WO2024045136A1 - 处理方法、通信设备及存储介质 - Google Patents

处理方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2024045136A1
WO2024045136A1 PCT/CN2022/116564 CN2022116564W WO2024045136A1 WO 2024045136 A1 WO2024045136 A1 WO 2024045136A1 CN 2022116564 W CN2022116564 W CN 2022116564W WO 2024045136 A1 WO2024045136 A1 WO 2024045136A1
Authority
WO
WIPO (PCT)
Prior art keywords
contention window
window size
reference time
cot
channel
Prior art date
Application number
PCT/CN2022/116564
Other languages
English (en)
French (fr)
Inventor
黄钧蔚
朱荣昌
黄伟
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to PCT/CN2022/116564 priority Critical patent/WO2024045136A1/zh
Publication of WO2024045136A1 publication Critical patent/WO2024045136A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • This application relates to the field of communication technology, and specifically to a processing method, communication equipment and storage medium.
  • NR-U NewRadio in Unlicensed Spectrum, New Radio in Unlicensed Spectrum
  • CW contention Window
  • the random number comes from a uniform distribution [0, CW] and represents the duration that the transmission channel must remain available in multiples of 9us. The larger the contention window, the larger the average backoff value and the lower the probability of conflict.
  • the size of the contention window can be adjusted to adapt to the idle state of the channel.
  • the size of the contention window is mainly adjusted based on the HARQ (Hybrid Automatic Repeat reQuest) feedback on the data channel. Dynamic Adjustment.
  • HARQ Hybrid Automatic Repeat reQuest
  • Dynamic Adjustment for situations where there is no HARQ feedback for the data channel or only HARQ-NACK feedback for the data channel or non-control/data channels, the size of the contention window in the random backoff mechanism cannot be adjusted appropriately, which can easily cause multiple transmitters. communication conflicts.
  • this application provides a processing method, communication equipment and storage medium to solve the technical problem that the size of the competition window cannot be adjusted appropriately and easily causes communication conflicts between multiple transmitters.
  • the present application provides a processing method, which can be applied to communication equipment (such as terminal equipment, specifically such as mobile phones), including the following steps:
  • S10 Determine the size of the contention window based on the channel status within the first reference time and/or the feedback information received within the second reference time.
  • the processing method includes at least one of the following:
  • the channel status includes at least one of the following: LBT success, LBT failure, proportion of LBT failure, and proportion of sensing time slots with busy channels;
  • the feedback information includes at least one of the following: the number of NACK feedback, the proportion of NACK feedback, the number of ACK feedback, and the proportion of ACK feedback.
  • the step of determining the size of the contention window according to the channel status within the first reference time in S10 includes at least one of the following:
  • the size of the contention window is adjusted according to the HARQ-NACK feedback information received within the second reference time.
  • the processing method includes at least one of the following:
  • the contention window is increased
  • the proportion of LBT failures within the first reference time is less than or equal to the first threshold, keep the contention window size unchanged, or set the contention window size to the minimum contention window size adapted to the channel access priority;
  • the proportion of sensing time slots with busy channels within the first reference time is less than or equal to the second threshold value, keep the contention window size unchanged, or set the contention window size to the minimum contention window size adapted to the channel access priority;
  • the contention window is increased
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window is increased
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes at least one of the following:
  • the contention window size is set to the contention window size determined by the channel access priority corresponding to each packet priority of the near field communication.
  • the processing method includes at least one of the following:
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window size should be kept unchanged, or the contention window size should be set to the minimum contention window size adapted to the channel access priority.
  • the processing method includes at least one of the following:
  • the first reference time is determined by at least one of the following:
  • the first reference time is determined by the COT location of the latest transmission
  • the first reference time is determined by at least one candidate position of the first transmission within the COT where the most recent transmission is located;
  • the first reference time is determined by the N sensing time slots corresponding to the contention window associated with the COT where the latest transmission is located;
  • the first reference time is determined by the COT position associated with the most recent contention window size update
  • the first reference time is determined by the COT position of the most recent transmission including HARQ enablement
  • the determination method of the second reference time includes at least one of the following:
  • the second reference time is determined by the COT location of the latest transmission
  • the second reference time is determined by the COT position associated with the most recent contention window size update
  • the second reference time is determined by the COT position where the most recent transmission includes HARQ enablement.
  • This application also provides a communication device, including: a memory, a processor, and a processing program stored on the memory and executable on the processor.
  • a processing program stored on the memory and executable on the processor.
  • This application also provides a storage medium, a computer program is stored on the storage medium, and when the computer program is executed by a processor, the steps of the processing method described in any one of the above are implemented.
  • This application also provides a communication device, wherein the communication device includes:
  • the adjustment module is configured to determine the size of the contention window according to the channel status within the first reference time and/or the feedback information received within the second reference time.
  • the adjustment module is used to implement at least one of the following:
  • the channel status includes at least one of the following: LBT success, LBT failure, proportion of LBT failure, and proportion of sensing time slots with busy channels;
  • the feedback information includes at least one of the following: the number of NACK feedback, the proportion of NACK feedback, the number of ACK feedback, and the proportion of ACK feedback.
  • the adjustment module is also used to implement at least one of the following:
  • the size of the contention window is adjusted according to the HARQ-NACK feedback information received within the second reference time.
  • the adjustment module is also used to implement at least one of the following:
  • the contention window is increased
  • the proportion of LBT failures within the first reference time is less than or equal to the first threshold, keep the contention window size unchanged, or set the contention window size to the minimum contention window size adapted to the channel access priority;
  • the proportion of sensing time slots with busy channels within the first reference time is less than or equal to the second threshold value, keep the contention window size unchanged, or set the contention window size to the minimum contention window size adapted to the channel access priority;
  • the contention window is increased
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window is increased
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes at least one of the following:
  • the contention window size is set to the contention window size determined by the channel access priority corresponding to each packet priority of the near field communication.
  • the adjustment module is also used to implement at least one of the following:
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window size should be kept unchanged, or the contention window size should be set to the minimum contention window size adapted to the channel access priority.
  • the adjustment module is also used to implement at least one of the following:
  • the first reference time is determined by at least one of the following:
  • the first reference time is determined by the COT location of the latest transmission
  • the first reference time is determined by at least one candidate position of the first transmission within the COT where the most recent transmission is located;
  • the first reference time is determined by the N sensing time slots corresponding to the contention window associated with the COT where the latest transmission is located;
  • the first reference time is determined by the COT position associated with the most recent contention window size update
  • the first reference time is determined by the COT position of the most recent transmission including HARQ enablement
  • the determination method of the second reference time includes at least one of the following:
  • the second reference time is determined by the COT location of the latest transmission
  • the second reference time is determined by the COT position associated with the most recent contention window size update
  • the second reference time is determined by the COT position where the most recent transmission includes HARQ enablement.
  • the processing method, communication device and storage medium of the present application can be applied to communication devices (such as mobile phones), which communicate according to the channel status within the first reference time and/or the feedback information received within the second reference time. , determine the size of the competition window.
  • communication devices such as mobile phones
  • the channel is determined according to the first reference time Status and/or feedback information received within the second reference time determines the size of the competition window, adjusts the size of the competition window based on channel occupancy and information transmission, and adjusts the size of the competition window in the random backoff mechanism. Avoid communication conflicts between multiple communication devices.
  • Figure 1 is a schematic diagram of the hardware structure of a mobile terminal that implements various embodiments of the present application provided by an embodiment of the present application;
  • FIG. 2 is a communication network system architecture diagram provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of an embodiment of the processing method provided by the embodiment of the present application.
  • Figure 4 is a schematic flowchart of a communication device initiating a random backoff process provided by an embodiment of the present application
  • FIG. 5 is a schematic flowchart of another embodiment of the processing method provided by the embodiment of the present application.
  • Figure 6 is a schematic diagram of a scenario in which the first reference time provided by the embodiment of the present application is determined by the most recently transmitted COT position;
  • Figure 7 is a schematic diagram of another scenario in which the first reference time provided by the embodiment of the present application is determined by the recently transmitted COT position;
  • Figure 8 is a schematic diagram of the distribution of N idle channels in a random backoff contention window provided by the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another embodiment of the processing method provided by the embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the hardware structure of a controller 140 provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of the hardware structure of a network node 150 provided by an embodiment of the present application.
  • first, second, third, etc. may be used herein to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context indicates otherwise.
  • A, B, C means “any of the following: A; B; C; A and B; A and C; B and C; A and B and C"; another example is, “ A, B or C” or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A and B and C". Exceptions to this definition occur only when a combination of elements, functions, steps, or operations is inherently mutually exclusive in some manner.
  • each step in the flow chart in the embodiment of the present application is displayed in sequence as indicated by the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless explicitly stated in this article, the execution of these steps is not strictly limited in order, and they can be executed in other orders. Moreover, at least some of the steps in the figure may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, and their execution order is not necessarily sequential. may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of stages.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if determined” or “if (stated condition or event) is detected” may be interpreted as “when determined” or “in response to determining” or “when (stated condition or event) is detected )” or “in response to detecting (a stated condition or event)”.
  • step codes such as S1 and S2 are used for the purpose of describing the corresponding content more clearly and concisely, and do not constitute a substantial restriction on the sequence. Those skilled in the art may S2 will be executed first and then S1, etc., but these should be within the scope of protection of this application.
  • Communication devices may be implemented in various forms.
  • the communication devices described in this application may include mobile phones, tablet computers, notebook computers, PDAs, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Mobile terminals with wireless communication functions such as wearable devices, smart bracelets, and pedometers, as well as fixed terminals with wireless communication functions such as digital TVs and desktop computers.
  • a mobile terminal will be taken as an example.
  • the structure according to the embodiments of the present application can also be applied to fixed-type terminals.
  • FIG. 1 is a schematic diagram of the hardware structure of a mobile terminal that implements various embodiments of the present application provided by an embodiment of the present application.
  • the mobile terminal 100 may include: an RF (Radio Frequency, radio frequency) unit 101, a WiFi module 102, Audio output unit 103, A/V (audio/video) input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, and power supply 111 and other components.
  • RF Radio Frequency, radio frequency
  • the radio frequency unit 101 can be used to receive and send information or signals during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 110; in addition, the uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • the radio frequency unit 101 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to GSM (Global System of Mobilecommunication, Global Mobile Communications System), GPRS (General Packet Radio Service, General Packet Radio Service), CDMA2000 (Code Division Multiple Access 2000, Code Division Multiple Access 2000), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access), FDD-LTE (Frequency Division Duplexing) -Long Term Evolution, Frequency Division Duplexing Long Term Evolution), TDD-LTE (Time Division Duplexing-Long Term Evolution, Time Division Duplex Long Term Evolution), NR (New Radio, 5G) and 6G (6th generation mobile networks, 6th generation wireless systems, sixth generation mobile communication technology), etc.
  • GSM Global System of Mobilecommunication, Global Mobile Communications System
  • GPRS General Packet Radio Service, General Packet Radio Service
  • CDMA2000 Code Division Multiple Access 2000, Code Division Multiple
  • WiFi is a short-distance wireless transmission technology.
  • the mobile terminal can help users send and receive emails, browse web pages, access streaming media, etc. through the WiFi module 102. It provides users with wireless broadband Internet access.
  • FIG. 1 shows the WiFi module 102, it can be understood that it is not a necessary component of the mobile terminal and can be omitted as needed without changing the essence of the application.
  • the audio output unit 103 may, when the mobile terminal 100 is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, etc., receive the audio signal received by the radio frequency unit 101 or the WiFi module 102 or store it in the memory 109 The audio data is converted into audio signals and output as sound. Furthermore, the audio output unit 103 may also provide audio output related to a specific function performed by the mobile terminal 100 (eg, call signal reception sound, message reception sound, etc.). The audio output unit 103 may include a speaker, a buzzer, or the like.
  • the A/V input unit 104 is used to receive audio or video signals.
  • the A/V input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 can process still pictures or images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Video image data is processed.
  • the processed image frames may be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage media) or sent via the radio frequency unit 101 or WiFi module 102.
  • the microphone 1042 can receive sounds (audio data) via the microphone 1042 in operating modes such as a phone call mode, a recording mode, a voice recognition mode, and the like, and can process such sounds into audio data.
  • the processed audio (voice) data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in a phone call mode.
  • Microphone 1042 may implement various types of noise cancellation (or suppression) algorithms to eliminate (or suppress) noise or interference generated in the process of receiving and transmitting audio signals.
  • the mobile terminal 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can turn off the display when the mobile terminal 100 moves to the ear. Panel 1061 and/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes). It can detect the magnitude and direction of gravity when stationary.
  • It can be used to identify applications of mobile phone posture (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone, it can also be configured with fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, Other sensors such as thermometers and infrared sensors will not be described in detail here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 107 may include a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also known as a touch screen, can collect the user's touch operations on or near the touch panel 1071 (for example, the user uses a finger, stylus, or any suitable object or accessory on or near the touch panel 1071 operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device and converts it into contact point coordinates , and then sent to the processor 110, and can receive the commands sent by the processor 110 and execute them.
  • the touch panel 1071 can be implemented using various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include but are not limited to one or more of physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, etc., which are not specifically discussed here. limited.
  • the touch panel 1071 can cover the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is transmitted to the processor 110 to determine the type of the touch event, and then the processor 110 determines the type of the touch event according to the touch event.
  • the type provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to implement the input and output functions of the mobile terminal, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated. The implementation of the input and output functions of the mobile terminal is not limited here.
  • the interface unit 108 serves as an interface through which at least one external device can be connected to the mobile terminal 100 .
  • external devices may include a wired or wireless headphone port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more elements within the mobile terminal 100 or may be used to connect between the mobile terminal 100 and an external device. Transfer data between devices.
  • Memory 109 may be used to store software programs as well as various data.
  • the memory 109 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.;
  • the storage data area may Store data created based on the use of the mobile phone (such as audio data, phone book, etc.), etc.
  • memory 109 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 110 is the control center of the mobile terminal, using various interfaces and lines to connect various parts of the entire mobile terminal, by running or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109 , execute various functions of the mobile terminal and process data, thereby overall monitoring the mobile terminal.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor.
  • the application processor mainly processes the operating system, user interface, application programs, etc., and modulation
  • the demodulation processor mainly handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 110 .
  • the mobile terminal 100 may also include a power supply 111 (such as a battery) that supplies power to various components.
  • a power supply 111 such as a battery
  • the power supply 111 may be logically connected to the processor 110 through a power management system, thereby managing charging, discharging, and power consumption management through the power management system. and other functions.
  • the mobile terminal 100 may also include a Bluetooth module, etc., which will not be described again here.
  • FIG. 2 is an architecture diagram of a communication network system provided by an embodiment of the present application.
  • the communication network system is an LTE system of universal mobile communication technology.
  • the LTE system includes UEs (User Equipment, User Equipment) connected in sequence. )201, E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core Network) 203 and the operator's IP business 204.
  • UEs User Equipment, User Equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core Network
  • UE201 may be the above-mentioned mobile terminal 100, which will not be described again here.
  • E-UTRAN202 includes eNodeB2021 and other eNodeB2022, etc.
  • eNodeB2021 can be connected to other eNodeB2022 through backhaul (for example, X2 interface), eNodeB2021 is connected to EPC203, and eNodeB2021 can provide access from UE201 to EPC203.
  • backhaul for example, X2 interface
  • EPC 203 may include MME (Mobility Management Entity, mobility management entity) 2031, HSS (Home Subscriber Server, home user server) 2032, other MME 2033, SGW (Serving Gate Way, service gateway) 2034, PGW (PDN Gate Way, packet data Network Gateway) 2035 and PCRF (Policy and Charging Rules Function, policy and charging functional entity) 2036, etc.
  • MME2031 is a control node that processes signaling between UE201 and EPC203, and provides bearer and connection management.
  • HSS2032 is used to provide some registers to manage functions such as the home location register (not shown in the figure), and to save some user-specific information about service characteristics, data rates, etc. All user data can be sent through SGW2034.
  • PGW2035 can provide IP address allocation and other functions for UE 201.
  • PCRF2036 is the policy and charging control policy decision point for business data flows and IP bearer resources. It is the policy and charging execution function. The unit (not shown) selects and provides available policy and charging control decisions.
  • IP services 204 may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) or other IP services.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • Figure 3 is a flow chart of a processing method provided by an embodiment of the present application.
  • the method in the embodiment of the present application can be executed by a communication device.
  • the method may include the following steps:
  • S10 Determine the size of the contention window based on the channel status within the first reference time and/or the feedback information received within the second reference time.
  • the processing method is applied to the adjustment of the side link competition window.
  • the size of the competition window can be based on the data channel.
  • HARQ feedback is dynamically adjusted. For scenarios where there is no HARQ feedback to the data channel or only HARQ-NACK feedback to the data channel, the current random backoff mechanism based on the contention window is not available.
  • the first reference time is determined by the associated position of the COT (Channel Occupancy Time, channel occupancy time) where the most recent transmission is located, for example, the first reference time is determined by the COT position where the most recent transmission is located, or the first reference time It is determined by at least one candidate position of the first transmission in the COT where the most recent transmission is located, or the first reference time is determined by the N sensing time slots corresponding to the contention window associated with the COT where the most recent transmission is located, N is a positive integer, or the first The reference time is determined by the COT position associated with the most recent contention window size update, or the first reference time is determined by the COT position of the most recent transmission including HARQ enabled.
  • the COT Channel Occupancy Time, channel occupancy time
  • the second reference time is determined by the associated position of the COT where the most recent transmission was located, for example, the second reference time is determined by the COT position where the most recent transmission was located, or the second reference time is determined by the COT associated with the most recent contention window size update The location is determined, or the second reference time is determined by the COT location of the most recent transmission including HARQ enabled.
  • the COT where the latest transmission is located is the COT occupied by the transmission closest to the current transmission.
  • the COT associated with the latest contention window size update is the COT occupied by the transmission closest to this transmission, and its corresponding contention window size is used in the channel access process used by the corresponding transmission. An update has occurred.
  • the most recent transmission including HARQ-enabled COT is a COT including HARQ-enabled PSSCH channel transmission; that is, the PSSCH channel transmitted within the COT has associated HARQ feedback; or the PSSCH channel transmitted within the COT has associated HARQ feedback; or the COT transmitted within the COT
  • the PSCCH channel that schedules the PSSCH channel indicates that HARQ feedback is enabled.
  • the channel status includes one or more of LBT (listen before talk) success, LBT failure, proportion of LBT failures, and proportion of sensing time slots with busy channels.
  • LBT listen before talk
  • the channel status It is mainly used to describe the current busyness and occupancy of the channel.
  • the channel status within the first reference time is an important basis for determining the size of the contention window.
  • the feedback information includes one or more of the number of NACK feedback, the proportion of NACK feedback, the number of ACK feedback, and the proportion of ACK feedback.
  • the feedback information is mainly used to describe the information transmission of the current channel. In this case, the feedback information received within the second reference time is an important basis for determining the size of the contention window.
  • the step of determining the size of the contention window according to the channel status within the first reference time in step S10 includes: if there is no HARQ feedback to the data channel, adjusting the contention window according to the channel status within the first reference time. size or maintain the size of the contention window.
  • the step of determining the size of the contention window based on the feedback information received within the second reference time includes: if only HARQ-NACK feedback information is received, determining the size of the contention window based on the HARQ-NACK feedback information received within the second reference time. Feedback information to adjust the size of the competition window.
  • the execution subject communication device of the processing method of the embodiment of the present application prepares to send the PSCCH (Physical Sidelink Control Channel, physical side link control channel) channel and/or PSSCH channel, PSFCH (Physical Sidelink Feedback Channel, physical side link feedback channel) channel , S-SS/PSBCH (Sidelink-Synchronization Signal/Physical Sidelink Broadcast Channel, side link synchronous broadcast information block) at least one, the communication device needs to perform Type 1 channel access (Type 1 channel access).
  • Type 1 channel access Type 1 channel access
  • the communication device listens to the channel and waits until a certain frequency channel is available for at least a period of time called a delay period. This delay period generally consists of one 16us plus several 9us time slots. The length of the delay period depends on the channel access priority category. Each priority category corresponds to a specific parameter, which is used to determine the delay period.
  • Channel Access Priority Class (p) is: channel access priority category
  • Channel Access Priority Class (CAPC) for DL is: channel access priority category about DL (down-link, downlink)
  • CW min,p is: the size of the minimum contention window of channel access priority category p
  • CW max,p is: the size of the maximum contention window of the channel access priority category p
  • T m cot,p is: the channel access priority category p, the maximum time that the frequency band can be occupied after completing an LBT
  • allowedCW p sizes is: channel access priority category p, the size of the allowed contention window.
  • Channel Access Priority Class (p) is: channel access priority category
  • Channel Access Priority Class (CAPC) for UL is: channel access priority category for UL (up-link, uplink)
  • CW min,p is: the size of the minimum contention window of channel access priority category p
  • CW max,p is: the size of the maximum contention window of the channel access priority category p
  • T ulmcot,p is: the channel access priority category p, the maximum time that the frequency band can be occupied after completing an LBT
  • allowedCW p sizes are : Channel access priority category p, allowed contention window size (CWS, Contention Window Size).
  • Tulm cot,p 6ms
  • it can be increased to 8ms by inserting one or more sensing time slots.
  • the minimum duration of the sensing slot is 100us.
  • the maximum duration before including any such perception gap is 6ms.
  • the communication device requires Type 1 channel access.
  • the communication device listens to the channel and waits until a frequency channel is available for at least a period of time, called a delay period.
  • This delay period It generally consists of one 16us plus several 9us time slots. The length of the delay period depends on the channel access priority category. Refer to Table 1 and Table 2 above. If the received energy is lower than the threshold for at least 4us in each 9us time slot, it means that the channel is available, that is, the channel is idle.
  • the communication device starts the random backoff mechanism.
  • the random backoff process first uses a random number to initialize the backoff counter within the contention window (Contention Window, CW).
  • the random backoff machine has formulated four different channel access priority categories.
  • Each channel access priority category has a separate contention window, and the maximum and minimum values of the contention window size are Different channel access priority categories are configured per logical channel. Likewise, different delay periods are used for different channel access priority categories.
  • the communication device uses the type 1 channel access process associated with the channel access priority category p for transmission, the communication device will maintain the size of the contention window and apply the embodiment of the present application before judging whether the backoff counter returns to zero. processing method to adjust the size of the contention window for these transmissions.
  • the size of the contention window is determined based on the channel status within the first reference time and/or the feedback information received during the second reference time.
  • the random backoff mechanism in the case of no HARQ feedback of the data channel or in the case of only NACK feedback of the data channel or in the case of non-control/data channel, after the random backoff mechanism is started, according to the first reference time
  • the internal channel status and/or the feedback information received within the second reference time determines the size of the competition window, adjusts the size of the competition window based on the occupancy of the channel and the information transmission situation, and realizes the size adaptation of the competition window in the random backoff mechanism. Adjustments to avoid communication conflicts between multiple communication devices.
  • the processing methods include:
  • Step S1 For each channel access priority category p, set the contention window size to the minimum contention window size corresponding to each channel access priority category p, or the communication device keeps the contention window size unchanged.
  • the processing method in the embodiment of the present application can be applied to communication equipment.
  • the communication device to which the processing method of the present application is applied can serve as a sending terminal in inter-device communication to communicate with the receiving terminal.
  • the contention window size is set to the channel access priority category p Minimum contention window size to adapt to.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: setting the contention window size to the minimum contention window size of each channel access priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: setting the contention window size to the minimum contention window size of the random channel access priority.
  • the step of setting the contention window size to a minimum contention window size adapted to the channel access priority includes: setting the contention window size to a contention window size determined by the channel access priority of the communication device.
  • the step of setting the contention window size to a minimum contention window size adapted to the channel access priority includes: setting the contention window size to a contention window size determined by the channel access priority of the receiving terminal.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: if the number of receiving terminals is greater than 1, the contention window size can be set to the minimum channel access of the receiving terminal. Contention window size determined by priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: if the number of receiving terminals is greater than 1, the contention window size can be set to the maximum channel access of the receiving terminal. Contention window size determined by priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: if the number of receiving terminals is greater than 1, the contention window size can be set to the random channel access of the receiving terminal. Contention window size determined by priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: setting the contention window size to correspond to the per-packet priority (PPPP, ProSe per-packet priority) of near field communication
  • the contention window size is determined by the channel access priority.
  • the per-packet priority of near field communication is provided to the physical layer by the upper layer. There is a correspondence between the category of channel access priority and the priority of each packet of near field communication, and such correspondence may be preset.
  • Step S2 Determine the channel status within the first reference time. If the channel status satisfies the first preset condition, execute step S3; if the channel status satisfies the second preset condition, execute step S1.
  • the channel status includes LBT success and LBT failure
  • the first preset condition is LBT failure
  • the second preset condition is LBT success
  • Step S2A1 count whether LBT failed on the corresponding time-frequency resource before the first reference time. If LBT fails, perform step S3; if LBT succeeds, perform step S1; optionally, the time-frequency resource is available For transmitting at least one of the PSCCH channel, the PSSCH channel, the PSFCH channel and the S-SS/PSBCH.
  • the channel status also includes the communication device performing first transmission and/or non-first transmission in the unlicensed spectrum.
  • the first preset condition is that the communication device performs non-first transmission in the unlicensed spectrum.
  • the second preset condition is that the communication device performs non-first transmission in the unlicensed spectrum.
  • the device transmits for the first time in the unlicensed spectrum.
  • Step S2 also includes:
  • Step S2A2 Check whether the communication device performs the first transmission in the unlicensed spectrum on the corresponding time-frequency resource. If the communication device does not perform the first transmission in the unlicensed spectrum, perform step S3; if the communication device performs the first transmission in the unlicensed spectrum, Then perform step S1; optionally, the time-frequency resource can be used to transmit at least one of the PSCCH channel, the PSSCH channel, the PSFCH channel and the S-SS/PSBCH. In this way, when performing the first transmission in an unlicensed spectrum, there is no a priori information about the channel status, and step S1 can be directly performed to improve communication efficiency.
  • the channel status further includes that the interval between the first reference time and the currently expected COT is greater than the third threshold value and less than or equal to the third threshold value, and the first preset condition is that the first reference time is equal to or less than the third threshold value.
  • the interval between the currently expected COT is less than or equal to the third threshold value, and the second preset condition is that the interval between the first reference time and the currently expected COT is greater than the third threshold value.
  • Step S2 also includes:
  • Step S2A3 if the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, then execute step S3; if the interval between the first reference time and the currently expected COT is greater than the third threshold value, then execute step S1.
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority; If the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, the contention window size is adjusted according to the channel state. In this way, time domain restrictions are introduced to ensure that the interval between two adjacent COTs is not too long and that channel status information is available, thus avoiding communication conflicts caused by adjusting the contention window size based on unavailable channel status information.
  • the Tw is a positive integer, and its unit is milliseconds or hours.
  • Slot for example, the value of Tw can be 20, 40, 60, etc., and Tw can be equal to the third threshold value. That is, if the interval between the first reference time and the currently expected COT is greater than the third threshold, step S1 is executed; if the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, Then execute step S2A1 or step S2A2.
  • the Tw is a positive integer, in which The unit is milliseconds or time slots.
  • the value of Tw can be 20, 40, 60, etc.
  • Tw can be equal to the third threshold value
  • the associated competition window is the competition window of the last successful COT.
  • step S1 is executed; if the distance between the most recent updated COT associated with the contention window size and the current expected COT is less than or equal to If the third threshold value is reached, step S2A1 or step S2A2 is executed.
  • the first reference time is determined by the COT location of the most recent transmission
  • the first reference time is determined by at least one candidate position of the first transmission within the COT in which the most recent transmission is located;
  • the first reference time is determined by the N sensing time slots corresponding to the contention window associated with the COT where the latest transmission is located;
  • the first reference time is determined by the COT position associated with the most recent contention window size update.
  • the first reference time is determined by the COT position where the most recent transmission includes HARQ enablement.
  • the first reference time is determined by the COT location of the latest transmission.
  • the communication device when the communication device prepares to transmit PSSCH9, the communication device performs type 1 channel access, and when the communication device determines the contention window size, the The first reference time is determined by the COT location of the latest transmission.
  • the base station instructs PSSCH1 to transmit at time T1
  • the communication device performs type 1 channel access before time T1
  • the communication device fails LBT at time T1 and cannot transmit.
  • the A reference time is the T1 time.
  • the rectangular box represents a COT.
  • the first reference time is the COT starting position last scheduled and/or initiated by the communication device.
  • time T1 is the first reference time.
  • the first reference time is specified by the base station.
  • the base station works in mode 2, that is, the communication device determines that the initial transmission start position is T1 according to the sensing and selection process, then the T1 time is the first reference time.
  • the first reference time is determined autonomously by the communication device.
  • the PSCCH channel and/or at least one of the PSCCH channel and/or the PSSCH channel, the PSFCH channel, and the S-SS/PSBCH are transmitted within the COT used to determine the first reference time, when the channel access procedure (channel access procedure) is used,
  • the contention window size has been updated.
  • the COT used to determine the first reference time includes HARQ-enabled PSSCH channel transmission; that is, the PSSCH channel transmitted within the COT has associated HARQ feedback; or the scheduled PSSCH channel transmitted within the COT
  • the PSCCH channel indicates that HARQ feedback is enabled.
  • Step S3 Increase the competition window size.
  • step S3 adjust the competition window size CWp to the next larger value until reaching CWmax; that is, set the competition window size to the next larger value, for example, set the competition window size to the next larger value.
  • Window size increased from 3 to 7.
  • the next one refers to the larger number among the two adjacent numbers in a group of numbers.
  • Step S4 Keep the competition window size unchanged.
  • step S4 for each channel access priority category p, maintain the value of the contention window size CWp; perform step S1 or perform step S2. That is, the competition window size is maintained, and step S1 or step S2 is executed.
  • the size of the contention window is determined according to steps S1 to S4 described above, and the corresponding parameters are applied to the channel access procedure.
  • step S1 After the terminal executes step S1, it executes step S2. According to the judgment condition of step S2, if the condition is met, it returns to step S1 and Determine the size of the competition window, and apply the corresponding parameters to the channel access procedure; if the conditions are not met, execute step S3, and execute step S4. After executing step S4, determine the size of the competition window, and Apply the corresponding parameters to the channel access procedure.
  • each of the above-mentioned steps S1, S2, S3 and S4 can be performed independently and does not depend on the previous steps.
  • the terminal determines the size of the contention window and applies the corresponding parameters to the channel access procedure.
  • the channel status includes that the proportion of LBT failures within the first reference time is greater than the first threshold and less than or equal to the first threshold, and the first preset condition is LBT within the first reference time.
  • the proportion of failures is greater than the first threshold, and the second preset condition is that the proportion of LBT failures within the first reference time is less than or equal to the first threshold.
  • Step S2 includes:
  • Step S2B1 count the proportion of LBT failures on the corresponding time-frequency resources before the first reference time. If the proportion of LBT failures is greater than the first threshold, perform step S3; if the proportion of LBT failures is less than or equal to If the first threshold value is reached, step S1 is executed; optionally, the time-frequency resource can be used to transmit at least one of the PSCCH channel, the PSSCH channel, the PSFCH channel and the S-SS/PSBCH.
  • the channel status includes first transmission and non-first transmission by the communication device in the unlicensed spectrum.
  • the first preset condition is that the communication device performs non-first transmission in the unlicensed spectrum.
  • the second preset condition is that the communication device performs non-first transmission in the unlicensed spectrum.
  • Licensed spectrum for first transmission, step S2 includes:
  • Step S2B2 Check whether the communication device performs the first transmission in the unlicensed spectrum on the corresponding time-frequency resource. If the communication device does not perform the first transmission in the unlicensed spectrum, perform step S3; if the communication device performs the first transmission in the unlicensed spectrum, Then perform step S1; optionally, the time-frequency resource can be used to transmit at least one of the PSCCH channel, the PSSCH channel, the PSFCH channel and the S-SS/PSBCH. In this way, when performing the first transmission in an unlicensed spectrum, there is no a priori information about the channel status, and step S1 can be directly performed to improve communication efficiency.
  • the channel status includes that the interval between the first reference time and the current expected COT is greater than the third threshold value and less than or equal to the third threshold value
  • the first preset condition is that the interval between the first reference time and the current expected COT is greater than the third threshold value and less than or equal to the third threshold value.
  • the interval between the expected COT is less than or equal to the third threshold value
  • the second preset condition is that the interval between the first reference time and the currently expected COT is greater than the third threshold value.
  • Step S2B3 if the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, then execute step S3; if the interval between the first reference time and the currently expected COT is greater than the third threshold value, then execute step S1.
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority; If the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, the contention window size is adjusted according to the channel state. In this way, time domain restrictions are introduced to ensure that the interval between two adjacent COTs is not too long and that channel status information is available, thus avoiding communication conflicts caused by adjusting the contention window size based on unavailable channel status information.
  • the Tw is a positive integer, and its unit is milliseconds or hours.
  • Slot for example, the value of Tw can be 20, 40, 60, etc., and Tw can be equal to the third threshold value. That is, if the interval between the first reference time and the currently expected COT is greater than the third threshold, step S1 is executed; if the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, Then execute step S2B1 or step S2B2.
  • step S1 is executed; otherwise, step S2B1 or step S2B2 is executed.
  • Tw is a positive integer, in which The unit is milliseconds or time slots.
  • the value of Tw can be 20, 40, 60, etc.
  • Tw can be equal to the third threshold value, and the associated competition window is the competition window of the last successful COT.
  • step S1 is executed; if the distance between the most recent updated COT associated with the contention window size and the current expected COT is less than or equal to If the third threshold value is reached, step S2B1 or step S2B2 is executed.
  • the first reference time is determined by the COT location of the most recent transmission
  • the first reference time is determined by at least one candidate position of the first transmission within the COT in which the most recent transmission is located;
  • the first reference time is determined by the N sensing time slots corresponding to the contention window associated with the COT where the latest transmission is located;
  • the first reference time is determined by the COT position associated with the most recent contention window size update.
  • the first reference time is determined by the position of the COT whose latest transmission includes HARQ enablement.
  • the first reference time is determined by the COT location of the latest transmission.
  • the communication device when the communication device prepares to transmit PSSCH9, the communication device performs type 1 channel access, and when the communication device determines the contention window size, the The first reference time is determined by the COT location of the latest transmission.
  • the base station instructs PSSCH1 to transmit at time T1
  • the communication device performs type 1 channel access before time T1
  • the communication device fails LBT at time T1 or the proportion of LBT failure is greater than the first time.
  • the communication equipment continues to perform LBT, and LBT still fails at time T2 or the proportion of LBT failures is still greater than the first threshold value, and transmission cannot be performed; the communication equipment continues to perform LBT, and LBT succeeds or LBT fails at time T3. If the proportion is still less than or equal to the first threshold value, transmission can be performed.
  • the first reference time is from time T1 to time T3.
  • the rectangular box represents a COT.
  • the first reference time is a plurality of candidate positions starting from the latest scheduled COT of the communication device.
  • the base station operates in mode 1, that is, the base station instructs the communication device to transmit at multiple candidate locations, then the multiple candidate locations are the first reference times.
  • the first reference time is specified by the base station.
  • the base station works in mode 2, that is, the communication device determines multiple candidate locations for initial transmission based on the sensing and selection process, and the multiple candidate locations are the first reference time.
  • the first reference time is determined autonomously by the communication device.
  • the first threshold value is configured by high-layer signaling.
  • the first threshold value is predefined.
  • the proportion of LBT failures is determined by the ratio of the number of LBT failures and the number of candidate positions in one transmission.
  • the contention window is used when channel access procedure is used The size has been updated.
  • the COT used to determine the first reference time includes HARQ-enabled PSSCH channel transmission; that is, the PSSCH channel transmitted within the COT has associated HARQ feedback; or the scheduled PSSCH channel transmitted within the COT
  • the PSCCH channel indicates that HARQ feedback is enabled.
  • the channel status includes that the proportion of sensing time slots with busy channels within the first reference time is greater than the second threshold and less than or equal to the second threshold, and the first preset condition is the first The proportion of sensing time slots with busy channels within the reference time is greater than the second threshold, and the second preset condition is that the proportion of sensing time slots with busy channels within the first reference time is less than or equal to the second threshold, step S2 include:
  • Step S2C1 count the number of occurrences of sensing time slots with busy channels at the first reference time. If the proportion of sensing time slots with busy channels within the first reference time is greater than the second threshold, then perform step S3; if the first reference time If the proportion of sensing time slots with busy inner channels is less than or equal to the second threshold, step S1 is performed.
  • the channel status includes first transmission and non-first transmission by the communication device in the unlicensed spectrum.
  • the first preset condition is that the communication device performs non-first transmission in the unlicensed spectrum.
  • the second preset condition is that the communication device performs non-first transmission in the unlicensed spectrum.
  • Licensed spectrum for first transmission, step S2 includes:
  • Step S2C2 Check whether the communication device performs the first transmission in the unlicensed spectrum on the corresponding time-frequency resource. If the communication device does not perform the first transmission in the unlicensed spectrum, perform step S3; if the communication device performs the first transmission in the unlicensed spectrum, Then perform step S1; optionally, the time-frequency resource can be used to transmit at least one of the PSCCH channel, the PSSCH channel, the PSFCH channel, and the S-SS/PSBCH. In this way, when performing the first transmission in an unlicensed spectrum, there is no a priori information about the channel status, and step S1 can be directly performed to improve communication efficiency.
  • the channel status includes that the interval between the first reference time and the current expected COT is greater than the third threshold value and less than or equal to the third threshold value
  • the first preset condition is that the interval between the first reference time and the current expected COT is greater than the third threshold value and less than or equal to the third threshold value.
  • the interval between the expected COT is less than or equal to the third threshold value
  • the second preset condition is that the interval between the first reference time and the currently expected COT is greater than the third threshold value.
  • Step S2C3 if the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, then execute step S3; if the interval between the first reference time and the currently expected COT is greater than the third threshold value, then execute step S1.
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority; If the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, the contention window size is adjusted according to the channel state. In this way, time domain restrictions are introduced to ensure that the interval between two adjacent COTs is not too long and that channel status information is available to avoid communication conflicts caused by adjusting the contention window size based on unavailable status information.
  • the Tw is a positive integer, and its unit is milliseconds or hours.
  • Slot for example, the value of Tw can be 20, 40, 60, etc., and Tw can be equal to the third threshold value. That is, if the interval between the first reference time and the currently expected COT is greater than the third threshold, step S1 is executed; if the interval between the first reference time and the currently expected COT is less than or equal to the third threshold, Then execute step S2C1 or step S2C2.
  • step S1 is executed; otherwise, step S2C1 or step S2C2 is executed, optionally, the Tw is a positive integer, in which The unit is milliseconds or time slots.
  • the value of Tw can be 20, 40, 60, etc.
  • Tw can be equal to the third threshold value, and the associated competition window is the competition window of the last successful COT.
  • step S1 is executed; if the distance between the most recent updated COT associated with the contention window size and the current expected COT is less than or equal to If the third threshold value is reached, step S2C1 or step S2C2 is executed.
  • the first reference time is determined by the COT location of the most recent transmission
  • the first reference time is determined by at least one candidate position of the first transmission within the COT in which the most recent transmission is located;
  • the first reference time is determined by the N sensing time slots corresponding to the contention window associated with the COT where the latest transmission is located;
  • the first reference time is determined by the COT position associated with the most recent contention window size update.
  • the first reference time is determined by the position of the COT whose latest transmission includes HARQ enablement.
  • the first reference time is N sensing slots (Sensing slots) corresponding to the random number N generated by the communication device in the latest competition window, and the sensing slot is a channel detection unit.
  • the number of occurrences of busy channel sensing time slots is counted as Y. If the communication device detects that the channel is busy within a 9us sensing time slot, the number of busy channel sensing time slots is increased by 1, and the initial value is 0. For example, referring to FIG. 8 , N sensing time slots with idle channels appear one after another, during which several sensing time slots with busy channels appear.
  • the number of occurrences of a busy sensing time slot is Y
  • the ratio of the number of occurrences of a busy sensing time slot to the first reference time is Y/N;
  • the second threshold is configured by high-layer signaling.
  • the second threshold is predefined.
  • the contention window is used when channel access procedure is used The size has been updated.
  • the COT used to determine the first reference time includes HARQ-enabled PSSCH channel transmission; that is, the PSSCH channel transmitted within the COT has associated HARQ feedback; or the scheduled PSSCH channel transmitted within the COT
  • the PSCCH channel indicates that HARQ feedback is enabled.
  • the processing method of this application when the side link control information and/or high-level signaling feedback Sidelink HARQ as NACK only, the receiving terminal will only When the received PSSCH is correctly decoded, Sidelink HARQ-NACK is fed back.
  • the processing methods include:
  • Step Q1 For each channel access priority category p, set the contention window size to the minimum contention window size corresponding to each channel access priority category p, or the communication device keeps the contention window size unchanged.
  • the processing method in the embodiment of the present application can be applied to communication equipment.
  • the communication device to which the processing method of the present application is applied can serve as a sending terminal in inter-device communication to communicate with the receiving terminal.
  • the contention window size is set to the channel access priority category p Minimum contention window size to adapt to.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: setting the contention window size to the minimum contention window size of each channel access priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: setting the contention window size to the minimum contention window size of the random channel access priority.
  • the step of setting the contention window size to a minimum contention window size adapted to the channel access priority includes: setting the contention window size to a contention window size determined by the channel access priority of the communication device.
  • the step of setting the contention window size to a minimum contention window size adapted to the channel access priority includes: setting the contention window size to a contention window size determined by the channel access priority of the receiving terminal.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: if the number of receiving terminals is greater than 1, the contention window size can be set to the minimum channel access of the receiving terminal. Contention window size determined by priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: if the number of receiving terminals is greater than 1, the contention window size can be set to the maximum channel access of the receiving terminal. Contention window size determined by priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: if the number of receiving terminals is greater than 1, the contention window size can be set to the random channel access of the receiving terminal. Contention window size determined by priority.
  • the step of setting the contention window size to the minimum contention window size adapted to the channel access priority includes: setting the contention window size to correspond to the per-packet priority (PPPP, ProSe per-packet priority) of near field communication
  • the contention window size is determined by the channel access priority.
  • the per-packet priority of near field communication is provided to the physical layer by the upper layer. There is a correspondence between the category of channel access priority and the priority of each packet of near field communication, and such correspondence may be preset.
  • Step Q2 Determine the feedback information received within the second reference time. If the feedback information satisfies the third preset condition, step Q3 is executed; if the feedback information satisfies the fourth preset condition, step Q1 is executed.
  • the feedback information includes the number of NACK feedbacks received by the communication device within the second reference time
  • the third preset condition is that the number of NACK feedbacks received by the communication device within the second reference time is greater than a fourth threshold. Assuming that the condition is that the number of NACK feedback received within the second reference time is less than or equal to the fourth threshold, step Q2 includes:
  • Step Q2A1 count the number of HARQ-NACK feedbacks corresponding to the side-link physical control channel and/or the side-link physical data channel associated with the second reference time, that is, the number of NACK feedbacks received by the communication device. If the communication device receives If the number of NACK feedbacks received by the communication device is greater than the fourth threshold, perform step Q3; if the number of NACK feedbacks received by the communication device is less than or equal to the fourth threshold, perform step Q1;
  • step Q2 includes:
  • Step Q2A2 Check whether the communication device performs the first transmission in the unlicensed spectrum on the corresponding time-frequency resource. If the communication device does not perform the first transmission in the unlicensed spectrum, perform step Q3; if the communication device performs the first transmission in the unlicensed spectrum, Then perform step Q1; optionally, the time-frequency resource can be used to transmit at least one of the PSCCH channel, the PSSCH channel, the PSFCH channel and the S-SS/PSBCH. In this way, for the first transmission in the unlicensed spectrum, there is no a priori information about the channel status, and step Q1 can be directly performed to improve communication efficiency.
  • Step Q2 includes:
  • Step Q2A3 if the interval between the second reference time and the currently expected COT is less than or equal to the sixth threshold, then execute step Q3; if the interval between the second reference time and the currently expected COT is greater than the sixth threshold value, then perform step Q1.
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority; If the interval between the first reference time and the currently expected COT is less than or equal to the sixth threshold, the contention window size is adjusted according to the feedback information received within the second reference time. In this way, time domain restrictions are introduced to ensure that the interval between two adjacent COTs is not too long and that channel status information is available, thus avoiding communication conflicts caused by adjusting the contention window size based on unavailable channel status information.
  • the Tw is a positive integer, and its unit is milliseconds or time.
  • Slot for example, the value of Tw can be 20, 40, 60, etc., and Tw can be equal to the sixth threshold value. That is, if the interval between the second reference time and the currently expected COT is greater than the sixth threshold, step Q1 is executed; if the interval between the second reference time and the currently expected COT is less than or equal to the sixth threshold, Then execute step Q2A1 or step Q2A2.
  • step Q1 is executed; otherwise, step Q2A1 or step Q2A2 is executed, optionally, the Tw is a positive integer, in which The unit is milliseconds or time slots.
  • the value of Tw can be 20, 40, 60, etc. Tw can be equal to the sixth threshold value, and the associated competition window is the competition window of the last successful COT.
  • step Q1 is executed; if the distance between the latest updated COT associated with the contention window size and the current expected COT is less than or equal to If the third threshold value is reached, step Q2A1 or step Q2A2 is executed.
  • the second reference time is determined by the COT location of the latest transmission
  • the second reference time is determined by the COT position associated with the latest contention window size update
  • the second reference time is determined by a COT position whose latest transmission includes HARQ enablement.
  • the second reference time is the first complete time slot used for transmitting the side-link physical control channel and/or the side-link physical data channel within the COT most recently started by the communication device.
  • the second reference time is the first time slot used for transmitting the side-link physical control channel and/or the side-link physical data channel within the COT last started by the communication device.
  • the fourth threshold is configured by high-layer signaling.
  • the fourth threshold is predefined.
  • the channel access procedure channel access procedure
  • the COT used to determine the first reference time includes HARQ-enabled PSSCH channel transmission; that is, the PSSCH channel transmitted within the COT has associated HARQ feedback; or the scheduled PSSCH channel transmitted within the COT
  • the PSCCH channel indicates that HARQ feedback is enabled.
  • Step Q3 increase the competition window size.
  • step Q3 adjust the competition window size CWp to the next larger value until reaching CWmax; that is, set the competition window size to the next larger value, for example, set the competition window size to the next larger value.
  • Window size increased from 3 to 7.
  • the next one refers to the larger number among the two adjacent numbers in a group of numbers. When the number selected is the number with the largest serial number in a group of numbers, the number with the larger serial number is no longer selected, but the number with the largest serial number is always selected.
  • Step Q4 keep the competition window size unchanged.
  • step Q4 for each channel access priority category p, maintain the value of the contention window size CWp; perform step Q1 or perform step Q2. That is, the competition window size is maintained and step Q1 or step Q2 is performed.
  • the size of the contention window is determined according to steps Q1 to Q4 described above, and the corresponding parameters are applied to the channel access procedure.
  • step Q2 executes step Q2 after executing step Q1.
  • the terminal executes step Q2 after executing step Q1.
  • the terminal executes step Q2 after executing step Q1.
  • step Q2 determines the size of the competition window and apply the corresponding parameters to the channel access procedure; if the conditions are not met, perform step Q3, and perform step Q4.
  • step Q4 determine the size of the competition window, and Apply the corresponding parameters to the channel access procedure.
  • each of the above-mentioned steps Q1, Q2, Q3 and Q4 can be performed independently and does not depend on the previous steps.
  • the terminal determines the size of the contention window and applies the corresponding parameters to the channel access procedure.
  • the feedback information includes a proportion of NACK feedback received within the second reference time
  • the third preset condition is that the proportion of NACK feedback received within the second reference time is greater than the fifth threshold
  • the fourth The preset condition is that the proportion of NACK feedback received within the second reference time is less than or equal to the fifth threshold
  • Step Q2B1 count the proportion of HARQ-NACK feedback corresponding to the side-link physical control channel and/or the side-link physical data channel associated with the second reference time, that is, the proportion of NACK feedback received by the communication device. If the communication device receives If the proportion of NACK feedback received by the communication device is greater than the fifth threshold, step Q3 is executed; if the proportion of NACK feedback received by the communication device is less than or equal to the fifth threshold, step Q1 is executed.
  • Step Q2 includes:
  • Step Q2B2 counts whether the communication device performs the first transmission on the unlicensed spectrum on the corresponding time-frequency resource before the second reference time. If the communication device does not perform the first transmission on the unlicensed spectrum, perform step Q3; if the communication device performs the first transmission on the unlicensed spectrum. If the unlicensed spectrum is used for the first transmission, step Q1 is performed; optionally, the time-frequency resource can be used to transmit at least one of the PSCCH channel, the PSSCH channel, the PSFCH channel and the S-SS/PSBCH. In this way, for the first transmission in the unlicensed spectrum, there is no a priori information about the channel status, and step Q1 can be directly performed to improve communication efficiency.
  • Step Q2 includes:
  • Step Q2B3 if the interval between the second reference time and the currently expected COT is less than or equal to the sixth threshold, then execute step Q3; if the interval between the second reference time and the currently expected COT is greater than the sixth threshold value, then perform step Q1.
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority; If the interval between the second reference time and the currently expected COT is less than or equal to the sixth threshold, the feedback information received within the second reference time adjusts the competition window size. In this way, time domain restrictions are introduced to ensure that the interval between two adjacent COTs is not too long, that channel status information is available, and to avoid communication conflicts caused by adjusting the contention window size based on unavailable channel status information.
  • the Tw is a positive integer, and its unit is milliseconds or time.
  • Slot for example, the value of Tw can be 20, 40, 60, etc., and Tw can be equal to the sixth threshold value. That is, if the interval between the second reference time and the currently expected COT is greater than the sixth threshold, step Q1 is executed; if the interval between the second reference time and the currently expected COT is less than or equal to the sixth threshold, Then execute step Q2B1 or step Q2B2.
  • the Tw is a positive integer, in which The unit is milliseconds or time slots.
  • the value of Tw can be 20, 40, 60, etc.
  • Tw can be equal to the sixth threshold value
  • the associated competition window is the competition window of the last successful COT.
  • step Q1 is executed; if the distance between the latest updated COT associated with the contention window size and the current expected COT is less than or equal to If the sixth threshold value is reached, step Q2B1 or step Q2B2 is executed.
  • the second reference time is determined by the COT location of the latest transmission
  • the second reference time is determined by the COT position associated with the latest contention window size update
  • the second reference time is determined by a COT position whose latest transmission includes HARQ enablement.
  • the second reference time is the first complete time slot used for transmitting the side-link physical control channel and/or the side-link physical data channel within the COT most recently started by the communication device.
  • the second reference time is the first time slot used for transmitting the side-link physical control channel and/or the side-link physical data channel within the COT that was last started by the communication device.
  • the fourth threshold is configured by high-layer signaling.
  • the fourth threshold is predefined.
  • the contention window is used when channel access procedure is used The size has been updated.
  • the COT used to determine the first reference time includes HARQ-enabled PSSCH channel transmission; that is, the PSSCH channel transmitted within the COT has associated HARQ feedback; or the scheduled PSSCH channel transmitted within the COT
  • the PSCCH channel indicates that HARQ feedback is enabled.
  • Step Q3 increase the competition window size.
  • step Q3 adjust the competition window size CWp to the next larger value until reaching CWmax; that is, set the competition window size to the next larger value, for example, set the competition window size to the next larger value.
  • Window size increased from 3 to 7.
  • the next one refers to the larger number among the two adjacent numbers in a group of numbers. When the number selected is the number with the largest serial number in a group of numbers, the number with the larger serial number is no longer selected, but the number with the largest serial number is always selected.
  • Step Q4 keep the competition window size unchanged.
  • step Q4 for each channel access priority category p, maintain the value of the contention window size CWp; perform step Q1 or perform step Q2. That is, the competition window size is maintained and step Q1 or step Q2 is performed.
  • the size of the contention window is determined according to steps Q1 to Q4 described above, and the corresponding parameters are applied to the channel access procedure.
  • step Q2 executes step Q2 after executing step Q1.
  • the terminal executes step Q2 after executing step Q1.
  • the terminal executes step Q2 after executing step Q1.
  • step Q2 determines the size of the competition window and apply the corresponding parameters to the channel access procedure; if the conditions are not met, perform step Q3, and perform step Q4.
  • step Q4 determine the size of the competition window, and Apply the corresponding parameters to the channel access procedure.
  • each of the above-mentioned steps Q1, Q2, Q3 and Q4 can be performed independently and does not depend on the previous steps.
  • the terminal determines the size of the contention window and applies the corresponding parameters to the channel access procedure.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device can be mounted on the communication device in the above method embodiment.
  • the communication device can specifically be a mobile terminal.
  • the communication device shown in Figure 10 can be used to perform some or all of the functions in the method embodiments described in Figure 3, Figure 5, Figure 7 and Figure 9. Among them, the detailed description of each unit is as follows:
  • the acquisition unit 1101 is used to acquire the channel status within the first reference time and/or the feedback information received within the second reference time;
  • the processing unit 1102 is configured to determine the size of the contention window according to the channel status within the first reference time and/or the feedback information received within the second reference time.
  • the channel status includes at least one of the following: LBT success, LBT failure, proportion of LBT failures, and proportion of sensing time slots with busy channels;
  • the feedback information includes at least one of the following: the number of NACK feedback, the proportion of NACK feedback, the number of ACK feedback, and the proportion of ACK feedback.
  • processing unit 1102 is specifically configured to implement at least one of the following:
  • the size of the contention window is adjusted according to the HARQ-NACK feedback information received within the second reference time.
  • processing unit 1102 is also configured to do at least one of the following:
  • the contention window is increased
  • the proportion of LBT failures within the first reference time is less than or equal to the first threshold, keep the contention window size unchanged, or set the contention window size to the minimum contention window size adapted to the channel access priority;
  • the proportion of sensing time slots with busy channels within the first reference time is less than or equal to the second threshold value, keep the contention window size unchanged, or set the contention window size to the minimum contention window size adapted to the channel access priority;
  • the contention window is increased
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window is increased
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority.
  • processing unit 1102 is also configured to do at least one of the following:
  • the contention window size is set to the contention window size determined by the channel access priority corresponding to each packet priority of the near field communication.
  • processing unit 1102 is also configured to do at least one of the following:
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window size is kept unchanged, or the contention window size is set to the minimum contention window size adapted to the channel access priority
  • the contention window size should be kept unchanged, or the contention window size should be set to the minimum contention window size adapted to the channel access priority.
  • At least one of the following is included:
  • the first reference time is determined by at least one of the following:
  • the first reference time is determined by the COT location of the latest transmission
  • the first reference time is determined by at least one candidate position of the first transmission within the COT where the most recent transmission is located;
  • the first reference time is determined by the N sensing time slots corresponding to the contention window associated with the COT where the latest transmission is located;
  • the first reference time is determined by the COT position associated with the most recent contention window size update
  • the first reference time is determined by the COT position of the most recent transmission including HARQ enablement
  • the determination method of the second reference time includes at least one of the following:
  • the second reference time is determined by the COT location of the latest transmission
  • the second reference time is determined by the COT position associated with the most recent contention window size update
  • the second reference time is determined by the COT position where the most recent transmission includes HARQ enablement.
  • some steps involved in the image processing methods shown in Figures 3, 5, 7 and 9 can be performed by various modules in the image processing device shown in Figure 10.
  • Each unit in the image processing device shown in Figure 10 can be separately or entirely combined into one or several additional modules, or one (some) of the modules can be further divided into multiple functionally smaller modules. It is composed of units, which can achieve the same operation without affecting the realization of the technical effects of the embodiments of the present application.
  • the above units are divided based on logical functions.
  • the function of one module can also be implemented by multiple modules, or the functions of multiple modules can be implemented by one module.
  • the image processing device may also include other modules. In practical applications, these functions may also be implemented with the assistance of other modules, and may be implemented by multiple modules in cooperation.
  • FIG 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • This application also provides a communication terminal.
  • the mobile terminal includes a memory 1201, a processor 1202, and a processing program stored in the memory 1201 and executable on the processor 1202. When the processing program is executed by the processor, any of the above embodiments can be implemented. processing steps.
  • This application also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the steps of the processing method in any of the above embodiments are implemented.
  • the embodiments of mobile terminals and computer-readable storage media provided by this application include all technical features of each embodiment of the above-mentioned processing method.
  • the expansion and explanation content of the description is basically the same as that of each embodiment of the above-mentioned incoming call note method.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the methods in the above various possible implementations.
  • Embodiments of the present application also provide a chip, which includes a memory and a processor.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program from the memory, so that the device equipped with the chip executes the above various possible implementations. Methods.
  • An embodiment of the present application also provides a computer device for executing the methods in the above various possible implementations.
  • a computing device generally includes a processor and a memory.
  • the memory is used to store instructions.
  • the computing device executes each step or each program module of the present invention.
  • FIG 12 is a schematic diagram of the hardware structure of a controller 140 provided by this application.
  • the controller 140 includes: a memory 1401 and a processor 1402.
  • the memory 1401 is used to store program instructions.
  • the processor 1402 is used to call the program instructions in the memory 1401 to execute the steps performed by the controller in the above method embodiment. Its implementation principle and The beneficial effects are similar and will not be described again here.
  • the above-mentioned controller also includes a communication interface 1403, which can be connected to the processor 1402 through a bus 1404.
  • the processor 1402 can control the communication interface 1403 to implement the receiving and sending functions of the controller 140.
  • FIG 13 is a schematic diagram of the hardware structure of a network node 150 provided by this application.
  • the network node 150 includes: a memory 1501 and a processor 1502.
  • the memory 1501 is used to store program instructions.
  • the processor 1502 is used to call the program instructions in the memory 1501 to execute the steps performed by the first node in the above method embodiment. Its implementation principle and The beneficial effects are similar and will not be described again here.
  • the above-mentioned network node also includes a communication interface 1503, which can be connected to the processor 1502 through a bus 1504.
  • the processor 1502 can control the communication interface 1503 to implement the receiving and transmitting functions of the network node 150 .
  • the above integrated modules implemented in the form of software function modules can be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium and include a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to execute the methods of various embodiments of the present application. Some steps.
  • a computer program product includes one or more computer instructions.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, solid state drive, SSD), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic disc, optical disk), including several instructions to cause a terminal device (which can be a mobile phone, a computer, a server, a controlled terminal, or a network device, etc.) to execute the method of each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种处理方法、通信设备及存储介质,可应用于通信设备,所述通信设备根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。本申请实施例,在没有数据信道的HARQ反馈的情形下或者在只有数据信道的NACK反馈的情形下或者非控制/数据信道的情形下,在随机退避机制启动之后,根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小,实现依据信道的占用情况和信息传输情况对竞争窗口的大小进行调整,实现随机退避机制中竞争窗口的大小适应调整,避免多个通信设备之间的通信冲突。

Description

处理方法、通信设备及存储介质 技术领域
本申请涉及通信技术领域,具体涉及一种处理方法、通信设备及存储介质。
背景技术
在NR-U(NewRadio in Unlicensed Spectrum,非授权频谱的新无线电)中,为了避免多个发射机之间的冲突,引入了随机退避机制。随机退避过程首先在竞争窗口(Contention Window,CW)内采用一个随机数初始化退避计数器,该随机数来自均匀分布[0,CW],以9us的倍数表示传输信道必须保持可用的持续时间。竞争窗口越大,平均退避值就越大,发生冲突的概率就越低。
竞争窗口的大小可以进行调整,这是为了适应与信道的空闲状态,在NR-U中,竞争窗口的大小调整主要是根据对数据信道的HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)反馈动态调整。但是对于没有针对数据信道的HARQ反馈的情形或者只有针对数据信道的HARQ-NACK反馈的情形或者非控制/数据信道的情形,随机退避机制中竞争窗口的大小无法适应调整,容易引起多个发射机之间的通信冲突。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
申请内容
针对上述技术问题,本申请提供一种处理方法、通信设备及存储介质,解决竞争窗口的大小无法适应调整容易引起多个发射机之间的通信冲突的技术问题。
为解决上述技术问题,第一方面,本申请提供了一种处理方法,可应用于通信设备(如终端设备,具体如手机),包括以下步骤:
S10,根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。
可选地,所述处理方法包括以下至少一项:
所述信道状态包括以下至少一项:LBT成功、LBT失败、LBT失败所占比例以及信道繁忙的感知时隙所占比例;
所述反馈信息包括以下至少一项:NACK反馈的数目、NACK反馈所占比例、ACK反馈的数目以及ACK反馈所占的比例。
可选地,S10中所述根据第一参考时间内信道状态,确定竞争窗口的大小的步骤,包括以下至少一项:
若不存在对数据信道的HARQ反馈,则根据第一参考时间内信道状态,调整竞争窗口的大小或者保持竞争窗口的大小;
若仅接收到HARQ-NACK反馈信息,则根据第二参考时间内接收的HARQ-NACK反馈信息,调整竞争窗口的大小。
可选地,所述处理方法包括以下至少一项:
若第一参考时间内LBT失败,则增大竞争窗口;
若第一参考时间内LBT失败所占比例大于第一门限值,则增大竞争窗口;
若第一参考时间内信道繁忙的感知时隙所占比例大于第二门限值,则增大竞争窗口;
若第一参考时间内LBT成功,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间内LBT失败所占比例小于或等于第一门限值,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间内信道繁忙的感知时隙所占比例小于或等于第二门限值,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间内接收NACK反馈的数目大于第四门限值,则增大竞争窗口;
若第二参考时间内接收NACK反馈的数目小于或等于第四门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间内接收NACK反馈所占比例大于第五门限值,则增大竞争窗口;
若第二参考时间内接收NACK反馈所占比例小于或等于第五门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小。
可选地,所述将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括以下至少一项:
将竞争窗口大小设置为各个信道接入优先级的最小竞争窗口大小;
将竞争窗口大小设置为随机的信道接入优先级的最小竞争窗口大小;
将竞争窗口大小设置为通信设备的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的最小的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的最大的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的随机的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为近场通信的每包优先级对应的信道接入优先级确定的竞争窗口大小。
可选地,所述处理方法包括以下至少一项:
若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间与当前预期的COT之间的间隔小于或者等于第三门限值,则根据信道状态调整竞争窗口大小;
若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间与当前预期的COT之间的间隔小于或者等于第六门限值,则根据接收的反馈信息调整竞争窗口大小;
若通信设备在非授权频谱进行首次传输,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小。
可选地,所述处理方法包括以下至少一项:
所述第一参考时间的确定方式包括以下至少一项:
所述第一参考时间由最近传输所在的COT位置确定;
所述第一参考时间由最近传输所在的COT内第一次传输的至少一个候选位置确定;
所述第一参考时间由最近传输所在的COT关联的竞争窗口对应的N个感知时隙确定;
所述第一参考时间由最近竞争窗口大小更新关联的COT位置确定;
所述第一参考时间由最近传输包括HARQ使能的COT位置确定;
所述第二参考时间的确定方式包括以下至少一项:
所述第二参考时间由最近传输所在的COT位置确定;
所述第二参考时间由最近竞争窗口大小更新关联的COT位置确定;
所述第二参考时间由最近传输包括HARQ使能的COT位置确定。
本申请还提供一种通信设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的处理程序,所述处理程序被所述处理器执行时实现如上任一项所述的处理方法的步骤。
本申请还提供一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上任一项所述的处理方法的步骤。
本申请还提供一种通信装置,其中,所述通信装置包括:
调整模块,用于根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。
可选地,所述调整模块用于实现以下至少一项:
所述信道状态包括以下至少一项:LBT成功、LBT失败、LBT失败所占比例以及信道繁忙的感知时隙所占比例;
所述反馈信息包括以下至少一项:NACK反馈的数目、NACK反馈所占比例、ACK反馈的数目以及ACK反馈所占的比例。
可选地,所述调整模块还用于实现以下至少一项:
若不存在对数据信道的HARQ反馈,则根据第一参考时间内信道状态,调整竞争窗口的大小或者保持竞争窗口的大小;
若仅接收到HARQ-NACK反馈信息,则根据第二参考时间内接收的HARQ-NACK反馈信息,调整竞争窗口的大小。
可选地,所述调整模块还用于实现以下至少一项:
若第一参考时间内LBT失败,则增大竞争窗口;
若第一参考时间内LBT失败所占比例大于第一门限值,则增大竞争窗口;
若第一参考时间内信道繁忙的感知时隙所占比例大于第二门限值,则增大竞争窗口;
若第一参考时间内LBT成功,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间内LBT失败所占比例小于或等于第一门限值,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间内信道繁忙的感知时隙所占比例小于或等于第二门限值,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间内接收NACK反馈的数目大于第四门限值,则增大竞争窗口;
若第二参考时间内接收NACK反馈的数目小于或等于第四门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间内接收NACK反馈所占比例大于第五门限值,则增大竞争窗口;
若第二参考时间内接收NACK反馈所占比例小于或等于第五门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小。
可选地,所述将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括以下至少一项:
将竞争窗口大小设置为各个信道接入优先级的最小竞争窗口大小;
将竞争窗口大小设置为随机的信道接入优先级的最小竞争窗口大小;
将竞争窗口大小设置为通信设备的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的最小的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的最大的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的随机的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为近场通信的每包优先级对应的信道接入优先级确定的竞争窗口大小。
可选地,所述调整模块还用于实现以下至少一项:
若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间与当前预期的COT之间的间隔小于或者等于第三门限值,则根据信道状态调整竞争窗口大小;
若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间与当前预期的COT之间的间隔小于或者等于第六门限值,则根据接收的反馈信息调整竞争窗口大小;
若通信设备在非授权频谱进行首次传输,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小。
可选地,所述调整模块还用于实现以下至少一项:
所述第一参考时间的确定方式包括以下至少一项:
所述第一参考时间由最近传输所在的COT位置确定;
所述第一参考时间由最近传输所在的COT内第一次传输的至少一个候选位置确定;
所述第一参考时间由最近传输所在的COT关联的竞争窗口对应的N个感知时隙确定;
所述第一参考时间由最近竞争窗口大小更新关联的COT位置确定;
所述第一参考时间由最近传输包括HARQ使能的COT位置确定;
所述第二参考时间的确定方式包括以下至少一项:
所述第二参考时间由最近传输所在的COT位置确定;
所述第二参考时间由最近竞争窗口大小更新关联的COT位置确定;
所述第二参考时间由最近传输包括HARQ使能的COT位置确定。
如上所述,本申请的处理方法、通信设备及存储介质,可应用于通信设备(如手机),所述通信设备根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。本申请实施例,在没有数据信道的HARQ反馈的情形下或者在只有数据信道的NACK反馈的情形下或者非控制/数据信道的情形下,在随机退避机制启动之后,根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小,实现依据信道的占用情况和信息传输情况对竞争窗口的大小进行调整,实现随机退避机制中竞争窗口的大小适应调整,避免多个通信设备之间的通信冲突。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种实现本申请各个实施例的移动终端的硬件结构示意图;
图2是本申请实施例提供的一种通信网络系统架构图;
图3是本申请实施例提供的处理方法一实施例的流程示意图;
图4是本申请实施例提供的通信设备启动随机退避过程的流程示意图;
图5是本申请实施例提供的处理方法另一实施例的流程示意图;
图6是本申请实施例提供的第一参考时间由最近传输的COT位置确定的一场景示意图;
图7是本申请实施例提供的第一参考时间由最近传输的COT位置确定的另一场景示意图;
图8是本申请实施例提供的一个随机退避竞争窗口的N个信道空闲的分布示意图;
图9是本申请实施例提供的处理方法又一实施例的流程示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的另一种通信设备的结构示意图;
图12是本申请实施例提供的一种控制器140的硬件结构示意图;
图13是本申请实施例提供的一种网络节点150的硬件结构示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组, 但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
需要说明的是,在本文中,采用了诸如S1、S2等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行S2后执行S1等,但这些均应在本申请的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。
通信设备可以以各种形式来实施。例如,本申请中描述的通信设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等具有无线通信功能的移动终端,以及诸如数字TV、台式计算机等具有无线通信功能的固定终端。
后续描述中将以移动终端为例进行说明,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。
请参阅图1,其是本申请实施例提供的一种实现本申请各个实施例的移动终端的硬件结构示意图,该移动终端100可以包括:RF(Radio Frequency,射频)单元101、WiFi模块102、音频输出单元103、A/V(音频/视频)输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对移动终端的各个部件进行具体的介绍:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobilecommunication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(Code Division Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工长期演进)、TDD-LTE(Time Division Duplexing-Long Term Evolution,分时双工长期演进)、NR(New Radio,5G)和6G(6th generation mobile networks,6th generation wireless systems,第六代移动通信技术)等。
WiFi属于短距离无线传输技术,移动终端通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于移动终端的必须构成,完全可以根据需要在不改变申请的本质的范围内而省略。
音频输出单元103可以在移动终端100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与移动终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。
A/V输入单元104用于接收音频或视频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
移动终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。可选地,光传感器包括环境光传感器及接近传感器,可选地,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在移动终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。可选地,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。可选地,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。可选地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。
可选地,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元108用作至少一个外部装置与移动终端100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端100内的一个或多个元件或者可以用于在移动终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,可选地,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,可选地,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
移动终端100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,移动终端100还可以包括蓝牙模块等,在此不再赘述。
为了便于理解本申请实施例,下面对本申请的移动终端所基于的通信网络系统进行描述。
请参阅图2,图2为本申请实施例提供的一种通信网络系统架构图,该通信网络系统为通用移动通信技术的LTE系统,该LTE系统包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。
可选地,UE201可以是上述移动终端100,此处不再赘述。
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。可选地,eNodeB2021可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021连接到EPC203,eNodeB2021可以提供UE201到EPC203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体)2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033,SGW(Serving Gate Way,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy and Charging Rules Function,政策和资费功能实体)2036等。可选地,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035可以提供UE 201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)或其它IP业务等。
虽然上述以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本申请不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如GSM、CDMA2000、WCDMA、TD-SCDMA、5G以及未来新的网络系统(如6G)等,此处不做限定。
基于上述移动终端硬件结构以及通信网络系统,提出本申请各个实施例。
请参见图3,图3为本申请实施例提供的一种处理方法的流程图。本申请实施例的所述方法可以由通信设备来执行,在本申请处理方法第一实施例中,所述方法可包括如下步骤:
S10,根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。
在本申请的一些实施例中,处理方法应用于侧链路竞争窗口的调整,在NR-U/LAA(License Assisted Access,授权频谱辅助接入)中,竞争窗口的大小可以根据对数据信道的HARQ反馈动态调整,对于没有对数据信道的HARQ反馈或者只有对数据信道的HARQ-NACK反馈的场景,当前的基于竞争窗口的随机退避机制则不可用。
在一些实施例中,第一参考时间由最近传输所在的COT(Channel Occupancy Time,信道占据时间)的关联位置确定,例如,第一参考时间由最近传输所在的COT位置确定,或者第一参考时间由最近传输所在的COT内第一次传输的至少一个候选位置确定,或者第一参考时间由最近传输所在的COT关联的竞争窗口对应的N个感知时隙确定,N为正整数,或者第一参考时间由最近竞争窗口大小更新关联的COT位置确定,或者第一参考时间由最近传输包括HARQ使能的COT位置确定。
在一些实施例中,第二参考时间由最近传输所在的COT的关联位置确定,例如,第二参考时间由最近传输所在的COT位置确定,或者第二参考时间由最近竞争窗口大小更新关联的COT位置确定,或者第二参考时间由最近传输包括HARQ使能的COT位置确定。
在一些实施例中,所述最近传输所在的COT为离本次传输最近的一次传输所占据的COT。
在一些实施例中,所述最近竞争窗口大小更新关联的COT为离本次传输最近的一次传输所占据的COT,且其对应的传 输所使用的信道接入过程时,其对应的竞争窗口大小发生了更新。
在一些实施例中,所述最近传输包括HARQ使能的COT为包含HARQ使能的PSSCH信道传输的COT;即在该COT内传输的PSSCH信道存在关联的HARQ反馈;或者在该COT内传输的调度PSSCH信道的PSCCH信道指示HARQ反馈使能。
在一些实施例中,信道状态包括LBT(listen before talk,先听后说)成功、LBT失败、LBT失败所占比例和信道繁忙的感知时隙所占比例中的一项或多项,信道状态主要用于描述当前信道的繁忙程度和占用情况,第一参考时间内的信道状态是确定竞争窗口的大小的重要依据。
在一些实施例中,反馈信息包括NACK反馈的数目、NACK反馈所占比例、ACK反馈的数目以及ACK反馈所占的比例中的一项或多项,反馈信息主要用于描述当前信道的信息传输情况,第二参考时间内接收的反馈信息是确定竞争窗口的大小的重要依据。
在一些实施例中,步骤S10中根据第一参考时间内信道状态,确定竞争窗口的大小的步骤包括:若不存在对数据信道的HARQ反馈,则根据第一参考时间内信道状态,调整竞争窗口的大小或者保持竞争窗口的大小。
在一些实施例中,S10,根据第二参考时间内接收的反馈信息,确定竞争窗口的大小的步骤包括:若仅接收到HARQ-NACK反馈信息,则根据第二参考时间内接收的HARQ-NACK反馈信息,调整竞争窗口的大小。
在本实施例中,当高层信令或者当侧链路控制信息SCI(Sidelink Control Information,侧链路控制信息)将Sidelink HARQ(Sidelink Hybrid Acknowledgment Request,侧链路自动重传请求)反馈去使能(disable)时,接收终端不会对接收到的PSSCH(Physical Sidelink Share Channel,物理侧链路数据信道)进行Sidelink HARQ反馈;或者,当高层信令将Sidelink HARQ反馈为NACK only时,接收终端只会在没有正确解码接收到的PSSCH时反馈Sidelink HARQ-NACK。
当本申请实施例处理方法的执行主体通信设备准备发送PSCCH(Physical Sidelink Control Channel,物理侧链路控制信道)信道和/或PSSCH信道、PSFCH(Physical Sidelink Feadback Channel,物理侧链路反馈信道)信道、S-SS/PSBCH(Sidelink-Synchronization Signal/Physical Sidelink Broadcast Channel,侧链路同步广播信息块)至少之一时,通信设备需要进行Type 1 channel access(类型1信道接入)。首先,通信设备监听信道并等待,直到某频率信道至少在被称为延迟周期的一段时间内可用为止,此延迟周期一般由一个16us加若干个9us时隙组成。延迟周期的长度取决于信道接入优先级的类别,每一个优先级类别对应一个特定的参数,该参数用以确定延迟周期。
具体的,当通信设备进行Type 1channel access(类型1信道接入)时,相关参数如下表1和表2所示:
表1、Channel Access Priority Class(CAPC)
Figure PCTCN2022116564-appb-000001
在表1中,Channel Access Priority Class(p)为:信道接入优先级类别;Channel Access Priority Class(CAPC)for DL为:关于DL(down-link,下行链路)的信道接入优先级类别;m p为:信道接入优先级类别p,延迟周期Td=16us+m*9us中的m参数值.;CW min,p为:信道接入优先级类别p的最小竞争窗口的大小;CW max,p为:信道接入优先级类别p的最大竞争窗口的大小;T m cot,p为:信道接入优先级类别p,做完一次LBT后能够占用频段的最长时间;allowedCW psizes为:信道接入优先级类别p,允许的竞争窗口的大小。
表2、Channel Access Priority Class(CAPC)
Figure PCTCN2022116564-appb-000002
在表2中,Channel Access Priority Class(p)为:信道接入优先级类别;Channel Access Priority Class(CAPC)for UL为:关于UL(up-link,上行链路)的信道接入优先级类别;m p为:信道接入优先级类别p,延迟周期Td=16us+m*9us中的m参数值.;CW min,p为:信道接入优先级类别p的最小竞争窗口的大小;CW max,p为:信道接入优先级类别p的最大竞争窗口的大小;T ulmcot,p为:信道接入优先级类别p,做完一次LBT后能够占用频段的最长时间;allowedCW psizes为:信道接入优先级类别p,允许的竞争窗口大小(CWS,Contention Window Size)。
表2最底部英文内容为:备注1:对于p=3,4,T ulm cot,p=10ms,如果提供了更高层参数“缺少其他技术-r16”或者“缺少其他技术-r16”,否则,T ulm cot,p=6ms。
备注2:当T ulm cot,p=6ms,可通过插入一个或多个感知时隙以增加到8ms。感知时隙的最小持续时间为100us。包括任何此类感知间隙之前的最长持续时间为6ms。
在一些实施例中,通信设备需要进行Type 1 channel access(类型1信道接入),通信设备监听信道并等待,直到某频率信道至少在被称为延迟周期的一段时间内可用为止,此延迟周期一般由一个16us加若干个9us时隙组成,延迟周期的长度取决于信道接入优先级的类别,参照上述表1和表2。如果在每个9us时隙中至少有4us时间内的接收能量低于阈值,则说明信道可用,即信道空闲。
一旦信道在延迟周期内被确认可用,通信设备启动随机退避机制,参照图4,随机退避过程首先在竞争窗口(Contention Window,CW)内采用一个随机数初始化退避计数器,该随机数N来自均匀分布[0,CW],以9us的倍数表示传输信道必须保持可用的持续时间。如果信道在每一个9us时隙被检测到空闲(即信道可用),则退避计数器减1;反之,每当信道被检测到繁忙时,则退避计数器保持不变,直到信道空闲时间达到延迟周期,其中延迟周期的大小为Td=16+m*9us。一旦退避计数器归零,随机退避过程就完成了,此时通信设备已经获得信道,并且可以使用信道进行传输,直至达到优先级类别所对应的最大信道占用时间。
参照以上表1和表2,随机退避机制定了四种不同的信道接入优先级类别,每个信道接入优先级类别都有单独的竞争窗口,并且竞争窗口的大小的最大值和最小值不同,不同的信道接入优先级类别是按照每个逻辑信道配置的。同样的,对于不同的信道接入优先级类别使用不同的延迟周期。
如果通信设备使用与信道接入优先级类别p相关联的1类信道接入过程进行传输,则在进行退避计数器是否归零判断之前,通信设备将保持竞争窗口的大小,并应用本申请实施例中处理方法以调整这些传输的竞争窗口的大小,在一些可行的实施例中,根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。
在本申请实施例中,在没有数据信道的HARQ反馈的情形下或者在只有数据信道的NACK反馈的情形下或者非控制/数据信道的情形下,在随机退避机制启动之后,根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小,实现依据信道的占用情况和信息传输情况对竞争窗口的大小进行调整,实现随机退避机制中竞争窗口的大小适应调整,避免多个通信设备之间的通信冲突。
参照以上关于随机退避机制的相关解释和说明,在本申请处理方法另一些实施例中,当侧链路控制信息和/或高层信令将Sidelink HARQ反馈去使能(disable)时,接收终端不会对接收到的PSSCH进行Sidelink HARQ反馈,参照图5,处理方法包括:
步骤S1,对于各个信道接入优先级类别p,将竞争窗口大小设置为对应各信道接入优先级类别p适应的最小竞争窗口大小,或者,通信设备保持竞争窗口大小不变。
示例性的,本申请实施例的处理方法可应用于通信设备。可选地,本申请处理方法应用的通信设备在设备间通信中可作为发送终端,以与接收终端进行通信。
示例性的,如果通信设备使用与信道接入优先级类别p相关联的1类信道接入过程进行传输,在通信设备进行信道接入之前,将竞争窗口大小设置为信道接入优先级类别p适应的最小竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为各个信道接入优先级的最小竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为随机的信道接入优先级的最小竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为通信设备的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为接收终端的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:如果接收终端的数目大于1个,可将竞争窗口大小设置为接收终端的最小的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:如果接收终端的数目大于1个,可将竞争窗口大小设置为接收终端的最大的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:如果接收终端的数目大于1个,可将竞争窗口大小设置为接收终端的随机的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为近场通信的每包优先级(PPPP,ProSe per-packet priority)对应的信道接入优先级确定的竞争窗口大小,近场通信的每包优先级由高层提供给物理层。信道接入优先级的类别和近场通信的每包优先级之间存在对应关系,此类对应关系可以是预先设置。
步骤S2,确定第一参考时间内信道状态,若信道状态满足第一预设条件,则执行步骤S3;若信道状态满足第二预设条件,则执行步骤S1。
在一些实施例中,信道状态包括LBT成功和LBT失败,第一预设条件为LBT失败,第二预设条件为LBT成功,步骤S2包括:
步骤S2A1,统计第一参考时间之前,在对应的时频资源上是否LBT失败,如果LBT失败,则执行步骤S3;如果LBT成功,则执行步骤S1;可选地,所述时频资源,可用于传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH中至少之一。
在一些实施例中,信道状态还包括通信设备在非授权频谱进行首次传输和/或非首次传输,第一预设条件为通信设备在非授权频谱进行非首次传输,第二预设条件为通信设备在非授权频谱进行首次传输,步骤S2还包括:
步骤S2A2,在对应的时频资源上通信设备是否在非授权频谱进行首次传输,如果通信设备不是在非授权频谱进行首次传输,则执行步骤S3;如果通信设备是在非授权频谱进行首次传输,则执行步骤S1;可选地,所述时频资源,可用于传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH中至少之一。如此,在非授权频谱进行首次传输,不存在信道状态的先验信息,可直接执行步骤S1,以提高通信效率。
在一些实施例中,信道状态还包括第一参考时间与当前预期的COT之间的间隔大于第三门限值和小于或等于第三门限值,第一预设条件为第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,第二预设条件为第一参考时间与当前预期的COT之间的间隔大于第三门限值,步骤S2还包括:
步骤S2A3,若第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,则执行步骤S3;若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则执行步骤S1。
即,若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则保持竞争窗口大小不变,或者将竞争窗口大小 设置为信道接入优先级适应的最小竞争窗口大小;若第一参考时间与当前预期的COT之间的间隔小于或者等于第三门限值,则根据信道状态调整竞争窗口大小。如此,引入时域上的限制,保证两个相邻的COT间隔不会太长,信道状态信息可用,避免基于不可用的信道状态信息调整竞争窗口大小从而导致通信冲突。
示例性的,如果所述最近的一个COT发生在当前预期COT的Tw之前,则执行步骤S1;否则执行步骤S2A1或步骤S2A2,可选地,所述Tw为正整数,其单位为毫秒或时隙(slot),例如Tw的取值可以是20、40、60等,Tw可等同于第三门限值。即若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则执行步骤S1;若第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,则执行步骤S2A1或步骤S2A2。
示例性的,如果所述最近的一个关联竞争窗口大小更新的COT在当前预期COT的Tw之前,则执行步骤S1;否则执行步骤S2A1或步骤S2A2,可选地,所述Tw为正整数,其单位为毫秒或时隙,例如Tw的取值可以是20、40、60等,Tw可等同于第三门限值,关联竞争窗口为上一次成功的COT的竞争窗口。即若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔大于第三门限值,则执行步骤S1;若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔小于或等于第三门限值,则执行步骤S2A1或步骤S2A2。
可选地,第一参考时间由最近传输所在的COT位置确定;
或者,第一参考时间由最近传输所在的COT内第一次传输的至少一个候选位置确定;
或者,第一参考时间由最近传输所在的COT关联的竞争窗口对应的N个感知时隙确定;
或者,第一参考时间由最近竞争窗口大小更新关联的COT位置确定。
或者,第一参考时间由最近传输包括HARQ使能的COT位置确定。
示例性的,第一参考时间由最近传输所在的COT位置确定,例如,参照图6,当通信设备准备传输PSSCH9时,通信设备进行类型1信道接入,通信设备确定竞争窗口大小时,所述第一参考时间由最近传输所在的COT位置确定,例如基站指示PSSCH1在T1时刻传输,通信设备在T1时刻前执行类型1信道接入,通信设备在T1时刻LBT失败,不能进行传输,此时第一参考时间即为T1时刻,可选地,矩形框代表着一个COT。
示例性的,第一参考时间为通信设备最近一次被调度的和/或自己发起的COT起始位置。
示例性的,基站如果工作在mode 1模式下,即基站指示通信设备在T1时刻开始传输,则T1时刻为第一参考时间。
示例性的,第一参考时间由基站指定。
示例性的,基站如果工作在mode 2模式下,即通信设备根据感知及选择过程确定初次传输开始的位置为T1,则T1时刻即为第一参考时间。
示例性的,第一参考时间由通信设备自主确定。
示例性的,用以确定第一参考时间的所述COT内传输PSCCH信道和/或PSSCH信道、PSFCH信道、S-SS/PSBCH至少之一时,其使用信道接入过程(channel access procedure)时,竞争窗口大小发生了更新。
示例性的,用以确定第一参考时间的所述COT内包含HARQ使能的PSSCH信道传输;即在该COT内传输的PSSCH信道存在关联的HARQ反馈;或者在该COT内传输的调度PSSCH信道的PSCCH信道指示HARQ反馈使能。
步骤S3,增大竞争窗口大小。
可选地,参照上述表1和表2,在步骤S3中,将竞争窗口大小CWp调整为下一个较大值,直到达到CWmax;即将竞争窗口大小设置为下一个较大的值,例如将竞争窗口大小从3增加到7。所述下一个指的是一组数字中,相邻两个数字中序号较大的那一个数字。当选择的数字为一组数字中序号最大的数字时,不再选择序号更大的数字,一直选择序号最大的数字。
步骤S4,保持竞争窗口大小不变。
可选地,在步骤S4中,对于每一个信道接入优先级类别p,保持竞争窗口大小CWp的值;执行步骤S1或者执行步骤S2。即保持竞争窗口大小,执行步骤S1或者步骤S2。
在一些实施例中,按照以上描述的步骤S1至步骤S4确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
可选地,上述的步骤S1、步骤S2、步骤S3和步骤S4可以按顺序排列组合,例如终端在执行完步骤S1后执行步骤S2,根据步骤S2的判断条件,如果满足条件则返回步骤S1并确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel  access procedure);如果不满足条件则执行步骤S3,并执行步骤S4,在执行完步骤S4之后确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
可选地,上述的步骤S1、步骤S2、步骤S3和步骤S4中每一步骤都可以单独执行,不依赖于前面的步骤。例如终端在执行完步骤S1之后确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
在一些可实现的实施例中,信道状态包括第一参考时间内LBT失败所占比例大于第一门限值和小于或等于第一门限值,第一预设条件为第一参考时间内LBT失败所占比例大于第一门限值,第二预设条件为第一参考时间内LBT失败所占比例小于或等于第一门限值,步骤S2包括:
步骤S2B1,统计第一参考时间之前,在对应的时频资源上LBT失败所占比例,如果LBT失败所占比例大于第一门限值,则执行步骤S3;如果LBT失败所占比例小于或等于第一门限值,则执行步骤S1;可选地,所述时频资源,可用于传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH至少之一。
在一些实施例中,信道状态包括通信设备在非授权频谱进行首次传输和非首次传输,第一预设条件为通信设备在非授权频谱进行非首次传输,第二预设条件为通信设备在非授权频谱进行首次传输,步骤S2包括:
步骤S2B2,在对应的时频资源上通信设备是否在非授权频谱进行首次传输,如果通信设备不是在非授权频谱进行首次传输,则执行步骤S3;如果通信设备是在非授权频谱进行首次传输,则执行步骤S1;可选地,所述时频资源,可用于传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH至少之一。如此,在非授权频谱进行首次传输,不存在信道状态的先验信息,可直接执行步骤S1,以提高通信效率。
在一些实施例中,信道状态包括第一参考时间与当前预期的COT之间的间隔大于第三门限值和小于或等于第三门限值,第一预设条件为第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,第二预设条件为第一参考时间与当前预期的COT之间的间隔大于第三门限值,步骤S2包括:
步骤S2B3,若第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,则执行步骤S3;若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则执行步骤S1。
即,若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;若第一参考时间与当前预期的COT之间的间隔小于或者等于第三门限值,则根据信道状态调整竞争窗口大小。如此,引入时域上的限制,保证两个相邻的COT间隔不会太长,信道状态信息可用,避免基于不可用的信道状态信息调整竞争窗口大小从而导致通信冲突。
示例性的,如果所述最近的一个COT发生在当前预期COT的Tw之前,则执行步骤S1;否则执行步骤S2B1或步骤S2B2,可选地,所述Tw为正整数,其单位为毫秒或时隙(slot),例如Tw的取值可以是20、40、60等,Tw可等同于第三门限值。即若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则执行步骤S1;若第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,则执行步骤S2B1或步骤S2B2。
示例性的,如果所述最近的一个关联竞争窗口大小更新的COT在当前预期COT的Tw之前,则执行步骤S1;否则执行步骤S2B1或步骤S2B2,可选地,所述Tw为正整数,其单位为毫秒或时隙,例如Tw的取值可以是20、40、60等,Tw可等同于第三门限值,关联竞争窗口为上一次成功的COT的竞争窗口。即若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔大于第三门限值,则执行步骤S1;若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔小于或等于第三门限值,则执行步骤S2B1或步骤S2B2。
可选地,第一参考时间由最近传输所在的COT位置确定;
或者,第一参考时间由最近传输所在的COT内第一次传输的至少一个候选位置确定;
或者,第一参考时间由最近传输所在的COT关联的竞争窗口对应的N个感知时隙确定;
或者,第一参考时间由最近竞争窗口大小更新关联的COT位置确定。
或者,第一参考时间由最近传输包括HARQ使能的COT位置确定。
示例性的,第一参考时间由最近传输所在的COT位置确定,例如,参照图7,当通信设备准备传输PSSCH9时,通信设备进行类型1信道接入,通信设备确定竞争窗口大小时,所述第一参考时间由最近传输所在的COT位置确定,例如基站指示PSSCH1在T1时刻传输,通信设备在T1时刻前执行类型1信道接入,通信设备在T1时刻LBT失败或LBT失败所占 比例大于第一门限值;通信设备继续进行LBT,在T2时刻LBT仍然失败或LBT失败所占比例仍然大于第一门限值,不能进行传输;通信设备继续进行LBT,在T3时刻LBT成功或LBT失败所占比例仍然小于或等于第一门限值,可以进行传输,此时第一参考时间即为T1时刻到T3时刻,可选地,矩形框代表着一个COT。
示例性的,第一参考时间为通信设备最近一次被调度的COT起始的多个候选位置。
示例性的,基站如果工作在mode 1模式下,即基站指示通信设备在多个候选位置上传输,则多个候选位置为第一参考时间。
示例性的,第一参考时间由基站指定。
示例性的,基站如果工作在mode 2模式下,即通信设备根据感知及选择过程确定初次传输所在的多个候选位置,该多个候选位置即为第一参考时间。
示例性的,第一参考时间由通信设备自主确定。
示例性的,第一门限值由高层信令配置。
示例性的,第一门限值预先定义。
示例性的,LBT失败所占比例由LBT失败次数以及一次传输的候选位置个数的比值确定。
示例性的,用以确定第一参考时间的所述COT内传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH至少之一时,其使用信道接入过程(channel access procedure)时,竞争窗口大小发生了更新。
示例性的,用以确定第一参考时间的所述COT内包含HARQ使能的PSSCH信道传输;即在该COT内传输的PSSCH信道存在关联的HARQ反馈;或者在该COT内传输的调度PSSCH信道的PSCCH信道指示HARQ反馈使能。
在一些可实现的实施例中,信道状态包括第一参考时间内信道繁忙的感知时隙所占比例大于第二门限值和小于或等于第二门限值,第一预设条件为第一参考时间内信道繁忙的感知时隙所占比例大于第二门限值,第二预设条件为第一参考时间内信道繁忙的感知时隙所占比例小于或等于第二门限值,步骤S2包括:
步骤S2C1,统计第一参考时间信道繁忙的感知时隙出现的次数,如果第一参考时间内信道繁忙的感知时隙所占比例大于第二门限值,则执行步骤S3;如果第一参考时间内信道繁忙的感知时隙所占比例小于或等于第二门限值,则执行步骤S1。
在一些实施例中,信道状态包括通信设备在非授权频谱进行首次传输和非首次传输,第一预设条件为通信设备在非授权频谱进行非首次传输,第二预设条件为通信设备在非授权频谱进行首次传输,步骤S2包括:
步骤S2C2,在对应的时频资源上通信设备是否在非授权频谱进行首次传输,如果通信设备不是在非授权频谱进行首次传输,则执行步骤S3;如果通信设备是在非授权频谱进行首次传输,则执行步骤S1;可选地,所述时频资源,可用于传输PSCCH信道、PSSCH信道PSFCH信道和S-SS/PSBCH至少之一。如此,在非授权频谱进行首次传输,不存在信道状态的先验信息,可直接执行步骤S1,以提高通信效率。
在一些实施例中,信道状态包括第一参考时间与当前预期的COT之间的间隔大于第三门限值和小于或等于第三门限值,第一预设条件为第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,第二预设条件为第一参考时间与当前预期的COT之间的间隔大于第三门限值,步骤S2包括:
步骤S2C3,若第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,则执行步骤S3;若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则执行步骤S1。
即,若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;若第一参考时间与当前预期的COT之间的间隔小于或者等于第三门限值,则根据信道状态调整竞争窗口大小。如此,引入时域上的限制,保证两个相邻的COT间隔不会太长,信道状态信息可用,避免基于不可用的状态信息调整竞争窗口大小从而导致通信冲突。
示例性的,如果所述最近的一个COT发生在当前预期COT的Tw之前,则执行步骤S1;否则执行步骤S2C1或步骤S2C2,可选地,所述Tw为正整数,其单位为毫秒或时隙(slot),例如Tw的取值可以是20、40、60等,Tw可等同于第三门限值。即若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则执行步骤S1;若第一参考时间与当前预期的COT之间的间隔小于或等于第三门限值,则执行步骤S2C1或步骤S2C2。
示例性的,如果所述最近的一个关联竞争窗口大小更新的COT在当前预期COT的Tw之前,则执行步骤S1;否则执 行步骤S2C1或步骤S2C2,可选地,所述Tw为正整数,其单位为毫秒或时隙,例如Tw的取值可以是20、40、60等,Tw可等同于第三门限值,关联竞争窗口为上一次成功的COT的竞争窗口。即若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔大于第三门限值,则执行步骤S1;若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔小于或等于第三门限值,则执行步骤S2C1或步骤S2C2。
可选地,第一参考时间由最近传输所在的COT位置确定;
或者,第一参考时间由最近传输所在的COT内第一次传输的至少一个候选位置确定;
或者,第一参考时间由最近传输所在的COT关联的竞争窗口对应的N个感知时隙确定;
或者,第一参考时间由最近竞争窗口大小更新关联的COT位置确定。
或者,第一参考时间由最近传输包括HARQ使能的COT位置确定。
示例性的,第一参考时间为通信设备最近一次竞争窗口产生的随机数N对应的N个感知时隙(Sensing slot),所述感知时隙为一个信道检测单元。可选地,信道繁忙感知时隙出现的次数统计为Y,通信设备在一个9us的感知时隙内检测到信道繁忙,则信道繁忙的感知时隙次数加1,初始值为0。例如,参照图8,陆陆续续出现N个信道空闲的感知时隙,期间出现若干个信道繁忙的感知时隙。
可选地,信道繁忙的感知时隙出现的次数为Y,则信道繁忙的感知时隙出现的次数与第一参考时间的比值为Y/N;
可选地,所述第二门限由高层信令配置。
可选地,所述第二门限预先定义。
示例性的,用以确定第一参考时间的所述COT内传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH至少之一时,其使用信道接入过程(channel access procedure)时,竞争窗口大小发生了更新。
示例性的,用以确定第一参考时间的所述COT内包含HARQ使能的PSSCH信道传输;即在该COT内传输的PSSCH信道存在关联的HARQ反馈;或者在该COT内传输的调度PSSCH信道的PSCCH信道指示HARQ反馈使能。
参照以上关于随机退避机制的相关解释和说明,在本申请处理方法又一些实施例中,当侧链路控制信息和/或高层信令将Sidelink HARQ反馈为NACK only时,接收终端只会在没有正确解码接收到的PSSCH时反馈Sidelink HARQ-NACK,参照图9,处理方法包括:
步骤Q1,对于各个信道接入优先级类别p,将竞争窗口大小设置为对应各信道接入优先级类别p适应的最小竞争窗口大小,或者,通信设备保持竞争窗口大小不变。
示例性的,本申请实施例的处理方法可应用于通信设备。可选地,本申请处理方法应用的通信设备在设备间通信中可作为发送终端,以与接收终端进行通信。
示例性的,如果通信设备使用与信道接入优先级类别p相关联的1类信道接入过程进行传输,在通信设备进行信道接入之前,将竞争窗口大小设置为信道接入优先级类别p适应的最小竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为各个信道接入优先级的最小竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为随机的信道接入优先级的最小竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为通信设备的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为接收终端的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:如果接收终端的数目大于1个,可将竞争窗口大小设置为接收终端的最小的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:如果接收终端的数目大于1个,可将竞争窗口大小设置为接收终端的最大的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:如果接收终端的数目大于1 个,可将竞争窗口大小设置为接收终端的随机的信道接入优先级确定的竞争窗口大小。
示例性的,将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括:将竞争窗口大小设置为近场通信的每包优先级(PPPP,ProSe per-packet priority)对应的信道接入优先级确定的竞争窗口大小,近场通信的每包优先级由高层提供给物理层。信道接入优先级的类别和近场通信的每包优先级之间存在对应关系,此类对应关系可以是预先设置。
步骤Q2,确定第二参考时间内接收的反馈信息,若反馈信息满足第三预设条件,则执行步骤Q3;若反馈信息满足第四预设条件,则执行步骤Q1。
在一些实施例中,反馈信息包括第二参考时间内通信设备接收到的NACK反馈的数目,第三预设条件为第二参考时间内接收NACK反馈的数目大于第四门限值,第四预设条件为第二参考时间内接收NACK反馈的数目小于或等于第四门限值,步骤Q2包括:
步骤Q2A1,统计第二参考时间关联的侧链路物理控制信道和/或侧链路物理数据信道对应的HARQ-NACK反馈的数目,即通信设备接收到的NACK反馈的数目,如果通信设备接收到的NACK反馈的数目大于第四门限,执行步骤Q3;如果通信设备接收到的NACK反馈的数目小于或等于第四门限,执行步骤Q1;
在一些实施例中,在对应的时频资源上通信设备是否在非授权频谱进行首次传输或非首次传输,第三预设条件为通信设备在非授权频谱进行非首次传输,第四预设条件为通信设备在非授权频谱进行首次传输,步骤Q2包括:
步骤Q2A2,在对应的时频资源上通信设备是否在非授权频谱进行首次传输,如果通信设备不是在非授权频谱进行首次传输,则执行步骤Q3;如果通信设备是在非授权频谱进行首次传输,则执行步骤Q1;可选地,所述时频资源,可用于传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH至少之一。如此,在非授权频谱进行首次传输,不存在信道状态的先验信息,可直接执行步骤Q1,以提高通信效率。
在一些实施例中,确定第二参考时间与当前预期的COT之间的间隔是否大于第六门限值或小于或等于第六门限值,第三预设条件为第二参考时间与当前预期的COT之间的间隔小于或等于第六门限值,第四预设条件为第二参考时间与当前预期的COT之间的间隔大于第六门限值,步骤Q2包括:
步骤Q2A3,若第二参考时间与当前预期的COT之间的间隔小于或等于第六门限值,则执行步骤Q3;若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则执行步骤Q1。
即,若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;若第一参考时间与当前预期的COT之间的间隔小于或者等于第六门限值,则根据第二参考时间内接收到的反馈信息调整竞争窗口大小。如此,引入时域上的限制,保证两个相邻的COT间隔不会太长,信道状态信息可用,避免基于不可用的信道状态信息调整竞争窗口大小从而导致通信冲突。
示例性的,如果所述最近的一个COT发生在当前预期COT的Tw之前,则执行步骤Q1;否则执行步骤Q2A1或步骤Q2A2,可选地,所述Tw为正整数,其单位为毫秒或时隙(slot),例如Tw的取值可以是20、40、60等,Tw可等同于第六门限值。即若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则执行步骤Q1;若第二参考时间与当前预期的COT之间的间隔小于或等于第六门限值,则执行步骤Q2A1或步骤Q2A2。
示例性的,如果所述最近的一个关联竞争窗口大小更新的COT在当前预期COT的Tw之前,则执行步骤Q1;否则执行步骤Q2A1或步骤Q2A2,可选地,所述Tw为正整数,其单位为毫秒或时隙,例如Tw的取值可以是20、40、60等,Tw可等同于第六门限值,关联竞争窗口为上一次成功的COT的竞争窗口。即若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔大于第六门限值,则执行步骤Q1;若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔小于或等于第三门限值,则执行步骤Q2A1或步骤Q2A2。
可选地,所述第二参考时间由最近传输所在的COT位置确定;
或者,所述第二参考时间由最近竞争窗口大小更新关联的COT位置确定;
或者,所述第二参考时间由最近传输包括HARQ使能的COT位置确定。
示例性的,所述第二参考时间为通信设备最近一次启动的COT内用于传输侧链路物理控制信道和/或侧链路物理数据信道的第一个完整时隙。
示例性的,所述第二参考时间为通信设备最近一次启动的COT内用于传输侧链路物理控制信道和/或侧链路物理数据信 道的第一个时隙。
示例性的,所述第四门限由高层信令配置。
示例性的,所述第四门限预先定义。
示例性的,用以确定第一参考时间的所述COT内传输PSCCH信道和/或PSSCH信道、PSFCH信道、S-SS/PSBCH至少之一时,其使用信道接入过程(channel access procedure)时,竞争窗口大小发生了更新。
示例性的,用以确定第一参考时间的所述COT内包含HARQ使能的PSSCH信道传输;即在该COT内传输的PSSCH信道存在关联的HARQ反馈;或者在该COT内传输的调度PSSCH信道的PSCCH信道指示HARQ反馈使能。
步骤Q3,增大竞争窗口大小。
可选地,参照上述表1和表2,在步骤Q3中,将竞争窗口大小CWp调整为下一个较大值,直到达到CWmax;即将竞争窗口大小设置为下一个较大的值,例如将竞争窗口大小从3增加到7。所述下一个指的是一组数字中,相邻两个数字中序号较大的那一个数字。当选择的数字为一组数字中序号最大的数字时,不再选择序号更大的数字,一直选择序号最大的数字。
步骤Q4,保持竞争窗口大小不变。
可选地,在步骤Q4中,对于每一个信道接入优先级类别p,保持竞争窗口大小CWp的值;执行步骤Q1或者执行步骤Q2。即保持竞争窗口大小,执行步骤Q1或者步骤Q2。
在一些实施例中,按照以上描述的步骤Q1至步骤Q4确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
可选地,上述的步骤Q1、步骤Q2、步骤Q3和步骤Q4可以按顺序排列组合,例如终端在执行完步骤Q1后执行步骤Q2,根据步骤Q2的判断条件,如果满足条件则返回步骤Q1并确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure);如果不满足条件则执行步骤Q3,并执行步骤Q4,在执行完步骤Q4之后确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
可选地,上述的步骤Q1、步骤Q2、步骤Q3和步骤Q4中每一步骤都可以单独执行,不依赖于前面的步骤。例如终端在执行完步骤Q1之后确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
在一些可实现的实施例中,反馈信息包括第二参考时间内接收的NACK反馈的比例,第三预设条件为第二参考时间内接收NACK反馈所占比例大于第五门限值,第四预设条件为第二参考时间内接收NACK反馈所占比例小于或等于第五门限值,步骤Q2包括:
步骤Q2B1,统计第二参考时间关联的侧链路物理控制信道和/或侧链路物理数据信道其对应的HARQ-NACK反馈的比例,即通信设备接收到的NACK反馈的比例,如果通信设备接收到的NACK反馈所占比例大于第五门限,执行步骤Q3;如果通信设备接收到的NACK反馈所占比例小于或等于第五门限,则执行步骤Q1。
在一些实施例中,确定第二参考时间是否为通信设备在非授权频谱进行首次传输或非首次传输,第三预设条件为通信设备在非授权频谱进行非首次传输,第四预设条件为通信设备在非授权频谱进行首次传输,步骤Q2包括:
步骤Q2B2,统计第二参考时间之前,在对应的时频资源上通信设备是否在非授权频谱进行首次传输,如果通信设备不是在非授权频谱进行首次传输,则执行步骤Q3;如果通信设备是在非授权频谱进行首次传输,则执行步骤Q1;可选地,所述时频资源,可用于传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH至少之一。如此,在非授权频谱进行首次传输,不存在信道状态的先验信息,可直接执行步骤Q1,以提高通信效率。
在一些实施例中,确定第二参考时间与当前预期的COT之间的间隔是否大于第六门限值和小于或等于第六门限值,第三预设条件为第二参考时间与当前预期的COT之间的间隔小于或等于第六门限值,第四预设条件为第二参考时间与当前预期的COT之间的间隔大于第六门限值,步骤Q2包括:
步骤Q2B3,若第二参考时间与当前预期的COT之间的间隔小于或等于第六门限值,则执行步骤Q3;若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则执行步骤Q1。
即,若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;若第二参考时间与当前预期的COT之间的间隔小于或者等于第六门限值,则第二参考时间内接收到的反馈信息调整竞争窗口大小。如此,引入时域上的限制,保证两个相邻的COT间隔不会太长, 信道状态信息可用,避免基于不可用的信道状态信息调整竞争窗口大小从而导致通信冲突。
示例性的,如果所述最近的一个COT发生在当前预期COT的Tw之前,则执行步骤Q1;否则执行步骤Q2B1或步骤Q2B2,可选地,所述Tw为正整数,其单位为毫秒或时隙(slot),例如Tw的取值可以是20、40、60等,Tw可等同于第六门限值。即若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则执行步骤Q1;若第二参考时间与当前预期的COT之间的间隔小于或等于第六门限值,则执行步骤Q2B1或步骤Q2B2。
示例性的,如果所述最近的一个关联竞争窗口大小更新的COT在当前预期COT的Tw之前,则执行步骤Q1;否则执行步骤Q2B1或步骤Q2B2,可选地,所述Tw为正整数,其单位为毫秒或时隙,例如Tw的取值可以是20、40、60等,Tw可等同于第六门限值,关联竞争窗口为上一次成功的COT的竞争窗口。即若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔大于第六门限值,则执行步骤Q1;若最近的一个关联竞争窗口大小更新的COT与当前预期COT的间隔小于或等于第六门限值,则执行步骤Q2B1或步骤Q2B2。
可选地,所述第二参考时间由最近传输所在的COT位置确定;
或者,所述第二参考时间由最近竞争窗口大小更新关联的COT位置确定;
或者,所述第二参考时间由最近传输包括HARQ使能的COT位置确定。
示例性的,所述第二参考时间为通信设备最近一次启动的COT内用于传输侧链路物理控制信道和/或侧链路物理数据信道的第一个完整时隙。
示例性的,所述第二参考时间为通信设备最近一次启动的COT内用于传输侧链路物理控制信道和/或侧链路物理数据信道的第一个时隙。
示例性的,所述第四门限由高层信令配置。
示例性的,所述第四门限预先定义。
示例性的,用以确定第一参考时间的所述COT内传输PSCCH信道、PSSCH信道、PSFCH信道和S-SS/PSBCH至少之一时,其使用信道接入过程(channel access procedure)时,竞争窗口大小发生了更新。
示例性的,用以确定第一参考时间的所述COT内包含HARQ使能的PSSCH信道传输;即在该COT内传输的PSSCH信道存在关联的HARQ反馈;或者在该COT内传输的调度PSSCH信道的PSCCH信道指示HARQ反馈使能。
步骤Q3,增大竞争窗口大小。
可选地,参照上述表1和表2,在步骤Q3中,将竞争窗口大小CWp调整为下一个较大值,直到达到CWmax;即将竞争窗口大小设置为下一个较大的值,例如将竞争窗口大小从3增加到7。所述下一个指的是一组数字中,相邻两个数字中序号较大的那一个数字。当选择的数字为一组数字中序号最大的数字时,不再选择序号更大的数字,一直选择序号最大的数字。
步骤Q4,保持竞争窗口大小不变。
可选地,在步骤Q4中,对于每一个信道接入优先级类别p,保持竞争窗口大小CWp的值;执行步骤Q1或者执行步骤Q2。即保持竞争窗口大小,执行步骤Q1或者步骤Q2。
在一些实施例中,按照以上描述的步骤Q1至步骤Q4确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
可选地,上述的步骤Q1、步骤Q2、步骤Q3和步骤Q4可以按顺序排列组合,例如终端在执行完步骤Q1后执行步骤Q2,根据步骤Q2的判断条件,如果满足条件则返回步骤Q1并确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure);如果不满足条件则执行步骤Q3,并执行步骤Q4,在执行完步骤Q4之后确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
可选地,上述的步骤Q1、步骤Q2、步骤Q3和步骤Q4中每一步骤都可以单独执行,不依赖于前面的步骤。例如终端在执行完步骤Q1之后确定竞争窗口的大小,并将对应的参数应用于信道接入过程(channel access procedure)。
请参见图10,图10是本申请实施例提供的一种通信装置的结构示意图,该装置可搭载在上述方法实施例中的通信设备上,该通信设备具体可以是移动终端。图10所示的通信装置可以用于执行上述图3、图5、图7和图9所描述的方法实施例中的部分或全部功能。其中,各个单元的详细描述如下:
获取单元1101,用于获取第一参考时间内信道状态和/或第二参考时间内接收的反馈信息;
处理单元1102,用于根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。
在一种可选的实施方式中,所述信道状态包括以下至少一项:LBT成功、LBT失败、LBT失败所占比例以及信道繁忙的感知时隙所占比例;
所述反馈信息包括以下至少一项:NACK反馈的数目、NACK反馈所占比例、ACK反馈的数目以及ACK反馈所占的比例。
在一种可选的实施方式中,处理单元1102,具体用于实现一下至少一项:
若不存在对数据信道的HARQ反馈,则根据第一参考时间内信道状态,调整竞争窗口的大小或者保持竞争窗口的大小;
若仅接收到HARQ-NACK反馈信息,则根据第二参考时间内接收的HARQ-NACK反馈信息,调整竞争窗口的大小。
在一种可选的实施方式中,处理单元1102,还用于是以下至少一项:
若第一参考时间内LBT失败,则增大竞争窗口;
若第一参考时间内LBT失败所占比例大于第一门限值,则增大竞争窗口;
若第一参考时间内信道繁忙的感知时隙所占比例大于第二门限值,则增大竞争窗口;
若第一参考时间内LBT成功,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间内LBT失败所占比例小于或等于第一门限值,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间内信道繁忙的感知时隙所占比例小于或等于第二门限值,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间内接收NACK反馈的数目大于第四门限值,则增大竞争窗口;
若第二参考时间内接收NACK反馈的数目小于或等于第四门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间内接收NACK反馈所占比例大于第五门限值,则增大竞争窗口;
若第二参考时间内接收NACK反馈所占比例小于或等于第五门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小。
在一种可选的实施方式中,处理单元1102,还用于是以下至少一项:
将竞争窗口大小设置为各个信道接入优先级的最小竞争窗口大小;
将竞争窗口大小设置为随机的信道接入优先级的最小竞争窗口大小;
将竞争窗口大小设置为通信设备的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的最小的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的最大的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为接收终端的随机的信道接入优先级确定的竞争窗口大小;
将竞争窗口大小设置为近场通信的每包优先级对应的信道接入优先级确定的竞争窗口大小。
在一种可选的实施方式中,处理单元1102,还用于是以下至少一项:
若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第一参考时间与当前预期的COT之间的间隔小于或者等于第三门限值,则根据信道状态调整竞争窗口大小;
若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
若第二参考时间与当前预期的COT之间的间隔小于或者等于第六门限值,则根据接收的反馈信息调整竞争窗口大小;
若通信设备在非授权频谱进行首次传输,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小。
在一种可选的实施方式中,包括以下至少一项:
所述第一参考时间的确定方式包括以下至少一项:
所述第一参考时间由最近传输所在的COT位置确定;
所述第一参考时间由最近传输所在的COT内第一次传输的至少一个候选位置确定;
所述第一参考时间由最近传输所在的COT关联的竞争窗口对应的N个感知时隙确定;
所述第一参考时间由最近竞争窗口大小更新关联的COT位置确定;
所述第一参考时间由最近传输包括HARQ使能的COT位置确定;
所述第二参考时间的确定方式包括以下至少一项:
所述第二参考时间由最近传输所在的COT位置确定;
所述第二参考时间由最近竞争窗口大小更新关联的COT位置确定;
所述第二参考时间由最近传输包括HARQ使能的COT位置确定。
根据本申请的一个实施例,图3、图5、图7和图9所示的图像处理方法所涉及的部分步骤可由图10所示的图像处理装置中的各个模块来执行。图10所示的图像处理装置中的各个单元可以分别或全部合并为一个或若干个另外的模块来构成,或者其中的某个(些)模块还可以再拆分为功能上更小的多个单元来构成,这可以实现同样的操作,而不影响本申请的实施例的技术效果的实现。上述单元是基于逻辑功能划分的,在实际应用中,一个模块的功能也可以由多个模块来实现,或者多个模块的功能由一个模块实现。在本申请的其它实施例中,图像处理装置也可以包括其它模块,在实际应用中,这些功能也可以由其它模块协助实现,并且可以由多个模块协作实现。
请参见图11,图11是本申请实施例提供的另一种通信设备的结构示意图。本申请还提供一种通信终端,移动终端包括存储器1201、处理器1202以及存储在存储器1201里并可在处理器1202上运行的处理程序,处理程序被处理器执行时实现上述任一实施例中的处理方法的步骤。
本申请还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例中的处理方法的步骤。
在本申请提供的移动终端和计算机可读存储介质的实施例中,包含了上述处理方法各实施例的全部技术特征,说明书拓展和解释内容与上述来电备注方法的各实施例基本相同,在此不做再赘述。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如上各种可能的实施方式中的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上各种可能的实施方式中的方法。
本申请实施例还提供一种计算机装置,用于执行上述各种可能的实施方式中的方法。
计算装置一般包含处理器和存储器,存储器用于存储指令,当指令被处理器执行时,使得该计算装置执行本发明的各步骤或各程序模块。
图12为本申请提供的一种控制器140的硬件结构示意图。该控制器140包括:存储器1401和处理器1402,存储器1401用于存储程序指令,处理器1402用于调用存储器1401中的程序指令执行上述方法实施例中控制器所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。
可选地,上述控制器还包括通信接口1403,该通信接口1403可以通过总线1404与处理器1402连接。处理器1402可以控制通信接口1403来实现控制器140的接收和发送的功能。
图13为本申请提供的一种网络节点150的硬件结构示意图。该网络节点150包括:存储器1501和处理器1502,存储器1501用于存储程序指令,处理器1502用于调用存储器1501中的程序指令执行上述方法实施例中首节点所执行的步骤,其实现原理以及有益效果类似,此处不再进行赘述。
可选地,上述网络节点还包括通信接口1503,该通信接口1503可以通过总线1504与处理器1502连接。处理器1502可以控制通信接口1503来实现网络节点150的接收和发送的功能。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一 个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本申请各个实施例方法的部分步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘sol id state d isk,SSD)等。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种处理方法,其中,包括以下步骤:
    S10,根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。
  2. 如权利要求1所述的方法,其中,包括以下至少一项:
    所述信道状态包括以下至少一项:LBT成功、LBT失败、LBT失败所占比例以及信道繁忙的感知时隙所占比例;
    所述反馈信息包括以下至少一项:NACK反馈的数目、NACK反馈所占比例、ACK反馈的数目以及ACK反馈所占的比例。
  3. 如权利要求2所述的方法,其中,S10中所述根据第一参考时间内信道状态,确定竞争窗口的大小的步骤,包括以下至少一项:
    若不存在对数据信道的HARQ反馈,则根据第一参考时间内信道状态,调整竞争窗口的大小或者保持竞争窗口的大小;
    若仅接收到HARQ-NACK反馈信息,则根据第二参考时间内接收的HARQ-NACK反馈信息,调整竞争窗口的大小。
  4. 如权利要求3所述的方法,其中,包括以下至少一项:
    若第一参考时间内LBT失败,则增大竞争窗口;
    若第一参考时间内LBT失败所占比例大于第一门限值,则增大竞争窗口;
    若第一参考时间内信道繁忙的感知时隙所占比例大于第二门限值,则增大竞争窗口;
    若第一参考时间内LBT成功,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
    若第一参考时间内LBT失败所占比例小于或等于第一门限值,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
    若第一参考时间内信道繁忙的感知时隙所占比例小于或等于第二门限值,保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
    若第二参考时间内接收NACK反馈的数目大于第四门限值,则增大竞争窗口;
    若第二参考时间内接收NACK反馈的数目小于或等于第四门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
    若第二参考时间内接收NACK反馈所占比例大于第五门限值,则增大竞争窗口;
    若第二参考时间内接收NACK反馈所占比例小于或等于第五门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小。
  5. 如权利要求4所述的方法,其中,所述将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小的步骤,包括以下至少一项:
    将竞争窗口大小设置为各个信道接入优先级的最小竞争窗口大小;
    将竞争窗口大小设置为随机的信道接入优先级的最小竞争窗口大小;
    将竞争窗口大小设置为通信设备的信道接入优先级确定的竞争窗口大小;
    将竞争窗口大小设置为接收终端的信道接入优先级确定的竞争窗口大小;
    将竞争窗口大小设置为接收终端的最小的信道接入优先级确定的竞争窗口大小;
    将竞争窗口大小设置为接收终端的最大的信道接入优先级确定的竞争窗口大小;
    将竞争窗口大小设置为接收终端的随机的信道接入优先级确定的竞争窗口大小;
    将竞争窗口大小设置为近场通信的每包优先级对应的信道接入优先级确定的竞争窗口大小。
  6. 如权利要求2至5中任一项所述的方法,其中,包括以下至少一项:
    若第一参考时间与当前预期的COT之间的间隔大于第三门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
    若第一参考时间与当前预期的COT之间的间隔小于或者等于第三门限值,则根据信道状态调整竞争窗口大小;
    若第二参考时间与当前预期的COT之间的间隔大于第六门限值,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小;
    若第二参考时间与当前预期的COT之间的间隔小于或者等于第六门限值,则根据接收的反馈信息调整竞争窗口大小;
    若通信设备在非授权频谱进行首次传输,则保持竞争窗口大小不变,或者将竞争窗口大小设置为信道接入优先级适应的最小竞争窗口大小。
  7. 如权利要求1至6中任一项所述的方法,其中,包括以下至少一项:
    所述第一参考时间的确定方式包括以下至少一项:
    所述第一参考时间由最近传输所在的COT位置确定;
    所述第一参考时间由最近传输所在的COT内第一次传输的至少一个候选位置确定;
    所述第一参考时间由最近传输所在的COT关联的竞争窗口对应的N个感知时隙确定;
    所述第一参考时间由最近竞争窗口大小更新关联的COT位置确定;
    所述第一参考时间由最近传输包括HARQ使能的COT位置确定;
    所述第二参考时间的确定方式包括以下至少一项:
    所述第二参考时间由最近传输所在的COT位置确定;
    所述第二参考时间由最近竞争窗口大小更新关联的COT位置确定;
    所述第二参考时间由最近传输包括HARQ使能的COT位置确定。
  8. 一种通信设备,其中,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的处理程序,所述处理程序被所述处理器执行时实现如权利要求1至7中任一项所述的处理方法的步骤。
  9. 一种存储介质,其中,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7中任一项所述的处理方法的步骤。
  10. 一种通信装置,其中,所述通信装置包括:
    调整模块,用于根据第一参考时间内信道状态和/或第二参考时间内接收的反馈信息,确定竞争窗口的大小。
PCT/CN2022/116564 2022-09-01 2022-09-01 处理方法、通信设备及存储介质 WO2024045136A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116564 WO2024045136A1 (zh) 2022-09-01 2022-09-01 处理方法、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116564 WO2024045136A1 (zh) 2022-09-01 2022-09-01 处理方法、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024045136A1 true WO2024045136A1 (zh) 2024-03-07

Family

ID=90100165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116564 WO2024045136A1 (zh) 2022-09-01 2022-09-01 处理方法、通信设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024045136A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166182A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种竞争窗管理的方法及发送设备
CN110933765A (zh) * 2018-09-19 2020-03-27 维沃移动通信有限公司 竞争窗大小cws调节方法和设备
CN114765899A (zh) * 2021-01-15 2022-07-19 展讯通信(上海)有限公司 辅链路的cws确定方法及装置、计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166182A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种竞争窗管理的方法及发送设备
CN110933765A (zh) * 2018-09-19 2020-03-27 维沃移动通信有限公司 竞争窗大小cws调节方法和设备
CN114765899A (zh) * 2021-01-15 2022-07-19 展讯通信(上海)有限公司 辅链路的cws确定方法及装置、计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OPPO: "Channel access procedures for NR-U", 3GPP DRAFT; R1-1912506, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823446 *

Similar Documents

Publication Publication Date Title
US11582791B2 (en) PUCCH collision processing method and terminal
US11509444B2 (en) Method for receiving aperiodic tracking reference signal and terminal
US11968012B2 (en) Information transmission method and terminal
WO2019184787A1 (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
US20220141690A1 (en) Transmission method and communication device
US20220248332A1 (en) Method for entering dormancy behavior and terminal
WO2020216245A1 (zh) 上行传输方法、终端和网络侧设备
US20220264696A1 (en) Wake up signal processing method, wake up signal configuration method, and related device
WO2021068876A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2023213257A1 (zh) 数据传输方法、通信设备及存储介质
US20220217708A1 (en) Uplink transmission method and terminal
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
WO2020057409A1 (zh) 传输控制方法及终端设备
CN113556217B (zh) 通信方法、网络设备、终端设备及存储介质
WO2021208953A1 (zh) 冲突资源判断方法、终端和网络设备
WO2024045136A1 (zh) 处理方法、通信设备及存储介质
WO2021068873A1 (zh) 资源共享方法、终端及网络设备
WO2021197191A1 (zh) 冲突资源确定方法和终端
WO2020151708A1 (zh) 信息传输方法及终端
WO2020151494A1 (zh) Pucch的发送方法、接收方法、终端和网络侧设备
WO2024050835A1 (zh) 处理方法、通信设备及存储介质
WO2024050834A1 (zh) 处理方法、通信设备及存储介质
WO2023133693A1 (zh) 通信方法、通信设备以及存储介质
WO2023230875A1 (zh) 控制方法、通信设备及存储介质
WO2023216036A1 (zh) 处理方法、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956961

Country of ref document: EP

Kind code of ref document: A1