应的制动工况;根据制动信号所对应的制动工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号。
进一步地,所述根据制动信号所对应的制动工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号,包括:采用综合考虑理想制动力分配策略、电机再生制动特性、ECE制动法规限制和制动强度大小的控制策略,确定前轴制动控制信号和后轴制动控制信号。
进一步地,所述根据所述前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号,包括:判断制动强度是否大于制动强度阈值;若是,则只输出液压制动控制信号,若否,则根据电机工况判断电机转速是否小于电机转速阈值;若是,则只输出液压制动控制信号,若否,则根据电池工况判断电池SOC是否超过电池SOC阈值;若是,则只输出液压制动控制信号,若否,则正常输出再生制动控制信号和液压制动控制信号,从而确定前轴再生制动控制信号和前轴液压制动控制信号。
根据本发明的第二方面,提供一种电动汽车电液复合制动控制系统,该系统包括:第一信号获取模块,用于获取制动信号,并按照制动强度的大小将制动信号分为不同的制动工况;前后轴制动力分配模块,用于根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号;第二信号获取模块,用于获取电机工况和电池工况信息,并接收各制动力控制信号;前轴电液制动力分配模块,用于根据前轴制 动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号。
进一步地,所述第一信号获取模块通过采集刹车踏板处角位移传感器的输出信号,得到车辆制动信号;所述制动工况包括轻度制动、中度制动和紧急制动工况。
进一步地,所述前后轴制动力分配模块包括:制动强度分阶段判断器,用于判断所述制动信号所对应的制动工况;前后轴制动力控制器,用于根据所述制动信号所对应的制动工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号。
进一步地,所述前轴电液制动力分配模块包括:制动强度判断器,用于判断制动强度是否大于制动强度阈值;电机工况判断器,用于根据电机工况判断电机转速是否小于电机转速阈值;电池SOC判断器,用于根据电池工况判断电池SOC是否超过电池SOC阈值;确定模块,用于根据所述制动强度判断器、电机工况判断器和电池SOC判断器的判断结果,确定前轴再生制动控制信号和前轴液压制动控制信号。
根据本发明的第三方面,提供一种电动汽车,该电动汽车包括上述的电动汽车电液复合制动控制系统。
与现有技术相比,本发明具有如下至少之一的有益效果:
1、本发明基于制动信号强度对车辆前后轴制动力进行分阶段控制,同时协调电机再生制动特性、理想制动力分配策略和ECE制动法规限制,保证车辆制动安全性的同时,提高了车辆制动稳定性,给予驾驶员良好的制动感觉。
2、本发明在分配前轴再生制动控制信号和前轴液压制动控制信号时,综合考虑电机特性、电池SOC、制动安全性需求等因素对再生制动的影响,在实际的制动工况下,实时地对制动力控制信号进行修正,满足车辆制动力需求的同时,充分发挥再生制动的优势,最大化制动能量的回收效率,提高电动车的经济性。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例中前轴电液制动力分配控制的流程示意图;
图2为本发明实施例的电液复合制动系统的结构示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。在本发明实施例的描述中,需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
本发明实施例提供一种电动汽车电液复合制动控制方法,该方法包括:
S1、获取车辆的制动信号,并按照制动强度的大小将制动信号分为不同的制动工况。
具体地,通过采集刹车踏板处角位移传感器的输出信号,确定车辆制动需求。按照制动强度的大小,将制动信号分为轻度制动、中度制动和紧急制动工况。
S2、根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号;
在一些具体的实施方式中,根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号这一环节在前后轴制动力分配模块进行,具体流程包括:判断制动信号所对应的制动工况;根据制动信号所对应的工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号。
具体地,按照制动强度的大小将制动信号分为轻度制动、中度制动和紧急制动工况。根据制动信号所对应的工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号,包括:采用综合考虑理想制动力分配策略、电机再生制动特性、ECE制动法规限制和制动强度大小的控制策略,确定前轴制动控制信号和后轴制动控制信号。控制策略随着制动强度的增加分为以下四个阶段:
(1)第一阶段,制动强度z=0~0.18,属于小强度制动工况即轻度制动工况;后轴不提供制动力。因为所需的制动力较小,电机产生的阻力已经能够满足需求,不需要液压制动系统参与。
(2)第二阶段,制动强度z=0.18~0.55,属于中等强度制动工况;在满足ECE法规的前提下,尽可能地将制动力分配给前轴,以最大化制动能量回收。
(3)第三阶段,制动强度z=0.55~0.7,仍属于中等强度制动工况;但此时前轴电机提供的再生制动力已经达到最大值。为了避免前轴液压制动力介入而引起的冲击,保持前轴制动力不变,不足的制动力全部分配给后轴补足。
(4)第四阶段,制动强度z=0.7~0.1,属于紧急制动工况;为了避免电机可能出现的危险工况,车辆的制动力全部来源于机械制动系统。此时前后轴制动力的大小应满足理想制动力分配规律,以保证制动效能。
本发明实施例基于制动信号强度对车辆前后轴制动力进行分阶段控制,同时协调了电机再生制动特性、理想制动力分配策略和ECE制动法规限制,保证车辆制动安全性的同时,提高了车辆制动稳定性,给予驾驶员良好的制动感觉。
S3、获取电机工况和电池工况信息;
S4、根据前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号。
在一些具体的实施方式中,根据前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号,包括:第一步,判断驾驶员模型输出的制动信号强度是否大于制动强度阈值;若是,只输出液压制动控制信号,即再生制动不工作;若否,进行第二步判断;第二步,根据电机工况判断电机转速是否小于电机转速阈值;若是,表示再生制动无法正常工作,只输出液压制动控制信号;若否,进行第三步判断;第三步,根据电池工况判断电池SOC是否超过电池SOC阈值;若是,代表当前电池状态不支持再生制动工作,只输出液压制动控制信号;若否,正常输出再生制动和液压制动控制信号。根据制动强度、电机工况和电池SOC的判断结果,对车辆前轴的制动力进行分配,即确定再生制动力和液压制动力比值,并生成相应的前轴再生制动控制信号和前轴液压制动控制信号。
本发明实施例中,根据电机实时工况对制动力控制信号进行修正。根据电机的工作特性可知,转子电枢产生的反电动势会随着转速的降低逐渐趋向于零,再生制动力矩随之急剧下降,此情况发生在车辆制动过程的结尾阶段,此时车速较低,相应电机转速不足,对车辆的制动稳定性和安全性都会产生危害。因此,在一些优选的实施例中,设定一个电机转速阈值300r/min,当检测到电机转速低于阈值,再生制动停止工作,前轴制动力将全部由液压制动力承担。
本发明实施例中,根据蓄电池实时荷电状态对制动力控制信号进行修正。当电池荷电状态较高时,受限于电池的充放电功率和最大充电电流,制动能量的回收无法充分进行。因此,在一些优选的实施例中,设置SOC阈值为90%,当电池SOC超过阈值时,再生制动系统停止工作。
本发明实施例中,基于制动安全性要求,在特定的工况下,如制动强度大于0.7时, 车辆处于紧急制动工况,此时制动力控制策略的前提是保证车辆的制动安全性,因此将总制动需求全部分配给更安全、更稳定的液压制动系统,满足驾驶员的制动需求。此外,制动力分配情况需满足ECE制动法规的限制条件,否则车辆在制动时会发生危险工况。
参照图1,制动开始后,采集踏板开度信号,检测车速V是否大于车速阈值V lim(车速与电机转速成正比),若大于车速阈值(即电机转速大于阈值,再生制动可正常工作),则检测电池SOC是否小于电池SOC阈值SOC im,若小于电池SOC阈值,则计算制动强度z,判断当前制动强度属于哪一制动工况。根据小强度制动、中等强度制动和紧急制动,分别确定前轴再生制动控制信号和前轴液压制动控制信号。具体地,对于小强度制动即z≤0.18,Treg=Treq,Thyd=0;对于中等强度制动即0.18<z≤0.7,Treg=min(Tregmax,Treq),Thyd=Treq-Treg;对于紧急制动即z>0.7,Treg=0,Thyd=Treq。此外,若车速不大于车速阈值,则Treg=0,Thyd=Treq。若电池SOC不小于电池SOC阈值,则Treg=0,Thyd=Treq。其中,Treq为前轴制动力需求,即前轴总制动力大小;Treg为前轴再生制动力大小;Thyd为前轴液压制动力大小;Tregmax为当前工况下电机能提供的最大再生制动力;各符号单位均为N/m。
本发明实施例综合考虑电机特性、电池SOC、制动安全性需求等因素对再生制动的影响,在实际的制动工况下,实时地对制动力控制信号进行修正,满足车辆制动力需求的同时,充分发挥再生制动的优势,最大化制动能量的回收效率,提高电动车的经济性。
本发明实施例先将制动力分配到车辆前后轴上,然后协调电机转速、电池SOC、制动强度等参数,确定车辆前轴上再生制动力和液压制动力的分配比例。本发明在电液复合制动过程中,对制动力分配实现分阶段控制,充分利用电机的再生制动,能够在保证车辆拥有足够的制动效能的前提下,提高电池能量的回收效率。
本发明另一实施例还提供一种电动汽车电液复合制动控制系统,用于实现上述实施例中的电动汽车电液复合制动控制方法,参照图2,该系统包括第一信号获取模块、前后轴制动力分配模块、第二信号获取模块和前轴电液制动力分配模块,其中:第一信号获取模块即图2中车辆模型中的驾驶员模型,用于获取制动信号,并按照制动强度的大小将制动信号分为不同的制动工况;前后轴制动力分配模块,用于根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号;第二信号获取模块即图2中车辆模型中的车体模型,用于获取电机工况和电池工况信息,并接收制动力控制信号对车辆进行控制;前轴电液制动力分配模块,用于根据前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制 信号。
在一些具体的实施方式中,第一信号获取模块通过采集刹车踏板处角位移传感器的输出信号,得到车辆制动信号,以确定车辆制动需求;根据制动强度的不同,制动工况包括轻度制动、中度制动和紧急制动工况。
在一些具体的实施方式中,前后轴制动力分配模块包括:制动强度分阶段判断器,用于判断制动信号所对应的制动工况;前后轴制动力控制器,用于根据制动信号所对应的制动工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号。前后轴制动力分配模块综合考虑最大化车辆路面附着力的理想前后轴制动力分配策略、ECE制动法规限制、电机再生制动特性,以及基于制动信号强度的大小将制动控制策略分为四个阶段,实现对车辆前后轴制动力的分阶段控制。
前轴电液制动力分配模块综合考虑制动强度、电池SOC、电机工况对再生制动的影响,对电液制动力分配控制信号进行修正,对车辆前轴上的再生制动力和液压制动力进行分配。在一些具体的实施方式中,前轴电液制动力分配模块包括:制动强度判断器,用于判断制动强度是否大于制动强度阈值;电机工况判断器,用于根据电机工况判断电机转速是否小于电机转速阈值;电池SOC判断器,用于根据电池工况判断电池SOC是否超过电池SOC阈值;确定模块,用于根据制动强度判断器、电机工况判断器和电池SOC判断器的判断结果,确定前轴再生制动控制信号和前轴液压制动控制信号。
需要说明的是,上述系统实施例中的系统与方法实施例基于同样的发明构思,详情请参见方法实施例,由于上述实施例中的电动汽车电液复合制动控制方法具有的上述技术效果,本实施例中的电动汽车电液复合制动控制系统也应具有相同的技术效果,在此不再赘述。
本发明另一实施例还提供一种电动汽车,该电动汽车包括上述实施例中的电动汽车电液复合制动控制系统。由于上述实施例中的电动汽车电液复合制动控制系统具有的上述技术效果,本实施例中的电动汽车也应具有相同的技术效果,在此不再赘述。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。上述各优选特征在互不冲突的情况下,可以任意组合使用。

Claims (10)

  1. 一种电动汽车电液复合制动控制方法,其特征在于,包括:
    获取车辆的制动信号,并按照制动强度的大小将制动信号分为不同的制动工况;
    根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号;
    获取电机工况和电池工况信息;
    根据所述前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号。
  2. 根据权利要求1所述的电动汽车电液复合制动控制方法,其特征在于,所述按照制动强度的大小将制动信号分为不同的制动工况,包括:
    第一阶段,制动强度z=0~0.18,属于小强度制动工况;
    第二阶段,制动强度z=0.18~0.55,属于中等强度制动工况;
    第三阶段,制动强度z=0.55~0.7,仍属于中等强度制动工况;
    第四阶段,制动强度z=0.7~0.1,属于紧急制动工况。
  3. 根据权利要求2所述的电动汽车电液复合制动控制方法,其特征在于,所述根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号,包括:
    判断所述制动信号所对应的制动工况;
    根据制动信号所对应的制动工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号。
  4. 根据权利要求3所述的电动汽车电液复合制动控制方法,其特征在于,所述根据制动信号所对应的制动工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号,包括:采用综合考虑理想制动力分配策略、电机再生制动特性、ECE制动法规限制和制动强度大小的控制策略,确定前轴制动控制信号和后轴制动控制信号。
  5. 根据权利要求1所述的电动汽车电液复合制动控制方法,其特征在于,所述根据所述前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号,包括:
    判断制动强度是否大于制动强度阈值;
    若是,则只输出液压制动控制信号,若否,则根据电机工况判断电机转速是否小于电机转速阈值;
    若是,则只输出液压制动控制信号,若否,则根据电池工况判断电池SOC是否超过电池SOC阈值;
    若是,则只输出液压制动控制信号,若否,则正常输出再生制动控制信号和液压制动控制信号,从而确定前轴再生制动控制信号和前轴液压制动控制信号。
  6. 一种电动汽车电液复合制动控制系统,其特征在于,包括:
    第一信号获取模块,用于获取制动信号,并按照制动强度的大小将制动信号分为不同的制动工况;
    前后轴制动力分配模块,用于根据制动信号所对应的制动工况分配制动力,得到前轴制动控制信号和后轴制动控制信号;
    第二信号获取模块,用于获取电机工况和电池工况信息,并接收各制动力控制信号;
    前轴电液制动力分配模块,用于根据前轴制动控制信号、制动信号、电机工况和电池工况信息,得到前轴再生制动控制信号和前轴液压制动控制信号。
  7. 根据权利要求6所述的电动汽车电液复合制动控制系统,其特征在于,所述第一信号获取模块通过采集刹车踏板处角位移传感器的输出信号,得到车辆制动信号;
    所述制动工况包括轻度制动、中度制动和紧急制动工况。
  8. 根据权利要求6所述的电动汽车电液复合制动控制系统,其特征在于,所述前后轴制动力分配模块包括:
    制动强度分阶段判断器,用于判断所述制动信号所对应的制动工况;
    前后轴制动力控制器,用于根据所述制动信号所对应的制动工况分配前轴制动力和后轴制动力,分别得到前轴制动控制信号和后轴制动控制信号。
  9. 根据权利要求6所述的电动汽车电液复合制动控制系统,其特征在于,所述前轴电液制动力分配模块包括:
    制动强度判断器,用于判断制动强度是否大于制动强度阈值;
    电机工况判断器,用于根据电机工况判断电机转速是否小于电机转速阈值;
    电池SOC判断器,用于根据电池工况判断电池SOC是否超过电池SOC阈值;
    确定模块,用于根据所述制动强度判断器、电机工况判断器和电池SOC判断器的判断结果,确定前轴再生制动控制信号和前轴液压制动控制信号。
  10. 一种电动汽车,其特征在于,包括权利要求6-9任一项所述的电动汽车电液复 合制动控制系统。
PCT/CN2022/129724 2022-08-29 2022-11-04 电动汽车电液复合制动控制方法、系统及电动汽车 WO2024045323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211042865.5A CN115489325A (zh) 2022-08-29 2022-08-29 电动汽车电液复合制动控制方法、系统及电动汽车
CN202211042865.5 2022-08-29

Publications (1)

Publication Number Publication Date
WO2024045323A1 true WO2024045323A1 (zh) 2024-03-07

Family

ID=84467536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129724 WO2024045323A1 (zh) 2022-08-29 2022-11-04 电动汽车电液复合制动控制方法、系统及电动汽车

Country Status (2)

Country Link
CN (1) CN115489325A (zh)
WO (1) WO2024045323A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004229408A (ja) * 2003-01-23 2004-08-12 Hitachi Unisia Automotive Ltd ハイブリッド車両の制御装置
CN103332184A (zh) * 2013-06-08 2013-10-02 北京航空航天大学 一种电动汽车用电液复合制动控制方法及其控制装置
CN104175891A (zh) * 2014-08-07 2014-12-03 吉林大学 纯电动汽车能量回收再生制动控制方法
CN106627166A (zh) * 2016-10-31 2017-05-10 中山大学 一种双轴驱动纯电动汽车再生制动策略的生成方法
CN107364339A (zh) * 2017-06-30 2017-11-21 奇瑞汽车股份有限公司 双轴双电机四轮驱动纯电动车再生制动系统的控制方法
CN107539133A (zh) * 2017-08-25 2018-01-05 东莞中山大学研究院 一种再生制动策略的生成方法和装置
CN113147412A (zh) * 2021-04-25 2021-07-23 南京依维柯汽车有限公司 一种后驱纯电动商用车制动能量回收策略

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004229408A (ja) * 2003-01-23 2004-08-12 Hitachi Unisia Automotive Ltd ハイブリッド車両の制御装置
CN103332184A (zh) * 2013-06-08 2013-10-02 北京航空航天大学 一种电动汽车用电液复合制动控制方法及其控制装置
CN104175891A (zh) * 2014-08-07 2014-12-03 吉林大学 纯电动汽车能量回收再生制动控制方法
CN106627166A (zh) * 2016-10-31 2017-05-10 中山大学 一种双轴驱动纯电动汽车再生制动策略的生成方法
CN107364339A (zh) * 2017-06-30 2017-11-21 奇瑞汽车股份有限公司 双轴双电机四轮驱动纯电动车再生制动系统的控制方法
CN107539133A (zh) * 2017-08-25 2018-01-05 东莞中山大学研究院 一种再生制动策略的生成方法和装置
CN113147412A (zh) * 2021-04-25 2021-07-23 南京依维柯汽车有限公司 一种后驱纯电动商用车制动能量回收策略

Also Published As

Publication number Publication date
CN115489325A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
CN108081961B (zh) 一种制动能量回收控制方法、装置及电动汽车
CN109278566B (zh) 后轮驱动纯电动车辆制动能量回收控制方法及装置
CN109017747B (zh) 新能源四驱车辆的前后轴扭矩分配方法、系统及相关组件
CN110614921B (zh) 一种电动商用车制动能量回收系统及控制方法
CN108688474B (zh) 电动汽车制动能量回收控制算法
CN103332184A (zh) 一种电动汽车用电液复合制动控制方法及其控制装置
CN102923128A (zh) 一种四轮轮毂电机独立驱动电动汽车再生制动系统控制方法
KR20140032703A (ko) 노면 조건을 고려한 차량의 제동 제어 방법
CN109649185A (zh) 用于控制具有电机的车辆的装置和方法
CN106541834A (zh) 一种调控增程式前驱混动汽车制动扭矩的方法
CN108372854B (zh) 用于控制车辆的制动的装置和方法
CN102133892B (zh) 发动机压缩空气与摩擦制动相匹配的复合制动系统及方法
CN108263216B (zh) 一种轮毂电机驱动汽车再生制动系统及制动方法
CN111976677B (zh) 一种纯电动汽车复合制动防抱死控制系统及控制方法
CN104802645B (zh) 一种并联式电动汽车再生制动系统及其控制方法
CN111038275B (zh) 一种限制纯电动车辆超速的控制方法及装置
CN110466361A (zh) 两轮轮毂电机驱动纯电动汽车整车控制器及控制方法
CN106080216B (zh) 一种基于混合动力汽车制动能量回收的制动控制方法
CN108545071B (zh) 一种液压制动与电制动协同控制的再生制动控制方法
CN106926709A (zh) 制动能量回收装置、方法及轻型电动车
CN113147412A (zh) 一种后驱纯电动商用车制动能量回收策略
CN111923888B (zh) 混动商用车制动方式管理方法
CN106994904B (zh) 一种电动汽车基于线控制动的能量回收系统及方法
Chu et al. Braking force distribution strategy for HEV based on braking strength
WO2024045323A1 (zh) 电动汽车电液复合制动控制方法、系统及电动汽车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22957136

Country of ref document: EP

Kind code of ref document: A1