WO2024043136A1 - Polyamide fiber cord, rubber-fiber composite, and tire - Google Patents

Polyamide fiber cord, rubber-fiber composite, and tire Download PDF

Info

Publication number
WO2024043136A1
WO2024043136A1 PCT/JP2023/029459 JP2023029459W WO2024043136A1 WO 2024043136 A1 WO2024043136 A1 WO 2024043136A1 JP 2023029459 W JP2023029459 W JP 2023029459W WO 2024043136 A1 WO2024043136 A1 WO 2024043136A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
fiber
fibers
cord
fiber cord
Prior art date
Application number
PCT/JP2023/029459
Other languages
French (fr)
Japanese (ja)
Inventor
将大 藤江
倩 呉
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2024043136A1 publication Critical patent/WO2024043136A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/26Yarns or threads characterised by constructional features, e.g. blending, filament/fibre with characteristics dependent on the amount or direction of twist
    • D02G3/28Doubled, plied, or cabled threads
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords

Definitions

  • the present invention relates to a polyamide fiber cord, a rubber-fiber composite, and a tire.
  • a carcass including a reinforcing cord is placed inside a tire in order to reinforce the strength and rigidity of the tire, and a belt including a reinforcing cord is placed outside the carcass in the tire radial direction.
  • a belt reinforcing layer also called a "cap layer” including reinforcing cords may be disposed on the outside of the belt in the tire radial direction in order to reinforce the belt.
  • organic fiber cords such as polyamide (nylon) fiber cords and polyester fiber cords are usually used as reinforcing cords for carcass and belt reinforcing layers.
  • Patent Document 1 discloses a pneumatic tire that includes a reinforcing member (rubber-fiber composite) in which a cord having polyester fibers using biomass-derived components as at least part of the raw material is coated with rubber. It is taught that, according to the tire, deterioration of tire characteristics can be suppressed while reducing environmental load.
  • a reinforcing member rubber-fiber composite
  • Patent Document 1 is a technology related to replacing polyester fiber cords among organic fiber cords used in tires, but in addition to polyester fiber cords, various organic fiber cords can be applied to tires depending on the purpose. has been done.
  • polyamide fiber cords particularly polyamide 6,6 (PA66) fiber cords
  • PA66 polyamide 6,6
  • PA66 raw material polyamide 6,6
  • the present inventors have investigated polyamide fiber cords using polyamide at least partially derived from biomass as an alternative to polyamide 6,6, but the physical properties at high temperatures (particularly the modulus of elasticity and ) is low, and if such a polyamide fiber cord is applied to a tire, the tire properties will deteriorate.
  • organic fiber cords are also used in rubber products such as conveyor belts and hoses, and these rubber products are also required to reduce their environmental impact.
  • an object of the present invention is to provide an organic fiber cord that can reduce environmental impact while maintaining physical properties at high temperatures, and a rubber-fiber composite using such an organic fiber cord.
  • a further object of the present invention is to provide a tire that includes such an organic fiber cord and can reduce environmental load while maintaining tire characteristics.
  • the main structure of the organic fiber cord (polyamide fiber cord), rubber-fiber composite, and tire of the present invention that solves the above problems is as follows.
  • the biomass-derived carbon content (bio conversion rate) of the entire cord is 15% or more, A polyamide fiber cord, characterized in that the cord has a heat shrinkage rate of 9.0% or less.
  • the polyamide fiber cord according to [1] which includes fibers having a biomass-derived carbon content (bio conversion rate) of 40% or more.
  • the fibers with a bio conversion rate of 40% or more include polyamide 4 fiber, polyamide 4,4 fiber, polyamide 4,6 fiber, polyamide 5,4 fiber, polyamide 5,6 fiber, polyamide 6 fiber, polyamide 6,
  • the polyamide according to [5], wherein the fiber with a bioconversion rate of 100% is at least one selected from the group consisting of polyamide 11 fiber, polyamide 4,10 fiber, and polyamide 10,10 fiber. fiber cord.
  • the polyamide fiber cord according to [7] which is a cord made by twisting two aramid fibers and one polyamide 4,10 fiber.
  • the polyamide fiber cord according to [1] comprising only polyamide fibers with a biomass-derived carbon content (bio conversion rate) of 15% or more.
  • polyamide fiber cord according to [9] or [10], wherein the polyamide fiber is at least one selected from the group consisting of polyamide 4,6 fibers and polyamide 5,6 fibers.
  • a rubber-fiber composite comprising the polyamide fiber cord according to any one of [1] to [11].
  • a tire comprising the polyamide fiber cord according to any one of [1] to [11].
  • the present invention it is possible to provide a polyamide fiber cord and a rubber-fiber composite that can reduce environmental impact while maintaining physical properties at high temperatures. Further, according to the present invention, it is possible to provide a tire that can reduce environmental load while maintaining tire characteristics.
  • 1 is a sectional view of one embodiment of a tire of the present invention.
  • polyamide fiber cord refers to a cord containing at least polyamide fibers, and also includes cords consisting only of polyamide fibers.
  • the fibers included in the cord are also called a “fiber bundle” or a “filament bundle.”
  • the heat shrinkage rate of the cord is measured according to ASTM D885 and ASTM D4974, and is a value measured by heating at 177° C. for 2 minutes.
  • the "number of amide groups in polyamide” and the “number of atoms in the main chain of polyamide” are calculated from the “number of amide groups” in one repeating unit of polyamide and the "number of atoms in the main chain”.
  • the amide density of polyamide 4 and polyamide 4,4 is 20.0
  • the amide density of polyamide 5,4 is 18.2
  • the amide density of polyamide 4,6 is 16.7
  • the amide density of polyamide 5,6 is 15.4
  • the amide density of polyamide 6 and polyamide 6,6 is 14.3
  • the amide density of polyamide 4,10 is 12.5
  • , 10 is 11.1,
  • the amide density of polyamide 9,T is 10.5, the amide density of polyamide 10,10 is 9.1
  • the amide density of polyamide 11 is: It is 8.3.
  • Average amide density [(Fineness of fiber A (dtex) x number of fibers A x amide density of fiber A) + (fineness of fiber B (dtex) x number of fibers B x amide density of fiber B) +... ]/(Fineness of fiber A (dtex) x number of fibers A + fineness of fiber B (dtex) x number of fibers B +%) (4) Calculated from.
  • fiber A is the first type of fiber
  • fiber B is the second type of fiber.
  • the "fineness (dtex) of the fiber concerned x the number of fibers concerned x the amide density of the fiber concerned” is added to the "" part of the molecule.
  • the fineness (dtex) of the fiber concerned x the number of fibers concerned is added to the "" part of the denominator.
  • biomass-derived refers to origin from biological resources such as plant resources, animal resources, microbial resources, etc., and is synonymous with “bio-derived”.
  • the polyamide fiber cord of the present embodiment is characterized in that the content ratio (bioconversion rate) of biomass-derived carbon in the entire cord is 15% or more; In addition to the components, it may also contain components that are not derived from biomass.
  • the compounds described in this specification may be partially or entirely derived from fossil resources, and may be derived from biological resources such as plant resources (biomass-derived). It may be derived from recycled resources such as used tires. Moreover, it may be derived from a mixture of any two or more of fossil resources, biological resources, and recycled resources.
  • the polyamide fiber cord of this embodiment is characterized in that the content ratio of biomass-derived carbon (bioconversion rate) in the entire cord is 15% or more, and the heat shrinkage rate of the cord is 9.0% or less.
  • the polyamide fiber cord of this embodiment has a biomass-derived carbon content (bio conversion rate) of 15% or more in the entire cord, the environmental load can be reduced. Further, since the polyamide fiber cord of this embodiment has a heat shrinkage rate of 9.0% or less, sufficient strength can be ensured, and physical properties such as elastic modulus and strength can be maintained even at high temperatures. Further, the polyamide fiber cord of this embodiment can achieve physical properties equivalent to cords using petroleum-derived polyamide 6,6 (PA66) fibers because the cord has a heat shrinkage rate of 9.0% or less. Therefore, according to the polyamide fiber cord of this embodiment, the environmental load can be reduced while maintaining the physical properties at high temperatures (particularly the elastic modulus and strength).
  • PA66 petroleum-derived polyamide 6,6
  • the polyamide fiber cord of this embodiment has a biomass-derived carbon content (bioconversion rate) of 15% or more in the entire cord. If the bio conversion rate of the entire cord is less than 15%, the effect of reducing environmental load will be small. From the viewpoint of further reducing the environmental load, the polyamide fiber cord of this embodiment preferably has a bio conversion rate of 20% or more, and may be 100%.
  • the polyamide fiber cord of this embodiment has a heat shrinkage rate of 9.0% or less. If the heat shrinkage rate of the cord exceeds 9.0%, the physical properties (especially elastic modulus and strength) at high temperatures cannot be maintained sufficiently.
  • the polyamide fiber cord of this embodiment preferably has a heat shrinkage rate of 4.0% or less. When the heat shrinkage rate of the polyamide fiber cord is 4.0% or less, uniformity particularly during high-speed running is excellent.
  • the polyamide fiber cord of this embodiment has an amide density (in the case of including a plurality of fibers having different amide densities, an average amide density) of 10.5 or more.
  • the (average) amide density of the polyamide fiber cord is 10.5 or more, hydrogen bonds between amide bonds are formed densely, ensuring sufficient strength and improving thermal properties. It is also possible to maintain physical properties such as elastic modulus and strength.
  • the (average) amide density of the polyamide fiber cord increases, hydrogen bonds between amide bonds are formed densely, so that the heat shrinkage rate tends to decrease.
  • the higher the (average) amide density of a polyamide fiber cord the denser the formation of hydrogen bonds between amide bonds. E') tends to be high. Therefore, polyamide fiber cords with high (average) amide density tend to have excellent physical properties (thermal properties) at high temperatures.
  • the polyamide fiber cord of the first embodiment of the present invention includes fibers with a biomass-derived carbon content (bio conversion rate) of 40% or more.
  • the polyamide fiber cord of the first embodiment includes fibers with a bio conversion rate of 40% or more, thereby increasing the effect of reducing environmental load.
  • the polyamide fiber cord of the first embodiment includes fibers with a bioconversion rate of 40% or more, but may further include other fibers (fiber bundles).
  • the fibers (polyamide fibers) having a bio conversion rate of 40% or more include polyamide 4 (PA4) fibers, polyamide 11 (PA11) fibers, polyamide 4,4 (PA44) fibers, polyamide 5,4 (PA54) fibers, and polyamide fibers.
  • PA4 polyamide 4
  • PA46 polyamide 5,6 (PA56) fiber
  • PA410 polyamide 410
  • PA6 polyamide 6
  • PA66 polyamide 6,6
  • PA610 polyamide 6,10
  • PA10101010101010101010101010101010101010 polyamide 10,10
  • Fibers are preferred.
  • Fibers with a bio conversion rate of 40% or more include polyamide 4 fiber, polyamide 4,4 fiber, polyamide 4,6 fiber, polyamide 5,4 fiber, polyamide 5,6 fiber, polyamide 6 fiber, polyamide 6,6 fiber, polyamide 11 fiber, polyamide 4,10 fiber, polyamide 6,10 fiber, and polyamide 10,10 fiber, a cord using petroleum-derived polyamide 6,6 (PA66) fiber It is possible to achieve the same physical properties as the previous one, while further reducing the environmental impact.
  • the fibers with a bio conversion rate of 40% or more include polyamide 4,6 fibers, polyamide 5,6 fibers, polyamide 11 fibers, polyamide 4,10 fibers, polyamide 6,10 fibers, and polyamide 10,10 fibers.
  • the environmental load can be further reduced while achieving physical properties equivalent to cords using petroleum-derived polyamide 6,6 (PA66) fibers.
  • Polyamide which is a raw material for these polyamide fibers, can be synthesized from biomass-derived components.
  • the biomass-derived components are components derived from biological resources such as plant resources, animal resources, and microbial resources.
  • Polyamide 4 is obtained by ring-opening polymerization of ⁇ -butyrolactam, and ⁇ -butyrolactam is obtained from glucose, glutamic acid, and the like.
  • Polyamide 11 (PA11) is obtained by polymerizing aminoundecanoic acid, and aminoundecanoic acid is obtained from plant resources such as castor beans.
  • Polyamide 4,4 (PA44) is obtained by a condensation polymerization reaction of tetramethylene diamine (4 carbon atoms) and succinic acid (4 carbon atoms), and tetramethylene diamine is obtained from plant resources such as sugar cane. Acid is obtained from plant sources such as sugar cane and corn.
  • Polyamide 5,4 (PA54) is obtained by a condensation polymerization reaction of pentamethylene diamine (5 carbon atoms) and succinic acid (4 carbon atoms), and pentamethylene diamine is obtained from plant resources such as corn. Acid is obtained from plant sources such as sugar cane and corn.
  • Polyamide 4,6 (PA46) is obtained by a condensation polymerization reaction of tetramethylene diamine (4 carbon atoms) and adipic acid (6 carbon atoms), and tetramethylene diamine is obtained from plant resources such as sugar cane.
  • Polyamide 5,6 is obtained by a condensation polymerization reaction of pentamethylene diamine (5 carbon atoms) and adipic acid (6 carbon atoms), and pentamethylene diamine is obtained from plant resources such as corn.
  • Polyamide 4,10 (PA410) is obtained by a condensation polymerization reaction of tetramethylene diamine (4 carbon atoms) and sebacic acid (10 carbon atoms). Tetramethylene diamine is obtained from plant resources such as sugar cane, and sebacic acid Acid is obtained from plant sources such as castor beans.
  • Polyamide 6 (PA6) is obtained by ring-opening polymerization of ⁇ -caprolactam (6 carbon atoms), and ⁇ -caprolactam is obtained from plant resources.
  • Polyamide 6,6 is obtained by a condensation polymerization reaction of hexamethylene diamine (with 6 carbon atoms) and adipic acid (with 6 carbon atoms), and hexamethylene diamine and adipic acid are obtained from plant resources.
  • Polyamide 6,10 (PA610) is obtained by a condensation polymerization reaction of hexamethylene diamine (6 carbon atoms) and sebacic acid (10 carbon atoms), and sebacic acid is obtained from plant resources such as castor beans.
  • Polyamide 10,10 is obtained by a condensation polymerization reaction of decamethylene diamine (10 carbon atoms) and sebacic acid (10 carbon atoms), and decamethylene diamine and sebacic acid are obtained from plant resources such as castor beans.
  • tetramethylene diamine also called “putrescine”
  • Sebacic acid can also be obtained by mechanically pressing castor beans to obtain castor oil, methanolysis of the castor oil to obtain methyl ricinoleate, and saponifying the methyl ricinoleate.
  • the polyamide fiber cord of the first embodiment is preferably a cord in which the fibers with a bio conversion rate of 40% or more and aramid fibers are twisted together.
  • Such polyamide fiber cords are rigid and have excellent thermal properties due to the aramid fibers, and are highly effective in reducing environmental load due to the fibers having a bio conversion rate of 40% or more.
  • the polyamide fiber cord of the first embodiment preferably includes fibers with a bio conversion rate of 100% (that is, completely derived from biomass). By including fibers with a bio conversion rate of 100%, the effect of reducing environmental load will be even greater.
  • the fibers with a bio conversion rate of 100% include polyamide 4 (PA4) fiber, polyamide 11 (PA11) fiber, polyamide 4,4 (PA44) fiber, polyamide 5,4 (PA54) fiber, and polyamide 4,10 (PA410) fiber. ) fibers, polyamide 10,10 (PA1010) fibers, etc. Among these, polyamide 11 fibers, polyamide 4,10 fibers, and polyamide 10,10 fibers are preferred.
  • the fiber with a bio conversion rate of 100% is at least one selected from the group consisting of polyamide 11 fiber, polyamide 4,10 fiber, and polyamide 10,10 fiber, petroleum-derived polyamide 6,6 (PA66) While achieving the same physical properties as cords using fibers, the environmental impact can be further reduced.
  • the polyamide fiber cord of the first embodiment is preferably a cord made by twisting polyamide 4,10 fibers and aramid fibers.
  • Such polyamide fiber cords are rigid and have excellent thermal properties due to the aramid fibers, while reducing environmental impact due to the polyamide 4,10 fibers that can be used with a bio conversion rate of 100%. The reduction effect is large.
  • the polyamide fiber cord of the first embodiment is preferably a cord made of three fibers twisted together.
  • a cord made of three fibers twisted together can ensure sufficient rigidity as a tire reinforcing material compared to a cord made of two fibers twisted together, and a cord made of four fibers twisted together can ensure sufficient rigidity as a tire reinforcement material. It can be lighter compared to.
  • the polyamide fiber cord of the first embodiment is preferably a cord made by twisting two aramid fibers and one polyamide 4,10 fiber.
  • This polyamide fiber cord is rigid due to the two aramid fibers and has excellent thermal properties, and due to the polyamide 4,10 fiber that can be used with a bio conversion rate of 100%, It is highly effective in reducing environmental impact.
  • the polyamide fiber cord of the second embodiment of the present invention consists only of polyamide fibers with a biomass-derived carbon content (bio conversion rate) of 15% or more.
  • the polyamide fiber cord of the second embodiment is made only of polyamide fibers with a bio conversion rate of 15% or more, thereby increasing the effect of reducing environmental load.
  • the polyamide fiber preferably has an amide density of 14.0 or more.
  • Polyamide fibers have higher melting point (Tm), glass transition temperature (Tg), moisture content, and elastic modulus (E') because the higher the amide density, the denser the hydrogen bonds between amide bonds are formed.
  • Tm melting point
  • Tg glass transition temperature
  • E' elastic modulus
  • polyamide fibers with an amide density of 14.0 or higher have sufficient strength due to the close formation of hydrogen bonds between amide bonds, and can maintain sufficient physical properties such as elastic modulus and strength even at high temperatures. Can be maintained.
  • Examples of the polyamide fibers having an amide density of 14.0 or more include polyamide 4 fibers, polyamide 4,4 fibers, polyamide 5,4 fibers, polyamide 4,6 fibers, polyamide 5,6 fibers, and the like.
  • the polyamide fiber is preferably at least one selected from the group consisting of polyamide 4,6 fibers and polyamide 5,6 fibers.
  • the polyamide fiber is at least one selected from the group consisting of polyamide 4,6 fibers and polyamide 5,6 fibers, it has physical properties equivalent to cords using petroleum-derived polyamide 6,6 (PA66) fibers. While achieving this goal, the environmental impact can be further reduced.
  • PA66 petroleum-derived polyamide 6,6
  • the polyamide fiber cord of this embodiment contains at least one type of polyamide fiber, may further contain other fibers, and may have a single-twist structure or a twisted structure (such as a double-twist structure).
  • a twisted yarn cord can be obtained by aligning the raw yarns and twisting them in one direction.
  • the number of twists is preferably in the range of 4 to 20 twists/10 cm. If the number of twists in a single-stranded structure exceeds 20 twists/10cm, the strength of the twisted cord may decrease, and if it is less than 4 twists/10cm, the twisted cord may not have sufficient fatigue resistance. There is.
  • a twisted yarn cord in the case of a double-twisted structure, for example, can be obtained by first twisting the raw yarn, then combining a plurality of them and applying final twist in the opposite direction.
  • the number of first twists is preferably in the range of 10 to 60 times/10 cm, and the number of first twists is preferably in the range of 10 to 60 times/10 cm. If the number of first twists exceeds 60 times/10 cm, the strength of the twisted cord may decrease, and if it is less than 10 times/10 cm, the twisted cord may not have sufficient fatigue resistance. Furthermore, if the number of twists exceeds 60 turns/10cm, the strength of the twisted cord may decrease, and if it is less than 10 twists/10cm, the twisted cord may not have sufficient fatigue resistance. be.
  • the number of first twists of the aramid fibers is 10 to 60 times/10 cm.
  • the number of ply twists of fibers with a bio conversion rate of 40% or more is also preferably in a range of 10 to 60 times/10 cm. If the number of first twists of the aramid fiber exceeds 60 times/10cm, the strength of the twisted cord may decrease, and if it is less than 10 times/10cm, the twisted cord may not have sufficient fatigue resistance. There is.
  • the strength of the twisted cord may decrease, and if it is less than 10 times/10cm, the twisted cord may not have sufficient durability. There is a possibility that fatigue properties may not be obtained.
  • the total fineness of the polyamide fiber cord of this embodiment is preferably in the range of 1000 to 6000 dtex. If the total fineness of the polyamide fiber cord is less than 1000 dtex, sufficient strength as a fiber for tires may not be obtained, and if it exceeds 6000 dtex, the treat will become thick and the weight of the tire will increase.
  • the fineness of the aramid fibers is preferably in the range of 1000 to 4000 dtex, and the bio conversion rate is preferably 1000 to 4000 dtex.
  • the fineness of the fibers with a conversion rate of 40% or more is preferably in the range of 400 to 3000 dtex. If the fineness of the aramid fiber is less than 1000 dtex, sufficient strength as a fiber for tires may not be obtained, and if it exceeds 4000 dtex, the treat will become thick and the weight of the tire will increase.
  • the fineness of the fiber with a bio conversion rate of 40% or more is less than 400 dtex, sufficient strength as a tire fiber may not be obtained, and if it exceeds 3000 dtex, the treat will become thick and the weight of the tire will increase. becomes larger.
  • the breaking strength of the polyamide fiber cord of this embodiment is preferably 6.0 cN/dtex or more. Moreover, the breaking strength of the polyamide fiber cord is preferably 200N or more. Here, the breaking strength is measured at room temperature (23° C.) according to ASTM D855M. This is because a sufficient reinforcing effect can be obtained when the breaking strength of the polyamide fiber cord is 6.0 cN/dtex or more, or 200 N or more.
  • the breaking elongation (elongation at break) of the polyamide fiber cord of this embodiment is preferably 8.0% or more.
  • the cutting elongation is measured at room temperature (23° C.) according to ASTM D855M. If the breaking elongation of the polyamide fiber cord is less than 8.0%, a sufficient reinforcing effect cannot be obtained.
  • the moisture content of the polyamide fiber cord of this embodiment is preferably 3.0% or less.
  • the moisture content is measured according to JIS L1013.
  • the moisture content of the polyamide fiber cord exceeds 3.0%, the physical properties deteriorate and a sufficient reinforcing effect cannot be obtained.
  • the polyamide fiber cord of this embodiment can reduce environmental impact while maintaining physical properties at high temperatures, so it can be used as a tire cord that requires excellent physical properties (especially elastic modulus and strength) at high temperatures. Particularly preferred as Moreover, since the polyamide fiber cord of this embodiment has sufficient physical properties (thermal properties) at high temperatures, it is suitable not only for tires but also for conveyor belts, hoses, etc.
  • the polyamide fiber cord (organic fiber cord) is preferably treated with an adhesive using an adhesive composition.
  • the adhesive composition may be, for example, a thermoplastic polymer having at least one functional group having crosslinking properties as a pendant group and containing substantially no addition-reactive carbon-carbon double bonds in the main chain structure.
  • examples include adhesive compositions containing a combination (A), a heat-reactive water-based urethane resin (B), and an epoxy compound (C), and optionally further containing a rubber latex (D).
  • the adhesive treatment for organic fiber cords involves applying epoxy or isocyanate to the cord surface, and then treating the cord with a resin made of a mixture of resorcinol, formaldehyde, and latex (hereinafter referred to as RFL resin).
  • RFL resin a resin made of a mixture of resorcinol, formaldehyde, and latex
  • Two-bath treatment is being performed.
  • the resin used in the first bath becomes very hard, which increases the strain input to the organic fiber cord and may reduce the cord fatigue resistance.
  • RFL resins can exhibit sufficient adhesion between the cord and the elastomer at room temperature, but the adhesion may be extremely reduced at high temperatures of 130° C. or higher.
  • thermoplastic polymer (A) which has at least one functional group having crosslinking properties as a pendant group and which does not substantially contain addition-reactive carbon-carbon double bonds in its main chain structure;
  • a one-bath mixed solution adheresive composition
  • a heat-reactive water-based urethane resin (B) and an epoxy compound (C) are mixed
  • the polyamide fiber cord organic fiber cord
  • Adhesion to the elastomer (covering rubber) can be sufficiently ensured even at high temperatures of 180° C. or higher.
  • the main chain of the thermoplastic polymer (A) mainly has a linear structure, and examples of the main chain include ethylene polymers such as acrylic polymers, vinyl acetate polymers, and vinyl acetate/ethylene polymers. Polymers such as addition polymers; urethane-based polymers; and the like are preferred. However, the thermoplastic polymer (A) only needs to have the function of suppressing the resin fluidity at high temperatures and ensuring the breaking strength of the resin by crosslinking the functional groups of the pendant groups. It is not limited to the ethylenic addition polymer and urethane-based polymer described above.
  • an oxozaline group a bismaleimide group, a (blocked) isocyanate group, an aziridine group, a carbodiimide group, a hydrazino group, an epoxy group, an epithio group, etc. are preferable. .
  • thermoplastic polymer (A), heat-reactive aqueous urethane resin (B), epoxy compound (C), and rubber latex (D) are those described in Japanese Patent Application No. 2023-040157, respectively.
  • the one described in Japanese Patent Application No. 2023-030762 can be used.
  • a mixed solution of three types (adhesive)
  • a mixed solution (adhesive composition) of the thermoplastic polymer (A), heat-reactive water-based urethane resin (B), epoxy compound (C), and rubber latex (D) is used. It is also possible to process using only one bath.
  • the proportion of the thermoplastic polymer (A) (dry mass ratio) is preferably 2 to 75%, and the proportion of the heat-reactive aqueous urethane resin (B) (dry mass ratio) is preferably 2 to 75%. ) is preferably 15 to 87%, the proportion of the epoxy compound (C) (dry mass ratio) is preferably 11 to 70%, and the proportion of the rubber latex (D) (dry mass ratio) is preferably , preferably 20% or less.
  • a dip treatment liquid that does not contain resorcin and formalin as the adhesive composition for the polyamide fiber cord (organic fiber cord).
  • a dipping liquid include rubber latex (a) having an unsaturated diene, a compound having a skeleton structure consisting of polyether and an amine functional group, a compound having an acrylamide structure, polypeptide, polylysine, and Examples include compositions containing one or more compounds (b) selected from carbodiimides.
  • an aqueous compound (c) having a (thermally dissociable blocked) isocyanate group may be used.
  • polyphenols (d) polyphenols (d)
  • polyvalent metal salts (e) polyvalent metal salts
  • a composition may further contain at least one of an isocyanate compound (III) and a rubber latex (IV) in addition to the polyphenols (I) and the aldehydes (II).
  • the adhesive composition for treating (coating) the polyamide fiber cord (organic fiber cord) with an adhesive contains polyphenols (I) and aldehydes (II), so that resorcinol can be used in consideration of the burden on the environment. Good adhesiveness can be achieved even when not using.
  • polyphenols (I) When the adhesive composition contains polyphenols (I) as a resin component, the adhesiveness with the polyamide fiber cord (organic fiber cord) can be improved.
  • polyphenols (I) are typically water-soluble polyphenols, and are not particularly limited as long as they are polyphenols other than resorcinol.
  • polyphenols (I) the number of aromatic rings or the number of hydroxyl groups can be selected as appropriate.
  • the polyphenols (I) preferably have two or more hydroxyl groups, more preferably three or more hydroxyl groups, from the viewpoint of achieving better adhesiveness.
  • the polyphenols or polyphenol condensates are water-soluble in the adhesive composition (dip treatment liquid) containing water. This allows the polyphenols to be uniformly distributed within the adhesive composition, thereby achieving better adhesiveness.
  • the polyphenol (I) is a polyphenol containing a plurality of (two or more) aromatic rings, two or three hydroxyl groups are located at the ortho, meta, or para positions, respectively, in those aromatic rings. exists in
  • polyphenols (I) for example, those described as polyphenol compounds in WO2022/130879 can be used. These polyphenols (I) may be used alone or in combination of two or more.
  • aldehydes (II) When the adhesive composition contains aldehydes (II) as a resin component in addition to the polyphenols (I) described above, high adhesiveness can be achieved together with the polyphenols (I) described above.
  • the aldehyde (II) is not particularly limited and can be appropriately selected depending on the required performance.
  • aldehydes (II) also include derivatives of aldehydes whose source is aldehydes.
  • aldehydes (II) examples include monoaldehydes such as formaldehyde, acetaldehyde, butyraldehyde, acrolein, propionaldehyde, chloral, butyraldehyde, caproaldehyde, and allylaldehyde, or glyoxal, malonaldehyde, succinaldehyde, and glutaric acid.
  • Examples include aliphatic dialdehydes such as aldehydes and adipaldehyde, aldehydes having an aromatic ring, and dialdehyde starch. These aldehydes (II) may be used alone or in combination of two or more.
  • the aldehyde (II) is an aldehyde having an aromatic ring or contains an aldehyde having an aromatic ring. This is because better adhesion can be obtained. Moreover, it is preferable that the aldehyde (II) does not contain formaldehyde.
  • formaldehyde-free means, for example, that the content of formaldehyde in the total mass of aldehydes is less than 0.5% by mass.
  • polyphenols (I) and aldehydes (II) are in a condensed state, and the mass ratio of polyphenols to aldehydes having an aromatic ring (content of aldehydes having an aromatic ring/ The content of polyphenols) is preferably 0.1 or more and 3 or less.
  • the hardness and adhesiveness of the resin which is a product of the condensation reaction that occurs between polyphenols and aldehydes having an aromatic ring, become more suitable.
  • the mass ratio of polyphenols to aldehydes having an aromatic ring (content of aldehydes having an aromatic ring/content of polyphenols) in the adhesive composition is 0.25 or more. More preferably, it is 2.5 or less.
  • the said mass ratio is the mass (solid content ratio) of a dry material.
  • the total content of polyphenols (I) and aldehydes (II) in the adhesive composition is preferably 3 to 30% by mass. This is because in this case, better adhesion can be ensured without deteriorating workability or the like. From the same viewpoint, the total content of polyphenols (I) and aldehydes (II) in the adhesive composition is more preferably 5% by mass or more, and preferably 25% by mass or less. More preferred. In addition, the said total content is the mass (solid content ratio) of a dry material.
  • the adhesive composition further contains an isocyanate compound (III) in addition to the above-mentioned polyphenols (I) and aldehydes (II).
  • the adhesive properties of the adhesive composition can be further improved due to the synergistic effect with polyphenols (I) and aldehydes (II).
  • the isocyanate compound (III) promotes adhesion of the adhesive composition to the adherend resin material (for example, a phenol/aldehyde resin obtained by condensing polyphenols (I) and aldehydes (II)). It is a compound that has an isocyanate group as a polar functional group.
  • adherend resin material for example, a phenol/aldehyde resin obtained by condensing polyphenols (I) and aldehydes (II)
  • It is a compound that has an isocyanate group as a polar functional group.
  • These isocyanate compounds (III) may be used alone or in combination of two or more.
  • the isocyanate compound (III) is not particularly limited, but preferably contains a (blocked) isocyanate group-containing aromatic compound from the viewpoint of further improving adhesiveness. Since the adhesive composition contains the (blocked) isocyanate group-containing aromatic compound, the (blocked) isocyanate group-containing aromatic compound is present in the vicinity of the interface between the polyamide fiber cord (organic fiber cord) and the adhesive composition. As a result of the distribution of the group compound, a further adhesion promoting effect is obtained, and this effect can further improve the adhesion of the adhesive composition to the polyamide fiber cord (organic fiber cord).
  • the content of the isocyanate compound (III) in the adhesive composition is not particularly limited, but is preferably from 5 to 65% by mass from the viewpoint of more reliably ensuring excellent adhesiveness. From the same viewpoint, the content of the isocyanate compound (III) in the adhesive composition is more preferably 10% by mass or more, and more preferably 45% by mass or less. In addition, the said content is the mass (solid content ratio) of a dry material.
  • the adhesive composition can substantially further contain rubber latex (IV). Thereby, the adhesive composition can further improve adhesiveness with the rubber member.
  • the rubber latex (IV) is not particularly limited, and in addition to natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), ethylene Examples include synthetic rubbers such as -propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonitriole-butadiene rubber (NBR), and vinylpyridine-styrene-butadiene copolymer rubber (Vp). These rubber latexes (IV) may be used alone or in combination of two or more.
  • NR natural rubber
  • IR polyisoprene rubber
  • SBR styrene-butadiene copolymer rubber
  • BR polybutadiene rubber
  • ethylene Examples include synthetic rubbers such as -propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonit
  • the rubber latex (IV) is mixed with phenols (I) and aldehydes (II) before blending the isocyanate compound (III). It is preferable.
  • the content of rubber latex (IV) in the adhesive composition is preferably 20% by mass or more, more preferably 25% by mass or more, and preferably 70% by mass or less, More preferably, it is 60% by mass or less.
  • the method for producing the adhesive composition is not particularly limited, but includes, for example, a method of mixing and aging raw materials such as polyphenols (I), aldehydes (II), and rubber latex (IV); , a method in which polyphenols (I) and aldehydes (II) are mixed and aged, and then rubber latex (IV) is further added and aged.
  • the method for producing the adhesive composition may be a method of adding rubber latex (IV), aging, and then adding isocyanate compound (III).
  • the rubber-fiber composite of this embodiment is characterized by comprising the polyamide fiber cord of this embodiment described above. Since the rubber-fiber composite of this embodiment includes the polyamide fiber cord of this embodiment described above, it is possible to reduce the environmental load. Note that the fiber portion of the rubber-fiber composite corresponds to the above-mentioned polyamide fiber cord.
  • the rubber-fiber composite includes a polyamide fiber cord and a coating rubber covering the polyamide fiber cord.
  • the coating rubber a rubber composition is used in which a rubber component such as natural rubber or synthetic rubber is blended with a filler such as carbon black, an anti-aging agent, a vulcanizing agent such as sulfur, a vulcanization accelerator, etc. can do.
  • the tire of this embodiment is characterized by comprising the polyamide fiber cord of this embodiment described above. Since the tire of this embodiment includes the above-mentioned polyamide fiber cord, it is possible to reduce environmental load while maintaining tire characteristics.
  • the polyamide fiber cord is preferably applied to the carcass or the belt reinforcing layer (also referred to as a "cap layer"), with the carcass being particularly preferred.
  • FIG. 1 is a cross-sectional view of one embodiment of the tire of the present invention.
  • the tire 100 shown in FIG. 1 includes a pair of bead portions 10, a pair of sidewall portions 20, a tread portion 30, and a carcass 50 extending in a toroidal shape between bead cores 40 embedded in the bead portions 10.
  • a belt 60 consisting of two belt layers 60A and 60B disposed on the tread portion 30 (more specifically, disposed on the outside in the tire radial direction of the crown portion of the carcass 50), and a belt 60 on the outside of the belt 60 in the tire radial direction.
  • the carcass 50 is composed of one carcass ply, and includes a main body portion extending in a toroidal shape between a pair of bead cores 40 respectively embedded in the bead portion 10, and It consists of a folded part that is wound radially outward from the inside to the outside in the tire width direction around the bead core 40, but in the tire of the present invention, the number of plies and structure of the carcass 50 are not limited to this. do not have.
  • the carcass ply constituting the carcass 50 may be formed by covering a plurality of reinforcing cords with coating rubber, which extend in a direction substantially perpendicular to the tire circumferential direction (for example, extend at an angle of 70 to 90 degrees).
  • the carcass 50 is preferably a radial carcass.
  • the above-mentioned polyamide fiber cord is preferable, but when the above-mentioned polyamide fiber cord is applied to other tire members, other organic fiber cords or steel cords may be used.
  • other organic fiber cords include polyethylene terephthalate cords, rayon cords, and the like.
  • a rubber composition is used in which a rubber component such as natural rubber or synthetic rubber is blended with a filler such as carbon black, an anti-aging agent, a vulcanizing agent such as sulfur, a vulcanization accelerator, etc. be able to.
  • the belt layer 60A is formed by coating a reinforcing cord extending at an angle of 50° with a coating rubber, preferably a steel cord coated with a coating rubber.
  • 60B are laminated to intersect with each other across the tire equator plane to form the belt 60.
  • the belt 60 in the figure consists of two belt layers 60A and 60B, in the tire of the present invention, the number of belt layers constituting the belt may be three or more.
  • the belt reinforcing layers 70A and 70B include reinforcing cords arranged substantially parallel to the tire circumferential direction (for example, at an angle of 0 to 5 degrees with respect to the tire circumferential direction) and coated with rubber. It will be covered.
  • the belt reinforcing layers 70A and 70B are formed by continuously spirally winding a narrow strip prepared by covering a reinforcing cord with a coating rubber in the tire circumferential direction. In this case, since there is no joint in the circumferential direction of the tire, the uniformity of the tire is good, and since there is no joint, concentration of strain on the joint can be prevented.
  • the above-mentioned polyamide fiber cord is preferable, but when the above-mentioned polyamide fiber cord is applied to other tire members, other organic fiber cords may be used.
  • other organic fiber cords include polyethylene terephthalate cords, rayon cords, and the like.
  • a rubber composition is used in which a rubber component such as natural rubber or synthetic rubber is blended with a filler such as carbon black, an anti-aging agent, a vulcanizing agent such as sulfur, a vulcanization accelerator, etc. be able to.
  • each of the belt reinforcing layers 70A and 70B is one layer, but may be two or more layers.
  • the conveyor belt of this embodiment is characterized by comprising the polyamide fiber cord of this embodiment described above. Since the conveyor belt of this embodiment includes the polyamide fiber cord of this embodiment described above, the environmental load can be reduced. In one embodiment, the polyamide fiber cord can be used as reinforcement for a conveyor belt.
  • the hose of this embodiment is characterized by comprising the polyamide fiber cord of this embodiment described above. Since the hose of this embodiment includes the polyamide fiber cord of this embodiment described above, the environmental load can be reduced.
  • the hose includes an inner rubber layer (inner pipe rubber) located on the inside in the radial direction, an outer rubber layer located on the outside in the radial direction, and reinforcement located between the inner rubber layer and the outer rubber layer. and the polyamide fiber cord is used as a reinforcing layer.
  • Example 1 A polyamide fiber cord ( A hybrid code) [cord structure: (1100 ⁇ 2,940)/3] was created.
  • the number of first twists of the aramid fibers is 52.0 times/10cm
  • the number of first twists of PA410 fibers is 46.0 times/10cm
  • the number of final twists of these fibers is 52.0 times/10cm. It is.
  • a polyamide fiber cord containing PA410 fibers and aramid fibers and having a bioconversion rate of 15% or more contains PA66 fibers and aramid fibers and has a bioconversion rate of 15% or more. It can be seen that the cutting strength is equivalent to that of a polyamide fiber cord with a polyamide fiber cord of 0%.
  • the polyamide fiber cord and rubber-fiber composite of the present invention can be used not only for tires but also for conveyor belts, hoses, etc.

Abstract

The present invention addresses the problem of providing an organic fiber cord capable of reducing environmental impact while maintaining physical properties at high temperatures. The solution is a polyamide fiber cord, wherein the total content of biomass-derived carbon (bio-conversion rate) in the cord is at least 15%, and the heat shrinkage rate of the cord is 9.0% or less.

Description

ポリアミド繊維コード、ゴム-繊維複合体、及びタイヤPolyamide fiber cords, rubber-fiber composites, and tires
 本発明は、ポリアミド繊維コード、ゴム-繊維複合体、及びタイヤに関するものである。 The present invention relates to a polyamide fiber cord, a rubber-fiber composite, and a tire.
 従来、タイヤの内部には、タイヤの強度及び剛性を補強するために、補強コードを含むカーカスが配置されており、該カーカスのタイヤ径方向外側には、補強コードを含むベルトが配置されている。また、該ベルトのタイヤ径方向外側には、ベルトを補強するために、補強コードを含むベルト補強層(「キャップ・レイヤー」とも呼ばれる。)が配設されることがある。これらの各タイヤ部材の中でも、カーカスやベルト補強層の補強コードとしては、通常、ポリアミド(ナイロン)繊維コード、ポリエステル繊維コード等の有機繊維コードが使用されている。 Conventionally, a carcass including a reinforcing cord is placed inside a tire in order to reinforce the strength and rigidity of the tire, and a belt including a reinforcing cord is placed outside the carcass in the tire radial direction. . Further, a belt reinforcing layer (also called a "cap layer") including reinforcing cords may be disposed on the outside of the belt in the tire radial direction in order to reinforce the belt. Among these tire members, organic fiber cords such as polyamide (nylon) fiber cords and polyester fiber cords are usually used as reinforcing cords for carcass and belt reinforcing layers.
 一方、近年、環境負荷の低減の観点から、石油、石炭等の化石資源の使用量の低減が求められている。そのため、前記有機繊維コードについても、化石資源由来のコードから、バイオマス由来(生物資源由来)のコードへの置き換えが検討されており、該置き換えにおいては、タイヤ特性を十分に維持できる必要がある。例えば、下記特許文献1には、バイオマス由来成分を原料の少なくとも一部に用いたポリエステル繊維を有するコードをゴムで被覆した補強部材(ゴム-繊維複合体)を備える空気入りタイヤが開示されており、該タイヤによれば、環境負荷の低減を図りつつ、タイヤ特性の悪化を抑制できることが教示されている。 On the other hand, in recent years, there has been a demand for a reduction in the amount of fossil resources used, such as oil and coal, from the perspective of reducing environmental impact. Therefore, with regard to the organic fiber cord, the replacement of cords derived from fossil resources with cords derived from biomass (derived from biological resources) is being considered, and in this replacement, it is necessary to be able to sufficiently maintain tire characteristics. For example, Patent Document 1 below discloses a pneumatic tire that includes a reinforcing member (rubber-fiber composite) in which a cord having polyester fibers using biomass-derived components as at least part of the raw material is coated with rubber. It is taught that, according to the tire, deterioration of tire characteristics can be suppressed while reducing environmental load.
国際公開第2019/021747号International Publication No. 2019/021747
 上記特許文献1は、タイヤに用いられる有機繊維コードの中でも、ポリエステル繊維コードの置き換えに関する技術であるが、タイヤには、ポリエステル繊維コード以外にも、目的に応じて、種々の有機繊維コードが適用されている。かかる有機繊維コードの中でも、ポリアミド繊維コード、特には、ポリアミド6,6(PA66)繊維コードが広く用いられているが、その原料となるポリアミド6,6(PA66)は、バイオマスから合成することが難しい。
 これに対して、本発明者等は、ポリアミド6,6の代替として、少なくとも一部がバイオマス由来のポリアミドを用いたポリアミド繊維コードについて検討したが、高温での物性(特には、弾性率や強力)が低く、かかるポリアミド繊維コードをタイヤに適用すると、タイヤ特性が悪化してしまう。
 また、タイヤの他にも、コンベヤベルトやホース等のゴム製品においても、有機繊維コードが使用されており、これらのゴム製品についても、環境負荷の低減が求められている。
Patent Document 1 mentioned above is a technology related to replacing polyester fiber cords among organic fiber cords used in tires, but in addition to polyester fiber cords, various organic fiber cords can be applied to tires depending on the purpose. has been done. Among such organic fiber cords, polyamide fiber cords, particularly polyamide 6,6 (PA66) fiber cords, are widely used, but the raw material polyamide 6,6 (PA66) cannot be synthesized from biomass. difficult.
In response, the present inventors have investigated polyamide fiber cords using polyamide at least partially derived from biomass as an alternative to polyamide 6,6, but the physical properties at high temperatures (particularly the modulus of elasticity and ) is low, and if such a polyamide fiber cord is applied to a tire, the tire properties will deteriorate.
In addition to tires, organic fiber cords are also used in rubber products such as conveyor belts and hoses, and these rubber products are also required to reduce their environmental impact.
 そこで、本発明は、高温での物性を維持しつつ、環境負荷を低減できる有機繊維コード、及びかかる有機繊維コードを用いたゴム-繊維複合体を提供することを課題とする。
 また、本発明は、かかる有機繊維コードを具え、タイヤ特性を維持しつつ、環境負荷を低減できるタイヤを提供することを更なる課題とする。
Therefore, an object of the present invention is to provide an organic fiber cord that can reduce environmental impact while maintaining physical properties at high temperatures, and a rubber-fiber composite using such an organic fiber cord.
A further object of the present invention is to provide a tire that includes such an organic fiber cord and can reduce environmental load while maintaining tire characteristics.
 上記課題を解決する本発明の有機繊維コード(ポリアミド繊維コード)、ゴム-繊維複合体、及びタイヤの要旨構成は、以下の通りである。 The main structure of the organic fiber cord (polyamide fiber cord), rubber-fiber composite, and tire of the present invention that solves the above problems is as follows.
[1] コード全体のバイオマス由来の炭素の含有割合(バイオ化率)が、15%以上であり、
 コードの熱収縮率が、9.0%以下であることを特徴とする、ポリアミド繊維コード。
[1] The biomass-derived carbon content (bio conversion rate) of the entire cord is 15% or more,
A polyamide fiber cord, characterized in that the cord has a heat shrinkage rate of 9.0% or less.
[2] バイオマス由来の炭素の含有割合(バイオ化率)が40%以上の繊維を含む、[1]に記載のポリアミド繊維コード。 [2] The polyamide fiber cord according to [1], which includes fibers having a biomass-derived carbon content (bio conversion rate) of 40% or more.
[3] 前記バイオ化率が40%以上の繊維は、ポリアミド4繊維、ポリアミド4,4繊維、ポリアミド4,6繊維、ポリアミド5,4繊維、ポリアミド5,6繊維、ポリアミド6繊維、ポリアミド6,6繊維、ポリアミド11繊維、ポリアミド4,10繊維、ポリアミド6,10繊維、及びポリアミド10,10繊維からなる群から選択される少なくとも1種である、[2]に記載のポリアミド繊維コード。 [3] The fibers with a bio conversion rate of 40% or more include polyamide 4 fiber, polyamide 4,4 fiber, polyamide 4,6 fiber, polyamide 5,4 fiber, polyamide 5,6 fiber, polyamide 6 fiber, polyamide 6, The polyamide fiber cord according to [2], which is at least one member selected from the group consisting of polyamide 6 fiber, polyamide 11 fiber, polyamide 4,10 fiber, polyamide 6,10 fiber, and polyamide 10,10 fiber.
[4] 前記バイオ化率が40%以上の繊維と、アラミド繊維と、を撚り合わせたコードである、[2]又は[3]に記載のポリアミド繊維コード。 [4] The polyamide fiber cord according to [2] or [3], which is a cord made by twisting fibers with a bio conversion rate of 40% or more and aramid fibers.
[5] 前記バイオ化率が100%の繊維を含む、[2]~[4]のいずれか一つに記載のポリアミド繊維コード。 [5] The polyamide fiber cord according to any one of [2] to [4], which includes fibers with a bioconversion rate of 100%.
[6] 前記バイオ化率が100%の繊維は、ポリアミド11繊維、ポリアミド4,10繊維、及びポリアミド10,10繊維からなる群から選択される少なくとも1種である、[5]に記載のポリアミド繊維コード。 [6] The polyamide according to [5], wherein the fiber with a bioconversion rate of 100% is at least one selected from the group consisting of polyamide 11 fiber, polyamide 4,10 fiber, and polyamide 10,10 fiber. fiber cord.
[7] ポリアミド4,10繊維と、アラミド繊維と、を撚り合わせたコードである、[2]~[6]のいずれか一つに記載のポリアミド繊維コード。 [7] The polyamide fiber cord according to any one of [2] to [6], which is a cord made by twisting polyamide 4,10 fibers and aramid fibers.
[8] アラミド繊維2本と、ポリアミド4,10繊維1本と、を撚り合わせたコードである、[7]に記載のポリアミド繊維コード。 [8] The polyamide fiber cord according to [7], which is a cord made by twisting two aramid fibers and one polyamide 4,10 fiber.
[9] バイオマス由来の炭素の含有割合(バイオ化率)が15%以上のポリアミド繊維のみからなる、[1]に記載のポリアミド繊維コード。 [9] The polyamide fiber cord according to [1], comprising only polyamide fibers with a biomass-derived carbon content (bio conversion rate) of 15% or more.
[10] 前記ポリアミド繊維は、アミド密度が14.0以上である、[9]に記載のポリアミド繊維コード。 [10] The polyamide fiber cord according to [9], wherein the polyamide fiber has an amide density of 14.0 or more.
[11] 前記ポリアミド繊維は、ポリアミド4,6繊維、及びポリアミド5,6繊維からなる群から選択される少なくとも1種である、[9]又は[10]に記載のポリアミド繊維コード。 [11] The polyamide fiber cord according to [9] or [10], wherein the polyamide fiber is at least one selected from the group consisting of polyamide 4,6 fibers and polyamide 5,6 fibers.
[12] [1]~[11]のいずれか一つに記載のポリアミド繊維コードを具えることを特徴とする、ゴム-繊維複合体。 [12] A rubber-fiber composite comprising the polyamide fiber cord according to any one of [1] to [11].
[13] [1]~[11]のいずれか一つに記載のポリアミド繊維コードを具えることを特徴とする、タイヤ。 [13] A tire comprising the polyamide fiber cord according to any one of [1] to [11].
 本発明によれば、高温での物性を維持しつつ、環境負荷を低減できるポリアミド繊維コード及びゴム-繊維複合体を提供することができる。
 また、本発明によれば、タイヤ特性を維持しつつ、環境負荷を低減できるタイヤを提供することができる。
According to the present invention, it is possible to provide a polyamide fiber cord and a rubber-fiber composite that can reduce environmental impact while maintaining physical properties at high temperatures.
Further, according to the present invention, it is possible to provide a tire that can reduce environmental load while maintaining tire characteristics.
本発明のタイヤの一実施態様の断面図である。1 is a sectional view of one embodiment of a tire of the present invention.
 以下に、本発明のポリアミド繊維コード、ゴム-繊維複合体、及びタイヤを、その実施形態に基づき、詳細に例示説明する。 Below, the polyamide fiber cord, rubber-fiber composite, and tire of the present invention will be illustrated and explained in detail based on the embodiments thereof.
<定義>
 本明細書において、「ポリアミド繊維コード」とは、少なくともポリアミド繊維を含むコードを指し、ポリアミド繊維のみからなるコードも包含する。ここで、コードに含まれる繊維は、「繊維束」、「フィラメント束」とも呼ばれる。
<Definition>
As used herein, the term "polyamide fiber cord" refers to a cord containing at least polyamide fibers, and also includes cords consisting only of polyamide fibers. Here, the fibers included in the cord are also called a "fiber bundle" or a "filament bundle."
 また、本明細書において、「バイオ化率」とは、バイオマス由来の炭素の含有割合を指し、以下の式(1):
   バイオ化率(%)=バイオマス由来の炭素原子数/炭素原子の総数×100 (1)
から算出される。
In addition, in this specification, the "bio conversion rate" refers to the content rate of carbon derived from biomass, and is expressed by the following formula (1):
Bio conversion rate (%) = Number of carbon atoms derived from biomass / Total number of carbon atoms × 100 (1)
Calculated from.
 また、本明細書において、「コード全体のバイオ化率」とは、コード全体におけるバイオマス由来の炭素の含有割合を指し、以下の式(2):
   コード全体のバイオ化率(%)=コード全体のバイオマス由来の炭素原子数/コード全体の炭素原子の総数×100 (2)
から算出される。
In addition, in this specification, the "bio conversion rate of the entire cord" refers to the content ratio of biomass-derived carbon in the entire cord, and is expressed by the following formula (2):
Bio conversion rate of the entire cord (%) = Number of carbon atoms derived from biomass of the entire cord / Total number of carbon atoms of the entire cord x 100 (2)
Calculated from.
 また、本明細書において、コード(ポリアミド繊維コード)の熱収縮率は、ASTM D885及びASTM D4974に従って測定され、177℃で2分間加熱して測定される値である。 Further, in this specification, the heat shrinkage rate of the cord (polyamide fiber cord) is measured according to ASTM D885 and ASTM D4974, and is a value measured by heating at 177° C. for 2 minutes.
 また、本明細書において、ポリアミドの「アミド密度」は、以下の式(3):
   アミド密度=ポリアミドのアミド基数/ポリアミドの主鎖の原子数×100 (3)
から算出される。
 ここで、「ポリアミドのアミド基数」及び「ポリアミドの主鎖の原子数」は、ポリアミドの一繰り返し単位中の「アミド基数」及び「主鎖の原子数」から算出される。
 例えば、ポリアミド4及びポリアミド4,4のアミド密度は、20.0であり、ポリアミド5,4のアミド密度は、18.2であり、ポリアミド4,6のアミド密度は、16.7であり、ポリアミド5,6のアミド密度は、15.4であり、ポリアミド6及びポリアミド6,6のアミド密度は、14.3であり、ポリアミド4,10のアミド密度は、12.5であり、ポリアミド6,10のアミド密度は、11.1であり、ポリアミド9,Tのアミド密度は、10.5であり、ポリアミド10,10のアミド密度は、9.1であり、ポリアミド11のアミド密度は、8.3である。
In addition, in this specification, the "amide density" of polyamide is expressed by the following formula (3):
Amide density = number of amide groups in polyamide / number of atoms in main chain of polyamide x 100 (3)
Calculated from.
Here, the "number of amide groups in polyamide" and the "number of atoms in the main chain of polyamide" are calculated from the "number of amide groups" in one repeating unit of polyamide and the "number of atoms in the main chain".
For example, the amide density of polyamide 4 and polyamide 4,4 is 20.0, the amide density of polyamide 5,4 is 18.2, the amide density of polyamide 4,6 is 16.7, The amide density of polyamide 5,6 is 15.4; the amide density of polyamide 6 and polyamide 6,6 is 14.3; the amide density of polyamide 4,10 is 12.5; , 10 is 11.1, the amide density of polyamide 9,T is 10.5, the amide density of polyamide 10,10 is 9.1, and the amide density of polyamide 11 is: It is 8.3.
 また、本明細書において、ポリアミド繊維コードの「平均アミド密度」は、以下の式(4):
   平均アミド密度=[(繊維Aの繊度(dtex)×繊維Aの本数×繊維Aのアミド密度)+(繊維Bの繊度(dtex)×繊維Bの本数×繊維Bのアミド密度)+・・・]/(繊維Aの繊度(dtex)×繊維Aの本数+繊維Bの繊度(dtex)×繊維Bの本数+・・・) (4)
から算出される。
 ここで、繊維Aは、1種類目の繊維であり、繊維Bは、2種類目の繊維である。また、ポリアミド繊維コードが3種以上の繊維を含む場合は、同様に、分子の「・・・」部分に「当該繊維の繊度(dtex)×当該繊維の本数×当該繊維のアミド密度」が加わり、分母の「・・・」部分に「当該繊維の繊度(dtex)×当該繊維の本数」が加わることとなる。
 一例として、繊度1100dtex、アミド密度10.3の繊維A 2本と、繊度940dtex、アミド密度12.5の繊維B 1本と、を撚り合わせてなるコードの場合:
   平均アミド密度=[(1100×2×10.3)+(940×1×12.5)]/(1100×2+940)=10.96
 となる。
 また、換言すると、n種の繊維を含み、n種類目の繊維を「繊維」とすると、以下の式(4’):
   平均アミド密度=Σ(繊維の繊度×繊維の本数×繊維のアミド密度)/Σ(繊維の繊度×繊維の本数) (4’)
から算出することができる。
In addition, in this specification, the "average amide density" of the polyamide fiber cord is expressed by the following formula (4):
Average amide density = [(Fineness of fiber A (dtex) x number of fibers A x amide density of fiber A) + (fineness of fiber B (dtex) x number of fibers B x amide density of fiber B) +... ]/(Fineness of fiber A (dtex) x number of fibers A + fineness of fiber B (dtex) x number of fibers B +...) (4)
Calculated from.
Here, fiber A is the first type of fiber, and fiber B is the second type of fiber. Additionally, if the polyamide fiber cord contains three or more types of fibers, the "fineness (dtex) of the fiber concerned x the number of fibers concerned x the amide density of the fiber concerned" is added to the "..." part of the molecule. , "the fineness (dtex) of the fiber concerned x the number of fibers concerned" is added to the "..." part of the denominator.
As an example, in the case of a cord made by twisting two fibers A with a fineness of 1100 dtex and an amide density of 10.3 and one fiber B with a fineness of 940 dtex and an amide density of 12.5:
Average amide density = [(1100 x 2 x 10.3) + (940 x 1 x 12.5)] / (1100 x 2 + 940) = 10.96
becomes.
In other words, if n types of fibers are included and the n-th type of fiber is "fiber n ", the following formula (4'):
Average amide density = Σ (fineness of fiber n x number of fiber n x amide density of fiber n ) / Σ (fineness of fiber n x number of fiber n ) (4')
It can be calculated from
 また、本明細書において、「バイオマス由来」とは、植物資源、動物資源、微生物資源等の生物資源由来であることを指し、「バイオ由来」と同義である。 In addition, in this specification, "biomass-derived" refers to origin from biological resources such as plant resources, animal resources, microbial resources, etc., and is synonymous with "bio-derived".
 後述の通り、本実施形態のポリアミド繊維コードは、コード全体のバイオマス由来の炭素の含有割合(バイオ化率)が15%以上であることを特徴とするが、該ポリアミド繊維コードは、バイオマス由来の成分に加えて、バイオマス由来ではない成分を含んでもよい。また、バイオマス由来の成分を含む繊維以外に関して、本明細書に記載されている化合物は、部分的に、又は全てが化石資源由来であってもよく、植物資源等の生物資源由来(バイオマス由来)であってもよく、使用済タイヤ等の再生資源由来であってもよい。また、化石資源、生物資源、再生資源のいずれか2つ以上の混合物由来であってもよい。 As described later, the polyamide fiber cord of the present embodiment is characterized in that the content ratio (bioconversion rate) of biomass-derived carbon in the entire cord is 15% or more; In addition to the components, it may also contain components that are not derived from biomass. In addition, with respect to fibers other than fibers containing biomass-derived components, the compounds described in this specification may be partially or entirely derived from fossil resources, and may be derived from biological resources such as plant resources (biomass-derived). It may be derived from recycled resources such as used tires. Moreover, it may be derived from a mixture of any two or more of fossil resources, biological resources, and recycled resources.
<ポリアミド繊維コード>
 本実施形態のポリアミド繊維コードは、コード全体のバイオマス由来の炭素の含有割合(バイオ化率)が15%以上であり、コードの熱収縮率が9.0%以下であることを特徴とする。
<Polyamide fiber cord>
The polyamide fiber cord of this embodiment is characterized in that the content ratio of biomass-derived carbon (bioconversion rate) in the entire cord is 15% or more, and the heat shrinkage rate of the cord is 9.0% or less.
 本実施形態のポリアミド繊維コードは、コード全体のバイオマス由来の炭素の含有割合(バイオ化率)が15%以上であるため、環境負荷を低減できる。
 また、本実施形態のポリアミド繊維コードは、コードの熱収縮率が9.0%以下であるため、十分な強度を担保でき、高温においても、弾性率や強力等の物性を維持できる。また、本実施形態のポリアミド繊維コードは、コードの熱収縮率が9.0%以下であることで、石油由来のポリアミド6,6(PA66)繊維を用いたコードと同等の物性を達成できる。
 従って、本実施形態のポリアミド繊維コードによれば、高温での物性(特には、弾性率や強力)を維持しつつ、環境負荷を低減できる。
Since the polyamide fiber cord of this embodiment has a biomass-derived carbon content (bio conversion rate) of 15% or more in the entire cord, the environmental load can be reduced.
Further, since the polyamide fiber cord of this embodiment has a heat shrinkage rate of 9.0% or less, sufficient strength can be ensured, and physical properties such as elastic modulus and strength can be maintained even at high temperatures. Further, the polyamide fiber cord of this embodiment can achieve physical properties equivalent to cords using petroleum-derived polyamide 6,6 (PA66) fibers because the cord has a heat shrinkage rate of 9.0% or less.
Therefore, according to the polyamide fiber cord of this embodiment, the environmental load can be reduced while maintaining the physical properties at high temperatures (particularly the elastic modulus and strength).
 本実施形態のポリアミド繊維コードは、コード全体のバイオマス由来の炭素の含有割合(バイオ化率)が15%以上である。コード全体のバイオ化率が15%未満では、環境負荷を低減する効果が小さい。環境負荷を更に低減する観点から、本実施形態のポリアミド繊維コードは、コード全体のバイオ化率が20%以上であることが好ましく、100%でもよい。 The polyamide fiber cord of this embodiment has a biomass-derived carbon content (bioconversion rate) of 15% or more in the entire cord. If the bio conversion rate of the entire cord is less than 15%, the effect of reducing environmental load will be small. From the viewpoint of further reducing the environmental load, the polyamide fiber cord of this embodiment preferably has a bio conversion rate of 20% or more, and may be 100%.
 本実施形態のポリアミド繊維コードは、熱収縮率が、9.0%以下である。コードの熱収縮率が9.0%を超えると、高温での物性(特には、弾性率や強力)を十分には維持できない。本実施形態のポリアミド繊維コードは、熱収縮率が4.0%以下であることが好い。ポリアミド繊維コードの熱収縮率が、4.0%以下であると、特に高速走行時のユニフォミティーが優れる。 The polyamide fiber cord of this embodiment has a heat shrinkage rate of 9.0% or less. If the heat shrinkage rate of the cord exceeds 9.0%, the physical properties (especially elastic modulus and strength) at high temperatures cannot be maintained sufficiently. The polyamide fiber cord of this embodiment preferably has a heat shrinkage rate of 4.0% or less. When the heat shrinkage rate of the polyamide fiber cord is 4.0% or less, uniformity particularly during high-speed running is excellent.
 本実施形態のポリアミド繊維コードは、アミド密度(アミド密度が異なる複数の繊維を含む場合は、平均アミド密度)が、10.5以上であることが好ましい。ポリアミド繊維コードの(平均)アミド密度が10.5以上であると、アミド結合間の水素結合が密に形成されるため、十分な強度を担保でき、熱特性が向上し、その結果、高温においても、弾性率や強力等の物性を維持できる。
 ここで、ポリアミド繊維コードは、(平均)アミド密度が高くなる程、アミド結合間の水素結合が密に形成されるため、熱収縮率が小さくなる傾向がある。
 また、ポリアミド繊維コードは、(平均)アミド密度が高くなる程、アミド結合間の水素結合が密に形成されるため、融点(Tm)、ガラス転移温度(Tg)、水分率、及び弾性率(E’)が高くなる傾向がある。従って、(平均)アミド密度が高いポリアミド繊維コードは、高温での物性(熱特性)に優れる傾向がある。
It is preferable that the polyamide fiber cord of this embodiment has an amide density (in the case of including a plurality of fibers having different amide densities, an average amide density) of 10.5 or more. When the (average) amide density of the polyamide fiber cord is 10.5 or more, hydrogen bonds between amide bonds are formed densely, ensuring sufficient strength and improving thermal properties. It is also possible to maintain physical properties such as elastic modulus and strength.
Here, as the (average) amide density of the polyamide fiber cord increases, hydrogen bonds between amide bonds are formed densely, so that the heat shrinkage rate tends to decrease.
In addition, the higher the (average) amide density of a polyamide fiber cord, the denser the formation of hydrogen bonds between amide bonds. E') tends to be high. Therefore, polyamide fiber cords with high (average) amide density tend to have excellent physical properties (thermal properties) at high temperatures.
 以下に、本発明の第一の実施形態のポリアミド繊維コードと、第二の実施形態のポリアミド繊維コードについて、詳述する。 Below, the polyamide fiber cord of the first embodiment and the polyamide fiber cord of the second embodiment of the present invention will be explained in detail.
 本発明の第一の実施形態のポリアミド繊維コードは、バイオマス由来の炭素の含有割合(バイオ化率)が40%以上の繊維を含む。第一の実施形態のポリアミド繊維コードは、バイオ化率が40%以上の繊維を含むことで、環境負荷を低減する効果が大きくなる。なお、第一の実施形態のポリアミド繊維コードは、バイオ化率が40%以上の繊維を含むが、更に他の繊維(繊維束)を含んでもよい。 The polyamide fiber cord of the first embodiment of the present invention includes fibers with a biomass-derived carbon content (bio conversion rate) of 40% or more. The polyamide fiber cord of the first embodiment includes fibers with a bio conversion rate of 40% or more, thereby increasing the effect of reducing environmental load. Note that the polyamide fiber cord of the first embodiment includes fibers with a bioconversion rate of 40% or more, but may further include other fibers (fiber bundles).
 前記バイオ化率が40%以上の繊維(ポリアミド繊維)としては、ポリアミド4(PA4)繊維、ポリアミド11(PA11)繊維、ポリアミド4,4(PA44)繊維、ポリアミド5,4(PA54)繊維、ポリアミド4,6(PA46)繊維、ポリアミド5,6(PA56)繊維、ポリアミド4,10(PA410)繊維、ポリアミド6(PA6)繊維、ポリアミド6,6(PA66)繊維、ポリアミド6,10(PA610)繊維、ポリアミド10,10(PA1010)等が挙げられ、これらの中でも、ポリアミド4,6繊維、ポリアミド5,6繊維、ポリアミド11繊維、ポリアミド4,10繊維、ポリアミド6,10繊維、及びポリアミド10,10繊維が好ましい。バイオ化率が40%以上の繊維が、ポリアミド4繊維、ポリアミド4,4繊維、ポリアミド4,6繊維、ポリアミド5,4繊維、ポリアミド5,6繊維、ポリアミド6繊維、ポリアミド6,6繊維、ポリアミド11繊維、ポリアミド4,10繊維、ポリアミド6,10繊維、及びポリアミド10,10繊維からなる群から選択される少なくとも1種である場合、石油由来のポリアミド6,6(PA66)繊維を用いたコードと同等の物性を達成しつつ、環境負荷を更に低減できる。また、バイオ化率が40%以上の繊維が、ポリアミド4,6繊維、ポリアミド5,6繊維、ポリアミド11繊維、ポリアミド4,10繊維、ポリアミド6,10繊維、及びポリアミド10,10繊維からなる群から選択される少なくとも1種である場合、石油由来のポリアミド6,6(PA66)繊維を用いたコードと同等の物性を達成しつつ、環境負荷をより一層低減できる。
 これらのポリアミド繊維の原料となるポリアミドは、バイオマス由来の成分から合成することができる。ここで、バイオマス由来の成分とは、植物資源、動物資源、微生物資源等の生物資源由来の成分である。
The fibers (polyamide fibers) having a bio conversion rate of 40% or more include polyamide 4 (PA4) fibers, polyamide 11 (PA11) fibers, polyamide 4,4 (PA44) fibers, polyamide 5,4 (PA54) fibers, and polyamide fibers. 4,6 (PA46) fiber, polyamide 5,6 (PA56) fiber, polyamide 4,10 (PA410) fiber, polyamide 6 (PA6) fiber, polyamide 6,6 (PA66) fiber, polyamide 6,10 (PA610) fiber , polyamide 10,10 (PA1010), etc. Among these, polyamide 4,6 fiber, polyamide 5,6 fiber, polyamide 11 fiber, polyamide 4,10 fiber, polyamide 6,10 fiber, and polyamide 10,10 fiber. Fibers are preferred. Fibers with a bio conversion rate of 40% or more include polyamide 4 fiber, polyamide 4,4 fiber, polyamide 4,6 fiber, polyamide 5,4 fiber, polyamide 5,6 fiber, polyamide 6 fiber, polyamide 6,6 fiber, polyamide 11 fiber, polyamide 4,10 fiber, polyamide 6,10 fiber, and polyamide 10,10 fiber, a cord using petroleum-derived polyamide 6,6 (PA66) fiber It is possible to achieve the same physical properties as the previous one, while further reducing the environmental impact. In addition, the fibers with a bio conversion rate of 40% or more include polyamide 4,6 fibers, polyamide 5,6 fibers, polyamide 11 fibers, polyamide 4,10 fibers, polyamide 6,10 fibers, and polyamide 10,10 fibers. In the case of at least one selected from the following, the environmental load can be further reduced while achieving physical properties equivalent to cords using petroleum-derived polyamide 6,6 (PA66) fibers.
Polyamide, which is a raw material for these polyamide fibers, can be synthesized from biomass-derived components. Here, the biomass-derived components are components derived from biological resources such as plant resources, animal resources, and microbial resources.
 ポリアミド4(PA4)は、γ-ブチロラクタムの開環重合で得られ、γ-ブチロラクタムは、グルコース、グルタミン酸等から得られる。
 ポリアミド11(PA11)は、アミノウンデカン酸の重合により得られ、アミノウンデカン酸は、トウゴマ等の植物資源から得られる。
 ポリアミド4,4(PA44)は、テトラメチレンジアミン(炭素数4)と、コハク酸(炭素数4)との縮合重合反応により得られ、テトラメチレンジアミンは、サトウキビ等の植物資源から得られ、コハク酸は、サトウキビ、トウモロコシ等の植物資源から得られる。
 ポリアミド5,4(PA54)は、ペンタメチレンジアミン(炭素数5)と、コハク酸(炭素数4)との縮合重合反応により得られ、ペンタメチレンジアミンは、トウモロコシ等の植物資源から得られ、コハク酸は、サトウキビ、トウモロコシ等の植物資源から得られる。
 ポリアミド4,6(PA46)は、テトラメチレンジアミン(炭素数4)と、アジピン酸(炭素数6)との縮合重合反応により得られ、テトラメチレンジアミンは、サトウキビ等の植物資源から得られる。
 ポリアミド5,6(PA56)は、ペンタメチレンジアミン(炭素数5)と、アジピン酸(炭素数6)との縮合重合反応により得られ、ペンタメチレンジアミンは、トウモロコシ等の植物資源から得られる。
 ポリアミド4,10(PA410)は、テトラメチレンジアミン(炭素数4)と、セバシン酸(炭素数10)との縮合重合反応により得られ、テトラメチレンジアミンは、サトウキビ等の植物資源から得られ、セバシン酸は、トウゴマ等の植物資源から得られる。
 ポリアミド6(PA6)は、ε-カプロラクタム(炭素数6)の開環重合で得られ、ε-カプロラクタムは、植物資源から得られる。
 ポリアミド6,6(PA66)は、ヘキサメチレンジアミン(炭素数6)とアジピン酸(炭素数6)との縮合重合反応により得られ、ヘキサメチレンジアミン及びアジピン酸は、植物資源から得られる。
 ポリアミド6,10(PA610)は、ヘキサメチレンジアミン(炭素数6)と、セバシン酸(炭素数10)との縮合重合反応により得られ、セバシン酸は、トウゴマ等の植物資源から得られる。
 ポリアミド10,10(PA1010)は、デカメチレンジアミン(炭素数10)と、セバシン酸(炭素数10)との縮合重合反応により得られ、デカメチレンジアミン及びセバシン酸は、トウゴマ等の植物資源から得られる。
 例えば、テトラメチレンジアミンは、「プトレシン」とも呼ばれ、サトウキビを発酵させてグルタミン酸を生成させ、該グルタミン酸から生化学的にオルニチンを生成させ、得られるオルニチンを脱炭酸させることで、入手することができる。
 また、セバシン酸は、トウゴマを機械的にプレスすることでヒマシ油を得、該ヒマシ油のメタノリシスによりリシノール酸メチルを得、該リシノール酸メチルを鹸化等することにより、入手することができる。
Polyamide 4 (PA4) is obtained by ring-opening polymerization of γ-butyrolactam, and γ-butyrolactam is obtained from glucose, glutamic acid, and the like.
Polyamide 11 (PA11) is obtained by polymerizing aminoundecanoic acid, and aminoundecanoic acid is obtained from plant resources such as castor beans.
Polyamide 4,4 (PA44) is obtained by a condensation polymerization reaction of tetramethylene diamine (4 carbon atoms) and succinic acid (4 carbon atoms), and tetramethylene diamine is obtained from plant resources such as sugar cane. Acid is obtained from plant sources such as sugar cane and corn.
Polyamide 5,4 (PA54) is obtained by a condensation polymerization reaction of pentamethylene diamine (5 carbon atoms) and succinic acid (4 carbon atoms), and pentamethylene diamine is obtained from plant resources such as corn. Acid is obtained from plant sources such as sugar cane and corn.
Polyamide 4,6 (PA46) is obtained by a condensation polymerization reaction of tetramethylene diamine (4 carbon atoms) and adipic acid (6 carbon atoms), and tetramethylene diamine is obtained from plant resources such as sugar cane.
Polyamide 5,6 (PA56) is obtained by a condensation polymerization reaction of pentamethylene diamine (5 carbon atoms) and adipic acid (6 carbon atoms), and pentamethylene diamine is obtained from plant resources such as corn.
Polyamide 4,10 (PA410) is obtained by a condensation polymerization reaction of tetramethylene diamine (4 carbon atoms) and sebacic acid (10 carbon atoms). Tetramethylene diamine is obtained from plant resources such as sugar cane, and sebacic acid Acid is obtained from plant sources such as castor beans.
Polyamide 6 (PA6) is obtained by ring-opening polymerization of ε-caprolactam (6 carbon atoms), and ε-caprolactam is obtained from plant resources.
Polyamide 6,6 (PA66) is obtained by a condensation polymerization reaction of hexamethylene diamine (with 6 carbon atoms) and adipic acid (with 6 carbon atoms), and hexamethylene diamine and adipic acid are obtained from plant resources.
Polyamide 6,10 (PA610) is obtained by a condensation polymerization reaction of hexamethylene diamine (6 carbon atoms) and sebacic acid (10 carbon atoms), and sebacic acid is obtained from plant resources such as castor beans.
Polyamide 10,10 (PA1010) is obtained by a condensation polymerization reaction of decamethylene diamine (10 carbon atoms) and sebacic acid (10 carbon atoms), and decamethylene diamine and sebacic acid are obtained from plant resources such as castor beans. It will be done.
For example, tetramethylene diamine, also called "putrescine", can be obtained by fermenting sugar cane to produce glutamic acid, biochemically producing ornithine from the glutamic acid, and decarboxylating the obtained ornithine. can.
Sebacic acid can also be obtained by mechanically pressing castor beans to obtain castor oil, methanolysis of the castor oil to obtain methyl ricinoleate, and saponifying the methyl ricinoleate.
 前記第一の実施形態のポリアミド繊維コードは、前記バイオ化率が40%以上の繊維と、アラミド繊維と、を撚り合わせたコードであることが好ましい。かかるポリアミド繊維コードは、アラミド繊維に起因して、剛直で、且つ優れた熱特性を有しつつ、バイオ化率が40%以上の繊維に起因して、環境負荷を低減する効果が大きい。 The polyamide fiber cord of the first embodiment is preferably a cord in which the fibers with a bio conversion rate of 40% or more and aramid fibers are twisted together. Such polyamide fiber cords are rigid and have excellent thermal properties due to the aramid fibers, and are highly effective in reducing environmental load due to the fibers having a bio conversion rate of 40% or more.
 前記第一の実施形態のポリアミド繊維コードは、前記バイオ化率が100%(即ち、完全バイオマス由来)の繊維を含むことが好ましい。バイオ化率が100%の繊維を含むことで、環境負荷を低減する効果が更に大きくなる。 The polyamide fiber cord of the first embodiment preferably includes fibers with a bio conversion rate of 100% (that is, completely derived from biomass). By including fibers with a bio conversion rate of 100%, the effect of reducing environmental load will be even greater.
 前記バイオ化率が100%の繊維としては、ポリアミド4(PA4)繊維、ポリアミド11(PA11)繊維、ポリアミド4,4(PA44)繊維、ポリアミド5,4(PA54)繊維、ポリアミド4,10(PA410)繊維、ポリアミド10,10(PA1010)繊維等が挙げられ、これらの中でも、ポリアミド11繊維、ポリアミド4,10繊維、及びポリアミド10,10繊維が好ましい。バイオ化率が100%の繊維が、ポリアミド11繊維、ポリアミド4,10繊維、及びポリアミド10,10繊維からなる群から選択される少なくとも1種である場合、石油由来のポリアミド6,6(PA66)繊維を用いたコードと同等の物性を達成しつつ、環境負荷をより一層低減できる。 The fibers with a bio conversion rate of 100% include polyamide 4 (PA4) fiber, polyamide 11 (PA11) fiber, polyamide 4,4 (PA44) fiber, polyamide 5,4 (PA54) fiber, and polyamide 4,10 (PA410) fiber. ) fibers, polyamide 10,10 (PA1010) fibers, etc. Among these, polyamide 11 fibers, polyamide 4,10 fibers, and polyamide 10,10 fibers are preferred. When the fiber with a bio conversion rate of 100% is at least one selected from the group consisting of polyamide 11 fiber, polyamide 4,10 fiber, and polyamide 10,10 fiber, petroleum-derived polyamide 6,6 (PA66) While achieving the same physical properties as cords using fibers, the environmental impact can be further reduced.
 前記第一の実施形態のポリアミド繊維コードは、ポリアミド4,10繊維と、アラミド繊維と、を撚り合わせたコードであることが好ましい。かかるポリアミド繊維コードは、アラミド繊維に起因して、剛直で、且つ優れた熱特性を有しつつ、バイオ化率が100%のものを利用できるポリアミド4,10繊維に起因して、環境負荷を低減する効果が大きい。 The polyamide fiber cord of the first embodiment is preferably a cord made by twisting polyamide 4,10 fibers and aramid fibers. Such polyamide fiber cords are rigid and have excellent thermal properties due to the aramid fibers, while reducing environmental impact due to the polyamide 4,10 fibers that can be used with a bio conversion rate of 100%. The reduction effect is large.
 前記第一の実施形態のポリアミド繊維コードは、3本の繊維を撚り合わせたコードであることが好ましい。3本の繊維を撚り合わせたコードは、2本の繊維を撚り合わせたコードと比べてタイヤ用補強材としての十分な剛性を確保することができ、また、4本の繊維を撚り合わせたコードと比べて軽量化できる。 The polyamide fiber cord of the first embodiment is preferably a cord made of three fibers twisted together. A cord made of three fibers twisted together can ensure sufficient rigidity as a tire reinforcing material compared to a cord made of two fibers twisted together, and a cord made of four fibers twisted together can ensure sufficient rigidity as a tire reinforcement material. It can be lighter compared to.
 前記第一の実施形態のポリアミド繊維コードは、アラミド繊維2本と、ポリアミド4,10繊維1本と、を撚り合わせたコードであることが好ましい。かかるポリアミド繊維コードは、2本のアラミド繊維に起因して、剛直で、且つ優れた熱特性を有しつつ、バイオ化率が100%のものを利用できるポリアミド4,10繊維に起因して、環境負荷を低減する効果が大きい。 The polyamide fiber cord of the first embodiment is preferably a cord made by twisting two aramid fibers and one polyamide 4,10 fiber. This polyamide fiber cord is rigid due to the two aramid fibers and has excellent thermal properties, and due to the polyamide 4,10 fiber that can be used with a bio conversion rate of 100%, It is highly effective in reducing environmental impact.
 本発明の第二の実施形態のポリアミド繊維コードは、バイオマス由来の炭素の含有割合(バイオ化率)が15%以上のポリアミド繊維のみからなる。第二の実施形態のポリアミド繊維コードは、バイオ化率が15%以上のポリアミド繊維のみからなることで、環境負荷を低減する効果が大きくなる。 The polyamide fiber cord of the second embodiment of the present invention consists only of polyamide fibers with a biomass-derived carbon content (bio conversion rate) of 15% or more. The polyamide fiber cord of the second embodiment is made only of polyamide fibers with a bio conversion rate of 15% or more, thereby increasing the effect of reducing environmental load.
 前記第二の実施形態のポリアミド繊維コードにおいて、前記ポリアミド繊維は、アミド密度が14.0以上であることが好ましい。ポリアミド繊維は、アミド密度が高くなる程、アミド結合間の水素結合が密に形成されるため、融点(Tm)、ガラス転移温度(Tg)、水分率、及び弾性率(E’)が高くなる傾向がある一方、熱収縮率が小さくなる傾向がある。従って、アミド密度が14.0以上であるポリアミド繊維は、アミド結合間の水素結合が密に形成されるため、十分な強度を担保でき、高温においても、弾性率や強力等の物性を十分に維持できる。前記アミド密度が14.0以上であるポリアミド繊維としては、ポリアミド4繊維、ポリアミド4,4繊維、ポリアミド5,4繊維、ポリアミド4,6繊維、ポリアミド5,6繊維等が挙げられる。 In the polyamide fiber cord of the second embodiment, the polyamide fiber preferably has an amide density of 14.0 or more. Polyamide fibers have higher melting point (Tm), glass transition temperature (Tg), moisture content, and elastic modulus (E') because the higher the amide density, the denser the hydrogen bonds between amide bonds are formed. On the other hand, there is a tendency for the thermal shrinkage rate to decrease. Therefore, polyamide fibers with an amide density of 14.0 or higher have sufficient strength due to the close formation of hydrogen bonds between amide bonds, and can maintain sufficient physical properties such as elastic modulus and strength even at high temperatures. Can be maintained. Examples of the polyamide fibers having an amide density of 14.0 or more include polyamide 4 fibers, polyamide 4,4 fibers, polyamide 5,4 fibers, polyamide 4,6 fibers, polyamide 5,6 fibers, and the like.
 前記第二の実施形態のポリアミド繊維コードにおいて、前記ポリアミド繊維は、ポリアミド4,6繊維、及びポリアミド5,6繊維からなる群から選択される少なくとも1種であることが好ましい。ポリアミド繊維が、ポリアミド4,6繊維、及びポリアミド5,6繊維からなる群から選択される少なくとも1種である場合、石油由来のポリアミド6,6(PA66)繊維を用いたコードと同等の物性を達成しつつ、環境負荷を更に低減できる。 In the polyamide fiber cord of the second embodiment, the polyamide fiber is preferably at least one selected from the group consisting of polyamide 4,6 fibers and polyamide 5,6 fibers. When the polyamide fiber is at least one selected from the group consisting of polyamide 4,6 fibers and polyamide 5,6 fibers, it has physical properties equivalent to cords using petroleum-derived polyamide 6,6 (PA66) fibers. While achieving this goal, the environmental impact can be further reduced.
 本実施形態のポリアミド繊維コードは、少なくとも1種のポリアミド繊維を含み、更に他の繊維を含んでもよく、片撚り構造でもよいし、撚り合わせ構造(双撚り構造等)でもよい。 The polyamide fiber cord of this embodiment contains at least one type of polyamide fiber, may further contain other fibers, and may have a single-twist structure or a twisted structure (such as a double-twist structure).
 片撚り構造である場合、例えば、原糸を引き揃えて、一方の方向に撚りをかけることで、撚糸コードとして得ることができる。ここで、撚り数は、4~20回/10cmの範囲が好ましい。片撚り構造における撚り数が、20回/10cmを超えると、撚糸コードの強力が落ちる恐れがあり、また、4回/10cm未満であると、撚糸コードが十分な耐疲労性を得られない恐れがある。 In the case of a single-twist structure, for example, a twisted yarn cord can be obtained by aligning the raw yarns and twisting them in one direction. Here, the number of twists is preferably in the range of 4 to 20 twists/10 cm. If the number of twists in a single-stranded structure exceeds 20 twists/10cm, the strength of the twisted cord may decrease, and if it is less than 4 twists/10cm, the twisted cord may not have sufficient fatigue resistance. There is.
 また、双撚り構造である場合、例えば、原糸に下撚りをかけ、次いでこれを複数合わせて、逆方向に上撚りをかけることで、撚糸コードとして得ることができる。ここで、下撚り数は、10~60回/10cmの範囲が好ましく、上撚り数は、10~60回/10cmの範囲が好ましい。下撚り数が、60回/10cmを超えると、撚糸コードの強力が落ちる恐れがあり、また、10回/10cm未満であると、撚糸コードが十分な耐疲労性を得られない恐れがある。また、上撚り数が、60回/10cmを超えると、撚糸コードの強力が落ちる恐れがあり、また、10回/10cm未満であると、撚糸コードが十分な耐疲労性を得られない恐れがある。 In addition, in the case of a double-twisted structure, for example, a twisted yarn cord can be obtained by first twisting the raw yarn, then combining a plurality of them and applying final twist in the opposite direction. Here, the number of first twists is preferably in the range of 10 to 60 times/10 cm, and the number of first twists is preferably in the range of 10 to 60 times/10 cm. If the number of first twists exceeds 60 times/10 cm, the strength of the twisted cord may decrease, and if it is less than 10 times/10 cm, the twisted cord may not have sufficient fatigue resistance. Furthermore, if the number of twists exceeds 60 turns/10cm, the strength of the twisted cord may decrease, and if it is less than 10 twists/10cm, the twisted cord may not have sufficient fatigue resistance. be.
 また、アラミド繊維と、バイオ化率が40%以上(好ましくは100%)の繊維と、を撚り合わせたコード(撚糸コード)の場合、アラミド繊維の下撚り数は、10~60回/10cmの範囲が好ましく、バイオ化率が40%以上の繊維の下撚り数も、10~60回/10cmの範囲が好ましい。アラミド繊維の下撚り数が、60回/10cmを超えると、撚糸コードの強力が落ちる恐れがあり、また、10回/10cm未満であると、撚糸コードが十分な耐疲労性を得られない恐れがある。バイオ化率が40%以上の繊維の下撚り数が、60回/10cmを超えると、撚糸コードの強力が落ちる恐れがあり、また、10回/10cm未満であると、撚糸コードが十分な耐疲労性を得られない恐れがある。 In addition, in the case of a cord (twisted cord) made by twisting aramid fibers and fibers with a bio conversion rate of 40% or more (preferably 100%), the number of first twists of the aramid fibers is 10 to 60 times/10 cm. The number of ply twists of fibers with a bio conversion rate of 40% or more is also preferably in a range of 10 to 60 times/10 cm. If the number of first twists of the aramid fiber exceeds 60 times/10cm, the strength of the twisted cord may decrease, and if it is less than 10 times/10cm, the twisted cord may not have sufficient fatigue resistance. There is. If the number of first twists of fibers with a bio conversion rate of 40% or more exceeds 60 times/10cm, the strength of the twisted cord may decrease, and if it is less than 10 times/10cm, the twisted cord may not have sufficient durability. There is a possibility that fatigue properties may not be obtained.
 本実施形態のポリアミド繊維コードの総繊度は、1000~6000dtexの範囲が好ましい。ポリアミド繊維コードの総繊度が、1000dtex未満であると、タイヤ用繊維としての充分な強度が得らない恐れがあり、また、6000dtexを超えると、トリートが厚くなり、タイヤの重量が大きくなる。 The total fineness of the polyamide fiber cord of this embodiment is preferably in the range of 1000 to 6000 dtex. If the total fineness of the polyamide fiber cord is less than 1000 dtex, sufficient strength as a fiber for tires may not be obtained, and if it exceeds 6000 dtex, the treat will become thick and the weight of the tire will increase.
 また、アラミド繊維と、バイオ化率が40%以上(好ましくは100%)の繊維と、を撚り合わせたコード(撚糸コード)の場合、アラミド繊維の繊度は、1000~4000dtexの範囲が好ましく、バイオ化率が40%以上の繊維の繊度は、400~3000dtexの範囲が好ましい。アラミド繊維の繊度が、1000dtex未満であると、タイヤ用繊維としての充分な強度が得らない恐れがあり、また、4000dtexを超えると、トリートが厚くなり、タイヤの重量が大きくなる。バイオ化率が40%以上の繊維の繊度が、400dtex未満であると、タイヤ用繊維としての充分な強度が得らない恐れがあり、また、3000dtexを超えると、トリートが厚くなり、タイヤの重量が大きくなる。 In addition, in the case of a cord (twisted cord) made by twisting aramid fibers and fibers with a bio conversion rate of 40% or more (preferably 100%), the fineness of the aramid fibers is preferably in the range of 1000 to 4000 dtex, and the bio conversion rate is preferably 1000 to 4000 dtex. The fineness of the fibers with a conversion rate of 40% or more is preferably in the range of 400 to 3000 dtex. If the fineness of the aramid fiber is less than 1000 dtex, sufficient strength as a fiber for tires may not be obtained, and if it exceeds 4000 dtex, the treat will become thick and the weight of the tire will increase. If the fineness of the fiber with a bio conversion rate of 40% or more is less than 400 dtex, sufficient strength as a tire fiber may not be obtained, and if it exceeds 3000 dtex, the treat will become thick and the weight of the tire will increase. becomes larger.
 本実施形態のポリアミド繊維コードの破断強度は、6.0cN/dtex以上が好ましい。また、ポリアミド繊維コードの破断強度は、200N以上が好ましい。ここで、破断強度は、ASTM D855Mに従って室温(23℃)で測定される。ポリアミド繊維コードの破断強度が、6.0cN/dtex以上、もしくは200N以上であると、十分な補強効果が得られるからである。 The breaking strength of the polyamide fiber cord of this embodiment is preferably 6.0 cN/dtex or more. Moreover, the breaking strength of the polyamide fiber cord is preferably 200N or more. Here, the breaking strength is measured at room temperature (23° C.) according to ASTM D855M. This is because a sufficient reinforcing effect can be obtained when the breaking strength of the polyamide fiber cord is 6.0 cN/dtex or more, or 200 N or more.
 本実施形態のポリアミド繊維コードの切断伸度(破断時の伸び)は、8.0%以上が好ましい。ここで、切断伸度は、ASTM D855Mに従って室温(23℃)で測定される。ポリアミド繊維コードの切断伸度が、8.0%未満であると、十分な補強効果が得られない。 The breaking elongation (elongation at break) of the polyamide fiber cord of this embodiment is preferably 8.0% or more. Here, the cutting elongation is measured at room temperature (23° C.) according to ASTM D855M. If the breaking elongation of the polyamide fiber cord is less than 8.0%, a sufficient reinforcing effect cannot be obtained.
 本実施形態のポリアミド繊維コードの水分率は、3.0%以下が好ましい。ここで、水分率は、JIS L 1013に従って測定される。ポリアミド繊維コードの水分率が、3.0%超えると、物性が低下して、十分な補強効果が得られない。 The moisture content of the polyamide fiber cord of this embodiment is preferably 3.0% or less. Here, the moisture content is measured according to JIS L1013. When the moisture content of the polyamide fiber cord exceeds 3.0%, the physical properties deteriorate and a sufficient reinforcing effect cannot be obtained.
 上述のように、本実施形態のポリアミド繊維コードは、高温での物性を維持しつつ、環境負荷を低減できるため、高温において優れた物性(特には、弾性率や強力)が必要なタイヤ用コードとして特に好ましい。また、本実施形態のポリアミド繊維コードは、十分な高温での物性(熱特性)を有するため、タイヤ用以外にも、コンベヤベルト用、ホース用等にも好適である。 As mentioned above, the polyamide fiber cord of this embodiment can reduce environmental impact while maintaining physical properties at high temperatures, so it can be used as a tire cord that requires excellent physical properties (especially elastic modulus and strength) at high temperatures. Particularly preferred as Moreover, since the polyamide fiber cord of this embodiment has sufficient physical properties (thermal properties) at high temperatures, it is suitable not only for tires but also for conveyor belts, hoses, etc.
<接着剤組成物>
 前記ポリアミド繊維コード(有機繊維コード)は、接着剤組成物を用いて接着剤処理したものであることが好ましい。
<Adhesive composition>
The polyamide fiber cord (organic fiber cord) is preferably treated with an adhesive using an adhesive composition.
 前記接着剤組成物としては、例えば、ペンダント基として架橋性を有する官能基を少なくとも1つ有し、付加反応性のある炭素-炭素二重結合を主鎖構造に実質的に含有しない熱可塑性重合体(A)、熱反応型水性ウレタン樹脂(B)及びエポキシ化合物(C)を含み、任意にゴムラテックス(D)を更に含有する接着剤組成物が挙げられる。前記ポリアミド繊維コード(有機繊維コード)をかかる接着剤組成物で接着剤処理することで、高温下での当該ポリアミド繊維コード(有機繊維コード)とエラストマー(被覆ゴム)との接着性を向上させることができる。 The adhesive composition may be, for example, a thermoplastic polymer having at least one functional group having crosslinking properties as a pendant group and containing substantially no addition-reactive carbon-carbon double bonds in the main chain structure. Examples include adhesive compositions containing a combination (A), a heat-reactive water-based urethane resin (B), and an epoxy compound (C), and optionally further containing a rubber latex (D). By treating the polyamide fiber cord (organic fiber cord) with such an adhesive composition, the adhesiveness between the polyamide fiber cord (organic fiber cord) and the elastomer (coated rubber) at high temperatures is improved. I can do it.
 従来、有機繊維コードの接着剤処理としては、エポキシ又はイソシアネートをコード表面に塗布し、その上にレゾルシンとホルムアルデヒドとラテックスとを混合してなる樹脂(以下、RFL樹脂と称す)で処理する、所謂2浴処理が行われている。しかしながら、このような手段では、1浴に用いる樹脂が非常に固くなり、有機繊維コードヘの歪み入力が増大し、コード疲労性が低下することがある。また、このようなRFL樹脂は、常温では充分なコード-エラストマー間接着力を発現させることができるが、130℃以上の高温下では極端に接着力が低下することがある。これに対し、ペンダント基として架橋性を有する官能基を少なくとも1つ有し、付加反応性のある炭素-炭素二重結合を主鎖構造に実質的に含有しない熱可塑性重合体(A)と、熱反応型水性ウレタン樹脂(B)と、エポキシ化合物(C)とが混在した1浴混合液(接着剤組成物)を用いることで、ポリアミド繊維コード(有機繊維コード)を硬化させることなく、且つ180℃以上の高温下でもエラストマー(被覆ゴム)との接着を充分に確保することができる。 Conventionally, the adhesive treatment for organic fiber cords involves applying epoxy or isocyanate to the cord surface, and then treating the cord with a resin made of a mixture of resorcinol, formaldehyde, and latex (hereinafter referred to as RFL resin). Two-bath treatment is being performed. However, with such means, the resin used in the first bath becomes very hard, which increases the strain input to the organic fiber cord and may reduce the cord fatigue resistance. Furthermore, such RFL resins can exhibit sufficient adhesion between the cord and the elastomer at room temperature, but the adhesion may be extremely reduced at high temperatures of 130° C. or higher. On the other hand, a thermoplastic polymer (A) which has at least one functional group having crosslinking properties as a pendant group and which does not substantially contain addition-reactive carbon-carbon double bonds in its main chain structure; By using a one-bath mixed solution (adhesive composition) in which a heat-reactive water-based urethane resin (B) and an epoxy compound (C) are mixed, the polyamide fiber cord (organic fiber cord) can be cured without curing. Adhesion to the elastomer (covering rubber) can be sufficiently ensured even at high temperatures of 180° C. or higher.
 前記熱可塑性重合体(A)の主鎖は、直鎖状構造を主体とし、該主鎖としては、例えば、アクリル系重合体、酢酸ビニル系重合体、酢酸ビニル・エチレン系重合体等のエチレン性付加重合体;ウレタン系高分子重合体;等が好ましい。但し、熱可塑性重合体(A)は、ペンダント基の官能基が架橋することにより、高温下での樹脂流動性を抑制し、樹脂の破壊強力を確保するという機能を有していればよく、上述したエチレン性付加重合体及びウレタン系高分子重合体に限定されるものではない。 The main chain of the thermoplastic polymer (A) mainly has a linear structure, and examples of the main chain include ethylene polymers such as acrylic polymers, vinyl acetate polymers, and vinyl acetate/ethylene polymers. Polymers such as addition polymers; urethane-based polymers; and the like are preferred. However, the thermoplastic polymer (A) only needs to have the function of suppressing the resin fluidity at high temperatures and ensuring the breaking strength of the resin by crosslinking the functional groups of the pendant groups. It is not limited to the ethylenic addition polymer and urethane-based polymer described above.
 また、前記熱可塑性重合体(A)のペンダント基の官能基としては、オキソザリン基、ビスマレイミド基、(ブロックド)イソシアネート基、アジリジン基、カルボジイミド基、ヒドラジノ基、エポキシ基、エピチオ基等が好ましい。 Further, as the functional group of the pendant group of the thermoplastic polymer (A), an oxozaline group, a bismaleimide group, a (blocked) isocyanate group, an aziridine group, a carbodiimide group, a hydrazino group, an epoxy group, an epithio group, etc. are preferable. .
 なお、上述した熱可塑性重合体(A)、熱反応型水性ウレタン樹脂(B)、エポキシ化合物(C)、及びゴムラテックス(D)については、それぞれ、特願2023-040157に記載されたもの、特願2023-030762に記載されたものを用いることができる。 The above-mentioned thermoplastic polymer (A), heat-reactive aqueous urethane resin (B), epoxy compound (C), and rubber latex (D) are those described in Japanese Patent Application No. 2023-040157, respectively. The one described in Japanese Patent Application No. 2023-030762 can be used.
 前記ポリアミド繊維コード(有機繊維コード)の接着剤処理においては、前記熱可塑性重合体(A)、熱反応型水性ウレタン樹脂(B)、及びエポキシ化合物(C)の3種の混合液(接着剤組成物)を1浴処理液として用い、2浴処理液としては通常のRFL樹脂の液を用いるのが好ましい。また、上記接着剤処理においては、前記熱可塑性重合体(A)、熱反応型水性ウレタン樹脂(B)、エポキシ化合物(C)、及びゴムラテックス(D)の混合液(接着剤組成物)を用いて1浴のみで処理することも可能である。 In the adhesive treatment of the polyamide fiber cord (organic fiber cord), a mixed solution of three types (adhesive It is preferable to use the composition (composition) as the one-bath treatment solution, and to use a normal RFL resin solution as the two-bath treatment solution. In addition, in the adhesive treatment, a mixed solution (adhesive composition) of the thermoplastic polymer (A), heat-reactive water-based urethane resin (B), epoxy compound (C), and rubber latex (D) is used. It is also possible to process using only one bath.
 なお、上記接着剤組成物において、熱可塑性重合体(A)の割合(乾燥質量比率)は、2~75%であることが好ましく、熱反応型水性ウレタン樹脂(B)の割合(乾燥質量比率)は、15~87%であることが好ましく、エポキシ化合物(C)の割合(乾燥質量比率)は、11~70%であることが好ましく、ゴムラテックス(D)の割合(乾燥質量比率)は、20%以下であることが好ましい。 In the above adhesive composition, the proportion of the thermoplastic polymer (A) (dry mass ratio) is preferably 2 to 75%, and the proportion of the heat-reactive aqueous urethane resin (B) (dry mass ratio) is preferably 2 to 75%. ) is preferably 15 to 87%, the proportion of the epoxy compound (C) (dry mass ratio) is preferably 11 to 70%, and the proportion of the rubber latex (D) (dry mass ratio) is preferably , preferably 20% or less.
 一方で、環境保護の観点からは、ポリアミド繊維コード(有機繊維コード)の接着剤組成物として、レゾルシン及びホルマリンを含有しないディップ処理液を用いることが好ましい。このようなディップ処理液としては、例えば、不飽和ジエンを有するゴムラテックス(a)と、ポリエーテルからなる骨格構造及びアミン官能基を含有する化合物、アクリルアミド構造を有する化合物、ポリペプチド、ポリリジン、及びカルボジイミドから選択される1種以上の化合物(b)と、を含有する組成物が挙げられる。また、このようなディップ処理液としては、例えば、上記不飽和ジエンを有するゴムラテックス(a)及び化合物(b)に加えて、更に、(熱解離性ブロックド)イソシアネート基を有する水性化合物(c)、ポリフェノール(d)、及び、多価金属塩(e)から選択される1種以上を含有する組成物が挙げられる。 On the other hand, from the viewpoint of environmental protection, it is preferable to use a dip treatment liquid that does not contain resorcin and formalin as the adhesive composition for the polyamide fiber cord (organic fiber cord). Examples of such a dipping liquid include rubber latex (a) having an unsaturated diene, a compound having a skeleton structure consisting of polyether and an amine functional group, a compound having an acrylamide structure, polypeptide, polylysine, and Examples include compositions containing one or more compounds (b) selected from carbodiimides. Further, as such a dipping treatment liquid, for example, in addition to the rubber latex (a) and compound (b) having the above unsaturated diene, an aqueous compound (c) having a (thermally dissociable blocked) isocyanate group may be used. ), polyphenols (d), and polyvalent metal salts (e).
 そのほか、レゾルシン及びホルマリンを含有しないディップ処理液としては、ポリフェノール類(I)及びアルデヒド類(II)を含有する組成物も挙げられる。また、かかる組成物は、ポリフェノール類(I)及びアルデヒド類(II)に加えて、イソシアネート化合物(III)及びゴムラテックス(IV)の少なくともいずれかを更に含有してもよい。 In addition, examples of dip treatment liquids that do not contain resorcinol and formalin include compositions containing polyphenols (I) and aldehydes (II). Moreover, such a composition may further contain at least one of an isocyanate compound (III) and a rubber latex (IV) in addition to the polyphenols (I) and the aldehydes (II).
 前記ポリアミド繊維コード(有機繊維コード)を接着剤処理する(コーティングする)接着剤組成物が、ポリフェノール類(I)及びアルデヒド類(II)を含有することで、環境への負荷を考慮してレゾルシンを用いない場合であっても、良好な接着性を発現することができる。 The adhesive composition for treating (coating) the polyamide fiber cord (organic fiber cord) with an adhesive contains polyphenols (I) and aldehydes (II), so that resorcinol can be used in consideration of the burden on the environment. Good adhesiveness can be achieved even when not using.
〔ポリフェノール類(I)〕
 前記接着剤組成物が、樹脂成分としてポリフェノール類(I)を含有することで、ポリアミド繊維コード(有機繊維コード)との接着性を高めることができる。ここで、ポリフェノール類(I)は、典型的には水溶性のポリフェノール類であり、レゾルシン(レゾルシノール)以外のポリフェノールであれば、特に限定されない。ポリフェノール類(I)において、芳香環の数、又は水酸基の数は、適宜選択することができる。
[Polyphenols (I)]
When the adhesive composition contains polyphenols (I) as a resin component, the adhesiveness with the polyamide fiber cord (organic fiber cord) can be improved. Here, polyphenols (I) are typically water-soluble polyphenols, and are not particularly limited as long as they are polyphenols other than resorcinol. In polyphenols (I), the number of aromatic rings or the number of hydroxyl groups can be selected as appropriate.
 前記ポリフェノール類(I)は、より優れた接着性を実現する観点からは、2つ以上の水酸基を有することが好ましく、3つ以上の水酸基を有することがより好ましい。前記ポリフェノール類が3つ以上の水酸基を有することにより、水分を含む接着剤組成物(ディップ処理液)にポリフェノール又はポリフェノールの縮合物が水溶する。これによって、ポリフェノール類は、接着剤組成物内に均一に分布できるので、より優れた接着性を実現できる。更に、ポリフェノール類(I)が、複数個(2個以上)の芳香環を含むポリフェノールである場合、それらの芳香環では、各々、2個又は3個の水酸基がオルト位、メタ位又はパラ位に存在する。 The polyphenols (I) preferably have two or more hydroxyl groups, more preferably three or more hydroxyl groups, from the viewpoint of achieving better adhesiveness. When the polyphenols have three or more hydroxyl groups, the polyphenols or polyphenol condensates are water-soluble in the adhesive composition (dip treatment liquid) containing water. This allows the polyphenols to be uniformly distributed within the adhesive composition, thereby achieving better adhesiveness. Furthermore, when the polyphenol (I) is a polyphenol containing a plurality of (two or more) aromatic rings, two or three hydroxyl groups are located at the ortho, meta, or para positions, respectively, in those aromatic rings. exists in
 前記ポリフェノール類(I)としては、例えば、WO2022/130879においてポリフェノール化合物として記載されたものを用いることができる。これらポリフェノール類(I)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the polyphenols (I), for example, those described as polyphenol compounds in WO2022/130879 can be used. These polyphenols (I) may be used alone or in combination of two or more.
〔アルデヒド類(II)〕
 前記接着剤組成物が、上述したポリフェノール類(I)に加えて、樹脂成分としてアルデヒド類(II)を含有することで、上述したポリフェノール類(I)と共に高い接着性を実現できる。ここで、アルデヒド類(II)は、特に限定されず、要求される性能に応じて、適宜選択することができる。なお、本明細書において、アルデヒド類(II)には、アルデヒド類が発生源であるアルデヒド類の誘導体も含まれる。
[Aldehydes (II)]
When the adhesive composition contains aldehydes (II) as a resin component in addition to the polyphenols (I) described above, high adhesiveness can be achieved together with the polyphenols (I) described above. Here, the aldehyde (II) is not particularly limited and can be appropriately selected depending on the required performance. In this specification, aldehydes (II) also include derivatives of aldehydes whose source is aldehydes.
 前記アルデヒド類(II)として、例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒド、アクロレイン、プロピオンアルデヒド、クロラール、ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド等のモノアルデヒド、或いは、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジポアルデヒド等の脂肪族ジアルデヒド類、芳香環を有するアルデヒド、ジアルデヒドデンプン等が挙げられる。これらアルデヒド類(II)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the aldehydes (II) include monoaldehydes such as formaldehyde, acetaldehyde, butyraldehyde, acrolein, propionaldehyde, chloral, butyraldehyde, caproaldehyde, and allylaldehyde, or glyoxal, malonaldehyde, succinaldehyde, and glutaric acid. Examples include aliphatic dialdehydes such as aldehydes and adipaldehyde, aldehydes having an aromatic ring, and dialdehyde starch. These aldehydes (II) may be used alone or in combination of two or more.
 前記アルデヒド類(II)は、芳香環を有するアルデヒド類である又は芳香環を有するアルデヒド類を含むことが好ましい。より優れた接着性を得ることができるためである。また、前記アルデヒド類(II)は、ホルムアルデヒドを含まないことが好ましい。ここで、「ホルムアルデヒドを含まない」とは、例えば、アルデヒド類の総質量中の、ホルムアルデヒドの含有量が0.5質量%未満であることを意味する。 It is preferable that the aldehyde (II) is an aldehyde having an aromatic ring or contains an aldehyde having an aromatic ring. This is because better adhesion can be obtained. Moreover, it is preferable that the aldehyde (II) does not contain formaldehyde. Here, "formaldehyde-free" means, for example, that the content of formaldehyde in the total mass of aldehydes is less than 0.5% by mass.
 前記接着剤組成物では、ポリフェノール類(I)及びアルデヒド類(II)が縮合された状態であり、ポリフェノール類と芳香環を有するアルデヒド類との質量比(芳香環を有するアルデヒド類の含有量/ポリフェノール類の含有量)が、0.1以上3以下であることが好ましい。この場合、ポリフェノール類と芳香環を有するアルデヒド類との間で起こる縮合反応の生成物である樹脂の硬度、接着性がより適したものになるからである。同様の観点から、前記接着剤組成物における、ポリフェノール類と芳香環を有するアルデヒド類との質量比(芳香環を有するアルデヒド類の含有量/ポリフェノール類の含有量)は、0.25以上であることがより好ましく、また、2.5以下であることがより好ましい。
 なお、上記質量比は、乾燥物の質量(固形分比)である。
In the adhesive composition, polyphenols (I) and aldehydes (II) are in a condensed state, and the mass ratio of polyphenols to aldehydes having an aromatic ring (content of aldehydes having an aromatic ring/ The content of polyphenols) is preferably 0.1 or more and 3 or less. In this case, the hardness and adhesiveness of the resin, which is a product of the condensation reaction that occurs between polyphenols and aldehydes having an aromatic ring, become more suitable. From the same viewpoint, the mass ratio of polyphenols to aldehydes having an aromatic ring (content of aldehydes having an aromatic ring/content of polyphenols) in the adhesive composition is 0.25 or more. More preferably, it is 2.5 or less.
In addition, the said mass ratio is the mass (solid content ratio) of a dry material.
 また、前記接着剤組成物における、ポリフェノール類(I)及びアルデヒド類(II)の合計含有量は、3~30質量%であることが好ましい。この場合、作業性等を悪化させることなく、より優れた接着性を確保できるためである。同様の観点から、前記接着剤組成物における、ポリフェノール類(I)及びアルデヒド類(II)の合計含有量は、5質量%以上であることがより好ましく、また、25質量%以下であることがより好ましい。
 なお、上記合計含有量は、乾燥物の質量(固形分比)である。
Further, the total content of polyphenols (I) and aldehydes (II) in the adhesive composition is preferably 3 to 30% by mass. This is because in this case, better adhesion can be ensured without deteriorating workability or the like. From the same viewpoint, the total content of polyphenols (I) and aldehydes (II) in the adhesive composition is more preferably 5% by mass or more, and preferably 25% by mass or less. More preferred.
In addition, the said total content is the mass (solid content ratio) of a dry material.
〔イソシアネート化合物(III)〕
 前記接着剤組成物は、上述したポリフェノール類(I)及びアルデヒド類(II)に加えて、イソシアネート化合物(III)を更に含有することが好ましい。この場合、ポリフェノール類(I)及びアルデヒド類(II)との相乗効果によって、接着剤組成物の接着性を一層高めることができる。
[Isocyanate compound (III)]
It is preferable that the adhesive composition further contains an isocyanate compound (III) in addition to the above-mentioned polyphenols (I) and aldehydes (II). In this case, the adhesive properties of the adhesive composition can be further improved due to the synergistic effect with polyphenols (I) and aldehydes (II).
 ここで、イソシアネート化合物(III)は、接着剤組成物の被着体である樹脂材料(例えば、ポリフェノール類(I)及びアルデヒド類(II)を縮合させたフェノール/アルデヒド樹脂)への接着を促進させる作用を有する化合物であって、極性官能基としてイソシアネート基を有する化合物である。これらイソシアネート化合物(III)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Here, the isocyanate compound (III) promotes adhesion of the adhesive composition to the adherend resin material (for example, a phenol/aldehyde resin obtained by condensing polyphenols (I) and aldehydes (II)). It is a compound that has an isocyanate group as a polar functional group. These isocyanate compounds (III) may be used alone or in combination of two or more.
 前記イソシアネート化合物(III)は、特に限定はされないが、接着性をより向上できる観点から、(ブロックド)イソシアネート基含有芳香族化合物を含むことが好ましい。前記接着剤組成物が(ブロックド)イソシアネート基含有芳香族化合物を含有することによって、ポリアミド繊維コード(有機繊維コード)と接着剤組成物との界面近傍の位置に(ブロックド)イソシアネート基含有芳香族化合物が分布する結果、一層の接着性促進効果が得られ、この効果により、接着剤組成物の、ポリアミド繊維コード(有機繊維コード)との接着性がより高度化し得る。 The isocyanate compound (III) is not particularly limited, but preferably contains a (blocked) isocyanate group-containing aromatic compound from the viewpoint of further improving adhesiveness. Since the adhesive composition contains the (blocked) isocyanate group-containing aromatic compound, the (blocked) isocyanate group-containing aromatic compound is present in the vicinity of the interface between the polyamide fiber cord (organic fiber cord) and the adhesive composition. As a result of the distribution of the group compound, a further adhesion promoting effect is obtained, and this effect can further improve the adhesion of the adhesive composition to the polyamide fiber cord (organic fiber cord).
 前記(ブロックド)イソシアネート基含有芳香族化合物については、特願2023-040157に記載されたもの、特願2023-030762に記載されたものを用いることができる。 As for the (blocked) isocyanate group-containing aromatic compound, those described in Japanese Patent Application No. 2023-040157 and those described in Japanese Patent Application No. 2023-030762 can be used.
 前記接着剤組成物における、イソシアネート化合物(III)の含有量は、特に限定はされないが、より確実に優れた接着性を確保する観点から、5~65質量%であることが好ましい。同様の観点から、前記接着剤組成物におけるイソシアネート化合物(III)の含有量は、10質量%以上であることがより好ましく、また、45質量%以下であることがより好ましい。
 なお、上記含有量は、乾燥物の質量(固形分比)である。
The content of the isocyanate compound (III) in the adhesive composition is not particularly limited, but is preferably from 5 to 65% by mass from the viewpoint of more reliably ensuring excellent adhesiveness. From the same viewpoint, the content of the isocyanate compound (III) in the adhesive composition is more preferably 10% by mass or more, and more preferably 45% by mass or less.
In addition, the said content is the mass (solid content ratio) of a dry material.
〔ゴムラテックス(IV)〕
 前記接着剤組成物は、上述したポリフェノール類(I)、アルデヒド類(II)及びイソシアネート化合物(III)に加えて、実質的にはゴムラテックス(IV)を更に含有することができる。これによって、接着剤組成物は、ゴム部材との接着性をより高めることができる。
[Rubber latex (IV)]
In addition to the above-mentioned polyphenols (I), aldehydes (II), and isocyanate compounds (III), the adhesive composition can substantially further contain rubber latex (IV). Thereby, the adhesive composition can further improve adhesiveness with the rubber member.
 ここで、ゴムラテックス(IV)としては、特に限定はされず、天然ゴム(NR)の他、ポリイソプレンゴム(IR)、スチレン-ブタジエン共重合体ゴム(SBR)、ポリブタジエンゴム(BR)、エチレン-プロピレン-ジエンゴム(EPDM)、クロロプレンゴム(CR)、ハロゲン化ブチルゴム、アクリロニリトル-ブタジエンゴム(NBR)、又はビニルピリジン-スチレン-ブタジエン共重合体ゴム(Vp)等の合成ゴムが挙げられる。これらゴムラテックス(IV)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Here, the rubber latex (IV) is not particularly limited, and in addition to natural rubber (NR), polyisoprene rubber (IR), styrene-butadiene copolymer rubber (SBR), polybutadiene rubber (BR), ethylene Examples include synthetic rubbers such as -propylene-diene rubber (EPDM), chloroprene rubber (CR), halogenated butyl rubber, acrylonitriole-butadiene rubber (NBR), and vinylpyridine-styrene-butadiene copolymer rubber (Vp). These rubber latexes (IV) may be used alone or in combination of two or more.
 前記ゴムラテックス(IV)を含有する接着剤組成物を調製するに際しては、イソシアネート化合物(III)を配合する前に、ゴムラテックス(IV)をフェノール類(I)及びアルデヒド類(II)と混合させることが好ましい。 When preparing an adhesive composition containing the rubber latex (IV), the rubber latex (IV) is mixed with phenols (I) and aldehydes (II) before blending the isocyanate compound (III). It is preferable.
 前記接着剤組成物における、ゴムラテックス(IV)の含有量は、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、また、70質量%以下であることが好ましく、60質量%以下であることがより好ましい。 The content of rubber latex (IV) in the adhesive composition is preferably 20% by mass or more, more preferably 25% by mass or more, and preferably 70% by mass or less, More preferably, it is 60% by mass or less.
 なお、前記接着剤組成物の製造方法は、特に限定はされないが、例えば、ポリフェノール類(I)、アルデヒド類(II)、及びゴムラテックス(IV)等の原材料を混合し、熟成する方法、又は、ポリフェノール類(I)とアルデヒド類(II)とを混合して熟成した後に、ゴムラテックス(IV)を更に加えて熟成する方法、等が挙げられる。前記接着剤組成物の製造方法は、原材料にイソシアネート化合物(III)が含まれる場合、ゴムラテックス(IV)を加え、熟成した後に、イソシアネート化合物(III)を加える方法であってもよい。 The method for producing the adhesive composition is not particularly limited, but includes, for example, a method of mixing and aging raw materials such as polyphenols (I), aldehydes (II), and rubber latex (IV); , a method in which polyphenols (I) and aldehydes (II) are mixed and aged, and then rubber latex (IV) is further added and aged. When the raw material contains isocyanate compound (III), the method for producing the adhesive composition may be a method of adding rubber latex (IV), aging, and then adding isocyanate compound (III).
<ゴム-繊維複合体>
 本実施形態のゴム-繊維複合体は、上述した本実施形態のポリアミド繊維コードを具えることを特徴とする。かかる本実施形態のゴム-繊維複合体は、上述した本実施形態のポリアミド繊維コードを具えるため、環境負荷を低減できる。なお、ゴム-繊維複合体の繊維部分が上述したポリアミド繊維コードに対応する。
 一例において、前記ゴム-繊維複合体は、ポリアミド繊維コードと、該ポリアミド繊維コードを被覆するコーティングゴムと、を具える。ここで、コーティングゴムとしては、天然ゴムや合成ゴム等のゴム成分に、カーボンブラック等の充填剤、老化防止剤、硫黄等の加硫剤、加硫促進剤等を配合したゴム組成物を使用することができる。
<Rubber-fiber composite>
The rubber-fiber composite of this embodiment is characterized by comprising the polyamide fiber cord of this embodiment described above. Since the rubber-fiber composite of this embodiment includes the polyamide fiber cord of this embodiment described above, it is possible to reduce the environmental load. Note that the fiber portion of the rubber-fiber composite corresponds to the above-mentioned polyamide fiber cord.
In one example, the rubber-fiber composite includes a polyamide fiber cord and a coating rubber covering the polyamide fiber cord. Here, as the coating rubber, a rubber composition is used in which a rubber component such as natural rubber or synthetic rubber is blended with a filler such as carbon black, an anti-aging agent, a vulcanizing agent such as sulfur, a vulcanization accelerator, etc. can do.
<タイヤ>
 本実施形態のタイヤは、上述した本実施形態のポリアミド繊維コードを具えることを特徴とする。本実施形態のタイヤは、上述したポリアミド繊維コードを具えるため、タイヤ特性を維持しつつ、環境負荷を低減できる。
 なお、本実施形態のタイヤにおいて、前記ポリアミド繊維コードの適用部位としては、カーカス、ベルト補強層(「キャップ・レイヤー」とも呼ばれる。)が好ましく、カーカスが特に好ましい。
<Tires>
The tire of this embodiment is characterized by comprising the polyamide fiber cord of this embodiment described above. Since the tire of this embodiment includes the above-mentioned polyamide fiber cord, it is possible to reduce environmental load while maintaining tire characteristics.
In the tire of this embodiment, the polyamide fiber cord is preferably applied to the carcass or the belt reinforcing layer (also referred to as a "cap layer"), with the carcass being particularly preferred.
 次に、本発明のタイヤの一実施形態を、図面を参照しながら詳細に例示説明する。
 図1は、本発明のタイヤの一実施態様の断面図である。図1に示すタイヤ100は、一対のビード部10と、一対のサイドウォール部20と、トレッド部30と、ビード部10に埋設されたビードコア40間にトロイド状に延在させたカーカス50と、トレッド部30に配置した(より詳しくは、カーカス50のクラウン部のタイヤ径方向外側に配置した)二枚のベルト層60A,60Bからなるベルト60と、該ベルト60のタイヤ径方向外側でベルト60の全体を覆うように配置したベルト補強層(「キャップ層」とも呼ばれる。)70Aと、該ベルト補強層70Aの両端部のみを覆うように配置した一対のベルト補強層(「レイヤー層」とも呼ばれる。)70Bと、を具える。
Next, one embodiment of the tire of the present invention will be illustrated in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of one embodiment of the tire of the present invention. The tire 100 shown in FIG. 1 includes a pair of bead portions 10, a pair of sidewall portions 20, a tread portion 30, and a carcass 50 extending in a toroidal shape between bead cores 40 embedded in the bead portions 10. A belt 60 consisting of two belt layers 60A and 60B disposed on the tread portion 30 (more specifically, disposed on the outside in the tire radial direction of the crown portion of the carcass 50), and a belt 60 on the outside of the belt 60 in the tire radial direction. A belt reinforcing layer (also called a "cap layer") 70A arranged so as to cover the entire belt reinforcing layer 70A, and a pair of belt reinforcing layers (also called "layer layers") arranged so as to cover only both ends of the belt reinforcing layer 70A. ) 70B.
 図1に示すタイヤ100において、カーカス50は、一枚のカーカスプライから構成されており、また、ビード部10内に夫々埋設した一対のビードコア40間にトロイド状に延在する本体部と、各ビードコア40の周りでタイヤ幅方向の内側から外側に向けて半径方向外方に巻上げた折り返し部とからなるが、本発明のタイヤにおいて、カーカス50のプライ数及び構造は、これに限られるものではない。ここで、カーカス50を構成するカーカスプライは、タイヤ周方向に対してほぼ直交する方向に延びる(例えば、70~90°の角度で延びる)複数の補強コードをコーティングゴムで被覆してなることが好ましく、即ち、カーカス50は、ラジアルカーカスであることが好ましい。カーカス50の補強コードとしては、上述したポリアミド繊維コードが好ましいが、上述したポリアミド繊維コードを他のタイヤ部材に適用する場合は、他の有機繊維コードや、スチールコードを用いてもよい。ここで、他の有機繊維コードとしては、ポリエチレンテレフタレートコード、レーヨンコード等が挙げられる。また、コーティングゴムとしては、天然ゴムや合成ゴム等のゴム成分に、カーボンブラック等の充填剤、老化防止剤、硫黄等の加硫剤、加硫促進剤等を配合したゴム組成物を使用することができる。 In the tire 100 shown in FIG. 1, the carcass 50 is composed of one carcass ply, and includes a main body portion extending in a toroidal shape between a pair of bead cores 40 respectively embedded in the bead portion 10, and It consists of a folded part that is wound radially outward from the inside to the outside in the tire width direction around the bead core 40, but in the tire of the present invention, the number of plies and structure of the carcass 50 are not limited to this. do not have. Here, the carcass ply constituting the carcass 50 may be formed by covering a plurality of reinforcing cords with coating rubber, which extend in a direction substantially perpendicular to the tire circumferential direction (for example, extend at an angle of 70 to 90 degrees). Preferably, the carcass 50 is preferably a radial carcass. As the reinforcing cord of the carcass 50, the above-mentioned polyamide fiber cord is preferable, but when the above-mentioned polyamide fiber cord is applied to other tire members, other organic fiber cords or steel cords may be used. Here, other organic fiber cords include polyethylene terephthalate cords, rayon cords, and the like. Furthermore, as the coating rubber, a rubber composition is used in which a rubber component such as natural rubber or synthetic rubber is blended with a filler such as carbon black, an anti-aging agent, a vulcanizing agent such as sulfur, a vulcanization accelerator, etc. be able to.
 また、図1に示すタイヤ100のベルト60は、二枚のベルト層60A,60Bから構成されており、各ベルト層60A,60Bは、通常、タイヤ赤道面に対して傾斜(例えば、15~40°の角度で傾斜)して延びる補強コードをコーティングゴムで被覆してなり、好ましくは、スチールコードをコーティングゴムで被覆してなり、更に、二枚のベルト層60A,60Bが、該ベルト層60A,60Bを構成する補強コードが互いにタイヤ赤道面を挟んで交差するように積層されてベルト60を構成している。
 なお、図中のベルト60は、二枚のベルト層60A,60Bからなるが、本発明のタイヤにおいて、ベルトを構成するベルト層の枚数は、三枚以上であってもよい。
Furthermore, the belt 60 of the tire 100 shown in FIG. The belt layer 60A is formed by coating a reinforcing cord extending at an angle of 50° with a coating rubber, preferably a steel cord coated with a coating rubber. , 60B are laminated to intersect with each other across the tire equator plane to form the belt 60.
In addition, although the belt 60 in the figure consists of two belt layers 60A and 60B, in the tire of the present invention, the number of belt layers constituting the belt may be three or more.
 また、図1に示すタイヤ100において、ベルト補強層70A,70Bは、タイヤ周方向に対し実質的に平行(例えば、タイヤ周方向に対する角度が0~5°)に配列した補強コードをコーティングゴムで被覆してなる。該ベルト補強層70A,70Bは、補強コードをコーティングゴムで被覆して準備した幅狭のストリップをタイヤ周方向に連続して螺旋状に巻回して形成されている。この場合、タイヤ周方向にジョイント部がないため、タイヤのユニフォミティーが良好となり、また、ジョイント部がないため、ジョイント部への歪集中も防止できる。ベルト補強層70A,70Bの補強コードとしては、上述したポリアミド繊維コードが好ましいが、上述したポリアミド繊維コードを他のタイヤ部材に適用する場合は、他の有機繊維コードを用いてもよい。ここで、他の有機繊維コードとしては、ポリエチレンテレフタレートコード、レーヨンコード等が挙げられる。また、コーティングゴムとしては、天然ゴムや合成ゴム等のゴム成分に、カーボンブラック等の充填剤、老化防止剤、硫黄等の加硫剤、加硫促進剤等を配合したゴム組成物を使用することができる。
 なお、図1に示すタイヤ100は、ベルト補強層70A及びベルト補強層70Bを具えるが、ベルト補強層70A及びベルト補強層70Bのいずれか一方が省略されたタイヤも、本発明のタイヤの一実施態様である。また、図1に示すタイヤ100においては、ベルト補強層70A,70Bはそれぞれ一層であるが、二層以上であってもよい。
In addition, in the tire 100 shown in FIG. 1, the belt reinforcing layers 70A and 70B include reinforcing cords arranged substantially parallel to the tire circumferential direction (for example, at an angle of 0 to 5 degrees with respect to the tire circumferential direction) and coated with rubber. It will be covered. The belt reinforcing layers 70A and 70B are formed by continuously spirally winding a narrow strip prepared by covering a reinforcing cord with a coating rubber in the tire circumferential direction. In this case, since there is no joint in the circumferential direction of the tire, the uniformity of the tire is good, and since there is no joint, concentration of strain on the joint can be prevented. As the reinforcing cord for the belt reinforcing layers 70A and 70B, the above-mentioned polyamide fiber cord is preferable, but when the above-mentioned polyamide fiber cord is applied to other tire members, other organic fiber cords may be used. Here, other organic fiber cords include polyethylene terephthalate cords, rayon cords, and the like. Furthermore, as the coating rubber, a rubber composition is used in which a rubber component such as natural rubber or synthetic rubber is blended with a filler such as carbon black, an anti-aging agent, a vulcanizing agent such as sulfur, a vulcanization accelerator, etc. be able to.
Although the tire 100 shown in FIG. 1 includes the belt reinforcing layer 70A and the belt reinforcing layer 70B, a tire in which either one of the belt reinforcing layer 70A and the belt reinforcing layer 70B is omitted is also included in the tire of the present invention. This is an embodiment. Further, in the tire 100 shown in FIG. 1, each of the belt reinforcing layers 70A and 70B is one layer, but may be two or more layers.
<コンベヤベルト>
 本実施形態のコンベヤベルトは、上述した本実施形態のポリアミド繊維コードを具えることを特徴とする。かかる本実施形態のコンベヤベルトは、上述した本実施形態のポリアミド繊維コードを具えるため、環境負荷を低減できる。
 一実施形態においては、前記ポリアミド繊維コードを、コンベヤベルトの補強材に用いることができる。
<Conveyor belt>
The conveyor belt of this embodiment is characterized by comprising the polyamide fiber cord of this embodiment described above. Since the conveyor belt of this embodiment includes the polyamide fiber cord of this embodiment described above, the environmental load can be reduced.
In one embodiment, the polyamide fiber cord can be used as reinforcement for a conveyor belt.
<ホース>
 本実施形態のホースは、上述した本実施形態のポリアミド繊維コードを具えることを特徴とする。かかる本実施形態のホースは、上述した本実施形態のポリアミド繊維コードを具えるため、環境負荷を低減できる。
 一実施形態において、ホースは、径方向内側に位置する内面ゴム層(内管ゴム)と、径方向外側に位置する外面ゴム層と、上記内面ゴム層及び上記外面ゴム層の間に位置する補強層とを具え、前記ポリアミド繊維コードを、補強層に用いる。
<Hose>
The hose of this embodiment is characterized by comprising the polyamide fiber cord of this embodiment described above. Since the hose of this embodiment includes the polyamide fiber cord of this embodiment described above, the environmental load can be reduced.
In one embodiment, the hose includes an inner rubber layer (inner pipe rubber) located on the inside in the radial direction, an outer rubber layer located on the outside in the radial direction, and reinforcement located between the inner rubber layer and the outer rubber layer. and the polyamide fiber cord is used as a reinforcing layer.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.
<コードの作製>
(比較例1)
 1100dtexのアラミド繊維(東レデュポン社製、アミド密度12.5)2本と、940dtexのポリアミド6,6(PA66)繊維(アミド密度14.3)1本と、を撚り合わせて、ポリアミド繊維コード(ハイブリッドコード)[コード構造:(1100×2,940)/3]を作製した。ここで、アラミド繊維の下撚り数は52.0回/10cmであり、PA66繊維の下撚り数は46.0回/10cmであり、これらの繊維の上撚り数は、52.0回/10cmである。
<Creation of code>
(Comparative example 1)
A polyamide fiber cord ( A hybrid code) [cord structure: (1100×2,940)/3] was created. Here, the number of first twists of the aramid fibers is 52.0 times/10cm, the number of first twists of PA66 fibers is 46.0 times/10cm, and the number of final twists of these fibers is 52.0 times/10cm. It is.
(実施例1)
 1100dtexのアラミド繊維(東レデュポン社製、アミド密度12.5)2本と、940dtexのポリアミド4,10(PA410)繊維(アミド密度12.5)1本と、を撚り合わせて、ポリアミド繊維コード(ハイブリッドコード)[コード構造:(1100×2,940)/3]を作製した。ここで、アラミド繊維の下撚り数は52.0回/10cmであり、PA410繊維の下撚り数は46.0回/10cmであり、これらの繊維の上撚り数は、52.0回/10cmである。
(Example 1)
A polyamide fiber cord ( A hybrid code) [cord structure: (1100×2,940)/3] was created. Here, the number of first twists of the aramid fibers is 52.0 times/10cm, the number of first twists of PA410 fibers is 46.0 times/10cm, and the number of final twists of these fibers is 52.0 times/10cm. It is.
(比較例2)
 1400dtexのポリアミド6,6(PA66)繊維(アミド密度14.3)2本に下撚りをかけた後、引き揃えて上撚りをかけて、撚糸コード[コード構造:1400//2/2]を作製した。ここで、下撚り数は22回/10cmであり、上撚り数は、22回/10cmである。
(Comparative example 2)
After first twisting two 1400 dtex polyamide 6,6 (PA66) fibers (amide density 14.3), they are pulled together and final twisted to create a twisted cord [cord structure: 1400//2/2]. Created. Here, the number of first twists is 22 times/10 cm, and the number of first twists is 22 times/10 cm.
(比較例3)
 1400dtexのポリアミド4,10(PA410)繊維(アミド密度12.5)2本に下撚りをかけた後、引き揃えて上撚りをかけて、撚糸コード[コード構造:1400//2/2]を作製した。ここで、下撚り数は22回/10cmであり、上撚り数は、22回/10cmである。
(Comparative example 3)
After first twisting two 1400 dtex polyamide 4,10 (PA410) fibers (amide density 12.5), they were pulled together and final twisted to make a twisted cord [cord structure: 1400//2/2]. Created. Here, the number of first twists is 22 times/10 cm, and the number of first twists is 22 times/10 cm.
<コードの熱収縮率の測定>
 ASTM D885及びASTM D4974に従い、177℃で2分間、コードを加熱して、コードの熱収縮率を測定した。
<Measurement of heat shrinkage rate of cord>
According to ASTM D885 and ASTM D4974, the cord was heated at 177° C. for 2 minutes to measure the heat shrinkage of the cord.
<コード物性の評価>
 上記のようにして得たコードに対して、JIS L 1013「化学繊維フィラメント糸試験方法」に従って引張試験を行い、コードの荷重(N)-伸び(%)曲線を測定した。表1においては、比較例1の100℃における切断時の強力(N)及び伸び(%)を100として、それぞれ指数表示した。また、表2においては、比較例2の100℃における切断時の強力(N)及び伸び(%)を100として、それぞれ指数表示した。
<Evaluation of cord physical properties>
The cord obtained as described above was subjected to a tensile test according to JIS L 1013 "Chemical Fiber Filament Yarn Test Method", and the load (N) vs. elongation (%) curve of the cord was measured. In Table 1, the strength (N) and elongation (%) at cutting at 100° C. of Comparative Example 1 were set as 100, and each was expressed as an index. Further, in Table 2, the strength (N) and elongation (%) at cutting at 100° C. of Comparative Example 2 were set as 100, and each was expressed as an index.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例2と比較例3との対比から、PA410繊維のみからなるコードは、PA66繊維のみからなるコードに比べて、高温での切断時の強力の低下が大きいことが分かる。 A comparison between Comparative Example 2 and Comparative Example 3 shows that the cord made only of PA410 fibers has a greater reduction in strength when cutting at high temperatures than the cord made only of PA66 fibers.
 これに対して、比較例1と実施例1との対比から、PA410繊維とアラミド繊維とを含み、バイオ化率が15%以上のポリアミド繊維コードは、PA66繊維とアラミド繊維とを含み、バイオ化率が0%のポリアミド繊維コードと、切断時の強力が同等であることが分かる。 On the other hand, from a comparison between Comparative Example 1 and Example 1, a polyamide fiber cord containing PA410 fibers and aramid fibers and having a bioconversion rate of 15% or more contains PA66 fibers and aramid fibers and has a bioconversion rate of 15% or more. It can be seen that the cutting strength is equivalent to that of a polyamide fiber cord with a polyamide fiber cord of 0%.
 本発明のポリアミド繊維コード及びゴム-繊維複合体は、タイヤを始めとして、コンベヤベルト、ホース等にも利用することができる。 The polyamide fiber cord and rubber-fiber composite of the present invention can be used not only for tires but also for conveyor belts, hoses, etc.
 100:タイヤ、 10:ビード部、 20:サイドウォール部、 30:トレッド部、 40:ビードコア、 50:カーカス、 60:ベルト、 60A,60B:ベルト層、 70A:ベルト補強層(キャップ層)、 70B:ベルト補強層(レイヤー層) 100: Tire, 10: Bead part, 20: Sidewall part, 30: Tread part, 40: Bead core, 50: Carcass, 60: Belt, 60A, 60B: Belt layer, 70A: Belt reinforcement layer (cap layer), 70B : Belt reinforcement layer (layer layer)

Claims (13)

  1.  コード全体のバイオマス由来の炭素の含有割合(バイオ化率)が、15%以上であり、
     コードの熱収縮率が、9.0%以下であることを特徴とする、ポリアミド繊維コード。
    The content ratio of carbon derived from biomass (bio conversion rate) of the entire cord is 15% or more,
    A polyamide fiber cord, characterized in that the cord has a heat shrinkage rate of 9.0% or less.
  2.  バイオマス由来の炭素の含有割合(バイオ化率)が40%以上の繊維を含む、請求項1に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 1, comprising fibers having a biomass-derived carbon content (bio conversion rate) of 40% or more.
  3.  前記バイオ化率が40%以上の繊維は、ポリアミド4繊維、ポリアミド4,4繊維、ポリアミド4,6繊維、ポリアミド5,4繊維、ポリアミド5,6繊維、ポリアミド6繊維、ポリアミド6,6繊維、ポリアミド11繊維、ポリアミド4,10繊維、ポリアミド6,10繊維、及びポリアミド10,10繊維からなる群から選択される少なくとも1種である、請求項2に記載のポリアミド繊維コード。 The fibers with a bio conversion rate of 40% or more include polyamide 4 fibers, polyamide 4,4 fibers, polyamide 4,6 fibers, polyamide 5,4 fibers, polyamide 5,6 fibers, polyamide 6 fibers, polyamide 6,6 fibers, The polyamide fiber cord according to claim 2, which is at least one selected from the group consisting of polyamide 11 fibers, polyamide 4,10 fibers, polyamide 6,10 fibers, and polyamide 10,10 fibers.
  4.  前記バイオ化率が40%以上の繊維と、アラミド繊維と、を撚り合わせたコードである、請求項2に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 2, which is a cord made by twisting together fibers with a bio conversion rate of 40% or more and aramid fibers.
  5.  前記バイオ化率が100%の繊維を含む、請求項2に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 2, comprising fibers with a bio conversion rate of 100%.
  6.  前記バイオ化率が100%の繊維は、ポリアミド11繊維、ポリアミド4,10繊維、及びポリアミド10,10繊維からなる群から選択される少なくとも1種である、請求項5に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 5, wherein the fiber with a bio conversion rate of 100% is at least one selected from the group consisting of polyamide 11 fiber, polyamide 4,10 fiber, and polyamide 10,10 fiber.
  7.  ポリアミド4,10繊維と、アラミド繊維と、を撚り合わせたコードである、請求項2に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 2, which is a cord made by twisting together polyamide 4,10 fibers and aramid fibers.
  8.  アラミド繊維2本と、ポリアミド4,10繊維1本と、を撚り合わせたコードである、請求項7に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 7, which is a cord made by twisting two aramid fibers and one polyamide 4,10 fiber.
  9.  バイオマス由来の炭素の含有割合(バイオ化率)が15%以上のポリアミド繊維のみからなる、請求項1に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 1, comprising only polyamide fibers with a biomass-derived carbon content (bioconversion rate) of 15% or more.
  10.  前記ポリアミド繊維は、アミド密度が14.0以上である、請求項9に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 9, wherein the polyamide fiber has an amide density of 14.0 or more.
  11.  前記ポリアミド繊維は、ポリアミド4,6繊維、及びポリアミド5,6繊維からなる群から選択される少なくとも1種である、請求項9に記載のポリアミド繊維コード。 The polyamide fiber cord according to claim 9, wherein the polyamide fiber is at least one selected from the group consisting of polyamide 4,6 fibers and polyamide 5,6 fibers.
  12.  請求項1に記載のポリアミド繊維コードを具えることを特徴とする、ゴム-繊維複合体。 A rubber-fiber composite comprising the polyamide fiber cord according to claim 1.
  13.  請求項1に記載のポリアミド繊維コードを具えることを特徴とする、タイヤ。 A tire comprising the polyamide fiber cord according to claim 1.
PCT/JP2023/029459 2022-08-25 2023-08-14 Polyamide fiber cord, rubber-fiber composite, and tire WO2024043136A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-134412 2022-08-25
JP2022134412 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024043136A1 true WO2024043136A1 (en) 2024-02-29

Family

ID=90013184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029459 WO2024043136A1 (en) 2022-08-25 2023-08-14 Polyamide fiber cord, rubber-fiber composite, and tire

Country Status (1)

Country Link
WO (1) WO2024043136A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287402A (en) * 1990-04-02 1991-12-18 Ohtsu Tire & Rubber Co Ltd :The Radial tire
JP2006321323A (en) * 2005-05-18 2006-11-30 Bridgestone Corp Pneumatic tire
JP2013531107A (en) * 2010-07-07 2013-08-01 コンティネンタル・ライフェン・ドイチュラント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Elastomer products with straight textile structure for reinforcement
JP2019511411A (en) * 2016-03-17 2019-04-25 コンティネンタル・ライフェン・ドイチュラント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Reinforcement ply for a pneumatic vehicle tire, preferably for a belt bandage ply of a pneumatic vehicle tire
WO2022071172A1 (en) * 2020-09-29 2022-04-07 日本精工株式会社 Rolling bearing
JP2022109339A (en) * 2018-12-27 2022-07-28 シージェイ チェイルジェダン コーポレーション Ornithine decarboxylase mutant and method for producing putrescine using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287402A (en) * 1990-04-02 1991-12-18 Ohtsu Tire & Rubber Co Ltd :The Radial tire
JP2006321323A (en) * 2005-05-18 2006-11-30 Bridgestone Corp Pneumatic tire
JP2013531107A (en) * 2010-07-07 2013-08-01 コンティネンタル・ライフェン・ドイチュラント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Elastomer products with straight textile structure for reinforcement
JP2019511411A (en) * 2016-03-17 2019-04-25 コンティネンタル・ライフェン・ドイチュラント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Reinforcement ply for a pneumatic vehicle tire, preferably for a belt bandage ply of a pneumatic vehicle tire
JP2022109339A (en) * 2018-12-27 2022-07-28 シージェイ チェイルジェダン コーポレーション Ornithine decarboxylase mutant and method for producing putrescine using the same
WO2022071172A1 (en) * 2020-09-29 2022-04-07 日本精工株式会社 Rolling bearing

Similar Documents

Publication Publication Date Title
US5151142A (en) Heavy duty pneumatic radial tires using rubber reinforcing fiber cords with improved adhesion
CA1047183A (en) Aramid floc reinforcement of rubber
EP2826641A1 (en) Pneumatic tire having a single carcass ply reinforced with polyester cords
EP2065220B1 (en) Pneumatic tire
EP1923233A1 (en) Tire having a sidewall component containing a dispersion of adhesive coated short carbon fiber reinforcement
JP2005014889A (en) Polyester cord and its use in run flat tire
JPH0530378B2 (en)
JP2011218982A (en) Pneumatic radial tire
JP2014108675A (en) Pneumatic radial tire
JP2004308027A (en) Polyketone fiber cord for reinforcing rubber and tire using the same
WO2024043136A1 (en) Polyamide fiber cord, rubber-fiber composite, and tire
WO2024043137A1 (en) Hybrid cord, rubber-fiber composite, and tire
WO2024043135A1 (en) Hybrid cord, rubber-fiber composite, and tire
US7128971B2 (en) Coated glass fibers for reinforcing rubber
JP4234954B2 (en) Transmission belt and manufacturing method thereof
JPH07286049A (en) Rubber/polyester composite material for cord, and tire containing same
WO2024070779A1 (en) Pet fiber-rubber composite and tire
JPH11254920A (en) Pneumatic safety tire
JPH04110208A (en) Pneumatic radial tyre
JP5824299B2 (en) Ply material for carcass ply and pneumatic tire using the same
US20190300764A1 (en) Adhesive composition for organic fiber, method for treating organic fiber, organic fiber, and tire
JP7372857B2 (en) pneumatic tires
WO2023090022A1 (en) Pneumatic tire
JPS63203405A (en) Heavy-duty pneumatic radial tire
JP2014101595A (en) Manufacturing method of fiber for rubber reinforcement and fiber for rubber reinforcement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857249

Country of ref document: EP

Kind code of ref document: A1