WO2024043551A1 - 파우치형 이차전지용 실링 장치 - Google Patents

파우치형 이차전지용 실링 장치 Download PDF

Info

Publication number
WO2024043551A1
WO2024043551A1 PCT/KR2023/010720 KR2023010720W WO2024043551A1 WO 2024043551 A1 WO2024043551 A1 WO 2024043551A1 KR 2023010720 W KR2023010720 W KR 2023010720W WO 2024043551 A1 WO2024043551 A1 WO 2024043551A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sealing
pouch
unit
transmitting material
Prior art date
Application number
PCT/KR2023/010720
Other languages
English (en)
French (fr)
Inventor
윤성재
백주환
이진수
이승배
조광운
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2024523930A priority Critical patent/JP2024536596A/ja
Priority to EP23857587.2A priority patent/EP4403337A1/en
Priority to CN202380014204.8A priority patent/CN118159410A/zh
Publication of WO2024043551A1 publication Critical patent/WO2024043551A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/433Casing-in, i.e. enclosing an element between two sheets by an outlined seam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/245Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool the heat transfer being achieved contactless, e.g. by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7146Battery-cases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sealing device used for case sealing when manufacturing pouch-type secondary batteries.
  • This application claims the benefit of priority based on Korean Patent Application No. 10-2022-0106088, dated August 24, 2022, and all content updated in the document of the Korean Patent Application is included as part of this specification.
  • lithium secondary batteries with high energy density and discharge voltage are commercialized and used in various forms.
  • Lithium secondary batteries are classified into cylindrical secondary batteries, prismatic secondary batteries, and pouch-shaped secondary batteries according to their appearance.
  • pouch-type secondary batteries can obtain high-capacity, high-density secondary batteries by adjusting the thickness of the aluminum laminate sheet, and can have various shapes, so research in various fields is underway.
  • a pouch-type secondary battery is generally formed by forming an aluminum laminate sheet to form an accommodating portion, storing an electrode assembly in the accommodating portion, and then sealing the surrounding portion of the accommodating portion.
  • the conventional pouch-type secondary battery sealing device performs pressurization and heating as a single member.
  • a conventional pouch-type secondary battery sealing device places the sealing part of a pouch-type secondary battery case made of a laminated sheet containing an external resin layer, a metal layer, and an internal sealant layer so that the internal sealant layer faces, and then heats and pressurizes it simultaneously. Seal it by placing it between the pressurized parts.
  • the sealing device has a problem in that it takes a lot of time for heat to be transferred from the external resin layer to the internal sealant layer, causing damage to the external resin layer.
  • the pouch-type secondary battery sealing device like the pouch-type secondary battery sealing device according to the prior art, arranges the sealing part of the pouch-type secondary battery case including an external resin layer, a metal layer, and an internal sealant layer so that the internal sealant layer faces, This is placed between the pressurized parts.
  • the pressing part is made of an infrared-transmitting material, and an infrared irradiating part is present at the top.
  • the infrared irradiation unit rapidly heats only the metal layer of the sealing part of the secondary battery case and melts the internal sealant layer with the heated metal layer, thereby improving the sealing force while reducing damage to the external resin layer due to conventional heat.
  • the pouch-type secondary battery sealing device has a limitation in that the laser output must be high to heat the metal layer disposed between the external resin layer and the internal sealant layer. Additionally, due to uneven heating of the pressurized portion, quality imbalance may occur, such as uneven sealing or wrinkles in the laminate sheet that makes up the case. To solve this problem, when increasing the laser output, there is a problem that the pressing part is damaged when pressed in a heated state due to the low compressive strength of the pressing part.
  • the purpose of the present invention is to provide a pouch-type secondary battery sealing device that can uniformly and safely seal the sealing part of the pouch-type secondary battery case and a secondary battery manufacturing method using the same.
  • the present invention in one embodiment, the present invention
  • a pressurizing portion located at least at one of the upper and lower portions of the sealing portion of the pouch case and made of a material through which a light source can pass through;
  • It includes a light source unit that irradiates light to the pressing unit,
  • the pressing unit provides a pouch-type secondary battery sealing device including a first light-transmitting material that satisfies the following equation 1:
  • TC 1st represents the thermal conductivity of the first light transmitting material (unit: W/m ⁇ K)
  • RI 1st represents the refractive index of the first light-transmitting material for light having a wavelength of 980 nm.
  • the first light-transmitting material may have a refractive index of 1.45 to 1.9 for light having a wavelength of 980 nm and may exhibit a Mohs hardness of 8.0 or more.
  • the pressing part includes a sealing unit that contacts and heat-presses the sealing part of the pouch case; and a lens unit located between the light source unit and the sealing unit to converge the light emitted from the light source unit into a ring unit, wherein the sealing unit may include a first light transmitting material.
  • the lens unit includes at least one of a first light transmitting material and a second light transmitting material, and the second light transmitting material may satisfy Equation 2:
  • TC 2nd represents the thermal conductivity of the second light transmitting material (unit: W/m ⁇ K)
  • RI 2nd represents the refractive index of the second light-transmitting material for light having a wavelength of 980 nm.
  • the second light transmitting material may have a refractive index of 1.40 to 1.60 for light having a wavelength of 980 nm.
  • the lens unit may be a cylinder lens.
  • the lens unit includes a first light-transmitting material and a second light-transmitting material, and the first light-transmitting material and the second light-transmitting material have a structure that is symmetrical with respect to the center line including the center of the cross section of the lens unit. You can have it.
  • the light source unit may radiate light having a wavelength of 750 nm to 1,000 nm.
  • a pouch-type case composed of a laminated sheet including a metal layer and an internal sealant layer and including an electrode assembly storage portion and a sealing portion surrounding the electrode assembly storage portion;
  • a method of manufacturing a pouch-type secondary battery including the step of pressing and sealing the sealing portion of the pouch-type case while irradiating light from the light source portion of the sealing device to the pressurizing portion.
  • the pouch-type secondary battery sealing device includes a light source unit that irradiates light and a pressurizing unit that heats and pressurizes the sealing part of the pouch case using the light irradiated from the light source unit, and includes a sealing unit of the pressurizing part in contact with the sealing part of the case. It has a configuration in which a first light-transmitting material with high thermal conductivity and high optical refractive index is applied. Accordingly, the sealing device can uniformly heat and seal the sealing part of the case and prevent damage to the sealing unit heated to high temperatures during sealing, so the quality of the secondary battery can be improved and at the same time, fairness and economic efficiency can be improved. There are benefits to improving it.
  • Figure 1 is a perspective view schematically showing the sealing process of a pouch-type secondary battery using the light source unit and the pressurizing unit of the sealing device according to the present invention.
  • Figure 2 is a cross-sectional view showing the cross-sectional structure formed by the first light-transmitting material and the second light-transmitting material in the lens unit including the first light-transmitting material and the second light-transmitting material.
  • the present invention in one embodiment, the present invention
  • a pressurizing portion located at least at one of the upper and lower portions of the sealing portion of the pouch case and made of a material through which a light source can pass through;
  • It includes a light source unit that irradiates light to the pressing unit,
  • the pressing unit provides a pouch-type secondary battery sealing device including a first light-transmitting material that satisfies the following equation 1:
  • TC 1st represents the thermal conductivity of the first light transmitting material (unit: W/m ⁇ K)
  • RI 1st represents the refractive index of the first light-transmitting material for light having a wavelength of 980 nm.
  • the pouch-type secondary battery sealing device includes a light source unit that irradiates light and a pressurizing unit that heats and pressurizes the sealing part of the pouch case using the light irradiated from the light source unit, and includes a sealing unit of the pressurizing part in contact with the sealing part of the case. It is characterized by the application of a first light-transmitting material with high thermal conductivity and light refractive index. Accordingly, the sealing device can not only heat and seal the sealing part of the case uniformly, but also prevent damage to the sealing unit heated to a high temperature during sealing, so the quality of the secondary battery can be improved, and at the same time, fairness and economic efficiency can be improved. There is an advantage to this improvement.
  • FIG. 1 is a perspective view schematically showing the main configuration of the sealing device according to the present invention. Hereinafter, it will be described in more detail with reference to FIG. 1.
  • the sealing device 100 for a pouch-type secondary battery is located on the sealing portion 11a of the pouch case 11 and includes a pressurizing portion 120 that heats and pressurizes the sealing portion, and a light source portion that heats the pressing portion by irradiating light ( 110).
  • the light source unit 110 serves to heat the pressing unit.
  • the light source unit 110 may irradiate light to the pressing unit 120, and at this time, the irradiated light may emit a laser in the form of a beam.
  • the light may be light formed by a laser diode, and the emitted light may be an infrared laser, specifically an infrared laser with a wavelength of 750 nm to 1,000 nm; Or it may be an infrared laser with a wavelength of 800 nm to 980 nm.
  • the infrared laser emitted from the light source unit 110 may be irradiated to either the upper or lower portion of the sealing portion 11a to be sealed, or may be irradiated from both the upper and lower portions of the sealing portion 11a.
  • the former case has the advantage of lower equipment costs compared to the latter case and prevents the possibility of damage to the laser diode on the opposite side.
  • the latter case since two light source units 110 are used on both sides of the sealing unit 11a, there is an advantage in that the sealant layer can be effectively melted in a faster time.
  • the light source unit 110 may be provided in plural numbers on the other side of the side where the pressing unit 120 presses the case sealing unit 11a, and the pressing unit 120 and the light source unit ( 110) can be placed on the same line. In this case, even if the light source unit 110 and the pressing unit 120 are spaced apart from each other, the loss of the infrared laser emitted to the pressing unit 120 can be minimized.
  • the light emitted from the light source unit 110 is transmitted to the pressing part 120, and the light transmitted to the pressing part 120 is condensed to heat the sealing part 11a of the case.
  • the pressing unit 120 presses the sealing unit 11a of the case to maintain the mutual adhesion of the sealant layers inside the case in a state of increased adhesion, and in this state, the light source unit 110 emits an infrared laser to apply pressure. It can be operated by heating the unit 120.
  • this method irradiates infrared rays while maintaining the pressurized state, it is possible to effectively form the sealing portion 11a by performing infrared irradiation on the sealant layer inside the case with high precision and further increase the bonding force of the sealing portion 11a. You can.
  • the pressing part 120 includes a sealing unit 121 that contacts and heat-presses the sealing part 11a of the pouch case; And it may include a lens unit 122 located between the light source unit 110 and the sealing unit 121 to converge the light emitted from the light source unit 110 to the sealing unit 121.
  • the sealing unit 121 performs the function of pressing the sealing part 11a of the case and transferring heat from the infrared laser focused through the lens unit 122 to the sealing part 11a to heat it.
  • the sealing unit 121 may have a flat plate shape provided along the sealing portion 11a of the case.
  • a light source is installed inside the sealing unit 121. It may also have a structure that prevents dispersion.
  • the lens unit 122 is mounted on one side of the sealing unit 121 and serves to expand the irradiation range of the infrared laser irradiated from the light source unit 110 while concentrating the light incident on the sealing unit 121. can do.
  • the lens unit 122 may be formed integrally with the sealing unit 121 and may be located between the light source unit 110 and the sealing unit 121 along the path of the infrared laser.
  • the lens unit 122 may refract and/or reflect the infrared laser emitted from the light source unit 110 and guide it to the sealing unit 121.
  • the lens unit 122 may have a convex shape on the surface facing the sealing unit 121, and may preferably include a cylindrical cylinder lens with a side surface attached along the sealing unit 121. .
  • the pressurizing unit 120 focuses the light incident from the light source unit 110 on the sealing part 11a of the case, and uses the following equation 1 to uniformly concentrate the light on the entire surface of the sealing part 11a while minimizing energy loss at this time: It may include a first light transmitting material that satisfies:
  • TC 1st represents the thermal conductivity of the first light transmitting material (unit: W/m ⁇ K)
  • RI 1st represents the refractive index of the first light-transmitting material for light having a wavelength of 980 nm.
  • Equation 1 above represents the ratio of the thermal conductivity of the first light-transmitting material and the refractive index for light with a wavelength of 980 nm.
  • the infrared laser focused on the pressurizing part 110 is transmitted to the sealing part 11a of the case in the form of heat energy.
  • the energy conservation amount of the first light transmitting material is inferred by reflecting the light refractive index rather than the light transmittance for the infrared laser. can do. That is, Equation 1 above can indirectly represent the energy conservation amount of the first light-transmitting material with respect to the infrared laser.
  • the pressurizing part according to the present invention may include a first light-transmitting material that satisfies Equation 1 as 15 to 35 (i.e., 15 ⁇ TC 1st / RI 1st ⁇ 35), and specifically, Equation 1 as 15 to 35 (i.e.
  • the first light transmitting material may have a refractive index of 1.45 to 1.9 for light with a wavelength of 980 nm, specifically 1.45 to 1.85 for light with a wavelength of 980 nm; 1.55 to 1.85; 1.65 to 1.85; Alternatively, it may have a refractive index of 1.75 to 1.85.
  • the first light-transmitting material satisfies the conditions of Equation 1, thereby minimizing energy loss of the infrared laser incident from the light source unit 110 and uniformly applying heat to the sealing portion 11a of the case.
  • the sealing thickness of the sealing part can be uniformly formed.
  • the first light transmitting material may exhibit a Mohs hardness within a specific range. Specifically, the first light transmitting material may exhibit a Mohs hardness of 8.0 or more, specifically 8.5 or more; Alternatively, it may have a Mohs hardness of 9.0 or higher.
  • the first light-transmitting material according to the present invention satisfies the above-mentioned Mohs hardness and thus can prevent damage under heating and pressurizing conditions, so that damage to the sealing portion 11a due to damage to the pressurizing portion 120 during sealing of the case sealing portion 11a is prevented. can be prevented.
  • the pressing unit 120 may include a first light-transmitting material, and in some cases, the first light-transmitting material may be used as a sealing unit 121 of the pressing unit 120 that requires high thermal energy transfer efficiency and hardness. included in, and the lens unit 122 attached to the sealing unit 121 may include one or more types of a first light-transmitting material and a second light-transmitting material.
  • the lens unit 122 may be made of a first light-transmitting material, and in some cases, a relatively low thermal conductivity is required compared to the sealing unit 121, so it may be made of a second light-transmitting material alone or the same. Can be used together.
  • the lens unit 122 performs the function of concentrating light incident through the entire surface of the lens unit 122 onto the sealing unit 121, and thus has a relatively high light transmittance compared to the sealing unit 121. is required, whereas low thermal conductivity may be required. Accordingly, the lens unit 122 may include a second light-transmitting material having a relatively low thermal conductivity and light refractive index compared to the first light-transmitting material, and the second light-transmitting material may satisfy Equation 2 below. :
  • TC 2nd represents the thermal conductivity of the second light transmitting material (unit: W/m ⁇ K)
  • RI 2nd represents the refractive index of the second light-transmitting material for light having a wavelength of 980 nm.
  • Equation 2 above represents the ratio of the thermal conductivity of the second light-transmitting material and the refractive index for light with a wavelength of 980 nm.
  • the infrared laser converged from the pressing part 110 is transmitted to the sealing part 11a of the case in the form of heat energy.
  • the energy conservation amount of the second light-transmitting material is determined by reflecting the optical refractive index rather than the optical transmittance of the transmitted infrared laser. can be inferred. That is, Equation 2 above can indirectly represent the energy conservation amount of the second light-transmitting material with respect to the infrared laser.
  • the pressurizing part according to the present invention may include a second light-transmitting material that satisfies Equation 2 as 0.5 to 2 (i.e., 0.5 ⁇ TC 2nd /RI 2nd ⁇ 2), and specifically, Equation 2 as 0.5 to 1.9. (i.e. 0.5 ⁇ TC 2nd /RI 2nd ⁇ 1.9); 0.5 to 1.75 (i.e., 0.5 ⁇ TC 2nd /RI 2nd ⁇ 1.75 ); 0.5 to 1.5 (i.e., 0.5 ⁇ TC 2nd /RI 2nd ⁇ 1.5 ); Or 0.5 to 1.35 (i.e., 0.5 ⁇ TC 2nd /RI 2nd ⁇ 1.35); may include a second light transmitting material satisfying the following.
  • the second light transmitting material may have a refractive index of 1.40 to 1.60 for light with a wavelength of 980 nm, specifically 1.45 to 1.60 for light with a wavelength of 980 nm; 1.45 to 1.55; Alternatively, it may have a refractive index of 1.50 to 1.55.
  • the second light-transmitting material satisfies the condition of Equation 2, so that it can focus the infrared laser incident from the light source unit 110 to the sealing unit 121 while minimizing energy loss.
  • the lens unit 122 when the lens unit 122 includes a first light-transmitting material and a second light-transmitting material, it may have a constant cross-sectional structure.
  • the lens unit 122 may include a first light transmitting material (1st) and a second light transmitting material (2nd) so as to be symmetrical with respect to a center line (C) including the center of the cross section.
  • the center line C is parallel to the pressing direction of the sealing unit 121 and may include the center of the sealing unit 121.
  • the lens unit 122 may be composed of only the second light transmitting material (2nd) as shown in (a) of Figure 2, and the center line (C) as shown in (b) to (d) of Figure 2.
  • the first light transmitting material (1st) and the second light transmitting material (2nd) may be arranged to be symmetrical with respect to .
  • the present invention configures the cross-sectional structures of the first light-transmitting material (1st) and the second light-transmitting material (2nd) constituting the lens unit 122 to be symmetrical with respect to the center line (C) of the lens unit 122. It is possible to maximize the thermal energy of the infrared laser focused on the sealing unit 121, and compared to the case where the lens unit 122 is composed of only the first light transmitting material (1st) with high hardness, the Processability and economic efficiency can be further improved.
  • the amount of energy concentrated in the sealing unit 121 can be adjusted, so the type of case used when manufacturing a secondary battery It has the advantage of being selectively applied depending on size.
  • the first light transmitting material and the second light transmitting material can be applied without particular restrictions as long as they satisfy the conditions of Equation 1 and Equation 2 described above, respectively.
  • the first and second light transmitting materials may be made of germanium, silicon, zinc sulfide, magnesium fluoride, sapphire, glass, quartz, etc.
  • the first light transmitting material may include sapphire (TC/RI: 22.2 ⁇ 25.7, refractive index: 1.75 ⁇ 1.8, Mohs hardness: 9), and the second light transmitting material may include quartz (TC/RI: 0.65 ⁇ It may include 1.33, refractive index: 1.5 ⁇ 1.55, Mohs hardness: 6).
  • the pouch-type secondary battery sealing device can not only heat and seal the sealing part of the case uniformly, but also prevent damage to the sealing unit heated to a high temperature during sealing, thereby preventing the secondary battery from being damaged. Quality can be improved, and at the same time, there is an advantage in improving fairness and economic efficiency.
  • a method of manufacturing a secondary battery using the pouch-type secondary battery sealing device described above is provided.
  • the manufacturing method of a secondary battery according to the present invention has the advantage of improving the quality of the manufactured secondary battery by enabling uniform and robust sealing of the sealing portion by using the sealing device of the present invention described above during sealing.
  • the manufacturing method includes storing the electrode assembly and the electrolyte in a pouch-type case composed of a laminated sheet including a metal layer and an internal sealant layer and including an electrode assembly storage portion and a sealing portion surrounding the electrode assembly storage portion; Placing the sealing device of the present invention described above at one or more of the upper and lower portions of the pouch-type case sealing portion; and sealing the sealing portion of the pouch-type case by pressing it while irradiating light from the light source portion of the sealing device to the pressurizing portion.
  • the step of storing the electrode assembly and the electrolyte solution in the pouch-type case is the step of storing the electrode assembly and the electrolyte solution in the pouch-type case, and can be performed in a manner commonly applied in the art.
  • the electrode assembly includes a jelly roll-type electrode assembly in which one or more cathodes, separators, and anodes are sequentially stacked and wound;
  • a stack-and-folding type electrode assembly in which a unit cell in which a cathode, a separator, and an anode are sequentially stacked is placed on a long film-shaped separator and then wound in a single direction; It may be one of the stack-and-fold type electrode assemblies in which a unit cell in which a cathode, a separator, and an anode are sequentially stacked is placed on a long film-shaped separator and then wound in a zigzag direction.
  • the pouch-type case may be composed of a metal layer including an aluminum layer and a laminated sheet including an internal sealant layer.
  • the metal layer serves to prevent air, moisture, etc. from entering the interior of the battery.
  • the type of material used in the metal layer is not particularly limited as long as it has excellent formability and ductility and can be heated by infrared rays.
  • it may be made of aluminum or aluminum alloy material.
  • the internal sealant layer serves to provide sealing properties by being thermally fused to each other by heat and pressure applied while the electrode assembly is embedded, and is mainly made of non-stretched polypropylene film (CPP).
  • An adhesive layer may be added between the external resin layer and the metal layer and/or the metal layer and the internal sealant layer, and serves to compensate for the low adhesion between the layers on both sides of the adhesive layer.
  • the step of disposing the sealing device of the present invention on the pouch-type case sealing part includes placing the sealing device of the present invention on the upper and/or lower part of the sealing portion of the pouch-type case after the electrode assembly and electrolyte solution are stored in the pouch-type case. It is carried out by doing.
  • the above step can be performed by placing sealing devices on the top and bottom of the pouch-type case seal, respectively.
  • the step of sealing the sealing portion of the pouch-type case by pressing is a step of sealing the sealing portion, and irradiation of light from the light source portion of the sealing device disposed on the sealing portion to the pressurizing portion and pressurizing the sealing portion of the pouch-type case may be performed simultaneously. In some cases, light irradiation to the pressurized portion may be performed after pressing the pouch-type case sealing portion.
  • the light source unit may emit an infrared laser to the pressurizing unit, and the infrared laser at this time may have a wavelength of 750 nm to 1,000 nm, or may have a wavelength of 800 nm to 980 nm. If the wavelength of the infrared laser is too long, it may not be sufficient or may take a lot of time to induce heating of the blocking metal layer or melting of the sealant layer. Conversely, if the wavelength is too short, the high energy may cause rupture or rupture of the battery case. This is not advisable as it may cause fire.
  • the temperature at which the sillint layer is melted by the infrared laser irradiation may be 180 to 300°C. If the temperature is outside the above range, it is not preferable because it may not be easy to form a substantially uniform seal due to insufficient or excessive melting.
  • the pressure with which the pressing part of the sealing device presses the case sealing part is appropriately in the range of 0.1 to 5 MPa.
  • the pressure applied to the sealing part of the case can be adjusted to be constantly applied to the front surface of the sealing part by a pressure gauge (not shown) provided in the sealing device.
  • the electrode assembly and electrolyte were inserted into the pouch-type case, and the unsealed pouch cell into which the electrode assembly and electrolyte were inserted was fixed to the sealing device.
  • the sealing device having the structure shown in FIG. 1 was used.
  • an infrared laser with a wavelength of 980 nm is irradiated to the lens unit of the pressurizing unit using the infrared diode of the light source unit (output: 80 to 85 W/cm2), and the sealing part of the pouch case is tightened to 2MPa using the sealing unit of the pressurizing unit. Pressure was applied to seal the seal.
  • the sealing unit of the pressing part is made of a first light-transmitting material
  • the lens unit of the pressing part is made of one or more types of the first light-transmitting material and the second light-transmitting material.
  • the physical properties of each of the first and second light transmitting materials and the cross-sectional structure of the lens unit were adjusted as shown in Table 1 below.
  • the sealing quality of the sealing portion was evaluated for the pouch-type secondary batteries sealed in Examples and Comparative Examples.
  • the thickness of the case seal was measured at 10 random points to check whether the case seal was uniformly and robustly sealed.
  • the average value was calculated from the measured values, and the error rate at the point with the largest error was calculated based on the calculated average value. The results are shown in Table 2 below.
  • the sealing device for a pouch-type secondary battery according to the present invention can uniformly and safely seal the sealing portion of the case.
  • the sealing unit of the pressurizing unit using a sealing device with a light-transmitting material that satisfies the conditions of Equation 1 was uniformly sealed, and the maximum error rate based on the average thickness of the sealing unit was less than 5%.
  • the sealing portion was unevenly sealed, and the maximum error rate based on the average thickness of the sealing portion was found to be more than 10%.
  • the sealing device according to the present invention and the manufacturing method of a secondary battery using the same can not only uniformly seal the sealing part of the case, but also prevent damage to the sealing unit heated to a high temperature during sealing, so that the secondary battery It can be seen that quality can be improved and at the same time fairness and economic efficiency can be improved.
  • Pouch-type secondary battery 11 Pouch-type case
  • Sealing device 110 Light source unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 파우치형 이차전지용 실링 장치에 관한 것으로, 상기 실링 장치는 광을 조사하는 광원부와 상기 광원부에서 조사된 광을 이용하여 파우치 케이스의 밀봉부를 가열 가압하는 가압부를 포함하되, 케이스의 밀봉부와 맞닿는 가압부의 실링 유닛에 열 전도율과 광 굴절률이 높은 제1 광투과재를 적용함으로써 케이스의 밀봉부를 균일하게 실링할 수 있을 뿐만 아니라 실링 시 고온으로 가열된 실링 유닛의 파손을 방지할 수 있으므로, 이차전지의 품질이 향상될 수 있으며 동시에 공정성과 경제성이 개선되는 이점이 있다.

Description

파우치형 이차전지용 실링 장치
본 발명은 파우치형 이차전지의 제조 시 케이스 실링에 사용되는 실링 장치에 관한 것이다. 본 출원은 2022. 08. 24일자 대한민국 특허 출원 제10-2022-0106088호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개신된 모든 내용은 본 명세서의 일부로서 포함된다.
최근 전지를 사용하는 기기가 다양해짐에 따라 고용량, 고밀도의 전지에 대한 수요가 증가하고 있다. 그 중 높은 에너지 밀도와 방전 전압을 가진 리튬 이차전지는 다양한 형태로 상용화되어 사용되고 있다.
리튬 이차전지는 외형에 따라 원통형 이차전지, 각형 이차전지, 파우치형 이차전지로 구분된다. 그 중 파우치형 이차전지는 알루미늄 라미네이트 시트의 두께를 조절하여 고용량, 고밀도의 이차전지를 얻을 수 있고, 다양한 형상을 가질 수 있어 다방면의 연구가 진행되고 있다.
파우치형 이차전지는 일반적으로 알루미늄 라미네이트 시트를 성형하여 수납부를 형성하고, 수납부에 전극조립체를 수납한 후, 수납부의 주변을 밀봉하여 형성된다. 수납부 주변을 밀봉하여 밀봉부를 형성하기 위해 종래의 파우치형 이차전지 실링 장치는 가압과 가열을 하나의 부재로 수행하였다.
종래 파우치형 이차전지 실링 장치는 외부 수지층, 금속층, 내부 실란트층을 포함하는 라미네이트 시트로 이루어진 파우치형 이차전지 케이스의 밀봉부를 내부 실란트층이 마주보도록 배치시킨 후, 이를 가열과 가압을 동시에 수행할 수 있는 가압부 사이에 두어 밀봉한다. 그러나, 상기 실링 장치는 열이 외부 수지층에서 내부 실란트층까지 전달되기 위해 많은 시간이 소요되고, 외부 수지층의 손상을 초래하는 문제가 있다.
이러한 문제를 해결하기 위해 레이저를 사용하여 파우치형 이차전지를 실링하는 방법이 개발된 바 있다. 상기 파우치형 이차전지 실링 장치는 종래 기술에 따른 파우치형 이차전지 실링 장치와 같이 외부 수지층, 금속층, 내부 실란트층을 포함하는 파우치형 이차전지 케이스의 밀봉부를 내부 실란트층이 마주보도록 배치시킨 후, 이를 가압부 사이에 위치시킨다.
이때, 상기 가압부는 적외선 투과 소재로 이루어져 있고, 상부에 적외선 조사부가 존재하는 것을 특징으로 한다. 또한 상기 적외선 조사부는 이차전지 케이스의 밀봉부 중 금속층만을 빠르게 가열하여 가열된 금속층에 의해 내부 실란트층을 녹임으로써 종래 열에 의한 외부 수지층의 손상을 줄이면서 밀봉력을 향상시키고 있다.
그러나, 상기 파우치형 이차전지 실링 장치는 레이저의 출력이 높아야 외부 수지층과 내부 실란트층 사이에 배치되어 있는 금속층을 가열할 수 있다는 한계가 있다. 또한, 가압부의 가열이 고르게 되지 않아 밀봉이 고르게 되지 않거나, 케이스를 구성하는 라미네이트 시트에 주름이 발생하는 등의 품질 불균형이 초래될 수 있다. 이를 해결하기 위하여 레이저 출력을 높이는 경우 가압부의 낮은 압축 강도로 인해 가열된 상태에서 가압 시 가압부가 파손이 되는 문제가 있다.
따라서, 파우치형 이차전지 케이스의 밀봉부를 균일하고 안전하게 실링할 수 있는 파우치형 이차전지 실링 장치 및 파우치형 이차전지 제조방법의 개발이 요구되고 있다.
[특허문헌]
대한민국 공개특허공보 제10-2021-0156516호
이에, 본 발명의 목적은 파우치형 이차전지 케이스의 밀봉부를 균일하고 안전하게 실링할 수 있는 파우치형 이차전지 실링 장치 및 이를 이용한 이차전지 제조방법을 제공하는데 있다.
상술된 문제를 해결하기 위하여,
본 발명은 일실시예에서,
파우치 케이스의 밀봉부 상부 및 하부 중 적어도 한 지점에 위치하며 광원이 투과할 수 있는 소재로 이루어진 가압부; 및
상기 가압부에 광을 조사하는 광원부를 포함하고,
상기 가압부는 하기 식 1을 만족하는 제1 광투과재를 포함하는 파우치형 이차전지 실링 장치를 제공한다:
[식 1]
15≤TC1st/RI1st≤35
식 1에서,
TC1st는 제1광투과재의 열 전도율(단위: W/m·K)을 나타내고,
RI1st은 제1 광투과재의 980nm 파장을 갖는 광에 대한 굴절률을 나타낸다.
이때, 상기 제1 광투과재는 980nm 파장을 갖는 광에 대하여 1.45 내지 1.9의 굴절률을 가질 수 있으며, 8.0 이상의 모스 경도를 나타낼 수 있다.
또한, 상기 가압부는 파우치 케이스의 밀봉부와 접촉하여 열 압착시키는 실링 유닛; 및 광원부와 실링 유닛 사이에 위치하여 광원부에서 조사된 광을 링유닛으로 집광하는 렌즈 유닛을 포함하고, 상기 실링 유닛은 제1 광투과재를 포함할 수 있다.
아울러, 상기 렌즈 유닛은 제1 광투과재 및 제2 광투과재 중 1종 이상을 포함하고, 상기 제2 광투과재는 식 2를 만족할 수 있다:
[식 2]
0.5≤TC2nd/RI2nd≤2
식 2에서,
TC2nd는 제2 광투과재의 열 전도율(단위: W/m·K)을 나타내고,
RI2nd은 제2 광투과재의 980nm 파장을 갖는 광에 대한 굴절률을 나타낸다.
여기서, 상기 제2 광투과재는 980nm 파장을 갖는 광에 대하여 1.40 내지 1.60의 굴절률을 가질 수 있다.
또한, 상기 렌즈 유닛은 실린더 렌즈일 수 있다.
이 경우, 상기 렌즈 유닛은 제1 광투과재 및 제2 광투과재를 포함하고, 상기 제1 광투과재 및 제2 광투과재는 렌즈 유닛의 단면 중심을 포함하는 중심선에 대하여 대칭을 이루는 구조를 가질 수 있다.
한편, 상기 광원부는 750 nm 내지 1,000 nm의 파장을 갖는 광을 조사할 수 있다.
또한, 본 발명은 일실시예에서,
금속층 및 내부 실란트층을 포함하는 라미네이트 시트로 구성되고, 전극 조립체 수납부와 이를 둘러싸는 밀봉부를 포함하는 파우치형 케이스에 전극 조립체 및 전해액을 수납하는 단계;
상기 파우치형 케이스 밀봉부의 상부 및 하부 중 어느 한 지점 이상에 본 발명에 따른 실링 장치를 배치하는 단계; 및
상기 실링 장치의 광원부에서 가압부로 광을 조사하면서 파우치형 케이스의 밀봉부를 가압하여 밀봉하는 단계를 포함하는 파우치형 이차전지의 제조방법을 제공한다.
본 발명에 따른 파우치형 이차전지 실링 장치는 광을 조사하는 광원부와 상기 광원부에서 조사된 광을 이용하여 파우치 케이스의 밀봉부를 가열 가압하는 가압부를 포함하되, 케이스의 밀봉부와 맞닿는 가압부의 실링 유닛에 열 전도율과 광 굴절률이 높은 제1 광투과재가 적용된 구성을 갖는다. 이에 따라, 상기 실링 장치는 케이스의 밀봉부를 균일하게 가열하여 실링할 수 있으며, 실링 시 고온으로 가열된 실링 유닛의 파손을 방지할 수 있으므로, 이차전지의 품질이 향상될 수 있으며 동시에 공정성과 경제성이 개선되는 이점이 있다.
도 1는 본 발명에 따른 실링 장치의 광원부와 가압부를 이용한 파우치형 이차전지의 실링 공정을 개략적으로 나타난 사시도이다.
도 2는 제1 광투과재 및 제2 광투과재를 포함하는 렌즈 유닛에 있어서, 제1 광투과재와 제2 광투과재가 이루는 단면 구조를 나타낸 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 상세한 설명에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명에서, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 기재된 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "하에" 있다고 기재된 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 본 출원에서 "상에" 배치된다고 하는 것은 상부 뿐만 아니라 하부에 배치되는 경우도 포함하는 것일 수 있다.
이하, 본 발명을 보다 상세하게 설명한다.
파우치형 이차전지 실링 장치
본 발명은 일실시예에서,
파우치 케이스의 밀봉부 상부 및 하부 중 적어도 한 지점에 위치하며 광원이 투과할 수 있는 소재로 이루어진 가압부; 및
상기 가압부에 광을 조사하는 광원부를 포함하고,
상기 가압부는 하기 식 1을 만족하는 제1 광투과재를 포함하는 파우치형 이차전지 실링 장치를 제공한다:
[식 1]
15≤TC1st/RI1st≤35
식 1에서,
TC1st는 제1광투과재의 열 전도율(단위: W/m·K)을 나타내고,
RI1st은 제1 광투과재의 980nm 파장을 갖는 광에 대한 굴절률을 나타낸다.
본 발명에 따른 파우치형 이차전지 실링 장치는 광을 조사하는 광원부와 상기 광원부에서 조사된 광을 이용하여 파우치 케이스의 밀봉부를 가열 가압하는 가압부를 포함하되, 케이스의 밀봉부와 맞닿는 가압부의 실링 유닛에 열 전도율과 광 굴절률이 높은 제1 광투과재가 적용된 것을 특징으로 한다. 이에 따라, 상기 실링 장치는 케이스의 밀봉부를 균일하게 가열하여 실링할 수 있을 뿐만 아니라 실링 시 고온으로 가열된 실링 유닛의 파손을 방지할 수 있으므로, 이차전지의 품질이 향상될 수 있으며 동시에 공정성과 경제성이 개선되는 이점이 있다.
도 1은 본 발명에 따른 실링 장치의 주요 구성을 개략적으로 나타낸 사시도이다. 이하, 도 1을 참고하여 보다 상세히 설명한다.
상기 파우치형 이차전지용 실링 장치(100)는 파우치 케이스(11)의 밀봉부(11a) 상에 위치하여 밀봉부를 가열 및 가압하는 가압부(120)와 상기 가압부에 광을 조사하여 가열하는 광원부(110)를 포함한다.
이때, 상기 광원부(110)는 가압부를 가열시키는 역할을 수행한다. 이를 위하여, 상기 광원부(110)는 가압부(120)에 광을 조사할 수 있으며, 이때 조사되는 광은 빔 형태의 레이저를 출사할 수 있다. 예를 들어, 상기 광은 레이저 다이오드에 의해 형성된 광일 수 있으며, 출사된 광은 적외선 레이저일 수 있고, 구체적으로는 750 nm 내지 1,000 nm 파장의 적외선 레이저; 또는 800 nm 내지 980nm 파장의 적외선 레이저일 수 있다.
또한, 광원부(110)에서 출사된 적외선 레이저는 실링될 밀봉부(11a)의 상부 및 하부 중 어느 한 지점에 조사될 수 있으며, 또는 밀봉부(11a)의 상부와 하부의 양측에서 조사될 수도 있다. 전자의 경우는 후자의 경우와 비교하여 설비 비용이 낮고 상호 대향측에서 레이저 다이오드의 손상 가능성을 방지할 수 있는 이점이 있다. 후자의 경우는 밀봉부(11a)를 중심으로 양측에서 2개의 광원부(110)를 사용하므로 실란트층의 용융을 보다 빠른 시간 내에 효과적으로 이룰 수 있는 이점이 있다.
아울러, 상기 광원부(110)는 가압부(120)가 케이스 밀봉부(11a)를 가압하는 측의 타측에 복수개로 구비될 수 있고, 케이스 밀봉부(11a) 상에 가압부(120)와 광원부(110)가 동일 선상에 배치될 수 있다. 이 경우, 광원부(110)와 가압부(120)가 서로 이격된 형태를 갖더라도 가압부(120)로 출사되는 적외선 레이저의 손실을 최소화할 수 있다.
또한, 상기 광원부(110)에서 출사된 광은 가압부(120)로 전달되고, 가압부(120)로 전달된 광은 집광되어 케이스의 밀봉부(11a)를 가열시킬 수 있다.
보다 구체적으로, 상기 가압부(120)는 케이스의 밀봉부(11a)를 가압하여 케이스 내측의 실란트층들의 상호 밀착력을 높인 상태에서 유지하고, 이 상태에서 광원부(110)가 적외선 레이저를 출사함으로써 가압부(120)를 가열하는 방식으로 동작할 수 있다.
이러한 방식은 가압 상태를 유지하면서 적외선을 조사하므로, 케이스 내측의 실란트층에 대해 높은 정밀도로 적외선 조사를 수행하여 밀봉부(11a)를 효과적으로 형성할 수 있고, 밀봉부(11a)의 결합력을 더욱 높일 수 있다.
이때, 상기 가압부(120)는 파우치 케이스의 밀봉부(11a)와 접촉하여 열 압착시키는 실링 유닛(121); 및 광원부(110)와 실링 유닛(121) 사이에 위치하여 광원부(110)에서 조사된 광을 실링 유닛(121)으로 집광하는 렌즈 유닛(122)을 포함할 수 있다.
상기 실링 유닛(121)은 케이스의 밀봉부(11a)를 가압하는 한편 렌즈 유닛(122)을 통해 집광된 적외선 레이저로 인한 열을 밀봉부(11a)에 전달하여 가열하는 기능을 수행한다. 이를 위해 상기 실링 유닛(121)은 케이스의 밀봉부(11a)를 따라 마련된 평평한 판 형상을 가질 수 있으나, 적외선 레이저의 분산 등으로 인한 에너지 손실을 방지하기 위해 실링 유닛(121)의 내부에 광원의 분산을 방지할 수 있는 구조를 가질 수도 있다.
또한, 상기 렌즈 유닛(122)은 실링 유닛(121)의 일면에 장착되어 광원부(110)에서 조사된 적외선 레이저의 조사 범위를 확장시켜주는 한편 실링 유닛(121)으로 입사된 광을 집광하는 역할을 할 수 있다.
이를 위하여, 상기 렌즈 유닛(122)은 실링 유닛(121)과 일체로 형성되되 적외선 레이저의 경로를 따라 광원부(110)와 실링 유닛(121)의 사이에 위치할 수 있다. 렌즈 유닛(122)은 광원부(110)에서 출사된 적외선 레이저를 굴절 및/또는 반사시켜 실링 유닛(121)으로 가이드할 수 있다.
아울러, 상기 렌즈 유닛(122)은 실링 유닛(121)과 대면하는 면이 볼록한 형태를 가질 수 있으며, 바람직하게는 실링 유닛(121)을 따라 측면이 부착된 원통 형상의 실린더 렌즈를 포함할 수 있다.
나아가, 가압부(120)는 광원부(110)로부터 입사된 광을 케이스의 밀봉부(11a)에 집광하되, 이때의 에너지 손실을 최소화하면서 밀봉부(11a) 전면에 균일하게 집광하기 위하여 하기 식 1을 만족하는 제1 광투과재를 포함할 수 있다:
[식 1]
15≤TC1st/RI1st≤35
식 1에서,
TC1st는 제1광투과재의 열 전도율(단위: W/m·K)을 나타내고,
RI1st은 제1 광투과재의 980nm 파장을 갖는 광에 대한 굴절률을 나타낸다.
상기 식 1은 제1 광투과재의 열 전도율과 980nm 파장을 갖는 광에 대한 굴절률의 비율을 나타낸다. 가압부(110)에서 집광되는 적외선 레이저는 열 에너지의 형태로 케이스의 밀봉부(11a)에 전달되는데, 이때 적외선 레이저에 대한 광 투과율이 아닌 광 굴절률을 반영함으로써 제1 광투과재의 에너지 보존량을 유추할 수 있다. 즉, 상기 식 1은 적외선 레이저에 대한 제1 광투과재의 에너지 보존량을 간접적으로 나타낼 수 있다. 본 발명에 따른 가압부는 상기 식 1을 15 내지 35 (즉, 15≤TC1st/RI1st≤35)으로 만족하는 제1 광투과재를 포함할 수 있으며, 구체적으로는 상기 식 1을 15 내지 35 (즉, 15≤TC1st/RI1st≤35); 15 내지 30 (즉, 15≤TC1st/RI1st≤30); 20 내지 35 (즉, 20≤TC1st/RI1st≤35); 20 내지 30 (즉, 20≤TC1st/RI1st≤30); 또는 20 내지 25 (즉, 20≤TC1st/RI1st≤25);로 만족하는 제1 광투과재를 포함할 수 있다.
또한, 상기 제1 광투과재는 980 nm 파장을 갖는 광에 대하여 1.45 내지 1.9의 굴절률을 가질 수 있으며, 구체적으로는 980 nm 파장을 갖는 광에 대하여 1.45 내지 1.85; 1.55 내지 1.85; 1.65 내지 1.85; 또는 1.75 내지 1.85 굴절률을 가질 수 있다.
상기 제1 광투과재는 식1의 조건을 만족함으로써 광원부(110)로부터 입사된 적외선 레이저의 에너지 손실을 최소화할 수 있으며, 케이스의 밀봉부(11a)에 균일하게 열을 가할 수 있다. 뿐만 아니라, 밀봉부의 잔존열을 빠르게 발산시킬 수 있으므로 밀봉부의 실링 두께를 균일하게 형성할 수 있다.
아울러, 상기 제1 광투과재는 특정 범위의 모스 경도를 나타낼 수 있다. 구체적으로, 제1 광투과재는 8.0 이상의 모스 경도를 나타낼 수 있으며, 구체적으로는 8.5 이상; 또는 9.0 이상의 모스 경도를 가질 수 있다. 본 발명에 따른 제1 광투과재는 상기 모스 경도를 만족함으로써 가열 및 가압 조건에서의 파손을 방지할 수 있으므로 케이스 밀봉부(11a)의 실링 시 가압부(120) 파손으로 인한 밀봉부(11a) 손상을 방지할 수 있다.
한편, 상기 가압부(120)는 제1 광투과재를 포함할 수 있고, 경우에 따라서 상기 제1 광투과재는 높은 열 에너지 전달 효율과 경도가 요구되는 가압부(120)의 실링 유닛(121)에 포함되고, 실링 유닛(121)에 부착된 렌즈 유닛(122)은 제1 광투과재 및 제2 광투과재 중 1종 이상이 포함될 수 있다.
구체적으로, 상기 렌즈 유닛(122)은 제1 광투과재로 이루어질 수 있고, 경우에 따라서는 실링 유닛(121)과 비교하여 상대적으로 낮은 열 전도율이 요구되므로 제2 광투과재 단독으로 이루어지거나 이와 병용될 수 있다.
상기 렌즈 유닛(122)은 앞서 언급한 바와 같이 렌즈 유닛(122) 전체 표면을 통해 입사된 광을 실링 유닛(121)으로 집광시키는 기능을 수행하므로 실링 유닛(121)과 비교하여 상대적으로 높은 광 투과도가 요구되는데 반해 낮은 열 전도율이 요구될 수 있다. 따라서, 상기 렌즈 유닛(122)은 제1 광투과재와 비교하여 상대적으로 열 전도율 및 광 굴절률이 낮은 제2 광투과재를 포함할 수 있으며, 상기 제2 광투과재는 하기 식 2를 만족할 수 있다:
[식 2]
0.5≤TC2nd/RI2nd≤2
식 2에서,
TC2nd는 제2 광투과재의 열 전도율(단위: W/m·K)을 나타내고,
RI2nd은 제2 광투과재의 980nm 파장을 갖는 광에 대한 굴절률을 나타낸다.
상기 식 2는 제2 광투과재의 열 전도율과 980nm 파장을 갖는 광에 대한 굴절률의 비율을 나타낸다. 가압부(110)에서 집광되는 적외선 레이저는 열 에너지의 형태로 케이스의 밀봉부(11a)에 전달되는데, 이때 전달되는 적외선 레이저에 대한 광 투과율이 아닌 광 굴절률을 반영함으로써 제2 광투과재의 에너지 보존량을 유추할 수 있다. 즉, 상기 식 2는 적외선 레이저에 대한 제2 광투과재의 에너지 보존량을 간접적으로 나타낼 수 있다.
본 발명에 따른 가압부는 상기 식 2를 0.5 내지 2 (즉, 0.5≤TC2nd/RI2nd≤2)으로 만족하는 제2 광투과재를 포함할 수 있으며, 구체적으로는 상기 식 2를 0.5 내지 1.9 (즉, 0.5≤TC2nd/RI2nd≤1.9); 0.5 내지 1.75 (즉, 0.5≤TC2nd/RI2nd≤1.75); 0.5 내지 1.5 (즉, 0.5≤TC2nd/RI2nd≤1.5); 또는 0.5 내지 1.35 (즉, 0.5≤TC2nd/RI2nd≤1.35);로 만족하는 제2 광투과재를 포함할 수 있다.
또한, 상기 제2 광투과재는 980 nm 파장을 갖는 광에 대하여 1.40 내지 1.60의 굴절률을 가질 수 있으며, 구체적으로는 980 nm 파장을 갖는 광에 대하여 1.45 내지 1.60; 1.45 내지 1.55; 또는 1.50 내지 1.55 굴절률을 가질 수 있다. 상기 제2 광투과재는 식 2의 조건을 만족함으로써 광원부(110)로부터 입사된 적외선 레이저를 실링 유닛(121)으로 에너지 손실을 최소화하면서 집광할 수 있다.
나아가, 상기 렌즈 유닛(122)은 제1 광투과재와 제2 광투과재를 포함하는 경우 일정한 단면 구조를 갖도록 포함할 수 있다. 도 2를 참고하면, 상기 렌즈 유닛(122)은 단면 중심을 포함하는 중심선(C)에 대하여 대칭하도록 제1 광투과재(1st)와 제2 광투과재(2nd)를 포함할 수 있다. 이때, 상기 중심선(C)은 실링 유닛(121)의 가압 방향과 평행하고, 실리 유닛(121)의 중심을 포함할 수 있다.
하나의 예로서, 상기 렌즈 유닛(122)은 도 2의 (a)와 같이 제2 광투과재(2nd)로만 구성될 수 있고, 도 2의 (b) 내지 (d)와 같이 중심선(C)를 기준으로 대칭을 이루도록 제1 광투과재(1st)와 제2 광투과재(2nd)가 배치될 수 있다.
본 발명은 렌즈 유닛(122)을 구성하는 제1 광투과재(1st)와 제2 광투과재(2nd)의 단면 구조를 렌즈 유닛(122)의 중심선(C)을 기준으로 대칭을 이루도록 구성함으로써 실링 유닛(121)에 집광되는 적외선 레이저의 열 에너지를 극대화할 수 있으며, 렌즈 유닛(122)을 경도가 높은 제1 광투과재(1st) 단독으로 구성하는 경우와 비교하여 렌즈 유닛(122)의 가공성 및 경제성을 보다 높일 수 있다. 또한, 제1 광투과재(1st)와 제2 광투과재(2nd)의 단면 구조에 따라, 실링 유닛(121)에 집광되는 에너지의 양이 조절될 수 있으므로 이차전지 제조 시 사용되는 케이스의 종류나 크기에 따라 선택적으로 적용될 수 있는 이점이 있다.
한편, 상기 제1 광투과재와 제2 광투과재는 상술된 식 1 및 식 2의 조건을 각각 만족하는 것이라면 특별히 제한되지 않고 적용될 수 있다. 구체적으로, 상기 제1 광투과재와 제2 광투과재는 게르마늄, 실리콘, 황화아연, 플루오린화 마그네슘, 사파이어, 유리, 석영 등을 적용할 수 있다.
하나의 예로서, 제1 광투과재는 사파이어(TC/RI: 22.2~25.7, 굴절률: 1.75~1.8, 모스 경도: 9)를 포함할 수 있고, 제2 광투과재는 석영(TC/RI: 0.65~1.33, 굴절률: 1.5~1.55, 모스경도: 6)을 포함할 수 있다.
본 발명에 따른 파우치형 이차전지 실링 장치는 상술된 구성을 가짐으로써 케이스의 밀봉부를 균일하게 가열하여 실링할 수 있을 뿐만 아니라 실링 시 고온으로 가열된 실링 유닛의 파손을 방지할 수 있으므로, 이차전지의 품질이 향상될 수 있으며 동시에 공정성과 경제성이 개선되는 이점이 있다.
파우치형 이차전지의 제조방법
또한, 본 발명은 일실시예에서,
상술된 파우치형 이차전지 실링 장치를 이용한 이차전지의 제조방법을 제공한다.
본 발명에 따른 이차전지의 제조방법은 실링 시 상술된 본 발명의 실링 장치를 이용함으로써 밀봉부의 균일하고 견고한 실링이 가능하므로 제조되는 이차전지의 품질이 향상되는 이점이 있다.
이때, 상기 제조방법은 금속층 및 내부 실란트층을 포함하는 라미네이트 시트로 구성되고, 전극 조립체 수납부와 이를 둘러싸는 밀봉부를 포함하는 파우치형 케이스에 전극 조립체 및 전해액을 수납하는 단계; 상기 파우치형 케이스 밀봉부의 상부 및 하부 중 어느 한 지점 이상에 상술된 본 발명의 실링 장치를 배치하는 단계; 및 상기 실링 장치의 광원부에서 가압부로 광을 조사하면서 파우치형 케이스의 밀봉부를 가압하여 밀봉하는 단계를 포함한다.
먼저, 파우치형 케이스에 전극 조립체 및 전해액을 수납하는 단계는 파우치형 케이스에 전극 조립체와 전해액을 각각 수납하는 단계로서 당업계에서 통상적으로 적용되는 방식으로 수행될 수 있다.
이때, 상기 전극 조립체는 하나 이상의 음극, 분리막, 양극을 차례로 적층하여 권취한 젤리 롤형 전극조립체; 음극, 분리막, 양극이 차례로 적층된 단위셀을 긴 필름 형태의 분리막에 배치한 후 단일 방향으로 권취한 스택(stack) 앤드 폴딩(folding)형 전극 조립체; 음극, 분리막, 양극이 차례로 적층된 단위셀을 긴 필름 형태의 분리막에 배치한 후 지그재그 방향으로 권취한 스택 앤드 폴딩형 전극 조립체 중 어느 하나일 수 있다.
또한, 상기 파우치형 케이스는 알루미늄층을 포함하는 금속층, 내부 실란트층을 포함하는 라미네이트 시트로 이루어져 있을 수 있다.
여기서, 상기 금속층은 공기, 습기 등이 전지의 내부로 유입되는 것을 방지하는 역할을 한다. 상기 금속층에 사용되는 소재는 성형성 및 연성이 우수한 소재이고 적외선에 의해 가열될 수 있는 소재라면 그 종류가 특별히 제한되지 않는다. 예를 들어, 알루미늄 또는 알루미늄 합금 소재로 이루어질 수 있다.
또한, 상기 내부 실란트층은 전극조립체를 내장한 상태에서 인가된 열과 압력에 의해 상호 열융착되어 밀봉성을 제공하는 역할을 하며, 주로 무연신 폴리프로필렌 필름(CPP)으로 이루어져 있다. 상기 외부 수지층과 상기 금속층 및/또는 상기 금속층과 상기 내부 실란트층 사이에는 접착층이 추가될 수 있는 바, 상기 접착층의 양면에 있는 층들 간의 낮은 접착력을 보완하는 역할을 한다.
또한, 파우치형 케이스 밀봉부 상에 본 발명의 실링 장치를 배치하는 단계는 파우치형 케이스에 전극 조립체와 전해액이 수납된 후 파우치형 케이스의 밀봉부의 상부 및/또는 하부에 본 발명의 실링 장치를 배치함으로써 수행된다.
하나의 예로서, 상기 단계는 파우치형 케이스 밀봉부의 상부와 하부에 각각 실링 장치를 배치함으로써 수행될 수 있다.
아울러, 파우치형 케이스의 밀봉부를 가압하여 밀봉하는 단계는 상기 밀봉부를 실링하는 단계로서, 밀봉부 상에 배치된 실링 장치의 광원부에서 가압부로 광 조사와 파우치형 케이스의 밀봉부 가압이 동시에 수행될 수 있으며, 경우에 따라서는 파우치형 케이스 밀봉부의 가압 후 가압부로의 광 조사가 수행될 수 있다.
이때, 상기 광원부는 가압부로 적외선 레이저를 출사할 수 있으며, 이때의 적외선 레이저는 750 nm 내지 1,000 nm 파장을 가질 수 있으며, 또는 800 nm 내지 980nm의 파장을 가질 수 있다. 상기 적외선 레이저의 파장이 너무 긴 경우에는 차단성 금속층의 발열 내지 실란트층의 용융을 유도하는데 충분하지 못하거나 많은 시간이 소요될 수 있으며, 반대로 파장이 너무 짧은 경우에는 고에너지에 의해 전지케이스의 파열 또는 화재 등이 발생할 수 있으므로 바람직하지 않다.
또한, 상기 적외선 레이저 조사에 의해 실린트층이 용융되는 온도는 180 내지 300℃일 수 있다. 상기 온도 범위를 벗어난 경우에는 불충분한 용융 내지 과도한 용융에 의해 실질적으로 균일한 밀봉부 형성이 용이하지 않을 수 있으므로 바람직하지 않다.
아울러, 실링 장치의 가압부가 케이스 밀봉부를 가압하는 압력은 0.1~5㎫의 범위가 적당하다. 또한, 케이스의 밀봉부에 가해지는 압력은 실링 장치에 구비된 압력 게이지(미도시)에 의해 밀봉부 전면에 일정하게 가해지도록 조절될 수 있다.
이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 한정되는 것은 아니다.
실시예 및 비교예.
파우치형 케이스에 전극 조립체와 전해액을 삽입하고, 전극 조립체와 전해액이 삽입된 미실링 파우치 셀을 실링 장치에 고정하였다. 이때, 상기 실링 장치는 도 1에 나타낸 바와 같은 구조를 갖는 것을 사용하였다. 그 후, 광원부의 적외선 다이오드를 이용하여 980nm의 파장을 갖는 적외선 레이저를 가압부의 렌즈 유닛에 조사(출력: 80~85 W/㎠)하면서, 가압부의 실링 유닛을 이용하여 파우치 케이스의 밀봉부를 2MPa로 가압하여 밀봉부를 실링하였다.
이때, 상기 가압부의 실링 유닛은 제1 광투과재로 구성되고, 가압부의 렌즈 유닛은 제1 광투과재 및 제2 광투과재 중 1종 이상으로 구성되었다. 또한, 상기 제1 광투과재 및 제2 광투과재의 각 물성과 렌즈 유닛의 단면 구조는 하기 표 1과 같이 조절되었다.
제1 광투과재 제2 광투과재 렌즈 유닛
단면 구조
TC1st/RI1st 굴절률 모스 경도 TC2nd/RI2nd
실시예 1 22.2~25.7 1.75~1.8 9.0 0.65~1.33 도 2의 (a)
실시예 2 22.2~25.7 1.75~1.8 9.0 0.65~1.33 도 2의 (c)
비교예 1 0.65~1.33 1.50~1.55 6.0 0.65~1.33 도 2의 (a)
실험예.
본 발명에 따른 실링 장치의 성능을 확인하기 위하여, 실시예 및 비교예에서 실링된 파우치형 이차전지를 대상으로 밀봉부의 실링 품질을 평가하였다.
구체적으로, 케이스 밀봉부의 균일하고 견고한 실링 여부를 확인하기 위하여 밀봉부의 임의의 10 지점에 대한 두께를 측정하였다. 측정된 값으로부터 이들의 평균값을 산출하고 산출된 평균값을 기준으로 오차가 가장 큰 지점의 오차율을 산출하였다. 그 결과는 하기 표 2에 나타내었다.
평균값 기준 최대 오차율
실시예 1 약 4%
실시예 2 약 2%
비교예 1 약 10%
상기 표 2에 나타낸 바와 같이, 본 발명에 따른 파우치형 이차전지용 실링 장치는 케이스의 밀봉부를 균일하고 안전하게 실링할 수 있음을 알 수 있다.
구체적으로, 가압부의 실링 유닛에 식 1의 조건을 만족하는 광투과재가 적용된 실링 장치를 사용한 실시예의 이차전지는 밀봉부가 균일하게 실링되어 밀봉부의 평균 두께 기준 최대 오차율이 5% 미만인 것으로 확인되었다.
그러나, 식 1의 만족하지 못하는 광투과재가 적용된 실링 장치를 사용한 비교예의 이차전지는 밀봉부가 불균일하게 실링되어 밀봉부의 평균 두께 기준 최대 오차율이 10% 이상인 것으로 나타났다.
이러한 결과로부터, 본 발명에 따른 실링 장치 및 이를 이용한 이차전지의 제조방법은 케이스의 밀봉부를 균일하게 실링할 수 있을 뿐만 아니라 실링 시 고온으로 가열된 실링 유닛의 파손을 방지할 수 있으므로, 이차전지의 품질이 향상될 수 있으며 동시에 공정성과 경제성이 개선됨을 알 수 있다.
이상에서는 본 발명 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정해져야만 할 것이다.
[부호의 설명]
10: 파우치형 이차전지 11: 파우치형 케이스
11a: 케이스 밀봉부 12: 전극 리드
100: 실링 장치 110: 광원부
120: 가압부 121: 실링 유닛
122: 렌즈 유닛

Claims (10)

  1. 파우치 케이스의 밀봉부 상부 및 하부 중 적어도 한 지점에 위치하며 광원이 투과할 수 있는 소재로 이루어진 가압부; 및
    상기 가압부에 광을 조사하는 광원부를 포함하고,
    상기 가압부는 하기 식 1을 만족하는 제1 광투과재를 포함하는 파우치형 이차전지 실링 장치:
    [식 1]
    15≤TC1st/RI1st≤35
    식 1에서,
    TC1st는 제1광투과재의 열 전도율(단위: W/m·K)을 나타내고,
    RI1st은 제1 광투과재의 980nm 파장을 갖는 광에 대한 굴절률을 나타낸다.
  2. 제1항에 있어서,
    제1 광투과재는 980nm 파장을 갖는 광에 대하여 1.45 내지 1.9의 굴절률을 갖는 파우치형 이차전지 실링 장치.
  3. 제1항에 있어서,
    제1 광투과재는 8.0 이상의 모스 경도를 나타내는 파우치형 이차전지 실링 장치.
  4. 제1항에 있어서,
    가압부는 파우치 케이스의 밀봉부와 접촉하여 가열 및 가압하는 실링 유닛; 및 광원부와 실링 유닛 사이에 위치하여 광원부에서 조사된 광을 실링 유닛으로 집광하는 렌즈 유닛을 포함하고,
    상기 실링 유닛은 제1 광투과재를 포함하는 파우치형 이차전지 실링 장치.
  5. 제4항에 있어서,
    렌즈 유닛은 제1 광투과재 및 제2 광투과재 중 1종 이상을 포함하고,
    상기 제2 광투과재는 식 2를 만족하는 파우치형 이차전지 실링 장치:
    [식 2]
    0.5≤TC2nd/RI2nd≤2
    식 2에서,
    TC2nd는 제2 광투과재의 열 전도율(단위: W/m·K)을 나타내고,
    RI2nd은 제2 광투과재의 980nm 파장을 갖는 광에 대한 굴절률을 나타낸다.
  6. 제5항에 있어서,
    제2 광투과재는 980nm 파장을 갖는 광에 대하여 1.40 내지 1.60의 굴절률을 갖는 파우치형 이차전지 실링 장치.
  7. 제4항에 있어서,
    렌즈 유닛은 실린더 렌즈인 것을 특징으로 하는 파우치형 이차전지 실링 장치.
  8. 제4항에 있어서,
    렌즈 유닛은 제1 광투과재 및 제2 광투과재를 포함하고,
    상기 제1 광투과재 및 제2 광투과재는 렌즈 유닛의 단면 중심을 포함하는 중심선에 대하여 대칭을 이루는 구조를 갖는 파우치형 이차전지 실링 장치.
  9. 제1항에 있어서,
    광원부는 750 nm 내지 1,000 nm의 파장을 갖는 광을 조사하는 파우치형 이차전지 실링 장치.
  10. 금속층 및 내부 실란트층을 포함하는 라미네이트 시트로 구성되고, 전극 조립체 수납부와 이를 둘러싸는 밀봉부를 포함하는 파우치형 케이스에 전극 조립체 및 전해액을 수납하는 단계;
    상기 파우치형 케이스 밀봉부의 상부 및 하부 중 어느 한 지점 이상에 제1항에 따른 실링 장치를 배치하는 단계; 및
    상기 실링 장치의 광원부에서 가압부로 광을 조사하면서 파우치형 케이스의 밀봉부를 가압하여 밀봉하는 단계를 포함하는 파우치형 이차전지의 제조방법.
PCT/KR2023/010720 2022-08-24 2023-07-25 파우치형 이차전지용 실링 장치 WO2024043551A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024523930A JP2024536596A (ja) 2022-08-24 2023-07-25 パウチ型二次電池用シーリング装置
EP23857587.2A EP4403337A1 (en) 2022-08-24 2023-07-25 Sealing device for pouch-type secondary battery
CN202380014204.8A CN118159410A (zh) 2022-08-24 2023-07-25 用于袋式二次电池的密封装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0106088 2022-08-24
KR1020220106088A KR20240028053A (ko) 2022-08-24 2022-08-24 파우치형 이차전지용 실링 장치

Publications (1)

Publication Number Publication Date
WO2024043551A1 true WO2024043551A1 (ko) 2024-02-29

Family

ID=90013661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010720 WO2024043551A1 (ko) 2022-08-24 2023-07-25 파우치형 이차전지용 실링 장치

Country Status (5)

Country Link
EP (1) EP4403337A1 (ko)
JP (1) JP2024536596A (ko)
KR (1) KR20240028053A (ko)
CN (1) CN118159410A (ko)
WO (1) WO2024043551A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120056316A (ko) * 2010-11-24 2012-06-04 주식회사 엘지화학 향상된 생산성의 이차전지 제조방법
KR20130008473A (ko) * 2011-07-12 2013-01-22 닛토덴코 가부시키가이샤 수지 필름 접합체의 제조 방법
KR102252162B1 (ko) * 2019-11-27 2021-05-14 (주)한빛레이저 레이저와 유리 도광판을 이용한 파우치 융착방법과 장치
KR20210156516A (ko) 2020-06-18 2021-12-27 주식회사 엘지에너지솔루션 파우치형 이차전지 실링장치 및 파우치형 이차전지의 제조방법
KR20220068815A (ko) * 2020-11-19 2022-05-26 주식회사 엘지에너지솔루션 파우치형 이차전지의 제조방법 및 제조장치
KR20220106088A (ko) 2016-09-06 2022-07-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전자 기기, 화상 표시 방법, 프로그램, 및 표시 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120056316A (ko) * 2010-11-24 2012-06-04 주식회사 엘지화학 향상된 생산성의 이차전지 제조방법
KR20130008473A (ko) * 2011-07-12 2013-01-22 닛토덴코 가부시키가이샤 수지 필름 접합체의 제조 방법
KR20220106088A (ko) 2016-09-06 2022-07-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전자 기기, 화상 표시 방법, 프로그램, 및 표시 시스템
KR102252162B1 (ko) * 2019-11-27 2021-05-14 (주)한빛레이저 레이저와 유리 도광판을 이용한 파우치 융착방법과 장치
KR20210156516A (ko) 2020-06-18 2021-12-27 주식회사 엘지에너지솔루션 파우치형 이차전지 실링장치 및 파우치형 이차전지의 제조방법
KR20220068815A (ko) * 2020-11-19 2022-05-26 주식회사 엘지에너지솔루션 파우치형 이차전지의 제조방법 및 제조장치

Also Published As

Publication number Publication date
CN118159410A (zh) 2024-06-07
EP4403337A1 (en) 2024-07-24
KR20240028053A (ko) 2024-03-05
JP2024536596A (ja) 2024-10-04

Similar Documents

Publication Publication Date Title
WO2021080207A1 (ko) 이차전지 탭 레이저 용접을 위한 밀착 지그 및 용접 방법
WO2021251736A1 (ko) 파우치 필름 적층체, 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2019004719A1 (ko) 전극 탭의 용접 방법 및 이에 따라 제조된 전극을 포함하는 케이블형 이차전지
WO2022191612A1 (ko) 전지셀 및 이를 제조하는 전지셀 제조 장치
WO2022108194A1 (ko) 파우치형 이차전지의 제조방법 및 제조장치
WO2022169237A1 (ko) 가압력 조절이 가능한 가압롤을 포함하는 라미네이션 장치 및 이를 이용하여 제조된 전극조립체
WO2022220651A1 (ko) 이차전지
WO2024043551A1 (ko) 파우치형 이차전지용 실링 장치
WO2022035124A1 (ko) 이차전지용 실링장치
WO2022108080A1 (ko) 이차 전지 및 이의 제조 방법
WO2022164182A2 (ko) 전지셀 및 전지셀 제조 장치
WO2023204549A1 (ko) 전지셀 및 그 제조 방법
WO2021256658A1 (ko) 파우치형 이차전지 실링장치 및 파우치형 이차전지의 제조방법
WO2022220626A1 (ko) 이차전지
WO2022065720A1 (ko) 사이드 폴딩 장치 및 방법
WO2021141311A1 (ko) 이차전지 제조장치 및 이차전지 제조방법
WO2023121252A1 (ko) 전지 케이스 실링장치 및 이를 이용하는 전지 케이스 실링방법
WO2024136380A1 (ko) 파우치형 이차 전지
WO2024136213A1 (ko) 파우치형 전지 케이스 및 파우치형 이차 전지
WO2023075319A1 (ko) 이차 전지용 전극의 제조방법, 이차 전지용 전극, 및 상기 방법에 사용되는 전극 제조 시스템
WO2023136594A1 (ko) 파우치형 이차전지 및 이의 제조방법
WO2023038294A1 (ko) 파우치형 이차전지의 실링방법, 파우치형 이차전지의 제조방법, 파우치형 이차전지의 실링장치 및 이를 이용하여 제조되는 파우치형 이차전지
WO2024019485A1 (ko) 파우치형 전지셀 및 이를 제조하기 위한 파우치형 전지케이스의 실링 장치
WO2023101278A1 (ko) 파우치형 전지 및 파우치형 전지의 실링장치
WO2023043177A1 (ko) 전극 조립체, 이의 제조 장치, 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857587

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023857587

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2024523930

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023857587

Country of ref document: EP

Effective date: 20240418

WWE Wipo information: entry into national phase

Ref document number: 202380014204.8

Country of ref document: CN