WO2024043062A1 - 原料排出制御装置及び原料装入装置 - Google Patents

原料排出制御装置及び原料装入装置 Download PDF

Info

Publication number
WO2024043062A1
WO2024043062A1 PCT/JP2023/028832 JP2023028832W WO2024043062A1 WO 2024043062 A1 WO2024043062 A1 WO 2024043062A1 JP 2023028832 W JP2023028832 W JP 2023028832W WO 2024043062 A1 WO2024043062 A1 WO 2024043062A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
control device
discharge
hopper
property
Prior art date
Application number
PCT/JP2023/028832
Other languages
English (en)
French (fr)
Inventor
俊樹 坪井
涼 齋藤
春輝 獨古
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023561110A priority Critical patent/JPWO2024043062A1/ja
Publication of WO2024043062A1 publication Critical patent/WO2024043062A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • C21B7/20Bell-and-hopper arrangements with appliances for distributing the burden
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/26Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/10Charging directly from hoppers or shoots

Definitions

  • the present disclosure relates to a raw material discharge control device and a raw material charging device.
  • raw materials are discharged from a raw material hopper that temporarily stores the raw materials. At this time, since the amount of raw material discharged from the raw material hopper affects productivity, it is important to control the amount of raw material discharged.
  • raw materials discharged from a raw material hopper are charged into the furnace through a rotating chute.
  • the charged raw materials are deposited in the furnace and form a certain deposit shape. Since the shape of this accumulation has a great influence on the situation inside the furnace, if the amount of raw material discharged varies over time, the situation inside the furnace may deteriorate.
  • a technique is known that attempts to control the amount of raw material discharged at a constant level by keeping the opening degree of the raw material hopper constant.
  • the raw material segregation in the raw material hopper and due to variations in the properties of the raw material in the raw material hopper, such as particle size, shape, moisture content, and surface condition, even if the opening degree of the raw material hopper is kept constant, the raw material The amount of emissions fluctuated over time.
  • raw material property values were calculated approximately once a week by small batch sampling and sieve analysis, making it difficult to capture temporal changes in raw material properties in a short period of time.
  • Patent Document 1 discloses that in order to control the amount of raw material discharged from the raw material hopper at a constant level, the opening degree of the raw material hopper and the actual value of the raw material discharge rate are constantly calculated, and the raw material discharge rate is adjusted to the target raw material discharge rate. Discloses a technology for adjusting the opening degree of a raw material hopper.
  • Patent Document 1 constantly calculates the relationship between the opening degree of the raw material hopper and the actual value of the raw material discharge speed, and controls the opening degree of the raw material hopper.
  • the properties of the raw material in the raw material hopper change from time to time. Therefore, even if the relationship between the opening degree of the raw material hopper and the actual value of the raw material discharge speed is calculated, when the calculated relationship is applied to control the opening degree of the raw material hopper, if the properties of the raw material have already changed. Therefore, it has been difficult to precisely control the discharge amount of raw materials to a desired discharge amount.
  • An object of the present disclosure is to provide a raw material discharge control device and a raw material charging device that can accurately control the amount of raw material discharged from a raw material hopper even if the properties of the raw material change.
  • a raw material discharge control device that controls the amount of raw material discharged from a raw material hopper, a raw material property measuring device that measures the property values of the raw material charged into the raw material hopper; a control device that controls the discharge amount of the raw material based on property values of the raw material; A raw material discharge control device equipped with.
  • the control device controls the amount of raw material discharged from the raw material hopper by adjusting the opening degree of a flow rate adjustment gate capable of controlling the amount of raw material discharged from the raw material hopper, [1] or [2] above.
  • the control device changes the discharge amount of the raw material when a value calculated from at least one property value of the raw material exceeds a preset threshold value.
  • the raw material discharge control device according to any one of [3].
  • a raw material charging device that controls the discharge amount of the raw material using the raw material discharge control device according to any one of [1] to [4] above, and charges the raw material into a blast furnace.
  • the discharge amount of the raw material discharged from the raw material hopper can be controlled with high accuracy.
  • FIG. 1 is a diagram schematically showing a configuration example of a raw material charging device including a raw material discharge control device according to an embodiment of the present disclosure.
  • 2 is an enlarged view of the vicinity of the raw material hopper in FIG. 1.
  • FIG. 1 is a diagram schematically showing a configuration example of a control device according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing an example in which estimated values and actual values of raw material discharge speed are compared.
  • FIG. 3 is a diagram showing an example in which estimated values and actual values of raw material discharge speed are compared.
  • FIG. 3 is a diagram showing an example in which estimated values and actual values of raw material discharge speed are compared.
  • FIG. 3 is a diagram showing an example in which estimated values and actual values of raw material discharge speed are compared.
  • FIG. 3 is a diagram showing an example in which estimated values and actual values of raw material discharge speed are compared.
  • FIG. 3 is a diagram showing an example in which estimated values and actual values of raw material discharge speed are
  • 3 is a diagram showing an example in which estimated values and actual values of raw material discharge speed are compared. This is an example showing changes in various data over time. It is a figure which shows the example which compared the estimated value and actual value of the amount of change of the raw material discharge speed. It is a figure which shows the example which compared the estimated value and actual value of the amount of change of the raw material discharge speed.
  • FIG. 1 is a diagram schematically showing a configuration example of a raw material charging device 1 including a raw material discharge control device 10 according to an embodiment of the present disclosure. Further, FIG. 2 is an enlarged view of the vicinity of the raw material hopper 20 in FIG. 1. The raw material charging device 1 and the raw material discharge control device 10 will be described with reference to FIGS. 1 and 2.
  • the raw material charging device 1 is a device that charges the raw material 203 carried by the raw material charging conveyor 202 into the blast furnace 201.
  • the raw material charging device 1 includes a raw material discharge control device 10, a raw material hopper 20, a flow rate adjustment gate 30, and a rotating chute 40.
  • the raw material charging device 1 controls the amount of raw material 203 discharged from the raw material hopper 20 using the raw material discharge control device 10, and charges the raw material 203 into the blast furnace 201.
  • the raw material discharge control device 10 is used in the raw material charging device 1 that charges the raw material 203 carried by the conveyor 202 into the blast furnace 201.
  • the process in which the apparatus 10 is used is not limited to this.
  • the raw material discharge control device 10 can be used in any process that uses the raw material hopper 20 to charge the raw material 203.
  • the raw material 203 is, for example, coke, but is not limited thereto.
  • the raw material 203 may be, for example, ore, sintered ore, pellets, limestone, rock, raw material for concrete, powder, or the like.
  • the raw material discharge control device 10 controls the amount of raw material 203 discharged from the raw material hopper 20.
  • the raw material discharge control device 10 includes a control device 11 and a raw material property measuring device 12. Details of the configuration and functions of the raw material discharge control device 10 will be described later.
  • the raw material hopper 20 temporarily stores the raw material 203 carried by the conveyor 202.
  • the raw material hopper 20 can discharge the stored raw material 203 to the blast furnace 201 .
  • the flow rate adjustment gate 30 can control the amount of raw material 203 discharged from the raw material hopper 20.
  • the flow rate adjustment gate 30 is a gate whose opening degree can be adjusted. When the opening degree of the flow rate adjustment gate 30 is increased, the amount of raw material 203 discharged from the raw material hopper 20 increases. When the opening degree of the flow rate adjustment gate 30 is reduced, the amount of raw material 203 discharged from the raw material hopper 20 is reduced.
  • the opening degree of the flow rate adjustment gate 30 is controlled by the control device 11.
  • the rotating chute 40 is installed at the top of the blast furnace 201.
  • the turning chute 40 turns at a predetermined speed.
  • the raw material 203 discharged from the raw material hopper 20 passes through the rotating chute 40 and is charged into the blast furnace 201 .
  • control device 11 and the raw material property measuring device 12 included in the raw material discharge control device 10 will be explained.
  • the control device 11 acquires the property values of the raw material 203 measured by the raw material property measuring device 12.
  • the property value of the raw material 203 measured by the raw material property measuring device 12 is the property value of the raw material 203 being conveyed by the conveyor 202, and is the property value of the raw material 203 before being charged into the raw material hopper 20. .
  • the control device 11 controls the amount of raw material 203 discharged from the raw material hopper 20 based on the property value of the raw material 203 obtained from the raw material property measuring device 12.
  • the control device 11 controls the amount of raw material 203 discharged from the raw material hopper 20 by adjusting the opening degree of the flow rate adjustment gate 30 .
  • FIG. 3 is a diagram schematically showing a configuration example of the control device 11 according to an embodiment of the present disclosure.
  • the control device 11 may be a general-purpose computer such as a workstation or a personal computer, or may be a dedicated computer configured to function as the control device 11 of the raw material discharge control device 10. The configuration of the control device 11 will be described with reference to FIG. 3.
  • the control device 11 includes a control section 111, an input section 112, an output section 113, a storage section 114, and a communication section 115.
  • the control unit 111 includes at least one processor, at least one dedicated circuit, or a combination thereof.
  • the processor is a general-purpose processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit), or a dedicated processor specialized for specific processing.
  • the dedicated circuit is, for example, an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • the control unit 111 reads programs, data, etc. stored in the storage unit 114 and executes various functions.
  • the control unit 111 controls the flow rate adjustment gate 30.
  • the input unit 112 includes one or more input interfaces that detect user input and obtain input information based on user operations.
  • the input unit 112 includes, for example, physical keys, capacitive keys, a touch screen provided integrally with the display of the output unit 113, a microphone that accepts voice input, and the like.
  • the output unit 113 includes one or more output interfaces that output information and notify the user.
  • the output unit 113 includes, for example, a display that outputs information as an image, a speaker that outputs information as audio, and the like.
  • the display included in the output unit 113 may be, for example, an LCD (Liquid Crystal Display), a CRT (Cathode Ray Tube) display, or the like.
  • the storage unit 114 is, for example, a flash memory, a hard disk, an optical memory, or the like. A part of the storage unit 114 may be located outside the control device 11. In this case, part of the storage unit 114 may be a hard disk, a memory card, etc. connected to the control device 11 via an arbitrary interface.
  • the storage unit 114 stores programs for the control unit 111 to execute each function, data used by the programs, and the like.
  • the communication unit 115 includes at least one of a communication module that supports wired communication and a communication module that supports wireless communication.
  • the control device 11 can communicate with other devices via the communication unit 115.
  • the raw material property measuring device 12 measures the property values of the raw material 203 being conveyed by the conveyor 202. That is, the raw material property measuring device 12 measures the property values of the raw material 203 before being charged into the raw material hopper 20.
  • the property values measured by the raw material property measuring device 12 include at least one of the particle size, shape, moisture, and surface condition of the raw material 203.
  • the raw material property measuring device 12 measuring the particle size, shape, moisture, and surface state of the raw material 203 as property values of the raw material 203 will be explained.
  • the particle size of the raw material 203 will be explained.
  • the particle size of the raw materials 203 becomes smaller, the friction between the raw materials 203 decreases.
  • the discharge speed of the raw material 203 discharged from the raw material hopper 20 becomes faster even if the opening degree of the flow rate adjustment gate 30 is the same.
  • the particle size of the raw material 203 influences the discharge speed of the raw material 203 discharged from the raw material hopper 20.
  • the shape of the raw material 203 will be explained. If the shape of the raw material 203 is angular, it is considered that the discharge speed of the raw material 203 discharged from the raw material hopper 20 becomes slower even if the opening degree of the flow rate adjustment gate 30 is the same. In this way, the shape of the raw material 203 influences the discharge speed of the raw material 203 discharged from the raw material hopper 20.
  • the moisture content of the raw material 203 will be explained.
  • the moisture content of the raw material 203 increases, the density of the raw material 203 increases, and the friction on the surface of the raw material 203 decreases.
  • the opening degree of the flow rate adjustment gate 30 is the same, it is considered that the discharge speed of the raw material 203 discharged from the raw material hopper 20 becomes faster. In this way, the moisture content of the raw material 203 affects the discharge speed of the raw material 203 discharged from the raw material hopper 20.
  • Influencing factors representing the surface condition of the raw material 203 include the roughness of the surface itself, the amount of moisture adhering to the surface, and the amount of powder on the surface. Due to changes in these influencing factors, the friction of the raw material 203 changes, so the discharge speed of the raw material 203 discharged from the raw material hopper 20 changes. In this way, the surface condition of the raw material 203 influences the discharge speed of the raw material 203 discharged from the raw material hopper 20.
  • the particle size, shape, moisture, and surface condition of the raw material 203 as property values of the raw material 203 affect the discharge speed of the raw material 203 discharged from the raw material hopper 20. Therefore, the raw material property measuring device 12 measures the property values of the raw material 203 such as particle size, shape, moisture content, and surface condition, and the control device 11 controls the raw material 203 to be discharged from the raw material hopper 20 based on the property values of the raw material 203. By controlling the discharge amount of the raw material 203, the discharge amount of the raw material 203 can be controlled with high precision.
  • the raw material property measuring device 12 includes a distance measuring device, an image measuring device, and a moisture measuring device. Note that the raw material property measuring device 12 may include either the distance measuring device or the image measuring device, instead of including both the distance measuring device and the image measuring device.
  • the distance measuring device and the image measuring device can measure the particle size, shape, and surface condition of the raw material 203.
  • the moisture measuring device can measure the moisture content of the raw material 203.
  • the distance measuring device may be, for example, a two-dimensional laser distance meter.
  • the laser distance meter irradiates laser light in a line along the width direction of the conveyor 202, and measures the distance to the raw material 203, which is the object of measurement, line by line.
  • the raw material 203 to be measured is in a state of being deposited on the conveyor 202, and is being transported and moved by the conveyor 202.
  • the laser distance meter measures the distance to the raw material 203 in a line shape at regular intervals.
  • the laser distance meter can generate three-dimensional shape data of the raw material 203 by integrating the distance measurements on each line.
  • the above-described method of generating three-dimensional shape data using a laser range finder is a method of generating three-dimensional shape data using a so-called optical cutting method.
  • the laser distance meter can measure the particle size, shape, and surface condition of the raw material 203 based on three-dimensional shape data.
  • the distance measuring device may be, for example, a time-of-flight camera or a stereo camera, and can generate three-dimensional shape data.
  • the image measuring device may measure two-dimensional image data of the raw material using an industrial camera. In order to recognize a plurality of particles included in measured image data as individual particles, the image measuring device performs particle separation processing based on a processing method called the WaterShed algorithm disclosed in Reference 1, for example. (Reference 1: Meyer, F. (1992). Color image segmentation. In Proceedings of the International Conference on Image Processing and its Applications, pages 303-306).
  • the image measuring device may calculate the particle size of the raw material 203, for example, by averaging the diameters of individual particles obtained through image processing.
  • particle size for example, equivalent circle diameter, major axis, minor axis, Feret diameter, etc. can be used as the definition of particle size.
  • the image measuring device can calculate the shape of each particle by identifying each particle of the raw material 203.
  • the image measurement device may calculate the shape of the raw material 203 by averaging the shapes of individual particles.
  • a distance measuring device such as a laser distance meter can calculate surface roughness, which is one of the surface conditions.
  • surface roughness is one of the surface conditions.
  • general indices such as Ra and Rz can be used.
  • the method for calculating surface roughness is not limited to this, and any index related to the degree of unevenness that affects friction can be used.
  • the weight percentage of the fine particle portion obtained by particle size measurement for example, the weight percentage of particle size data below 5 mm, can be used as an index.
  • the moisture measuring device may be, for example, a neutron moisture meter or an infrared moisture meter.
  • a neutron moisture meter irradiates neutrons from a neutron beam source. A portion of the irradiated neutrons passes through the raw material 203, and a portion of the irradiated neutrons is reflected depending on the moisture content of the raw material 203. A neutron moisture meter can detect reflected neutrons and calculate a moisture value based on the amount of reflection.
  • An infrared moisture meter can measure moisture using infrared wavelengths that are sensitive to moisture absorption.
  • the infrared moisture meter can irradiate the raw material 203 with infrared rays and calculate the moisture value based on the degree of absorption.
  • the control unit 111 of the control device 11 acquires the property values of the raw material 203 measured by the raw material property measuring device 12 via the communication unit 115.
  • the control unit 111 controls the amount of raw material 203 discharged from the raw material hopper 20 based on the property values obtained from the raw material property measuring device 12.
  • the control unit 111 can control the discharge amount of the raw material 203 by adjusting the opening degree of the flow rate adjustment gate 30.
  • the control unit 111 can estimate the discharge speed of the raw material 203 discharged from the raw material hopper 20 based on the flow rate adjustment gate 30 and the property values of the raw material 203.
  • the control unit 111 may control the amount of raw material 203 to be discharged, for example, such that the discharge rate of the raw material 203 discharged from the raw material hopper 20 is within a predetermined range.
  • the discharge speed may be defined, for example, by the weight of the raw material 203 discharged per rotation of the rotating chute 40.
  • the discharge rate may be defined, for example, by the weight of the raw material 203 discharged per unit time.
  • the storage unit 114 may store coefficients for estimating the discharge speed of the raw material 203 discharged from the raw material hopper 20 using the opening degree of the flow rate adjustment gate 30 and the property value of the raw material 203 as explanatory variables.
  • the coefficient may be a coefficient calculated by multiple regression analysis based on previously measured performance values.
  • the storage unit 114 stores coefficients for estimating the discharge rate of the raw material 203 using each value as an explanatory variable. It's okay to do so.
  • the control unit 111 controls the amount of the raw material 203 discharged from the raw material hopper 20 when a value calculated from at least one property value of the raw material 203 acquired from the raw material property measuring device 12 exceeds a preset threshold. Controls may be applied to change the amount of emissions. Thereby, the control unit 111 can adjust the opening degree of the flow rate adjustment gate 30 to control the discharge speed of the raw material 203 within a predetermined range when the property value of the raw material 203 deviates significantly from the normal value. can.
  • a threshold value may be set for each value.
  • the control unit 111 may perform control to change the discharge amount of the raw material 203 discharged from the raw material hopper 20 when a value calculated from at least one of the property values of the raw material 203 exceeds a threshold value. .
  • the threshold value may be a value determined based on a preliminary investigation of the property values of the raw material 203 when the discharge rate becomes a problem in the operation of the blast furnace 201.
  • the threshold value may be stored in the storage unit 114.
  • the control unit 111 estimates the discharge rate of the raw material 203, and if the estimated discharge rate is not within a predetermined range, the discharge rate of the raw material 203 is determined.
  • the opening degree of the flow rate adjustment gate 30 may be controlled so that the amount falls within a predetermined range. Thereby, the control unit 111 can control the discharge amount of the raw material 203 with higher accuracy.
  • FIGS. 4A to 4E are diagrams showing examples in which estimated values of ejection speed and actual values of ejection speed are compared.
  • the horizontal axis is the estimated value of the discharge rate of the raw material 203 calculated by the control device 11.
  • the vertical axis is the actual value of the discharge speed when the raw material 203 is actually charged into the blast furnace 201.
  • FIG. 4A is a graph, as a comparative example, in which the discharge speed of the raw material 203 is estimated based only on the opening degree of the flow rate adjustment gate 30 without considering the property values of the raw material 203.
  • FIG. 4B is a graph when the discharge rate of the raw material 203 is estimated based on the opening degree of the flow rate adjustment gate 30 and the water content of the raw material 203 as a property value of the raw material 203.
  • FIG. 4C is a graph when the discharge rate of the raw material 203 is estimated based on the particle size of the raw material 203 as a property value of the raw material 203 as well as the opening degree of the flow rate adjustment gate 30.
  • FIG. 4A is a graph, as a comparative example, in which the discharge speed of the raw material 203 is estimated based only on the opening degree of the flow rate adjustment gate 30 without considering the property values of the raw material 203.
  • FIG. 4B is a graph when the discharge rate of the raw material 203 is estimated based on the
  • FIG. 4D is a graph in which the discharge rate of the raw material 203 is estimated based on the opening degree of the flow rate adjustment gate 30 and the particle size and moisture content of the raw material 203 as property values of the raw material 203.
  • FIG. 4E is a graph when the discharge rate of the raw material 203 is estimated based on the opening degree of the flow rate adjustment gate 30 and the particle size, moisture, and shape of the raw material 203 as property values of the raw material 203.
  • the coefficient of determination R2 when the discharge speed is estimated based only on the opening degree of the flow rate adjustment gate 30, the coefficient of determination R2 is 0.31.
  • the coefficient of determination when looking at FIG. 4B, when the discharge rate is estimated based on the opening degree of the flow rate adjustment gate 30 and the water content that is the property value of the raw material 203, the coefficient of determination is 0.41.
  • the discharge rate is estimated based on the opening degree of the flow rate adjustment gate 30 and the particle size which is a property value of the raw material 203, the coefficient of determination is 0.39. In this way, by estimating the discharge speed by considering the moisture content or the particle size as a property value, the control device 11 can estimate the discharge speed of the raw material 203 with high accuracy.
  • the control device 11 can estimate the discharge speed of the raw material 203 with higher accuracy.
  • the coefficient of determination is 0.60. In this way, by estimating the discharge speed in consideration of the three property values of particle size, moisture, and shape, the control device 11 can estimate the discharge speed of the raw material 203 with higher accuracy.
  • the results shown in FIGS. 4A to 4E show that by considering the property values of the raw material 203, the control device 11 can estimate the discharge rate of the raw material 203 with high accuracy.
  • the control device 11 can control the discharge amount of the raw material 203 based on the discharge rate of the raw material 203 estimated with high accuracy in this manner.
  • results shown in FIGS. 4A to 4E show that when a plurality of values are taken into account as property values of the raw material 203, the control device 11 can estimate the discharge speed of the raw material 203 with higher accuracy.
  • the absolute value of the property value was used as the value calculated from at least one property value of the raw material 203.
  • FIG. 5 is an example showing changes in various data over time.
  • the top graph is a graph showing the change in particle size of the raw material 203 over time.
  • the second graph is a graph showing changes in the opening degree of the flow rate adjustment gate 30 over time.
  • the bottom graph is a graph showing the discharge rate of the raw material 203.
  • the raw material discharge control device 10 starts the process of controlling the discharge amount of the raw material 203. That is, before the timing indicated by reference numeral 403, the process of controlling the discharge speed of the raw material 203 based on the property values of the raw material 203 is not performed.
  • the particle size of the raw material 203 is decreasing. Along with this, as shown by reference numeral 402, the discharge speed of the raw material 203 is rapidly increasing. Such an increase in the discharge rate of the raw material 203 adversely affects the operation of the blast furnace 201.
  • the raw material discharge control device 10 performed control to reduce the opening degree of the flow rate adjustment gate 30. Thereby, the raw material discharge control device 10 is able to suppress an increase in the discharge speed of the raw material 203 in the time range shown by reference numeral 406. That is, the raw material discharge control device 10 was able to stabilize the discharge rate of the raw material 203 by controlling the flow rate adjustment gate 30 based on the particle size, which is a property value of the raw material 203.
  • FIG. 5 shows a case where the flow rate adjustment gate 30 is controlled based on the particle size of the raw material 203
  • similar results can be obtained by controlling the flow rate adjustment gate 30 based on the shape or moisture content of the raw material 203.
  • similar results can be obtained by controlling the flow rate adjustment gate 30 based on a plurality of property values of the raw material 203.
  • the raw material discharge control device 10 includes the raw material property measuring device 12 that measures the property values of the raw material 203 charged into the raw material hopper 20, and the raw material property measuring device 12 that measures the property values of the raw material 203 charged into the raw material hopper 20, and the raw material 203 based on the property values of the raw material 203.
  • a control device 11 that controls the amount of discharged. In this manner, the control device 11 controls the discharge amount of the raw material 203 based on the property values of the raw material 203, so that the raw material discharge control device 10 according to the present embodiment can control the discharge amount even if the properties of the raw material 203 change. , the amount of raw material 203 discharged from the raw material hopper 20 can be controlled with high precision.
  • the raw material charging device 1 controls the discharge amount of the raw material 203 using the raw material discharge control device 10 and charges the raw material 203 into the blast furnace 201. Therefore, the raw material charging device 1 according to the present embodiment can accurately control the distribution shape of the raw material 203 deposited in the blast furnace 201, so that the operation of the blast furnace 201 can be stabilized.
  • the operation is performed with respect to the lower limit value, but by providing threshold values with respect to the upper and lower limit values of each raw material property index, it is also possible to control the discharge speed with more precision.
  • thresholds using relative values representing changes over time can also be used.
  • sensor values since sensor values are used, it is necessary to periodically calibrate the sensor to the true value for operation.
  • calibration since calibration is a burden on operation, it is difficult to increase the frequency of calibration. In that case, the sensor may deviate from the true value, leading to false detection or undetected values.
  • the relative amount of change is relatively hard to shift compared to the absolute value. For long-term operations, using relative changes may result in more stable threshold operations.
  • FIG. 6A shows the result of estimation using only the difference value of the opening degree.
  • FIG. 6B shows the result of predicting the difference value of discharge speed using the difference value of particle size, moisture content, and opening degree.
  • the coefficient of determination R2 is 0.57.
  • the coefficient of determination R2 is 0.64.
  • the amount of change used is the difference between the currently charged batch and the previous charged batch, but this is limited. It's not a thing.
  • an index of the amount of change for example, a change or a maximum amount of change within a certain amount of time in the past from the current time on a time basis may be used.
  • the present disclosure is not limited to the embodiments described above.
  • a plurality of blocks shown in the block diagram may be integrated, or one block may be divided. Instead of performing the steps in the flowchart in chronological order as described, they may be performed in parallel or in a different order depending on the processing power of the device performing each step or as needed. Other changes are possible without departing from the spirit of the present disclosure.
  • the raw material property measuring device 12 includes a distance measuring device, an image measuring device, and a moisture measuring device has been described as an example.
  • the devices included in the raw material property measuring device 12 are not limited to these.
  • the raw material property measuring device 12 may include any device capable of measuring the property values of the raw material 203.
  • some of the processing operations performed in the raw material property measuring device 12 may be performed in the control device 11.
  • the image measuring device 12 includes an image measuring device
  • the image measuring device takes an image of the raw material 203
  • the control device 11 analyzes the image of the raw material 203 taken by the image measuring device.
  • the particle size and shape, which are property values of the raw material 203, may be calculated.
  • the means for controlling the discharge amount of the raw material 203 is not limited to this.
  • the raw material discharge control device 10 may control the discharge amount of the raw material 203 using a device other than the flow rate adjustment gate 30.
  • the raw material discharge control device 10 controls the discharge amount of the raw material 203 charged into the blast furnace 201.
  • the raw material discharge control device 10 can also be used in other fields of transporting raw materials.
  • Raw material charging device 10 Raw material discharge control device 11 Control device 12
  • Raw material property measuring device 20 Raw material hopper 30
  • Flow rate adjustment gate 40 Rotating chute 111
  • Control section 112 Input section 113
  • Output section 114 Storage section 115 Communication section 201
  • Blast furnace 202 Conveyor 203

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

原料排出制御装置10は、原料ホッパ20から排出される原料203の排出量を制御する。原料排出制御装置10は、原料ホッパ20に装入される原料203の性状値を測定する原料性状測定装置12と、原料203の性状値に基づいて原料203の排出量を制御する制御装置11と、を備える。

Description

原料排出制御装置及び原料装入装置
 本開示は、原料排出制御装置及び原料装入装置に関する。
 鉱物などの原料を用いる製造プロセスにおいて、原料を一時的に保管する原料ホッパから原料を排出することが行われている。この際、原料ホッパから排出する原料の量が生産性に影響を与えるため、原料の排出量を制御することは重要である。
 例えば高炉においては、原料ホッパから排出された原料は、旋回シュートを通って炉内に装入される。装入された原料は、炉内で堆積し、ある堆積形状を形成する。この堆積形状が炉内の状況に大きな影響を与えるため、原料の排出量が時間的に変動すると、炉内の状況が悪化する場合がある。
 そのため、原料ホッパからの原料の排出量を一定に制御するための様々な技術が検討されている。
 例えば、原料ホッパの開度を一定に保つことによって、原料の排出量を一定に制御しようとする技術が知られている。しかしながら、原料ホッパ内の原料の原料偏析によって、また、原料ホッパ内の原料の性状である粒径、形状、水分、表面状態などの変動によって、原料ホッパの開度を一定にしていても、原料の排出量は時間的に変動してしまっていた。また、原料性状の値は、少量のバッチ的なサンプリングと篩分析により週1回程度の頻度で算出されていたため、短期間で原料性状の時間的な変動を捉えることは難しかった。
 例えば特許文献1は、原料ホッパからの原料の排出量を一定に制御するために、原料ホッパの開度と原料排出速度の実績値とを常時算出し、目標とする原料排出速度になるように原料ホッパの開度を調整する技術を開示している。
特開平4-198412号公報
 特許文献1に開示の技術は、原料ホッパの開度と原料排出速度の実績値との関係を常時算出し、原料ホッパの開度を制御している。しかしながら、原料ホッパの原料の性状は時々刻々と変化する。そのため、原料ホッパの開度と原料排出速度の実績値との関係を算出しても、算出した関係を適用して原料ホッパの開度を制御するときには、すでに原料の性状が変化している場合があり、原料の排出量を所望の排出量に精度良く制御することは困難であった。
 本開示の目的は、原料の性状に変化があっても、原料ホッパから排出される原料の排出量を精度良く制御することができる原料排出制御装置及び原料装入装置を提供することである。
[1]原料ホッパから排出される原料の排出量を制御する原料排出制御装置であって、
 前記原料ホッパに装入される原料の性状値を測定する原料性状測定装置と、
 前記原料の性状値に基づいて前記原料の排出量を制御する制御装置と、
 を備える、原料排出制御装置。
[2]前記原料の性状値は、前記原料の粒径、形状、水分及び表面状態の少なくとも1つを含む、上記[1]に記載の原料排出制御装置。
[3]前記制御装置は、前記原料ホッパから排出される原料の排出量を制御可能な流量調整ゲートの開度を調整することによって前記原料の排出量を制御する、上記[1]又は[2]に記載の原料排出制御装置。
[4]前記制御装置は、前記原料の性状値の少なくとも1つの値から算出される値が予め設定された閾値を超えた場合に、前記原料の排出量を変更する、上記[1]から[3]のいずれか一項に記載の原料排出制御装置。
[5]上記[1]から[4]のいずれか一項に記載の原料排出制御装置を用いて前記原料の排出量を制御し、高炉内に原料を装入する、原料装入装置。
 本開示に係る原料排出制御装置及び原料装入装置によれば、原料の性状に変化があっても、原料ホッパから排出される原料の排出量を精度良く制御することができる。
本開示の一実施形態に係る原料排出制御装置を含む原料装入装置の構成例を模式的に示す図である。 図1の原料ホッパ付近を拡大した図である。 本開示の一実施形態に係る制御装置の構成例を模式的に示す図である。 原料の排出速度の推定値と実績値を対比した実施例を示す図である。 原料の排出速度の推定値と実績値を対比した実施例を示す図である。 原料の排出速度の推定値と実績値を対比した実施例を示す図である。 原料の排出速度の推定値と実績値を対比した実施例を示す図である。 原料の排出速度の推定値と実績値を対比した実施例を示す図である。 各種データの時間変化を示す実施例である。 原料の排出速度の変化量の推定値と実績値を対比した実施例を示す図である。 原料の排出速度の変化量の推定値と実績値を対比した実施例を示す図である。
 以下、本開示の実施形態について図面を参照して説明する。
 図1は、本開示の一実施形態に係る原料排出制御装置10を含む原料装入装置1の構成例を模式的に示す図である。また、図2は、図1の原料ホッパ20付近を拡大した図である。図1及び図2を参照して、原料装入装置1及び原料排出制御装置10について説明する。
 原料装入装置1は、原料装入用のコンベア202によって運ばれる原料203を、高炉201の炉内に装入する装置である。
 原料装入装置1は、原料排出制御装置10と、原料ホッパ20と、流量調整ゲート30と、旋回シュート40とを備える。原料装入装置1は、原料ホッパ20から排出される原料203の排出量を、原料排出制御装置10を用いて制御し、高炉201の炉内に原料203を装入する。
 なお、本実施形態においては、原料排出制御装置10が、コンベア202によって運ばれる原料203を高炉201に装入する原料装入装置1において用いられる場合を例に挙げて説明するが、原料排出制御装置10が用いられるプロセスは、これに限定されない。原料排出制御装置10は、原料ホッパ20を利用して原料203を装入する任意のプロセスにおいて用いることができる。
 原料203は、例えばコークスであるが、これに限定されない。原料203は、例えば、鉱石、焼結鉱、ペレット、石灰石、岩石、コンクリート原料、粉粒体などであってもよい。
 原料排出制御装置10は、原料ホッパ20から排出される原料203の排出量を制御する。原料排出制御装置10は、制御装置11と、原料性状測定装置12とを備える。原料排出制御装置10の構成及び機能の詳細については後述する。
 原料ホッパ20は、コンベア202によって運ばれてきた原料203を一時的に貯蔵する。原料ホッパ20は、貯蔵している原料203を、高炉201に排出することができる。
 流量調整ゲート30は、原料ホッパ20から排出される原料203の排出量を制御可能である。流量調整ゲート30は、開度を調整することが可能なゲートである。流量調整ゲート30の開度を大きくすると、原料ホッパ20から排出される原料203の排出量が多くなる。流量調整ゲート30の開度を小さくすると、原料ホッパ20から排出される原料203の排出量が少なくなる。流量調整ゲート30の開度は、制御装置11によって制御される。
 旋回シュート40は、高炉201の上部に設置されている。旋回シュート40は、所定の速さで旋回する。原料ホッパ20から排出された原料203は、旋回シュート40を通って、高炉201の炉内に装入される。
 続いて、原料排出制御装置10が備える制御装置11及び原料性状測定装置12について説明する。
 制御装置11は、原料性状測定装置12が測定した、原料203の性状値を取得する。ここで、原料性状測定装置12が測定する原料203の性状値は、コンベア202によって運ばれている原料203の性状値であり、原料ホッパ20に装入される前の原料203の性状値である。
 制御装置11は、原料性状測定装置12から取得した、原料203の性状値に基づいて、原料ホッパ20から排出される原料203の排出量を制御する。制御装置11は、流量調整ゲート30の開度を調整することによって、原料ホッパ20から排出される原料203の排出量を制御する。
 図3は、本開示の一実施形態に係る制御装置11の構成例を模式的に示す図である。制御装置11は、ワークステーション、パソコンなどのような汎用のコンピュータであってもよいし、原料排出制御装置10の制御装置11として機能するように構成された専用のコンピュータであってもよい。図3を参照して、制御装置11の構成について説明する。
 制御装置11は、制御部111と、入力部112と、出力部113と、記憶部114と、通信部115とを備える。
 制御部111は、少なくとも1つのプロセッサ、少なくとも1つの専用回路、又はこれらの組み合わせを含む。プロセッサは、CPU(Central Processing Unit)若しくはGPU(Graphics Processing Unit)などの汎用プロセッサ、又は特定の処理に特化した専用プロセッサである。専用回路は、例えば、FPGA(Field-Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)である。
 制御部111は、記憶部114に記憶されているプログラム、データなどを読み込み、各種機能を実行する。制御部111は、流量調整ゲート30を制御する。
 入力部112は、ユーザ入力を検出して、ユーザの操作に基づく入力情報を取得する1つ以上の入力用インターフェースを含む。入力部112は、例えば、物理キー、静電容量キー、出力部113のディスプレイと一体的に設けられたタッチスクリーン、又は音声入力を受け付けるマイク等を含む。
 出力部113は、情報を出力してユーザに通知する1つ以上の出力用インターフェースを含む。出力部113は、例えば、情報を画像で出力するディスプレイ、情報を音声で出力するスピーカ等を含む。出力部113が含むディスプレイは、例えば、LCD(Liquid Crystal Display)、CRT(Cathode Ray Tube)ディスプレイなどであってよい。
 記憶部114は、例えば、フラッシュメモリ、ハードディスク、光メモリ等である。記憶部114の一部は、制御装置11の外部にあってもよい。この場合、記憶部114の一部は、制御装置11と任意のインターフェースを介して接続されたハードディスク、メモリーカード等であってよい。
 記憶部114は、制御部111が各機能を実行するためのプログラム、当該プログラムが使用するデータなどを格納している。
 通信部115は、有線通信に対応する通信モジュール及び無線通信に対応する通信モジュールの少なくとも一方を含む。制御装置11は、通信部115を介して他の装置と通信可能である。
 再び図1及び図2を参照して説明する。
 原料性状測定装置12は、コンベア202によって運ばれている原料203の性状値を測定する。すなわち、原料性状測定装置12は、原料ホッパ20に装入される前の原料203の性状値を測定する。
 原料性状測定装置12が測定する性状値は、原料203の粒径、形状、水分及び表面状態の少なくとも1つを含む。
 ここで、原料性状測定装置12が、原料203の性状値として、原料203の粒径、形状、水分及び表面状態を測定することの意義について説明する。
 最初に、原料203の粒径について説明する。原料203の粒径が小さくなると、原料203同士の摩擦が低減する。そうすると、原料203の流動性が大きくなるため、流量調整ゲート30の開度が同じであっても、原料ホッパ20から排出される原料203の排出速度が速くなると考えられる。このように、原料203の粒径は、原料ホッパ20から排出される原料203の排出速度に影響を与える。
 続いて、原料203の形状について説明する。原料203の形状が角張ると、流量調整ゲート30の開度が同じであっても、原料ホッパ20から排出される原料203の排出速度が遅くなると考えられる。このように、原料203の形状は、原料ホッパ20から排出される原料203の排出速度に影響を与える。
 続いて、原料203の水分について説明する。原料203の水分が多くなると、原料203の密度が大きくなり、原料203の表面の摩擦が低減する。そうすると、流量調整ゲート30の開度が同じであっても、原料ホッパ20から排出される原料203の排出速度が速くなると考えられる。このように、原料203の水分は、原料ホッパ20から排出される原料203の排出速度に影響を与える。
 続いて、原料203の表面状態について説明する。原料203の表面状態を表す影響因子としては、表面自体の粗さ、表面への付着水分量、表面上の粉量などがある。これらの影響因子の変化により、原料203の摩擦が変化するため、原料ホッパ20から排出される原料203の排出速度が変化する。このように、原料203の表面状態は、原料ホッパ20から排出される原料203の排出速度に影響を与える。
 このように、原料203の性状値として、原料203の粒径、形状、水分及び表面状態は、原料ホッパ20から排出される原料203の排出速度に影響を与える。そのため、原料性状測定装置12が、原料203の粒径、形状、水分及び表面状態などの性状値を測定し、制御装置11が、原料203の性状値に基づいて、原料ホッパ20から排出される原料203の排出量を制御することによって、原料203の排出量を精度良く制御することができる。
 原料性状測定装置12は、距離測定装置、画像測定装置及び水分測定装置を含む。なお、原料性状測定装置12は、距離測定装置及び画像測定装置の双方を含むのではなく、距離測定装置及び画像測定装置のいずれか一方を含んでいてもよい。
 距離測定装置及び画像測定装置は、原料203の粒径、形状及び表面状態を測定することができる。水分測定装置は、原料203の水分を測定することができる。
 距離測定装置は、例えば、2次元のレーザ距離計であってよい。レーザ距離計は、コンベア202の幅方向に沿ってレーザ光をライン状に照射して、測定対象である原料203までの距離を1ラインごとに測定する。
 この際、測定対象である原料203は、コンベア202上に堆積された状態であり、コンベア202によって搬送されて移動している。レーザ距離計は、一定の周期で原料203までの距離をライン状に測定する。レーザ距離計は、各ラインにおける距離の測定値を積算することによって、原料203の3次元形状データを生成することができる。
 なお、上述した、レーザ距離計によって3次元形状データを生成する方法は、いわゆる光切断方法によって、3次元形状データを生成する方法である。レーザ距離計は、3次元形状データに基づいて、原料203の粒径、形状及び表面状態を測定することができる。
 距離測定装置は、例えば、タイムオブフライト(Time Of Flight)方式のカメラ、又は、ステレオカメラなどでよく、3次元形状データを生成することができる。
 画像測定装置は、産業用カメラを利用して原料の2次元画像データを測定してよい。画像測定装置は、測定した画像データに含まれる複数の粒子を個々の粒子として認識するために、例えば、文献1に開示されているWaterShedアルゴリズムと称される処理方法に基づいて、粒子の分離処理を実行してよい(文献1:Meyer, F. (1992). Color image segmentation. In Proceedings of the International Conference on Image Processing and its Applications, pages 303-306)。
 画像測定装置は、例えば、画像処理によって得られた個々の粒子の径を平均化処理することによって、原料203の粒径を算出してもよい。
 粒径の定義には様々な定義を用いることが可能であるが、例えば、円相当径、長径、短径、フェレ径などを、粒径の定義として用いることができる。
 画像測定装置は、原料203の個々の粒子を識別することによって、個々の粒子の形状を算出することができる。画像測定装置は、個々の粒子の形状を平均化処理することによって、原料203の形状を算出してもよい。
 粒子の形状の定義には様々な定義を用いることが可能であるが、例えば、円形度、包絡度、Solidityなどを、粒子の形状の定義として用いることができる。
 レーザ距離計などの距離測定装置は、表面状態の一つである表面粗さを算出することが可能である。表面粗さの計算方法は各種あるが、例えば、Ra、Rzなどの一般的な指標を用いることができる。表面粗さの計算方法はこれに限定されるものではなく、摩擦に影響する凹凸度合いに関連する指標全てを用いることができる。粉量に関しては、粒径計測で得られた細粒部分の重量割合、例えば、5mm下の粒径データの重量割合を指標として用いることができる。
 水分測定装置は、例えば、中性子水分計又は赤外線式水分計などであってよい。
 中性子水分計は、中性子線源から中性子を照射する。照射された中性子は、一部が原料203を透過し、一部が原料203の水分に応じて反射される。中性子水分計は、反射された中性子を検出し、その反射量に基づいて水分の値を算出することができる。
 赤外線式水分計は、水分に吸収感度がある赤外波長を利用して水分を測定することができる。赤外線式水分計は、赤外線を原料203に照射し、その吸収度合いに基づいて、水分の値を算出することができる。
 制御装置11の制御部111は、原料性状測定装置12が測定した原料203の性状値を、通信部115を介して取得する。
 制御部111は、原料性状測定装置12から取得した性状値に基づいて、原料ホッパ20から排出される原料203の排出量を制御する。制御部111は、流量調整ゲート30の開度を調整することによって、原料203の排出量を制御することができる。
 制御部111は、流量調整ゲート30及び原料203の性状値に基づいて、原料ホッパ20から排出される原料203の排出速度を推定することができる。制御部111は、例えば、原料ホッパ20から排出される原料203の排出速度が所定の範囲内になるように、原料203の排出量を制御してよい。排出速度は、例えば、旋回シュート40の1旋回あたりに排出される原料203の重量で定義してよい。あるいは、排出速度は、例えば、単位時間あたりに排出される原料203の重量で定義してよい。
 記憶部114は、流量調整ゲート30の開度及び原料203の性状値を説明変数として、原料ホッパ20から排出される原料203の排出速度を推定する際の係数を保存していてよい。当該係数は、予め測定された実績値に基づいて重回帰分析によって算出された係数であってよい。原料203の性状値が粒径、形状、水分、表面状態などの複数の値を含む場合、記憶部114は、それぞれの値を説明変数として、原料203の排出速度を推定する際の係数を保存していてよい。
 制御部111は、原料性状測定装置12から取得した原料203の性状値の少なくとも1つの値から算出される値が予め設定された閾値を超えた場合に、原料ホッパ20から排出される原料203の排出量を変更する制御をしてよい。これにより、制御部111は、原料203の性状値が通常の値から大きく外れた場合に、流量調整ゲート30の開度を調整して、原料203の排出速度を所定の範囲に制御することができる。原料203の性状値が、粒径、形状、水分及び表面状態のうちの複数の値を含む場合、それぞれの値について閾値が設定されていてよい。制御部111は、原料203の性状値のうちの少なくとも1つの値から算出される値が閾値を超えた場合に、原料ホッパ20から排出される原料203の排出量を変更する制御をしてよい。
 閾値は、高炉201の操業上問題となる排出速度となるときの原料203の性状値を予め調査し、当該調査に基づいて定められた値であってよい。閾値は、記憶部114に保存されていてよい。
 あるいは、制御部111は、原料性状測定装置12から原料203の性状値を取得すると、原料203の排出速度を推定し、推定した排出速度が所定範囲に入っていない場合は、原料203の排出速度が所定範囲に入るように、流量調整ゲート30の開度を制御してよい。これにより、制御部111は、より高い精度で、原料203の排出量を制御することができる。
(実施例)
 図4A~図4Eは、排出速度の推定値と排出速度の実績値とを対比した実施例を示す図である。図4A~図4Eに示す5つのグラフは、横軸が、制御装置11によって算出した、原料203の排出速度の推定値である。また、縦軸が、実際に原料203を高炉201に装入した際の排出速度の実績値である。
 図4Aは、比較例として、原料203の性状値を考慮せずに、流量調整ゲート30の開度のみに基づいて、原料203の排出速度を推定した場合のグラフである。図4Bは、流量調整ゲート30の開度とともに、原料203の性状値として原料203の水分に基づいて、原料203の排出速度を推定した場合のグラフである。図4Cは、流量調整ゲート30の開度とともに、原料203の性状値として原料203の粒径に基づいて、原料203の排出速度を推定した場合のグラフである。図4Dは、流量調整ゲート30の開度とともに、原料203の性状値として原料203の粒径及び水分に基づいて、原料203の排出速度を推定した場合のグラフである。図4Eは、流量調整ゲート30の開度とともに、原料203の性状値として原料203の粒径、水分及び形状に基づいて、原料203の排出速度を推定した場合のグラフである。
 図4Aを見ると、流量調整ゲート30の開度のみに基づいて排出速度を推定した場合、決定係数Rは0.31である。これに対し、図4Bを見ると、流量調整ゲート30の開度と原料203の性状値である水分とに基づいて排出速度を推定した場合、決定係数は0.41である。また、図4Cを見ると、流量調整ゲート30の開度と原料203の性状値である粒径とに基づいて排出速度を推定した場合、決定係数は0.39である。このように、性状値として水分又は粒径を考慮して排出速度を推定することによって、制御装置11は、精度良く原料203の排出速度を推定することができる。
 また、図4Dを見ると、流量調整ゲート30の開度と原料203の性状値である粒径及び水分とに基づいて排出速度を推定した場合、決定係数は0.46である。このように、性状値として粒径及び水分という2つの値を考慮して排出速度を推定することによって、制御装置11は、さらに精度良く原料203の排出速度を推定することができる。
 また、図4Eを見ると、流量調整ゲート30の開度と原料203の性状値である粒径、水分及び形状とに基づいて排出速度を推定した場合、決定係数は0.60である。このように、性状値として粒径、水分及び形状という3つの値を考慮して排出速度を推定することによって、制御装置11は、さらに精度良く原料203の排出速度を推定することができる。
 図4A~図4Eの結果は、原料203の性状値を考慮することによって、制御装置11が、原料203の排出速度を精度良く推定することができることを示している。制御装置11は、このように精度良く推定した原料203の排出速度に基づいて、原料203の排出量を制御することができる。
 また、図4A~図4Eの結果は、原料203の性状値として複数の値を考慮すると、制御装置11が、原料203の排出速度をさらに精度良く推定することができることを示している。なお、本実施例では、原料203の性状値の少なくとも一つの値から算出される値として、性状値の絶対値を用いた。
 図5は、各種データの時間変化を示す実施例である。一番上のグラフは、原料203の粒径の時間変化を示すグラフである。2番目のグラフは、流量調整ゲート30の開度の時間変化を示すグラフである。一番下のグラフは、原料203の排出速度を示すグラフである。
 図5においては、符号403に示すタイミングにおいて、本実施形態に係る原料排出制御装置10によって原料203の排出量を制御する処理を開始している。すなわち、符号403に示すタイミング以前においては、原料203の性状値に基づいて原料203の排出速度を制御する処理は行っていない。
 図5を参照すると、符号401に示すタイミングにおいて、原料203の粒径が低下している。これに伴って、符号402に示すように、原料203の排出速度が急激に増加している。このような原料203の排出速度の上昇は、高炉201の操業に悪影響を及ぼす。
 図5を参照すると、符号404に示すタイミングにおいて、再び、原料203の粒径が低下している。このとき、原料203の粒径は閾値407を下回っている。そのため、符号405に示すように、原料排出制御装置10は、流量調整ゲート30の開度を小さくする制御を実施した。これにより、原料排出制御装置10は、符号406に示す時間範囲において、原料203の排出速度が上昇することを抑制できている。すなわち、原料排出制御装置10は、原料203の性状値である粒径に基づいて流量調整ゲート30を制御することによって、原料203の排出速度を安定化させることができた。
 図5においては、原料203の粒径に基づいて流量調整ゲート30を制御する場合を示したが、原料203の形状又は水分に基づいて流量調整ゲート30を制御しても同様の結果が得られる。また、原料203の複数の性状値に基づいて流量調整ゲート30を制御しても同様の結果が得られる。
 上述のように、本実施形態に係る原料排出制御装置10は、原料ホッパ20に装入される原料203の性状値を測定する原料性状測定装置12と、原料203の性状値に基づいて原料203の排出量を制御する制御装置11と、を備える。このように、制御装置11が、原料203の性状値に基づいて原料203の排出量を制御することにより、本実施形態に係る原料排出制御装置10は、原料203の性状に変化があっても、原料ホッパ20から排出される原料203の排出量を精度良く制御することができる。
 また、本実施形態に係る原料装入装置1は、原料排出制御装置10を用いて原料203の排出量を制御し、高炉201の炉内に原料203を装入する。したがって、本実施形態に係る原料装入装置1は、高炉201の炉内に堆積される原料203の分布形状を精度良く制御することができるため、高炉201の操業を安定化させることができる。
 また、本実施例では、下限値に対する運用であるが、各原料性状指標の上下限値に対する閾値を設けることで、より精度良く排出速度を制御することも可能である。また、絶対値による運用以外にも時間的な変化を表す相対値による閾値も運用可能である。この場合、センサ値を利用することになるので、運用にはセンサを定期的に真値に校正する必要がある。しかしながら、校正は運用する上での負荷になるので、校正頻度は高くすることは難しい。その場合、センサが真値から乖離する可能性があり、誤検知や未検値に繋がる。その点相対的な変化量は絶対値に比べれば比較的ずれづらい。長期的な運用の場合は、相対的な変化を利用した方が安定した閾値運用になる場合がある。図6Aは、開度の差分値のみを利用して推定した結果である。図6Bは、粒径・水分・開度の差分値を利用して、排出速度の差分値を予測した結果である。図6Aを参照すると、決定係数Rは0.57である。これに対し、図6Bを参照すると、決定係数Rは0.64である。このように、粒径と水分を加えて予測することによって、決定係数Rが0.64と精度が向上し、相対的な変化予測においても粒径・水分が有用であることを示している。これにより、排出変化量予測が可能になり、排出変化量予測値に閾値を設けることで同様に大きな変化を抑止することができ、適切な開度調整で適切な目標値に排出量を近づけることが可能である。本発明では、コークスをある一定量ごとに輸送し、バッチごとにバンカに装入していることから、変化量は現在装入バッチから前回装入バッチとの差分を用いたがこれに限定するものではない。変化量の指標として、例えば、時間基準で現在時刻から過去一定時間以内での変化・もしくは最大変化量を用いてもよい。
 本開示は上述の実施形態に限定されるものではない。例えば、ブロック図に記載の複数のブロックを統合してもよいし、又は1つのブロックを分割してもよい。フローチャートに記載の複数のステップを記述に従って時系列に実行する代わりに、各ステップを実行する装置の処理能力に応じて、又は必要に応じて、並列的に又は異なる順序で実行してもよい。その他、本開示の趣旨を逸脱しない範囲での変更が可能である。
 例えば、上述した実施形態において、原料性状測定装置12が、距離測定装置、画像測定装置及び水分測定装置を含む場合を例に挙げて説明した。しかしながら、原料性状測定装置12が含む装置は、これらに限定されない。原料性状測定装置12は、原料203の性状値を測定可能な任意の装置を含んでいてよい。
 例えば、上述した実施形態において、原料性状測定装置12において実行される一部の処理動作が、制御装置11において実行されてもよい。例えば、原料性状測定装置12が画像測定装置を含む場合、画像測定装置が原料203の画像の撮影を行い、制御装置11が、画像測定装置によって撮影された原料203の画像を解析することによって、原料203の性状値である粒径及び形状を算出してもよい。
 例えば、上述した実施形態において、流量調整ゲート30の開度を調整することによって、原料203の排出量を制御する場合を説明したが、原料203の排出量を制御する手段はこれに限定されない。原料排出制御装置10は、流量調整ゲート30以外の装置を用いて、原料203の排出量を制御してもよい。
 例えば、上述した実施形態において、原料排出制御装置10が、高炉201に装入される原料203の排出量を制御する場合を例に挙げて説明したが、原料排出制御装置10を利用可能な分野は、鉄鋼生産の分野に限定されない。原料排出制御装置10は、原料を輸送するその他の分野においても利用可能である。
 1 原料装入装置
 10 原料排出制御装置
 11 制御装置
 12 原料性状測定装置
 20 原料ホッパ
 30 流量調整ゲート
 40 旋回シュート
 111 制御部
 112 入力部
 113 出力部
 114 記憶部
 115 通信部
 201 高炉
 202 コンベア
 203 原料

Claims (5)

  1.  原料ホッパから排出される原料の排出量を制御する原料排出制御装置であって、
     前記原料ホッパに装入される原料の性状値を測定する原料性状測定装置と、
     前記原料の性状値に基づいて前記原料の排出量を制御する制御装置と、
     を備える、原料排出制御装置。
  2.  前記原料の性状値は、前記原料の粒径、形状、水分及び表面状態の少なくとも1つを含む、請求項1に記載の原料排出制御装置。
  3.  前記制御装置は、前記原料ホッパから排出される原料の排出量を制御可能な流量調整ゲートの開度を調整することによって前記原料の排出量を制御する、請求項1に記載の原料排出制御装置。
  4.  前記制御装置は、前記原料の性状値の少なくとも1つの値から算出される値が予め設定された閾値を超えた場合に、前記原料の排出量を変更する、請求項1に記載の原料排出制御装置。
  5.  請求項1から4のいずれか一項に記載の原料排出制御装置を用いて前記原料の排出量を制御し、高炉内に原料を装入する、原料装入装置。
PCT/JP2023/028832 2022-08-22 2023-08-07 原料排出制御装置及び原料装入装置 WO2024043062A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023561110A JPWO2024043062A1 (ja) 2022-08-22 2023-08-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022132085 2022-08-22
JP2022-132085 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024043062A1 true WO2024043062A1 (ja) 2024-02-29

Family

ID=90013116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028832 WO2024043062A1 (ja) 2022-08-22 2023-08-07 原料排出制御装置及び原料装入装置

Country Status (2)

Country Link
JP (1) JPWO2024043062A1 (ja)
WO (1) WO2024043062A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137903A (ja) * 1984-07-30 1986-02-22 Nippon Steel Corp 高炉装入原料の切出制御方法
JPH02138407A (ja) * 1988-11-16 1990-05-28 Kawasaki Steel Corp ベルレス高炉における原料装入方法
JPH02254111A (ja) * 1989-03-27 1990-10-12 Nkk Corp 高炉ベルレス装入設備の制御方法
JPH09138070A (ja) * 1995-11-10 1997-05-27 Okawara Mfg Co Ltd 都市ごみ乾燥設備並びにその運転制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137903A (ja) * 1984-07-30 1986-02-22 Nippon Steel Corp 高炉装入原料の切出制御方法
JPH02138407A (ja) * 1988-11-16 1990-05-28 Kawasaki Steel Corp ベルレス高炉における原料装入方法
JPH02254111A (ja) * 1989-03-27 1990-10-12 Nkk Corp 高炉ベルレス装入設備の制御方法
JPH09138070A (ja) * 1995-11-10 1997-05-27 Okawara Mfg Co Ltd 都市ごみ乾燥設備並びにその運転制御方法

Also Published As

Publication number Publication date
JPWO2024043062A1 (ja) 2024-02-29

Similar Documents

Publication Publication Date Title
Capart et al. Depth-integrated equations for entraining granular flows in narrow channels
CN105728082A (zh) 一种小麦着水控制设备
Gromke et al. Snow particle characteristics in the saltation layer
CN103278225A (zh) 基于图像技术检测的皮带称重装置
CN113155686B (zh) 一种矿物粒度组成和筛分效率的智能检测系统及方法
US9539582B2 (en) Method of observing a change of mass inside a grinding unit
CN113800223A (zh) 一种皮带机运输煤量检测方法、装置和系统
WO2024043062A1 (ja) 原料排出制御装置及び原料装入装置
CN108180947B (zh) 一种不规则散堆状运动物料品质的综合评价方法
US20220380859A1 (en) Method for operating blast furnace
WO2024108018A1 (en) In-process adjustment to crushing systems
CN109827637A (zh) 基于集员估计粒子滤波理论的硅熔液液位估计方法
KR102614845B1 (ko) 분율 측정 방법 및 장치
CN113570168A (zh) 料位矫正方法、装置及电子设备
JP4675523B2 (ja) 高炉炉頂部の原料堆積層のテラス長さ演算方法
JP2020094283A (ja) 高炉操業方法
EP4421474A1 (en) Information processing method, information processing device, information processing system, information processing program, and sintered ore production method
Liu et al. Hierarchical packing model: Estimating the overall particle size distribution from surface images and permeability properties
Väyrynen et al. Mass-flow estimation in mineral-processing applications
CN112896990A (zh) 一种矿用隔爆型煤量检测系统及方法
JP2010286158A (ja) 焼結原料の装入状態測定装置および焼結鉱の製造方法
JP6706514B2 (ja) 建設材料の表面水量管理方法
KR102305734B1 (ko) 소결원료 장입량 제어장치와 제어방법
TWI848627B (zh) 燒結機的運行管理方法、燒結礦的製造方法及控制裝置
JP2971183B2 (ja) 竪型炉における装入物堆積形状の推定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023561110

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857176

Country of ref document: EP

Kind code of ref document: A1