WO2024042873A1 - Conductive paste, electrode, electronic component, and electronic device - Google Patents

Conductive paste, electrode, electronic component, and electronic device Download PDF

Info

Publication number
WO2024042873A1
WO2024042873A1 PCT/JP2023/024746 JP2023024746W WO2024042873A1 WO 2024042873 A1 WO2024042873 A1 WO 2024042873A1 JP 2023024746 W JP2023024746 W JP 2023024746W WO 2024042873 A1 WO2024042873 A1 WO 2024042873A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
metal particles
electrode
palladium
particles
Prior art date
Application number
PCT/JP2023/024746
Other languages
French (fr)
Japanese (ja)
Inventor
喜昭 吉井
滉平 森
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2024042873A1 publication Critical patent/WO2024042873A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to a conductive paste used for forming electrodes of electronic components, for example.
  • the present invention also relates to an electrode formed using the conductive paste, and an electronic component such as a chip resistor having the electrode.
  • FIG. 1 shows an example of a cross-sectional structure of a chip resistor 100.
  • the chip resistor 100 has a rectangular alumina substrate 102, and a resistor 104 and an extraction electrode 106 for extracting electricity from the resistor 104 are formed on the upper surface of the alumina substrate 102.
  • a lower surface electrode 108 is formed on the lower surface of the alumina substrate 102 for mounting the chip resistor 100 on the substrate.
  • a connection electrode 110 for connecting the extraction electrode 106 and the lower surface electrode 108 is formed on the end surface of the alumina substrate 102.
  • the extraction electrode 106 and the lower surface electrode 108 are each formed by applying a conductive paste to the upper and lower surfaces of the alumina substrate 102 by printing and then firing the paste.
  • a nickel plating film 112 and a tin plating film 114 are formed on the extraction electrode 106, the bottom electrode 108, and the connection electrode 110.
  • Patent Document 1 discloses a paste for a top electrode of a chip resistor, which is made by dispersing conductive powder, glass frit, and an inorganic binder in an organic vehicle.
  • Patent Document 2 discloses that the conductive particles contain (A) surface-treated metal particles containing Ag and Sn, (C) glass frit, and (B) binder resin, and (A) the weight of Sn in the conductive particles. Conductive pastes are disclosed in which the proportion is less than 10% by weight.
  • Electrodes are formed using conductive paste by firing the paste as described above, but due to the diversification of components due to the high performance of electronic devices and electronic components in recent years, consideration for environmental impact, productivity, etc. There is a need for the development of conductive pastes that can be fired at low temperatures.
  • One method for enabling low-temperature firing is a technique in which a glass component having a low softening point, such as a Bi 2 O 3 -B 2 O 3 system, is included in the paste (Patent Document 3).
  • the method of firing conductive paste at low temperatures reduces the thermal load on other electronic components such as adherends, and also reduces energy costs, making it an advantageous method for manufacturing high-definition electronic components.
  • the glass component with a low softening point as used in Patent Document 3 has high fluidity, it flows out to electronic components such as substrates that are adherends during firing. When the glass component flows out, the plating is applied to that area, causing a phenomenon called plating elongation in which the plating precipitates outside the electrode. Furthermore, since the glass component flows out together with the conductive particles in the paste, short circuits and migration may occur at the point where the glass component flows out.
  • the conductive paste may also contain factors that can cause electrode short-circuits.
  • BACKGROUND ART Large amounts of sulfur oxides are emitted into the atmosphere due to the combustion of fossil fuels in gasoline vehicles, thermal power plants, and the like. Furthermore, in sewage treatment plants, garbage treatment plants, and the like, sulfur is reduced by anaerobic bacteria and hydrogen sulfide is generated. Therefore, components containing sulfur, such as sulfur oxides and hydrogen sulfide, exist in the atmosphere.
  • electrodes whose main material is metal such as silver used in devices such as chip resistors require highly sulfidation-resistant electrodes.
  • the present invention is capable of suppressing the outflow of glass components from the electrode during firing even when containing a glass frit with a low softening point, and has excellent sulfidation resistance.
  • the purpose is to provide a conductive paste.
  • the present invention has the following configuration.
  • Configuration 1 includes (A) conductive particles; (B) a binder resin; (C) A conductive paste containing glass frit,
  • the conductive particles of (A) have metal particles and a surface treatment layer containing a palladium compound disposed on at least a portion of the surface of the metal particles,
  • the softening point of the glass frit (C) is 800°C or less, It is a conductive paste.
  • Structure 2 is the conductive paste of Structure 1, in which the content of the palladium compound contained in the surface treatment layer is 0.01 to 1.0 parts by weight based on 100 parts by weight of the metal particles.
  • Structure 3 is the conductive paste of Structure 1 or 2, in which the surface treatment layer further contains an organic substance.
  • Configuration 4 is the conductive paste of any one of Configurations 1 to 3, in which the metal particles contain 50% by weight or more of silver.
  • Configuration 5 is the conductive paste according to any one of Configurations 1 to 4, in which the conductive particles (A) have an average particle diameter (D50) of 0.1 to 10 ⁇ m.
  • Configuration 6 is the conductive paste of Configuration 5, in which the conductive particles (A) have an average particle diameter (D50) of 0.1 to 6 ⁇ m.
  • Structure 7 is an electrode obtained by firing or heat-treating the conductive paste of any of Structures 1 to 6 above.
  • Configuration 8 is an electronic component or electronic device that includes the electrode of Configuration 7.
  • a conductive paste that can suppress the outflow of glass components from the electrode during firing even when it contains a glass frit with a low softening point, and has excellent sulfidation resistance. be able to.
  • FIG. 2 is a schematic diagram showing an example of a cross-sectional structure of a chip resistor. It is a schematic diagram which shows the shape of the test piece for the sulfidation resistance test of an Example and a comparative example. It is an optical micrograph which shows the shape of the test print pattern of the test piece for the migration resistance test of an Example and a comparative example. 4 is an optical microscope photograph showing an enlarged view of the center of the optical microscope photograph of the test print pattern of the test piece for the migration resistance test shown in FIG. 3.
  • FIG. A scanning electron microscope (SEM) photograph of the surface of a fired conductive paste after a test piece prepared under the same conditions as in Example 3 was stored in a sulfur-containing gas atmosphere for 150 hours to sulfurize it.
  • SEM scanning electron microscope
  • FIG. 3 is a diagram showing changes over time in insulation resistance values of Example 1, Example 3, and Comparative Example 1 when an anti-migration test was conducted. This is a backscattered electron image (magnification: 500 times) taken by SEM of the side surface of the electrode thick film after firing in Examples 20 and 23 and Comparative Examples 6 and 9.
  • the conductive paste of this embodiment includes (A) conductive particles, (B) a binder resin, and (C) a glass frit with a softening point of 800° C. or less.
  • the conductive paste of this embodiment can be preferably used to form electrodes of electronic components such as chip resistors.
  • the conductive particles include metal particles and a surface treatment layer containing a palladium compound, which is disposed on at least a portion of the surface of the metal particles.
  • the conductive paste of this embodiment includes (A) conductive particles.
  • the conductive particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles.
  • the surface treatment layer is a thin film containing a palladium compound.
  • the surface treatment layer is formed by surface treating metal particles with the palladium compound.
  • conductive particles containing predetermined surface-treated metal particles can suppress sulfidation of the metal contained in the conductive particles. Therefore, by using the conductive paste of this embodiment, an electrode having high sulfidation resistance can be formed.
  • the inventors of the present invention have discovered that the (A) conductive particles of the conductive paste of this embodiment include predetermined surface-treated metal particles, thereby improving the migration resistance of the resulting electrode as an additional effect. We also found that it improved.
  • Migration resistance means a property capable of suppressing migration. Migration is when a voltage is applied to a pair of electrodes (a positive electrode and a negative electrode), and if water and/or water vapor is present near the electrodes, the metals contained in the electrodes and wiring become ionized, and the positive This is a phenomenon in which metal dendrites move from the electrode to the negative electrode and the insulation between wiring parts decreases. Further, migration may occur even in an atmosphere not affected by moisture, such as at 100° C. or higher or in a vacuum.
  • Migration resistance means such a property that can suppress migration, which has been widely known in the past.
  • a pair of electrodes may be short-circuited due to metal migration.
  • By improving migration resistance short circuits of the electrodes can be suppressed.
  • the advantage of improved migration resistance is not necessarily an essential effect of the conductive paste of this embodiment, but is considered to be one advantage.
  • the conductive particles can contain metals other than the surface-treated metal particles.
  • (A) conductive particles should contain 50% by weight of surface-treated metal particles. It is preferable to contain 80% by weight or more of surface-treated metal particles, still more preferably to contain 90% by weight or more of surface-treated metal particles, and it is particularly preferable to contain only surface-treated metal particles.
  • "(A) conductive particles consist only of surface-treated metal particles” means that (A) conductive particles do not intentionally contain any metal other than surface-treated metal particles. This does not exclude the inclusion of conductive particles other than the surface-treated metal particles that are inevitably mixed in.
  • the conductive particles can include metal particles of materials such as Zn, In, Al, and/or Si as metal particles other than the surface-treated metal particles, as long as the effects of this embodiment are not impaired.
  • the metal particles included in the surface-treated metal particles and the metal particles other than the surface-treated metal particles can be metal particles of an alloy.
  • the metal particles included in the surface-treated metal particles and the metal particles other than the surface-treated metal particles can include metal particles of a plurality of different types of metals or alloys.
  • the surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles.
  • the surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles.
  • the material of the metal particles whose surface is treated with a palladium compound As the material of the metal particles whose surface is treated with a palladium compound, Ag, Cu, In, Al, or an alloy thereof can be used. Since the electrical conductivity is relatively high, the material of the metal particles is preferably Ag and/or Cu, and more preferably Ag.
  • the metal particles preferably contain 50% by weight or more of silver (Ag), more preferably 80% by weight or more of silver (Ag), and 90% by weight of silver (Ag). It is more preferable to contain silver (Ag) in an amount of 95% by weight or more.
  • the metal particles of the surface-treated metal particles contained in the conductive paste of this embodiment consist only of silver (Ag) particles. This is because the electrical conductivity of silver is relatively high compared to other metals.
  • the metal particles of the surface-treated metal particles consist only of silver (Ag) particles means that metal particles other than silver (Ag) particles are intentionally not used as the metal particles. This does not preclude the inclusion of metal particles other than silver (Ag) particles that are unavoidably mixed. Similarly, other similar descriptions do not exclude substances that are unavoidably mixed.
  • the conductive paste of this embodiment preferably contains 50 parts by weight or more of surface-treated metal particles, more preferably 70 parts by weight or more, and still more preferably 80 parts by weight or more, based on 100 parts by weight of the conductive paste. preferable. Further, the conductive paste of the present embodiment preferably contains 50 to 99 parts by weight of surface-treated metal particles, more preferably 70 to 97 parts by weight or more, and 80 to 95 parts by weight, based on 100 parts by weight of the conductive paste. It is more preferable to include parts by weight. By being within the above range, it is possible to form an electrode at relatively low cost while having high sulfidation resistance and sufficiently exhibiting the effect of suppressing outflow of glass frit.
  • the method for producing metal particles is not particularly limited, and can be produced by, for example, a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, or a combination thereof.
  • Flake-shaped metal particles can be produced, for example, by crushing spherical or granular metal particles using a ball mill or the like.
  • the surface-treated metal particles include a surface treatment layer disposed on at least a portion of the surface of the metal particles.
  • the surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles by surface treating the metal particles with a surface treatment agent containing a palladium compound.
  • Palladium compounds that serve as raw materials for surface treatment of metal particles include palladium (II) chloride, palladium (II) oxide, organic palladium compounds, palladium fluoride, palladium on carbon, n-allyl palladium complex, cyclopentadienyl allyl palladium. , dichlorobis(triphenylphosphine)palladium (II), palladium bromide, and palladium complexes such as palladium fatty acid complexes such as palladium oleate. It is preferable to use palladium chloride as a palladium compound that is a raw material for surface treating metal particles.
  • the surface treatment layer can be formed by surface treatment using a palladium compound by a known method. Specifically, the surface treatment layer is formed by attaching a palladium soap solvent (surface treatment agent) containing palladium or palladium ions, an organic substance for dispersing these, and a solvent to the surface of the metal particles, and then applying the palladium soap solvent (surface treatment agent) containing palladium or palladium ions, an organic substance for dispersing these, and a solvent to the surface of the metal particles. , with the solvent removed. Thereby, a surface treatment layer containing a palladium compound can be formed on the surface of the metal particles.
  • a palladium soap solvent surface treatment agent
  • the surface of metal particles is coated with other metal particles through reduction treatment to form a core-shell structure, but when attempting to form a surface treatment layer using this technology, core particles (e.g. In order to deposit a shell (for example, palladium metal particles) on the surface of silver particles, the amount of palladium metal particles present in the shell increases. In other words, the amount of palladium used increases.
  • the surface treatment layer is formed with the palladium compound attached to the surface of the metal particles, the effect is that only a small amount of palladium is required. Palladium is an expensive metal due to its rarity and uneven distribution, and even in small amounts it has excellent sulfidation resistance, and the ability to suppress the outflow of glass components is an extremely important effect from a cost perspective.
  • the organic substance for dispersing palladium or palladium ions is preferably at least one selected from fatty acids and triazole compounds.
  • fatty acids include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, cabric acid, lauric acid, myristic acid, pentadecyl acid, palmitic acid, palmitoleic acid, margaric acid, and stearic acid.
  • fatty acids oleic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, cerotic acid, montanic acid, and At least one selected from melisic acid and the like can be used.
  • these fatty acids it is preferable to use at least one selected from palmitic acid, stearic acid, and oleic acid. It is more preferable to use oleic acid as the organic substance (fatty acid) contained in the surface treatment agent.
  • benzotriazole can be used as the triazole compound.
  • the solvent contained in the surface treatment agent for forming the surface treatment layer may be any solvent that can be used to disperse palladium or palladium ions and to properly adhere the palladium compound to the metal particles.
  • solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, N-methyl-2-pyrrolidone (NMP), etc.
  • N-alkylpyrrolidones amides such as N,N-dimethylformamide (DMF), ketones such as methyl ethyl ketone (MEK), cyclic carbonates such as terpineol (TEL), and diethylene glycol monobutyl ether (butyl carbitol, BC) , bis[2-(2-butoxyethoxy)ethyl]adipate, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate (Texanol), and water.
  • DMF N,N-dimethylformamide
  • MEK methyl ethyl ketone
  • TEL cyclic carbonates
  • TEL terpineol
  • BC diethylene glycol monobutyl ether
  • a surface treatment layer can be formed on the surface of the metal particles by attaching a surface treatment agent containing a solvent in which the above palladium compound is dispersed to the surface of the metal particles and removing the solvent by drying. In this way, surface-treated metal particles can be obtained.
  • the surface treatment layer of the surface treated metal particles can be manufactured as follows. That is, first, metal particles are dispersed in water. A solvent in which the above-mentioned palladium compound is dispersed is added as a coating agent to water in which metal particles are dispersed to obtain a water slurry containing metal particles coated with a coating agent containing palladium, and then the coating is performed by decantation. The metal particles coated with the agent are allowed to settle. Next, the supernatant liquid is removed, and the resulting wet metal particles coated with the coating material are added together with an acrylic dispersant to a polar solvent having a boiling point of 150 to 300°C.
  • surface-treated metal particles can be produced by drying in a nitrogen atmosphere at a temperature from room temperature to 100° C., preferably at a temperature of 80° C. or less for 12 hours or more to remove moisture. Note that if the drying temperature is too high, the surface-treated metal particles will be sintered, which is not preferable.
  • the surface treatment layer of the surface treated metal particles contained in the conductive paste of this embodiment further contains an organic substance.
  • the surface treatment layer when the surface treatment layer is formed using the above-mentioned palladium compound, the surface treatment layer contains an organic substance. Since the surface-treated metal particles have a surface-treated layer containing an organic substance, the resulting electrode can have high sulfidation resistance even if the amount of palladium compound is small.
  • the organic substance may be a liquid organic fatty acid or a solid fatty acid.
  • liquid fatty acids examples include saturated fatty acids such as butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, and pelargonic acid, as well as myristoleic acid, palmitoleic acid, ricinoleic acid, oleic acid, linoleic acid, and linolenic acid. Unsaturated fatty acids such as These fatty acids may be used alone or in combination of two or more. Among these, it is preferable to use oleic acid, linoleic acid, or a mixture thereof.
  • solid fatty acids include saturated fatty acids having 10 or more carbon atoms, such as capric acid, palmitic acid, and stearic acid, and unsaturated fatty acids, such as crotonic acid and sorbic acid.
  • the surface treatment layer of the surface treated metal particles used in this embodiment is a thin film of a palladium compound.
  • This embodiment is characterized in that the surface treatment layer of the surface treatment metal particles is not a thin film made of palladium metal or palladium alloy.
  • the surface treatment layer is a thin film made of palladium metal or palladium alloy, the amount of palladium blended is too large, which may cause adverse effects such as an increase in the electrical resistance of the resulting electrode.
  • a large amount of palladium metal or palladium alloy is present on the surface of the metal particles, which deteriorates the wettability of the solder to metal particles such as silver particles, increasing the possibility that soldering will be inhibited.
  • the amount of palladium used increases, the cost will be high.
  • the surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles.
  • the surface treatment layer is preferably a thin film that covers 50% or more of the surface of the metal particle, more preferably a thin film that covers 80% or more of the surface of the metal particle, and covers 90% or more of the surface of the metal particle.
  • a thin film is preferable, and a thin film covering 95% or more of the surface of the metal particles is particularly preferable.
  • the surface treatment layer is a thin film that covers the entire surface of the metal particles.
  • the thickness of the surface treatment layer of the surface-treated metal particles does not necessarily have to be uniform, but is preferably uniform in order to more effectively suppress sulfidation of the metal particles.
  • the thickness of the surface treatment layer can be controlled by, for example, controlling the viscosity of the palladium soap solvent (surface treatment agent) in which the palladium compound is dispersed, and the concentration of the palladium compound in the palladium soap solvent (surface treatment agent). It can be controlled by adjusting. Further, by controlling the thickness of the surface treatment layer, the amount of palladium contained in the surface treatment layer can be controlled.
  • the thickness of the surface treatment layer is preferably from 1 to 100 nm, more preferably from 1 to 70 nm, particularly preferably from 1 to 50 nm.
  • the thickness of the surface treatment layer can be measured, for example, by X-ray photoelectron spectroscopy. By setting the thickness of the surface treatment layer within this range, an electrode with high sulfidation resistance can be formed while using a small amount of palladium compound.
  • the conductive paste of this embodiment contains (A) surface-treated metal particles surface-treated with a palladium compound as the conductive particles, an electrode having high sulfidation resistance can be created without using a large amount of expensive palladium. can be formed. Therefore, by using the conductive paste of this embodiment, an electrode having high sulfidation resistance and relatively low cost can be formed. In particular, when silver particles are used as metal particles, silver is easily sulfurized. By using the conductive paste of this embodiment, it is possible to effectively suppress disconnection of an electrode mainly made of silver due to sulfurization at low cost.
  • the reason why sulfidation of the silver particles can be suppressed by using surface-treated metal particles (surface-treated silver particles) that have been surface-treated with a palladium compound is as follows. It can be inferred as follows. That is, it is presumed that palladium as a surface treatment component and metal particles form a uniform alloy layer through sintering, thereby improving the sulfidation resistance. Palladium in the palladium compound comes to exist as metal particles and a palladium metal alloy layer (if the metal particles are silver particles, a palladium-silver alloy layer) by firing at, for example, 400 to 900°C.
  • this palladium metal alloy layer imparts high sulfidation resistance to the metal particles.
  • the content of palladium contained in the surface treatment layer is not very large. Therefore, compared to the case where palladium particles are added separately, the amount of palladium used can be reduced, and high sulfidation resistance can be obtained at relatively low cost.
  • the electrode thus obtained has high sulfidation resistance and excellent adhesion to the substrate. Similar inferences can be made regarding metal particles other than silver particles. However, the present invention is not limited to this inference.
  • the migration resistance of the obtained electrode can be improved as an additional effect.
  • the reason why migration resistance can also be improved by using surface-treated metal particles (surface-treated silver particles) whose surface has been treated with a palladium compound is that by using surface-treated metal particles whose surface has been treated with a palladium compound, migration resistance can also be improved.
  • the density of the electrode is also improved. It is presumed that this improves migration resistance.
  • the present invention is not limited to this inference.
  • the content of palladium contained in the surface-treated metal particles is preferably 0.01 parts by weight or more, and preferably 0.05 parts by weight or more, based on 100 parts by weight of the metal particles.
  • the amount is more preferably 0.08 parts by weight or more, and particularly preferably 0.08 parts by weight or more.
  • the palladium content is preferably 1.0 parts by weight or less, more preferably 0.8 parts by weight or less, and 0.6 parts by weight or less based on 100 parts by weight of the metal particles. is more preferable, particularly preferably 0.4 parts by weight or less, and most preferably 0.3 parts by weight or less.
  • the content of palladium contained in the surface-treated metal particles is within the above range, the amount of palladium used is small, and the change in resistance value of the electrode due to sulfidation of the electrode can be reduced while the cost is low.
  • the content of palladium contained in the surface-treated metal particles can be measured by ICP emission spectrometry (high frequency inductively coupled plasma emission spectrometry).
  • the shape of the conductive particles is not particularly limited, and for example, spherical, granular, flaky, and/or scaly surface-treated metal particles can be used.
  • the average particle size of the conductive particles is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.2 ⁇ m to 8 ⁇ m, even more preferably 0.3 ⁇ m to 7 ⁇ m, particularly preferably 0.4 to 6 ⁇ m. It is.
  • the average particle diameter herein means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measurement method.
  • D50 volume-based median diameter
  • the average particle diameter (D50) of the conductive particles is larger than 10 ⁇ m, sinterability is poor and a dense film cannot be obtained.
  • the average particle diameter (D50) of (A) conductive particles is less than 0.1 ⁇ m, the dispersibility tends to deteriorate, making it difficult to obtain a uniform thin film when printing the conductive paste. There are cases.
  • the conductive paste of this embodiment includes (B) a binder resin.
  • the conductive paste of this embodiment includes (C) glass frit
  • the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and then baked at, for example, 400 to 900°C. Accordingly, electrodes can be formed.
  • the binder resin (B) is burned out during firing. Therefore, the function of (B) the binder resin is to (A) connect the conductive particles when the conductive paste of this embodiment is applied to a predetermined base material to form a predetermined electrode pattern. .
  • binder resin for example, cellulose resins such as ethyl cellulose resin and nitrocellulose resin, thermoplastic resins such as acrylic resin, alkyd resin, saturated polyester resin, butyral resin, polyvinyl alcohol, and hydroxypropyl cellulose may be used. I can do it. These resins can be used alone or in combination of two or more.
  • binder resin (B) it is preferable to use at least one selected from cellulose resins such as ethyl cellulose resins and nitrocellulose resins, and alkyd resins.
  • the conductive paste of this embodiment may contain an epoxy resin as the binder resin (B) in order to improve the adhesion between the surface-treated metal particles.
  • an epoxy resin as the binder resin (B) in order to improve the adhesion between the surface-treated metal particles.
  • any known epoxy resin can be used.
  • epoxy resins include bisphenol A type, bisphenol F type, biphenyl type, tetramethylbiphenyl type, cresol novolac type, phenol novolac type, bisphenol A novolac type, dicyclopentadienephenol condensation type, phenol aralkyl condensation type, and glycidylamine.
  • examples include epoxy resins such as molds, brominated epoxy resins, alicyclic epoxy resins, and aliphatic epoxy resins.
  • epoxy resins can be used alone or in combination of two or more.
  • a thermosetting resin other than epoxy resin may be used for the purpose of improving the adhesion between surface-treated metal particles.
  • thermoplastic resins such as polyurethane resins and/or polycarbonate resins may also be used.
  • the content of the binder resin (B) is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 15 parts by weight, and The amount is preferably 1 to 10 parts by weight, particularly preferably 1.5 to 8 parts by weight.
  • the content of the binder resin (B) in the conductive paste is within the above range, the applicability of the conductive paste to the substrate (base material) and/or the paste leveling properties are improved, resulting in an excellent printed shape. Obtainable.
  • the content of the binder resin (B) exceeds the above range, the amount of the binder resin (B) contained in the applied conductive paste is too large. Therefore, there is a possibility that electrodes and the like cannot be formed with high precision.
  • the conductive paste of this embodiment further includes (C) glass frit. Electrodes can be formed by applying the conductive paste of this embodiment to a predetermined base material so as to form a predetermined electrode pattern, and firing at, for example, 400 to 900°C. In this case, the above-mentioned binder resin (B) is burned out during firing. The shape of the electrode after firing can be maintained by connecting the (A) conductive particles together using the (C) glass frit contained in the conductive paste.
  • the glass frit is not particularly limited as long as it has a softening point of 800°C or lower, but preferably has a softening point of 250°C or higher, more preferably a softening point of 250 to 800°C, and even more preferably a softening point of 250 to 750°C. °C, particularly preferably a glass frit with a softening point of 300°C to 700°C.
  • a glass frit having a softening point of 800° C. or higher can also be used in combination without impairing the effects of the present invention.
  • the softening point of the glass frit can be measured using a thermogravimetric measuring device (for example, TG-DTA2000SA manufactured by BRUKER AXS).
  • glass frit (C) examples include borosilicate-based and barium borosilicate-based glass frits.
  • glass frits include bismuth borosilicate, alkali metal borosilicate, alkaline earth metal borosilicate, zinc borosilicate, lead borosilicate, lead borate, lead silicate, and bismuth borate. and zinc borate-based glass frits. These glass frits can also be used in combination of two or more types.
  • the glass frit is preferably lead-free from the viewpoint of environmental considerations.
  • the glass frit contains at least one selected from the group consisting of ZnO, Bi 2 O 3 , BaO, Na 2 O, CaO, and Al 2 O 3 . More preferably, the glass frit contains at least one selected from the group consisting of ZnO and Bi 2 O 3 .
  • the glass frit contains ZnO.
  • ZnO zinc-based glass frit
  • the glass frit contains Bi 2 O 3 .
  • the denseness of the electrode can be improved.
  • the average particle size of the glass frit is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 10 ⁇ m, particularly preferably 0.5 to 5 ⁇ m.
  • the average particle size here means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measurement method.
  • the content of (C) glass frit is preferably 0.05 to 10 parts by weight, more preferably 0.5 to 8 parts by weight, and 1 It is more preferably 6 parts by weight, and particularly preferably 2 to 4 parts by weight. If the content of glass frit is less than this range, the adhesion of the electrode obtained by firing the conductive paste to the substrate (base material) will decrease. If the content of glass frit is more than this range, the resistance value of the electrode obtained by firing the conductive paste will be high, and the surface of the fired body will be covered with the glass component, resulting in poor plating properties. Note that when the content of glass frit is relatively small, an electrode with low resistance can be obtained. Moreover, when the content of glass frit is relatively large, an electrode with excellent chemical resistance can be obtained.
  • Chemical resistance is a required property because plating pretreatment is required when forming a plating film on the surface of an electrode.
  • Plating pretreatment is performed for the purpose of removing contaminants from the electrode surface, activating the electrode surface, and bringing it into a clean state suitable for plating.
  • the pollutants that need to be removed can be broadly divided into organic and inorganic pollutants.
  • the pretreatment step is not a single step that removes all contaminants. For example, organic substances are removed in a process using an alkaline cleaning agent. Inorganic substances are removed in a process using acid-based cleaning agents. Therefore, electrodes are required to have high chemical resistance.
  • the conductive paste of this embodiment contains zinc oxide as the glass frit (C)
  • the Zn component in the glass frit precipitates as ZnO at the crystallization temperature.
  • the glass frit affects the sulfidation resistance of (A) conductive particles after firing, similar to the palladium in the surface-treated metal particles. It is possible to contribute to this.
  • the conductive paste of this embodiment can contain a dispersant as the (D) additive.
  • the dispersant in the conductive paste of this embodiment, the dispersibility of (A) conductive particles in the conductive paste can be improved, and (A) conductive particles can be prevented from agglomerating. can.
  • the dispersant a known dispersant can be used.
  • a fatty acid amide an acid type low molecular dispersant, or bismuth oxide (Bi 2 O 3 ) can be used.
  • the conductive paste of the present embodiment can contain organic additives, inorganic additives, and the like as (D) additives other than the dispersant.
  • additives for example, silica filler, rheology modifier, and/or pigment can be used.
  • the conductive paste of this embodiment can contain (E) a solvent.
  • solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, and N-methyl-2-pyrrolidone (NMP).
  • N-alkylpyrrolidones such as N,N-dimethylformamide (DMF), amides such as methyl ethyl ketone (MEK), cyclics such as terpineol (TEL), and diethylene glycol monobutyl ether (butyl carbitol, BC)
  • DMF N,N-dimethylformamide
  • MEK methyl ethyl ketone
  • TEL terpineol
  • BC diethylene glycol monobutyl ether
  • Examples include carbonates, bis[2-(2-butoxyethoxy)ethyl]adipate, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate (Texanol), and water.
  • the content of the solvent in the conductive paste of this embodiment is not particularly limited.
  • the content of the solvent is, for example, preferably 1 to 100 parts by weight, more preferably 5 to 60 parts by weight, and still more preferably 8 to 35 parts by weight, based on 100 parts by weight of the (A) conductive particles.
  • the viscosity of the conductive paste of this embodiment is preferably 50 to 700 Pa ⁇ s (shear rate: 4.0 sec ⁇ 1 ), more preferably 100 to 300 Pa ⁇ s (shear rate: 4.0 sec ⁇ 1 ).
  • the viscosity of the conductive paste of this embodiment can be adjusted by appropriately controlling the content of the solvent. By adjusting the viscosity of the conductive paste within this range, the applicability and/or handling of the conductive paste to the substrate (base material) becomes good, and the conductive paste can be applied to the substrate with a uniform thickness. becomes possible.
  • the viscosity of the conductive paste can be measured at a temperature of 25° C. and 10 rpm using an HB type viscometer (manufactured by Brookfield Corporation) (SC4-14 spindle).
  • the conductive paste of this embodiment may further contain (F) a curing agent.
  • the conductive paste of this embodiment contains an epoxy resin as the binder resin (B), the curing of the epoxy resin can be appropriately controlled by including the curing agent (F).
  • a known curing agent can be used as the curing agent.
  • the curing agent preferably contains at least one selected from a phenolic curing agent, a cationic polymerization initiator, an imidazole curing agent, and a boron trifluoride compound.
  • the boron trifluoride compound include boron trifluoride monoethylamine, boron trifluoride piperidine, and boron trifluoride diethyl ether.
  • boron trifluoride monoethylamine can be preferably used.
  • the conductive paste of this embodiment when the total weight of (A) conductive particles and (B) epoxy resin as a binder resin is 100 parts by weight, the conductive paste contains (F) 0 curing agent. .1 to 5 parts by weight, more preferably 0.15 to 2 parts by weight, even more preferably 0.2 to 1 parts by weight, particularly 0.3 to 0.6 parts by weight. preferable.
  • the epoxy resin that is the binder resin component (B) can be appropriately cured, and an electrode with a desired shape can be obtained.
  • the conductive paste of this embodiment can be manufactured by mixing the above-mentioned components using, for example, a Raikai machine, a pot mill, a three-roll mill, a rotary mixer, and/or a twin-shaft mixer. .
  • This embodiment is an electrode obtained by firing or heat-treating the conductive paste of this embodiment described above.
  • Electrodes can be formed by applying the conductive paste of the present embodiment to a predetermined base material so as to form a predetermined electrode pattern, and baking the paste at, for example, 400 to 900° C. in an air atmosphere. Therefore, since the conductive paste of the present embodiment includes (C) glass frit, the formed electrode is made of (A') conductive particles containing surface-treated metal particles and (C) glass frit. C') a glass component. After firing, the conductive particles (A') are in a sintered state. Note that when the conductive paste of this embodiment is fired at, for example, 400 to 900° C., the binder resin (B) and the solvent (E) contained in the conductive paste are vaporized or burned during firing. Therefore, the electrode does not substantially contain (B) binder resin and (E) solvent.
  • the electrode of this embodiment contains palladium.
  • the electrode of this embodiment preferably contains 0.01 to 10% by weight of palladium, more preferably 0.05 to 5% by weight of palladium, and even more preferably 0.07 to 1% by weight of palladium. , it is particularly preferable to contain palladium in an amount of 0.08 to 0.5% by weight.
  • the electrode of this embodiment can contain palladium resulting from (C) glass frit. Since the electrode of this embodiment contains a predetermined amount of palladium, the electrode of this embodiment can have high sulfidation resistance. Note that the palladium content in the electrode can be measured by elemental analysis using EDS (Energy Dispersive X-ray Spectroscopy).
  • the electrode of this embodiment can include (C) zinc (zinc oxide) resulting from the glass frit. Since the electrode of this embodiment contains zinc in addition to palladium, high sulfidation resistance can be obtained.
  • the sheet resistance of the thin film serving as the electrode of this embodiment varies depending on the film thickness, it can be approximately 10 m ⁇ / ⁇ (10 m ⁇ /square) or less than 10 m ⁇ / ⁇ . Therefore, it can be preferably used for forming electrodes that are required to have low resistance.
  • a method for forming electrodes on a substrate (base material) using the conductive paste of this embodiment will be described.
  • a conductive paste is applied onto the substrate.
  • the conductive paste can be applied by any known method, such as dispensing, jet dispensing, stencil printing, screen printing, pin transfer, or stamping.
  • the conductive paste applied onto the substrate is fired at 400 to 900°C, more preferably 500 to 880°C, and still more preferably 500 to 870°C.
  • a specific example of the firing temperature is 850°C.
  • the solvent component contained in the conductive paste evaporates at 300° C. or lower, and the resin component is burned out at 400° C. to 600° C., forming a fired body (electrode) of the conductive paste.
  • the organic components contained in the surface-treated metal particles disappear by firing in an air atmosphere, and the palladium in the palladium compound is formed by forming a palladium metal alloy layer on the surface of the metal particles (if the metal particles are silver particles, palladium - silver alloy layer). It is believed that the palladium metal alloy layer on the surface of the metal particles imparts high sulfidation resistance to the metal particles. Therefore, high sulfidation resistance can be obtained when the metal particles include a thin film surface treatment layer containing a palladium compound. Further, the content of palladium contained in the surface treatment layer is not very large.
  • the electrode thus obtained has high sulfidation resistance and excellent adhesion to the substrate.
  • the electrode obtained as described above using the conductive paste of this embodiment can have the additional advantage of improved migration resistance.
  • this advantage is not necessarily an essential effect of the conductive paste of this embodiment, but is considered to be one advantage.
  • This embodiment is an electronic component or electronic device having the above-described electrode.
  • electronic components refer to components used in electronic devices, such as chip resistors and board circuits.
  • an electronic component means a component that operates electronically, and specifically can be a component that operates at 48 V or less of DC.
  • an electronic device means a device including an electronic component having the electrode of this embodiment.
  • the conductive paste of this embodiment can be used for forming circuits of electronic components or electronic equipment, forming electrodes, and bonding devices such as electronic components (for example, semiconductor chips) to a substrate (base material). be.
  • FIG. 1 shows an example of a cross-sectional structure of a chip resistor 100 of this embodiment.
  • the chip resistor 100 can include a rectangular alumina substrate 102, a resistor 104 and an extraction electrode 106 arranged on the surface of the alumina substrate 102.
  • the extraction electrode 106 is an electrode for extracting electricity from the resistor 104.
  • a lower surface electrode 108 for mounting the chip resistor 100 on the substrate can be arranged on the lower surface of the alumina substrate 102.
  • a connection electrode 110 for connecting the extraction electrode 106 and the lower surface electrode 108 can be arranged on the end surface of the alumina substrate 102.
  • At least one of the extraction electrode 106, the bottom electrode 108, and the connection electrode 110 can be formed using the conductive paste of this embodiment.
  • the extraction electrode 106 be formed using the conductive paste of this embodiment.
  • a nickel plating film 112 and a tin plating film 114 can be disposed on the top surface of the extraction electrode 106, the bottom electrode 108, and the connection electrode 110 (the surface opposite to the alumina substrate 102).
  • the electrode of this embodiment is not limited to the electrode of a chip resistor. Electrodes formed using the conductive paste of this embodiment can be used as electrodes for various types of electronic components. Electronic components include passive components (for example, chip resistors, capacitors, resistors, inductors, etc.), circuit boards (for example, a predetermined circuit (electrode or wiring) on a substrate such as an alumina substrate, an aluminum nitride substrate, a glass substrate, etc.). ), solar cells, and electromagnetic shields. The conductive paste of this embodiment can be used to form electrodes and/or wiring of these electronic components. Examples of electronic devices including electronic components having the electrodes of this embodiment include semiconductor devices, photovoltaic modules, and electronic devices including circuit boards.
  • the conductive paste of this embodiment can be used as a die attach material for attaching a semiconductor chip in a semiconductor device.
  • the semiconductor device is a power semiconductor device, it can be used as a brazing material for attaching a power semiconductor chip.
  • the conductive paste of this embodiment can be used as an electrode of a solar cell.
  • the conductive paste of this embodiment can be used as a conductive adhesive.
  • the conductive paste of this embodiment is not limited to forming terminal electrodes of chip resistors, but can also be suitably used as a conductive paste for terminal electrodes of passive components such as MLCCs and chip inductors. .
  • the conductive paste of this embodiment it is possible to form an electrode that has high sulfidation resistance, low resistance, and relatively low cost. Therefore, by using the conductive paste of this embodiment, electronic components such as chip resistors in which highly reliable electrodes are formed can be obtained at relatively low cost.
  • a conductive paste was prepared by mixing the following components (A) to (E) in the proportions shown in Tables 1 and 2. In addition, all the proportions of each component shown in Tables 1 and 2 are shown in parts by weight. In Tables 1 and 2, the weight of (A) conductive particles (total weight of metal particles and surface-treated metal particles) was 100 parts by weight. Moreover, the average particle size means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measuring method.
  • (A) Conductive Particles Table 3 shows metal particles a1 to a4 and surface-treated metal particles A1 to A6 used as (A) conductive particles (component (A)) in Examples and Comparative Examples.
  • Metal particles a1 and a2 are silver particles, and metal particle a4 is a palladium particle.
  • Metal particles a1 to a4 are not surface-treated.
  • Surface-treated metal particles A1 to A6 are produced by attaching a palladium soap solvent (surface treatment agent) in which a palladium compound is dispersed in a solvent to the surface of silver particles, which are metal particles, and removing the solvent through a drying process.
  • the surface-treated metal particles A1 to A6 have a surface-treated layer containing a palladium compound.
  • the weight ratio of palladium contained in the surface treatment layer to the weight of the surface treatment metal particles A1 to A6 is shown in units of weight %.
  • the weight proportion of palladium in the surface-treated metal particles was measured by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
  • Surface treatment of silver particles with a palladium compound was performed as follows. That is, the surface treatment of the silver particles with a palladium compound was performed using a palladium soap solvent (surface treatment agent) containing a palladium compound, an organic substance for dispersing these, and a solvent. The surface treatment was performed by attaching a palladium soap solvent (surface treatment agent) to the surface of the silver particles and removing the solvent through a drying process. Palladium chloride was used as the palladium compound. Furthermore, oleic acid was used as the solvent contained in the silver particle surface treatment agent. As described above, surface treatment layers were formed on the surface treatment metal particles A1 to A6.
  • Binder resin Table 4 shows the (B) binder resins (resins B1 and B2) used in the Examples and Comparative Examples. Tables 1 and 2 show the blending amounts of resins B1 and B2 in the conductive pastes of Examples and Comparative Examples.
  • (C) Glass Frit Table 5 shows the (C) glass frits (C1 to C8) used in the Examples and Comparative Examples.
  • Tables 1, 2, and 9 show the blending amounts of glass frits C1 to C8 in the conductive pastes of Examples and Comparative Examples.
  • Additives Table 6 shows the (D) additives (Additives D1 to D3) used in Examples and Comparative Examples. Tables 1 and 2 show the amounts of additives D1 to D3 in the conductive pastes of Examples and Comparative Examples.
  • Additive D1 is an organic additive. By adding additive D1, the printability of the conductive paste can be improved.
  • Additive D2 is a dispersant. By adding additive D2, the dispersibility of (A) conductive particles and the like can be improved.
  • Additive D3 is an inorganic additive. By adding additive D3, the adhesion of the conductive paste after firing can be improved.
  • (E) Solvents Table 7 shows the (E) solvents (solvents E1 to E3) used in the Examples and Comparative Examples.
  • Tables 1 and 2 show the amounts of solvents E1 to E3 in the conductive pastes of Examples and Comparative Examples.
  • FIG. 2 shows a schematic diagram of a test piece 50 for the sulfidation resistance test.
  • C Test pieces 50 for sulfidation resistance tests of Examples 1 to 16 and Comparative Examples 1 to 5 were prepared using a conductive paste containing glass frit according to the following procedure.
  • a zigzag printed pattern 54 for sulfidation resistance testing as shown in FIG. 2 is formed by screen printing.
  • a conductive paste was applied.
  • the length between the two ends 54a and 54b of the printed pattern 54 for sulfidation resistance testing is 71 mm, and the width of the printed pattern 54 for sulfidation resistance testing is 1 mm.
  • screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness 5 ⁇ m).
  • the printed pattern 54 for sulfidation resistance test of the conductive paste was dried at 150° C. for 10 minutes using a batch type hot air dryer. After drying the printed pattern 54 for sulfidation resistance test of the conductive paste, the printed pattern 54 for sulfidation resistance test was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces 50 of Examples 1 to 16 and Comparative Examples 1 to 5 were produced.
  • Resistance value change rate (electrical resistance after sulfidation - initial electrical resistance) / initial electrical resistance
  • test piece for adhesive strength test Using the prepared conductive paste, test pieces of Examples 1 to 16 and Comparative Examples 1 to 5 containing (C) glass frit were produced according to the following procedure. First, a conductive paste was applied by screen printing onto a 20 mm x 20 mm x 1 mm (t) alumina substrate (purity 96%). As a result, 25 (5 ⁇ 5) adhesive strength test patterns each having a square pad shape of 1.5 mm on a side were formed on the alumina substrate. In order to form a pattern for testing the adhesive strength of the conductive paste, screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness: 5 ⁇ m).
  • the conductive paste was dried at 150° C. for 10 minutes using a batch hot air dryer. After drying the pattern for testing the adhesive strength of the conductive paste, the pattern for testing the adhesive strength of the conductive paste was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces of Examples 1 to 16 and Comparative Examples 1 to 5 were prepared.
  • Ni/Au plating was performed on the adhesive strength test pattern.
  • solder M705 manufactured by Senju Metal Industry Co., Ltd., a Sn alloy containing 3.0% by weight of Sn-Ag and 0.5% by weight of Cu
  • a Sn-plated annealed copper wire (diameter 0.8 mm) was soldered to the adhesive strength test pattern.
  • For soldering the Sn-plated annealed copper wire out of the 5 x 5 adhesive strength test patterns on the alumina board, one for each of the 5 pieces in the second row, for a total of 5 Sn-plated annealed copper wires.
  • the results of the adhesive strength test were obtained by measuring the tensile adhesive strength of 10 test pieces of each example and each comparative example.
  • the "Adhesive Strength (N)" column of Tables 1 and 2 shows the average value of the tensile adhesive strength of the 10 test pieces of each Example and each Comparative Example measured as described above.
  • FIG. 3 shows an optical micrograph of test print patterns 64a and 64b of an example of the test piece 60 for the migration resistance test.
  • test pieces 60 for the migration resistance test of Examples 1 and 3 and Comparative Example 1 were prepared according to the following procedure.
  • Test pieces 60 for the migration resistance test of Examples 1 and 3 and Comparative Example 1 were produced in the following procedure. First, on a 110 mm x 20 mm x 0.8 mm (t) alumina substrate 62 (purity 96%) for migration resistance testing, as shown in FIG. 3 and FIG. The conductive paste was applied so that the two comb-shaped migration resistance test printed patterns 64a and 64b were alternated. The printed pattern for migration resistance test 64a is connected to the first electrode 66a, and the printed pattern for migration resistance test 64b is connected to the second electrode 66b. The print width L of the migration resistance test print patterns 64a, 64b is 200 ⁇ m, and the space S between the migration resistance test print patterns 64a, 64b is 200 ⁇ m.
  • printed patterns 64a, 64b and electrodes 66a, 66b for conductive paste migration resistance testing screen printing was performed using a 400 mesh screen made of stainless steel (emulsion thickness 10 ⁇ m).
  • the printed patterns 64a, 64b for the migration resistance test of the conductive paste and the electrodes 66a, 66b were dried at 150° C. for 10 minutes using a batch type hot air dryer.
  • the migration resistance test printed patterns 64a, 64b and electrodes 66a, 66b were fired using a belt-type firing furnace. . The firing temperature was maintained at 850°C for 10 minutes.
  • test pieces 60 for the migration resistance test of Examples 1 to 16 and Comparative Examples 1 to 5 were prepared.
  • the migration resistance of the printed patterns 64a and 64b for migration resistance test of the test piece 60 of Examples 1 and 3 and Comparative Example 1 was measured according to the following procedure. First, as shown in FIG. 3, a voltage (40 V) was applied between the first electrode 66a and the second electrode 66b of the two migration resistance test printed patterns 64a and 64b. The insulation resistance value between the first electrode 66a and the second electrode 66b was measured while stored in an environment with a temperature of 85° C. and a humidity of 85%. The insulation resistance value was calculated from the measured value of the current flowing between the first electrode 66a and the second electrode 66b and the applied voltage of 40V. The test piece 60 to which an applied voltage of 40 V was applied was held in an environment of a temperature of 85° C.
  • Table 8 shows the results of the migration resistance test. Before the test, the insulation resistance values of all samples were 10 7 ⁇ or more. A test piece 60 whose insulation resistance value became 10 6 ⁇ or less within 10 hours was judged to be defective, and was written as "defective" in Table 8. Test piece 60 whose insulation resistance value did not fall below 10 6 ⁇ even after 80 hours was judged to have a certain degree of migration resistance and could be used for some purposes, and was marked as "usable” in Table 8. It was written as. Test piece 60 whose insulation resistance value did not fall below 10 6 ⁇ even after 487 hours was judged to have excellent migration resistance and was listed as "good” in Table 8.
  • FIG. 7 shows changes over time in the insulation resistance values of Example 1, Example 3, and Comparative Example 1 when an anti-migration test was conducted.
  • Test piece 60 of Example 3 which was determined to have excellent migration resistance (described as "good” in Table 8), did not have an insulation resistance value of 10 6 ⁇ or less even after 480 hours.
  • Test piece 60 of Example 1 (described as "usable” in Table 8), which was determined to be usable for some applications because of its excellent migration resistance to some extent, had an insulation resistance value of 10 even after 80 hours. It did not go below 6 ⁇ .
  • Test piece 60 of Comparative Example 1, which was determined to have poor migration resistance (described as "defective” in Table 8), had an insulation resistance value of 10 6 ⁇ or less within 10 hours.
  • solder heat resistance test Using the prepared conductive paste, test pieces for the soldering heat resistance test of Examples 1 to 16 and Comparative Examples 1 to 5 containing (C) glass frit were prepared according to the following procedure.
  • a conductive paste was applied by screen printing onto a 20 mm x 20 mm x 1 mm (t) alumina substrate (purity 96%).
  • 25 (5 ⁇ 5) adhesive strength test patterns each having a square pad shape of 1.5 mm on a side were formed on the alumina substrate.
  • screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness: 5 ⁇ m).
  • the conductive paste was dried at 150° C. for 10 minutes using a batch hot air dryer. After drying the pattern for testing the adhesive strength of the conductive paste, the pattern for testing the adhesive strength of the conductive paste was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces of Examples 1 to 16 and Comparative Examples 1 to 5 were prepared.
  • solder bath solder temperature: 260°C
  • solder M705 manufactured by Senju Metal Industry Co., Ltd., a Sn alloy containing 3.0% by weight of Sn-Ag and 0.5% by weight of Cu
  • the pieces were immersed for 10 seconds.
  • soldering heat resistance test After immersing the test piece in the solder bath, the test piece was taken out, and if 95% or more of the electrode remained on the test piece, it was judged as having passed the soldering heat resistance test.
  • soldering heat resistance column of Tables 1 and 2, "good” was written when the soldering heat resistance test was passed, and “poor” was written when the soldering heat resistance test was failed.
  • Figure 5 shows the surface of a test piece prepared under the same conditions as test piece 50 of the sulfidation resistance test of Example 3, in which the rate of change in resistance value was relatively small, using a scanning electron microscope (SEM) at a magnification of 5000 times. This shows an SEM photograph taken by.
  • FIG. 6 shows an SEM photograph taken at a magnification of 5000 times of the surface of a test piece prepared under the same conditions as test piece 50 of the sulfidation resistance test of Comparative Example 1 in which the rate of change in resistance value was large. Note that, as in the case of the sulfidation resistance test, the test piece was stored in a sulfur atmosphere (60° C.) for 150 hours, and then subjected to SEM observation.
  • SEM scanning electron microscope
  • the tensile adhesive strength of the adhesive strength test patterns obtained by firing the conductive pastes of Examples 1 to 16 was at most 17.8N (Example 11 and 15), and high tensile adhesive strength could be obtained.
  • the tensile adhesive strength of the electrode patterns obtained by firing the conductive pastes of Comparative Examples 1 to 4 was in the range of 14.2 N (Comparative Example 4) to 15.2 N (Comparative Examples 1 to 3), The tensile adhesive strength was within a acceptable range.
  • the tensile adhesive strength of the electrode pattern obtained by firing the conductive paste of Comparative Example 5 was 7.1N. It is considered that the conductive paste of Comparative Example 5 had a lower tensile adhesive strength because it had poor sinterability compared to other Examples and Comparative Examples.
  • Example 3 Comparing the SEM photographs of Example 3 shown in FIG. 5 and Comparative Example 1 shown in FIG. 6, it can be seen that the crystals of silver sulfide 20 are formed larger due to sulfidation in Comparative Example 1 than in Example 3. . Similar trends were observed for other Examples and Comparative Examples. Therefore, it can be said that the electrode of the example of this embodiment has higher sulfidation resistance than that of the comparative example. Furthermore, when the Pd content in the depth direction of the sample of Example 3 was measured by X-ray photoelectron spectroscopy (XPS), it was found that there was a portion with a Pd content of about 30 at.% at a depth of 80 nm. confirmed. This suggests that at least in the sample of Example 3, the sulfidation resistance of the electrode was improved by forming a silver-palladium alloy layer on the surface of the electrode.
  • XPS X-ray photoelectron spectroscopy
  • Examples 17 to 29, Comparative Examples 6 to 9 Evaluation of outflow of glass components>
  • a conductive paste was prepared in the same manner as in Example 1 using the formulation shown in Table 9.
  • the conductive paste of each example and comparative example was applied to the alumina substrate in a pattern of width 1 mm and length 71 mm to a thickness of approximately 15 ⁇ m, and dried at 150° C. for 10 minutes. , and was fired at 850° C. for 60 minutes to form a conductive thick film having a thickness of 10 ⁇ m after firing.
  • a backscattered electron image of the electrode side surface of the obtained conductive thick film was taken using a scanning electron microscope (SEM) at a magnification of 500 times, and the length of the glass flow was measured.
  • SEM scanning electron microscope
  • Test piece for sulfidation resistance test 52 Alumina substrate for sulfidation resistance test 54 Printed pattern for sulfidation resistance test 54a, 54b Edges of printed pattern for sulfidation resistance test 60
  • Test piece for migration resistance test 62 Alumina for migration resistance test Substrate 64a, 64b Printed pattern for migration resistance test 66a First electrode 66b Second electrode 100 Chip resistor 102 Alumina substrate 104 Resistor 106 Takeout electrode 108 Bottom electrode 110 Connection electrode 112 Nickel plating film 114 Tin plating film

Abstract

Provided is a conductive paste comprising conductive particles (A), binder resin (B), and glass frits (C), wherein the conductive particles (A) have metal particles and a surface treatment layer containing a palladium compound, the surface treatment layer being placed on at least a part of the surface of the metal particles. The softening point of the glass frits (C) is 800 °C or below. Even when containing glass frits with a low softening point, this conductive paste can suppress outflow of glass components from an electrode during firing, and exhibits excellent sulfidation resistance.

Description

導電性ペースト、電極、電子部品及び電子機器Conductive paste, electrodes, electronic components and electronic equipment
 本発明は、例えば電子部品の電極の形成に用いられる導電性ペーストに関する。また、本発明は、その導電性ペーストを用いて形成された電極、及びその電極を有するチップ抵抗器などの電子部品に関する。 The present invention relates to a conductive paste used for forming electrodes of electronic components, for example. The present invention also relates to an electrode formed using the conductive paste, and an electronic component such as a chip resistor having the electrode.
 電子部品の1つであるチップ抵抗器の電極の形成には、銀粉(銀粒子)を含む導電性ペーストが用いられる。図1に、チップ抵抗器100の断面構造の一例を示す。チップ抵抗器100は、矩形のアルミナ基板102を有しており、アルミナ基板102の上面には、抵抗体104と、抵抗体104から電気を取り出すための取り出し電極106が形成されている。また、アルミナ基板102の下面には、チップ抵抗器100を基板へ実装するための下面電極108が形成されている。更に、アルミナ基板102の端面には、取り出し電極106と下面電極108とを接続するための接続電極110が形成されている。取り出し電極106及び下面電極108は、アルミナ基板102の上面及び下面に導電性ペーストを印刷によって塗布した後に焼成することでそれぞれ形成される。取り出し電極106、下面電極108、及び接続電極110の上には、ニッケルめっき膜112及びスズめっき膜114が形成されることが一般的である。 A conductive paste containing silver powder (silver particles) is used to form the electrodes of a chip resistor, which is one of the electronic components. FIG. 1 shows an example of a cross-sectional structure of a chip resistor 100. The chip resistor 100 has a rectangular alumina substrate 102, and a resistor 104 and an extraction electrode 106 for extracting electricity from the resistor 104 are formed on the upper surface of the alumina substrate 102. Furthermore, a lower surface electrode 108 is formed on the lower surface of the alumina substrate 102 for mounting the chip resistor 100 on the substrate. Furthermore, a connection electrode 110 for connecting the extraction electrode 106 and the lower surface electrode 108 is formed on the end surface of the alumina substrate 102. The extraction electrode 106 and the lower surface electrode 108 are each formed by applying a conductive paste to the upper and lower surfaces of the alumina substrate 102 by printing and then firing the paste. Generally, a nickel plating film 112 and a tin plating film 114 are formed on the extraction electrode 106, the bottom electrode 108, and the connection electrode 110.
 電極の形成に用いられる導電性ペーストとして、特許文献1には、導電性粉末、ガラスフリット、無機結合剤を有機ビヒクル中に分散して成るチップ抵抗器上面電極用ペーストが開示されている。 As a conductive paste used for forming electrodes, Patent Document 1 discloses a paste for a top electrode of a chip resistor, which is made by dispersing conductive powder, glass frit, and an inorganic binder in an organic vehicle.
 また、特許文献2には、(A)Ag及びSnを含む表面処理金属粒子と、(C)ガラスフリットと、(B)バインダー樹脂と、を含有し、(A)導電性粒子におけるSnの重量割合が、10重量%未満である、導電性ペーストが開示されている。 Further, Patent Document 2 discloses that the conductive particles contain (A) surface-treated metal particles containing Ag and Sn, (C) glass frit, and (B) binder resin, and (A) the weight of Sn in the conductive particles. Conductive pastes are disclosed in which the proportion is less than 10% by weight.
 導電性ペーストによる電極の形成は、上記のようなペーストを焼成して形成されるが、近年の電子機器や電子部品の高性能化による部材の多様化、環境負荷への配慮、生産性等から、低温で焼成可能な導電性ペーストの開発が要求されている。低温焼成を可能にするための一つの手法として、Bi-B系のような低い軟化点を有するガラス成分をペースト中に含有させる技術が挙げられる(特許文献3)。 Electrodes are formed using conductive paste by firing the paste as described above, but due to the diversification of components due to the high performance of electronic devices and electronic components in recent years, consideration for environmental impact, productivity, etc. There is a need for the development of conductive pastes that can be fired at low temperatures. One method for enabling low-temperature firing is a technique in which a glass component having a low softening point, such as a Bi 2 O 3 -B 2 O 3 system, is included in the paste (Patent Document 3).
特開平7-335402号公報Japanese Patent Application Publication No. 7-335402 国際公開第2021/145269号International Publication No. 2021/145269 特開2007-273178号公報Japanese Patent Application Publication No. 2007-273178
 低温で導電性ペーストを焼成する方法は、被着体など他の電子部品への熱的負荷を低減し、エネルギーコストも抑えることができるため、高精細化した電子部品の製造に有利な方法である。しかし、特許文献3で用いられているような軟化点の低いガラス成分は、ガラスの流動性が高い為、焼成時に被着体である基板等の電子部品へ流れ出してしまう。ガラス成分が流れ出すと、その部分にまでめっきが処理されてしまい、めっき伸びという電極外にめっきが析出する現象が起きる。また、ペースト中の導電性粒子を伴ってガラス成分が流れ出すため、流れ出した先でショート、マイグレーションする場合がある。 The method of firing conductive paste at low temperatures reduces the thermal load on other electronic components such as adherends, and also reduces energy costs, making it an advantageous method for manufacturing high-definition electronic components. be. However, since the glass component with a low softening point as used in Patent Document 3 has high fluidity, it flows out to electronic components such as substrates that are adherends during firing. When the glass component flows out, the plating is applied to that area, causing a phenomenon called plating elongation in which the plating precipitates outside the electrode. Furthermore, since the glass component flows out together with the conductive particles in the paste, short circuits and migration may occur at the point where the glass component flows out.
 またガラス成分の流出の他にも、電極のショートとなりうる要因が導電性ペーストに含まれることがある。ガソリン自動車及び火力発電所などにおいて、化石燃料が燃焼されることで、大気中に硫黄酸化物が大量に排出されている。また、下水処理場、及びごみ処理場などにおいても、硫黄が嫌気性細菌によって還元されて硫化水素が発生している。そのため、大気中には、硫黄酸化物及び硫化水素など、硫黄を含む成分が存在している。 In addition to the outflow of glass components, the conductive paste may also contain factors that can cause electrode short-circuits. BACKGROUND ART Large amounts of sulfur oxides are emitted into the atmosphere due to the combustion of fossil fuels in gasoline vehicles, thermal power plants, and the like. Furthermore, in sewage treatment plants, garbage treatment plants, and the like, sulfur is reduced by anaerobic bacteria and hydrogen sulfide is generated. Therefore, components containing sulfur, such as sulfur oxides and hydrogen sulfide, exist in the atmosphere.
 大気中の硫黄を含む成分が銀などの金属の表面に達すると、銀などの金属の表面に硫黄成分が付着し、銀などの金属と反応して硫化銀などの金属硫化物になる。例えば、チップ抵抗器の電極などの銀を主材料とした電極においても、同様の反応が起こるため、電極内部の銀などの金属が硫化銀などの金属硫化物になることがある。電極内部に硫化銀などの金属硫化物が発生すると、電極に断線が生じる場合がある。そのため、銀などの金属を材料とした電極を有するチップ抵抗器などのデバイスでは、動作不良が生じることがある。このような現象を、硫化による断線という。硫化による断線は、銀以外に、銅、インジウム及びアルミニウム、並びにこれらの少なくとも1つを含む合金の電極でも発生する可能性がある。 When components containing sulfur in the atmosphere reach the surface of metals such as silver, the sulfur components adhere to the surface of metals such as silver and react with the metals such as silver to form metal sulfides such as silver sulfide. For example, similar reactions occur in electrodes made mainly of silver, such as those of chip resistors, so that metals such as silver inside the electrodes may turn into metal sulfides such as silver sulfide. If metal sulfides such as silver sulfide are generated inside the electrode, the electrode may break. Therefore, devices such as chip resistors that have electrodes made of metal such as silver may malfunction. This phenomenon is called disconnection due to sulfidation. Disconnection due to sulfurization may also occur in electrodes made of copper, indium, aluminum, or alloys containing at least one of these in addition to silver.
 硫化による断線を抑制するために、チップ抵抗器などのデバイスに用いられる銀などの金属を主材料とする電極には、耐硫化性の高い電極が必要である。 In order to suppress wire breakage due to sulfidation, electrodes whose main material is metal such as silver used in devices such as chip resistors require highly sulfidation-resistant electrodes.
 耐硫化性の高い電極を形成するための導電性ペーストの導電性粒子としてパラジウム単体、あるいはパラジウムを所定量(例えば20重量%程度)添加することが提案されている。しかしながら、パラジウムの価格は高いため、パラジウム単体あるいはパラジウムの添加により、導電性ペーストのコストが上昇し、電極のコストが高くなる、という問題がある。 It has been proposed to add palladium alone or a predetermined amount (for example, about 20% by weight) of palladium as conductive particles in a conductive paste to form an electrode with high sulfidation resistance. However, since the price of palladium is high, there is a problem in that the cost of the conductive paste increases due to palladium alone or the addition of palladium, which increases the cost of the electrode.
 そこで、上記の課題を鑑み、本発明は、軟化点の低いガラスフリットを含有させた場合でも、焼成した際の電極中からのガラス成分の流れ出しを抑制することができ、かつ耐硫化性に優れる導電性ペーストを提供することを目的とする。 Therefore, in view of the above problems, the present invention is capable of suppressing the outflow of glass components from the electrode during firing even when containing a glass frit with a low softening point, and has excellent sulfidation resistance. The purpose is to provide a conductive paste.
 上記課題を解決するため、本発明は以下の構成を有する。 In order to solve the above problems, the present invention has the following configuration.
(構成1)
 構成1は、(A)導電性粒子と、
 (B)バインダー樹脂と、
 (C)ガラスフリットと
を含む導電性ペーストであって、
 前記(A)の導電性粒子が、金属粒子と、金属粒子の表面の少なくとも一部に配置される、パラジウム化合物を含む表面処理層を有し、
 前記(C)ガラスフリットの軟化点が800℃以下である、
導電性ペーストである。
(Configuration 1)
Configuration 1 includes (A) conductive particles;
(B) a binder resin;
(C) A conductive paste containing glass frit,
The conductive particles of (A) have metal particles and a surface treatment layer containing a palladium compound disposed on at least a portion of the surface of the metal particles,
The softening point of the glass frit (C) is 800°C or less,
It is a conductive paste.
(構成2)
 構成2は、前記表面処理層に含まれるパラジウム化合物の含有量が、前記金属粒子100重量部に対し、0.01~1.0重量部である、構成1の導電性ペーストである。
(Configuration 2)
Structure 2 is the conductive paste of Structure 1, in which the content of the palladium compound contained in the surface treatment layer is 0.01 to 1.0 parts by weight based on 100 parts by weight of the metal particles.
(構成3)
 構成3は、前記表面処理層が、更に有機物を含む、構成1又は2の導電性ペーストである。
(Configuration 3)
Structure 3 is the conductive paste of Structure 1 or 2, in which the surface treatment layer further contains an organic substance.
(構成4)
 構成4は、前記金属粒子が、銀を50重量%以上含む、構成1~3のいずれかの導電性ペーストである。
(Configuration 4)
Configuration 4 is the conductive paste of any one of Configurations 1 to 3, in which the metal particles contain 50% by weight or more of silver.
(構成5)
 構成5は、前記(A)導電性粒子の平均粒径(D50)が0.1~10μmである、構成1~4のいずれかの導電性ペーストである。
(Configuration 5)
Configuration 5 is the conductive paste according to any one of Configurations 1 to 4, in which the conductive particles (A) have an average particle diameter (D50) of 0.1 to 10 μm.
(構成6)
 構成6は、前記(A)導電性粒子の平均粒径(D50)が0.1~6μmである、構成5の導電性ペーストである。
(Configuration 6)
Configuration 6 is the conductive paste of Configuration 5, in which the conductive particles (A) have an average particle diameter (D50) of 0.1 to 6 μm.
(構成7)
 構成7は、前記構成1~6のいずれかの導電性ペーストを焼成又は熱処理して得られる電極である。
(Configuration 7)
Structure 7 is an electrode obtained by firing or heat-treating the conductive paste of any of Structures 1 to 6 above.
(構成8)
 構成8は、構成7の電極を含む、電子部品又は電子機器である。
(Configuration 8)
Configuration 8 is an electronic component or electronic device that includes the electrode of Configuration 7.
 本発明によれば、軟化点の低いガラスフリットを含有させた場合でも、焼成した際の電極中からのガラス成分の流れ出しを抑制することができ、かつ耐硫化性に優れる導電性ペーストを提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, there is provided a conductive paste that can suppress the outflow of glass components from the electrode during firing even when it contains a glass frit with a low softening point, and has excellent sulfidation resistance. be able to.
チップ抵抗器の断面構造の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a cross-sectional structure of a chip resistor. 実施例及び比較例の耐硫化性試験のための試験片の形状を示す模式図である。It is a schematic diagram which shows the shape of the test piece for the sulfidation resistance test of an Example and a comparative example. 実施例及び比較例の耐マイグレーション試験のための試験片の試験用印刷パターンの形状を示す光学顕微鏡写真である。It is an optical micrograph which shows the shape of the test print pattern of the test piece for the migration resistance test of an Example and a comparative example. 図3に示す耐マイグレーション試験のための試験片の試験用印刷パターンの光学顕微鏡写真の中央付近を拡大した光学顕微鏡写真である。4 is an optical microscope photograph showing an enlarged view of the center of the optical microscope photograph of the test print pattern of the test piece for the migration resistance test shown in FIG. 3. FIG. 実施例3と同様の条件で作製した試験片を、硫黄を含む気体雰囲気中で150時間保管して硫化させた後の、導電性ペーストの焼成体の表面の走査型電子顕微鏡(SEM)写真(倍率5000倍)である。A scanning electron microscope (SEM) photograph of the surface of a fired conductive paste after a test piece prepared under the same conditions as in Example 3 was stored in a sulfur-containing gas atmosphere for 150 hours to sulfurize it. (magnification: 5000 times). 比較例1と同様の条件で作製した試験片を、硫黄を含む気体雰囲気中で150時間保管して硫化させた後の、導電性ペーストの焼成体の表面の走査型電子顕微鏡(SEM)写真(倍率5000倍)である。A scanning electron microscope (SEM) photograph of the surface of a fired conductive paste after a test piece prepared under the same conditions as Comparative Example 1 was stored in a sulfur-containing gas atmosphere for 150 hours to sulfurize it ( (magnification: 5000 times). 耐マイグレーション試験を行った際の実施例1、実施例3及び比較例1の絶縁抵抗値の時間変化を示す図である。FIG. 3 is a diagram showing changes over time in insulation resistance values of Example 1, Example 3, and Comparative Example 1 when an anti-migration test was conducted. 実施例20、23、比較例6、9の、焼成後の電極厚膜の側面をSEMで撮影した反射電子像(倍率500倍)である。This is a backscattered electron image (magnification: 500 times) taken by SEM of the side surface of the electrode thick film after firing in Examples 20 and 23 and Comparative Examples 6 and 9.
 以下、本発明の実施形態について、具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described. Note that the following embodiments are examples of embodying the present invention, and do not limit the present invention within its scope.
 本実施形態の導電性ペーストは、(A)導電性粒子と、(B)バインダー樹脂と、(C)軟化点が800℃以下のガラスフリットを含む。本実施形態の導電性ペーストは、チップ抵抗器などの電子部品の電極を形成するために好ましく用いることができる。(A)導電性粒子は、金属粒子と、金属粒子の表面の少なくとも一部に配置される、パラジウム化合物を含む表面処理層を有している。 The conductive paste of this embodiment includes (A) conductive particles, (B) a binder resin, and (C) a glass frit with a softening point of 800° C. or less. The conductive paste of this embodiment can be preferably used to form electrodes of electronic components such as chip resistors. (A) The conductive particles include metal particles and a surface treatment layer containing a palladium compound, which is disposed on at least a portion of the surface of the metal particles.
 まず、本実施形態の導電性ペーストに含まれる成分について、説明する。 First, the components contained in the conductive paste of this embodiment will be explained.
<(A)導電性粒子>
 本実施形態の導電性ペーストは、(A)導電性粒子を含む。(A)導電性粒子は、金属粒子と、金属粒子の表面の少なくとも一部に配置される表面処理層とを含む。表面処理層は、パラジウム化合物を含む薄膜である。表面処理層は、金属粒子を前記パラジウム化合物によって表面処理することにより形成される。(A)導電性粒子が表面処理層を有することで、焼結の速度が適度に制御されることにより、焼成の過程においてガラスフリットを流出させることなく保持することができるものと考えられる。また、(A)導電性粒子が、所定の表面処理金属粒子を含むことにより、導電性粒子に含まれる金属の硫化を抑制することができる。そのため、本実施形態の導電性ペーストを用いることにより、高い耐硫化性を有する電極を形成することができる。
<(A) Conductive particles>
The conductive paste of this embodiment includes (A) conductive particles. (A) The conductive particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles. The surface treatment layer is a thin film containing a palladium compound. The surface treatment layer is formed by surface treating metal particles with the palladium compound. (A) It is thought that by having the conductive particles with a surface treatment layer, the sintering speed can be controlled appropriately, so that the glass frit can be held without flowing out during the firing process. Moreover, (A) conductive particles containing predetermined surface-treated metal particles can suppress sulfidation of the metal contained in the conductive particles. Therefore, by using the conductive paste of this embodiment, an electrode having high sulfidation resistance can be formed.
 なお、本発明の発明者らは、本実施形態の導電性ペーストの(A)導電性粒子が、所定の表面処理金属粒子を含むことにより、付加的な効果として、得られる電極の耐マイグレーション性も向上することを見出した。耐マイグレーション性とは、マイグレーションを抑制することのできる性質を意味する。マイグレーションとは、1対の電極(プラス電極及びマイナス電極)に対して電圧を印加したときに、電極近傍に水及び/又は水蒸気が存在すると、電極及び配線部に含まれる金属がイオン化し、プラス電極からマイナス電極に移動し金属のデンドライトが発生し、配線部間の絶縁性が低下する現象である。また、マイグレーションは、100℃以上又は真空中等のように水分による影響の無い雰囲気下においても発生する場合がある。この場合には、1対の電極が短絡に近い状態になっても、配線部間に、水分の存在下でのマイグレーション発生時に必ず見られるデンドライトの発生が無く、また、極性も見られない(つまりプラス電極とマイナス電極との極性に関わらず発生する)。耐マイグレーション性とは、このような従来より広く知られているマイグレーションを抑制することのできる性質を意味する。金属のマイグレーションにより、1対の電極が短絡する可能性がある。耐マイグレーション性が向上することにより、電極の短絡を抑制することができる。ただし、耐マイグレーション性の向上という利点は、必ずしも本実施形態の導電性ペーストの必須の効果ではなく、1つの利点であると考えられる。 In addition, the inventors of the present invention have discovered that the (A) conductive particles of the conductive paste of this embodiment include predetermined surface-treated metal particles, thereby improving the migration resistance of the resulting electrode as an additional effect. We also found that it improved. Migration resistance means a property capable of suppressing migration. Migration is when a voltage is applied to a pair of electrodes (a positive electrode and a negative electrode), and if water and/or water vapor is present near the electrodes, the metals contained in the electrodes and wiring become ionized, and the positive This is a phenomenon in which metal dendrites move from the electrode to the negative electrode and the insulation between wiring parts decreases. Further, migration may occur even in an atmosphere not affected by moisture, such as at 100° C. or higher or in a vacuum. In this case, even if a pair of electrodes is almost short-circuited, there will be no dendrites between the wiring parts, which are always seen when migration occurs in the presence of moisture, and no polarity will be observed ( In other words, it occurs regardless of the polarity of the positive and negative electrodes). Migration resistance means such a property that can suppress migration, which has been widely known in the past. A pair of electrodes may be short-circuited due to metal migration. By improving migration resistance, short circuits of the electrodes can be suppressed. However, the advantage of improved migration resistance is not necessarily an essential effect of the conductive paste of this embodiment, but is considered to be one advantage.
 (A)導電性粒子は、表面処理金属粒子以外の金属を含むことができる。ただし、低い電気抵抗であり、焼成中にガラスフリットの流出を抑え、かつ高い耐硫化性を有する電極を確実に得るためには、(A)導電性粒子は、表面処理金属粒子を50重量%以上含むことが好ましく、表面処理金属粒子を80重量%以上含むことがより好ましく、表面処理金属粒子を90重量%以上含むことが更に好ましく、表面処理金属粒子のみからなることが特に好ましい。なお、本明細書において、「(A)導電性粒子は、表面処理金属粒子のみからなる」とは、(A)導電性粒子として、意図的に表面処理金属粒子以外の金属を配合しないことを意味し、不可避的に混入する表面処理金属粒子以外の導電性粒子が含有することまでも排除するものではない。 (A) The conductive particles can contain metals other than the surface-treated metal particles. However, in order to reliably obtain an electrode that has low electrical resistance, suppresses outflow of the glass frit during firing, and has high sulfidation resistance, (A) conductive particles should contain 50% by weight of surface-treated metal particles. It is preferable to contain 80% by weight or more of surface-treated metal particles, still more preferably to contain 90% by weight or more of surface-treated metal particles, and it is particularly preferable to contain only surface-treated metal particles. In addition, in this specification, "(A) conductive particles consist only of surface-treated metal particles" means that (A) conductive particles do not intentionally contain any metal other than surface-treated metal particles. This does not exclude the inclusion of conductive particles other than the surface-treated metal particles that are inevitably mixed in.
 (A)導電性粒子は、本実施形態の効果を損ねない範囲で、表面処理金属粒子以外の金属粒子として、Zn、In、Al及び/又はSiなどの材料の金属粒子を含むことができる。表面処理金属粒子に含まれる金属粒子、及び表面処理金属粒子以外の金属粒子は、合金の金属粒子であることができる。また、表面処理金属粒子に含まれる金属粒子、及び表面処理金属粒子以外の金属粒子は、種類の異なる複数の金属又は合金の金属粒子を含むことができる。 (A) The conductive particles can include metal particles of materials such as Zn, In, Al, and/or Si as metal particles other than the surface-treated metal particles, as long as the effects of this embodiment are not impaired. The metal particles included in the surface-treated metal particles and the metal particles other than the surface-treated metal particles can be metal particles of an alloy. Furthermore, the metal particles included in the surface-treated metal particles and the metal particles other than the surface-treated metal particles can include metal particles of a plurality of different types of metals or alloys.
 表面処理金属粒子は、金属粒子と、金属粒子の表面の少なくとも一部に配置される表面処理層とを含む。表面処理層は、金属粒子の表面の少なくとも一部に形成された薄膜である。金属粒子を、パラジウム化合物によって表面処理することにより、金属粒子の表面の少なくとも一部に表面処理層を形成することができる。したがって、表面処理金属粒子は、パラジウム化合物によって表面処理された金属粒子とすることができる。 The surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles. The surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles. By surface treating the metal particles with a palladium compound, a surface treatment layer can be formed on at least a portion of the surface of the metal particles. Therefore, the surface-treated metal particles can be metal particles whose surface has been treated with a palladium compound.
 パラジウム化合物によって表面処理される金属粒子の材料は、Ag、Cu、In、Al、又はこれらの合金などを用いることができる。電気伝導率が比較的高いことから、金属粒子の材料は、Ag及び/又はCuであることが好ましく、Agであることがより好ましい。 As the material of the metal particles whose surface is treated with a palladium compound, Ag, Cu, In, Al, or an alloy thereof can be used. Since the electrical conductivity is relatively high, the material of the metal particles is preferably Ag and/or Cu, and more preferably Ag.
 本実施形態の導電性ペーストは、金属粒子が、銀(Ag)を50重量%以上含むことが好ましく、銀(Ag)を80重量%以上含むことがより好ましく、銀(Ag)を90重量%以上含むことが更に好ましく、銀(Ag)を95重量%以上含むことが特に好ましい。最も好ましい実施形態では、本実施形態の導電性ペーストに含まれる表面処理金属粒子の金属粒子は、銀(Ag)粒子のみからなる。銀の電気伝導率が、他の金属と比べると比較的高いためである。なお、本明細書において、「表面処理金属粒子の金属粒子は、銀(Ag)粒子のみからなる」とは、金属粒子として、意図的に銀(Ag)粒子以外の金属粒子を用いないことを意味し、不可避的に混入する銀(Ag)粒子以外の金属粒子が含有することまでも排除するものではない。他の同様の記載についても同様に、不可避的に混入する物質を排除するものではない。 In the conductive paste of the present embodiment, the metal particles preferably contain 50% by weight or more of silver (Ag), more preferably 80% by weight or more of silver (Ag), and 90% by weight of silver (Ag). It is more preferable to contain silver (Ag) in an amount of 95% by weight or more. In the most preferred embodiment, the metal particles of the surface-treated metal particles contained in the conductive paste of this embodiment consist only of silver (Ag) particles. This is because the electrical conductivity of silver is relatively high compared to other metals. In addition, in this specification, "the metal particles of the surface-treated metal particles consist only of silver (Ag) particles" means that metal particles other than silver (Ag) particles are intentionally not used as the metal particles. This does not preclude the inclusion of metal particles other than silver (Ag) particles that are unavoidably mixed. Similarly, other similar descriptions do not exclude substances that are unavoidably mixed.
 本実施形態の導電性ペーストは、導電性ペースト100重量部に対し、表面処理金属粒子を50重量部以上含むことが好ましく、70重量部以上含むことがより好ましく、80重量部以上含むことが更に好ましい。
 また、本実施形態の導電性ペーストは、導電性ペースト100重量部に対し、表面処理金属粒子を50~99重量部含むことが好ましく、70~97重量部以上含むことがより好ましく、80~95重量部含むことが更に好ましい。上記範囲であることにより、高い耐硫化性を有し、ガラスフリットの流出を抑制する効果を十分に発揮しつつ、比較的低コストの電極を形成することができる。
The conductive paste of this embodiment preferably contains 50 parts by weight or more of surface-treated metal particles, more preferably 70 parts by weight or more, and still more preferably 80 parts by weight or more, based on 100 parts by weight of the conductive paste. preferable.
Further, the conductive paste of the present embodiment preferably contains 50 to 99 parts by weight of surface-treated metal particles, more preferably 70 to 97 parts by weight or more, and 80 to 95 parts by weight, based on 100 parts by weight of the conductive paste. It is more preferable to include parts by weight. By being within the above range, it is possible to form an electrode at relatively low cost while having high sulfidation resistance and sufficiently exhibiting the effect of suppressing outflow of glass frit.
 金属粒子の製造方法は、特に限定されず、例えば、還元法、粉砕法、電解法、アトマイズ法、熱処理法、又はそれらの組合せによって製造することができる。フレーク状の金属粒子は、例えば、球状又は粒状の金属粒子をボールミル等によって押し潰すことによって製造することができる。 The method for producing metal particles is not particularly limited, and can be produced by, for example, a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, or a combination thereof. Flake-shaped metal particles can be produced, for example, by crushing spherical or granular metal particles using a ball mill or the like.
 表面処理金属粒子は、金属粒子の表面の少なくとも一部に配置される表面処理層を含む。表面処理層は、金属粒子を、パラジウム化合物を含む表面処理剤によって表面処理することにより、金属粒子の表面の少なくとも一部に形成された薄膜である。 The surface-treated metal particles include a surface treatment layer disposed on at least a portion of the surface of the metal particles. The surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles by surface treating the metal particles with a surface treatment agent containing a palladium compound.
 金属粒子を表面処理するための原料となるパラジウム化合物として、塩化パラジウム(II)、酸化パラジウム(II)、有機パラジウム化合物、フッ化パラジウム、パラジウム炭素、n-アリルパラジウム錯体、シクロペンタジエニルアリルパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、臭化パラジウム、及びオレイン酸パラジウムのようなパラジウムの脂肪酸錯体等のパラジウム錯体から選択される少なくとも1つを用いることができる。金属粒子を表面処理するための原料となるパラジウム化合物として、塩化パラジウムを用いることが好ましい。 Palladium compounds that serve as raw materials for surface treatment of metal particles include palladium (II) chloride, palladium (II) oxide, organic palladium compounds, palladium fluoride, palladium on carbon, n-allyl palladium complex, cyclopentadienyl allyl palladium. , dichlorobis(triphenylphosphine)palladium (II), palladium bromide, and palladium complexes such as palladium fatty acid complexes such as palladium oleate. It is preferable to use palladium chloride as a palladium compound that is a raw material for surface treating metal particles.
 表面処理層は、パラジウム化合物を用いて、公知の方法で表面処理することにより形成することができる。具体的には、表面処理層は、パラジウム又はパラジウムイオンと、これらを分散させるための有機物と、溶剤とを含むパラジウムソープ溶剤(表面処理剤)を、金属粒子の表面に付着させ、乾燥工程により、溶剤を除去したものである。これにより、金属粒子の表面にパラジウム化合物を含んだ表面処理層を形成することができる。なお、還元処理によって金属粒子の表面に他の金属粒子を被覆させ、コアシェル構造を形成する技術も存在するが、この技術を用いて表面処理層を形成することを試みた場合、コア粒子(例えば銀粒子)表面にシェル(例えばパラジウム金属粒子)を析出させるために、シェルにおけるパラジウム金属粒子の存在量が多くなる。すなわち、パラジウムの使用量が多くなる。一方で、本発明においてはパラジウム化合物が金属粒子の表面に付着した状態で表面処理層を形成しているため、パラジウムの使用量が少量でよいという効果がある。パラジウムは希少性、偏在性から高価な金属であり、少量であっても優れた耐硫化性を有し、ガラス成分の流れ出しを抑制できることは、コスト面からみても極めて重要な効果である。 The surface treatment layer can be formed by surface treatment using a palladium compound by a known method. Specifically, the surface treatment layer is formed by attaching a palladium soap solvent (surface treatment agent) containing palladium or palladium ions, an organic substance for dispersing these, and a solvent to the surface of the metal particles, and then applying the palladium soap solvent (surface treatment agent) containing palladium or palladium ions, an organic substance for dispersing these, and a solvent to the surface of the metal particles. , with the solvent removed. Thereby, a surface treatment layer containing a palladium compound can be formed on the surface of the metal particles. Note that there is also a technology in which the surface of metal particles is coated with other metal particles through reduction treatment to form a core-shell structure, but when attempting to form a surface treatment layer using this technology, core particles (e.g. In order to deposit a shell (for example, palladium metal particles) on the surface of silver particles, the amount of palladium metal particles present in the shell increases. In other words, the amount of palladium used increases. On the other hand, in the present invention, since the surface treatment layer is formed with the palladium compound attached to the surface of the metal particles, the effect is that only a small amount of palladium is required. Palladium is an expensive metal due to its rarity and uneven distribution, and even in small amounts it has excellent sulfidation resistance, and the ability to suppress the outflow of glass components is an extremely important effect from a cost perspective.
 パラジウム又はパラジウムイオンを分散させるための有機物としては、脂肪酸及びトリアゾール化合物から選択される少なくとも1つであることが好ましい。溶剤として脂肪酸を用いる場合、脂肪酸としては、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カブリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、及びメリシン酸などから選択される少なくとも1つを使用することができる。これらの脂肪酸の中でも、パルミチン酸、ステアリン酸及びオレイン酸から選択される少なくとも1つを使用することが好ましい。表面処理剤に含まれる有機物(脂肪酸)として、オレイン酸を使用することがより好ましい。パラジウム又はパラジウムイオンを分散させるための有機物としてトリアゾール化合物を用いる場合、トリアゾール化合物としては、ベンゾトリアゾールを使用することができる。 The organic substance for dispersing palladium or palladium ions is preferably at least one selected from fatty acids and triazole compounds. When a fatty acid is used as a solvent, examples of the fatty acid include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, cabric acid, lauric acid, myristic acid, pentadecyl acid, palmitic acid, palmitoleic acid, margaric acid, and stearic acid. acids, oleic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, cerotic acid, montanic acid, and At least one selected from melisic acid and the like can be used. Among these fatty acids, it is preferable to use at least one selected from palmitic acid, stearic acid, and oleic acid. It is more preferable to use oleic acid as the organic substance (fatty acid) contained in the surface treatment agent. When using a triazole compound as an organic substance for dispersing palladium or palladium ions, benzotriazole can be used as the triazole compound.
 なお、表面処理層を形成するための表面処理剤に含まれる溶剤は、パラジウム又はパラジウムイオンを分散させ、金属粒子に対しパラジウム化合物を良好に付着させるために用いられるものであればよい。溶剤として、例えば、メタノール、エタノール、及びイソプロピルアルコール(IPA)等のアルコール類、酢酸エチレン等の有機酸類、トルエン、及びキシレン等の芳香族炭化水素類、N-メチル-2-ピロリドン(NMP)等のN-アルキルピロリドン類、N,N-ジメチルホルムアミド(DMF)等のアミド類、メチルエチルケトン(MEK)等のケトン類、テルピネオール(TEL)、及びジエチレングリコールモノブチルエーテル(ブチルカルビトール、BC)等の環状カーボネート類、ビス[2-(2-ブトキシエトキシ)エチル]アジペート、2,2,4-トリメチルペンタン-1,3-ジオールモノイソブチラート(テキサノール)、並びに水等が挙げられる。 Note that the solvent contained in the surface treatment agent for forming the surface treatment layer may be any solvent that can be used to disperse palladium or palladium ions and to properly adhere the palladium compound to the metal particles. Examples of solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, N-methyl-2-pyrrolidone (NMP), etc. N-alkylpyrrolidones, amides such as N,N-dimethylformamide (DMF), ketones such as methyl ethyl ketone (MEK), cyclic carbonates such as terpineol (TEL), and diethylene glycol monobutyl ether (butyl carbitol, BC) , bis[2-(2-butoxyethoxy)ethyl]adipate, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate (Texanol), and water.
 上述のパラジウム化合物を分散させた溶剤を含む表面処理剤を金属粒子の表面に付着させ、溶剤を乾燥により除去することによって、金属粒子の表面に表面処理層を形成することができる。このようにして、表面処理金属粒子を得ることができる。 A surface treatment layer can be formed on the surface of the metal particles by attaching a surface treatment agent containing a solvent in which the above palladium compound is dispersed to the surface of the metal particles and removing the solvent by drying. In this way, surface-treated metal particles can be obtained.
 また、表面処理金属粒子の表面処理層は、次のようにして製造することができる。すなわち、まず、金属粒子を水に分散させる。金属粒子分散させた水中に、被覆剤として、上述のパラジウム化合物を分散させた溶剤を添加して、パラジウムを含む被覆剤で被覆された金属粒子を含む水スラリーを得た後、デカンテーションにより被覆剤で被覆された金属粒子を沈降させる。次に、上澄み液を除去して、得られたウエットな状態の被覆剤で被覆された金属粒子をアクリル系分散剤とともに沸点が150~300℃の極性溶剤に添加する。その後、窒素雰囲気中において室温から100℃の温度、好ましくは80℃以下の温度で12時間以上乾燥させて水分を除去することにより、表面処理金属粒子を製造することができる。なお、乾燥温度が高過ぎると表面処理金属粒子が焼結してしまうので好ましくない。 Furthermore, the surface treatment layer of the surface treated metal particles can be manufactured as follows. That is, first, metal particles are dispersed in water. A solvent in which the above-mentioned palladium compound is dispersed is added as a coating agent to water in which metal particles are dispersed to obtain a water slurry containing metal particles coated with a coating agent containing palladium, and then the coating is performed by decantation. The metal particles coated with the agent are allowed to settle. Next, the supernatant liquid is removed, and the resulting wet metal particles coated with the coating material are added together with an acrylic dispersant to a polar solvent having a boiling point of 150 to 300°C. Thereafter, surface-treated metal particles can be produced by drying in a nitrogen atmosphere at a temperature from room temperature to 100° C., preferably at a temperature of 80° C. or less for 12 hours or more to remove moisture. Note that if the drying temperature is too high, the surface-treated metal particles will be sintered, which is not preferable.
 本実施形態の導電性ペーストに含まれる表面処理金属粒子の表面処理層は、更に有機物を含むことが好ましい。例えば、表面処理層が、上述のパラジウム化合物を用いて形成される場合には、表面処理層が有機物を含むことになる。表面処理金属粒子が、有機物を含む表面処理層を有することにより、パラジウム化合物量が少量であっても、得られる電極が高い耐硫化性を有することができる。なお、有機物は液状の有機脂肪酸であってもよく、固形の脂肪酸であってもよい。液状の脂肪酸の例としては、酪酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、及びペラルゴン酸等の飽和脂肪酸、並びにミリストレイン酸、パルミトレイン酸、リシノール酸、オレイン酸、リノール酸、及びリノレン酸等の不飽和脂肪酸を挙げることができる。これらの脂肪酸は、1種を単独で使用してもよく、2種以上を併用してもよい。これらの中では、オレイン酸、リノール酸又はこれらの混合物を用いることが好ましい。固形の脂肪酸の例としては、カプリン酸、パルミチン酸、及びステアリン酸等の炭素原子数10以上の飽和脂肪酸、並びにクロトン酸、及びソルビン酸等の不飽和脂肪酸を挙げることができる。 It is preferable that the surface treatment layer of the surface treated metal particles contained in the conductive paste of this embodiment further contains an organic substance. For example, when the surface treatment layer is formed using the above-mentioned palladium compound, the surface treatment layer contains an organic substance. Since the surface-treated metal particles have a surface-treated layer containing an organic substance, the resulting electrode can have high sulfidation resistance even if the amount of palladium compound is small. Note that the organic substance may be a liquid organic fatty acid or a solid fatty acid. Examples of liquid fatty acids include saturated fatty acids such as butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, and pelargonic acid, as well as myristoleic acid, palmitoleic acid, ricinoleic acid, oleic acid, linoleic acid, and linolenic acid. Unsaturated fatty acids such as These fatty acids may be used alone or in combination of two or more. Among these, it is preferable to use oleic acid, linoleic acid, or a mixture thereof. Examples of solid fatty acids include saturated fatty acids having 10 or more carbon atoms, such as capric acid, palmitic acid, and stearic acid, and unsaturated fatty acids, such as crotonic acid and sorbic acid.
 本実施形態に用いる表面処理金属粒子の表面処理層は、パラジウム化合物の薄膜である。本実施形態では、表面処理金属粒子の表面処理層が、パラジウム金属又はパラジウム合金からなる薄膜ではないことに特徴がある。表面処理層が、パラジウム金属又はパラジウム合金からなる薄膜である場合には、パラジウムの配合量が多すぎるため、得られる電極の電気抵抗が増加するなどの悪影響が生じることがある。また、焼成後、パラジウム金属又はパラジウム合金が金属粒子の表面に多く存在することにより、銀粒子などの金属粒子に対するはんだの濡れ性が悪くなり、はんだ付けが阻害される可能性が高くなる。また、パラジウムの使用量が多くなると、高コストである。 The surface treatment layer of the surface treated metal particles used in this embodiment is a thin film of a palladium compound. This embodiment is characterized in that the surface treatment layer of the surface treatment metal particles is not a thin film made of palladium metal or palladium alloy. When the surface treatment layer is a thin film made of palladium metal or palladium alloy, the amount of palladium blended is too large, which may cause adverse effects such as an increase in the electrical resistance of the resulting electrode. Further, after firing, a large amount of palladium metal or palladium alloy is present on the surface of the metal particles, which deteriorates the wettability of the solder to metal particles such as silver particles, increasing the possibility that soldering will be inhibited. Moreover, if the amount of palladium used increases, the cost will be high.
 表面処理層は、金属粒子の表面の少なくとも一部に形成された薄膜である。表面処理層は、金属粒子の表面の50%以上を覆う薄膜であることが好ましく、金属粒子の表面の80%以上を覆う薄膜であることがより好ましく、金属粒子の表面の90%以上を覆う薄膜であることが好ましく、金属粒子の表面の95%以上を覆う薄膜であることが特に好ましい。表面処理層は、金属粒子の表面全体を覆う薄膜であることが最も好ましい。 The surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles. The surface treatment layer is preferably a thin film that covers 50% or more of the surface of the metal particle, more preferably a thin film that covers 80% or more of the surface of the metal particle, and covers 90% or more of the surface of the metal particle. A thin film is preferable, and a thin film covering 95% or more of the surface of the metal particles is particularly preferable. Most preferably, the surface treatment layer is a thin film that covers the entire surface of the metal particles.
 表面処理金属粒子の表面処理層の膜厚は、必ずしも均一である必要はないが、金属粒子の硫化をより効果的に抑制するために、均一であることが好ましい。なお、表面処理層の膜厚の制御は、例えば、パラジウム化合物が溶剤中に分散されたパラジウムソープ溶剤(表面処理剤)の粘度、及びパラジウムソープ溶剤(表面処理剤)中のパラジウム化合物の濃度を調節することにより、制御することができる。また、表面処理層の膜厚を制御することにより、表面処理層に含まれるパラジウムの量を制御することができる。なお、表面処理層の膜厚は、1~100nm以下であることが好ましく、1~70nm以下であることがより好ましく、1~50nm以下であることが特に好ましい。表面処理層の厚みは、例えばX線光電子分光法にて測定できる。表面処理層の膜厚をこの範囲とすることで、パラジウム化合物量を少量としながらも耐硫化性の高い電極を形成することができる。 The thickness of the surface treatment layer of the surface-treated metal particles does not necessarily have to be uniform, but is preferably uniform in order to more effectively suppress sulfidation of the metal particles. The thickness of the surface treatment layer can be controlled by, for example, controlling the viscosity of the palladium soap solvent (surface treatment agent) in which the palladium compound is dispersed, and the concentration of the palladium compound in the palladium soap solvent (surface treatment agent). It can be controlled by adjusting. Further, by controlling the thickness of the surface treatment layer, the amount of palladium contained in the surface treatment layer can be controlled. The thickness of the surface treatment layer is preferably from 1 to 100 nm, more preferably from 1 to 70 nm, particularly preferably from 1 to 50 nm. The thickness of the surface treatment layer can be measured, for example, by X-ray photoelectron spectroscopy. By setting the thickness of the surface treatment layer within this range, an electrode with high sulfidation resistance can be formed while using a small amount of palladium compound.
 本実施形態の導電性ペーストが、(A)導電性粒子として、パラジウム化合物によって表面処理された表面処理金属粒子を含むことにより、高価なパラジウムを多く使用せずに高い耐硫化性を有する電極を形成することができる。したがって、本実施形態の導電性ペーストを用いることにより、高い耐硫化性を有し、比較的低コストの電極を形成することができる。特に、金属粒子として銀粒子を用いる場合、銀は硫化されやすい。本実施形態の導電性ペーストを用いることにより、銀を主材料とする電極が硫化によって断線することを、低コストで、効果的に抑制することができる。 Since the conductive paste of this embodiment contains (A) surface-treated metal particles surface-treated with a palladium compound as the conductive particles, an electrode having high sulfidation resistance can be created without using a large amount of expensive palladium. can be formed. Therefore, by using the conductive paste of this embodiment, an electrode having high sulfidation resistance and relatively low cost can be formed. In particular, when silver particles are used as metal particles, silver is easily sulfurized. By using the conductive paste of this embodiment, it is possible to effectively suppress disconnection of an electrode mainly made of silver due to sulfurization at low cost.
 例えば、銀粒子を金属粒子として用いた場合、パラジウム化合物によって表面処理された表面処理金属粒子(表面処理銀粒子)を用いることによって、銀粒子の硫化を抑制することができることの理由は、以下のように推論することができる。すなわち、表面処理成分としてのパラジウムと金属粒子とが焼結により均一な合金層を形成することで耐硫化性が向上したものと推定される。パラジウム化合物中のパラジウムは、例えば、400~900℃での焼成により金属粒子とパラジウム金属合金層(金属粒子が銀粒子の場合は、パラジウム-銀合金層)として存在するようになる。このパラジウム金属合金層は、金属粒子に高い耐硫化性を付与することになると考えられる。なお、表面処理層に含まれるパラジウムの含有量はあまり多くはない。そのため、別途パラジウム粒子を添加する場合と比べて、パラジウムの使用量が少なくて済むので、比較的低コストで高い耐硫化性を得ることができる。このようにして得られた電極は、高い耐硫化性を有し、基板への密着性が優れている。銀粒子以外の他の金属粒子についても同様に推論できる。ただし、本発明は、この推論に拘束されるものではない。 For example, when silver particles are used as metal particles, the reason why sulfidation of the silver particles can be suppressed by using surface-treated metal particles (surface-treated silver particles) that have been surface-treated with a palladium compound is as follows. It can be inferred as follows. That is, it is presumed that palladium as a surface treatment component and metal particles form a uniform alloy layer through sintering, thereby improving the sulfidation resistance. Palladium in the palladium compound comes to exist as metal particles and a palladium metal alloy layer (if the metal particles are silver particles, a palladium-silver alloy layer) by firing at, for example, 400 to 900°C. It is believed that this palladium metal alloy layer imparts high sulfidation resistance to the metal particles. Note that the content of palladium contained in the surface treatment layer is not very large. Therefore, compared to the case where palladium particles are added separately, the amount of palladium used can be reduced, and high sulfidation resistance can be obtained at relatively low cost. The electrode thus obtained has high sulfidation resistance and excellent adhesion to the substrate. Similar inferences can be made regarding metal particles other than silver particles. However, the present invention is not limited to this inference.
 本実施形態の導電性ペーストの(A)導電性粒子が、所定の表面処理金属粒子を含むことにより、付加的な効果として、得られる電極の耐マイグレーション性も向上することができる。パラジウム化合物によって表面処理された表面処理金属粒子(表面処理銀粒子)を用いることによって、耐マイグレーション性も向上することができることの理由は、パラジウム化合物によって表面処理された表面処理金属粒子を用いることで、パラジウムの耐マイグレーションの効果は持ちつつ、電極の緻密性も向上する。これにより、耐マイグレーション性が向上するものと推測される。ただし、本発明は、この推論に拘束されるものではない。 When the conductive particles (A) of the conductive paste of this embodiment include predetermined surface-treated metal particles, the migration resistance of the obtained electrode can be improved as an additional effect. The reason why migration resistance can also be improved by using surface-treated metal particles (surface-treated silver particles) whose surface has been treated with a palladium compound is that by using surface-treated metal particles whose surface has been treated with a palladium compound, migration resistance can also be improved. , while maintaining the anti-migration effect of palladium, the density of the electrode is also improved. It is presumed that this improves migration resistance. However, the present invention is not limited to this inference.
 本実施形態の導電性ペーストは、表面処理金属粒子に含まれるパラジウムの含有量が、金属粒子100重量部に対し、0.01重量部以上であることが好ましく、0.05重量部以上であることがより好ましく、0.08重量部以上であることが特に好ましい。また、パラジウムの含有量は、金属粒子100重量部に対し、1.0重量部以下であることが好ましく、0.8重量部以下であることがより好ましく、0.6重量部以下であることが更に好ましく、0.4重量部以下であることが特に好ましく、0.3重量部以下であることが最も好ましい。表面処理金属粒子に含まれるパラジウムの含有量が上記範囲であることにより、パラジウムの使用量が少なく、低コストでありながら電極の硫化による電極の抵抗値の変化を小さくすることができる。なお、表面処理金属粒子に含まれるパラジウムの含有量は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)で測定することができる。 In the conductive paste of the present embodiment, the content of palladium contained in the surface-treated metal particles is preferably 0.01 parts by weight or more, and preferably 0.05 parts by weight or more, based on 100 parts by weight of the metal particles. The amount is more preferably 0.08 parts by weight or more, and particularly preferably 0.08 parts by weight or more. Further, the palladium content is preferably 1.0 parts by weight or less, more preferably 0.8 parts by weight or less, and 0.6 parts by weight or less based on 100 parts by weight of the metal particles. is more preferable, particularly preferably 0.4 parts by weight or less, and most preferably 0.3 parts by weight or less. When the content of palladium contained in the surface-treated metal particles is within the above range, the amount of palladium used is small, and the change in resistance value of the electrode due to sulfidation of the electrode can be reduced while the cost is low. Note that the content of palladium contained in the surface-treated metal particles can be measured by ICP emission spectrometry (high frequency inductively coupled plasma emission spectrometry).
 (A)導電性粒子の形状は、特に限定されず、例えば、球状、粒状、フレーク状及び/又は鱗片状の表面処理金属粒子を用いることが可能である。 (A) The shape of the conductive particles is not particularly limited, and for example, spherical, granular, flaky, and/or scaly surface-treated metal particles can be used.
 (A)導電性粒子の平均粒径は、0.1μm~10μmが好ましく、より好ましくは0.2μm~8μmであり、更に好ましくは0.3μm~7μmであり、特に好ましくは0.4~6μmである。ここでいう平均粒径は、レーザー回折散乱式粒度分布測定法により得られる体積基準メジアン径(D50)を意味する。(A)導電性粒子の平均粒径(D50)が10μmより大きい場合には、焼結性が悪く、緻密な膜が得られない。また、(A)導電性粒子の平均粒径(D50)が0.1μm未満である場合には、分散性が悪くなる傾向になり、導電性ペーストを印刷したときに均一な薄膜が得られにくい場合がある。 (A) The average particle size of the conductive particles is preferably 0.1 μm to 10 μm, more preferably 0.2 μm to 8 μm, even more preferably 0.3 μm to 7 μm, particularly preferably 0.4 to 6 μm. It is. The average particle diameter herein means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measurement method. (A) If the average particle diameter (D50) of the conductive particles is larger than 10 μm, sinterability is poor and a dense film cannot be obtained. In addition, if the average particle diameter (D50) of (A) conductive particles is less than 0.1 μm, the dispersibility tends to deteriorate, making it difficult to obtain a uniform thin film when printing the conductive paste. There are cases.
<(B)バインダー樹脂>
 本実施形態の導電性ペーストは、(B)バインダー樹脂を含む。
<(B) Binder resin>
The conductive paste of this embodiment includes (B) a binder resin.
 本実施形態の導電性ペーストは(C)ガラスフリットを含むため、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布し、例えば400~900℃で焼成することにより、電極を形成することができる。この場合、(B)バインダー樹脂は、焼成の際に焼失する。したがって、(B)バインダー樹脂の機能は、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布したときに、(A)導電性粒子同士をつなぎあわせることである。 Since the conductive paste of this embodiment includes (C) glass frit, the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and then baked at, for example, 400 to 900°C. Accordingly, electrodes can be formed. In this case, the binder resin (B) is burned out during firing. Therefore, the function of (B) the binder resin is to (A) connect the conductive particles when the conductive paste of this embodiment is applied to a predetermined base material to form a predetermined electrode pattern. .
 (B)バインダー樹脂としては、例えば、エチルセルロース樹脂、ニトロセルロース樹脂等のセルロース系樹脂、アクリル樹脂、アルキド樹脂、飽和ポリエステル樹脂、ブチラール樹脂、ポリビニルアルコール、及びヒドロキシプロピルセルロース等の熱可塑性樹脂を用いることができる。これらの樹脂は、単独で使用することができ、2種類以上を混合して使用することができる。 (B) As the binder resin, for example, cellulose resins such as ethyl cellulose resin and nitrocellulose resin, thermoplastic resins such as acrylic resin, alkyd resin, saturated polyester resin, butyral resin, polyvinyl alcohol, and hydroxypropyl cellulose may be used. I can do it. These resins can be used alone or in combination of two or more.
 (B)バインダー樹脂としては、エチルセルロース樹脂、ニトロセルロース樹脂等のセルロース系樹脂、及びアルキド樹脂から選択した少なくとも1つを用いることが好ましい。 As the binder resin (B), it is preferable to use at least one selected from cellulose resins such as ethyl cellulose resins and nitrocellulose resins, and alkyd resins.
 本実施形態の導電性ペーストは、表面処理金属粒子同士の接着性を向上させるために、(B)バインダー樹脂として、エポキシ樹脂を含むことができる。エポキシ樹脂の種類については特に制限はなく、公知のエポキシ樹脂を用いることができる。エポキシ樹脂として、例えば、ビスフェノールA型、ビスフェノールF型、ビフェニル型、テトラメチルビフェニル型、クレゾールノボラック型、フェノールノボラック型、ビスフェノールAノボラック型、ジシクロペンタジエンフェノール縮合型、フェノールアラルキル縮合型、及びグリシジルアミン型などのエポキシ樹脂、臭素化エポキシ樹脂、脂環式エポキシ樹脂、並びに脂肪族エポキシ樹脂などが挙げられる。これらエポキシ樹脂は1種単独で又は2種以上を混合して用いることができる。また、表面処理金属粒子同士の接着性を向上させることを目的として、エポキシ樹脂以外の熱硬化性樹脂を用いてもよい。さらに、ポリウレタン樹脂、及び/又はポリカーボネート樹脂等の熱可塑性樹脂を用いてもよい。 The conductive paste of this embodiment may contain an epoxy resin as the binder resin (B) in order to improve the adhesion between the surface-treated metal particles. There are no particular restrictions on the type of epoxy resin, and any known epoxy resin can be used. Examples of epoxy resins include bisphenol A type, bisphenol F type, biphenyl type, tetramethylbiphenyl type, cresol novolac type, phenol novolac type, bisphenol A novolac type, dicyclopentadienephenol condensation type, phenol aralkyl condensation type, and glycidylamine. Examples include epoxy resins such as molds, brominated epoxy resins, alicyclic epoxy resins, and aliphatic epoxy resins. These epoxy resins can be used alone or in combination of two or more. Furthermore, a thermosetting resin other than epoxy resin may be used for the purpose of improving the adhesion between surface-treated metal particles. Furthermore, thermoplastic resins such as polyurethane resins and/or polycarbonate resins may also be used.
 (B)バインダー樹脂の含有量は、(A)導電性粒子100重量部に対して、好ましくは0.1~30重量部であり、より好ましくは、0.5~15重量部であり、更に好ましくは1~10重量部であり、特に好ましくは1.5~8重量部である。導電性ペースト中の(B)バインダー樹脂の含有量が上記の範囲内の場合、導電性ペーストの基板(基材)への塗布性、及び/又はペーストレベリング性が向上し、優れた印刷形状を得ることができる。一方、(B)バインダー樹脂の含有量が上記の範囲を超えると、塗布した導電性ペースト中に含まれる(B)バインダー樹脂の量が多すぎる。そのため、電極等を高精度に形成することができなくなる可能性がある。 The content of the binder resin (B) is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 15 parts by weight, and The amount is preferably 1 to 10 parts by weight, particularly preferably 1.5 to 8 parts by weight. When the content of the binder resin (B) in the conductive paste is within the above range, the applicability of the conductive paste to the substrate (base material) and/or the paste leveling properties are improved, resulting in an excellent printed shape. Obtainable. On the other hand, when the content of the binder resin (B) exceeds the above range, the amount of the binder resin (B) contained in the applied conductive paste is too large. Therefore, there is a possibility that electrodes and the like cannot be formed with high precision.
<(C)ガラスフリット>
 本実施形態の導電性ペーストは、(C)ガラスフリットを更に含む。本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布し、例えば400~900℃で焼成することにより、電極を形成することができる。この場合、上述の(B)バインダー樹脂は、焼成の際に焼失する。導電性ペーストに含まれる(C)ガラスフリットによって、(A)導電性粒子同士をつなぎあわせることにより、焼成後の電極の形状を保つことができる。
<(C) Glass frit>
The conductive paste of this embodiment further includes (C) glass frit. Electrodes can be formed by applying the conductive paste of this embodiment to a predetermined base material so as to form a predetermined electrode pattern, and firing at, for example, 400 to 900°C. In this case, the above-mentioned binder resin (B) is burned out during firing. The shape of the electrode after firing can be maintained by connecting the (A) conductive particles together using the (C) glass frit contained in the conductive paste.
 ガラスフリットは、軟化点が800℃以下のものであれば特に限定されるものではないが、好ましくは軟化点250℃以上、より好ましくは軟化点250~800℃、更に好ましくは軟化点250~750℃、特に好ましくは軟化点300℃~700℃のガラスフリットを用いることができる。軟化点が800℃以下のガラスフリットを用いることで、焼成を比較的低温で行うことができる。ただし、本発明の効果を損なわない範囲において、軟化点が800℃以上のガラスフリットを併用することもできる。ガラスフリットの軟化点は、熱重量測定装置(例えば、BRUKER AXS社製、TG-DTA2000SA)を用いて測定することができる。 The glass frit is not particularly limited as long as it has a softening point of 800°C or lower, but preferably has a softening point of 250°C or higher, more preferably a softening point of 250 to 800°C, and even more preferably a softening point of 250 to 750°C. ℃, particularly preferably a glass frit with a softening point of 300°C to 700°C. By using a glass frit with a softening point of 800° C. or lower, firing can be performed at a relatively low temperature. However, a glass frit having a softening point of 800° C. or higher can also be used in combination without impairing the effects of the present invention. The softening point of the glass frit can be measured using a thermogravimetric measuring device (for example, TG-DTA2000SA manufactured by BRUKER AXS).
 (C)ガラスフリットの例として、ホウケイ酸系、及びホウケイ酸バリウム系等のガラスフリットを挙げることができる。また、ガラスフリットの例として、ホウケイ酸ビスマス系、ホウケイ酸アルカリ金属系、ホウケイ酸アルカリ土類金属系、ホウケイ酸亜鉛系、ホウケイ酸鉛系、ホウ酸鉛系、ケイ酸鉛系、ホウ酸ビスマス系、及びホウ酸亜鉛系等のガラスフリットを挙げることができる。これらのガラスフリットは、2種以上を混合して用いることもできる。ガラスフリットは、環境への配慮の点から鉛フリーであることが好ましい。 Examples of the glass frit (C) include borosilicate-based and barium borosilicate-based glass frits. Examples of glass frits include bismuth borosilicate, alkali metal borosilicate, alkaline earth metal borosilicate, zinc borosilicate, lead borosilicate, lead borate, lead silicate, and bismuth borate. and zinc borate-based glass frits. These glass frits can also be used in combination of two or more types. The glass frit is preferably lead-free from the viewpoint of environmental considerations.
 ガラスフリットは、ZnO、Bi、BaO、NaO、CaO及びAlからなる群から選択される少なくとも1つを含むことが好ましい。ガラスフリットは、ZnO及びBiからなる群から選択される少なくとも1つを含むことがより好ましい。 It is preferable that the glass frit contains at least one selected from the group consisting of ZnO, Bi 2 O 3 , BaO, Na 2 O, CaO, and Al 2 O 3 . More preferably, the glass frit contains at least one selected from the group consisting of ZnO and Bi 2 O 3 .
 ガラスフリットは、ZnOを含むことが更に好ましい。ガラスフリットとしてZnOを含むガラスフリット(亜鉛系ガラスフリット)を用いる場合には、より高い耐硫化性の電極を得ることができる。 It is further preferable that the glass frit contains ZnO. When a glass frit containing ZnO (zinc-based glass frit) is used as the glass frit, an electrode with higher sulfidation resistance can be obtained.
 ガラスフリットは、Biを含むことが更に好ましい。ガラスフリットとしてBiを含むガラスフリット(ビスマス系ガラスフリット)を用いる場合には、電極の緻密性を向上させることができる。 More preferably, the glass frit contains Bi 2 O 3 . When a glass frit containing Bi 2 O 3 (bismuth-based glass frit) is used as the glass frit, the denseness of the electrode can be improved.
 ガラスフリットの平均粒径は、好ましくは0.1~20μm、より好ましくは0.2~10μm、特に好ましくは0.5~5μmである。ここでいう平均粒径は、レーザー回折散乱式粒度分布測定法により得られる体積基準メジアン径(D50)のことを意味する。 The average particle size of the glass frit is preferably 0.1 to 20 μm, more preferably 0.2 to 10 μm, particularly preferably 0.5 to 5 μm. The average particle size here means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measurement method.
 (C)ガラスフリットの含有量は、(A)導電性粒子100重量部に対して0.05~10重量部であることが好ましく、0.5~8重量部であることがより好ましく、1~6重量部であることが更に好ましく、2~4重量部であることが特に好ましい。ガラスフリットの含有量がこの範囲よりも少ない場合、導電性ペーストを焼成して得られる電極の基板(基材)への密着性が低下する。ガラスフリットの含有量がこの範囲よりも多い場合、導電性ペーストを焼成して得られる電極の抵抗値は高く、焼成体の表面がガラス成分で覆われるため、めっき付け性が悪くなる。なお、ガラスフリットの含有量が比較的少ない場合には、低抵抗の電極を得ることができる。また、ガラスフリットの含有量が比較的多い場合には、耐薬品性に優れる電極を得ることができる。耐薬品性は、電極の表面にめっき膜を形成する場合に、めっき前処理が必要であるために求められる特性である。めっき前処理は、電極の表面から汚染物質を除去し、電極の表面を活性化し、めっきに適した清浄な状態にすることを目的として行われる。除去するべき汚染物質には有機系と無機系に大別できる。前処理工程は、単独の工程ですべての汚染物質を除去する工程ではない。例えば有機系物質は、アルカリ系洗浄剤を用いた工程で除去する。無機系物質は、酸系洗浄剤を用いた工程で除去する。そのため、電極に高い耐薬品性が求められる。 The content of (C) glass frit is preferably 0.05 to 10 parts by weight, more preferably 0.5 to 8 parts by weight, and 1 It is more preferably 6 parts by weight, and particularly preferably 2 to 4 parts by weight. If the content of glass frit is less than this range, the adhesion of the electrode obtained by firing the conductive paste to the substrate (base material) will decrease. If the content of glass frit is more than this range, the resistance value of the electrode obtained by firing the conductive paste will be high, and the surface of the fired body will be covered with the glass component, resulting in poor plating properties. Note that when the content of glass frit is relatively small, an electrode with low resistance can be obtained. Moreover, when the content of glass frit is relatively large, an electrode with excellent chemical resistance can be obtained. Chemical resistance is a required property because plating pretreatment is required when forming a plating film on the surface of an electrode. Plating pretreatment is performed for the purpose of removing contaminants from the electrode surface, activating the electrode surface, and bringing it into a clean state suitable for plating. The pollutants that need to be removed can be broadly divided into organic and inorganic pollutants. The pretreatment step is not a single step that removes all contaminants. For example, organic substances are removed in a process using an alkaline cleaning agent. Inorganic substances are removed in a process using acid-based cleaning agents. Therefore, electrodes are required to have high chemical resistance.
 本実施形態の導電性ペーストが(C)ガラスフリットとして酸化亜鉛を含む場合には、結晶化温度でガラスフリット中のZn成分がZnOとして析出する。このとき、結晶化したガラス成分が焼成体の表面に析出した状態を形成するため、表面処理金属粒子中のパラジウムと同様に、ガラスフリットが焼成後の(A)導電性粒子の耐硫化性に対して寄与することができる。 When the conductive paste of this embodiment contains zinc oxide as the glass frit (C), the Zn component in the glass frit precipitates as ZnO at the crystallization temperature. At this time, since the crystallized glass component forms a precipitated state on the surface of the fired body, the glass frit affects the sulfidation resistance of (A) conductive particles after firing, similar to the palladium in the surface-treated metal particles. It is possible to contribute to this.
<(D)添加剤>
 本実施形態の導電性ペーストは、(D)添加剤として分散剤を含むことができる。本実施形態の導電性ペーストが分散剤を含むことにより、導電性ペースト中の(A)導電性粒子の分散性を高めることができ、(A)導電性粒子が凝集することを防止することができる。
<(D) Additive>
The conductive paste of this embodiment can contain a dispersant as the (D) additive. By including the dispersant in the conductive paste of this embodiment, the dispersibility of (A) conductive particles in the conductive paste can be improved, and (A) conductive particles can be prevented from agglomerating. can.
 分散剤としては、公知の分散剤を用いることができる。分散剤として、例えば、脂肪酸アミド、酸型の低分子分散剤、又は酸化ビスマス(Bi)を用いることができる。 As the dispersant, a known dispersant can be used. As the dispersant, for example, a fatty acid amide, an acid type low molecular dispersant, or bismuth oxide (Bi 2 O 3 ) can be used.
 本実施形態の導電性ペーストは、分散剤以外の(D)添加剤として、有機添加剤及び無機添加剤などを含むことができる。(D)添加剤として、例えば、シリカフィラー、レオロジー調整剤、及び/又は顔料などを用いることができる。 The conductive paste of the present embodiment can contain organic additives, inorganic additives, and the like as (D) additives other than the dispersant. (D) As the additive, for example, silica filler, rheology modifier, and/or pigment can be used.
 (D)添加剤として、導電性ペーストに有機添加剤を添加することにより、導電性ペーストの印刷性を向上させることができる。(D)添加剤として、導電性ペーストに分散剤を添加することにより、(A)導電性粒子などの分散性を向上することができる。(D)添加剤として、導電性ペーストに無機添加剤を添加することにより、導電性ペーストの焼成後の密着性を向上させることができる。 (D) By adding an organic additive to the conductive paste as an additive, the printability of the conductive paste can be improved. (D) By adding a dispersant to the conductive paste as an additive, the dispersibility of (A) conductive particles and the like can be improved. (D) By adding an inorganic additive to the conductive paste as an additive, the adhesion of the conductive paste after firing can be improved.
<(E)溶剤>
 本実施形態の導電性ペーストは、(E)溶剤を含むことができる。溶剤としては、例えば、メタノール、エタノール、及びイソプロピルアルコール(IPA)等のアルコール類、酢酸エチレン等の有機酸類、トルエン、及びキシレン等の芳香族炭化水素類、N-メチル-2-ピロリドン(NMP)等のN-アルキルピロリドン類、N,N-ジメチルホルムアミド(DMF)等のアミド類、メチルエチルケトン(MEK)等のケトン類、テルピネオール(TEL)、及びジエチレングリコールモノブチルエーテル(ブチルカルビトール、BC)等の環状カーボネート類、ビス[2-(2-ブトキシエトキシ)エチル]アジペート、2,2,4-トリメチルペンタン-1,3-ジオールモノイソブチラート(テキサノール)、並びに水等が挙げられる。
<(E) Solvent>
The conductive paste of this embodiment can contain (E) a solvent. Examples of solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, and N-methyl-2-pyrrolidone (NMP). N-alkylpyrrolidones such as N,N-dimethylformamide (DMF), amides such as methyl ethyl ketone (MEK), cyclics such as terpineol (TEL), and diethylene glycol monobutyl ether (butyl carbitol, BC) Examples include carbonates, bis[2-(2-butoxyethoxy)ethyl]adipate, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate (Texanol), and water.
 本実施形態の導電性ペースト中の溶剤の含有量は、特に限定されない。溶剤の含有量は、例えば、(A)導電性粒子100重量部に対して、好ましくは1~100重量部、より好ましくは5~60重量部、更に好ましくは8~35重量部である。 The content of the solvent in the conductive paste of this embodiment is not particularly limited. The content of the solvent is, for example, preferably 1 to 100 parts by weight, more preferably 5 to 60 parts by weight, and still more preferably 8 to 35 parts by weight, based on 100 parts by weight of the (A) conductive particles.
 本実施形態の導電性ペーストの粘度は、好ましくは50~700Pa・s(せん断速度:4.0sec-1)、より好ましくは100~300Pa・s(せん断速度:4.0sec-1)である。本実施形態の導電性ペーストの粘度は、溶剤の含有量を適切に制御することにより、調整することができる。導電性ペーストの粘度がこの範囲に調整されることによって、導電性ペーストの基板(基材)への塗布性及び/又は取り扱い性が良好になり、導電性ペーストを均一の厚みで基板へ塗布することが可能になる。なお、導電性ペーストの粘度は、HB型粘度計(ブルックフィールド社製)(SC4-14スピンドル)を使用して、温度25℃、10rpmで測定することができる。 The viscosity of the conductive paste of this embodiment is preferably 50 to 700 Pa·s (shear rate: 4.0 sec −1 ), more preferably 100 to 300 Pa·s (shear rate: 4.0 sec −1 ). The viscosity of the conductive paste of this embodiment can be adjusted by appropriately controlling the content of the solvent. By adjusting the viscosity of the conductive paste within this range, the applicability and/or handling of the conductive paste to the substrate (base material) becomes good, and the conductive paste can be applied to the substrate with a uniform thickness. becomes possible. Note that the viscosity of the conductive paste can be measured at a temperature of 25° C. and 10 rpm using an HB type viscometer (manufactured by Brookfield Corporation) (SC4-14 spindle).
<(F)硬化剤>
 本実施形態の導電性ペーストは、(F)硬化剤を更に含んでいてもよい。本実施形態の導電性ペーストが、(B)バインダー樹脂としてエポキシ樹脂を含む場合には、(F)硬化剤を含むことにより、エポキシ樹脂の硬化を適切に制御することができる。
<(F) Curing agent>
The conductive paste of this embodiment may further contain (F) a curing agent. When the conductive paste of this embodiment contains an epoxy resin as the binder resin (B), the curing of the epoxy resin can be appropriately controlled by including the curing agent (F).
 (F)硬化剤は、公知の硬化剤を用いることができる。(F)硬化剤として、フェノール系硬化剤、カチオン重合開始剤、イミダゾール系硬化剤、及び三フッ化ホウ素化合物から選択される少なくとも1つを含むことが好ましい。三フッ化ホウ素化合物としては、三フッ化ホウ素モノエチルアミン、三フッ化ホウ素ピペリジン、及び三フッ化ホウ素ジエチルエーテル等が挙げられる。(F)硬化剤として、三フッ化ホウ素モノエチルアミンを好ましく用いることができる。 (F) A known curing agent can be used as the curing agent. (F) The curing agent preferably contains at least one selected from a phenolic curing agent, a cationic polymerization initiator, an imidazole curing agent, and a boron trifluoride compound. Examples of the boron trifluoride compound include boron trifluoride monoethylamine, boron trifluoride piperidine, and boron trifluoride diethyl ether. (F) As the curing agent, boron trifluoride monoethylamine can be preferably used.
 本実施形態の導電性ペーストは、(A)導電性粒子と、(B)バインダー樹脂であるエポキシ樹脂との合計重量を100重量部とした場合、導電性ペーストが、(F)硬化剤を0.1~5重量部含むことが好ましく、0.15~2重量部含むことがより好ましく、0.2~1重量部含むことが更に好ましく、0.3~0.6重量部含むことが特に好ましい。(F)硬化剤の重量割合を所定の範囲とすることにより、(B)バインダー樹脂成分であるエポキシ樹脂の硬化を適切に行うことができ、所望の形状の電極を得ることができる。 In the conductive paste of this embodiment, when the total weight of (A) conductive particles and (B) epoxy resin as a binder resin is 100 parts by weight, the conductive paste contains (F) 0 curing agent. .1 to 5 parts by weight, more preferably 0.15 to 2 parts by weight, even more preferably 0.2 to 1 parts by weight, particularly 0.3 to 0.6 parts by weight. preferable. By setting the weight ratio of the curing agent (F) within a predetermined range, the epoxy resin that is the binder resin component (B) can be appropriately cured, and an electrode with a desired shape can be obtained.
 本実施形態の導電性ペーストは、上記の各成分を、例えば、ライカイ機、ポットミル、三本ロールミル、回転式混合機、及び/又は二軸ミキサー等を用いて混合することで製造することができる。 The conductive paste of this embodiment can be manufactured by mixing the above-mentioned components using, for example, a Raikai machine, a pot mill, a three-roll mill, a rotary mixer, and/or a twin-shaft mixer. .
<電極>
 本実施形態は、上述の本実施形態の導電性ペーストを焼成又は熱処理して得られる電極である。
<Electrode>
This embodiment is an electrode obtained by firing or heat-treating the conductive paste of this embodiment described above.
 本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布し、例えば400~900℃で、空気雰囲気中で焼成することにより、電極を形成することができる。したがって、本実施形態の導電性ペーストは(C)ガラスフリットを含むため、形成される電極は、表面処理金属粒子を含む(A’)導電性粒子と、(C)ガラスフリットを材料とする(C’)ガラス成分と、を含有することができる。焼成後、(A’)導電性粒子は、焼結された状態になる。なお、本実施形態の導電性ペーストを例えば400~900℃で焼成する場合、導電性ペーストに含まれる(B)バインダー樹脂及び(E)溶剤は、焼成の際に気化又は燃焼する。そのため、電極は実質的に(B)バインダー樹脂及び(E)溶剤を含まない。 Electrodes can be formed by applying the conductive paste of the present embodiment to a predetermined base material so as to form a predetermined electrode pattern, and baking the paste at, for example, 400 to 900° C. in an air atmosphere. Therefore, since the conductive paste of the present embodiment includes (C) glass frit, the formed electrode is made of (A') conductive particles containing surface-treated metal particles and (C) glass frit. C') a glass component. After firing, the conductive particles (A') are in a sintered state. Note that when the conductive paste of this embodiment is fired at, for example, 400 to 900° C., the binder resin (B) and the solvent (E) contained in the conductive paste are vaporized or burned during firing. Therefore, the electrode does not substantially contain (B) binder resin and (E) solvent.
 本実施形態の導電性ペーストに含まれる表面処理金属粒子は、パラジウム化合物によって表面処理されているので、本実施形態の電極は、パラジウムを含むことになる。本実施形態の電極は、パラジウムを0.01~10重量%含むことが好ましく、パラジウムを0.05~5重量%含むことがより好ましく、パラジウムを0.07~1重量%含むことが更に好ましく、パラジウムを0.08~0.5重量%含むことが特に好ましい。なお、本実施形態の導電性ペーストが(C)ガラスフリットを含む場合には、本実施形態の電極は、(C)ガラスフリットに起因するパラジウムを含むことができる。本実施形態の電極が所定量のパラジウムを含むことにより、本実施形態の電極が高い耐硫化性を有することができる。なお、電極中のパラジウムの含有量は、EDS(エネルギー分散型X線分光法、Energy Dispersive X-ray Spectroscopy)による元素分析により測定することができる。 Since the surface-treated metal particles contained in the conductive paste of this embodiment are surface-treated with a palladium compound, the electrode of this embodiment contains palladium. The electrode of this embodiment preferably contains 0.01 to 10% by weight of palladium, more preferably 0.05 to 5% by weight of palladium, and even more preferably 0.07 to 1% by weight of palladium. , it is particularly preferable to contain palladium in an amount of 0.08 to 0.5% by weight. In addition, when the electrically conductive paste of this embodiment contains (C) glass frit, the electrode of this embodiment can contain palladium resulting from (C) glass frit. Since the electrode of this embodiment contains a predetermined amount of palladium, the electrode of this embodiment can have high sulfidation resistance. Note that the palladium content in the electrode can be measured by elemental analysis using EDS (Energy Dispersive X-ray Spectroscopy).
 本実施形態の電極は、(C)ガラスフリットに起因する亜鉛(酸化亜鉛)を含むことができる。本実施形態の電極が、パラジウムの他に亜鉛を含むことにより、高い耐硫化性を得ることができる。 The electrode of this embodiment can include (C) zinc (zinc oxide) resulting from the glass frit. Since the electrode of this embodiment contains zinc in addition to palladium, high sulfidation resistance can be obtained.
 本実施形態の電極となる薄膜のシート抵抗は、膜厚により異なるが、概ね10mΩ/□(10mΩ/square)程度又は10mΩ/□以下とすることができる。このため、低抵抗であることが要求される電極の形成に好ましく用いることができる。 Although the sheet resistance of the thin film serving as the electrode of this embodiment varies depending on the film thickness, it can be approximately 10 mΩ/□ (10 mΩ/square) or less than 10 mΩ/□. Therefore, it can be preferably used for forming electrodes that are required to have low resistance.
 次に、本実施形態の導電性ペーストを用いて基板(基材)上に電極を形成する方法について説明する。まず、導電性ペーストを基板上に塗布する。導電性ペーストの塗布方法は任意であり、例えば、ディスペンス、ジェットディスペンス、孔版印刷、スクリーン印刷、ピン転写、又はスタンピングなどの公知の方法を用いて塗布することができる。 Next, a method for forming electrodes on a substrate (base material) using the conductive paste of this embodiment will be described. First, a conductive paste is applied onto the substrate. The conductive paste can be applied by any known method, such as dispensing, jet dispensing, stencil printing, screen printing, pin transfer, or stamping.
 基板上に導電性ペーストを塗布した後、必要に応じて乾燥させ、基板を焼成炉等に投入する。そして、基板上に塗布された導電性ペーストを、400~900℃、より好ましくは500~880℃、更に好ましくは500~870℃で焼成する。焼成温度の具体例は、850℃である。これにより、導電性ペーストに含まれる溶剤成分は300℃以下で蒸発し、樹脂成分は400℃~600℃で焼失し、導電性ペーストの焼成体(電極)を形成する。また、表面処理金属粒子に含まれる有機成分は、空気雰囲気中での焼成により消失し、パラジウム化合物中のパラジウムは、金属粒子の表面にパラジウム金属合金層(金属粒子が銀粒子の場合は、パラジウム-銀合金層)として存在するようになる。金属粒子表面のパラジウム金属合金層は、金属粒子に高い耐硫化性を付与することになると考えられる。したがって、金属粒子がパラジウム化合物を含む薄膜の表面処理層を含むことにより、高い耐硫化性を得ることができる。また、表面処理層に含まれるパラジウムの含有量はあまり多くはない。そのため、別途パラジウム粒子を添加する場合と比べて、パラジウムの使用量が少なくて済むので、比較的低コストで高い耐硫化性を得ることができる。このようにして得られた電極は、高い耐硫化性を有し、基板への密着性が優れている。 After applying the conductive paste on the substrate, it is dried if necessary, and the substrate is placed in a firing furnace or the like. Then, the conductive paste applied onto the substrate is fired at 400 to 900°C, more preferably 500 to 880°C, and still more preferably 500 to 870°C. A specific example of the firing temperature is 850°C. As a result, the solvent component contained in the conductive paste evaporates at 300° C. or lower, and the resin component is burned out at 400° C. to 600° C., forming a fired body (electrode) of the conductive paste. In addition, the organic components contained in the surface-treated metal particles disappear by firing in an air atmosphere, and the palladium in the palladium compound is formed by forming a palladium metal alloy layer on the surface of the metal particles (if the metal particles are silver particles, palladium - silver alloy layer). It is believed that the palladium metal alloy layer on the surface of the metal particles imparts high sulfidation resistance to the metal particles. Therefore, high sulfidation resistance can be obtained when the metal particles include a thin film surface treatment layer containing a palladium compound. Further, the content of palladium contained in the surface treatment layer is not very large. Therefore, compared to the case where palladium particles are added separately, the amount of palladium used can be reduced, and high sulfidation resistance can be obtained at relatively low cost. The electrode thus obtained has high sulfidation resistance and excellent adhesion to the substrate.
 本実施形態の導電性ペーストを用いて得られる電極は、上記のような方法で焼成した後であってもガラス成分などの流れ出しが少なく、めっき伸びやショートといった不具合が起きにくい。特に従来の導電性ペーストでは、導電性粒子として小粒径(1μm以下)の金属粒子のみを用いた場合などでは、金属粒子の焼結性が良いために低軟化点のガラスフリットのガラス成分が外に押し出されてしまうことで、流れ出しの要因の一つとなることがあった。これに対して本実施形態の導電性ペーストでは、金属粒子が有する表面処理層の存在により、焼結の速度が緩やかになり、電極中にガラス成分を保持させることができると推測される。ガラス成分の流れ出しは、走査型電子顕微鏡(SEM)などの装置により観察することができる。 Even after the electrode obtained using the conductive paste of this embodiment is fired using the method described above, there is little flow out of glass components, etc., and problems such as plating elongation and short circuits are less likely to occur. In particular, in conventional conductive pastes, when only small metal particles (1 μm or less) are used as conductive particles, the glass component of the glass frit, which has a low softening point, is Being pushed outside could be one of the reasons for the outflow. On the other hand, in the conductive paste of this embodiment, it is presumed that the presence of the surface treatment layer of the metal particles slows down the sintering speed and allows the glass component to be retained in the electrode. The outflow of the glass component can be observed using a device such as a scanning electron microscope (SEM).
 また、本実施形態の導電性ペーストを用いて上述のようにして得られた電極は、耐マイグレーション性が向上するという付加的な利点を有することができる。ただし、この利点は、必ずしも本実施形態の導電性ペーストの必須の効果ではなく、1つの利点であると考えられる。 Furthermore, the electrode obtained as described above using the conductive paste of this embodiment can have the additional advantage of improved migration resistance. However, this advantage is not necessarily an essential effect of the conductive paste of this embodiment, but is considered to be one advantage.
<電子部品又は電子機器>
 本実施形態は、上述の電極を有する電子部品又は電子機器である。本明細書において、電子部品とは、チップ抵抗器及び基板回路など、電子機器などに使用される部品を意味する。本明細書において、電子部品とは電子的に作動する部品を意味し、具体的には直流の48V以下で動作する部品であることができる。本明細書において、電子機器とは、本実施形態の電極を有する電子部品を含む機器を意味する。
<Electronic parts or electronic equipment>
This embodiment is an electronic component or electronic device having the above-described electrode. In this specification, electronic components refer to components used in electronic devices, such as chip resistors and board circuits. In this specification, an electronic component means a component that operates electronically, and specifically can be a component that operates at 48 V or less of DC. In this specification, an electronic device means a device including an electronic component having the electrode of this embodiment.
 本実施形態の導電性ペーストは、電子部品又は電子機器の回路の形成、電極の形成、及び電子部品などのデバイス(例えば半導体チップ)の基板(基材)への接合等に用いることが可能である。 The conductive paste of this embodiment can be used for forming circuits of electronic components or electronic equipment, forming electrodes, and bonding devices such as electronic components (for example, semiconductor chips) to a substrate (base material). be.
 本実施形態の導電性ペーストは、チップ抵抗器の電極の形成に好ましく用いることができる。図1に、本実施形態のチップ抵抗器100の断面構造の一例を示す。チップ抵抗器100は、矩形のアルミナ基板102と、アルミナ基板102の表面に配置された抵抗体104及び取り出し電極106とを有することができる。取り出し電極106は、抵抗体104から電気を取り出すための電極である。また、アルミナ基板102の下面には、チップ抵抗器100を基板へ実装するための下面電極108を配置することができる。更に、取り出し電極106と下面電極108とを接続するための接続電極110を、アルミナ基板102の端面に配置することができる。本実施形態の導電性ペーストを用いて、取り出し電極106、下面電極108、及び接続電極110の少なくとも1つを形成することができる。特に、取り出し電極106は、本実施形態の導電性ペーストを用いて形成されることが好ましい。なお、取り出し電極106、下面電極108、及び接続電極110の上面(アルミナ基板102とは反対側の表面)に、ニッケルめっき膜112及びスズめっき膜114を配置することができる。 The conductive paste of this embodiment can be preferably used for forming electrodes of chip resistors. FIG. 1 shows an example of a cross-sectional structure of a chip resistor 100 of this embodiment. The chip resistor 100 can include a rectangular alumina substrate 102, a resistor 104 and an extraction electrode 106 arranged on the surface of the alumina substrate 102. The extraction electrode 106 is an electrode for extracting electricity from the resistor 104. Furthermore, a lower surface electrode 108 for mounting the chip resistor 100 on the substrate can be arranged on the lower surface of the alumina substrate 102. Furthermore, a connection electrode 110 for connecting the extraction electrode 106 and the lower surface electrode 108 can be arranged on the end surface of the alumina substrate 102. At least one of the extraction electrode 106, the bottom electrode 108, and the connection electrode 110 can be formed using the conductive paste of this embodiment. In particular, it is preferable that the extraction electrode 106 be formed using the conductive paste of this embodiment. Note that a nickel plating film 112 and a tin plating film 114 can be disposed on the top surface of the extraction electrode 106, the bottom electrode 108, and the connection electrode 110 (the surface opposite to the alumina substrate 102).
 本実施形態の電極は、チップ抵抗器の電極に限られない。本実施形態の導電性ペーストを用いて形成した電極は、様々な種類の電子部品の電極として用いることができる。電子部品としては、受動部品(例えば、チップ抵抗器、コンデンサ、抵抗器及びインダクタ等)、回路基板(例えば、アルミナ基板、窒化アルミニウム基板及びガラス基板などの基板の上に所定の回路(電極又は配線)を形成したもの)、太陽電池セル、及び電磁波シールドなどを挙げることができる。本実施形態の導電性ペーストを用いて、これらの電子部品の電極及び/又は配線を形成することができる。本実施形態の電極を有する電子部品を含む電子機器としては、半導体装置、太陽光発電モジュール、及び回路基板を含む電子機器を挙げることができる。 The electrode of this embodiment is not limited to the electrode of a chip resistor. Electrodes formed using the conductive paste of this embodiment can be used as electrodes for various types of electronic components. Electronic components include passive components (for example, chip resistors, capacitors, resistors, inductors, etc.), circuit boards (for example, a predetermined circuit (electrode or wiring) on a substrate such as an alumina substrate, an aluminum nitride substrate, a glass substrate, etc.). ), solar cells, and electromagnetic shields. The conductive paste of this embodiment can be used to form electrodes and/or wiring of these electronic components. Examples of electronic devices including electronic components having the electrodes of this embodiment include semiconductor devices, photovoltaic modules, and electronic devices including circuit boards.
 本実施形態の導電性ペーストは、半導体装置において半導体チップを取り付けるためのダイアタッチ材として用いることができる。半導体装置がパワー半導体装置である場合には、パワー半導体チップを取り付けるためのロウ材として用いることができる。本実施形態の導電性ペーストは、太陽電池の電極として用いることができる。本実施形態の導電性ペーストは、導電性接着剤として用いることができる。また、本実施形態の導電性ペーストは、チップ抵抗器の端子電極の形成に限らず、例えば、MLCC、チップインダクタ等の受動部品の端子電極用の導電性ペーストとしても好適に使用することができる。 The conductive paste of this embodiment can be used as a die attach material for attaching a semiconductor chip in a semiconductor device. When the semiconductor device is a power semiconductor device, it can be used as a brazing material for attaching a power semiconductor chip. The conductive paste of this embodiment can be used as an electrode of a solar cell. The conductive paste of this embodiment can be used as a conductive adhesive. Further, the conductive paste of this embodiment is not limited to forming terminal electrodes of chip resistors, but can also be suitably used as a conductive paste for terminal electrodes of passive components such as MLCCs and chip inductors. .
 本実施形態の導電性ペーストを用いることにより、高い耐硫化性を有し、かつ低抵抗で、比較的低コストの電極を形成することができる。そのため、本実施形態の導電性ペーストを用いることにより、信頼性の高い電極が形成されたチップ抵抗器等の電子部品を、比較的低コストで得ることができる。 By using the conductive paste of this embodiment, it is possible to form an electrode that has high sulfidation resistance, low resistance, and relatively low cost. Therefore, by using the conductive paste of this embodiment, electronic components such as chip resistors in which highly reliable electrodes are formed can be obtained at relatively low cost.
 以下、実施例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.
[導電性ペーストの調製]
 以下の(A)~(E)成分を、表1、2に示す割合で混合して導電性ペーストを調製した。なお、表1、2に示す各成分の割合は、すべて重量部で示している。表1、2では、(A)導電性粒子の重量(金属粒子及び表面処理金属粒子の合計重量)を100重量部とした。また、平均粒径は、レーザー回折散乱式粒度分布測定法により得られる体積基準メジアン径(D50)のことを意味する。
[Preparation of conductive paste]
A conductive paste was prepared by mixing the following components (A) to (E) in the proportions shown in Tables 1 and 2. In addition, all the proportions of each component shown in Tables 1 and 2 are shown in parts by weight. In Tables 1 and 2, the weight of (A) conductive particles (total weight of metal particles and surface-treated metal particles) was 100 parts by weight. Moreover, the average particle size means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measuring method.
(A)導電性粒子
 表3に、実施例及び比較例の(A)導電性粒子((A)成分)として用いた金属粒子a1~a4及び表面処理金属粒子A1~A6を示す。金属粒子a1及びa2は銀粒子であり、金属粒子a4は、パラジウム粒子である。金属粒子a1~a4には、表面処理はされていない。表面処理金属粒子A1~A6は、金属粒子である銀粒子に、パラジウム化合物が溶剤中に分散されたパラジウムソープ溶剤(表面処理剤)を金属粒子の表面に付着させ、乾燥工程により、溶剤を除去することによって、表面処理をした。したがって、表面処理金属粒子A1~A6は、パラジウム化合物を含む表面処理層を有する。表3の「Pd含有量」欄に、表面処理金属粒子A1~A6の重量に対する表面処理層に含まれるパラジウムの重量割合を、重量%の単位で示す。表面処理金属粒子中のパラジウムの重量割合は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定した。
(A) Conductive Particles Table 3 shows metal particles a1 to a4 and surface-treated metal particles A1 to A6 used as (A) conductive particles (component (A)) in Examples and Comparative Examples. Metal particles a1 and a2 are silver particles, and metal particle a4 is a palladium particle. Metal particles a1 to a4 are not surface-treated. Surface-treated metal particles A1 to A6 are produced by attaching a palladium soap solvent (surface treatment agent) in which a palladium compound is dispersed in a solvent to the surface of silver particles, which are metal particles, and removing the solvent through a drying process. The surface was treated by Therefore, the surface-treated metal particles A1 to A6 have a surface-treated layer containing a palladium compound. In the "Pd content" column of Table 3, the weight ratio of palladium contained in the surface treatment layer to the weight of the surface treatment metal particles A1 to A6 is shown in units of weight %. The weight proportion of palladium in the surface-treated metal particles was measured by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy).
 銀粒子に対するパラジウム化合物の表面処理は、次のようにして行った。すなわち、銀粒子に対するパラジウム化合物の表面処理は、パラジウム化合物と、これらを分散させるための有機物と、溶剤とを含むパラジウムソープ溶剤(表面処理剤)を用いて行った。表面処理は、パラジウムソープ溶剤(表面処理剤)を銀粒子の表面に付着させ、乾燥工程により溶剤を除去することにより、行った。パラジウム化合物として、塩化パラジウムを用いた。更に銀粒子の表面処理剤に含まれる溶剤としては、オレイン酸を用いた。以上のようにして、表面処理金属粒子A1~A6に表面処理層を形成した。 Surface treatment of silver particles with a palladium compound was performed as follows. That is, the surface treatment of the silver particles with a palladium compound was performed using a palladium soap solvent (surface treatment agent) containing a palladium compound, an organic substance for dispersing these, and a solvent. The surface treatment was performed by attaching a palladium soap solvent (surface treatment agent) to the surface of the silver particles and removing the solvent through a drying process. Palladium chloride was used as the palladium compound. Furthermore, oleic acid was used as the solvent contained in the silver particle surface treatment agent. As described above, surface treatment layers were formed on the surface treatment metal particles A1 to A6.
(B)バインダー樹脂
 表4に、実施例及び比較例で用いた(B)バインダー樹脂(樹脂B1~B2)を示す。表1、2に、実施例及び比較例の導電性ペーストの樹脂B1~B2の配合量を示す。
(B) Binder resin Table 4 shows the (B) binder resins (resins B1 and B2) used in the Examples and Comparative Examples. Tables 1 and 2 show the blending amounts of resins B1 and B2 in the conductive pastes of Examples and Comparative Examples.
(C)ガラスフリット
 表5に、実施例及び比較例で用いた(C)ガラスフリット(C1~C8)を示す。表1、2、9に、実施例及び比較例の導電性ペーストのガラスフリットC1~C8の配合量を示す。
(C) Glass Frit Table 5 shows the (C) glass frits (C1 to C8) used in the Examples and Comparative Examples. Tables 1, 2, and 9 show the blending amounts of glass frits C1 to C8 in the conductive pastes of Examples and Comparative Examples.
(D)添加剤
 表6に、実施例及び比較例で用いた(D)添加剤(添加剤D1~D3)を示す。表1、2に、実施例及び比較例の導電性ペーストの添加剤D1~D3の配合量を示す。添加剤D1は有機添加剤である。添加剤D1を添加することにより、導電性ペーストの印刷性を向上させることができる。添加剤D2は分散剤である。添加剤D2を添加することにより、(A)導電性粒子などの分散性を向上することができる。添加剤D3は無機添加剤である。添加剤D3を添加することにより、導電性ペーストの焼成後の密着性を向上させることができる。
(D) Additives Table 6 shows the (D) additives (Additives D1 to D3) used in Examples and Comparative Examples. Tables 1 and 2 show the amounts of additives D1 to D3 in the conductive pastes of Examples and Comparative Examples. Additive D1 is an organic additive. By adding additive D1, the printability of the conductive paste can be improved. Additive D2 is a dispersant. By adding additive D2, the dispersibility of (A) conductive particles and the like can be improved. Additive D3 is an inorganic additive. By adding additive D3, the adhesion of the conductive paste after firing can be improved.
(E)溶剤
 表7に、実施例及び比較例で用いた(E)溶剤(溶剤E1~E3)を示す。表1、2に、実施例及び比較例の導電性ペーストの溶剤E1~E3の配合量を示す。
(E) Solvents Table 7 shows the (E) solvents (solvents E1 to E3) used in the Examples and Comparative Examples. Tables 1 and 2 show the amounts of solvents E1 to E3 in the conductive pastes of Examples and Comparative Examples.
[耐硫化性試験の試験片50の作製]
 図2に、耐硫化性試験の試験片50の模式図を示す。(C)ガラスフリットを含む導電性ペーストを用いて、以下の手順により、実施例1~16及び比較例1~5の耐硫化性試験の試験片50を作製した。
[Preparation of test piece 50 for sulfidation resistance test]
FIG. 2 shows a schematic diagram of a test piece 50 for the sulfidation resistance test. (C) Test pieces 50 for sulfidation resistance tests of Examples 1 to 16 and Comparative Examples 1 to 5 were prepared using a conductive paste containing glass frit according to the following procedure.
 まず、20mm×20mm×1mm(t)の耐硫化性試験用アルミナ基板52(純度96%)上に、スクリーン印刷によって、図2に示すようなジグザグ状の耐硫化性試験用印刷パターン54となるように、導電性ペーストを塗布した。耐硫化性試験用印刷パターン54の2つの端部54a、54bの間の長さは71mm、耐硫化性試験用印刷パターン54の幅は1mmである。導電性ペーストの耐硫化性試験用印刷パターン54を形成するために、ステンレス製の325メッシュのスクリーン(乳剤厚さ5μm)を用いてスクリーン印刷をした。次に、バッチ式の熱風式乾燥機を用いて、150℃で10分間、導電性ペーストの耐硫化性試験用印刷パターン54を乾燥させた。導電性ペーストの耐硫化性試験用印刷パターン54を乾燥させた後、ベルト式の焼成炉を用いて、耐硫化性試験用印刷パターン54を焼成した。焼成温度は850℃で10分間保持した。焼成炉に入れてから取り出すまでの合計時間は60分だった。以上のようにして、実施例1~16及び比較例1~5の試験片50を作製した。 First, on a 20 mm x 20 mm x 1 mm (t) alumina substrate 52 (purity 96%) for sulfidation resistance testing, a zigzag printed pattern 54 for sulfidation resistance testing as shown in FIG. 2 is formed by screen printing. A conductive paste was applied. The length between the two ends 54a and 54b of the printed pattern 54 for sulfidation resistance testing is 71 mm, and the width of the printed pattern 54 for sulfidation resistance testing is 1 mm. In order to form a printed pattern 54 for testing the sulfidation resistance of the conductive paste, screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness 5 μm). Next, the printed pattern 54 for sulfidation resistance test of the conductive paste was dried at 150° C. for 10 minutes using a batch type hot air dryer. After drying the printed pattern 54 for sulfidation resistance test of the conductive paste, the printed pattern 54 for sulfidation resistance test was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces 50 of Examples 1 to 16 and Comparative Examples 1 to 5 were produced.
[耐硫化性試験方法]
 まず、実施例及び比較例の試験片の印刷パターン54の2つの端部54a、54bの間の電気抵抗(初期電気抵抗)を測定した。次に、硫黄粉10gを平らになるように入れたシャーレ(高さ18mm、直径86mm)を、ガラス製のデシケーター(高さ420mm、直径300mm)の底に入れ、中フタの上に実施例及び比較例の試験片を載置した。このデシケーターを、60℃一定の恒温槽に150時間、保管して試験片を硫化させた。次に、硫化後の電気抵抗を測定した。表1~2の「抵抗値変化割合(耐硫化性試験)」欄に、実施例及び比較例の初期電気抵抗に対する硫化後の電気抵抗の抵抗値変化割合をパーセント単位で示す。抵抗値変化割合は、下記の式で示すことができる。
 抵抗値変化割合=(硫化後の電気抵抗-初期電気抵抗)/初期電気抵抗
[Sulfidation resistance test method]
First, the electrical resistance (initial electrical resistance) between the two ends 54a and 54b of the printed pattern 54 of the test pieces of Examples and Comparative Examples was measured. Next, a petri dish (height 18 mm, diameter 86 mm) containing 10 g of sulfur powder was placed in the bottom of a glass desiccator (height 420 mm, diameter 300 mm), and the Example and A test piece of a comparative example was placed. This desiccator was stored in a constant temperature bath at 60° C. for 150 hours to sulfurize the test piece. Next, the electrical resistance after sulfurization was measured. In the "Resistance value change rate (sulfidation resistance test)" column of Tables 1 and 2, the resistance value change rate of the electrical resistance after sulfidation with respect to the initial electrical resistance of Examples and Comparative Examples is shown in percent. The resistance value change rate can be expressed by the following formula.
Resistance value change rate = (electrical resistance after sulfidation - initial electrical resistance) / initial electrical resistance
[接着強度試験の試験片の作製]
 調製した導電性ペーストを用いて、以下の手順により、(C)ガラスフリットを含む実施例1~16及び比較例1~5の試験片を作製した。まず、20mm×20mm×1mm(t)のアルミナ基板(純度96%)上に、スクリーン印刷によって導電性ペーストを塗布した。これにより、一辺が1.5mmの角パッド形状からなる接着強度試験用パターンを、アルミナ基板上に25個(5個×5個)形成した。導電性ペーストの接着強度試験用パターンを形成するために、ステンレス製の325メッシュのスクリーン(乳剤厚さ5μm)を用いてスクリーン印刷をした。
[Preparation of test piece for adhesive strength test]
Using the prepared conductive paste, test pieces of Examples 1 to 16 and Comparative Examples 1 to 5 containing (C) glass frit were produced according to the following procedure. First, a conductive paste was applied by screen printing onto a 20 mm x 20 mm x 1 mm (t) alumina substrate (purity 96%). As a result, 25 (5×5) adhesive strength test patterns each having a square pad shape of 1.5 mm on a side were formed on the alumina substrate. In order to form a pattern for testing the adhesive strength of the conductive paste, screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness: 5 μm).
 次に、バッチ式の熱風式乾燥機を用いて、150℃で10分間、導電性ペーストを乾燥させた。導電性ペーストの接着強度試験用パターンを乾燥させた後、ベルト式の焼成炉を用いて、導電性ペーストの接着強度試験用パターンを焼成した。焼成温度は850℃で10分間保持した。焼成炉に入れてから取り出すまでの合計時間は60分だった。以上のようにして、実施例1~16及び比較例1~5の試験片を作製した。 Next, the conductive paste was dried at 150° C. for 10 minutes using a batch hot air dryer. After drying the pattern for testing the adhesive strength of the conductive paste, the pattern for testing the adhesive strength of the conductive paste was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces of Examples 1 to 16 and Comparative Examples 1 to 5 were prepared.
 次に、接着強度試験用パターンにNi/Auめっきを行った。次に、はんだ(千住金属工業株式会社製M705、Sn-Agを3.0重量%及びCuを0.5重量%含むSn合金)を、260℃で3秒間、接着強度試験用パターンに付着させた後に、Snめっき軟銅線(直径0.8mm)を接着強度試験用パターンにはんだ付けした。なお、Snめっき軟銅線のはんだ付けは、アルミナ基板上の5個×5個の接着強度試験用パターンのうち、第2列の5個に対してそれぞれ1本ずつ計5個のSnめっき軟銅線をはんだ付けし、第4列の5個に対してそれぞれ1本ずつ計5個のSnめっき軟銅線をはんだ付けすることにより行った。計10個のSnめっき軟銅線をはんだ付けし、強度試験機でリード線の引張り接着強度を測定した。具体的には、接着強度試験用パターンが上面になるようにアルミナ基板を強度試験機に対して90度の角度となるように垂直に設置し、リード線をアルミナ基板に対して垂直に上方向に引っ張ることにより、引張り接着強度を測定した。リード線が剥がれたときの力(N)を引張り接着強度とした。 Next, Ni/Au plating was performed on the adhesive strength test pattern. Next, solder (M705 manufactured by Senju Metal Industry Co., Ltd., a Sn alloy containing 3.0% by weight of Sn-Ag and 0.5% by weight of Cu) was attached to the adhesive strength test pattern at 260°C for 3 seconds. After that, a Sn-plated annealed copper wire (diameter 0.8 mm) was soldered to the adhesive strength test pattern. For soldering the Sn-plated annealed copper wire, out of the 5 x 5 adhesive strength test patterns on the alumina board, one for each of the 5 pieces in the second row, for a total of 5 Sn-plated annealed copper wires. This was done by soldering a total of five Sn-plated annealed copper wires, one for each of the five wires in the fourth row. A total of 10 Sn-plated annealed copper wires were soldered, and the tensile adhesive strength of the lead wires was measured using a strength testing machine. Specifically, the alumina substrate was installed perpendicularly to the strength testing machine at a 90 degree angle so that the adhesive strength test pattern was on the top surface, and the lead wires were placed upward perpendicularly to the alumina substrate. The tensile adhesive strength was measured by pulling the sample. The force (N) when the lead wire was peeled off was defined as the tensile adhesive strength.
 各実施例及び各比較例の10個の試験片について引張り接着強度を測定することにより、接着強度試験の結果を得た。表1、2の「接着強度(N)」欄に、上述のようにして測定した各実施例及び各比較例の10個の試験片の引張り接着強度の平均値を示す。 The results of the adhesive strength test were obtained by measuring the tensile adhesive strength of 10 test pieces of each example and each comparative example. The "Adhesive Strength (N)" column of Tables 1 and 2 shows the average value of the tensile adhesive strength of the 10 test pieces of each Example and each Comparative Example measured as described above.
[耐マイグレーション試験]
 図3に、耐マイグレーション試験の試験片60の一例の試験用印刷パターン64a、64bの光学顕微鏡写真を示す。調製した導電性ペーストを用いて、以下の手順により、実施例1、3及び比較例1の耐マイグレーション試験の試験片60を作製した。
[Migration resistance test]
FIG. 3 shows an optical micrograph of test print patterns 64a and 64b of an example of the test piece 60 for the migration resistance test. Using the prepared conductive paste, test pieces 60 for the migration resistance test of Examples 1 and 3 and Comparative Example 1 were prepared according to the following procedure.
 実施例1、3及び比較例1の耐マイグレーション試験の試験片60は、次の手順で作製した。まず、110mm×20mm×0.8mm(t)の耐マイグレーション試験用アルミナ基板62(純度96%)上に、スクリーン印刷によって、図3、及び図3の拡大写真である図4に示すように、2つのくし型状の耐マイグレーション試験用印刷パターン64a、64bが互い違いとなるように、導電性ペーストを塗布した。耐マイグレーション試験用印刷パターン64aは第1電極66aに接続し、耐マイグレーション試験用印刷パターン64bは第2電極66bに接続する。耐マイグレーション試験用印刷パターン64a、64bの印刷幅Lは200μmであり、耐マイグレーション試験用印刷パターン64a、64bの間のスペースSは200μmである。導電性ペーストの耐マイグレーション試験用印刷パターン64a、64b及び電極66a、66bを形成するために、ステンレス製の400メッシュのスクリーン(乳剤厚さ10μm)を用いてスクリーン印刷をした。次に、バッチ式の熱風式乾燥機を用いて、150℃で10分間、導電性ペーストの耐マイグレーション試験用印刷パターン64a、64b及び電極66a、66bを乾燥させた。導電性ペーストの耐マイグレーション試験用印刷パターン64a、64b及び電極66a、66bを乾燥させた後、ベルト式の焼成炉を用いて、耐マイグレーション試験用印刷パターン64a、64b及び電極66a、66bを焼成した。焼成温度は850℃で10分間保持した。焼成炉に入れてから取り出すまでの合計時間は60分だった。焼成後のマイグレーション試験用印刷パターン64a、64b及び電極66a、66bの厚さは10~20μmだった。以上のようにして、実施例1~16及び比較例1~5の、耐マイグレーション試験の試験片60を作製した。 Test pieces 60 for the migration resistance test of Examples 1 and 3 and Comparative Example 1 were produced in the following procedure. First, on a 110 mm x 20 mm x 0.8 mm (t) alumina substrate 62 (purity 96%) for migration resistance testing, as shown in FIG. 3 and FIG. The conductive paste was applied so that the two comb-shaped migration resistance test printed patterns 64a and 64b were alternated. The printed pattern for migration resistance test 64a is connected to the first electrode 66a, and the printed pattern for migration resistance test 64b is connected to the second electrode 66b. The print width L of the migration resistance test print patterns 64a, 64b is 200 μm, and the space S between the migration resistance test print patterns 64a, 64b is 200 μm. In order to form printed patterns 64a, 64b and electrodes 66a, 66b for conductive paste migration resistance testing, screen printing was performed using a 400 mesh screen made of stainless steel (emulsion thickness 10 μm). Next, the printed patterns 64a, 64b for the migration resistance test of the conductive paste and the electrodes 66a, 66b were dried at 150° C. for 10 minutes using a batch type hot air dryer. After drying the conductive paste migration resistance test printed patterns 64a, 64b and electrodes 66a, 66b, the migration resistance test printed patterns 64a, 64b and electrodes 66a, 66b were fired using a belt-type firing furnace. . The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. The thickness of the migration test printed patterns 64a, 64b and the electrodes 66a, 66b after firing was 10 to 20 μm. As described above, test pieces 60 for the migration resistance test of Examples 1 to 16 and Comparative Examples 1 to 5 were prepared.
 実施例1、3及び比較例1の試験片60の耐マイグレーション試験用印刷パターン64a、64bの耐マイグレーション性を、以下の手順で測定した。まず、図3に示すように、2つの耐マイグレーション試験用印刷パターン64a、64bの第1電極66aと、第2電極66bとの間に電圧(40V)を印加した。温度85℃及び湿度85%の環境で保管した状態で、第1電極66aと第2電極66bとの間の絶縁抵抗値を測定した。絶縁抵抗値は、第1電極66aと、第2電極66bとの間に流れる電流の測定値と、印加電圧40Vとから算出した。印加電圧40Vを印加した試験片60を、最長487時間、温度85℃及び湿度85%の環境下に保持した。表8に、耐マイグレーション試験の結果を示す。試験前はすべての試料の絶縁抵抗値は、10Ω以上だった。10時間以内に絶縁抵抗値が10Ω以下になった試験片60を不良と判断し、表8に「不良」と記載した。80時間経過しても絶縁抵抗値が10Ω以下にならなかった試験片60を、耐マイグレーション性がある程度優れているため用途によっては使用可能であると判断し、表8に「使用可能」と記載した。487時間経過しても絶縁抵抗値が10Ω以下にならなかった試験片60を、耐マイグレーション性が優れていると判断し、表8に「良」と記載した。 The migration resistance of the printed patterns 64a and 64b for migration resistance test of the test piece 60 of Examples 1 and 3 and Comparative Example 1 was measured according to the following procedure. First, as shown in FIG. 3, a voltage (40 V) was applied between the first electrode 66a and the second electrode 66b of the two migration resistance test printed patterns 64a and 64b. The insulation resistance value between the first electrode 66a and the second electrode 66b was measured while stored in an environment with a temperature of 85° C. and a humidity of 85%. The insulation resistance value was calculated from the measured value of the current flowing between the first electrode 66a and the second electrode 66b and the applied voltage of 40V. The test piece 60 to which an applied voltage of 40 V was applied was held in an environment of a temperature of 85° C. and a humidity of 85% for a maximum of 487 hours. Table 8 shows the results of the migration resistance test. Before the test, the insulation resistance values of all samples were 10 7 Ω or more. A test piece 60 whose insulation resistance value became 10 6 Ω or less within 10 hours was judged to be defective, and was written as "defective" in Table 8. Test piece 60 whose insulation resistance value did not fall below 10 6 Ω even after 80 hours was judged to have a certain degree of migration resistance and could be used for some purposes, and was marked as "usable" in Table 8. It was written as. Test piece 60 whose insulation resistance value did not fall below 10 6 Ω even after 487 hours was judged to have excellent migration resistance and was listed as "good" in Table 8.
 図7に、耐マイグレーション試験を行った際の実施例1、実施例3、及び比較例1の絶縁抵抗値の時間変化を示す。耐マイグレーション性が優れていると判断された実施例3の試験片60(表8に「良」と記載)は、480時間経過しても絶縁抵抗値が10Ω以下にならなかった。耐マイグレーション性がある程度優れているため用途によっては使用可能であると判断した実施例1の試験片60(表8に「使用可能」と記載)は、80時間経過しても絶縁抵抗値が10Ω以下にならなかった。耐マイグレーション性が劣っていると判断された比較例1の試験片60(表8に「不良」と記載)は、10時間以内に絶縁抵抗値が10Ω以下になった。 FIG. 7 shows changes over time in the insulation resistance values of Example 1, Example 3, and Comparative Example 1 when an anti-migration test was conducted. Test piece 60 of Example 3, which was determined to have excellent migration resistance (described as "good" in Table 8), did not have an insulation resistance value of 10 6 Ω or less even after 480 hours. Test piece 60 of Example 1 (described as "usable" in Table 8), which was determined to be usable for some applications because of its excellent migration resistance to some extent, had an insulation resistance value of 10 even after 80 hours. It did not go below 6 Ω. Test piece 60 of Comparative Example 1, which was determined to have poor migration resistance (described as "defective" in Table 8), had an insulation resistance value of 10 6 Ω or less within 10 hours.
[はんだ耐熱性試験]
 調製した導電性ペーストを用いて、以下の手順により、(C)ガラスフリットを含む実施例1~16及び比較例1~5のはんだ耐熱性試験のための試験片を作製した。
[Solder heat resistance test]
Using the prepared conductive paste, test pieces for the soldering heat resistance test of Examples 1 to 16 and Comparative Examples 1 to 5 containing (C) glass frit were prepared according to the following procedure.
 まず、20mm×20mm×1mm(t)のアルミナ基板(純度96%)上に、スクリーン印刷によって導電性ペーストを塗布した。これにより、一辺が1.5mmの角パッド形状からなる接着強度試験用パターンを、アルミナ基板上に25個(5個×5個)形成した。導電性ペーストの接着強度試験用パターンを形成するために、ステンレス製の325メッシュのスクリーン(乳剤厚さ5μm)を用いてスクリーン印刷をした。 First, a conductive paste was applied by screen printing onto a 20 mm x 20 mm x 1 mm (t) alumina substrate (purity 96%). As a result, 25 (5×5) adhesive strength test patterns each having a square pad shape of 1.5 mm on a side were formed on the alumina substrate. In order to form a pattern for testing the adhesive strength of the conductive paste, screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness: 5 μm).
 次に、バッチ式の熱風式乾燥機を用いて、150℃で10分間、導電性ペーストを乾燥させた。導電性ペーストの接着強度試験用パターンを乾燥させた後、ベルト式の焼成炉を用いて、導電性ペーストの接着強度試験用パターンを焼成した。焼成温度は850℃で10分間保持した。焼成炉に入れてから取り出すまでの合計時間は60分だった。以上のようにして、実施例1~16及び比較例1~5の試験片を作製した。 Next, the conductive paste was dried at 150° C. for 10 minutes using a batch hot air dryer. After drying the pattern for testing the adhesive strength of the conductive paste, the pattern for testing the adhesive strength of the conductive paste was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces of Examples 1 to 16 and Comparative Examples 1 to 5 were prepared.
 次に、はんだ(千住金属工業株式会社製M705、Sn-Agを3.0重量%及びCuを0.5重量%含むSn合金)が入ったはんだ槽(はんだの温度:260℃)に、試験片を10秒間浸漬させた。 Next, a solder bath (solder temperature: 260°C) containing solder (M705 manufactured by Senju Metal Industry Co., Ltd., a Sn alloy containing 3.0% by weight of Sn-Ag and 0.5% by weight of Cu) was tested. The pieces were immersed for 10 seconds.
 はんだ槽への試験片の浸漬後、試験片を取り出し、試験片に電極が95%以上残存したものを、はんだ耐熱性試験に合格したものと判断した。表1、2の「はんだ耐熱性」欄に、はんだ耐熱性試験に合格した場合には「良」と記載し、はんだ耐熱性試験に不合格だった場合には「不良」と記載した。 After immersing the test piece in the solder bath, the test piece was taken out, and if 95% or more of the electrode remained on the test piece, it was judged as having passed the soldering heat resistance test. In the "soldering heat resistance" column of Tables 1 and 2, "good" was written when the soldering heat resistance test was passed, and "poor" was written when the soldering heat resistance test was failed.
[SEMによる表面及び断面観察、並びにEDS分析による断面観察]
 図5に、抵抗値変化割合が比較的小さかった実施例3の耐硫化性試験の試験片50と同様の条件で作製した試験片の表面を、5000倍の倍率で走査型電子顕微鏡(SEM)によって撮影したSEM写真を示す。図6に、抵抗値変化割合が大きかった比較例1の耐硫化性試験の試験片50と同様の条件で作製した試験片の表面を、5000倍の倍率でSEMによって撮影したSEM写真を示す。なお、試験片は、耐硫化性試験の場合と同様に、硫黄雰囲気(60℃)で150時間、保管した後に、SEM観察を行った。
[Surface and cross-sectional observation by SEM, and cross-sectional observation by EDS analysis]
Figure 5 shows the surface of a test piece prepared under the same conditions as test piece 50 of the sulfidation resistance test of Example 3, in which the rate of change in resistance value was relatively small, using a scanning electron microscope (SEM) at a magnification of 5000 times. This shows an SEM photograph taken by. FIG. 6 shows an SEM photograph taken at a magnification of 5000 times of the surface of a test piece prepared under the same conditions as test piece 50 of the sulfidation resistance test of Comparative Example 1 in which the rate of change in resistance value was large. Note that, as in the case of the sulfidation resistance test, the test piece was stored in a sulfur atmosphere (60° C.) for 150 hours, and then subjected to SEM observation.
[評価]
 表1、2に示す結果から明らかなように、実施例1~16の導電性ペーストを焼成して得られた電極パターンは、抵抗値変化割合は65.0%(実施例11)以下であり、比較的低かった。これに対し、比較例1~5の導電性ペーストを焼成して得られた電極パターンは、抵抗値変化割合が140%(比較例5)以上だった。したがって、実施例1~16の導電性ペーストを焼成して得られた電極パターンは、耐硫化性に優れているといえる。
[evaluation]
As is clear from the results shown in Tables 1 and 2, the electrode patterns obtained by firing the conductive pastes of Examples 1 to 16 had a resistance change rate of 65.0% or less (Example 11). , was relatively low. In contrast, the electrode patterns obtained by firing the conductive pastes of Comparative Examples 1 to 5 had a resistance change rate of 140% or more (Comparative Example 5). Therefore, it can be said that the electrode patterns obtained by firing the conductive pastes of Examples 1 to 16 have excellent sulfidation resistance.
 表1、2に示す結果から明らかなように、実施例1~16の導電性ペーストを焼成して得られた接着強度試験用パターンの引張り接着強度は、最大で17.8N(実施例11及び15)であり、高い引張り接着強度を得ることができた。一方、比較例1~4の導電性ペーストを焼成して得られた電極パターンの引張り接着強度は、14.2N(比較例4)~15.2N(比較例1~3)の範囲であり、引張り接着強度としては問題のない範囲だった。また、比較例5の導電性ペーストを焼成して得られた電極パターンの引張り接着強度は、7.1Nだった。比較例5の導電性ペーストは、他の実施例及び比較例と比べて焼結性が悪いため、引張り接着強度が低い値だったと考えられる。 As is clear from the results shown in Tables 1 and 2, the tensile adhesive strength of the adhesive strength test patterns obtained by firing the conductive pastes of Examples 1 to 16 was at most 17.8N (Example 11 and 15), and high tensile adhesive strength could be obtained. On the other hand, the tensile adhesive strength of the electrode patterns obtained by firing the conductive pastes of Comparative Examples 1 to 4 was in the range of 14.2 N (Comparative Example 4) to 15.2 N (Comparative Examples 1 to 3), The tensile adhesive strength was within a acceptable range. Further, the tensile adhesive strength of the electrode pattern obtained by firing the conductive paste of Comparative Example 5 was 7.1N. It is considered that the conductive paste of Comparative Example 5 had a lower tensile adhesive strength because it had poor sinterability compared to other Examples and Comparative Examples.
 表1、2に示す結果から明らかなように、実施例1~16の導電性ペーストを焼成して得られた電極パターンのはんだ耐熱性試験の結果は、すべて合格(「良」)だった。一方、比較例1~4の導電性ペーストを焼成して得られた電極パターンのはんだ耐熱性試験の結果は、不合格(「不良」)だった。なお、比較例5の導電性ペーストを焼成して得られた電極パターンのはんだ耐熱性試験の結果は、合格(「良」)だった。以上のことから、実施例1~16の導電性ペーストを焼成して得られた電極パターンは、はんだ耐熱性に優れているといえる。 As is clear from the results shown in Tables 1 and 2, the results of the soldering heat resistance test for the electrode patterns obtained by firing the conductive pastes of Examples 1 to 16 were all passed ("good"). On the other hand, the results of the soldering heat resistance test of the electrode patterns obtained by firing the conductive pastes of Comparative Examples 1 to 4 were failures ("poor"). In addition, the result of the soldering heat resistance test of the electrode pattern obtained by baking the conductive paste of Comparative Example 5 was a pass ("good"). From the above, it can be said that the electrode patterns obtained by firing the conductive pastes of Examples 1 to 16 have excellent solder heat resistance.
 表8に示す結果から、本実施形態の実施例1、3の電極は、比較例1と比べて、耐マイグレーション性が優れていることが明らかである。 From the results shown in Table 8, it is clear that the electrodes of Examples 1 and 3 of the present embodiment have better migration resistance than Comparative Example 1.
 図5に示す実施例3と、図6に示す比較例1のSEM写真を比較すると、実施例3に比べ、比較例1は硫化により硫化銀20の結晶が大きく形成されていることが理解できる。他の実施例及び比較例についても同様の傾向が観察された。したがって、本実施形態の実施例の電極は、比較例と比べて、高い耐硫化性を有するといえる。また、実施例3の試料の深さ方向のPdの含有量をX線光電子分光法(XPS)により測定したところ、深さ80nmにおいてPdの含有量が30原子%程度ある部分が存在することが確認された。このことは、少なくとも実施例3の試料では、電極の表面に銀-パラジウム合金層が形成されることにより、電極の耐硫化性が向上したことを示唆している。 Comparing the SEM photographs of Example 3 shown in FIG. 5 and Comparative Example 1 shown in FIG. 6, it can be seen that the crystals of silver sulfide 20 are formed larger due to sulfidation in Comparative Example 1 than in Example 3. . Similar trends were observed for other Examples and Comparative Examples. Therefore, it can be said that the electrode of the example of this embodiment has higher sulfidation resistance than that of the comparative example. Furthermore, when the Pd content in the depth direction of the sample of Example 3 was measured by X-ray photoelectron spectroscopy (XPS), it was found that there was a portion with a Pd content of about 30 at.% at a depth of 80 nm. confirmed. This suggests that at least in the sample of Example 3, the sulfidation resistance of the electrode was improved by forming a silver-palladium alloy layer on the surface of the electrode.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<実施例17~29、比較例6~9:ガラス成分の流れ出しの評価>
 表9に示す配合で、実施例1と同様に導電性ペーストを調製した。次に、各実施例・比較例の導電性ペーストを、幅1mm、長さ71mmのパターンで、厚さ約15μmに成るようにアルミナ基板上に塗布して、150℃10分で乾燥させた後、850℃で60分焼成して、焼成後の膜厚が10μmである導電厚膜を形成した。得られた導電厚膜に対し、走査型電子顕微鏡(SEM)にて500倍の倍率で電極側面部分の反射電子像を撮影し、ガラス流れの長さを測定した。焼成時にガラスとともに流れる銀成分が反射電子像では白く映るため、ガラスが流れ出た部分は白黒の斑模様として観察される(図8)、電極側面から最も銀成分が流れ出た距離をガラス流れの長さと定義した。ガラス流れの長さが40μm以下であるとき、流れ出しが少ない(判定:〇)とした。各実施例及び比較例の配合と測定結果を、耐硫化性の測定結果と合わせて表9に示す。
<Examples 17 to 29, Comparative Examples 6 to 9: Evaluation of outflow of glass components>
A conductive paste was prepared in the same manner as in Example 1 using the formulation shown in Table 9. Next, the conductive paste of each example and comparative example was applied to the alumina substrate in a pattern of width 1 mm and length 71 mm to a thickness of approximately 15 μm, and dried at 150° C. for 10 minutes. , and was fired at 850° C. for 60 minutes to form a conductive thick film having a thickness of 10 μm after firing. A backscattered electron image of the electrode side surface of the obtained conductive thick film was taken using a scanning electron microscope (SEM) at a magnification of 500 times, and the length of the glass flow was measured. The silver component flowing with the glass during firing appears white in the backscattered electron image, so the area where the glass flows out is observed as a black and white mottled pattern (Figure 8). It was defined as. When the length of the glass flow was 40 μm or less, there was little outflow (judgment: ○). Table 9 shows the formulations and measurement results of each Example and Comparative Example, together with the measurement results of sulfidation resistance.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[評価]
 比較例の導電性ペーストでは、ガラスの流れ出しが確認され、また、耐硫化性試験の結果も抵抗値が大きく上昇しており、ショート、断線の懸念が残るものであった。これに対して実施例17~29の導電性ペーストは、高い耐硫化性を示すとともに、比較例7と実施例19のように、同じガラスフリットを用いた場合で焼成時のガラス成分の流れ出しが有意に抑制されており、軟化点の低いガラスフリットを用いてもショートなどの懸念が小さい電極が得られることが示された。
[evaluation]
In the conductive paste of the comparative example, it was confirmed that glass flowed out, and the results of the sulfidation resistance test also showed that the resistance value increased significantly, and there remained concerns about short circuits and disconnections. On the other hand, the conductive pastes of Examples 17 to 29 exhibit high sulfidation resistance, and unlike Comparative Example 7 and Example 19, when the same glass frit is used, the glass components do not flow out during firing. It was shown that even if a glass frit with a low softening point is used, an electrode with less concern about short circuits can be obtained.
 50 耐硫化性試験の試験片
 52 耐硫化性試験用アルミナ基板
 54 耐硫化性試験用印刷パターン
 54a、54b 耐硫化性試験用印刷パターンの端部
 60 耐マイグレーション試験の試験片
 62 耐マイグレーション試験用アルミナ基板
 64a、64b 耐マイグレーション試験用印刷パターン
 66a 第1電極
 66b 第2電極
 100 チップ抵抗器
 102 アルミナ基板
 104 抵抗体
 106 取り出し電極
 108 下面電極
 110 接続電極
 112 ニッケルめっき膜
 114 スズめっき膜
50 Test piece for sulfidation resistance test 52 Alumina substrate for sulfidation resistance test 54 Printed pattern for sulfidation resistance test 54a, 54b Edges of printed pattern for sulfidation resistance test 60 Test piece for migration resistance test 62 Alumina for migration resistance test Substrate 64a, 64b Printed pattern for migration resistance test 66a First electrode 66b Second electrode 100 Chip resistor 102 Alumina substrate 104 Resistor 106 Takeout electrode 108 Bottom electrode 110 Connection electrode 112 Nickel plating film 114 Tin plating film

Claims (8)

  1.  (A)導電性粒子と、
     (B)バインダー樹脂と、
     (C)ガラスフリットと
    を含む導電性ペーストであって、
     前記(A)の導電性粒子が、金属粒子と、金属粒子の表面の少なくとも一部に配置される、パラジウム化合物を含む表面処理層を有し、
     前記(C)ガラスフリットの軟化点が800℃以下である、
    導電性ペースト。
    (A) conductive particles;
    (B) a binder resin;
    (C) A conductive paste containing glass frit,
    The conductive particles of (A) have metal particles and a surface treatment layer containing a palladium compound disposed on at least a part of the surface of the metal particles,
    The softening point of the glass frit (C) is 800°C or less,
    conductive paste.
  2.  前記表面処理層に含まれるパラジウム化合物の含有量が、前記金属粒子100重量部に対し、0.01~1.0重量部である、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the content of the palladium compound contained in the surface treatment layer is 0.01 to 1.0 parts by weight based on 100 parts by weight of the metal particles.
  3.  前記表面処理層が、更に有機物を含む、請求項1又は2に記載の導電性ペースト。 The conductive paste according to claim 1 or 2, wherein the surface treatment layer further contains an organic substance.
  4.  前記金属粒子が、銀を50重量%以上含む、請求項1~3のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 3, wherein the metal particles contain 50% by weight or more of silver.
  5.  前記(A)導電性粒子の平均粒径(D50)が0.1~10μmである、請求項1~4のいずれか一項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 4, wherein the conductive particles (A) have an average particle diameter (D50) of 0.1 to 10 μm.
  6.  前記(A)導電性粒子の平均粒径(D50)が0.1~6μmである、請求項5に記載の導電性ペースト。 The conductive paste according to claim 5, wherein the conductive particles (A) have an average particle diameter (D50) of 0.1 to 6 μm.
  7.  請求項1~6のいずれか1項に記載の導電性ペーストを焼成又は熱処理して得られる電極。 An electrode obtained by firing or heat treating the conductive paste according to any one of claims 1 to 6.
  8.  請求項7に記載の電極を含む、電子部品又は電子機器。 An electronic component or electronic device comprising the electrode according to claim 7.
PCT/JP2023/024746 2022-08-26 2023-07-04 Conductive paste, electrode, electronic component, and electronic device WO2024042873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-134753 2022-08-26
JP2022134753 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024042873A1 true WO2024042873A1 (en) 2024-02-29

Family

ID=90012906

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2023/013483 WO2024042764A1 (en) 2022-08-26 2023-03-31 Conductive paste, electrode, electronic component, and electronic device
PCT/JP2023/024744 WO2024042872A1 (en) 2022-08-26 2023-07-04 Conductive paste, electrode, electronic component, and electronic device
PCT/JP2023/024746 WO2024042873A1 (en) 2022-08-26 2023-07-04 Conductive paste, electrode, electronic component, and electronic device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/013483 WO2024042764A1 (en) 2022-08-26 2023-03-31 Conductive paste, electrode, electronic component, and electronic device
PCT/JP2023/024744 WO2024042872A1 (en) 2022-08-26 2023-07-04 Conductive paste, electrode, electronic component, and electronic device

Country Status (2)

Country Link
TW (1) TWI830643B (en)
WO (3) WO2024042764A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220540A (en) * 1994-01-27 1995-08-18 Hitachi Chem Co Ltd Manufacture of anisotropic conductive sheet
JPH1012045A (en) * 1996-06-25 1998-01-16 Sumitomo Metal Mining Co Ltd Conductive paste for low temperature firing
JPH11185527A (en) * 1997-12-19 1999-07-09 Kyocera Corp Electroconductive paste and electronic component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139838A (en) * 2002-10-17 2004-05-13 Noritake Co Ltd Conductive paste and its use
JP6796448B2 (en) * 2016-10-20 2020-12-09 Dowaエレクトロニクス株式会社 Conductive paste and its manufacturing method, and solar cell
WO2019059266A1 (en) * 2017-09-20 2019-03-28 積水化学工業株式会社 Metal-containing particle, connection material, connection structure, method for manufacturing connection structure, conduction inspection member, and conduction inspection device
JP7329941B2 (en) * 2019-03-28 2023-08-21 株式会社ノリタケカンパニーリミテド Core-shell particles and their applications
CN114930467A (en) * 2020-01-16 2022-08-19 纳美仕有限公司 Conductive paste, electrode, and chip resistor
CN115667580A (en) * 2020-05-20 2023-01-31 日本化学工业株式会社 Conductive particle, conductive material using same, and connection structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220540A (en) * 1994-01-27 1995-08-18 Hitachi Chem Co Ltd Manufacture of anisotropic conductive sheet
JPH1012045A (en) * 1996-06-25 1998-01-16 Sumitomo Metal Mining Co Ltd Conductive paste for low temperature firing
JPH11185527A (en) * 1997-12-19 1999-07-09 Kyocera Corp Electroconductive paste and electronic component

Also Published As

Publication number Publication date
TWI830643B (en) 2024-01-21
WO2024042872A1 (en) 2024-02-29
WO2024042764A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
US20120219787A1 (en) Conductive metal paste composition and method of manufacturing the same
JP6242800B2 (en) Sintered conductive paste
JP7201755B2 (en) Dispersion, method for producing structure with conductive pattern using the same, and structure with conductive pattern
EP3121819B1 (en) Conductive paste, processes using the conductive paste and uses of the conductive paste for forming a laminated ceramic component, printed wiring board and electronic device
KR20140094690A (en) Electroconductive ink comoposition and method for forming an electrode by using the same
JP2006196421A (en) Coated conductor powder and conductive paste
JP4291146B2 (en) Silver conductor composition
JP6737506B2 (en) Conductive paste, chip electronic component and manufacturing method thereof
EP3419028B1 (en) Conductive paste
TWI772671B (en) Conductive paste for forming external electrode of multilayer ceramic electronic component
WO2024042873A1 (en) Conductive paste, electrode, electronic component, and electronic device
WO2024043328A1 (en) Electroconductive paste, electrode, electronic component, and electronic appliance
JP7335671B1 (en) Conductive pastes, electrodes, electronic components and electronic equipment
CN113707359B (en) Electrode paste, conductive thick film and preparation method thereof
WO2021145269A1 (en) Electroconductive paste, electrode and chip resistor
EP3645474A1 (en) Copper-containing thick print electroconductive pastes
TW202413548A (en) Conductive paste, electrode, electronic component, and electronic instrument
TW202412017A (en) Conductive paste, electrode, electronic component, and electronic instrument
TW202410072A (en) Conductive paste,electrode,electronic component,and electronic instrument
JP4024787B2 (en) Conductive paste for forming conductive portion of ferrite multilayer circuit board and ferrite multilayer circuit board using the conductive paste
WO2018155393A1 (en) Electroconductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856990

Country of ref document: EP

Kind code of ref document: A1