WO2024043020A1 - Compound and metal extractant - Google Patents

Compound and metal extractant Download PDF

Info

Publication number
WO2024043020A1
WO2024043020A1 PCT/JP2023/028161 JP2023028161W WO2024043020A1 WO 2024043020 A1 WO2024043020 A1 WO 2024043020A1 JP 2023028161 W JP2023028161 W JP 2023028161W WO 2024043020 A1 WO2024043020 A1 WO 2024043020A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
represented
monovalent group
group represented
Prior art date
Application number
PCT/JP2023/028161
Other languages
French (fr)
Japanese (ja)
Inventor
敦 柴山
学 山田
一寿 芳賀
由莉 松葉
孝祐 牧口
Original Assignee
住友化学株式会社
国立大学法人秋田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人秋田大学 filed Critical 住友化学株式会社
Publication of WO2024043020A1 publication Critical patent/WO2024043020A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/64Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and sulfur atoms, not being part of thio groups, bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to compounds and metal extractants.
  • Metals such as palladium and platinum are used in automobile exhaust gas catalysts. In recent years, stricter exhaust gas regulations have spread worldwide and demand for these useful metals has increased, making it difficult to secure a stable supply of metal resources. Since such metals are expensive and valuable as resources, they are collected and reused after use.
  • Electrolytic deposition, ion exchange, precipitation, and solvent extraction methods have been proposed for purification in the separation process of platinum group metals, but solvent extraction is preferred due to its superior economy and operability. Widely adopted.
  • Various metal extractants have been developed for use in solvent extraction methods. For example, dialkyl sulfide and tributyl phosphate are used as metal extractants for palladium and platinum (for example, Patent Documents 1 and 2), and the former is used for back extraction with an ammonia aqueous solution, and the latter is used for back extraction with water.
  • dialkyl sulfide and the acidic aqueous solution are in contact for a long time, the sulfide moiety of the dialkyl sulfide is oxidized, and the palladium extraction ability is reduced, resulting in poor reusability. Additionally, dialkyl sulfides have a slow palladium extraction rate. Furthermore, when tributyl phosphate is used, there is a problem in that the selectivity to platinum is low. Under these circumstances, there is a need for compounds useful as metal extractants.
  • An object of the present disclosure is to provide a compound with excellent metal extraction ability and a metal extractant containing this compound.
  • a compound represented by the following formula (1) Ar is an arylene group, R 1 is a monovalent group represented by the following formula (2), and R 2 is 1 represented by the following formula (3). It is the basis of valence.
  • R 3 is a hydrogen atom or an optionally branched alkyl group, m is an integer of 1 or more, and * represents the bonding position with Ar.
  • R 4 is a hydrogen atom or an optionally branched alkyl group, n is an integer of 1 or more, and * represents the bonding position with Ar.
  • R 5 to R 10 are a monovalent group represented by the formula (2) and a monovalent group represented by the formula (3), The remaining four are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched atom. (Adjacent two of the remaining four groups may form a benzene ring or a heterocycle.) [3] In the compound represented by the above formula (4), R 5 is a monovalent group represented by the above formula (2), and R 7 is a monovalent group represented by the above formula (3).
  • R is a hydrogen atom or a hydrocarbon group which may be branched
  • R 11 is CH 2 , NH, O, S or PH
  • R 12 to R 13 are each independently CH or N
  • two of R 5 to R 8 are a monovalent group represented by the formula (2) and a monovalent group represented by the formula (3).
  • the remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched R 14 and R 16 are each independently CH or N, and R 15 is NH, O or S.
  • R 5 ⁇ R 8 two are the monovalent group represented by the above formula (2) and the monovalent group represented by the above formula (3), and the remaining two are each independently, OR, NR 2 , R is a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR or a salt thereof, R is a hydrogen atom or a hydrocarbon group which may be branched, R 17 to R 20 are each independently CH or N.
  • [5] The compound according to the above [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
  • [6] The compound according to the above [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-2).
  • the compound of the embodiment is a compound represented by the following formula (1).
  • Ar is an arylene group
  • R 1 is a monovalent group represented by the following formula (2)
  • R 2 is a monovalent group represented by the following formula (3). It is the basis of
  • R 3 is a hydrogen atom or an optionally branched alkyl group
  • m is an integer of 1 or more
  • * represents the bonding position with Ar.
  • R 4 is a hydrogen atom or an optionally branched alkyl group
  • n is an integer of 1 or more
  • * represents the bonding position with Ar.
  • Ar which is an arylene group, has one or more aromatic rings.
  • the monovalent group represented by the above formula (2) and the monovalent group represented by the above formula (3) may be bonded to the same aromatic ring. , may be bonded to different aromatic rings.
  • the compound represented by formula (1) has the group of formula (2) above and the group of formula (3) above that bond to Ar, the compound has excellent metal extraction ability.
  • the compound represented by formula (1) is a compound represented by formula (4) below, the metal extraction ability of the compound is further improved.
  • R 5 to R 10 are the monovalent group represented by the above formula (2) and the monovalent group represented by the above formula (3), and the remaining The four are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched Two of the remaining four groups may form a benzene ring or a heterocycle. The two adjacent ones are, for example, R 9 and R 10 .
  • the compound represented by formula (4) is such that R 5 is a monovalent group represented by the above formula (2), and R 7 is the monovalent group represented by the above formula (3).
  • the compound represented by the above formula (1) is a compound represented by any of the following formulas (4) to (7), the metal extraction ability of the compound is further improved.
  • two of R 5 to R 10 are the monovalent group represented by the above formula (2) and the monovalent group represented by the above formula (3), and the remaining Four are hydrogen atoms.
  • two of R 5 to R 8 are a monovalent group represented by the above formula (2) and a monovalent group represented by the above formula (3).
  • the remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched
  • R 11 is CH 2 , NH, O, S or PH
  • R 12 to R 13 are each independently CH or N.
  • two of R 5 to R 8 are a monovalent group represented by the above formula (2) and a monovalent group represented by the above formula (3). , the remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched R 14 and R 16 are each independently CH or N, and R 15 is NH, O or S. Furthermore, in the above formula (7), two of R 5 to R 8 are a monovalent group represented by the above formula (2) and a monovalent group represented by the above formula (3).
  • R is a hydrogen atom or a branched R 17 to R 20 are each independently CH or N.
  • m in formula (2) is preferably an odd number of 1 or more and 9 or less, and more preferably 1.
  • R 3 in formula (2) is preferably a linear or branched alkyl group, and more preferably a methyl group.
  • n in formula (3) is preferably an odd number of 1 or more and 9 or less, and more preferably 1, from the viewpoint of improving the metal extraction ability of the compound.
  • R 4 in formula (3) is preferably a linear or branched alkyl group, and more preferably a methyl group.
  • the number of sulfide groups constituting the monovalent group represented by formula (2) or formula (3) will be an even number, so the sulfur atom of this sulfide group will efficiently attach to the metal. It is believed that the bidentate coordination improves the metal extraction ability of the compound.
  • the sulfur atoms of the two sulfide groups constituting the monovalent group represented by formula (2) or formula (3) are coordinated bidentately, and Since the sulfur atom of the sulfide group constituting the other monovalent group in the compound or the monovalent group represented by formula (2) or formula (3) in another molecule is likely to coordinate, the metal of the compound It is thought that the extraction ability will be further improved.
  • the compound of formula (1) is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), or a compound represented by the following formula (1).
  • a compound represented by -3) is preferable.
  • the compounds of formulas (1-1) to (1-3) above are metal extractants with a lower concentration of, for example, about 0.1mM than dibutylcarbitol (DBC), which is a gold extractant, and are The extraction rate can be greatly improved.
  • the compounds of formulas (1-1) to (1-3) above can be used at a lower concentration of, for example, 0.1 mM, compared to dihexyl sulfide (DHS) and dioctyl sulfide (DOS), which are extractants for palladium.
  • Metal extractants can significantly improve the palladium extraction rate.
  • the compound represented by the above formula (1-1) can be synthesized by the reaction represented by the following reaction formula.
  • o-Benzenedithiol, 2-Chloroethyl methyl sulfide and KOH are added to ethanol in a reaction vessel. Thereafter, the mixture was stirred for 4 hours under a nitrogen atmosphere and heated to reflux. The remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, once with HCl to treat excess KOH, followed by twice with distilled water to wash the organic phase, followed by aqueous NaOH solution. After contacting with water five times, dehydration is performed using sodium sulfate (Na 2 SO 4 ). After the solvent is distilled off, it is dried under reduced pressure at 100° C. to obtain the target compound of formula (1-1).
  • m-Benzenedithiol, 2-Chloroethyl methyl sulfide and KOH are added to ethanol in a reaction vessel. Thereafter, the mixture was stirred for 4 hours under a nitrogen atmosphere and heated to reflux. The remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, once with HCl to treat excess KOH, followed by twice with distilled water to wash the organic phase, followed by aqueous NaOH solution. After contacting with water five times, dehydration is performed using sodium sulfate (Na 2 SO 4 ). After the solvent is distilled off, the product is dried under reduced pressure at 100° C. to obtain the target compound of formula (1-2).
  • the compound represented by the above formula (1) has a high ability to extract metals in solvent extraction. Furthermore, this compound has the ability to extract multiple types of metals. In particular, compared to conventional metal extractants, the amount of one or more metals extracted in solvent extraction can be reduced by using a small amount of the compound represented by formula (1), in other words, by lowering the concentration of the compound in the metal extractant. can be increased. Therefore, the compound represented by formula (1) is suitably used as a metal extractant. Further, the compound represented by formula (1) can extract the metal to be extracted from a solution containing a platinum group metal.
  • the metal extractant of the embodiment includes the compound of the above embodiment, that is, the compound represented by the above formula (1).
  • Metal extractants are preferably used for solvent extraction.
  • a metal extractant has a high extraction ability not only for one type of metal but also for multiple types of metals. Among these, the metal extractant has excellent extraction ability for one or more metals selected from the group consisting of Pd, Au, Pt, Ru, Ag, Cu, Rh, Ni, and Co. , Pt, Ru, Ag, and Cu.
  • the form of the metal extractant can be selected as appropriate depending on the solvent extraction process.
  • the metal extractant may be composed only of the above-mentioned compounds, or may contain various functional substances in addition to the above-mentioned compounds as long as the metal extraction ability is not reduced.
  • the metal extraction method includes a contacting step of bringing an organic phase containing the compound of the above embodiment into contact with an acidic aqueous solution containing the metal.
  • a contacting step of bringing an organic phase containing the compound of the above embodiment into contact with an acidic aqueous solution containing the metal.
  • the above compound is dissolved in the solvent.
  • the solvent for the organic phase is a water-insoluble solvent and is not particularly limited as long as it can dissolve the above compound.
  • organic phase solvents examples include petroleum, mineral oils such as kerosene, aliphatic hydrocarbons such as hexane, heptane, and octane, aromatic hydrocarbons such as toluene and xylene, and halogens such as carbon tetrachloride, methylene chloride, chloroform, and ethylene chloride. solvents are preferred. Moreover, one type of solvent may be used alone, or two or more types of solvents may be used in combination.
  • the concentration of the above compound in the organic phase is preferably lower than the extractant concentration in conventional metal extractants.
  • the concentration of the above compound in the organic phase is preferably 0.05 mM or more and 0.50 mM or less, more preferably 0.05 mM or more and 0.40 mM or less.
  • the concentration of the above compound in the organic phase is preferably 0.05 mM or more and 0.50 mM or less, more preferably 0.05 mM or more and 0.25 mM or less.
  • the metal to be extracted is dissolved in hydrochloric acid.
  • concentration of hydrochloric acid is, for example, 0.01 M or more and 8.00 M or less, and from the viewpoint of increasing the extraction rate, it is preferably 0.01 M or more and 2.00 M or less, more preferably 0.01 M or more and 1.00 M or less, and even more preferably is 0.05M or more and 0.50M or less, particularly preferably 0.05M or more and 0.15M or less.
  • the concentration of metal in the acidic aqueous solution is not particularly limited, and is, for example, 1 ppm or more and 1000 ppm or less.
  • the acidic aqueous solution may contain metals other than the metal of the object to be extracted, as long as the metal extraction ability of the metal extractant is not impaired.
  • the acidic aqueous solution is an acid leachate obtained by treating waste containing at least the metal to be extracted with hydrochloric acid and turning it into an aqueous solution.
  • waste is preferably an automobile exhaust gas catalyst.
  • the temperature of the organic phase and the acidic aqueous solution to be brought into contact is below the boiling point of the solvent of the organic phase, for example, about 25°C.
  • the organic phase and the acidic aqueous solution are brought into contact with each other by shaking, stirring, or the like.
  • the number of shaking is 100 times/min or more and 500 times/min or less.
  • the metal extraction ability for not only one type of metal but also multiple types of metals can be improved. I can do it.
  • each example was performed using a metal extractant containing each compound.
  • the remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, followed by once with 2M HCl to dispose of excess KOH, followed by twice with distilled water to wash the organic phase. After contacting with 0.1M NaOH aqueous solution five times, dehydration was performed using sodium sulfate. After distilling off the solvent, the residue was dried under reduced pressure at 100°C to obtain a compound of formula (1-3). This compound was colorless and transparent crystal. The yield was 82.2%. The structure of this compound was confirmed by nuclear magnetic resonance spectrum and infrared absorption spectrum.
  • Example 1-1 An organic phase containing the compound of formula (1-1) at a concentration of 0.10 mM was prepared using chloroform. Further, using 0.02M hydrochloric acid, an acidic aqueous solution having a concentration of 0.1mM of Au, which is an object to be extracted, was prepared. Then, the organic phase and the acidic aqueous solution were shaken for 24 hours at room temperature and brought into contact with each other to extract Au. As a result, as shown in Table 1, the extraction rate of Au was 95.0%.
  • Example 1-2 Au was extracted in the same manner as in Example 1-1 except that the compound of formula (1-1) was changed to the compound of formula (1-2). Table 1 shows the extraction rate of Au.
  • Example 1-3 Au was extracted in the same manner as in Example 1-1 except that the compound of formula (1-1) was changed to the compound of formula (1-3).
  • Example 2-1 An organic phase containing the compound of formula (1-2) at a concentration of 0.10 mM was prepared using chloroform. Further, using 0.01M hydrochloric acid, an acidic aqueous solution having a concentration of 0.1mM of Pd, which is an object to be extracted, was prepared. Then, the organic phase and the acidic aqueous solution were shaken for 24 hours at room temperature and brought into contact with each other to extract Pd. As a result, as shown in Table 2, the extraction rate of Pd was 98.8%.
  • Example 2-2 Pd was extracted in the same manner as in Example 2-1 except that the compound of formula (1-2) was changed to the compound of formula (1-3). Table 2 shows the extraction rate of Pd.
  • the compound represented by formula (1) had a higher metal extraction rate than existing extractants. As described above, since the compound represented by formula (1) has excellent metal extraction ability, metals could be efficiently recovered in a small amount.

Abstract

A compound represented by formula (1). [In formula (1): Ar is an arylene group; R1 is a monovalent group represented by formula (2); and R2 is a monovalent group represented by formula (3). In formula (2): R3 is a hydrogen atom or an optionally branched alkyl group; m is an integer of 1 or greater; and * represents a bonding site to Ar. In formula (3): R4 is a hydrogen atom or an optionally branched alkyl group; n is an integer of 1 or greater; and * represents a bonding site to Ar.]

Description

化合物および金属抽出剤Compound and metal extractants
 本開示は、化合物および金属抽出剤に関する。 The present disclosure relates to compounds and metal extractants.
 パラジウムや白金などの金属は、自動車排ガス触媒に使用されている。近年では、排ガス規制の強化が世界的に広がり、こうした有用な金属の需要が高まっていることから、金属資源の安定確保は難しくなっている。このような金属は、高価であり、資源として貴重であることから、使用後に回収してリユースすることが行われている。 Metals such as palladium and platinum are used in automobile exhaust gas catalysts. In recent years, stricter exhaust gas regulations have spread worldwide and demand for these useful metals has increased, making it difficult to secure a stable supply of metal resources. Since such metals are expensive and valuable as resources, they are collected and reused after use.
 白金族金属の分離工程における精製には、電解析出法、イオン交換法、沈殿法、溶媒抽出法などが提案されているが、経済性や操作性に優れている理由から、溶媒抽出法が広く採用されている。そして、溶媒抽出法に使用される様々な金属抽出剤が開発されている。例えば、パラジウムおよび白金の金属抽出剤としてジアルキルスルフィドやトリブチルホスフェイトが用いられており(例えば、特許文献1~2)、前者ではアンモニア水溶液による逆抽出、後者では水による逆抽出が行われる。 Electrolytic deposition, ion exchange, precipitation, and solvent extraction methods have been proposed for purification in the separation process of platinum group metals, but solvent extraction is preferred due to its superior economy and operability. Widely adopted. Various metal extractants have been developed for use in solvent extraction methods. For example, dialkyl sulfide and tributyl phosphate are used as metal extractants for palladium and platinum (for example, Patent Documents 1 and 2), and the former is used for back extraction with an ammonia aqueous solution, and the latter is used for back extraction with water.
 しかしながら、上記の方法では、ジアルキルスルフィドと酸性水溶液とが長時間接触するため、ジアルキルスルフィドのスルフィド部位が酸化され、パラジウムの抽出能力が低下してしまい、再利用性に乏しい。さらには、ジアルキルスルフィドはパラジウムの抽出速度が遅い。また、トリブチルホスフェイトを使用する場合、白金に対する選択性が低いという問題がある。こうした状況から、金属抽出剤に有用な化合物が求められている。 However, in the above method, since the dialkyl sulfide and the acidic aqueous solution are in contact for a long time, the sulfide moiety of the dialkyl sulfide is oxidized, and the palladium extraction ability is reduced, resulting in poor reusability. Additionally, dialkyl sulfides have a slow palladium extraction rate. Furthermore, when tributyl phosphate is used, there is a problem in that the selectivity to platinum is low. Under these circumstances, there is a need for compounds useful as metal extractants.
特開平10-130744号公報Japanese Patent Application Publication No. 10-130744 特開2005-146326号公報Japanese Patent Application Publication No. 2005-146326
 本開示の目的は、金属抽出能に優れた化合物、およびこの化合物を含む金属抽出剤を提供することである。 An object of the present disclosure is to provide a compound with excellent metal extraction ability and a metal extractant containing this compound.
[1] 下記式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000012
(前記式(1)中、Arは、アリーレン基であり、Rは、下記式(2)で表される1価の基であり、Rは、下記式(3)で表される1価の基である。
Figure JPOXMLDOC01-appb-C000013
前記式(2)中、Rは、水素原子または分岐していてもよいアルキル基であり、mは1以上の整数であり、*は、Arとの結合位置を表す。
Figure JPOXMLDOC01-appb-C000014
前記式(3)中、Rは、水素原子または分岐していてもよいアルキル基であり、nは1以上の整数であり、*は、Arとの結合位置を表す。)
[2] 前記式(1)で表される化合物が下記式(4)で表される化合物である、上記[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000015
(前記式(4)中、R~R10のうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り4つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、前記残り4つのうちの隣接する2つがベンゼン環または複素環を形成してもよい。)
[3] 前記式(4)で表される化合物は、Rが前記式(2)で表される1価の基であり、Rが前記式(3)で表される1価の基であり、R~R、RおよびR~R10が水素原子であり、mおよびnが2である化合物を除く、上記[2]に記載の化合物。
[4] 前記式(1)で表される化合物が下記式(4)~(7)のいずれかで表される化合物である、上記[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(前記式(4)中、R~R10のうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り4つは、水素原子である。前記式(5)中、R~Rのうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R11は、CH、NH、O、SまたはPHであり、R12~R13は、それぞれ独立して、CHまたはNである。前記式(6)中、R~Rのうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R14およびR16は、それぞれ独立して、CHまたはNであり、R15は、NH、OまたはSである。前記式(7)中、R~Rのうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R17~R20は、それぞれ独立して、CHまたはNである。)
[5] 前記式(1)で表される化合物が下記式(1-1)で表される化合物である、上記[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000020
[6] 前記式(1)で表される化合物が下記式(1-2)で表される化合物である、上記[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000021
[7] 前記式(1)で表される化合物が下記式(1-3)で表される化合物である、上記[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000022
[8] 上記[1]~[7]のいずれか1つに記載の化合物を含む金属抽出剤。
[9] 前記金属抽出剤は、Pd、Au、Pt、Ru、Ag、Cu、Rh、NiおよびCoからなる群より選択される1種以上の金属を抽出する抽出剤である、上記[8]に記載の金属抽出剤。
[1] A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000012
(In the above formula (1), Ar is an arylene group, R 1 is a monovalent group represented by the following formula (2), and R 2 is 1 represented by the following formula (3). It is the basis of valence.
Figure JPOXMLDOC01-appb-C000013
In the formula (2), R 3 is a hydrogen atom or an optionally branched alkyl group, m is an integer of 1 or more, and * represents the bonding position with Ar.
Figure JPOXMLDOC01-appb-C000014
In the formula (3), R 4 is a hydrogen atom or an optionally branched alkyl group, n is an integer of 1 or more, and * represents the bonding position with Ar. )
[2] The compound according to the above [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000015
(In the formula (4), two of R 5 to R 10 are a monovalent group represented by the formula (2) and a monovalent group represented by the formula (3), The remaining four are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched atom. (Adjacent two of the remaining four groups may form a benzene ring or a heterocycle.)
[3] In the compound represented by the above formula (4), R 5 is a monovalent group represented by the above formula (2), and R 7 is a monovalent group represented by the above formula (3). The compound according to [2] above, excluding compounds in which R 3 to R 4 , R 6 and R 8 to R 10 are hydrogen atoms, and m and n are 2.
[4] The compound according to the above [1], wherein the compound represented by the formula (1) is a compound represented by any of the following formulas (4) to (7).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(In the formula (4), two of R 5 to R 10 are a monovalent group represented by the formula (2) and a monovalent group represented by the formula (3), The remaining four are hydrogen atoms.In the formula (5), two of R 5 to R 8 are the monovalent group represented by the formula (2) and the monovalent group represented by the formula (3). and the remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, R is a hydrogen atom or a hydrocarbon group which may be branched, R 11 is CH 2 , NH, O, S or PH, and R 12 to R 13 are each independently CH or N In the formula (6), two of R 5 to R 8 are a monovalent group represented by the formula (2) and a monovalent group represented by the formula (3). The remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched R 14 and R 16 are each independently CH or N, and R 15 is NH, O or S. In the formula (7), R 5 ~R 8 , two are the monovalent group represented by the above formula (2) and the monovalent group represented by the above formula (3), and the remaining two are each independently, OR, NR 2 , R is a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR or a salt thereof, R is a hydrogen atom or a hydrocarbon group which may be branched, R 17 to R 20 are each independently CH or N.)
[5] The compound according to the above [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000020
[6] The compound according to the above [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000021
[7] The compound according to the above [1], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-3).
Figure JPOXMLDOC01-appb-C000022
[8] A metal extractant containing the compound according to any one of [1] to [7] above.
[9] [8] above, wherein the metal extractant is an extractant that extracts one or more metals selected from the group consisting of Pd, Au, Pt, Ru, Ag, Cu, Rh, Ni, and Co. Metal extractants as described in .
 本開示によれば、金属抽出能に優れた化合物、およびこの化合物を含む金属抽出剤を提供することができる。 According to the present disclosure, it is possible to provide a compound with excellent metal extraction ability and a metal extractant containing this compound.
 以下、実施形態に基づき詳細に説明する。 Hereinafter, it will be described in detail based on the embodiment.
 本発明者らは、鋭意研究を重ねた結果、化合物を新たに合成し、この化合物が金属抽出能に優れていることを見出し、かかる知見に基づき本発明を完成させるに至った。 As a result of extensive research, the present inventors newly synthesized a compound, discovered that this compound has excellent metal extraction ability, and based on this knowledge, completed the present invention.
 実施形態の化合物は、下記式(1)で表される化合物である。 The compound of the embodiment is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記式(1)中、Arは、アリーレン基であり、Rは、下記式(2)で表される1価の基であり、Rは、下記式(3)で表される1価の基である。 In the above formula (1), Ar is an arylene group, R 1 is a monovalent group represented by the following formula (2), and R 2 is a monovalent group represented by the following formula (3). It is the basis of
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(2)中、Rは、水素原子または分岐していてもよいアルキル基であり、mは1以上の整数であり、*は、Arとの結合位置を表す。 In the above formula (2), R 3 is a hydrogen atom or an optionally branched alkyl group, m is an integer of 1 or more, and * represents the bonding position with Ar.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式(3)中、Rは、水素原子または分岐していてもよいアルキル基であり、nは1以上の整数であり、*は、Arとの結合位置を表す。 In the above formula (3), R 4 is a hydrogen atom or an optionally branched alkyl group, n is an integer of 1 or more, and * represents the bonding position with Ar.
 上記式(1)において、アリーレン基であるArは、1つ以上の芳香環を有する。Arが複数の芳香環を有する場合、上記式(2)で表される1価の基と上記式(3)で表される1価の基とは、同じ芳香環に結合されてもよいし、異なる芳香環に結合されてもよい。 In the above formula (1), Ar, which is an arylene group, has one or more aromatic rings. When Ar has multiple aromatic rings, the monovalent group represented by the above formula (2) and the monovalent group represented by the above formula (3) may be bonded to the same aromatic ring. , may be bonded to different aromatic rings.
 式(1)で表される化合物がArに結合する上記式(2)の基および上記式(3)の基を有すると、化合物は優れた金属抽出能を有する。 When the compound represented by formula (1) has the group of formula (2) above and the group of formula (3) above that bond to Ar, the compound has excellent metal extraction ability.
 また、式(1)で表される化合物が下記式(4)で表される化合物であると、化合物の金属抽出能がさらに向上する。 Furthermore, when the compound represented by formula (1) is a compound represented by formula (4) below, the metal extraction ability of the compound is further improved.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記式(4)中、R~R10のうち、2つは、上記式(2)で表される1価の基および上記式(3)で表される1価の基であり、残り4つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、当該残り4つのうちの隣接する2つがベンゼン環または複素環を形成してもよい。隣接する2つとは、例えば、RとR10である。 In the above formula (4), two of R 5 to R 10 are the monovalent group represented by the above formula (2) and the monovalent group represented by the above formula (3), and the remaining The four are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched Two of the remaining four groups may form a benzene ring or a heterocycle. The two adjacent ones are, for example, R 9 and R 10 .
 なかでも、金属抽出能を向上する観点から、式(4)で表される化合物は、Rが上記式(2)で表される1価の基であり、Rが上記式(3)で表される1価の基であり、R~R、RおよびR~R10が水素原子であり、mおよびnが2である化合物を除く、すなわち式(4)で表される化合物は、上記化合物以外であることが好ましい。 Among them, from the viewpoint of improving metal extraction ability, the compound represented by formula (4) is such that R 5 is a monovalent group represented by the above formula (2), and R 7 is the monovalent group represented by the above formula (3). A monovalent group represented by formula (4), except for compounds in which R 3 to R 4 , R 6 and R 8 to R 10 are hydrogen atoms, and m and n are 2, that is, a monovalent group represented by formula (4). It is preferable that the compound used is other than the above-mentioned compounds.
 また、上記式(1)で表される化合物が下記式(4)~下記式(7)のいずれかで表される化合物であると、化合物の金属抽出能がさらに向上する。 Furthermore, when the compound represented by the above formula (1) is a compound represented by any of the following formulas (4) to (7), the metal extraction ability of the compound is further improved.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記式(4)中、R~R10のうち、2つは、上記式(2)で表される1価の基および上記式(3)で表される1価の基であり、残り4つは、水素原子である。また、上記式(5)中、R~Rのうち、2つは、上記式(2)で表される1価の基および上記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R11は、CH、NH、O、SまたはPHであり、R12~R13は、それぞれ独立して、CHまたはNである。また、上記式(6)中、R~Rのうち、2つは、上記式(2)で表される1価の基および上記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R14およびR16は、それぞれ独立して、CHまたはNであり、R15は、NH、OまたはSである。また、上記式(7)中、R~Rのうち、2つは、上記式(2)で表される1価の基および上記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R17~R20は、それぞれ独立して、CHまたはNである。 In the above formula (4), two of R 5 to R 10 are the monovalent group represented by the above formula (2) and the monovalent group represented by the above formula (3), and the remaining Four are hydrogen atoms. Furthermore, in the above formula (5), two of R 5 to R 8 are a monovalent group represented by the above formula (2) and a monovalent group represented by the above formula (3). , the remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched R 11 is CH 2 , NH, O, S or PH, and R 12 to R 13 are each independently CH or N. Furthermore, in the above formula (6), two of R 5 to R 8 are a monovalent group represented by the above formula (2) and a monovalent group represented by the above formula (3). , the remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched R 14 and R 16 are each independently CH or N, and R 15 is NH, O or S. Furthermore, in the above formula (7), two of R 5 to R 8 are a monovalent group represented by the above formula (2) and a monovalent group represented by the above formula (3). , the remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched R 17 to R 20 are each independently CH or N.
 また、上記で説明した式において、化合物の金属抽出能を向上する観点から、式(2)のmは、1以上9以下の奇数であることが好ましく、1であることがより好ましい。また、同様の観点から、式(2)のRは、直鎖状または分岐状のアルキル基であることが好ましく、メチル基であることがより好ましい。 Furthermore, in the formula explained above, from the viewpoint of improving the metal extraction ability of the compound, m in formula (2) is preferably an odd number of 1 or more and 9 or less, and more preferably 1. Further, from the same viewpoint, R 3 in formula (2) is preferably a linear or branched alkyl group, and more preferably a methyl group.
 また、上記で説明した式において、化合物の金属抽出能を向上する観点から、式(3)のnは、1以上9以下の奇数であることが好ましく、1であることがより好ましい。また、同様の観点から、式(3)のRは、直鎖状または分岐状のアルキル基であることが好ましく、メチル基であることがより好ましい。 Further, in the formula explained above, n in formula (3) is preferably an odd number of 1 or more and 9 or less, and more preferably 1, from the viewpoint of improving the metal extraction ability of the compound. Further, from the same viewpoint, R 4 in formula (3) is preferably a linear or branched alkyl group, and more preferably a methyl group.
 mまたはnが奇数である場合、式(2)または式(3)で表される1価の基を構成するスルフィド基の数は偶数になるため、このスルフィド基の硫黄原子が金属に効率よく二座配位でき、化合物の金属抽出能が向上すると考えられる。特にmまたはnが1である場合、式(2)または式(3)で表される1価の基を構成する2つのスルフィド基の硫黄原子は二座で配位しつつ、さらに、同一分子内の他方の1価の基、または他の分子中の式(2)もしくは式(3)で表される1価の基を構成するスルフィド基の硫黄原子が配位しやすいため、化合物の金属抽出能がさらに向上すると考えられる。 When m or n is an odd number, the number of sulfide groups constituting the monovalent group represented by formula (2) or formula (3) will be an even number, so the sulfur atom of this sulfide group will efficiently attach to the metal. It is believed that the bidentate coordination improves the metal extraction ability of the compound. In particular, when m or n is 1, the sulfur atoms of the two sulfide groups constituting the monovalent group represented by formula (2) or formula (3) are coordinated bidentately, and Since the sulfur atom of the sulfide group constituting the other monovalent group in the compound or the monovalent group represented by formula (2) or formula (3) in another molecule is likely to coordinate, the metal of the compound It is thought that the extraction ability will be further improved.
 化合物の金属抽出能を向上する観点から、上記式(5)で表される化合物の好適例を以下に列挙する。 From the viewpoint of improving the metal extraction ability of the compound, preferred examples of the compound represented by the above formula (5) are listed below.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 また、化合物の金属抽出能を向上する観点から、上記式(6)で表される化合物の好適例を以下に列挙する。 Further, from the viewpoint of improving the metal extraction ability of the compound, preferred examples of the compound represented by the above formula (6) are listed below.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 また、化合物の金属抽出能を向上する観点から、上記式(7)で表される化合物の好適例を以下に列挙する。 Further, from the viewpoint of improving the metal extraction ability of the compound, preferred examples of the compound represented by the above formula (7) are listed below.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 また、化合物の金属抽出能を向上する観点から、上記式(4)~(7)で表される化合物以外の好適例を以下に列挙する。 In addition, from the viewpoint of improving the metal extraction ability of the compound, preferred examples other than the compounds represented by the above formulas (4) to (7) are listed below.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 なかでも、金属抽出能を向上する観点から、式(1)の化合物は、下記式(1-1)で表される化合物、下記式(1-2)で表される化合物または下記式(1-3)で表される化合物であることが好ましい。 Among them, from the viewpoint of improving metal extraction ability, the compound of formula (1) is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), or a compound represented by the following formula (1). A compound represented by -3) is preferable.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 上記式(1-1)~式(1-3)の化合物は、金の抽出剤であるジブチルカルビトール(DBC)に比べて、例えば0.1mM程度の低濃度の金属抽出剤で、金の抽出率を大幅に向上できる。また、上記式(1-1)~式(1-3)の化合物は、パラジウムの抽出剤であるジヘキシルスルフィド(DHS)やジオクチルスルフィド(DOS)に比べて、例えば0.1mM程度の低濃度の金属抽出剤で、パラジウムの抽出率を大幅に向上できる。 The compounds of formulas (1-1) to (1-3) above are metal extractants with a lower concentration of, for example, about 0.1mM than dibutylcarbitol (DBC), which is a gold extractant, and are The extraction rate can be greatly improved. In addition, the compounds of formulas (1-1) to (1-3) above can be used at a lower concentration of, for example, 0.1 mM, compared to dihexyl sulfide (DHS) and dioctyl sulfide (DOS), which are extractants for palladium. Metal extractants can significantly improve the palladium extraction rate.
 上記式(1-1)で表される化合物は、下記反応式で表される反応によって合成することができる。 The compound represented by the above formula (1-1) can be synthesized by the reaction represented by the following reaction formula.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 o-Benzenedithiol、2-Chloroethyl methyl sulfideおよびKOHを反応容器内のエタノールに投入する。その後、窒素雰囲気下において4時間攪拌し、加熱還流する。その後、クロロホルムを用いて反応容器内に残留する物質を分液漏斗に移動させ、余剰KOHの処理のためHClを1回、続いて有機相の洗浄のため蒸留水を2回、続いてNaOH水溶液を5回接触させた後、硫酸ナトリウム(NaSO)により脱水を行う。溶媒留去の後、100℃で減圧乾燥させて、目的物である式(1-1)の化合物を得ることができる。 o-Benzenedithiol, 2-Chloroethyl methyl sulfide and KOH are added to ethanol in a reaction vessel. Thereafter, the mixture was stirred for 4 hours under a nitrogen atmosphere and heated to reflux. The remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, once with HCl to treat excess KOH, followed by twice with distilled water to wash the organic phase, followed by aqueous NaOH solution. After contacting with water five times, dehydration is performed using sodium sulfate (Na 2 SO 4 ). After the solvent is distilled off, it is dried under reduced pressure at 100° C. to obtain the target compound of formula (1-1).
 また、上記式(1-2)で表される化合物は、下記反応式で表される反応によって合成することができる。 Furthermore, the compound represented by the above formula (1-2) can be synthesized by a reaction represented by the following reaction formula.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 m-Benzenedithiol、2-Chloroethyl methyl sulfideおよびKOHを反応容器内のエタノールに投入する。その後、窒素雰囲気下において4時間攪拌し、加熱還流する。その後、クロロホルムを用いて反応容器内に残留する物質を分液漏斗に移動させ、余剰KOHの処理のためHClを1回、続いて有機相の洗浄のため蒸留水を2回、続いてNaOH水溶液を5回接触させた後、硫酸ナトリウム(NaSO)により脱水を行う。溶媒留去の後、100℃で減圧乾燥させて、目的物である式(1-2)の化合物を得ることができる。 m-Benzenedithiol, 2-Chloroethyl methyl sulfide and KOH are added to ethanol in a reaction vessel. Thereafter, the mixture was stirred for 4 hours under a nitrogen atmosphere and heated to reflux. The remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, once with HCl to treat excess KOH, followed by twice with distilled water to wash the organic phase, followed by aqueous NaOH solution. After contacting with water five times, dehydration is performed using sodium sulfate (Na 2 SO 4 ). After the solvent is distilled off, the product is dried under reduced pressure at 100° C. to obtain the target compound of formula (1-2).
 また、上記式(1-3)で表される化合物は、下記反応式で表される反応によって合成することができる。 Furthermore, the compound represented by the above formula (1-3) can be synthesized by a reaction represented by the following reaction formula.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 p-Benzenedithiol、2-Chloroethyl methyl sulfideおよびKOHを反応容器内のエタノールに投入する。その後、窒素雰囲気下において4時間攪拌し、加熱還流する。その後、クロロホルムを用いて反応容器内に残留する物質を分液漏斗に移動させ、余剰KOHの処理のためHClを1回、続いて有機相の洗浄のため蒸留水を2回、続いてNaOH水溶液を5回接触させた後、硫酸ナトリウム(NaSO)により脱水を行う。溶媒留去の後、100℃で減圧乾燥させて、目的物である式(1-3)の化合物を得ることができる。 P-Benzenedithiol, 2-Chloroethyl methyl sulfide and KOH are added to ethanol in a reaction vessel. Thereafter, the mixture was stirred for 4 hours under a nitrogen atmosphere and heated to reflux. The remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, once with HCl to treat excess KOH, followed by twice with distilled water to wash the organic phase, followed by aqueous NaOH solution. After contacting with water five times, dehydration is performed using sodium sulfate (Na 2 SO 4 ). After the solvent is distilled off, it is dried under reduced pressure at 100° C. to obtain the target compound of formula (1-3).
 上記式(1)で表される化合物について、溶媒抽出における金属の抽出能が高い。さらに、この化合物は、複数種の金属に対する抽出能を有する。特に、従来の金属抽出剤に比べて、式(1)で表される化合物を少量で、換言すると、金属抽出剤中の化合物濃度を低濃度で、溶媒抽出における1種以上の金属の抽出量を増加できる。そのため、式(1)で表される化合物は、金属抽出剤に好適に用いられる。また、式(1)で表される化合物は、白金族金属を含む溶液から抽出対象物の金属を抽出できる。 The compound represented by the above formula (1) has a high ability to extract metals in solvent extraction. Furthermore, this compound has the ability to extract multiple types of metals. In particular, compared to conventional metal extractants, the amount of one or more metals extracted in solvent extraction can be reduced by using a small amount of the compound represented by formula (1), in other words, by lowering the concentration of the compound in the metal extractant. can be increased. Therefore, the compound represented by formula (1) is suitably used as a metal extractant. Further, the compound represented by formula (1) can extract the metal to be extracted from a solution containing a platinum group metal.
 次に、実施形態の金属抽出剤について説明する。 Next, the metal extractant of the embodiment will be explained.
 実施形態の金属抽出剤は、上記実施形態の化合物、すなわち上記式(1)で表される化合物を含む。金属抽出剤は、溶媒抽出に好適に用いられる。 The metal extractant of the embodiment includes the compound of the above embodiment, that is, the compound represented by the above formula (1). Metal extractants are preferably used for solvent extraction.
 金属抽出剤は、1種の金属のみならず、複数種の金属に対する高い抽出能を有する。なかでも、金属抽出剤は、Pd、Au、Pt、Ru、Ag、Cu、Rh、NiおよびCoからなる群より選択される1種以上の金属に対する抽出能に優れており、なかでもPd、Au、Pt、Ru、AgおよびCuからなる群より選択される1種以上の金属に対する抽出能にさらに優れている。 A metal extractant has a high extraction ability not only for one type of metal but also for multiple types of metals. Among these, the metal extractant has excellent extraction ability for one or more metals selected from the group consisting of Pd, Au, Pt, Ru, Ag, Cu, Rh, Ni, and Co. , Pt, Ru, Ag, and Cu.
 金属抽出剤の形態は、溶媒抽出のプロセスに応じて、適宜選択できる。金属抽出剤は、上記化合物のみから構成されてもよいし、金属抽出能を低下しなければ、上記化合物に加えて各種機能性物質を含んでもよい。 The form of the metal extractant can be selected as appropriate depending on the solvent extraction process. The metal extractant may be composed only of the above-mentioned compounds, or may contain various functional substances in addition to the above-mentioned compounds as long as the metal extraction ability is not reduced.
 次に、実施形態の金属抽出剤を用いた金属の抽出方法の一例について説明する。 Next, an example of a metal extraction method using the metal extractant of the embodiment will be described.
 金属の抽出方法は、上記実施形態の化合物を含む有機相と金属を含む酸性水溶液とを接触させる接触工程を有する。接触工程で有機相と酸性水溶液とを接触させることで、抽出対象物である金属を有機相に抽出できる。 The metal extraction method includes a contacting step of bringing an organic phase containing the compound of the above embodiment into contact with an acidic aqueous solution containing the metal. By bringing the organic phase into contact with the acidic aqueous solution in the contacting step, the metal to be extracted can be extracted into the organic phase.
 酸性水溶液に接触する前の有機相では、上記化合物が溶媒中に溶解されている。有機相の溶媒は、非水溶性の溶媒であり、上記化合物を溶解できれば特に限定されるものではない。 In the organic phase before contacting the acidic aqueous solution, the above compound is dissolved in the solvent. The solvent for the organic phase is a water-insoluble solvent and is not particularly limited as long as it can dissolve the above compound.
 有機相の溶媒としては、石油、ケロシンなどの鉱油、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、四塩化炭素、塩化メチレン、クロロホルム、塩化エチレンなどのハロゲン化溶媒が好適である。また、溶媒は、1種の溶媒を単独で用いてもよいし、2種以上の溶媒を組み合わせて使用してもよい。 Examples of organic phase solvents include petroleum, mineral oils such as kerosene, aliphatic hydrocarbons such as hexane, heptane, and octane, aromatic hydrocarbons such as toluene and xylene, and halogens such as carbon tetrachloride, methylene chloride, chloroform, and ethylene chloride. solvents are preferred. Moreover, one type of solvent may be used alone, or two or more types of solvents may be used in combination.
 有機相における上記化合物の濃度は、従来の金属抽出剤中の抽出剤濃度に比べて低いことが好ましい。特に、パラジウムの溶媒抽出では、有機相における上記化合物の濃度は、0.05mM以上0.50mM以下であることが好ましく、0.05mM以上0.40mM以下であることがより好ましい。また、金の溶媒抽出では、有機相における上記化合物の濃度は、0.05mM以上0.50mM以下であることが好ましく、0.05mM以上0.25mM以下であることがより好ましい。 The concentration of the above compound in the organic phase is preferably lower than the extractant concentration in conventional metal extractants. In particular, in the solvent extraction of palladium, the concentration of the above compound in the organic phase is preferably 0.05 mM or more and 0.50 mM or less, more preferably 0.05 mM or more and 0.40 mM or less. Further, in the solvent extraction of gold, the concentration of the above compound in the organic phase is preferably 0.05 mM or more and 0.50 mM or less, more preferably 0.05 mM or more and 0.25 mM or less.
 また、有機相に接触する前の酸性水溶液は、抽出対象物である金属が塩酸中に溶解されている。塩酸の濃度は、例えば0.01M以上8.00M以下であり、抽出率を高くする観点から、好ましくは0.01M以上2.00M以下、より好ましくは0.01M以上1.00M以下、さらに好ましくは0.05M以上0.50M以下、特に好ましくは0.05M以上0.15M以下である。 In addition, in the acidic aqueous solution before contacting the organic phase, the metal to be extracted is dissolved in hydrochloric acid. The concentration of hydrochloric acid is, for example, 0.01 M or more and 8.00 M or less, and from the viewpoint of increasing the extraction rate, it is preferably 0.01 M or more and 2.00 M or less, more preferably 0.01 M or more and 1.00 M or less, and even more preferably is 0.05M or more and 0.50M or less, particularly preferably 0.05M or more and 0.15M or less.
 酸性水溶液における金属の濃度は、特に限定されるものではなく、例えば1ppm以上1000ppm以下である。 The concentration of metal in the acidic aqueous solution is not particularly limited, and is, for example, 1 ppm or more and 1000 ppm or less.
 また、金属抽出剤の金属抽出能が損なわれなければ、酸性水溶液には、抽出対象物の金属以外の金属などが含まれてもよい。 Furthermore, the acidic aqueous solution may contain metals other than the metal of the object to be extracted, as long as the metal extraction ability of the metal extractant is not impaired.
 例えば、酸性水溶液は、少なくとも抽出対象物の金属を含む廃棄物を塩酸処理して水溶液化した酸浸出液である。このような廃棄物としては、好ましくは自動車排ガス触媒である。 For example, the acidic aqueous solution is an acid leachate obtained by treating waste containing at least the metal to be extracted with hydrochloric acid and turning it into an aqueous solution. Such waste is preferably an automobile exhaust gas catalyst.
 接触工程において、接触させる有機相および酸性水溶液の温度は、有機相の溶媒の沸点以下であり、例えば25℃程度である。接触工程では、有機相と酸性水溶液とを振とうや撹拌などによって互いに接触させる。例えば、振とうの振とう数は、100回/分以上500回/分以下である。 In the contacting step, the temperature of the organic phase and the acidic aqueous solution to be brought into contact is below the boiling point of the solvent of the organic phase, for example, about 25°C. In the contacting step, the organic phase and the acidic aqueous solution are brought into contact with each other by shaking, stirring, or the like. For example, the number of shaking is 100 times/min or more and 500 times/min or less.
 以上説明した実施形態によれば、上記化合物を新たに合成し、この新規の化合物を金属抽出剤に用いることによって、1種の金属のみならず、複数種の金属に対する金属抽出能を向上することができる。 According to the embodiment described above, by newly synthesizing the above compound and using this new compound as a metal extractant, the metal extraction ability for not only one type of metal but also multiple types of metals can be improved. I can do it.
 以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。 Although the embodiments have been described above, the present invention is not limited to the above embodiments, but includes all aspects included in the concept of the present disclosure and the scope of the claims, and may be variously modified within the scope of the present disclosure. be able to.
 次に、実施例および比較例について説明するが、本開示はこれら実施例に限定されるものではない。 Next, Examples and Comparative Examples will be described, but the present disclosure is not limited to these Examples.
 以下の化合物を合成した後、各化合物を含む金属抽出剤を用いて、各実施例を行った。 After synthesizing the following compounds, each example was performed using a metal extractant containing each compound.
(式(1-1)の化合物の合成)
 o-Benzenedithiol(0.5g、3.52mmol、ALDRICH)、1-Chloroethyl methyl sulfide(1.98g、17.6mmol、東京化成工業)およびKOH(1.578g、28.0mmol、関東化学)を反応容器内のエタノール(20mL、関東化学)に投入した。その後、窒素雰囲気下において4時間攪拌し、加熱還流した。この間、薄層クロマトグラフィー(TLC)によって反応の追跡を行った(展開溶媒 n-Hexane:Acetone=4:1)。その後、クロロホルムを用いて反応容器内に残留した物質を分液漏斗に移動させ、余剰KOHの処理のため2MのHClを1回、続いて有機相の洗浄のため蒸留水を2回、続いて0.1MのNaOH水溶液を5回接触させた後、硫酸ナトリウムにより脱水を行った。溶媒留去の後、100℃で減圧乾燥させて、式(1-1)の化合物を得た。この化合物は、薄黄色溶液であった。収率は87.4%であった。この化合物の構造は、核磁気共鳴スペクトルと赤外吸収スペクトルにて確認した。
(Synthesis of compound of formula (1-1))
o-Benzenedithiol (0.5 g, 3.52 mmol, ALDRICH), 1-Chloroethyl methyl sulfide (1.98 g, 17.6 mmol, Tokyo Kasei Kogyo) and KOH (1.578 g, 28.0 mmol, Kanto Kagaku) were placed in a reaction vessel. ethanol (20 mL, Kanto Kagaku). Thereafter, the mixture was stirred for 4 hours under a nitrogen atmosphere and heated to reflux. During this time, the reaction was monitored by thin layer chromatography (TLC) (developing solvent: n-Hexane:Acetone=4:1). The remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, followed by once with 2M HCl to dispose of excess KOH, followed by twice with distilled water to wash the organic phase. After contacting with 0.1M NaOH aqueous solution five times, dehydration was performed using sodium sulfate. After distilling off the solvent, it was dried under reduced pressure at 100°C to obtain a compound of formula (1-1). This compound was a pale yellow solution. The yield was 87.4%. The structure of this compound was confirmed by nuclear magnetic resonance spectrum and infrared absorption spectrum.
 分析結果は以下の通りであった。
 1H NMR (500 MHz, δ from TMS, CDCl3): 7.32 (2H, d), 7.18 (2H, d), 3.12 (4H, t), 2.73 (4H, t), 2.14 (6H, s)
 FT-IR (ATR, ν/cm-1): 2965, 2927, 1479, 1422
The analysis results were as follows.
1 H NMR (500 MHz, δ from TMS, CDCl 3 ): 7.32 (2H, d), 7.18 (2H, d), 3.12 (4H, t), 2.73 (4H, t), 2.14 (6H, s)
FT-IR (ATR, ν/cm -1 ): 2965, 2927, 1479, 1422
(式(1-2)の化合物の合成)
 m-Benzenedithiol(0.5g、3.52mmol、東京化成工業)、1-Chloroethyl methyl sulfide(1.98g、17.6mmol、東京化成工業)およびKOH(1.578g、28.0mmol、関東化学)を反応容器内のエタノール(20mL、関東化学)に投入した。その後、窒素雰囲気下において4時間攪拌し、加熱還流した。この間、薄層クロマトグラフィーによって反応の追跡を行った(展開溶媒 n-Hexane:Acetone=4:1)。その後、クロロホルムを用いて反応容器内に残留した物質を分液漏斗に移動させ、余剰KOHの処理のため2MのHClを1回、続いて有機相の洗浄のため蒸留水を2回、続いて0.1MのNaOH水溶液を5回接触させた後、硫酸ナトリウムにより脱水を行った。溶媒留去の後、100℃で減圧乾燥させて、式(1-2)の化合物を得た。この化合物は、薄黄色溶液であった。収率は92.5%であった。この化合物の構造は、核磁気共鳴スペクトルと赤外吸収スペクトルにて確認した。
(Synthesis of compound of formula (1-2))
m-Benzenedithiol (0.5g, 3.52mmol, Tokyo Kasei Kogyo), 1-Chloroethyl methyl sulfide (1.98g, 17.6mmol, Tokyo Kasei Kogyo) and KOH (1.578g, 28.0mmol, Kanto Kagaku). The mixture was poured into ethanol (20 mL, Kanto Kagaku) in a reaction container. Thereafter, the mixture was stirred for 4 hours under a nitrogen atmosphere and heated to reflux. During this time, the reaction was followed by thin layer chromatography (developing solvent: n-Hexane:Acetone=4:1). The remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, followed by once with 2M HCl to dispose of excess KOH, followed by twice with distilled water to wash the organic phase. After contacting with 0.1M NaOH aqueous solution five times, dehydration was performed using sodium sulfate. After distilling off the solvent, it was dried under reduced pressure at 100°C to obtain a compound of formula (1-2). This compound was a pale yellow solution. The yield was 92.5%. The structure of this compound was confirmed by nuclear magnetic resonance spectrum and infrared absorption spectrum.
 分析結果は以下の通りであった。
 1H NMR (500 MHz, δ from TMS, CDCl3): 7.38 (1H, s), 7.21 (1H, t), 7.18 (2H, d), 3.12 (4H, t), 2.72 (4H, t), 2.14 (6H, s)
 FT-IR (ATR, ν/cm-1): 2968, 2913, 1570, 1463, 1427
The analysis results were as follows.
1 H NMR (500 MHz, δ from TMS, CDCl 3 ): 7.38 (1H, s), 7.21 (1H, t), 7.18 (2H, d), 3.12 (4H, t), 2.72 (4H, t), 2.14 (6H, s)
FT-IR (ATR, ν/cm -1 ): 2968, 2913, 1570, 1463, 1427
(式(1-3)の化合物の合成)
 p-Benzenedithiol(0.5g、3.52mmol、東京化成工業)、1-Chloroethyl methyl sulfide(1.98g、17.6mmol、東京化成工業)およびKOH(1.578g、28.0mmol、関東化学)を反応容器内のエタノール(20mL、関東化学)に投入した。その後、窒素雰囲気下において4時間攪拌し、加熱還流した。この間、薄層クロマトグラフィーによって反応の追跡を行った(展開溶媒 n-Hexane:Acetone=4:1)。その後、クロロホルムを用いて反応容器内に残留した物質を分液漏斗に移動させ、余剰KOHの処理のため2MのHClを1回、続いて有機相の洗浄のため蒸留水を2回、続いて0.1MのNaOH水溶液を5回接触させた後、硫酸ナトリウムにより脱水を行った。溶媒留去の後、100℃で減圧乾燥させて、式(1-3)の化合物を得た。この化合物は、無色透明結晶であった。収率は82.2%であった。この化合物の構造は、核磁気共鳴スペクトルと赤外吸収スペクトルにて確認した。
(Synthesis of compound of formula (1-3))
p-Benzenedithiol (0.5 g, 3.52 mmol, Tokyo Kagaku Kogyo), 1-Chloroethyl methyl sulfide (1.98 g, 17.6 mmol, Tokyo Kagaku Kogyo) and KOH (1.578 g, 28.0 mmol, Kanto Kagaku). The mixture was poured into ethanol (20 mL, Kanto Kagaku) in a reaction container. Thereafter, the mixture was stirred for 4 hours under a nitrogen atmosphere and heated to reflux. During this time, the reaction was followed by thin layer chromatography (developing solvent: n-Hexane:Acetone=4:1). The remaining material in the reaction vessel was then transferred to a separatory funnel using chloroform, followed by once with 2M HCl to dispose of excess KOH, followed by twice with distilled water to wash the organic phase. After contacting with 0.1M NaOH aqueous solution five times, dehydration was performed using sodium sulfate. After distilling off the solvent, the residue was dried under reduced pressure at 100°C to obtain a compound of formula (1-3). This compound was colorless and transparent crystal. The yield was 82.2%. The structure of this compound was confirmed by nuclear magnetic resonance spectrum and infrared absorption spectrum.
 分析結果は以下の通りであった。
 1H NMR (500 MHz, δ from TMS, CDCl3): 7.28 (4H, s), 3.10 (4H, t), 2.70 (4H, t), 2.13 (6H, s)
 FT-IR (ATR, ν/cm-1): 2965, 2927, 1480, 1422
The analysis results were as follows.
1 H NMR (500 MHz, δ from TMS, CDCl 3 ): 7.28 (4H, s), 3.10 (4H, t), 2.70 (4H, t), 2.13 (6H, s)
FT-IR (ATR, ν/cm -1 ): 2965, 2927, 1480, 1422
(実施例1-1)
 クロロホルムを用いて、式(1-1)の化合物の濃度が0.10mMの有機相を調製した。また、0.02Mの塩酸を用いて、抽出対象物であるAuの濃度が0.1mMの酸性水溶液を調製した。そして、常温下、有機相と酸性水溶液とを24時間振とうして互いに接触させて、Auの抽出を行った。その結果、表1に示すように、Auの抽出率は95.0%であった。
(Example 1-1)
An organic phase containing the compound of formula (1-1) at a concentration of 0.10 mM was prepared using chloroform. Further, using 0.02M hydrochloric acid, an acidic aqueous solution having a concentration of 0.1mM of Au, which is an object to be extracted, was prepared. Then, the organic phase and the acidic aqueous solution were shaken for 24 hours at room temperature and brought into contact with each other to extract Au. As a result, as shown in Table 1, the extraction rate of Au was 95.0%.
(実施例1-2)
 式(1-1)の化合物を式(1-2)の化合物に変更した以外は実施例1-1と同様にして、Auの抽出を行った。Auの抽出率を表1に示す。
(Example 1-2)
Au was extracted in the same manner as in Example 1-1 except that the compound of formula (1-1) was changed to the compound of formula (1-2). Table 1 shows the extraction rate of Au.
(実施例1-3)
 式(1-1)の化合物を式(1-3)の化合物に変更した以外は実施例1-1と同様にして、Auの抽出を行った。
(Example 1-3)
Au was extracted in the same manner as in Example 1-1 except that the compound of formula (1-1) was changed to the compound of formula (1-3).
(比較例1-1)
 式(1-1)の化合物をジブチルカルビトール(DBC)に変更した以外は実施例1-1と同様にして、Auの抽出を行った。
(Comparative example 1-1)
Au was extracted in the same manner as in Example 1-1 except that the compound of formula (1-1) was changed to dibutyl carbitol (DBC).
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
(実施例2-1)
 クロロホルムを用いて、式(1-2)の化合物の濃度が0.10mMの有機相を調製した。また、0.01Mの塩酸を用いて、抽出対象物であるPdの濃度が0.1mMの酸性水溶液を調製した。そして、常温下、有機相と酸性水溶液とを24時間振とうして互いに接触させて、Pdの抽出を行った。その結果、表2に示すように、Pdの抽出率は98.8%であった。
(Example 2-1)
An organic phase containing the compound of formula (1-2) at a concentration of 0.10 mM was prepared using chloroform. Further, using 0.01M hydrochloric acid, an acidic aqueous solution having a concentration of 0.1mM of Pd, which is an object to be extracted, was prepared. Then, the organic phase and the acidic aqueous solution were shaken for 24 hours at room temperature and brought into contact with each other to extract Pd. As a result, as shown in Table 2, the extraction rate of Pd was 98.8%.
(実施例2-2)
 式(1-2)の化合物を式(1-3)の化合物に変更した以外は実施例2-1と同様にして、Pdの抽出を行った。Pdの抽出率を表2に示す。
(Example 2-2)
Pd was extracted in the same manner as in Example 2-1 except that the compound of formula (1-2) was changed to the compound of formula (1-3). Table 2 shows the extraction rate of Pd.
(比較例2-1)
 式(1-2)の化合物をジヘキシルスルフィド(DHS)に変更した以外は実施例2-1と同様にして、Pdの抽出を行った。
(Comparative example 2-1)
Pd was extracted in the same manner as in Example 2-1 except that the compound of formula (1-2) was changed to dihexyl sulfide (DHS).
(比較例2-2)
 式(1-2)の化合物をジオクチルスルフィド(DOS)に変更した以外は実施例2-1と同様にして、Pdの抽出を行った。
(Comparative example 2-2)
Pd was extracted in the same manner as in Example 2-1 except that the compound of formula (1-2) was changed to dioctyl sulfide (DOS).
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 表1~2に示すように、式(1)で表される化合物は、既存の抽出剤に比べて金属の抽出率が高かった。このように、式(1)で表される化合物は、金属抽出能に優れているため、少量で効率的に金属を回収できた。 As shown in Tables 1 and 2, the compound represented by formula (1) had a higher metal extraction rate than existing extractants. As described above, since the compound represented by formula (1) has excellent metal extraction ability, metals could be efficiently recovered in a small amount.

Claims (9)

  1.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)中、Arは、アリーレン基であり、Rは、下記式(2)で表される1価の基であり、Rは、下記式(3)で表される1価の基である。
    Figure JPOXMLDOC01-appb-C000002
    前記式(2)中、Rは、水素原子または分岐していてもよいアルキル基であり、mは1以上の整数であり、*は、Arとの結合位置を表す。
    Figure JPOXMLDOC01-appb-C000003
    前記式(3)中、Rは、水素原子または分岐していてもよいアルキル基であり、nは1以上の整数であり、*は、Arとの結合位置を表す。)
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1), Ar is an arylene group, R 1 is a monovalent group represented by the following formula (2), and R 2 is 1 represented by the following formula (3). It is the basis of valence.
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), R 3 is a hydrogen atom or an optionally branched alkyl group, m is an integer of 1 or more, and * represents the bonding position with Ar.
    Figure JPOXMLDOC01-appb-C000003
    In the formula (3), R 4 is a hydrogen atom or an optionally branched alkyl group, n is an integer of 1 or more, and * represents the bonding position with Ar. )
  2.  前記式(1)で表される化合物が下記式(4)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (前記式(4)中、R~R10のうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り4つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、前記残り4つのうちの隣接する2つがベンゼン環または複素環を形成してもよい。)
    The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (4), two of R 5 to R 10 are a monovalent group represented by the formula (2) and a monovalent group represented by the formula (3), The remaining four are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched atom. (Adjacent two of the remaining four groups may form a benzene ring or a heterocycle.)
  3.  前記式(4)で表される化合物は、Rが前記式(2)で表される1価の基であり、Rが前記式(3)で表される1価の基であり、R~R、RおよびR~R10が水素原子であり、mおよびnが2である化合物を除く、請求項2に記載の化合物。 In the compound represented by the formula (4), R 5 is a monovalent group represented by the formula (2), R 7 is a monovalent group represented by the formula (3), The compound according to claim 2, excluding compounds in which R 3 to R 4 , R 6 and R 8 to R 10 are hydrogen atoms, and m and n are 2.
  4.  前記式(1)で表される化合物が下記式(4)~(7)のいずれかで表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (前記式(4)中、R~R10のうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り4つは、水素原子である。前記式(5)中、R~Rのうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R11は、CH、NH、O、SまたはPHであり、R12~R13は、それぞれ独立して、CHまたはNである。前記式(6)中、R~Rのうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R14およびR16は、それぞれ独立して、CHまたはNであり、R15は、NH、OまたはSである。前記式(7)中、R~Rのうち、2つは、前記式(2)で表される1価の基および前記式(3)で表される1価の基であり、残り2つは、それぞれ独立して、OR、NR、R、ハロゲン原子、COOH、SOH、COR、NOもしくはCHCORまたはこれらの塩であり、Rは、水素原子または分岐していてもよい炭化水素基であり、R17~R20は、それぞれ独立して、CHまたはNである。)
    The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by any of the following formulas (4) to (7).
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (In the formula (4), two of R 5 to R 10 are a monovalent group represented by the formula (2) and a monovalent group represented by the formula (3), The remaining four are hydrogen atoms.In the formula (5), two of R 5 to R 8 are the monovalent group represented by the formula (2) and the monovalent group represented by the formula (3). and the remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, R is a hydrogen atom or a hydrocarbon group which may be branched, R 11 is CH 2 , NH, O, S or PH, and R 12 to R 13 are each independently CH or N In the formula (6), two of R 5 to R 8 are a monovalent group represented by the formula (2) and a monovalent group represented by the formula (3). The remaining two are each independently OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, and R is a hydrogen atom or a branched R 14 and R 16 are each independently CH or N, and R 15 is NH, O or S. In the formula (7), R 5 ~R 8 , two are a monovalent group represented by the above formula (2) and a monovalent group represented by the above formula (3), and the remaining two are each independently, OR, NR 2 , R, a halogen atom, COOH, SO 3 H, COR, NO 2 or CH 3 COR, or a salt thereof, R is a hydrogen atom or a hydrocarbon group which may be branched, R 17 to R 20 are each independently CH or N.)
  5.  前記式(1)で表される化合物が下記式(1-1)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000009
  6.  前記式(1)で表される化合物が下記式(1-2)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000010
    The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000010
  7.  前記式(1)で表される化合物が下記式(1-3)で表される化合物である、請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
    The compound according to claim 1, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-3).
    Figure JPOXMLDOC01-appb-C000011
  8.  請求項1~7のいずれか1項に記載の化合物を含む金属抽出剤。 A metal extractant comprising the compound according to any one of claims 1 to 7.
  9.  前記金属抽出剤は、Pd、Au、Pt、Ru、Ag、Cu、Rh、NiおよびCoからなる群より選択される1種以上の金属を抽出する抽出剤である、請求項8に記載の金属抽出剤。 The metal according to claim 8, wherein the metal extractant is an extractant that extracts one or more metals selected from the group consisting of Pd, Au, Pt, Ru, Ag, Cu, Rh, Ni, and Co. extractant.
PCT/JP2023/028161 2022-08-23 2023-08-01 Compound and metal extractant WO2024043020A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022132781A JP2024030174A (en) 2022-08-23 2022-08-23 Compound and metal extractants
JP2022-132781 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024043020A1 true WO2024043020A1 (en) 2024-02-29

Family

ID=90013042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028161 WO2024043020A1 (en) 2022-08-23 2023-08-01 Compound and metal extractant

Country Status (2)

Country Link
JP (1) JP2024030174A (en)
WO (1) WO2024043020A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892656A (en) * 2015-06-16 2015-09-09 广东工业大学 Metal-organic framework material and synthetic method thereof
WO2017025244A1 (en) * 2015-08-07 2017-02-16 L'oreal Cosmetic process for treating keratin materials
CN112500577A (en) * 2020-11-18 2021-03-16 广东工业大学 Functionalized metal-organic framework material and preparation method and application thereof
JP2022531565A (en) * 2019-04-26 2022-07-07 ビーエーエスエフ ソシエタス・ヨーロピア A method for preparing a compound having at least one alkylene group and at least one thiol group or thiolate group.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892656A (en) * 2015-06-16 2015-09-09 广东工业大学 Metal-organic framework material and synthetic method thereof
WO2017025244A1 (en) * 2015-08-07 2017-02-16 L'oreal Cosmetic process for treating keratin materials
JP2022531565A (en) * 2019-04-26 2022-07-07 ビーエーエスエフ ソシエタス・ヨーロピア A method for preparing a compound having at least one alkylene group and at least one thiol group or thiolate group.
CN112500577A (en) * 2020-11-18 2021-03-16 广东工业大学 Functionalized metal-organic framework material and preparation method and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CALEB D. FAST, JASON WOODS, JARED LENTCHNER, TREVOR A. MAKAL: "Stabilizing defects in metal–organic frameworks: pendant Lewis basic sites as capping agents in UiO-66-type MOFs toward highly stable and defective porous materials", DALTON TRANSACTIONS, RSC - ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, vol. 48, no. 39, 7 October 2019 (2019-10-07), Cambridge , pages 14696 - 14704, XP055688100, ISSN: 1477-9226, DOI: 10.1039/C9DT03004B *
CHAROONNIYOMPORN, P. THONGPANCHANG, T. WITAYAKRAN, S. THEBTARANONTH, Y. PHILLIPS, K.E.S. KATZ, T.J.: "An efficient one-pot synthesis of bisalkylthioarenes", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 45, no. 3, 12 January 2004 (2004-01-12), Amsterdam , NL , pages 457 - 459, XP004627386, ISSN: 0040-4039, DOI: 10.1016/j.tetlet.2003.11.015 *
LIU JIE, LIU SHANYONG, MA JIEYU, DIAO YINGXUE, LI MUQING, HE JUN, CHEN SHUORAN, ZHANG QIANLI: "A Stable 2D Zr(IV)-Based Metal–Organic Framework (USTS-7) for Selective Sensing of Cr 2 O 7 2– in Aqueous Solution", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 59, no. 24, 21 December 2020 (2020-12-21), Easton , US , pages 17884 - 17888, XP093142838, ISSN: 0020-1669, DOI: 10.1021/acs.inorgchem.0c03379 *
MUSIAL BONITA C., PEACH MICHAEL E.: "The thiolate anion as a nucleophile Part V. Reactions of ethanedithiol", JOURNAL OF FLUORINE CHEMISTRY, ELSEVIER, NL, vol. 7, no. 4, 1 April 1976 (1976-04-01), NL , pages 427 - 429, XP093142843, ISSN: 0022-1139, DOI: 10.1016/S0022-1139(00)82103-X *

Also Published As

Publication number Publication date
JP2024030174A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
JP5299962B2 (en) Palladium extractant and rapid separation and recovery method using the same
JPH0379411B2 (en)
WO2024043020A1 (en) Compound and metal extractant
DE2253594C2 (en) Process for the separation of a mixture of tertiary N-peralkylated polyalkylene polyamines
CN113481391B (en) Method for separating rare earth elements
Yamada et al. Selective extraction of precious metal from automotive catalyst residue by thiacalix [6] arene derivatives
JP6948698B2 (en) Palladium / Platinum Extractor, Palladium / Platinum Separation Method
JPS585700B2 (en) Oyoekikarajiyukinzoku Oyobi Hakukin Igaino
JP6708341B2 (en) Nitrogen-containing heterocyclic carbene-gold(I) complex with immobilized magnetic nanoparticles
CN113234001A (en) High-value utilization method of 2-sodium thioglycollate in tail liquid of thiourethane production
CN108383755B (en) Method for synthesizing alkene dinitrile compound
JP3848271B2 (en) N, N'-bisphosphonoalkanediamine compound, method for producing the same, and use thereof
JP2022125712A (en) Palladium extractant and palladium separation method
JP4102052B2 (en) Noble metal extractant comprising thioaniline derivative and method for separating noble metal using the same
JP7079978B2 (en) Palladium extractant, palladium extraction method, palladium recovery method, palladium extractor regeneration method, and palladium recovery method repeatedly.
JP6108448B2 (en) Extraction and separation method of platinum
CN113430373B (en) Method for separating rare earth elements
CN113429312B (en) N, N-dialkyl amide carboxylic acid compound and preparation method and application thereof
JP5008063B2 (en) Diphosphine core type amphiphilic dendrimer, process for producing the same, bidentate phosphine ligand and palladium-containing complex compound having a coordination structure thereof
Young et al. Synthetic approaches to mixed ligand chelators on tert-butylphenol–formaldehyde oligomer (PFO) platforms
Inokuma et al. Synthesis and complexing ability of azacrownophanes: The cyclodextrin catalysis of the photochemical cyclization reaction
EP3645497B1 (en) Process for the preparation of hydrocarbon soluble organometallic catalysts
US20170001942A1 (en) Method for synthesising dimethyl carbonate
JPH0446936B2 (en)
CN117069602A (en) Synthetic method of gamma-amino alcohol compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857135

Country of ref document: EP

Kind code of ref document: A1