WO2024043328A1 - Electroconductive paste, electrode, electronic component, and electronic appliance - Google Patents

Electroconductive paste, electrode, electronic component, and electronic appliance Download PDF

Info

Publication number
WO2024043328A1
WO2024043328A1 PCT/JP2023/030674 JP2023030674W WO2024043328A1 WO 2024043328 A1 WO2024043328 A1 WO 2024043328A1 JP 2023030674 W JP2023030674 W JP 2023030674W WO 2024043328 A1 WO2024043328 A1 WO 2024043328A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
electrode
metal particles
particles
conductive
Prior art date
Application number
PCT/JP2023/030674
Other languages
French (fr)
Japanese (ja)
Inventor
喜昭 吉井
滉平 森
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2024043328A1 publication Critical patent/WO2024043328A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a conductive paste used for forming electrodes of electronic components, for example.
  • the present invention also relates to an electrode formed using the conductive paste, and an electronic component such as a chip resistor having the electrode.
  • FIG. 1 shows an example of a cross-sectional structure of a chip resistor 100.
  • the chip resistor 100 has a rectangular alumina substrate 102, and a resistor 104 and an extraction electrode 106 for extracting electricity from the resistor 104 are formed on the upper surface of the alumina substrate 102.
  • a lower surface electrode 108 is formed on the lower surface of the alumina substrate 102 for mounting the chip resistor 100 on the substrate.
  • a connection electrode 110 for connecting the extraction electrode 106 and the lower surface electrode 108 is formed on the end surface of the alumina substrate 102.
  • the extraction electrode 106 and the lower surface electrode 108 are each formed by applying a conductive paste to the upper and lower surfaces of the alumina substrate 102 by printing and then firing the paste.
  • a nickel plating film 112 and a tin plating film 114 are formed on the extraction electrode 106, the bottom electrode 108, and the connection electrode 110.
  • Patent Document 1 discloses a paste for a top electrode of a chip resistor, which is made by dispersing conductive powder, glass frit, and an inorganic binder in an organic vehicle.
  • Patent Document 2 discloses that the conductive particles contain (A) surface-treated metal particles containing Ag and Sn, (C) glass frit, and (B) binder resin, and (A) the weight of Sn in the conductive particles. Conductive pastes are disclosed in which the proportion is less than 10% by weight.
  • Improving conductivity is one way to improve the performance of electrodes, but increasing the density of metal particles in order to improve conductivity increases the degree of sulfidation reaction, so it is necessary to reduce the conductive paste. Even if it is made resistive, it is required to be able to suppress disconnection due to sulfurization. In order to suppress wire breakage due to sulfidation, electrodes whose main material is metal such as silver used in devices such as chip resistors need to have high sulfidation resistance.
  • an object of the present invention is to provide a conductive paste that has high sulfidation resistance and can form a relatively low-cost electrode.
  • the present invention has the following configuration.
  • Configuration 1 is a conductive paste containing (A) conductive particles and (B) binder resin, (A) the conductive particles include surface-treated metal particles, The surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles, The surface treatment layer is a conductive paste containing a zinc compound.
  • Configuration 2 is the conductive paste of Configuration 1, in which the surface-treated metal particles have a zinc content of 10 to 1000 ppm.
  • Structure 3 is the conductive paste according to Structure 1 or 2, wherein the surface treatment layer further contains an organic substance.
  • Configuration 4 is the conductive paste of any one of Configurations 1 to 3, in which the metal particles contain 50% by weight or more of silver.
  • Configuration 5 is the conductive paste of any of Configurations 1 to 4, in which the conductive particles (A) have an average particle diameter (D50) of 0.5 to 10 ⁇ m.
  • Configuration 6 is the conductive paste of any of Configurations 1 to 5, wherein the content of the binder resin (B) is 0.1 to 30 parts by weight based on 100 parts by weight of the (A) conductive particles. be.
  • Configuration 7 is the conductive paste according to any one of Configurations 1 to 6, wherein the conductive paste further contains (C) glass frit.
  • Configuration 8 is the conductive paste of Configuration 7, in which the glass frit (C) contains ZnO.
  • Configuration 9 is the conductive paste of Configuration 7 or 8, wherein the content of the (C) glass frit in the conductive paste is 0.05 to 10 parts by weight based on 100 parts by weight of the (A) conductive particles. It is.
  • Structure 10 is an electrode obtained by firing or heat-treating the conductive paste of any of Structures 1 to 9.
  • Configuration 11 is the electrode of Configuration 10, wherein the electrode contains 0.1 to 10% by weight of zinc.
  • Configuration 12 is an electronic component or electronic device that includes the electrode of configuration 10 or 11.
  • FIG. 2 is a schematic diagram showing an example of a cross-sectional structure of a chip resistor. It is a schematic diagram which shows the shape of the test piece for the sulfidation resistance test of an Example and a comparative example. It is an optical micrograph which shows the shape of the test piece for the migration resistance test of an Example and a comparative example.
  • FIG. 4 is an optical microscope photograph showing an enlarged view of the center of the optical microscope photograph of the test piece for the migration resistance test shown in FIG. 3.
  • SEM scanning electron microscope
  • FIG. 7 is an EDS analysis result (magnification: 5000 times) corresponding to the cross-sectional SEM photograph of Example 3 shown in FIG. 6, and is a diagram showing the distribution of sulfur (S) content in gray scale.
  • . 11 is an EDS analysis result (magnification: 5000 times) corresponding to the cross-sectional SEM photograph of Comparative Example 1 shown in FIG. 10, and is a diagram showing the distribution of silver (Ag) content.
  • FIG. 11 is an EDS analysis result (magnification: 5000 times) corresponding to the cross-sectional SEM photograph of Comparative Example 1 shown in FIG. 10, and is a diagram showing the distribution of sulfur (S) content.
  • S sulfur
  • This is an SEM photograph (magnification: 5000x) of a region of a test piece prepared under the same conditions as in Example 3, where the amount of zinc present on the electrode surface is analyzed by EDS after being sulfurized in the sulfidation resistance test.
  • 14 is a diagram showing in gray scale the results of measuring the amount of zinc oxide (ZnO) by EDS analysis corresponding to the SEM photograph of Example 3 shown in FIG. 13.
  • FIG. 14 is a diagram showing in gray scale the results of measuring the amount of zinc aluminate (ZnAlO) by EDS analysis corresponding to the SEM photograph of Example 3 shown in FIG. 13.
  • FIG. 13 is an EDS analysis result (magnification: 5000 times) corresponding to the cross-sectional SEM photograph of Compar
  • the conductive paste of this embodiment includes (A) conductive particles and (B) a binder resin.
  • the conductive particles include surface-treated metal particles.
  • the conductive paste of this embodiment can be preferably used to form electrodes of electronic components such as chip resistors having electrodes made of the predetermined (A) conductive particles.
  • the conductive particles can contain 50% by weight or more of surface-treated metal particles that have been surface-treated with a zinc compound.
  • the conductive paste of this embodiment includes (A) conductive particles.
  • the conductive particles include surface-treated metal particles.
  • the surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles.
  • the surface treatment layer is a thin film containing a zinc compound.
  • the surface treatment layer is formed by surface treating metal particles with a zinc compound.
  • the inventors of the present invention have discovered that the (A) conductive particles of the conductive paste of this embodiment include predetermined surface-treated metal particles, thereby improving the migration resistance of the resulting electrode as an additional effect. We also found that it improved.
  • Migration resistance means a property capable of suppressing migration. Migration is when a voltage is applied to a pair of electrodes (a positive electrode and a negative electrode), and if water and/or water vapor is present near the electrodes, the metals contained in the electrodes and wiring become ionized, and the positive This is a phenomenon in which metal dendrites move from the electrode to the negative electrode and the insulation between wiring parts decreases. Furthermore, migration may occur even in an atmosphere not affected by moisture, such as at 100° C. or higher or in a vacuum.
  • Migration resistance means such a property that can suppress migration, which has been widely known in the past.
  • a pair of electrodes may be short-circuited due to metal migration. By improving migration resistance, short circuits of the electrodes can be suppressed.
  • the conductive paste of this embodiment is not only a conductive paste of a type that is fired at a relatively high temperature (for example, 500 to 900 °C), but also a conductive paste that is fired at a relatively low temperature (for example, 100 to 200 °C). It has been found that even in the case of a thermosetting conductive paste that is thermally cured by the method, the migration resistance of the resulting electrode is improved. However, the advantage of improved migration resistance is not necessarily an essential effect of the conductive paste of this embodiment, but is considered to be one advantage.
  • the conductive particles can contain metals other than the surface-treated metal particles. However, in order to reliably obtain an electrode having low electrical resistance and high sulfidation resistance, it is preferable that (A) the conductive particles contain 50% by weight or more of surface-treated metal particles; It is more preferable to contain 80% by weight or more of surface-treated metal particles, it is even more preferable to contain 90% by weight or more of surface-treated metal particles, and it is especially preferable that the surface-treated metal particles are composed only of surface-treated metal particles.
  • "(A) conductive particles consist only of surface-treated metal particles” means that (A) conductive particles do not intentionally contain any metal other than surface-treated metal particles. This does not exclude the inclusion of conductive particles other than the surface-treated metal particles that are inevitably mixed in.
  • the conductive particles can include metal particles of materials such as Zn, In, Al, and/or Si as metal particles other than the surface-treated metal particles, as long as the effects of this embodiment are not impaired.
  • the metal particles included in the surface-treated metal particles and the metal particles other than the surface-treated metal particles can be metal particles of an alloy.
  • the metal particles included in the surface-treated metal particles and the metal particles other than the surface-treated metal particles can include metal particles of a plurality of different types of metals or alloys.
  • the surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles.
  • the surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles.
  • the material of the metal particles whose surface is treated with the zinc compound Ag, Cu, In, Al, or an alloy thereof can be used. Since the electrical conductivity is relatively high, the material of the metal particles is preferably Ag and/or Cu, and more preferably Ag.
  • the metal particles preferably contain 50% by weight or more of silver (Ag), more preferably 80% by weight or more of silver (Ag), and 90% by weight of silver (Ag). It is more preferable to contain silver (Ag) in an amount of 95% by weight or more.
  • the metal particles of the surface-treated metal particles contained in the conductive paste of this embodiment consist only of silver (Ag) particles. This is because the electrical conductivity of silver is relatively high compared to other metals.
  • the metal particles of the surface-treated metal particles consist only of silver (Ag) particles means that metal particles other than silver (Ag) particles are intentionally not used as the metal particles. This does not preclude the inclusion of metal particles other than silver (Ag) particles that are unavoidably mixed. Similarly, other similar descriptions do not exclude substances that are unavoidably mixed.
  • the conductive paste of this embodiment preferably contains 50 parts by weight or more of surface-treated metal particles, more preferably 70 parts by weight or more, and still more preferably 80 parts by weight or more, based on 100 parts by weight of the conductive paste. preferable. Further, the conductive paste of the present embodiment preferably contains 50 to 99 parts by weight of surface-treated metal particles, more preferably 70 to 97 parts by weight or more, and 80 to 95 parts by weight, based on 100 parts by weight of the conductive paste. It is more preferable to include parts by weight. By being within the above range, an electrode having high sulfidation resistance and relatively low cost can be formed.
  • the method for producing metal particles is not particularly limited, and can be produced by, for example, a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, or a combination thereof.
  • Flake-shaped metal particles can be produced, for example, by crushing spherical or granular metal particles using a ball mill or the like.
  • the surface-treated metal particles include a surface treatment layer disposed on at least a portion of the surface of the metal particles.
  • the surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles by surface treating the metal particles with a surface treatment agent containing a zinc compound.
  • At least one zinc compound selected from zinc oxide, zinc chloride, zinc sulfate, zinc hydroxide, and zinc complexes such as zinc fatty acid complexes (e.g., zinc oleate, etc.) is used as a raw material for surface treatment of metal particles.
  • zinc complexes such as zinc fatty acid complexes (e.g., zinc oleate, etc.)
  • the surface treatment layer can be formed by surface treatment using a zinc compound by a known method. Specifically, the surface treatment layer is formed by attaching a zinc soap solvent (surface treatment agent) containing zinc or zinc ions, an organic substance for dispersing these, and a solvent to the surface of the metal particles, and removing the solvent through a drying process. is removed. Thereby, a surface treatment layer containing a zinc compound can be formed on the surface of the metal particles. Note that there is also a technology in which the surface of metal particles is coated with other metal particles through reduction treatment to form a core-shell structure, but when attempting to form a surface treatment layer using this technology, core particles (e.g.
  • Silver particles Since metal particles are deposited as a shell on the surface, the amount of metal particles present in the shell increases. On the other hand, in the present invention, since the surface treatment layer is formed with the zinc compound attached to the surface of the metal particles, only a small amount of zinc can be used.
  • the organic substance for dispersing zinc or zinc ions is preferably at least one selected from fatty acids and triazole compounds.
  • the fatty acids include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, cabric acid, lauric acid, myristic acid, pentadecyl acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, Oleic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, cerotic acid, montanic acid, and melisic acid At least one selected from the following can be used.
  • fatty acids it is preferable to use at least one selected from palmitic acid, stearic acid, and oleic acid. It is more preferable to use oleic acid as the organic substance (fatty acid) contained in the surface treatment agent.
  • oleic acid as the organic substance (fatty acid) contained in the surface treatment agent.
  • benzotriazole can be used as the triazole compound.
  • the solvent contained in the surface treatment agent for forming the surface treatment layer may be any solvent as long as it can be used to disperse the zinc compound and to properly adhere the zinc compound to the metal particles.
  • solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, N-methyl-2-pyrrolidone (NMP), etc.
  • N-alkylpyrrolidones amides such as N,N-dimethylformamide (DMF), ketones such as methyl ethyl ketone (MEK), cyclic carbonates such as terpineol (TEL), and diethylene glycol monobutyl ether (butyl carbitol, BC) , bis[2-(2-butoxyethoxy)ethyl]adipate, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate (Texanol), and water.
  • DMF N,N-dimethylformamide
  • MEK methyl ethyl ketone
  • TEL cyclic carbonates
  • TEL terpineol
  • BC diethylene glycol monobutyl ether
  • a surface treatment layer can be formed on the surface of the metal particles by attaching a surface treatment agent containing a solvent in which the above-mentioned zinc compound is dispersed to the surface of the metal particles and removing the solvent by drying. In this way, surface-treated metal particles can be obtained.
  • the surface treatment layer of the surface treated metal particles can be manufactured as follows. That is, first, metal particles are dispersed in water. A solvent in which the above-mentioned zinc compound is dispersed is added as a coating agent to water in which metal particles are dispersed to obtain a water slurry containing metal particles coated with a coating agent containing zinc, and then the coating is performed by decantation. The metal particles coated with the agent are allowed to settle. Next, the supernatant liquid is removed, and the resulting wet metal particles coated with the coating material are added together with an acrylic dispersant to a polar solvent having a boiling point of 150 to 300°C.
  • surface-treated metal particles can be produced by drying in a nitrogen atmosphere at a temperature from room temperature to 100° C., preferably at a temperature of 80° C. or less for 12 hours or more to remove moisture. Note that if the drying temperature is too high, the surface-treated metal particles will be sintered, which is not preferable.
  • the surface treatment layer of the surface treated metal particles contained in the conductive paste of this embodiment further contains an organic substance.
  • the surface treatment layer when the surface treatment layer is formed using the above-mentioned zinc compound, the surface treatment layer contains an organic substance. Since the surface-treated metal particles have a surface-treated layer containing an organic substance, the resulting electrode can have high sulfidation resistance even if the amount of zinc compound is small.
  • the organic substance may be a liquid organic fatty acid or a solid fatty acid.
  • liquid fatty acids examples include saturated fatty acids such as butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, and pelargonic acid, as well as myristoleic acid, palmitoleic acid, ricinoleic acid, oleic acid, linoleic acid, and linolenic acid. Unsaturated fatty acids such as These fatty acids may be used alone or in combination of two or more. Among these, it is preferable to use oleic acid, linoleic acid, or a mixture thereof.
  • solid fatty acids include saturated fatty acids having 10 or more carbon atoms, such as capric acid, palmitic acid, and stearic acid, and unsaturated fatty acids, such as crotonic acid and sorbic acid.
  • the surface treatment layer of the surface treated metal particles used in this embodiment is a thin film of a zinc compound.
  • This embodiment is characterized in that the surface treatment layer of the surface treatment metal particles is not a thin film made of zinc metal or zinc alloy.
  • the surface treatment layer is a thin film made of zinc metal or zinc alloy, the amount of zinc blended is too large, which may cause adverse effects such as an increase in the electrical resistance of the resulting electrode.
  • the surface treatment layer is a thin film made of zinc metal or zinc alloy, there is a high possibility that soldering of metal particles such as silver particles will be inhibited.
  • the surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles.
  • the surface treatment layer is preferably a thin film that covers 50% or more of the surface of the metal particle, more preferably a thin film that covers 80% or more of the surface of the metal particle, and covers 90% or more of the surface of the metal particle.
  • a thin film is preferable, and a thin film covering 95% or more of the surface of the metal particles is particularly preferable.
  • the surface treatment layer is a thin film that covers the entire surface of the metal particles.
  • the thickness of the surface treatment layer of the surface-treated metal particles does not necessarily have to be uniform, but is preferably uniform in order to more effectively suppress sulfidation of the metal particles.
  • the thickness of the surface treatment layer can be controlled by, for example, controlling the viscosity of the zinc soap solvent (surface treatment agent) in which a zinc compound is dispersed, and the concentration of the zinc compound in the zinc soap solvent (surface treatment agent). It can be controlled by adjusting. Further, by controlling the thickness of the surface treatment layer, the amount of zinc in the surface treatment layer can be controlled.
  • the thickness of the surface treatment layer is preferably from 1 to 100 nm, more preferably from 1 to 70 nm, and particularly preferably from 1 to 50 nm.
  • the thickness of the surface treatment layer can be measured, for example, by X-ray photoelectron spectroscopy. By setting the thickness of the surface treatment layer within this range, it is possible to form an electrode with high sulfidation resistance even though the amount of zinc compound is small.
  • the conductive paste of this embodiment includes (A) surface-treated metal particles surface-treated with a zinc compound as conductive particles, thereby forming an electrode having high sulfidation resistance without using expensive palladium. be able to. Therefore, by using the conductive paste of this embodiment, an electrode having high sulfidation resistance and relatively low cost can be formed. In particular, when silver particles are used as metal particles, silver is easily sulfurized. By using the conductive paste of this embodiment, it is possible to effectively suppress disconnection of an electrode mainly made of silver due to sulfurization at low cost.
  • the reason why sulfidation of the silver particles can be suppressed by using surface-treated metal particles (surface-treated silver particles) whose surface has been treated with a zinc compound is as follows. It can be inferred as follows. That is, zinc is more easily sulfurized than silver. Therefore, in electrodes made of surface-treated metal particles in which zinc exists around metal particles (silver particles), the zinc is sulfurized and absorbs sulfur components in the atmosphere, and the sulfur components are absorbed by the metal particles (silver particles). silver particles). Therefore, it is thought that sulfidation of silver particles (metal particles) that have a conductive function as an electrode can be suppressed. Similar inferences can be made regarding metal particles other than silver particles. However, the present invention is not limited to this inference.
  • the migration resistance of the obtained electrode can be improved as an additional effect.
  • the reason why migration resistance can also be improved by using surface-treated metal particles (surface-treated silver particles) surface-treated with a zinc compound can be inferred as follows. Since zinc has a higher ionization tendency than silver, it is presumed that by using zinc, zinc could trap electrons and suppress the ionization of silver. Further, by using surface-treated metal particles whose surface has been treated with a zinc compound, the denseness of the electrode is improved. It is presumed that this makes it difficult for moisture to enter, thereby improving migration resistance.
  • the present invention is not limited to this inference.
  • the content of zinc contained in the surface-treated metal particles is preferably 10 to 1000 ppm, more preferably 15 to 950 ppm, even more preferably 20 to 900 ppm, and particularly preferably 22 to 850 ppm.
  • the content of zinc contained in the surface-treated metal particles is within the above range, changes in the resistance value of the electrode due to sulfidation of the electrode can be reduced.
  • the content of zinc contained in the surface-treated metal particles can be measured by ICP emission spectrometry (high frequency inductively coupled plasma emission spectrometry).
  • the shape of the conductive particles is not particularly limited, and for example, spherical, granular, flaky, and/or scaly surface-treated metal particles can be used.
  • the average particle diameter of the conductive particles (A) is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.8 ⁇ m to 8 ⁇ m, and still more preferably 1 ⁇ m to 7 ⁇ m.
  • the average particle diameter herein means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measurement method.
  • D50 volume-based median diameter
  • the average particle diameter (D50) of the conductive particles is larger than 10 ⁇ m, sinterability is poor and a dense film cannot be obtained.
  • the average particle diameter (D50) of (A) conductive particles is less than 0.5 ⁇ m, the dispersibility tends to deteriorate, making it difficult to obtain a uniform thin film when printing the conductive paste. There are cases.
  • the conductive paste of this embodiment includes (B) a binder resin.
  • the (B) binder resin connects the (A) conductive particles together in the conductive paste.
  • the conductive paste of this embodiment may or may not include (C) glass frit, which will be described later.
  • the function of the binder resin (B) included in the conductive paste of this embodiment is different depending on whether it contains (C) glass frit or not.
  • the conductive paste of this embodiment includes (C) glass frit
  • the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and heated to a relatively high temperature (for example, 500 to 900°C). ), an electrode can be formed.
  • the binder resin (B) is burned out during firing. Therefore, the function of the binder resin (B) in this case is to (A) connect the conductive particles together when the conductive paste of this embodiment is applied to a predetermined base material in a predetermined electrode pattern. That's true.
  • the conductive paste of this embodiment does not contain (C) glass frit
  • the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and the conductive paste is applied at a relatively low temperature (for example, 100 to 200 °C), an electrode can be formed.
  • the binder resin (B) is not burned out during heat treatment.
  • the function of the binder resin (B) is to connect the conductive particles (A) to each other when the conductive paste of this embodiment is applied to a predetermined base material in a predetermined electrode pattern.
  • the shape of the electrode after the heat treatment is maintained by connecting the conductive particles together after the heat treatment.
  • binder resin for example, cellulose resins such as ethyl cellulose resin and nitrocellulose resin, thermoplastic resins such as acrylic resin, alkyd resin, saturated polyester resin, butyral resin, polyvinyl alcohol, and hydroxypropyl cellulose may be used. I can do it. These resins can be used alone or in combination of two or more.
  • binder resin (B) it is preferable to use at least one selected from cellulose resins such as ethyl cellulose resins and nitrocellulose resins, and alkyd resins.
  • epoxy resin is used as the binder resin.
  • any known epoxy resin can be used.
  • epoxy resins include bisphenol A type, bisphenol F type, biphenyl type, tetramethylbiphenyl type, cresol novolac type, phenol novolac type, bisphenol A novolac type, dicyclopentadienephenol condensation type, phenol aralkyl condensation type, and glycidylamine.
  • epoxy resins such as molds, brominated epoxy resins, alicyclic epoxy resins, and aliphatic epoxy resins.
  • epoxy resins can be used alone or in combination of two or more.
  • a thermosetting resin other than epoxy resin may be used for the purpose of improving the adhesion between surface-treated metal particles.
  • thermoplastic resins such as polyurethane resins and/or polycarbonate resins may also be used.
  • the content of the binder resin (B) is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, and even more preferably The amount is 2 to 10 parts by weight, particularly preferably 3 to 7 parts by weight.
  • the content of the binder resin (B) in the conductive paste is within the above range, the applicability of the conductive paste to the substrate (base material) and/or the paste leveling properties are improved, resulting in an excellent printed shape. Obtainable.
  • the content of the binder resin (B) exceeds the above range, the amount of the binder resin (B) contained in the applied conductive paste is too large. Therefore, there is a possibility that electrodes and the like cannot be formed with high precision.
  • the conductive paste of this embodiment can further include (C) glass frit.
  • the conductive paste of this embodiment includes (C) glass frit
  • the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and heated to a relatively high temperature (for example, 500 to 900°C). ), an electrode can be formed.
  • a relatively high temperature for example, 500 to 900°C.
  • the above-mentioned binder resin (B) is burned out during firing.
  • the shape of the electrode after firing can be maintained by connecting the (A) conductive particles together using the (C) glass frit contained in the conductive paste.
  • the glass frit is not particularly limited, but a glass frit with a softening point of preferably 300°C or higher, more preferably 400 to 900°C, and even more preferably 500 to 800°C can be used.
  • the softening point of the glass frit can be measured using a thermogravimetric measuring device (for example, TG-DTA2000SA manufactured by BRUKER AXS).
  • glass frit (C) examples include borosilicate-based and barium borosilicate-based glass frits.
  • glass frits include bismuth borosilicate, alkali metal borosilicate, alkaline earth metal borosilicate, zinc borosilicate, lead borosilicate, lead borate, lead silicate, and bismuth borate. and zinc borate-based glass frits. These glass frits can also be used in combination of two or more types.
  • the glass frit is preferably lead-free from the viewpoint of environmental considerations.
  • the glass frit contains at least one selected from the group consisting of ZnO, Bi 2 O 3 , BaO, Na 2 O, CaO, and Al 2 O 3 . More preferably, the glass frit contains at least one selected from the group consisting of ZnO and Bi 2 O 3 .
  • the conductive paste of this embodiment includes (C) glass frit
  • the glass frit includes ZnO.
  • a glass frit containing ZnO zinc-based glass frit
  • an electrode with higher sulfidation resistance can be obtained.
  • the conductive paste of this embodiment includes (C) glass frit
  • the glass frit includes Bi 2 O 3 .
  • a glass frit containing Bi 2 O 3 bismuth-based glass frit
  • the density of the electrode can be improved.
  • the average particle size of the glass frit is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 10 ⁇ m, and most preferably 0.5 to 5 ⁇ m.
  • the average particle size here means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measurement method.
  • the content of (C) glass frit is preferably 0.05 to 10 parts by weight based on 100 parts by weight of (A) conductive particles.
  • the amount is preferably 0.07 to 8 parts by weight, more preferably 0.08 to 6 parts by weight. If the content of glass frit is less than this range, the adhesion of the electrode obtained by firing the conductive paste to the substrate (base material) will decrease. If the content of glass frit is more than this range, the resistance value of the electrode obtained by firing the conductive paste will be high, and the surface of the fired body will be covered with the glass component, resulting in poor plating properties. Note that when the content of glass frit is relatively small, an electrode with low resistance can be obtained.
  • Chemical resistance is a required property because plating pretreatment is required when forming a plating film on the surface of an electrode.
  • Plating pretreatment is performed for the purpose of removing contaminants from the electrode surface, activating the electrode surface, and bringing it into a clean state suitable for plating.
  • the pollutants that need to be removed can be broadly divided into organic and inorganic pollutants.
  • the pretreatment step is not a single step that removes all contaminants. For example, organic substances are removed in a process using an alkaline cleaning agent. Inorganic substances are removed in a process using acid-based cleaning agents. Therefore, electrodes are required to have high chemical resistance.
  • the conductive paste of this embodiment includes (C) glass frit, the glass frit softens as the temperature rises, and the sintering (firing) of the (A) conductive particles progresses.
  • the glass frit content is large, the glass component may be pushed out to the surface of the fired body. In that case, the surface of the fired body may be covered with a glass component.
  • the glass frit contains zinc oxide, the Zn component in the glass frit precipitates as ZnO at the crystallization temperature, so the (A) conductivity after firing is It can contribute to the sulfidation resistance of particles.
  • the conductive paste of this embodiment can contain (D) a dispersant.
  • the dispersibility of the (A) conductive particles in the conductive paste can be improved, and the agglomeration of the (A) conductive particles can be prevented. can do.
  • dispersant a known dispersant can be used.
  • dispersant for example, an acid type dispersant can be used.
  • the conductive paste of this embodiment can contain (E) a solvent.
  • solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, and N-methyl-2-pyrrolidone (NMP).
  • N-alkylpyrrolidones such as, amides such as N,N-dimethylformamide (DMF), ketones such as methyl ethyl ketone (MEK), cyclics such as terpineol (TEL), and diethylene glycol monobutyl ether (butyl carbitol, BC)
  • Examples include carbonates, bis[2-(2-butoxyethoxy)ethyl]adipate, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate (Texanol), and water.
  • the content of the solvent in the conductive paste of this embodiment is not particularly limited.
  • the content of the solvent is, for example, preferably 1 to 100 parts by weight, more preferably 5 to 60 parts by weight, and still more preferably 8 to 35 parts by weight, based on 100 parts by weight of the (A) conductive particles.
  • the viscosity of the conductive paste of this embodiment is preferably 50 to 700 Pa ⁇ s (shear rate: 4.0 sec ⁇ 1 ), more preferably 100 to 300 Pa ⁇ s (shear rate: 4.0 sec ⁇ 1 ).
  • the viscosity of the conductive paste of this embodiment can be adjusted by appropriately controlling the content of the solvent. By adjusting the viscosity of the conductive paste within this range, the applicability and/or handling of the conductive paste to the substrate (base material) becomes good, and the conductive paste can be applied to the substrate with a uniform thickness. becomes possible.
  • the viscosity of the conductive paste can be measured at a temperature of 25° C. and 10 rpm using an HB type viscometer (manufactured by Brookfield Corporation) (SC4-14 spindle).
  • the conductive paste of this embodiment further contains (F) a curing agent.
  • the conductive paste of this embodiment contains an epoxy resin as the binder resin (B), the curing of the epoxy resin can be appropriately controlled by including the curing agent (F).
  • a known curing agent can be used as the curing agent.
  • the curing agent preferably contains at least one selected from a phenolic curing agent, a cationic polymerization initiator, an imidazole curing agent, and a boron trifluoride compound.
  • the boron trifluoride compound include boron trifluoride monoethylamine, boron trifluoride piperidine, and boron trifluoride diethyl ether.
  • boron trifluoride monoethylamine can be preferably used.
  • the conductive paste of this embodiment when the total weight of (A) conductive particles and (C) epoxy resin as a binder resin is 100 parts by weight, the conductive paste contains 0 (F) curing agent. .1 to 5 parts by weight, more preferably 0.15 to 2 parts by weight, even more preferably 0.2 to 1 parts by weight, particularly 0.3 to 0.6 parts by weight. preferable.
  • the epoxy resin that is the binder resin component (B) can be appropriately cured, and an electrode with a desired shape can be obtained.
  • the conductive paste of this embodiment can contain other additives, such as organic additives and inorganic additives. Specifically, it may contain a silica filler, a rheology modifier, and/or a pigment as an additive.
  • the printability of the conductive paste can be improved.
  • a dispersant to the conductive paste as an additive By adding a dispersant to the conductive paste as an additive, the dispersibility of conductive particles and the like can be improved.
  • an inorganic additive to the conductive paste as an additive By adding an inorganic additive to the conductive paste as an additive, the adhesion of the conductive paste after firing can be improved.
  • the conductive paste of this embodiment can be manufactured by mixing the above-mentioned components using, for example, a Raikai machine, a pot mill, a three-roll mill, a rotary mixer, and/or a twin-shaft mixer. .
  • This embodiment is an electrode obtained by firing or heat-treating the conductive paste of this embodiment described above.
  • the conductive paste of this embodiment includes (C) glass frit
  • the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and heated to a relatively high temperature (for example, 500 to 900°C). ), the electrode can be formed by firing in an air atmosphere. Therefore, when the conductive paste of this embodiment contains (C) glass frit, the electrode is made of (A') conductive particles containing surface-treated metal particles and (C) glass frit. It can contain a glass component. After firing, the conductive particles (A') are in a sintered state.
  • the electrode does not substantially contain (B) binder resin and (E) solvent.
  • the conductive paste of this embodiment does not contain (C) glass frit
  • the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and the conductive paste is applied at a relatively low temperature (for example, 100 to 200 °C), an electrode can be formed. Therefore, when the conductive paste of this embodiment does not contain (C) glass frit, the electrode of this embodiment is made of (A') conductive particles containing surface-treated metal particles and (B) a binder resin. (B') a binder component. (A') The conductive particles are connected via the (B') binder component.
  • the electrode of this embodiment contains zinc.
  • the electrode of this embodiment preferably contains 0.1 to 10% by weight of zinc, more preferably 0.5 to 8% by weight, and even more preferably 1 to 5% by weight of zinc.
  • the electrode of this embodiment can contain zinc resulting from (C) glass frit. Since the electrode of this embodiment contains a predetermined amount of zinc, the electrode of this embodiment can have high sulfidation resistance. Note that the zinc content in the electrode can be measured by elemental analysis using EDS (Energy Dispersive X-ray Spectroscopy).
  • the sheet resistance of the thin film serving as the electrode of this embodiment varies depending on the film thickness, but can be approximately 10 m ⁇ /square or less than 10 m ⁇ /square. Therefore, it can be preferably used for forming electrodes that are required to have low resistance.
  • a method for forming electrodes on a substrate (base material) using the conductive paste of this embodiment will be described.
  • a conductive paste is applied onto the substrate.
  • the conductive paste can be applied by any known method, such as dispensing, jet dispensing, stencil printing, screen printing, pin transfer, or stamping.
  • the conductive paste of this embodiment includes (C) glass frit
  • the conductive paste applied onto the substrate is fired at 500 to 900°C, more preferably 600 to 880°C, and still more preferably 700 to 870°C.
  • a specific example of the firing temperature is 850°C.
  • the solvent component contained in the conductive paste evaporates at 300° C. or lower, and the resin component is burned out at 400° C. to 600° C., forming a fired body (electrode) of the conductive paste.
  • the organic components contained in the surface-treated metal particles disappear by firing in an air atmosphere, and the zinc in the zinc compound exists as a coating on the surface of the metal particles as zinc oxide.
  • the electrode thus obtained has high sulfidation resistance and excellent adhesion to the substrate.
  • the conductive paste of this embodiment does not include (C) glass frit
  • the conductive paste is applied onto the substrate, and then the substrate is placed in a heat treatment furnace or the like. Then, the conductive paste applied on the substrate is heat treated at 100 to 200°C, more preferably 150 to 200°C.
  • the heat treatment time is preferably 20 to 90 minutes, more preferably 30 to 60 minutes.
  • a specific example of the heat treatment conditions is 150° C. for 60 minutes.
  • a cured body (electrode) of the conductive paste can be formed by drying the solvent component contained in the conductive paste and thermosetting the conductive paste. The electrode thus obtained has high sulfidation resistance and excellent adhesion to the substrate.
  • the electrode obtained as described above using the conductive paste of this embodiment can have the additional advantage of improved migration resistance.
  • This additional advantage can be obtained both when the conductive paste contains (C) a glass frit and (C) does not contain a glass frit.
  • this advantage is not necessarily an essential effect of the conductive paste of this embodiment, but is considered to be one advantage.
  • This embodiment is an electronic component or electronic device having the above-described electrode.
  • electronic components refer to components used in electronic devices, such as chip resistors and board circuits.
  • an electronic component means a component that operates electronically, and specifically can be a component that operates at 48 V or less of DC.
  • an electronic device means a device including an electronic component having the electrode of this embodiment.
  • the conductive paste of this embodiment can be used for forming circuits of electronic components or electronic equipment, forming electrodes, and bonding devices such as electronic components (for example, semiconductor chips) to a substrate (base material). be.
  • FIG. 1 shows an example of a cross-sectional structure of a chip resistor 100 of this embodiment.
  • the chip resistor 100 can include a rectangular alumina substrate 102, a resistor 104 and an extraction electrode 106 arranged on the surface of the alumina substrate 102.
  • the extraction electrode 106 is an electrode for extracting electricity from the resistor 104.
  • a lower surface electrode 108 for mounting the chip resistor 100 on the substrate can be arranged on the lower surface of the alumina substrate 102.
  • a connection electrode 110 for connecting the extraction electrode 106 and the lower surface electrode 108 can be arranged on the end surface of the alumina substrate 102.
  • At least one of the extraction electrode 106, the bottom electrode 108, and the connection electrode 110 can be formed using the conductive paste of this embodiment.
  • the extraction electrode 106 be formed using the conductive paste of this embodiment.
  • a nickel plating film 112 and a tin plating film 114 can be disposed on the top surface of the extraction electrode 106, the bottom electrode 108, and the connection electrode 110 (the surface opposite to the alumina substrate 102).
  • the electrode of this embodiment is not limited to the electrode of a chip resistor. Electrodes formed using the conductive paste of this embodiment can be used as electrodes for various types of electronic components. Electronic components include passive components (for example, chip resistors, capacitors, resistors, inductors, etc.), circuit boards (for example, a predetermined circuit (electrode or wiring) on a substrate such as an alumina substrate, an aluminum nitride substrate, a glass substrate, etc.). ), solar cells, and electromagnetic shields. The conductive paste of this embodiment can be used to form electrodes and/or wiring of these electronic components. Examples of electronic devices including electronic components having the electrodes of this embodiment include semiconductor devices, photovoltaic modules, and electronic devices including circuit boards.
  • the conductive paste of this embodiment can be used as a die attach material for attaching a semiconductor chip in a semiconductor device.
  • the semiconductor device is a power semiconductor device, it can be used as a brazing material for attaching a power semiconductor chip.
  • the conductive paste of this embodiment can be used as an electrode of a solar cell.
  • the conductive paste of this embodiment can be used as a conductive adhesive.
  • the conductive paste of this embodiment can be suitably used not only for forming terminal electrodes of chip resistors, but also as a conductive paste for terminal electrodes of passive components such as MLCCs and chip inductors. .
  • the conductive paste of this embodiment it is possible to form an electrode that has high sulfidation resistance, low resistance, and relatively low cost. Therefore, by using the conductive paste of this embodiment, electronic components such as chip resistors in which highly reliable electrodes are formed can be obtained at relatively low cost.
  • a conductive paste was prepared by mixing the following components (A) to (F) in the proportions shown in Tables 1 to 4. Note that all the proportions of each component shown in Tables 1 to 4 are shown in parts by weight. In Tables 1 to 4, the weight of (A) conductive particles (total weight of metal particles and surface-treated metal particles) was 100 parts by weight. Moreover, the average particle size means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measuring method.
  • Conductive particles Table 5 shows metal particles a1 to a3 and surface-treated metal particles A1 to A8 used as (A) conductive particles (component (A)) in Examples and Comparative Examples.
  • Metal particles a1 and a2 are silver particles, and metal particle a3 is a zinc particle.
  • Metal particles a1 to a3 are not surface-treated.
  • Surface-treated metal particles A1 to A8 are produced by attaching a zinc soap solvent (surface treatment agent) in which a zinc compound is dispersed in a solvent to the surface of silver particles, which are metal particles, and removing the solvent through a drying process. The surface was treated by Therefore, the surface-treated metal particles A1 to A8 have a surface-treated layer containing a zinc compound.
  • the "zinc content” column in Table 5 shows the weight ratio of zinc contained in the surface treatment layer to the weight of the surface treatment metal particles A1 to A8 in units of ppm by weight.
  • the weight proportion of zinc in the surface-treated metal particles was measured by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy). As described above, surface treatment layers were formed on the surface treatment metal particles A1 to A8.
  • Surface treatment of silver particles with a zinc compound was performed as follows. That is, the surface treatment of the silver particles with a zinc compound was performed using a zinc soap solvent (surface treatment agent) containing a zinc compound, an organic substance for dispersing these, and a solvent. The surface treatment was performed by attaching this zinc soap solvent (surface treatment agent) to the surface of the silver particles and removing the solvent through a drying process. Zinc oleate was used as the zinc compound. Furthermore, oleic acid was used as a dispersant included in the surface treatment agent for silver particles.
  • a zinc soap solvent surface treatment agent
  • Zinc oleate was used as the zinc compound.
  • oleic acid was used as a dispersant included in the surface treatment agent for silver particles.
  • Binder resin Table 6 shows the (B) binder resins (resins B1 to B6) used in the examples and comparative examples.
  • Tables 1 to 4 show the blending amounts of resins B1 to B6 in the conductive pastes of Examples and Comparative Examples.
  • (C) Glass Frit Table 7 shows the (C) glass frits (GF-C1 and GF-C2) used in Examples and Comparative Examples.
  • Tables 1 to 4 show the blending amounts of glass frits GF-C1 and GF-C2 in the conductive pastes of Examples and Comparative Examples.
  • (D) Dispersant In the conductive pastes of Examples and Comparative Examples, an acid type low molecular dispersant 3M 221P (manufactured by NOF Corporation) was used as the (D) dispersant (dispersant D). Tables 1 to 4 show the amount of dispersant D in the conductive pastes of Examples and Comparative Examples.
  • (E) Solvents Table 8 shows the (E) solvents (solvents E1 to E4) used in the Examples and Comparative Examples. Tables 1 to 4 show the blending amounts of solvents E1 to E4 in the conductive pastes of Examples and Comparative Examples.
  • (F) Hardening agent F In the conductive pastes of Examples 20 to 22, boron trifluoride monoethylamine (Stella Chemifa Co., Ltd.) was used as the curing agent F (F). Table 4 shows the amount of curing agent F in the conductive pastes of Examples 20 to 22.
  • FIG. 2 shows a schematic diagram of a test piece 50 for the sulfidation resistance test.
  • C Using a conductive paste containing glass frit, test pieces 50 for sulfidation resistance tests of Examples 1 to 19 and Comparative Examples 1 to 3 were prepared according to the following procedure.
  • a zigzag printed pattern 54 for sulfidation resistance testing as shown in FIG. 2 is formed by screen printing.
  • a conductive paste was applied.
  • the length between the two ends 54a and 54b of the printed pattern 54 for sulfidation resistance testing is 71 mm, and the width of the printed pattern 54 for sulfidation resistance testing is 1 mm.
  • screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness 5 ⁇ m).
  • the printed pattern 54 for sulfidation resistance test of the conductive paste was dried at 150° C. for 10 minutes using a batch type hot air dryer. After drying the printed pattern 54 for sulfidation resistance test of the conductive paste, the printed pattern 54 for sulfidation resistance test was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces 50 of Examples 1 to 19 and Comparative Examples 1 to 3 were produced.
  • Resistance value change rate (electrical resistance after sulfidation - initial electrical resistance) / initial electrical resistance
  • test piece for adhesive strength test Using the prepared conductive paste, test pieces of Examples 1 to 19 and Comparative Examples 1 to 3 containing (C) glass frit were produced according to the following procedure. First, a conductive paste was applied by screen printing onto a 20 mm x 20 mm x 1 mm (t) alumina substrate (purity 96%). As a result, 25 (5 ⁇ 5) adhesive strength test patterns each having a square pad shape of 1.5 mm on a side were formed on the alumina substrate. In order to form a pattern for testing the adhesive strength of the conductive paste, screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness: 5 ⁇ m).
  • the conductive paste was dried at 150° C. for 10 minutes using a batch hot air dryer. After drying the pattern for testing the adhesive strength of the conductive paste, the pattern for testing the adhesive strength of the conductive paste was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces of Examples 1 to 19 and Comparative Examples 1 to 3 were prepared.
  • Ni/Au plating was performed on the adhesive strength test pattern.
  • solder M705 manufactured by Senju Metal Industry Co., Ltd., a Sn alloy containing 3.0% by weight of Sn-Ag and 0.5% by weight of Cu
  • a Sn-plated annealed copper wire (diameter 0.8 mm) was soldered to the adhesive strength test pattern.
  • For soldering the Sn-plated annealed copper wire out of the 5 x 5 adhesive strength test patterns on the alumina board, one for each of the 5 pieces in the second row, for a total of 5 Sn-plated annealed copper wires.
  • the conductive pastes prepared as Examples 20 to 22 were used on a 20 mm x 20 mm x 1 mm (t) alumina substrate (purity 96%). Then, a conductive paste was applied by screen printing. As a result, 25 (5 ⁇ 5) adhesive strength test patterns each having a square pad shape of 1.5 mm on a side were formed on the alumina substrate. Next, the conductive paste was heat-treated at 150° C. for 10 minutes using a hot air dryer to harden the adhesive strength test pattern of the conductive paste. In the manner described above, test pieces of Examples 20 to 22 were produced.
  • the results of the adhesive strength test were obtained by measuring the tensile adhesive strength of 10 test pieces of each example and each comparative example.
  • the "Adhesive Strength (N)" column of Tables 1 to 4 shows the average value of the tensile adhesive strength of the 10 test pieces of each Example and each Comparative Example measured as described above.
  • FIG. 3 shows an optical micrograph of test print patterns 64a and 64b of an example of the test piece 60 for the migration resistance test.
  • test pieces 60 for the migration resistance test of Examples 3, 4, and 20 to 22, and Comparative Example 1 were prepared according to the following procedure.
  • the test pieces 60 for the migration resistance test of Examples 3 and 4 and Comparative Example 1 were produced in the following procedure. First, on a 110 mm x 20 mm x 0.8 mm (t) alumina substrate 62 (purity 96%) for migration resistance testing, as shown in FIG. 3 and FIG. The conductive paste was applied so that the two comb-shaped migration resistance test printed patterns 64a and 64b were alternated. The printed pattern for migration resistance test 64a is connected to the first electrode 66a, and the printed pattern for migration resistance test 64b is connected to the second electrode 66b. The print width L of the migration resistance test print patterns 64a, 64b is 200 ⁇ m, and the space S between the migration resistance test print patterns 64a, 64b is 200 ⁇ m.
  • printed patterns 64a, 64b and electrodes 66a, 66b for conductive paste migration resistance testing screen printing was performed using a 400 mesh screen made of stainless steel (emulsion thickness 10 ⁇ m).
  • the printed patterns 64a, 64b for the migration resistance test of the conductive paste and the electrodes 66a, 66b were dried at 150° C. for 10 minutes using a batch type hot air dryer.
  • the migration resistance test printed patterns 64a, 64b and electrodes 66a, 66b were fired using a belt-type firing furnace. . The firing temperature was maintained at 850°C for 10 minutes.
  • test pieces 60 for the migration resistance test of Examples 3 and 4 and Comparative Example 1 were prepared.
  • the test piece 60 for the migration resistance test of Examples 20 to 22 was produced in the following procedure. First, similarly to the test piece 60 of Examples 3 and 4 and Comparative Example 1, a 110 mm x 20 mm x 0.8 mm (t) alumina substrate 62 (purity 96%) for migration resistance testing was coated with screen printing. As shown in FIGS. 3 and 4, the conductive paste was applied so that the two comb-shaped migration resistance test printed patterns 64a and 64b were alternated. Next, the conductive paste was heat-treated at 200° C. for 30 minutes using a hot air dryer to harden the adhesive strength test pattern of the conductive paste. In the manner described above, test pieces for the migration resistance tests of Examples 20 to 22 were prepared.
  • the migration resistance of the printed patterns 64a and 64b for the migration resistance test of Examples 3, 4, and 20 to 22 and Comparative Example 1 was measured according to the following procedure. First, as shown in FIG. 3, a voltage (40 V) was applied between the first electrode 66a and the second electrode 66b of the two migration resistance test printed patterns 64a and 64b. The insulation resistance value between the first electrode 66a and the second electrode 66b was measured while stored in an environment with a temperature of 85° C. and a humidity of 85%. The insulation resistance value was calculated from the measured value of the current flowing between the first electrode 66a and the second electrode 66b and the applied voltage of 40V. The test piece 60 to which an applied voltage of 40 V was applied was held in an environment of a temperature of 85° C.
  • Table 9 shows the results of the migration resistance test. Before the test, the insulation resistance values of all samples were 10 7 ⁇ or more. A test piece 60 whose insulation resistance value became 10 6 ⁇ or less within 500 hours was judged to be defective, and was written as "defective" in Table 9. Test piece 60 whose insulation resistance value did not fall below 10 6 ⁇ even after 500 hours was judged to have excellent migration resistance, and was listed as "good” in Table 9.
  • FIG. 13 shows an SEM photograph (5000x magnification) for EDS analysis of the zinc distribution on the electrode surface of the test piece after the sulfidation resistance test.
  • 14 and 15 show in gray scale the results of measuring the distribution of zinc oxide (ZnO) and zinc aluminate (ZnAlO) by EDS analysis corresponding to the SEM photograph shown in FIG. 13. As shown in FIGS. 13 to 15, it was confirmed that zinc was not present alone on the electrode surface, but as zinc oxide and zinc aluminate.
  • Figures 5 and 6 show the surface and cross section of a test piece prepared under the same conditions as test piece 50 of the sulfidation resistance test of Example 3, in which the rate of change in resistance value was relatively small.
  • a SEM photograph taken by an electron microscope (SEM) is shown.
  • 7 and 8 show the results of EDS analysis of a cross section of a test piece prepared under the same conditions as the test piece 50 of the sulfidation resistance test of Example 3.
  • the electrode patterns obtained by firing the conductive pastes of Examples 1 to 22 had a resistance change rate of 220.2% or less (Example 19). , was relatively low.
  • the electrode patterns obtained by firing the conductive pastes of Comparative Examples 1 to 3 had a resistance value change rate of 300% or more (Comparative Example 1) or were exposed to a sulfur atmosphere in the sulfidation resistance test. The electrical resistance value after storage was too high to be measured.
  • the tensile adhesive strength of the adhesive strength test patterns obtained by firing the conductive pastes of Examples 1 to 22 was 17.2N (Examples 7, 17, and 21) to 25.9N (Example 10), and a high tensile adhesive strength could be obtained.
  • the tensile adhesive strengths of the electrode patterns obtained by firing the conductive pastes of Comparative Examples 1 to 3 ranged from 10.1 N (Comparative Example 3) to 20.1 N (Comparative Example 1), and the tensile adhesive strength The strength was within a reasonable range.
  • Electrode 20 Silver sulfide 30 Void 50 Test piece for sulfidation resistance test 52 Alumina substrate for sulfidation resistance test 54 Printed pattern for sulfidation resistance test 54a, 54b Edge of printed pattern for sulfidation resistance test 60 Test for migration resistance test Piece 62 Alumina substrate for migration resistance test 64a, 64b Printed pattern for migration resistance test 66a First electrode 66b Second electrode 100 Chip resistor 102 Alumina substrate 104 Resistor 106 Takeout electrode 108 Bottom electrode 110 Connection electrode 112 Nickel plating film 114 Tin Plating film

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)

Abstract

An electroconductive paste comprising (A) electroconductive particles and (B) a binder resin, wherein the electroconductive particles (A) include surface-treated metal particles, the surface-treated metal particles comprising metal particles and a surface treatment layer disposed on at least some of the surfaces of the metal particles, the surface treatment layer including a zinc compound. The electroconductive paste has high sulfurization resistance and can form relatively inexpensive electrodes.

Description

導電性ペースト、電極、電子部品及び電子機器Conductive paste, electrodes, electronic components and electronic equipment
 本発明は、例えば電子部品の電極の形成に用いられる導電性ペーストに関する。また、本発明は、その導電性ペーストを用いて形成された電極、及びその電極を有するチップ抵抗器などの電子部品に関する。 The present invention relates to a conductive paste used for forming electrodes of electronic components, for example. The present invention also relates to an electrode formed using the conductive paste, and an electronic component such as a chip resistor having the electrode.
 電子部品の1つであるチップ抵抗器の電極の形成には、銀粉(銀粒子)を含む導電性ペーストが用いられる。図1に、チップ抵抗器100の断面構造の一例を示す。チップ抵抗器100は、矩形のアルミナ基板102を有しており、アルミナ基板102の上面には、抵抗体104と、抵抗体104から電気を取り出すための取り出し電極106が形成されている。また、アルミナ基板102の下面には、チップ抵抗器100を基板へ実装するための下面電極108が形成されている。更に、アルミナ基板102の端面には、取り出し電極106と下面電極108とを接続するための接続電極110が形成されている。取り出し電極106及び下面電極108は、アルミナ基板102の上面及び下面に導電性ペーストを印刷によって塗布した後に焼成することでそれぞれ形成される。取り出し電極106、下面電極108、及び接続電極110の上には、ニッケルめっき膜112及びスズめっき膜114が形成されることが一般的である。 A conductive paste containing silver powder (silver particles) is used to form the electrodes of a chip resistor, which is one of the electronic components. FIG. 1 shows an example of a cross-sectional structure of a chip resistor 100. The chip resistor 100 has a rectangular alumina substrate 102, and a resistor 104 and an extraction electrode 106 for extracting electricity from the resistor 104 are formed on the upper surface of the alumina substrate 102. Furthermore, a lower surface electrode 108 is formed on the lower surface of the alumina substrate 102 for mounting the chip resistor 100 on the substrate. Furthermore, a connection electrode 110 for connecting the extraction electrode 106 and the lower surface electrode 108 is formed on the end surface of the alumina substrate 102. The extraction electrode 106 and the lower surface electrode 108 are each formed by applying a conductive paste to the upper and lower surfaces of the alumina substrate 102 by printing and then firing the paste. Generally, a nickel plating film 112 and a tin plating film 114 are formed on the extraction electrode 106, the bottom electrode 108, and the connection electrode 110.
 電極の形成に用いられる導電性ペーストとして、特許文献1には、導電性粉末、ガラスフリット、無機結合剤を有機ビヒクル中に分散して成るチップ抵抗器上面電極用ペーストが開示されている。 As a conductive paste used for forming electrodes, Patent Document 1 discloses a paste for a top electrode of a chip resistor, which is made by dispersing conductive powder, glass frit, and an inorganic binder in an organic vehicle.
 また、特許文献2には、(A)Ag及びSnを含む表面処理金属粒子と、(C)ガラスフリットと、(B)バインダー樹脂と、を含有し、(A)導電性粒子におけるSnの重量割合が、10重量%未満である、導電性ペーストが開示されている。 Further, Patent Document 2 discloses that the conductive particles contain (A) surface-treated metal particles containing Ag and Sn, (C) glass frit, and (B) binder resin, and (A) the weight of Sn in the conductive particles. Conductive pastes are disclosed in which the proportion is less than 10% by weight.
特開平7-335402号公報Japanese Patent Application Publication No. 7-335402 国際公開第2021/145269号International Publication No. 2021/145269
 ガソリン自動車及び火力発電所などにおいて、化石燃料が燃焼されることで、大気中に硫黄酸化物が大量に排出されている。また、下水処理場、及びごみ処理場などにおいても、硫黄が嫌気性細菌によって還元されて硫化水素が発生している。そのため、大気中には、硫黄酸化物及び硫化水素など、硫黄を含む成分が存在している。 Large amounts of sulfur oxides are emitted into the atmosphere due to the combustion of fossil fuels in gasoline vehicles and thermal power plants. Furthermore, in sewage treatment plants, garbage treatment plants, and the like, sulfur is reduced by anaerobic bacteria and hydrogen sulfide is generated. Therefore, components containing sulfur, such as sulfur oxides and hydrogen sulfide, exist in the atmosphere.
 大気中の硫黄を含む成分が銀などの金属の表面に達すると、銀などの金属の表面に硫黄成分が付着し、銀などの金属と反応して硫化銀などの金属硫化物になる。例えば、チップ抵抗器の電極などの銀を主材料とした電極においても、同様の反応が起こるため、電極内部の銀などの金属が硫化銀などの金属硫化物になることがある。電極内部に硫化銀などの金属硫化物が発生すると、電極に断線が生じる場合がある。そのため、銀などの金属を材料とした電極を有するチップ抵抗器などのデバイスでは、動作不良が生じることがある。このような現象を、硫化による断線という。硫化による断線は、銀以外に、銅、インジウム及びアルミニウム、並びにこれらの少なくとも1つを含む合金の電極でも発生する可能性がある。 When components containing sulfur in the atmosphere reach the surface of metals such as silver, the sulfur components adhere to the surface of metals such as silver and react with the metals such as silver to form metal sulfides such as silver sulfide. For example, similar reactions occur in electrodes made mainly of silver, such as those of chip resistors, so that metals such as silver inside the electrodes may turn into metal sulfides such as silver sulfide. If metal sulfides such as silver sulfide are generated inside the electrode, the electrode may break. Therefore, devices such as chip resistors that have electrodes made of metal such as silver may malfunction. This phenomenon is called disconnection due to sulfidation. Disconnection due to sulfurization may also occur in electrodes made of copper, indium, aluminum, or alloys containing at least one of these in addition to silver.
 電極の性能を向上させるためには導電性の向上が一つの手段になるが、導電性を向上させるために金属粒子を高充填化するとそれだけ硫化反応が起こる度合いも高まるため、導電性ペーストを低抵抗化しても硫化による断線を抑制できることが求められる。硫化による断線を抑制するために、チップ抵抗器などのデバイスに用いられる銀などの金属を主材料とする電極には、耐硫化性の高い電極が必要である。 Improving conductivity is one way to improve the performance of electrodes, but increasing the density of metal particles in order to improve conductivity increases the degree of sulfidation reaction, so it is necessary to reduce the conductive paste. Even if it is made resistive, it is required to be able to suppress disconnection due to sulfurization. In order to suppress wire breakage due to sulfidation, electrodes whose main material is metal such as silver used in devices such as chip resistors need to have high sulfidation resistance.
 耐硫化性の高い電極を形成するための導電性ペーストの導電性粒子としてパラジウム単体、あるいはパラジウムを所定量(例えば20重量%程度)添加することが提案されている。しかしながら、パラジウムの価格は高いため、パラジウム単体あるいはパラジウムの添加により、導電性ペーストのコストが上昇し、電極のコストが高くなる、という問題がある。 It has been proposed to add palladium alone or a predetermined amount (for example, about 20% by weight) of palladium as conductive particles in a conductive paste to form an electrode with high sulfidation resistance. However, since the price of palladium is high, there is a problem in that the cost of the conductive paste increases due to palladium alone or the addition of palladium, which increases the cost of the electrode.
 そこで、本発明は、高い耐硫化性を有し、比較的低コストの電極を形成することのできる導電性ペーストを提供することを目的とする。 Therefore, an object of the present invention is to provide a conductive paste that has high sulfidation resistance and can form a relatively low-cost electrode.
 上記課題を解決するため、本発明は以下の構成を有する。 In order to solve the above problems, the present invention has the following configuration.
(構成1)
 構成1は、(A)導電性粒子と、(B)バインダー樹脂とを含む導電性ペーストであって、
 (A)導電性粒子が、表面処理金属粒子を含み、
 前記表面処理金属粒子が、金属粒子と、前記金属粒子の表面の少なくとも一部に配置される表面処理層とを含み、
 前記表面処理層が、亜鉛化合物を含む、導電性ペーストである。
(Configuration 1)
Configuration 1 is a conductive paste containing (A) conductive particles and (B) binder resin,
(A) the conductive particles include surface-treated metal particles,
The surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles,
The surface treatment layer is a conductive paste containing a zinc compound.
(構成2)
 構成2は、前記表面処理金属粒子に含まれる亜鉛の含有量が10~1000ppmである、構成1の導電性ペーストである。
(Configuration 2)
Configuration 2 is the conductive paste of Configuration 1, in which the surface-treated metal particles have a zinc content of 10 to 1000 ppm.
(構成3)
 構成3は、前記表面処理層が、更に有機物を含む、構成1又は2に記載の導電性ペーストである。
(Configuration 3)
Structure 3 is the conductive paste according to Structure 1 or 2, wherein the surface treatment layer further contains an organic substance.
(構成4)
 構成4は、前記金属粒子が、銀を50重量%以上含む、構成1~3のいずれかの導電性ペーストである。
(Configuration 4)
Configuration 4 is the conductive paste of any one of Configurations 1 to 3, in which the metal particles contain 50% by weight or more of silver.
(構成5)
 構成5は、前記(A)導電性粒子の平均粒径(D50)が0.5~10μmである、構成1~4のいずれかの導電性ペーストである。
(Configuration 5)
Configuration 5 is the conductive paste of any of Configurations 1 to 4, in which the conductive particles (A) have an average particle diameter (D50) of 0.5 to 10 μm.
(構成6)
 構成6は、前記(B)バインダー樹脂の含有量が、前記(A)導電性粒子100重量部に対して0.1~30重量部である、構成1~5のいずれかの導電性ペーストである。
(Configuration 6)
Configuration 6 is the conductive paste of any of Configurations 1 to 5, wherein the content of the binder resin (B) is 0.1 to 30 parts by weight based on 100 parts by weight of the (A) conductive particles. be.
(構成7)
 構成7は、前記導電性ペーストが、(C)ガラスフリットを更に含む、構成1~6のいずれかの導電性ペーストである。
(Configuration 7)
Configuration 7 is the conductive paste according to any one of Configurations 1 to 6, wherein the conductive paste further contains (C) glass frit.
(構成8)
 構成8は、前記(C)ガラスフリットが、ZnOを含む、構成7の導電性ペーストである。
(Configuration 8)
Configuration 8 is the conductive paste of Configuration 7, in which the glass frit (C) contains ZnO.
(構成9)
 構成9は、前記導電性ペーストの前記(C)ガラスフリットの含有量が、前記(A)導電性粒子100重量部に対し0.05~10重量部である、構成7又は8の導電性ペーストである。
(Configuration 9)
Configuration 9 is the conductive paste of Configuration 7 or 8, wherein the content of the (C) glass frit in the conductive paste is 0.05 to 10 parts by weight based on 100 parts by weight of the (A) conductive particles. It is.
(構成10)
 構成10は、構成1~9のいずれかの導電性ペーストを焼成又は熱処理して得られる電極である。
(Configuration 10)
Structure 10 is an electrode obtained by firing or heat-treating the conductive paste of any of Structures 1 to 9.
(構成11)
 構成11は、前記電極が、亜鉛を0.1~10重量%含む、構成10の電極である。
(Configuration 11)
Configuration 11 is the electrode of Configuration 10, wherein the electrode contains 0.1 to 10% by weight of zinc.
(構成12)
 構成12は、構成10又は11の電極を含む、電子部品又は電子機器である。
(Configuration 12)
Configuration 12 is an electronic component or electronic device that includes the electrode of configuration 10 or 11.
 本発明によれば、高い耐硫化性を有し、比較的低コストの電極を形成することのできる導電性ペーストを提供することができる。 According to the present invention, it is possible to provide a conductive paste that has high sulfidation resistance and can form a relatively low-cost electrode.
チップ抵抗器の断面構造の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a cross-sectional structure of a chip resistor. 実施例及び比較例の耐硫化性試験のための試験片の形状を示す模式図である。It is a schematic diagram which shows the shape of the test piece for the sulfidation resistance test of an Example and a comparative example. 実施例及び比較例の耐マイグレーション試験のための試験片の形状を示す光学顕微鏡写真である。It is an optical micrograph which shows the shape of the test piece for the migration resistance test of an Example and a comparative example. 図3に示す耐マイグレーション試験のための試験片の光学顕微鏡写真の中央付近を拡大した光学顕微鏡写真である。FIG. 4 is an optical microscope photograph showing an enlarged view of the center of the optical microscope photograph of the test piece for the migration resistance test shown in FIG. 3. FIG. 実施例3と同様の条件で作製した試験片を、硫黄を含む気体雰囲気中で150時間保管して硫化させた後の、導電性ペーストの焼成体の表面の走査型電子顕微鏡(SEM)写真(倍率5000倍)である。A scanning electron microscope (SEM) photograph of the surface of a fired conductive paste after a test piece prepared under the same conditions as in Example 3 was stored in a sulfur-containing gas atmosphere for 150 hours to sulfurize it. (magnification: 5000 times). 実施例3と同様の条件で作製した試験片を、硫黄を含む気体雰囲気中で150時間保管して硫化させた後の、導電性ペーストの焼成体の断面のSEM写真(倍率5000倍)である。This is an SEM photograph (5000x magnification) of a cross section of a fired body of conductive paste after a test piece prepared under the same conditions as Example 3 was stored in a sulfur-containing gas atmosphere for 150 hours to sulfurize it. . 図6に示す実施例3の断面SEM写真に対応するエネルギー分散型X線分光法(EDS)分析結果(倍率5000倍)であって、銀(Ag)の含有量の分布をグレースケールで示す図である。Energy dispersive X-ray spectroscopy (EDS) analysis results (magnification: 5000x) corresponding to the cross-sectional SEM photograph of Example 3 shown in FIG. 6, showing the distribution of silver (Ag) content in gray scale. It is. 図6に示す実施例3の断面SEM写真に対応するEDS分析結果(倍率5000倍)であって、硫黄(S)の含有量の分布をグレースケールで示す図である。FIG. 7 is an EDS analysis result (magnification: 5000 times) corresponding to the cross-sectional SEM photograph of Example 3 shown in FIG. 6, and is a diagram showing the distribution of sulfur (S) content in gray scale. 比較例1と同様の条件で作製した試験片を、硫黄を含む気体雰囲気中で150時間保管して硫化させた後の、導電性ペーストの焼成体の表面のSEM写真(倍率5000倍)である。This is an SEM photograph (5000x magnification) of the surface of a fired conductive paste after a test piece prepared under the same conditions as Comparative Example 1 was stored in a sulfur-containing gas atmosphere for 150 hours to sulfurize it. . 比較例1と同様の条件で作製した試験片を、硫黄を含む気体雰囲気中で150時間保管して硫化させた後の、導電性ペーストの焼成体の断面のSEM写真(倍率5000倍)である。This is an SEM photograph (5000x magnification) of a cross section of a fired body of conductive paste after a test piece prepared under the same conditions as Comparative Example 1 was stored in a sulfur-containing gas atmosphere for 150 hours to sulfurize it. . 図10に示す比較例1の断面SEM写真に対応するEDS分析結果(倍率5000倍)であって、銀(Ag)の含有量の分布を示す図である。11 is an EDS analysis result (magnification: 5000 times) corresponding to the cross-sectional SEM photograph of Comparative Example 1 shown in FIG. 10, and is a diagram showing the distribution of silver (Ag) content. 図10に示す比較例1の断面SEM写真に対応するEDS分析結果(倍率5000倍)であって、硫黄(S)の含有量の分布を示す図である。11 is an EDS analysis result (magnification: 5000 times) corresponding to the cross-sectional SEM photograph of Comparative Example 1 shown in FIG. 10, and is a diagram showing the distribution of sulfur (S) content. 実施例3と同様の条件で作製した試験片の、耐硫化性試験で硫化させた後の電極表面の亜鉛の存在量をEDS分析する領域のSEM写真(倍率5000倍)である。This is an SEM photograph (magnification: 5000x) of a region of a test piece prepared under the same conditions as in Example 3, where the amount of zinc present on the electrode surface is analyzed by EDS after being sulfurized in the sulfidation resistance test. 図13に示す実施例3のSEM写真に対応する酸化亜鉛(ZnO)の存在量をEDS分析で測定した結果をグレースケールで示す図である。14 is a diagram showing in gray scale the results of measuring the amount of zinc oxide (ZnO) by EDS analysis corresponding to the SEM photograph of Example 3 shown in FIG. 13. FIG. 図13に示す実施例3のSEM写真に対応するアルミニウム酸亜鉛(ZnAlO)の存在量をEDS分析で測定した結果をグレースケールで示す図である。14 is a diagram showing in gray scale the results of measuring the amount of zinc aluminate (ZnAlO) by EDS analysis corresponding to the SEM photograph of Example 3 shown in FIG. 13. FIG.
 以下、本発明の実施形態について、具体的に説明する。なお、以下の実施形態は、本発明を具体化する際の形態であって、本発明をその範囲内に限定するものではない。 Hereinafter, embodiments of the present invention will be specifically described. Note that the following embodiments are examples of embodying the present invention, and do not limit the present invention within its scope.
 本実施形態の導電性ペーストは、(A)導電性粒子と、(B)バインダー樹脂とを含む。(A)導電性粒子は、表面処理金属粒子を含む。本実施形態の導電性ペーストは、所定の(A)導電性粒子を材料とした電極を有するチップ抵抗器などの電子部品の電極を形成するために好ましく用いることができる。(A)導電性粒子は、亜鉛化合物によって表面処理された表面処理金属粒子を50重量%以上含むことができる。 The conductive paste of this embodiment includes (A) conductive particles and (B) a binder resin. (A) The conductive particles include surface-treated metal particles. The conductive paste of this embodiment can be preferably used to form electrodes of electronic components such as chip resistors having electrodes made of the predetermined (A) conductive particles. (A) The conductive particles can contain 50% by weight or more of surface-treated metal particles that have been surface-treated with a zinc compound.
 以下、本実施形態の導電性ペーストに含まれる成分について、説明する。 Hereinafter, the components contained in the conductive paste of this embodiment will be explained.
<(A)導電性粒子>
 本実施形態の導電性ペーストは、(A)導電性粒子を含む。(A)導電性粒子は、表面処理金属粒子を含む。表面処理金属粒子は、金属粒子と、金属粒子の表面の少なくとも一部に配置される表面処理層とを含む。表面処理層は、亜鉛化合物を含む薄膜である。表面処理層は、金属粒子を亜鉛化合物によって表面処理することにより形成される。(A)導電性粒子が、所定の表面処理金属粒子を含むことにより、導電性粒子に含まれる金属の硫化を抑制することができる。そのため、本実施形態の導電性ペーストを用いることにより、高い耐硫化性を有する電極を形成することができる。
<(A) Conductive particles>
The conductive paste of this embodiment includes (A) conductive particles. (A) The conductive particles include surface-treated metal particles. The surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles. The surface treatment layer is a thin film containing a zinc compound. The surface treatment layer is formed by surface treating metal particles with a zinc compound. (A) When the conductive particles contain predetermined surface-treated metal particles, sulfidation of the metal contained in the conductive particles can be suppressed. Therefore, by using the conductive paste of this embodiment, an electrode having high sulfidation resistance can be formed.
 なお、本発明の発明者らは、本実施形態の導電性ペーストの(A)導電性粒子が、所定の表面処理金属粒子を含むことにより、付加的な効果として、得られる電極の耐マイグレーション性も向上することを見出した。耐マイグレーション性とは、マイグレーションを抑制することのできる性質を意味する。マイグレーションとは、1対の電極(プラス電極及びマイナス電極)に対して電圧を印加したときに、電極近傍に水及び/又は水蒸気が存在すると、電極及び配線部に含まれる金属がイオン化し、プラス電極からマイナス電極に移動し金属のデンドライトが発生し、配線部間の絶縁性が低下する現象である。また、マイグレーションは、100℃以上又は真空中等のように水分による影響の無い雰囲気下においても発生する場合がある。この場合には、1対の電極が短絡に近い状態になっても、配線部間に、水分の存在下でのマイグレーション発生時に必ず見られるデンドライトの発生が無く、また、極性も見られない(つまりプラス電極とマイナス電極との極性に関わらず発生する)。耐マイグレーション性とは、このような従来より広く知られているマイグレーションを抑制することのできる性質を意味する。金属のマイグレーションにより、1対の電極が短絡する可能性がある。耐マイグレーション性が向上することにより、電極の短絡を抑制することができる。また、本実施形態の導電性ペーストが、比較的高温(例えば、500~900℃)で焼成するタイプの導電性ペーストの場合だけでなく、比較的低温(例えば、100~200℃)での熱処理により熱硬化させる熱硬化型の導電性ペーストの場合であっても、得られる電極の耐マイグレーション性が向上することを見出した。ただし、耐マイグレーション性の向上という利点は、必ずしも本実施形態の導電性ペーストの必須の効果ではなく、1つの利点であると考えられる。 In addition, the inventors of the present invention have discovered that the (A) conductive particles of the conductive paste of this embodiment include predetermined surface-treated metal particles, thereby improving the migration resistance of the resulting electrode as an additional effect. We also found that it improved. Migration resistance means a property capable of suppressing migration. Migration is when a voltage is applied to a pair of electrodes (a positive electrode and a negative electrode), and if water and/or water vapor is present near the electrodes, the metals contained in the electrodes and wiring become ionized, and the positive This is a phenomenon in which metal dendrites move from the electrode to the negative electrode and the insulation between wiring parts decreases. Furthermore, migration may occur even in an atmosphere not affected by moisture, such as at 100° C. or higher or in a vacuum. In this case, even if a pair of electrodes is almost short-circuited, there are no dendrites between the wiring parts, which are always seen when migration occurs in the presence of moisture, and no polarity is observed ( In other words, it occurs regardless of the polarity of the positive and negative electrodes). Migration resistance means such a property that can suppress migration, which has been widely known in the past. A pair of electrodes may be short-circuited due to metal migration. By improving migration resistance, short circuits of the electrodes can be suppressed. In addition, the conductive paste of this embodiment is not only a conductive paste of a type that is fired at a relatively high temperature (for example, 500 to 900 °C), but also a conductive paste that is fired at a relatively low temperature (for example, 100 to 200 °C). It has been found that even in the case of a thermosetting conductive paste that is thermally cured by the method, the migration resistance of the resulting electrode is improved. However, the advantage of improved migration resistance is not necessarily an essential effect of the conductive paste of this embodiment, but is considered to be one advantage.
 (A)導電性粒子は、表面処理金属粒子以外の金属を含むことができる。ただし、低い電気抵抗であり、かつ高い耐硫化性を有する電極を確実に得るためには、(A)導電性粒子は、表面処理金属粒子を50重量%以上含むことが好ましく、表面処理金属粒子を80重量%以上含むことがより好ましく、表面処理金属粒子を90重量%以上含むことが更に好ましく、表面処理金属粒子のみからなることが特に好ましい。なお、本明細書において、「(A)導電性粒子は、表面処理金属粒子のみからなる」とは、(A)導電性粒子として、意図的に表面処理金属粒子以外の金属を配合しないことを意味し、不可避的に混入する表面処理金属粒子以外の導電性粒子が含有することまでも排除するものではない。 (A) The conductive particles can contain metals other than the surface-treated metal particles. However, in order to reliably obtain an electrode having low electrical resistance and high sulfidation resistance, it is preferable that (A) the conductive particles contain 50% by weight or more of surface-treated metal particles; It is more preferable to contain 80% by weight or more of surface-treated metal particles, it is even more preferable to contain 90% by weight or more of surface-treated metal particles, and it is especially preferable that the surface-treated metal particles are composed only of surface-treated metal particles. In addition, in this specification, "(A) conductive particles consist only of surface-treated metal particles" means that (A) conductive particles do not intentionally contain any metal other than surface-treated metal particles. This does not exclude the inclusion of conductive particles other than the surface-treated metal particles that are inevitably mixed in.
 (A)導電性粒子は、本実施形態の効果を損ねない範囲で、表面処理金属粒子以外の金属粒子として、Zn、In、Al及び/又はSiなどの材料の金属粒子を含むことができる。表面処理金属粒子に含まれる金属粒子、及び表面処理金属粒子以外の金属粒子は、合金の金属粒子であることができる。また、表面処理金属粒子に含まれる金属粒子、及び表面処理金属粒子以外の金属粒子は、種類の異なる複数の金属又は合金の金属粒子を含むことができる。 (A) The conductive particles can include metal particles of materials such as Zn, In, Al, and/or Si as metal particles other than the surface-treated metal particles, as long as the effects of this embodiment are not impaired. The metal particles included in the surface-treated metal particles and the metal particles other than the surface-treated metal particles can be metal particles of an alloy. Furthermore, the metal particles included in the surface-treated metal particles and the metal particles other than the surface-treated metal particles can include metal particles of a plurality of different types of metals or alloys.
 表面処理金属粒子は、金属粒子と、金属粒子の表面の少なくとも一部に配置される表面処理層とを含む。表面処理層は、金属粒子の表面の少なくとも一部に形成された薄膜である。金属粒子を、亜鉛化合物によって表面処理することにより、金属粒子の表面の少なくとも一部に表面処理層を形成することができる。したがって、表面処理金属粒子は、亜鉛化合物によって表面処理された金属粒子とすることができる。 The surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles. The surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles. By surface treating the metal particles with a zinc compound, a surface treatment layer can be formed on at least a portion of the surface of the metal particles. Therefore, the surface-treated metal particles can be metal particles whose surface has been treated with a zinc compound.
 亜鉛化合物によって表面処理される金属粒子の材料は、Ag、Cu、In、Al、又はこれら合金などを用いることができる。電気伝導率が比較的高いことから、金属粒子の材料は、Ag及び/又はCuであることが好ましく、Agであることがより好ましい。 As the material of the metal particles whose surface is treated with the zinc compound, Ag, Cu, In, Al, or an alloy thereof can be used. Since the electrical conductivity is relatively high, the material of the metal particles is preferably Ag and/or Cu, and more preferably Ag.
 本実施形態の導電性ペーストは、金属粒子が、銀(Ag)を50重量%以上含むことが好ましく、銀(Ag)を80重量%以上含むことがより好ましく、銀(Ag)を90重量%以上含むことが更に好ましく、銀(Ag)を95重量%以上含むことが特に好ましい。最も好ましい実施形態では、本実施形態の導電性ペーストに含まれる表面処理金属粒子の金属粒子は、銀(Ag)粒子のみからなる。銀の電気伝導率が、他の金属と比べると比較的高いためである。なお、本明細書において、「表面処理金属粒子の金属粒子は、銀(Ag)粒子のみからなる」とは、金属粒子として、意図的に銀(Ag)粒子以外の金属粒子を用いないことを意味し、不可避的に混入する銀(Ag)粒子以外の金属粒子が含有することまでも排除するものではない。他の同様の記載についても同様に、不可避的に混入する物質を排除するものではない。 In the conductive paste of the present embodiment, the metal particles preferably contain 50% by weight or more of silver (Ag), more preferably 80% by weight or more of silver (Ag), and 90% by weight of silver (Ag). It is more preferable to contain silver (Ag) in an amount of 95% by weight or more. In the most preferred embodiment, the metal particles of the surface-treated metal particles contained in the conductive paste of this embodiment consist only of silver (Ag) particles. This is because the electrical conductivity of silver is relatively high compared to other metals. In addition, in this specification, "the metal particles of the surface-treated metal particles consist only of silver (Ag) particles" means that metal particles other than silver (Ag) particles are intentionally not used as the metal particles. This does not preclude the inclusion of metal particles other than silver (Ag) particles that are unavoidably mixed. Similarly, other similar descriptions do not exclude substances that are unavoidably mixed.
 本実施形態の導電性ペーストは、導電性ペースト100重量部に対し、表面処理金属粒子を50重量部以上含むことが好ましく、70重量部以上含むことがより好ましく、80重量部以上含むことが更に好ましい。
 また、本実施形態の導電性ペーストは、導電性ペースト100重量部に対し、表面処理金属粒子を50~99重量部含むことが好ましく、70~97重量部以上含むことがより好ましく、80~95重量部含むことが更に好ましい。上記範囲であることにより、高い耐硫化性を有し、比較的低コストの電極を形成することができる。
The conductive paste of this embodiment preferably contains 50 parts by weight or more of surface-treated metal particles, more preferably 70 parts by weight or more, and still more preferably 80 parts by weight or more, based on 100 parts by weight of the conductive paste. preferable.
Further, the conductive paste of the present embodiment preferably contains 50 to 99 parts by weight of surface-treated metal particles, more preferably 70 to 97 parts by weight or more, and 80 to 95 parts by weight, based on 100 parts by weight of the conductive paste. It is more preferable to include parts by weight. By being within the above range, an electrode having high sulfidation resistance and relatively low cost can be formed.
 金属粒子の製造方法は、特に限定されず、例えば、還元法、粉砕法、電解法、アトマイズ法、熱処理法、又はそれらの組合せによって製造することができる。フレーク状の金属粒子は、例えば、球状又は粒状の金属粒子をボールミル等によって押し潰すことによって製造することができる。 The method for producing metal particles is not particularly limited, and can be produced by, for example, a reduction method, a pulverization method, an electrolysis method, an atomization method, a heat treatment method, or a combination thereof. Flake-shaped metal particles can be produced, for example, by crushing spherical or granular metal particles using a ball mill or the like.
 表面処理金属粒子は、金属粒子の表面の少なくとも一部に配置される表面処理層を含む。表面処理層は、金属粒子を、亜鉛化合物を含む表面処理剤によって表面処理することにより、金属粒子の表面の少なくとも一部に形成された薄膜である。 The surface-treated metal particles include a surface treatment layer disposed on at least a portion of the surface of the metal particles. The surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles by surface treating the metal particles with a surface treatment agent containing a zinc compound.
 金属粒子を表面処理するための原料となる亜鉛化合物として、酸化亜鉛、塩化亜鉛、硫酸亜鉛、水酸化亜鉛、及び亜鉛の脂肪酸錯体などの亜鉛錯体(例えば、オレイン酸亜鉛等)から選択される少なくとも1つを用いることができる。 At least one zinc compound selected from zinc oxide, zinc chloride, zinc sulfate, zinc hydroxide, and zinc complexes such as zinc fatty acid complexes (e.g., zinc oleate, etc.) is used as a raw material for surface treatment of metal particles. One can be used.
 表面処理層は、亜鉛化合物を用いて、公知の方法で表面処理することにより形成することができる。具体的には、表面処理層は、亜鉛又は亜鉛イオンと、これらを分散させるための有機物と、溶剤とを含む亜鉛ソープ溶剤(表面処理剤)を金属粒子の表面に付着させ、乾燥工程により溶剤を除去したものである。これにより、金属粒子の表面に亜鉛化合物を含んだ表面処理層を形成することができる。なお、還元処理によって金属粒子の表面に他の金属粒子を被覆させ、コアシェル構造を形成する技術も存在するが、この技術を用いて表面処理層を形成することを試みた場合、コア粒子(例えば銀粒子)表面にシェルとして金属粒子を析出させるために、シェルにおける金属粒子の存在量が多くなる。一方で、本発明においては亜鉛化合物が金属粒子の表面に付着した状態で表面処理層を形成しているため、亜鉛の使用量が少量で済む。 The surface treatment layer can be formed by surface treatment using a zinc compound by a known method. Specifically, the surface treatment layer is formed by attaching a zinc soap solvent (surface treatment agent) containing zinc or zinc ions, an organic substance for dispersing these, and a solvent to the surface of the metal particles, and removing the solvent through a drying process. is removed. Thereby, a surface treatment layer containing a zinc compound can be formed on the surface of the metal particles. Note that there is also a technology in which the surface of metal particles is coated with other metal particles through reduction treatment to form a core-shell structure, but when attempting to form a surface treatment layer using this technology, core particles (e.g. Silver particles) Since metal particles are deposited as a shell on the surface, the amount of metal particles present in the shell increases. On the other hand, in the present invention, since the surface treatment layer is formed with the zinc compound attached to the surface of the metal particles, only a small amount of zinc can be used.
 亜鉛又は亜鉛イオンを分散させるための有機物としては、脂肪酸及びトリアゾール化合物から選択される少なくとも1つであることが好ましい。脂肪酸を用いる場合、脂肪酸としては、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カブリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、パルミトレイン酸、マルガリン酸、ステアリン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸、アラキドン酸、ベヘン酸、リグノセリン酸、ネルボン酸、セロチン酸、モンタン酸、及びメリシン酸などから選択される少なくとも1つを使用することができる。これらの脂肪酸の中でも、パルミチン酸、ステアリン酸及びオレイン酸から選択される少なくとも1つを使用することが好ましい。表面処理剤に含まれる有機物(脂肪酸)として、オレイン酸を使用することがより好ましい。亜鉛又は亜鉛イオンを分散させるための有機物としてトリアゾール化合物を用いる場合、トリアゾール化合物としては、ベンゾトリアゾールを使用することができる。 The organic substance for dispersing zinc or zinc ions is preferably at least one selected from fatty acids and triazole compounds. When using fatty acids, the fatty acids include butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, cabric acid, lauric acid, myristic acid, pentadecyl acid, palmitic acid, palmitoleic acid, margaric acid, stearic acid, Oleic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, eicosadienoic acid, eicosatrienoic acid, eicosatetraenoic acid, arachidonic acid, behenic acid, lignoceric acid, nervonic acid, cerotic acid, montanic acid, and melisic acid At least one selected from the following can be used. Among these fatty acids, it is preferable to use at least one selected from palmitic acid, stearic acid, and oleic acid. It is more preferable to use oleic acid as the organic substance (fatty acid) contained in the surface treatment agent. When using a triazole compound as an organic substance for dispersing zinc or zinc ions, benzotriazole can be used as the triazole compound.
 なお、表面処理層を形成するための表面処理剤に含まれる溶剤は、亜鉛化合物を分散させ、金属粒子に対し亜鉛化合物を良好に付着させるために用いられるものであればよい。溶剤として、例えば、メタノール、エタノール、及びイソプロピルアルコール(IPA)等のアルコール類、酢酸エチレン等の有機酸類、トルエン、及びキシレン等の芳香族炭化水素類、N-メチル-2-ピロリドン(NMP)等のN-アルキルピロリドン類、N,N-ジメチルホルムアミド(DMF)等のアミド類、メチルエチルケトン(MEK)等のケトン類、テルピネオール(TEL)、及びジエチレングリコールモノブチルエーテル(ブチルカルビトール、BC)等の環状カーボネート類、ビス[2-(2-ブトキシエトキシ)エチル]アジペート、2,2,4-トリメチルペンタン-1,3-ジオールモノイソブチラート(テキサノール)、並びに水等が挙げられる。 Note that the solvent contained in the surface treatment agent for forming the surface treatment layer may be any solvent as long as it can be used to disperse the zinc compound and to properly adhere the zinc compound to the metal particles. Examples of solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, N-methyl-2-pyrrolidone (NMP), etc. N-alkylpyrrolidones, amides such as N,N-dimethylformamide (DMF), ketones such as methyl ethyl ketone (MEK), cyclic carbonates such as terpineol (TEL), and diethylene glycol monobutyl ether (butyl carbitol, BC) , bis[2-(2-butoxyethoxy)ethyl]adipate, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate (Texanol), and water.
 上述の亜鉛化合物を分散させた溶剤を含む表面処理剤を金属粒子の表面に付着させ、溶剤を乾燥により除去することによって、金属粒子の表面に表面処理層を形成することができる。このようにして、表面処理金属粒子を得ることができる。 A surface treatment layer can be formed on the surface of the metal particles by attaching a surface treatment agent containing a solvent in which the above-mentioned zinc compound is dispersed to the surface of the metal particles and removing the solvent by drying. In this way, surface-treated metal particles can be obtained.
 また、表面処理金属粒子の表面処理層は、次のようにして製造することができる。すなわち、まず、金属粒子を水に分散させる。金属粒子分散させた水中に、被覆剤として、上述の亜鉛化合物を分散させた溶剤を添加して、亜鉛を含む被覆剤で被覆された金属粒子を含む水スラリーを得た後、デカンテーションにより被覆剤で被覆された金属粒子を沈降させる。次に、上澄み液を除去して、得られたウエットな状態の被覆剤で被覆された金属粒子をアクリル系分散剤とともに沸点が150~300℃の極性溶剤に添加する。その後、窒素雰囲気中において室温から100℃の温度、好ましくは80℃以下の温度で12時間以上乾燥させて水分を除去することにより、表面処理金属粒子を製造することができる。なお、乾燥温度が高過ぎると表面処理金属粒子が焼結してしまうので好ましくない。 Furthermore, the surface treatment layer of the surface treated metal particles can be manufactured as follows. That is, first, metal particles are dispersed in water. A solvent in which the above-mentioned zinc compound is dispersed is added as a coating agent to water in which metal particles are dispersed to obtain a water slurry containing metal particles coated with a coating agent containing zinc, and then the coating is performed by decantation. The metal particles coated with the agent are allowed to settle. Next, the supernatant liquid is removed, and the resulting wet metal particles coated with the coating material are added together with an acrylic dispersant to a polar solvent having a boiling point of 150 to 300°C. Thereafter, surface-treated metal particles can be produced by drying in a nitrogen atmosphere at a temperature from room temperature to 100° C., preferably at a temperature of 80° C. or less for 12 hours or more to remove moisture. Note that if the drying temperature is too high, the surface-treated metal particles will be sintered, which is not preferable.
 本実施形態の導電性ペーストに含まれる表面処理金属粒子の表面処理層は、更に有機物を含むことが好ましい。例えば、表面処理層が、上述の亜鉛化合物を用いて形成される場合には、表面処理層が有機物を含むことになる。表面処理金属粒子が、有機物を含む表面処理層を有することにより、亜鉛化合物量が少量であっても、得られる電極が高い耐硫化性を有することができる。なお、有機物は液状の有機脂肪酸であってもよく、固形の脂肪酸であってもよい。液状の脂肪酸の例としては、酪酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、及びペラルゴン酸等の飽和脂肪酸、並びにミリストレイン酸、パルミトレイン酸、リシノール酸、オレイン酸、リノール酸、及びリノレン酸等の不飽和脂肪酸を挙げることができる。これらの脂肪酸は、1種を単独で使用してもよく、2種以上を併用してもよい。これらの中では、オレイン酸、リノール酸又はこれらの混合物を用いることが好ましい。固形の脂肪酸の例としては、カプリン酸、パルミチン酸、及びステアリン酸等の炭素原子数10以上の飽和脂肪酸、並びにクロトン酸、及びソルビン酸等の不飽和脂肪酸を挙げることができる。 It is preferable that the surface treatment layer of the surface treated metal particles contained in the conductive paste of this embodiment further contains an organic substance. For example, when the surface treatment layer is formed using the above-mentioned zinc compound, the surface treatment layer contains an organic substance. Since the surface-treated metal particles have a surface-treated layer containing an organic substance, the resulting electrode can have high sulfidation resistance even if the amount of zinc compound is small. Note that the organic substance may be a liquid organic fatty acid or a solid fatty acid. Examples of liquid fatty acids include saturated fatty acids such as butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, and pelargonic acid, as well as myristoleic acid, palmitoleic acid, ricinoleic acid, oleic acid, linoleic acid, and linolenic acid. Unsaturated fatty acids such as These fatty acids may be used alone or in combination of two or more. Among these, it is preferable to use oleic acid, linoleic acid, or a mixture thereof. Examples of solid fatty acids include saturated fatty acids having 10 or more carbon atoms, such as capric acid, palmitic acid, and stearic acid, and unsaturated fatty acids, such as crotonic acid and sorbic acid.
 本実施形態に用いる表面処理金属粒子の表面処理層は、亜鉛化合物の薄膜である。本実施形態では、表面処理金属粒子の表面処理層が、亜鉛金属又は亜鉛合金からなる薄膜ではないことに特徴がある。表面処理層が、亜鉛金属又は亜鉛合金からなる薄膜である場合には、亜鉛の配合量が多すぎるため、得られる電極の電気抵抗が増加するなどの悪影響が生じることがある。また、焼成後、亜鉛金属又は亜鉛合金が金属粒子の表面に多く存在することにより、銀粒子などの金属粒子のはんだ付けが阻害される可能性が高くなる。 The surface treatment layer of the surface treated metal particles used in this embodiment is a thin film of a zinc compound. This embodiment is characterized in that the surface treatment layer of the surface treatment metal particles is not a thin film made of zinc metal or zinc alloy. When the surface treatment layer is a thin film made of zinc metal or zinc alloy, the amount of zinc blended is too large, which may cause adverse effects such as an increase in the electrical resistance of the resulting electrode. Moreover, since a large amount of zinc metal or zinc alloy exists on the surface of the metal particles after firing, there is a high possibility that soldering of metal particles such as silver particles will be inhibited.
 表面処理層は、金属粒子の表面の少なくとも一部に形成された薄膜である。表面処理層は、金属粒子の表面の50%以上を覆う薄膜であることが好ましく、金属粒子の表面の80%以上を覆う薄膜であることがより好ましく、金属粒子の表面の90%以上を覆う薄膜であることが好ましく、金属粒子の表面の95%以上を覆う薄膜であることが特に好ましい。表面処理層は、金属粒子の表面全体を覆う薄膜であることが最も好ましい。 The surface treatment layer is a thin film formed on at least a portion of the surface of the metal particles. The surface treatment layer is preferably a thin film that covers 50% or more of the surface of the metal particle, more preferably a thin film that covers 80% or more of the surface of the metal particle, and covers 90% or more of the surface of the metal particle. A thin film is preferable, and a thin film covering 95% or more of the surface of the metal particles is particularly preferable. Most preferably, the surface treatment layer is a thin film that covers the entire surface of the metal particles.
 表面処理金属粒子の表面処理層の膜厚は、必ずしも均一である必要はないが、金属粒子の硫化をより効果的に抑制するために、均一であることが好ましい。なお、表面処理層の膜厚の制御は、例えば、亜鉛化合物が溶剤中に分散された亜鉛ソープ溶剤(表面処理剤)の粘度、及び亜鉛ソープ溶剤(表面処理剤)中の亜鉛化合物の濃度を調節することにより、制御することができる。また、表面処理層の膜厚を制御することにより、表面処理層中の亜鉛の量を制御することができる。なお、表面処理層の膜厚は、1~100nm以下であることが好ましく、1~70nm以下であることがより好ましく、1~50nm以下であることがとくに好ましい。表面処理層の厚みは、例えばX線光電子分光法にて測定できる。表面処理層の膜厚をこの範囲とすることで、亜鉛化合物量を少量としながらも耐硫化性の高い電極を形成することができる。 The thickness of the surface treatment layer of the surface-treated metal particles does not necessarily have to be uniform, but is preferably uniform in order to more effectively suppress sulfidation of the metal particles. The thickness of the surface treatment layer can be controlled by, for example, controlling the viscosity of the zinc soap solvent (surface treatment agent) in which a zinc compound is dispersed, and the concentration of the zinc compound in the zinc soap solvent (surface treatment agent). It can be controlled by adjusting. Further, by controlling the thickness of the surface treatment layer, the amount of zinc in the surface treatment layer can be controlled. The thickness of the surface treatment layer is preferably from 1 to 100 nm, more preferably from 1 to 70 nm, and particularly preferably from 1 to 50 nm. The thickness of the surface treatment layer can be measured, for example, by X-ray photoelectron spectroscopy. By setting the thickness of the surface treatment layer within this range, it is possible to form an electrode with high sulfidation resistance even though the amount of zinc compound is small.
 本実施形態の導電性ペーストが、(A)導電性粒子として、亜鉛化合物によって表面処理された表面処理金属粒子を含むことにより、高価なパラジウムを使わずに高い耐硫化性を有する電極を形成することができる。したがって、本実施形態の導電性ペーストを用いることにより、高い耐硫化性を有し、比較的低コストの電極を形成することができる。特に、金属粒子として銀粒子を用いる場合、銀は硫化されやすい。本実施形態の導電性ペーストを用いることにより、銀を主材料とする電極が硫化によって断線することを、低コストで、効果的に抑制することができる。 The conductive paste of this embodiment includes (A) surface-treated metal particles surface-treated with a zinc compound as conductive particles, thereby forming an electrode having high sulfidation resistance without using expensive palladium. be able to. Therefore, by using the conductive paste of this embodiment, an electrode having high sulfidation resistance and relatively low cost can be formed. In particular, when silver particles are used as metal particles, silver is easily sulfurized. By using the conductive paste of this embodiment, it is possible to effectively suppress disconnection of an electrode mainly made of silver due to sulfurization at low cost.
 例えば、銀粒子を金属粒子として用いた場合、亜鉛化合物によって表面処理された表面処理金属粒子(表面処理銀粒子)を用いることによって、銀粒子の硫化を抑制することができることの理由は、以下のように推論することができる。すなわち、亜鉛は、銀と比べて硫化しやすい。そのため、亜鉛が金属粒子(銀粒子)の周囲に存在している表面処理金属粒子を材料とした電極では、亜鉛が硫化されることで雰囲気中の硫黄成分を吸収し、硫黄成分が金属粒子(銀粒子)に到達することを防止することができる。そのため、電極として導電性の機能を担っている銀粒子(金属粒子)の硫化を抑制することができると考えられる。銀粒子以外の他の金属粒子についても同様に推論できる。ただし、本発明は、この推論に拘束されるものではない。 For example, when silver particles are used as metal particles, the reason why sulfidation of the silver particles can be suppressed by using surface-treated metal particles (surface-treated silver particles) whose surface has been treated with a zinc compound is as follows. It can be inferred as follows. That is, zinc is more easily sulfurized than silver. Therefore, in electrodes made of surface-treated metal particles in which zinc exists around metal particles (silver particles), the zinc is sulfurized and absorbs sulfur components in the atmosphere, and the sulfur components are absorbed by the metal particles (silver particles). silver particles). Therefore, it is thought that sulfidation of silver particles (metal particles) that have a conductive function as an electrode can be suppressed. Similar inferences can be made regarding metal particles other than silver particles. However, the present invention is not limited to this inference.
 本実施形態の導電性ペーストの(A)導電性粒子が、所定の表面処理金属粒子を含むことにより、付加的な効果として、得られる電極の耐マイグレーション性も向上することができる。亜鉛化合物によって表面処理された表面処理金属粒子(表面処理銀粒子)を用いることによって、耐マイグレーション性も向上することができることの理由は、以下のように推論することができる。亜鉛は、銀よりもイオン化傾向が高いため、亜鉛を用いることにより、亜鉛が電子をトラップし、銀のイオン化を抑制することができたものと推測される。また、亜鉛化合物によって表面処理された表面処理金属粒子を用いることで、電極の緻密性が向上する。これにより、水分が入りにくくなることで、耐マイグレーション性が向上するものと推測される。ただし、本発明は、この推論に拘束されるものではない。 When the conductive particles (A) of the conductive paste of this embodiment include predetermined surface-treated metal particles, the migration resistance of the obtained electrode can be improved as an additional effect. The reason why migration resistance can also be improved by using surface-treated metal particles (surface-treated silver particles) surface-treated with a zinc compound can be inferred as follows. Since zinc has a higher ionization tendency than silver, it is presumed that by using zinc, zinc could trap electrons and suppress the ionization of silver. Further, by using surface-treated metal particles whose surface has been treated with a zinc compound, the denseness of the electrode is improved. It is presumed that this makes it difficult for moisture to enter, thereby improving migration resistance. However, the present invention is not limited to this inference.
 本実施形態の導電性ペーストでは、表面処理金属粒子に含まれる亜鉛の含有量が10~1000ppmであることが好ましく、15~950ppmがより好ましく、20~900ppmが更に好ましく、22~850ppmが特に好ましい。表面処理金属粒子に含まれる亜鉛の含有量が上記範囲であることにより、電極の硫化による電極の抵抗値の変化を小さくすることができる。なお、表面処理金属粒子に含まれる亜鉛の含有量は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)で測定することができる。 In the conductive paste of this embodiment, the content of zinc contained in the surface-treated metal particles is preferably 10 to 1000 ppm, more preferably 15 to 950 ppm, even more preferably 20 to 900 ppm, and particularly preferably 22 to 850 ppm. . When the content of zinc contained in the surface-treated metal particles is within the above range, changes in the resistance value of the electrode due to sulfidation of the electrode can be reduced. Note that the content of zinc contained in the surface-treated metal particles can be measured by ICP emission spectrometry (high frequency inductively coupled plasma emission spectrometry).
 (A)導電性粒子の形状は、特に限定されず、例えば、球状、粒状、フレーク状及び/又は鱗片状の表面処理金属粒子を用いることが可能である。 (A) The shape of the conductive particles is not particularly limited, and for example, spherical, granular, flaky, and/or scaly surface-treated metal particles can be used.
 (A)導電性粒子の平均粒径は、0.5μm~10μmが好ましく、より好ましくは0.8μm~8μmであり、更に好ましくは1μm~7μmである。ここでいう平均粒径は、レーザー回折散乱式粒度分布測定法により得られる体積基準メジアン径(D50)を意味する。(A)導電性粒子の平均粒径(D50)が10μmより大きい場合には、焼結性が悪く、緻密な膜が得られない。また、(A)導電性粒子の平均粒径(D50)が0.5μm未満である場合には、分散性が悪くなる傾向になり、導電性ペーストを印刷したときに均一な薄膜が得られにくい場合がある。 The average particle diameter of the conductive particles (A) is preferably 0.5 μm to 10 μm, more preferably 0.8 μm to 8 μm, and still more preferably 1 μm to 7 μm. The average particle diameter herein means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measurement method. (A) If the average particle diameter (D50) of the conductive particles is larger than 10 μm, sinterability is poor and a dense film cannot be obtained. In addition, if the average particle diameter (D50) of (A) conductive particles is less than 0.5 μm, the dispersibility tends to deteriorate, making it difficult to obtain a uniform thin film when printing the conductive paste. There are cases.
<(B)バインダー樹脂>
 本実施形態の導電性ペーストは、(B)バインダー樹脂を含む。
<(B) Binder resin>
The conductive paste of this embodiment includes (B) a binder resin.
 (B)バインダー樹脂は、導電性ペースト中において(A)導電性粒子同士をつなぎあわせるものである。なお、本実施形態の導電性ペーストは、後述の(C)ガラスフリットを含むことができるし、含まないことができる。本実施形態の導電性ペーストに含まれる(B)バインダー樹脂の機能は、(C)ガラスフリットを含む場合と、(C)ガラスフリットを含まない場合とで、異なる。 The (B) binder resin connects the (A) conductive particles together in the conductive paste. Note that the conductive paste of this embodiment may or may not include (C) glass frit, which will be described later. The function of the binder resin (B) included in the conductive paste of this embodiment is different depending on whether it contains (C) glass frit or not.
 本実施形態の導電性ペーストが(C)ガラスフリットを含む場合、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布し、比較的高温(例えば500~900℃)で焼成することにより、電極を形成することができる。この場合、(B)バインダー樹脂は、焼成の際に焼失する。したがって、この場合の(B)バインダー樹脂の機能は、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布したときに、(A)導電性粒子同士をつなぎあわせることである。 When the conductive paste of this embodiment includes (C) glass frit, the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and heated to a relatively high temperature (for example, 500 to 900°C). ), an electrode can be formed. In this case, the binder resin (B) is burned out during firing. Therefore, the function of the binder resin (B) in this case is to (A) connect the conductive particles together when the conductive paste of this embodiment is applied to a predetermined base material in a predetermined electrode pattern. That's true.
 本実施形態の導電性ペーストが(C)ガラスフリットを含まない場合、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布し、比較的低温(例えば100~200℃)で熱処理することにより、電極を形成することができる。この場合、(B)バインダー樹脂は、熱処理の際に焼失しない。この場合の(B)バインダー樹脂の機能は、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布したときに(A)導電性粒子同士をつなぎあわせることに加え、熱処理後に(A)導電性粒子同士をつなぎあわせることにより、熱処理後の電極の形状を保つことである。 When the conductive paste of this embodiment does not contain (C) glass frit, the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and the conductive paste is applied at a relatively low temperature (for example, 100 to 200 ℃), an electrode can be formed. In this case, the binder resin (B) is not burned out during heat treatment. In this case, the function of the binder resin (B) is to connect the conductive particles (A) to each other when the conductive paste of this embodiment is applied to a predetermined base material in a predetermined electrode pattern. (A) The shape of the electrode after the heat treatment is maintained by connecting the conductive particles together after the heat treatment.
 (B)バインダー樹脂としては、例えば、エチルセルロース樹脂、ニトロセルロース樹脂等のセルロース系樹脂、アクリル樹脂、アルキド樹脂、飽和ポリエステル樹脂、ブチラール樹脂、ポリビニルアルコール、及びヒドロキシプロピルセルロース等の熱可塑性樹脂を用いることができる。これらの樹脂は、単独で使用することができ、2種類以上を混合して使用することができる。 (B) As the binder resin, for example, cellulose resins such as ethyl cellulose resin and nitrocellulose resin, thermoplastic resins such as acrylic resin, alkyd resin, saturated polyester resin, butyral resin, polyvinyl alcohol, and hydroxypropyl cellulose may be used. I can do it. These resins can be used alone or in combination of two or more.
 (B)バインダー樹脂としては、エチルセルロース樹脂、ニトロセルロース樹脂等のセルロース系樹脂、及びアルキド樹脂から選択した少なくとも1つを用いることが好ましい。 As the binder resin (B), it is preferable to use at least one selected from cellulose resins such as ethyl cellulose resins and nitrocellulose resins, and alkyd resins.
 本実施形態の導電性ペーストが(C)ガラスフリットを含まない場合、本実施形態の導電性ペーストは、表面処理金属粒子同士の接着性を向上させるために、(B)バインダー樹脂として、エポキシ樹脂を含むことができる。エポキシ樹脂の種類については特に制限はなく、公知のエポキシ樹脂を用いることができる。エポキシ樹脂として、例えば、ビスフェノールA型、ビスフェノールF型、ビフェニル型、テトラメチルビフェニル型、クレゾールノボラック型、フェノールノボラック型、ビスフェノールAノボラック型、ジシクロペンタジエンフェノール縮合型、フェノールアラルキル縮合型、及びグリシジルアミン型などのエポキシ樹脂、臭素化エポキシ樹脂、脂環式エポキシ樹脂、並びに脂肪族エポキシ樹脂などが挙げられる。これらエポキシ樹脂は1種単独で又は2種以上を混合して用いることができる。また、表面処理金属粒子同士の接着性を向上させることを目的として、エポキシ樹脂以外の熱硬化性樹脂を用いてもよい。更に、ポリウレタン樹脂、及び/又はポリカーボネート樹脂等の熱可塑性樹脂を用いてもよい。 When the conductive paste of this embodiment does not contain (C) glass frit, in order to improve the adhesion between the surface-treated metal particles, (B) epoxy resin is used as the binder resin. can include. There are no particular restrictions on the type of epoxy resin, and any known epoxy resin can be used. Examples of epoxy resins include bisphenol A type, bisphenol F type, biphenyl type, tetramethylbiphenyl type, cresol novolac type, phenol novolac type, bisphenol A novolac type, dicyclopentadienephenol condensation type, phenol aralkyl condensation type, and glycidylamine. Examples include epoxy resins such as molds, brominated epoxy resins, alicyclic epoxy resins, and aliphatic epoxy resins. These epoxy resins can be used alone or in combination of two or more. Furthermore, a thermosetting resin other than epoxy resin may be used for the purpose of improving the adhesion between surface-treated metal particles. Furthermore, thermoplastic resins such as polyurethane resins and/or polycarbonate resins may also be used.
 (B)バインダー樹脂の含有量は、(A)導電性粒子100重量部に対して、好ましくは0.5~30重量部であり、より好ましくは、1~20重量部であり、更に好ましくは2~10重量部であり、特に好ましくは3~7重量部である。導電性ペースト中の(B)バインダー樹脂の含有量が上記の範囲内の場合、導電性ペーストの基板(基材)への塗布性、及び/又はペーストレベリング性が向上し、優れた印刷形状を得ることができる。一方、(B)バインダー樹脂の含有量が上記の範囲を超えると、塗布した導電性ペースト中に含まれる(B)バインダー樹脂の量が多すぎる。そのため、電極等を高精度に形成することができなくなる可能性がある。 The content of the binder resin (B) is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, and even more preferably The amount is 2 to 10 parts by weight, particularly preferably 3 to 7 parts by weight. When the content of the binder resin (B) in the conductive paste is within the above range, the applicability of the conductive paste to the substrate (base material) and/or the paste leveling properties are improved, resulting in an excellent printed shape. Obtainable. On the other hand, when the content of the binder resin (B) exceeds the above range, the amount of the binder resin (B) contained in the applied conductive paste is too large. Therefore, there is a possibility that electrodes and the like cannot be formed with high precision.
<(C)ガラスフリット>
 本実施形態の導電性ペーストは、(C)ガラスフリットを更に含むことができる。
<(C) Glass frit>
The conductive paste of this embodiment can further include (C) glass frit.
 本実施形態の導電性ペーストが(C)ガラスフリットを含む場合、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布し、比較的高温(例えば500~900℃)で焼成することにより、電極を形成することができる。この場合、上述の(B)バインダー樹脂は、焼成の際に焼失する。導電性ペーストに含まれる(C)ガラスフリットによって、(A)導電性粒子同士をつなぎあわせることにより、焼成後の電極の形状を保つことができる。 When the conductive paste of this embodiment includes (C) glass frit, the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and heated to a relatively high temperature (for example, 500 to 900°C). ), an electrode can be formed. In this case, the above-mentioned binder resin (B) is burned out during firing. The shape of the electrode after firing can be maintained by connecting the (A) conductive particles together using the (C) glass frit contained in the conductive paste.
 ガラスフリットは、特に限定されるものではないが、好ましくは軟化点300℃以上、より好ましくは軟化点400~900℃、更に好ましくは軟化点500~800℃のガラスフリットを用いることができる。ガラスフリットの軟化点は、熱重量測定装置(例えば、BRUKER AXS社製、TG-DTA2000SA)を用いて測定することができる。 The glass frit is not particularly limited, but a glass frit with a softening point of preferably 300°C or higher, more preferably 400 to 900°C, and even more preferably 500 to 800°C can be used. The softening point of the glass frit can be measured using a thermogravimetric measuring device (for example, TG-DTA2000SA manufactured by BRUKER AXS).
 (C)ガラスフリットの例として、ホウケイ酸系、及びホウケイ酸バリウム系等のガラスフリットを挙げることができる。また、ガラスフリットの例として、ホウケイ酸ビスマス系、ホウケイ酸アルカリ金属系、ホウケイ酸アルカリ土類金属系、ホウケイ酸亜鉛系、ホウケイ酸鉛系、ホウ酸鉛系、ケイ酸鉛系、ホウ酸ビスマス系、及びホウ酸亜鉛系等のガラスフリットを挙げることができる。これらのガラスフリットは、2種以上を混合して用いることもできる。ガラスフリットは、環境への配慮の点から鉛フリーであることが好ましい。 Examples of the glass frit (C) include borosilicate-based and barium borosilicate-based glass frits. Examples of glass frits include bismuth borosilicate, alkali metal borosilicate, alkaline earth metal borosilicate, zinc borosilicate, lead borosilicate, lead borate, lead silicate, and bismuth borate. and zinc borate-based glass frits. These glass frits can also be used in combination of two or more types. The glass frit is preferably lead-free from the viewpoint of environmental considerations.
 ガラスフリットは、ZnO、Bi、BaO、NaO、CaO及びAlからなる群から選択される少なくとも1つを含むことが好ましい。ガラスフリットは、ZnO及びBiからなる群から選択される少なくとも1つを含むことがより好ましい。 It is preferable that the glass frit contains at least one selected from the group consisting of ZnO, Bi 2 O 3 , BaO, Na 2 O, CaO, and Al 2 O 3 . More preferably, the glass frit contains at least one selected from the group consisting of ZnO and Bi 2 O 3 .
 本実施形態の導電性ペーストが(C)ガラスフリットを含む場合、ガラスフリットは、ZnOを含むことが更に好ましい。ガラスフリットとしてZnOを含むガラスフリット(亜鉛系ガラスフリット)を用いる場合には、より高い耐硫化性の電極を得ることができる。 When the conductive paste of this embodiment includes (C) glass frit, it is more preferable that the glass frit includes ZnO. When a glass frit containing ZnO (zinc-based glass frit) is used as the glass frit, an electrode with higher sulfidation resistance can be obtained.
 本実施形態の導電性ペーストが(C)ガラスフリットを含む場合、ガラスフリットは、Biを含むことが更に好ましい。ガラスフリットとしてBiを含むガラスフリット(ビスマス系ガラスフリット)を用いる場合には、電極の緻密性を向上させることができる。 When the conductive paste of this embodiment includes (C) glass frit, it is more preferable that the glass frit includes Bi 2 O 3 . When a glass frit containing Bi 2 O 3 (bismuth-based glass frit) is used as the glass frit, the density of the electrode can be improved.
 ガラスフリットの平均粒径は、好ましくは0.1~20μm、より好ましくは0.2~10μm、最も好ましくは0.5~5μmである。ここでいう平均粒径は、レーザー回折散乱式粒度分布測定法により得られる体積基準メジアン径(D50)のことを意味する。 The average particle size of the glass frit is preferably 0.1 to 20 μm, more preferably 0.2 to 10 μm, and most preferably 0.5 to 5 μm. The average particle size here means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measurement method.
 本実施形態の導電性ペーストが(C)ガラスフリットを含む場合、(C)ガラスフリットの含有量は、(A)導電性粒子100重量部に対して0.05~10重量部であることが好ましく、0.07~8重量部であることがより好ましく、0.08~6重量部であることが更に好ましい。ガラスフリットの含有量がこの範囲よりも少ない場合、導電性ペーストを焼成して得られる電極の基板(基材)への密着性が低下する。ガラスフリットの含有量がこの範囲よりも多い場合、導電性ペーストを焼成して得られる電極の抵抗値は高く、焼成体の表面がガラス成分で覆われるため、めっき付け性が悪くなる。なお、ガラスフリットの含有量が比較的少ない場合には、低抵抗の電極を得ることができる。また、ガラスフリットの含有量が比較的多い場合には、耐薬品性に優れる電極を得ることができる。耐薬品性は、電極の表面にめっき膜を形成する場合に、めっき前処理が必要であるために求められる特性である。めっき前処理は、電極の表面から汚染物質を除去し、電極の表面を活性化し、めっきに適した清浄な状態にすることを目的として行われる。除去するべき汚染物質には有機系と無機系に大別できる。前処理工程は、単独の工程ですべての汚染物質を除去する工程ではない。例えば有機系物質は、アルカリ系洗浄剤を用いた工程で除去する。無機系物質は、酸系洗浄剤を用いた工程で除去する。そのため、電極に高い耐薬品性が求められる。 When the conductive paste of the present embodiment includes (C) glass frit, the content of (C) glass frit is preferably 0.05 to 10 parts by weight based on 100 parts by weight of (A) conductive particles. The amount is preferably 0.07 to 8 parts by weight, more preferably 0.08 to 6 parts by weight. If the content of glass frit is less than this range, the adhesion of the electrode obtained by firing the conductive paste to the substrate (base material) will decrease. If the content of glass frit is more than this range, the resistance value of the electrode obtained by firing the conductive paste will be high, and the surface of the fired body will be covered with the glass component, resulting in poor plating properties. Note that when the content of glass frit is relatively small, an electrode with low resistance can be obtained. Moreover, when the content of glass frit is relatively large, an electrode with excellent chemical resistance can be obtained. Chemical resistance is a required property because plating pretreatment is required when forming a plating film on the surface of an electrode. Plating pretreatment is performed for the purpose of removing contaminants from the electrode surface, activating the electrode surface, and bringing it into a clean state suitable for plating. The pollutants that need to be removed can be broadly divided into organic and inorganic pollutants. The pretreatment step is not a single step that removes all contaminants. For example, organic substances are removed in a process using an alkaline cleaning agent. Inorganic substances are removed in a process using acid-based cleaning agents. Therefore, electrodes are required to have high chemical resistance.
 本実施形態の導電性ペーストが(C)ガラスフリットを含む場合には、温度の上昇とともにガラスフリットが軟化し、(A)導電性粒子の焼結(焼成)が進む。ガラスフリット含有量が多い場合には、ガラス成分が焼成体の表面に押し出されてくることがある。その場合、焼成体の表面はガラス成分で覆われることがある。(C)ガラスフリットが酸化亜鉛を含む場合には、結晶化温度でガラスフリット中のZn成分がZnOとして析出するため、表面処理金属粒子中の亜鉛と同様に、焼成後の(A)導電性粒子の耐硫化性に対して寄与することができる。 When the conductive paste of this embodiment includes (C) glass frit, the glass frit softens as the temperature rises, and the sintering (firing) of the (A) conductive particles progresses. When the glass frit content is large, the glass component may be pushed out to the surface of the fired body. In that case, the surface of the fired body may be covered with a glass component. (C) When the glass frit contains zinc oxide, the Zn component in the glass frit precipitates as ZnO at the crystallization temperature, so the (A) conductivity after firing is It can contribute to the sulfidation resistance of particles.
<(D)分散剤>
 本実施形態の導電性ペーストは、(D)分散剤を含むことができる。本実施形態の導電性ペーストが(D)分散剤を含むことにより、導電性ペースト中の(A)導電性粒子の分散性を高めることができ、(A)導電性粒子が凝集することを防止することができる。
<(D) Dispersant>
The conductive paste of this embodiment can contain (D) a dispersant. By containing the (D) dispersant in the conductive paste of this embodiment, the dispersibility of the (A) conductive particles in the conductive paste can be improved, and the agglomeration of the (A) conductive particles can be prevented. can do.
 (D)分散剤としては、公知の分散剤を用いることができる。(D)分散剤として、例えば、酸型の分散剤を用いることができる。 (D) As the dispersant, a known dispersant can be used. (D) As the dispersant, for example, an acid type dispersant can be used.
<(E)溶剤>
 本実施形態の導電性ペーストは、(E)溶剤を含むことができる。溶剤としては、例えば、メタノール、エタノール、及びイソプロピルアルコール(IPA)等のアルコール類、酢酸エチレン等の有機酸類、トルエン、及びキシレン等の芳香族炭化水素類、N-メチル-2-ピロリドン(NMP)等のN-アルキルピロリドン類、N,N-ジメチルホルムアミド(DMF)等のアミド類、メチルエチルケトン(MEK)等のケトン類、テルピネオール(TEL)、及びジエチレングリコールモノブチルエーテル(ブチルカルビトール、BC)等の環状カーボネート類、ビス[2-(2-ブトキシエトキシ)エチル]アジペート、2,2,4-トリメチルペンタン-1,3-ジオールモノイソブチラート(テキサノール)、並びに水等が挙げられる。
<(E) Solvent>
The conductive paste of this embodiment can contain (E) a solvent. Examples of solvents include alcohols such as methanol, ethanol, and isopropyl alcohol (IPA), organic acids such as ethylene acetate, aromatic hydrocarbons such as toluene and xylene, and N-methyl-2-pyrrolidone (NMP). N-alkylpyrrolidones such as, amides such as N,N-dimethylformamide (DMF), ketones such as methyl ethyl ketone (MEK), cyclics such as terpineol (TEL), and diethylene glycol monobutyl ether (butyl carbitol, BC) Examples include carbonates, bis[2-(2-butoxyethoxy)ethyl]adipate, 2,2,4-trimethylpentane-1,3-diol monoisobutyrate (Texanol), and water.
 本実施形態の導電性ペースト中の溶剤の含有量は、特に限定されない。溶剤の含有量は、例えば、(A)導電性粒子100重量部に対して、好ましくは1~100重量部、より好ましくは5~60重量部、更に好ましくは8~35重量部である。 The content of the solvent in the conductive paste of this embodiment is not particularly limited. The content of the solvent is, for example, preferably 1 to 100 parts by weight, more preferably 5 to 60 parts by weight, and still more preferably 8 to 35 parts by weight, based on 100 parts by weight of the (A) conductive particles.
 本実施形態の導電性ペーストの粘度は、好ましくは50~700Pa・s(せん断速度:4.0sec-1)、より好ましくは100~300Pa・s(せん断速度:4.0sec-1)である。本実施形態の導電性ペーストの粘度は、溶剤の含有量を適切に制御することにより、調整することができる。導電性ペーストの粘度がこの範囲に調整されることによって、導電性ペーストの基板(基材)への塗布性及び/又は取り扱い性が良好になり、導電性ペーストを均一の厚みで基板へ塗布することが可能になる。なお、導電性ペーストの粘度は、HB型粘度計(ブルックフィールド社製)(SC4-14スピンドル)を使用して、温度25℃、10rpmで測定することができる。 The viscosity of the conductive paste of this embodiment is preferably 50 to 700 Pa·s (shear rate: 4.0 sec −1 ), more preferably 100 to 300 Pa·s (shear rate: 4.0 sec −1 ). The viscosity of the conductive paste of this embodiment can be adjusted by appropriately controlling the content of the solvent. By adjusting the viscosity of the conductive paste within this range, the applicability and/or handling of the conductive paste to the substrate (base material) becomes good, and the conductive paste can be applied to the substrate with a uniform thickness. becomes possible. Note that the viscosity of the conductive paste can be measured at a temperature of 25° C. and 10 rpm using an HB type viscometer (manufactured by Brookfield Corporation) (SC4-14 spindle).
<(F)硬化剤>
 本実施形態の導電性ペーストは、(F)硬化剤を更に含むことが好ましい。本実施形態の導電性ペーストが、(B)バインダー樹脂としてエポキシ樹脂を含む場合には、(F)硬化剤を含むことにより、エポキシ樹脂の硬化を適切に制御することができる。
<(F) Curing agent>
It is preferable that the conductive paste of this embodiment further contains (F) a curing agent. When the conductive paste of this embodiment contains an epoxy resin as the binder resin (B), the curing of the epoxy resin can be appropriately controlled by including the curing agent (F).
 (F)硬化剤は、公知の硬化剤を用いることができる。(F)硬化剤として、フェノール系硬化剤、カチオン重合開始剤、イミダゾール系硬化剤、及び三フッ化ホウ素化合物から選択される少なくとも1つを含むことが好ましい。三フッ化ホウ素化合物としては、三フッ化ホウ素モノエチルアミン、三フッ化ホウ素ピペリジン、及び三フッ化ホウ素ジエチルエーテル等が挙げられる。(F)硬化剤として、三フッ化ホウ素モノエチルアミンを好ましく用いることができる。 (F) A known curing agent can be used as the curing agent. (F) The curing agent preferably contains at least one selected from a phenolic curing agent, a cationic polymerization initiator, an imidazole curing agent, and a boron trifluoride compound. Examples of the boron trifluoride compound include boron trifluoride monoethylamine, boron trifluoride piperidine, and boron trifluoride diethyl ether. (F) As the curing agent, boron trifluoride monoethylamine can be preferably used.
 本実施形態の導電性ペーストは、(A)導電性粒子と、(C)バインダー樹脂であるエポキシ樹脂との合計重量を100重量部とした場合、導電性ペーストが、(F)硬化剤を0.1~5重量部含むことが好ましく、0.15~2重量部含むことがより好ましく、0.2~1重量部含むことが更に好ましく、0.3~0.6重量部含むことが特に好ましい。(F)硬化剤の重量割合を所定の範囲とすることにより、(B)バインダー樹脂成分であるエポキシ樹脂の硬化を適切に行うことができ、所望の形状の電極を得ることができる。 In the conductive paste of this embodiment, when the total weight of (A) conductive particles and (C) epoxy resin as a binder resin is 100 parts by weight, the conductive paste contains 0 (F) curing agent. .1 to 5 parts by weight, more preferably 0.15 to 2 parts by weight, even more preferably 0.2 to 1 parts by weight, particularly 0.3 to 0.6 parts by weight. preferable. By setting the weight ratio of the curing agent (F) within a predetermined range, the epoxy resin that is the binder resin component (B) can be appropriately cured, and an electrode with a desired shape can be obtained.
<その他の成分>
 本実施形態の導電性ペーストは、その他の添加剤、例えば、有機添加材及び無機添加材などを含むことができる。具体的には、添加剤として、シリカフィラー、レオロジー調整剤、及び/又は顔料などを含有してもよい。
<Other ingredients>
The conductive paste of this embodiment can contain other additives, such as organic additives and inorganic additives. Specifically, it may contain a silica filler, a rheology modifier, and/or a pigment as an additive.
 添加剤として、導電性ペーストに有機添加材を添加することにより、導電性ペーストの印刷性を向上させることができる。添加剤として、導電性ペーストに分散剤を添加することにより、導電性粒子などの分散性を向上することができる。添加剤として、導電性ペーストに無機添加材を添加することにより、導電性ペーストの焼成後の密着性を向上させることができる。 By adding an organic additive to the conductive paste as an additive, the printability of the conductive paste can be improved. By adding a dispersant to the conductive paste as an additive, the dispersibility of conductive particles and the like can be improved. By adding an inorganic additive to the conductive paste as an additive, the adhesion of the conductive paste after firing can be improved.
 本実施形態の導電性ペーストは、上記の各成分を、例えば、ライカイ機、ポットミル、三本ロールミル、回転式混合機、及び/又は二軸ミキサー等を用いて混合することで製造することができる。 The conductive paste of this embodiment can be manufactured by mixing the above-mentioned components using, for example, a Raikai machine, a pot mill, a three-roll mill, a rotary mixer, and/or a twin-shaft mixer. .
<電極>
 本実施形態は、上述の本実施形態の導電性ペーストを焼成又は熱処理して得られる電極である。
<Electrode>
This embodiment is an electrode obtained by firing or heat-treating the conductive paste of this embodiment described above.
 本実施形態の導電性ペーストが(C)ガラスフリットを含む場合、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布し、比較的高温(例えば500~900℃)で、空気雰囲気中で焼成することにより、電極を形成することができる。したがって、本実施形態の導電性ペーストが(C)ガラスフリットを含む場合の電極は、表面処理金属粒子を含む(A’)導電性粒子と、(C)ガラスフリットを材料とする(C’)ガラス成分と、を含有することができる。焼成後、(A’)導電性粒子は、焼結された状態になる。なお、本実施形態の導電性ペーストを比較的高温(例えば500~900℃)で焼成する場合、導電性ペーストに含まれる(B)バインダー樹脂及び(E)溶剤は、焼成の際に気化又は燃焼する。そのため、電極は実質的に(B)バインダー樹脂及び(E)溶剤を含まない。 When the conductive paste of this embodiment includes (C) glass frit, the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and heated to a relatively high temperature (for example, 500 to 900°C). ), the electrode can be formed by firing in an air atmosphere. Therefore, when the conductive paste of this embodiment contains (C) glass frit, the electrode is made of (A') conductive particles containing surface-treated metal particles and (C) glass frit. It can contain a glass component. After firing, the conductive particles (A') are in a sintered state. Note that when the conductive paste of this embodiment is fired at a relatively high temperature (for example, 500 to 900°C), the binder resin (B) and the solvent (E) contained in the conductive paste are vaporized or burned during firing. do. Therefore, the electrode does not substantially contain (B) binder resin and (E) solvent.
 本実施形態の導電性ペーストが(C)ガラスフリットを含まない場合、本実施形態の導電性ペーストを所定の電極パターンとなるように所定の基材に塗布し、比較的低温(例えば100~200℃)で熱処理することにより、電極を形成することができる。したがって、本実施形態の導電性ペーストが(C)ガラスフリットを含まない場合の本実施形態の電極は、表面処理金属粒子を含む(A’)導電性粒子と、(B)バインダー樹脂を材料とする(B’)バインダー成分と、を含有することができる。(A’)導電性粒子は、(B’)バインダー成分を介してつなぎあわされた状態になる。 When the conductive paste of this embodiment does not contain (C) glass frit, the conductive paste of this embodiment is applied to a predetermined base material so as to form a predetermined electrode pattern, and the conductive paste is applied at a relatively low temperature (for example, 100 to 200 ℃), an electrode can be formed. Therefore, when the conductive paste of this embodiment does not contain (C) glass frit, the electrode of this embodiment is made of (A') conductive particles containing surface-treated metal particles and (B) a binder resin. (B') a binder component. (A') The conductive particles are connected via the (B') binder component.
 本実施形態の導電性ペーストに含まれる表面処理金属粒子は、亜鉛化合物によって表面処理されているので、本実施形態の電極は、亜鉛を含むことになる。本実施形態の電極は、亜鉛を0.1~10重量%含むことが好ましく、亜鉛を0.5~8重量%含むことがより好ましく、亜鉛を1~5重量%含むことが更に好ましい。なお、本実施形態の導電性ペーストが(C)ガラスフリットを含む場合には、本実施形態の電極は、(C)ガラスフリットに起因する亜鉛を含むことができる。本実施形態の電極が所定量の亜鉛を含むことにより、本実施形態の電極が高い耐硫化性を有することができる。なお、電極中の亜鉛の含有量は、EDS(エネルギー分散型X線分光法、Energy Dispersive X-ray Spectroscopy)による元素分析により測定することができる。 Since the surface-treated metal particles contained in the conductive paste of this embodiment are surface-treated with a zinc compound, the electrode of this embodiment contains zinc. The electrode of this embodiment preferably contains 0.1 to 10% by weight of zinc, more preferably 0.5 to 8% by weight, and even more preferably 1 to 5% by weight of zinc. In addition, when the electrically conductive paste of this embodiment contains (C) glass frit, the electrode of this embodiment can contain zinc resulting from (C) glass frit. Since the electrode of this embodiment contains a predetermined amount of zinc, the electrode of this embodiment can have high sulfidation resistance. Note that the zinc content in the electrode can be measured by elemental analysis using EDS (Energy Dispersive X-ray Spectroscopy).
 本実施形態の電極となる薄膜のシート抵抗は、膜厚により異なるが、概ね10mΩ/□(10mΩ/square)程度又は10mΩ/□以下とすることができる。このため、低抵抗であることが要求される電極の形成に好ましく用いることができる。 The sheet resistance of the thin film serving as the electrode of this embodiment varies depending on the film thickness, but can be approximately 10 mΩ/square or less than 10 mΩ/square. Therefore, it can be preferably used for forming electrodes that are required to have low resistance.
 次に、本実施形態の導電性ペーストを用いて基板(基材)上に電極を形成する方法について説明する。まず、導電性ペーストを基板上に塗布する。導電性ペーストの塗布方法は任意であり、例えば、ディスペンス、ジェットディスペンス、孔版印刷、スクリーン印刷、ピン転写、又はスタンピングなどの公知の方法を用いて塗布することができる。 Next, a method for forming electrodes on a substrate (base material) using the conductive paste of this embodiment will be described. First, a conductive paste is applied onto the substrate. The conductive paste can be applied by any known method, such as dispensing, jet dispensing, stencil printing, screen printing, pin transfer, or stamping.
 本実施形態の導電性ペーストが(C)ガラスフリットを含む場合、基板上に導電性ペーストを塗布した後、必要に応じて乾燥させ、基板を焼成炉等に投入する。そして、基板上に塗布された導電性ペーストを、500~900℃、より好ましくは600~880℃、更に好ましくは700~870℃で焼成する。焼成温度の具体例は、850℃である。これにより、導電性ペーストに含まれる溶剤成分は300℃以下で蒸発し、樹脂成分は400℃~600℃で焼失し、導電性ペーストの焼成体(電極)を形成する。また、表面処理金属粒子に含まれる有機成分は、空気雰囲気中での焼成により消失し、亜鉛化合物中の亜鉛は、酸化亜鉛として金属粒子表面の被覆として存在することになると考えられる。このようにして得られた電極は、高い耐硫化性を有し、基板への密着性が優れている。 When the conductive paste of this embodiment includes (C) glass frit, after applying the conductive paste on the substrate, it is dried if necessary, and the substrate is placed in a firing furnace or the like. Then, the conductive paste applied onto the substrate is fired at 500 to 900°C, more preferably 600 to 880°C, and still more preferably 700 to 870°C. A specific example of the firing temperature is 850°C. As a result, the solvent component contained in the conductive paste evaporates at 300° C. or lower, and the resin component is burned out at 400° C. to 600° C., forming a fired body (electrode) of the conductive paste. Further, it is considered that the organic components contained in the surface-treated metal particles disappear by firing in an air atmosphere, and the zinc in the zinc compound exists as a coating on the surface of the metal particles as zinc oxide. The electrode thus obtained has high sulfidation resistance and excellent adhesion to the substrate.
 本実施形態の導電性ペーストが(C)ガラスフリットを含まない場合、基板上に導電性ペーストを塗布した後、基板を熱処理炉等に投入する。そして、基板上に塗布された導電性ペーストを、100~200℃、より好ましくは150~200℃で熱処理する。熱処理時間は、20~90分であることが好ましく、30~60分であることがより好ましい。熱処理条件の具体例は、150℃で60分間である。これにより、導電性ペーストに含まれる溶剤成分を乾燥させ、導電性ペーストを熱硬化させることにより、導電性ペーストの硬化体(電極)を形成することができる。このようにして得られた電極は、高い耐硫化性を有し、基板への密着性が優れている。 When the conductive paste of this embodiment does not include (C) glass frit, the conductive paste is applied onto the substrate, and then the substrate is placed in a heat treatment furnace or the like. Then, the conductive paste applied on the substrate is heat treated at 100 to 200°C, more preferably 150 to 200°C. The heat treatment time is preferably 20 to 90 minutes, more preferably 30 to 60 minutes. A specific example of the heat treatment conditions is 150° C. for 60 minutes. Thereby, a cured body (electrode) of the conductive paste can be formed by drying the solvent component contained in the conductive paste and thermosetting the conductive paste. The electrode thus obtained has high sulfidation resistance and excellent adhesion to the substrate.
 また、本実施形態の導電性ペーストを用いて上述のようにして得られた電極は、耐マイグレーション性が向上するという付加的な利点を有することができる。この付加的な利点は、導電性ペーストが(C)ガラスフリットを含む場合及び(C)ガラスフリットを含まない場合の両方の場合において、得ることができる。ただし、この利点は、必ずしも本実施形態の導電性ペーストの必須の効果ではなく、1つの利点であると考えられる。 Furthermore, the electrode obtained as described above using the conductive paste of this embodiment can have the additional advantage of improved migration resistance. This additional advantage can be obtained both when the conductive paste contains (C) a glass frit and (C) does not contain a glass frit. However, this advantage is not necessarily an essential effect of the conductive paste of this embodiment, but is considered to be one advantage.
<電子部品又は電子機器>
 本実施形態は、上述の電極を有する電子部品又は電子機器である。本明細書において、電子部品とは、チップ抵抗器及び基板回路など、電子機器などに使用される部品を意味する。本明細書において、電子部品とは電子的に作動する部品を意味し、具体的には直流の48V以下で動作する部品であることができる。本明細書において、電子機器とは、本実施形態の電極を有する電子部品を含む機器を意味する。
<Electronic parts or electronic equipment>
This embodiment is an electronic component or electronic device having the above-described electrode. In this specification, electronic components refer to components used in electronic devices, such as chip resistors and board circuits. In this specification, an electronic component means a component that operates electronically, and specifically can be a component that operates at 48 V or less of DC. In this specification, an electronic device means a device including an electronic component having the electrode of this embodiment.
 本実施形態の導電性ペーストは、電子部品又は電子機器の回路の形成、電極の形成、及び電子部品などのデバイス(例えば半導体チップ)の基板(基材)への接合等に用いることが可能である。 The conductive paste of this embodiment can be used for forming circuits of electronic components or electronic equipment, forming electrodes, and bonding devices such as electronic components (for example, semiconductor chips) to a substrate (base material). be.
 本実施形態の導電性ペーストは、チップ抵抗器の電極の形成に好ましく用いることができる。図1に、本実施形態のチップ抵抗器100の断面構造の一例を示す。チップ抵抗器100は、矩形のアルミナ基板102と、アルミナ基板102の表面に配置された抵抗体104及び取り出し電極106とを有することができる。取り出し電極106は、抵抗体104から電気を取り出すための電極である。また、アルミナ基板102の下面には、チップ抵抗器100を基板へ実装するための下面電極108を配置することができる。更に、取り出し電極106と下面電極108とを接続するための接続電極110を、アルミナ基板102の端面に配置することができる。本実施形態の導電性ペーストを用いて、取り出し電極106、下面電極108、及び接続電極110の少なくとも1つを形成することができる。特に、取り出し電極106は、本実施形態の導電性ペーストを用いて形成されることが好ましい。なお、取り出し電極106、下面電極108、及び接続電極110の上面(アルミナ基板102とは反対側の表面)に、ニッケルめっき膜112及びスズめっき膜114を配置することができる。 The conductive paste of this embodiment can be preferably used for forming electrodes of chip resistors. FIG. 1 shows an example of a cross-sectional structure of a chip resistor 100 of this embodiment. The chip resistor 100 can include a rectangular alumina substrate 102, a resistor 104 and an extraction electrode 106 arranged on the surface of the alumina substrate 102. The extraction electrode 106 is an electrode for extracting electricity from the resistor 104. Furthermore, a lower surface electrode 108 for mounting the chip resistor 100 on the substrate can be arranged on the lower surface of the alumina substrate 102. Furthermore, a connection electrode 110 for connecting the extraction electrode 106 and the lower surface electrode 108 can be arranged on the end surface of the alumina substrate 102. At least one of the extraction electrode 106, the bottom electrode 108, and the connection electrode 110 can be formed using the conductive paste of this embodiment. In particular, it is preferable that the extraction electrode 106 be formed using the conductive paste of this embodiment. Note that a nickel plating film 112 and a tin plating film 114 can be disposed on the top surface of the extraction electrode 106, the bottom electrode 108, and the connection electrode 110 (the surface opposite to the alumina substrate 102).
 本実施形態の電極は、チップ抵抗器の電極に限られない。本実施形態の導電性ペーストを用いて形成した電極は、様々な種類の電子部品の電極として用いることができる。電子部品としては、受動部品(例えば、チップ抵抗器、コンデンサ、抵抗器及びインダクタ等)、回路基板(例えば、アルミナ基板、窒化アルミニウム基板及びガラス基板などの基板の上に所定の回路(電極又は配線)を形成したもの)、太陽電池セル、及び電磁波シールドなどを挙げることができる。本実施形態の導電性ペーストを用いて、これらの電子部品の電極及び/又は配線を形成することができる。本実施形態の電極を有する電子部品を含む電子機器としては、半導体装置、太陽光発電モジュール、及び回路基板を含む電子機器を挙げることができる。 The electrode of this embodiment is not limited to the electrode of a chip resistor. Electrodes formed using the conductive paste of this embodiment can be used as electrodes for various types of electronic components. Electronic components include passive components (for example, chip resistors, capacitors, resistors, inductors, etc.), circuit boards (for example, a predetermined circuit (electrode or wiring) on a substrate such as an alumina substrate, an aluminum nitride substrate, a glass substrate, etc.). ), solar cells, and electromagnetic shields. The conductive paste of this embodiment can be used to form electrodes and/or wiring of these electronic components. Examples of electronic devices including electronic components having the electrodes of this embodiment include semiconductor devices, photovoltaic modules, and electronic devices including circuit boards.
 本実施形態の導電性ペーストは、半導体装置において半導体チップを取り付けるためのダイアタッチ材として用いることができる。半導体装置がパワー半導体装置である場合には、パワー半導体チップを取り付けるためのロウ材として用いることができる。本実施形態の導電性ペーストは、太陽電池の電極として用いることができる。本実施形態の導電性ペーストは、導電性接着剤として用いることができる。また、本実施形態の導電性ペーストは、チップ抵抗器の端子電極の形成に限らず、例えば、MLCC、チップインダクタ等の受動部品の端子電極用の導電性ペーストとしても好適に使用することができる。 The conductive paste of this embodiment can be used as a die attach material for attaching a semiconductor chip in a semiconductor device. When the semiconductor device is a power semiconductor device, it can be used as a brazing material for attaching a power semiconductor chip. The conductive paste of this embodiment can be used as an electrode of a solar cell. The conductive paste of this embodiment can be used as a conductive adhesive. Furthermore, the conductive paste of this embodiment can be suitably used not only for forming terminal electrodes of chip resistors, but also as a conductive paste for terminal electrodes of passive components such as MLCCs and chip inductors. .
 本実施形態の導電性ペーストを用いることにより、高い耐硫化性を有し、かつ低抵抗で、比較的低コストの電極を形成することができる。そのため、本実施形態の導電性ペーストを用いることにより、信頼性の高い電極が形成されたチップ抵抗器等の電子部品を、比較的低コストで得ることができる。 By using the conductive paste of this embodiment, it is possible to form an electrode that has high sulfidation resistance, low resistance, and relatively low cost. Therefore, by using the conductive paste of this embodiment, electronic components such as chip resistors in which highly reliable electrodes are formed can be obtained at relatively low cost.
 以下、実施例により、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.
[導電性ペーストの調製]
 以下の(A)~(F)成分を、表1~4に示す割合で混合して導電性ペーストを調製した。なお、表1~4に示す各成分の割合は、すべて重量部で示している。表1~4では、(A)導電性粒子の重量(金属粒子及び表面処理金属粒子の合計重量)を100重量部とした。また、平均粒径は、レーザー回折散乱式粒度分布測定法により得られる体積基準メジアン径(D50)のことを意味する。
[Preparation of conductive paste]
A conductive paste was prepared by mixing the following components (A) to (F) in the proportions shown in Tables 1 to 4. Note that all the proportions of each component shown in Tables 1 to 4 are shown in parts by weight. In Tables 1 to 4, the weight of (A) conductive particles (total weight of metal particles and surface-treated metal particles) was 100 parts by weight. Moreover, the average particle size means the volume-based median diameter (D50) obtained by laser diffraction scattering particle size distribution measuring method.
(A)導電性粒子
 表5に、実施例及び比較例の(A)導電性粒子((A)成分)として用いた金属粒子a1~a3及び表面処理金属粒子A1~A8を示す。金属粒子a1及びa2は銀粒子であり、金属粒子a3は、亜鉛粒子である。金属粒子a1~a3には、表面処理はされていない。表面処理金属粒子A1~A8は、金属粒子である銀粒子に、亜鉛化合物が溶剤中に分散された亜鉛ソープ溶剤(表面処理剤)を金属粒子の表面に付着させ、乾燥工程により、溶剤を除去することによって、表面処理をした。したがって、表面処理金属粒子A1~A8は、亜鉛化合物を含む表面処理層を有する。表5の「亜鉛含有量」欄に、表面処理金属粒子A1~A8の重量に対する表面処理層に含まれる亜鉛の重量割合を、重量ppmの単位で示す。表面処理金属粒子中の亜鉛の重量割合は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法)により測定した。以上のようにして、表面処理金属粒子A1~A8に表面処理層を形成した。
(A) Conductive particles Table 5 shows metal particles a1 to a3 and surface-treated metal particles A1 to A8 used as (A) conductive particles (component (A)) in Examples and Comparative Examples. Metal particles a1 and a2 are silver particles, and metal particle a3 is a zinc particle. Metal particles a1 to a3 are not surface-treated. Surface-treated metal particles A1 to A8 are produced by attaching a zinc soap solvent (surface treatment agent) in which a zinc compound is dispersed in a solvent to the surface of silver particles, which are metal particles, and removing the solvent through a drying process. The surface was treated by Therefore, the surface-treated metal particles A1 to A8 have a surface-treated layer containing a zinc compound. The "zinc content" column in Table 5 shows the weight ratio of zinc contained in the surface treatment layer to the weight of the surface treatment metal particles A1 to A8 in units of ppm by weight. The weight proportion of zinc in the surface-treated metal particles was measured by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy). As described above, surface treatment layers were formed on the surface treatment metal particles A1 to A8.
 銀粒子に対する亜鉛化合物の表面処理は、次のようにして行った。すなわち、銀粒子に対する亜鉛化合物の表面処理は、亜鉛化合物と、これらを分散させるための有機物と、溶剤とを含む亜鉛ソープ溶剤(表面処理剤)を用いて行った。表面処理は、この亜鉛ソープ溶剤(表面処理剤)を銀粒子の表面に付着させ、乾燥工程により溶剤を除去することにより、行った。亜鉛化合物として、オレイン酸亜鉛を用いた。更に銀粒子の表面処理剤に含まれる分散剤として、オレイン酸を用いた。 Surface treatment of silver particles with a zinc compound was performed as follows. That is, the surface treatment of the silver particles with a zinc compound was performed using a zinc soap solvent (surface treatment agent) containing a zinc compound, an organic substance for dispersing these, and a solvent. The surface treatment was performed by attaching this zinc soap solvent (surface treatment agent) to the surface of the silver particles and removing the solvent through a drying process. Zinc oleate was used as the zinc compound. Furthermore, oleic acid was used as a dispersant included in the surface treatment agent for silver particles.
(B)バインダー樹脂
 表6に、実施例及び比較例で用いた(B)バインダー樹脂(樹脂B1~B6)を示す。表1~4に、実施例及び比較例の導電性ペーストの樹脂B1~B6の配合量を示す。
(B) Binder resin Table 6 shows the (B) binder resins (resins B1 to B6) used in the examples and comparative examples. Tables 1 to 4 show the blending amounts of resins B1 to B6 in the conductive pastes of Examples and Comparative Examples.
(C)ガラスフリット
 表7に、実施例及び比較例で用いた(C)ガラスフリット(GF-C1及びGF-C2)を示す。表1~4に、実施例及び比較例の導電性ペーストのガラスフリットGF-C1及びGF-C2の配合量を示す。
(C) Glass Frit Table 7 shows the (C) glass frits (GF-C1 and GF-C2) used in Examples and Comparative Examples. Tables 1 to 4 show the blending amounts of glass frits GF-C1 and GF-C2 in the conductive pastes of Examples and Comparative Examples.
(D)分散剤
 実施例及び比較例の導電性ペーストでは、(D)分散剤(分散剤D)として、酸型の低分子分散剤スリーエム221P(日油株式会社製)を用いた。表1~4に、実施例及び比較例の導電性ペーストの分散剤Dの配合量を示す。
(D) Dispersant In the conductive pastes of Examples and Comparative Examples, an acid type low molecular dispersant 3M 221P (manufactured by NOF Corporation) was used as the (D) dispersant (dispersant D). Tables 1 to 4 show the amount of dispersant D in the conductive pastes of Examples and Comparative Examples.
(E)溶剤
 表8に、実施例及び比較例で用いた(E)溶剤(溶剤E1~E4)を示す。表1~4に、実施例及び比較例の導電性ペーストの溶剤E1~E4の配合量を示す。
(E) Solvents Table 8 shows the (E) solvents (solvents E1 to E4) used in the Examples and Comparative Examples. Tables 1 to 4 show the blending amounts of solvents E1 to E4 in the conductive pastes of Examples and Comparative Examples.
(F)硬化剤F
 実施例20~22の導電性ペーストでは、(F)硬化剤Fとして、三フッ化ホウ素モノエチルアミン(ステラケミファ株式会社)を用いた。表4に、実施例20~22の導電性ペーストの硬化剤Fの配合量を示す。
(F) Hardening agent F
In the conductive pastes of Examples 20 to 22, boron trifluoride monoethylamine (Stella Chemifa Co., Ltd.) was used as the curing agent F (F). Table 4 shows the amount of curing agent F in the conductive pastes of Examples 20 to 22.
[耐硫化性試験の試験片50の作製]
 図2に、耐硫化性試験の試験片50の模式図を示す。(C)ガラスフリットを含む導電性ペーストを用いて、以下の手順により、実施例1~19及び比較例1~3の耐硫化性試験のための試験片50を作製した。
[Preparation of test piece 50 for sulfidation resistance test]
FIG. 2 shows a schematic diagram of a test piece 50 for the sulfidation resistance test. (C) Using a conductive paste containing glass frit, test pieces 50 for sulfidation resistance tests of Examples 1 to 19 and Comparative Examples 1 to 3 were prepared according to the following procedure.
 まず、20mm×20mm×1mm(t)の耐硫化性試験用アルミナ基板52(純度96%)上に、スクリーン印刷によって、図2に示すようなジグザグ状の耐硫化性試験用印刷パターン54となるように、導電性ペーストを塗布した。耐硫化性試験用印刷パターン54の2つの端部54a、54bの間の長さは71mm、耐硫化性試験用印刷パターン54の幅は1mmである。導電性ペーストの耐硫化性試験用印刷パターン54を形成するために、ステンレス製の325メッシュのスクリーン(乳剤厚さ5μm)を用いてスクリーン印刷をした。次に、バッチ式の熱風式乾燥機を用いて、150℃で10分間、導電性ペーストの耐硫化性試験用印刷パターン54を乾燥させた。導電性ペーストの耐硫化性試験用印刷パターン54を乾燥させた後、ベルト式の焼成炉を用いて、耐硫化性試験用印刷パターン54を焼成した。焼成温度は850℃で10分間保持した。焼成炉に入れてから取り出すまでの合計時間は60分だった。以上のようにして、実施例1~19及び比較例1~3の試験片50を作製した。 First, on a 20 mm x 20 mm x 1 mm (t) alumina substrate 52 (purity 96%) for sulfidation resistance testing, a zigzag printed pattern 54 for sulfidation resistance testing as shown in FIG. 2 is formed by screen printing. A conductive paste was applied. The length between the two ends 54a and 54b of the printed pattern 54 for sulfidation resistance testing is 71 mm, and the width of the printed pattern 54 for sulfidation resistance testing is 1 mm. In order to form a printed pattern 54 for testing the sulfidation resistance of the conductive paste, screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness 5 μm). Next, the printed pattern 54 for sulfidation resistance test of the conductive paste was dried at 150° C. for 10 minutes using a batch type hot air dryer. After drying the printed pattern 54 for sulfidation resistance test of the conductive paste, the printed pattern 54 for sulfidation resistance test was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces 50 of Examples 1 to 19 and Comparative Examples 1 to 3 were produced.
 (C)ガラスフリットを含まない導電性ペーストを用いた実施例20~22についても、実施例1~19及び比較例1~3と同様に、実施例20~22の導電性ペーストを用いて、20mm×20mm×1mm(t)の耐硫化性試験用アルミナ基板52(純度96%)上に、スクリーン印刷によって、幅1mm及び長さ71mmのジグザグ状の耐硫化性試験用印刷パターン54(図2参照)となるように、導電性ペーストを塗布した。次に、バッチ式の熱風式乾燥機を用いて、150℃で10分間、導電性ペーストの耐硫化性試験用印刷パターン54を熱処理することにより、耐硫化性試験用印刷パターン54を硬化させた。以上のようにして、実施例20~22の試験片50を作製した。 (C) For Examples 20 to 22 using conductive pastes that do not contain glass frit, similarly to Examples 1 to 19 and Comparative Examples 1 to 3, using the conductive pastes of Examples 20 to 22, A zigzag print pattern 54 (Fig. 2 A conductive paste was applied as shown in (see). Next, the printed pattern 54 for sulfidation resistance test of the conductive paste was heat-treated at 150° C. for 10 minutes using a batch type hot air dryer to harden the printed pattern 54 for sulfidation resistance test. . In the manner described above, test pieces 50 of Examples 20 to 22 were produced.
[耐硫化性試験方法]
 まず、実施例及び比較例の試験片の耐硫化性試験用印刷パターン54の2つの端部54a、54bの間の電気抵抗(初期電気抵抗)を測定した。次に、硫黄粉10gを平らになるように入れたシャーレ(高さ18mm、直径86mm)を、ガラス製のデシケーター(高さ420mm、直径300mm)の底に入れ、中フタの上に実施例及び比較例の試験片を載置した。このデシケーターを、60℃一定の恒温槽に150時間、保管して試験片を硫化させた。次に、硫化後の電気抵抗を測定した。表1~4の「抵抗値変化割合(耐硫化性試験)」欄に、実施例及び比較例の初期電気抵抗に対する硫化後の電気抵抗の抵抗値変化割合をパーセント単位で示す。抵抗値変化割合は、下記の式で示すことができる。
 抵抗値変化割合=(硫化後の電気抵抗-初期電気抵抗)/初期電気抵抗
[Sulfidation resistance test method]
First, the electrical resistance (initial electrical resistance) between the two ends 54a and 54b of the printed pattern 54 for sulfidation resistance test of the test pieces of Examples and Comparative Examples was measured. Next, a petri dish (height 18 mm, diameter 86 mm) containing 10 g of sulfur powder was placed in the bottom of a glass desiccator (height 420 mm, diameter 300 mm), and the Example and A test piece of a comparative example was placed. This desiccator was stored in a constant temperature bath at 60° C. for 150 hours to sulfurize the test piece. Next, the electrical resistance after sulfurization was measured. In the "Resistance value change rate (sulfidation resistance test)" column of Tables 1 to 4, the resistance value change rate of the electrical resistance after sulfidation with respect to the initial electrical resistance of Examples and Comparative Examples is shown in percent. The resistance value change rate can be expressed by the following formula.
Resistance value change rate = (electrical resistance after sulfidation - initial electrical resistance) / initial electrical resistance
[接着強度試験の試験片の作製]
 調製した導電性ペーストを用いて、以下の手順により、(C)ガラスフリットを含む実施例1~19及び比較例1~3の試験片を作製した。まず、20mm×20mm×1mm(t)のアルミナ基板(純度96%)上に、スクリーン印刷によって導電性ペーストを塗布した。これにより、一辺が1.5mmの角パッド形状からなる接着強度試験用パターンを、アルミナ基板上に25個(5個×5個)形成した。導電性ペーストの接着強度試験用パターンを形成するために、ステンレス製の325メッシュのスクリーン(乳剤厚さ5μm)を用いてスクリーン印刷をした。
[Preparation of test piece for adhesive strength test]
Using the prepared conductive paste, test pieces of Examples 1 to 19 and Comparative Examples 1 to 3 containing (C) glass frit were produced according to the following procedure. First, a conductive paste was applied by screen printing onto a 20 mm x 20 mm x 1 mm (t) alumina substrate (purity 96%). As a result, 25 (5×5) adhesive strength test patterns each having a square pad shape of 1.5 mm on a side were formed on the alumina substrate. In order to form a pattern for testing the adhesive strength of the conductive paste, screen printing was performed using a stainless steel 325 mesh screen (emulsion thickness: 5 μm).
 次に、バッチ式の熱風式乾燥機を用いて、150℃で10分間、導電性ペーストを乾燥させた。導電性ペーストの接着強度試験用パターンを乾燥させた後、ベルト式の焼成炉を用いて、導電性ペーストの接着強度試験用パターンを焼成した。焼成温度は850℃で10分間保持した。焼成炉に入れてから取り出すまでの合計時間は60分だった。以上のようにして、実施例1~19及び比較例1~3の試験片を作製した。 Next, the conductive paste was dried at 150° C. for 10 minutes using a batch hot air dryer. After drying the pattern for testing the adhesive strength of the conductive paste, the pattern for testing the adhesive strength of the conductive paste was fired using a belt-type firing furnace. The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. In the manner described above, test pieces of Examples 1 to 19 and Comparative Examples 1 to 3 were prepared.
 次に、接着強度試験用パターンにNi/Auめっきを行った。次に、はんだ(千住金属工業株式会社製M705、Sn-Agを3.0重量%及びCuを0.5重量%含むSn合金)を、260℃で3秒間、接着強度試験用パターンに付着させた後に、Snめっき軟銅線(直径0.8mm)を接着強度試験用パターンにはんだ付けした。なお、Snめっき軟銅線のはんだ付けは、アルミナ基板上の5個×5個の接着強度試験用パターンのうち、第2列の5個に対してそれぞれ1本ずつ計5個のSnめっき軟銅線をはんだ付けし、第4列の5個に対してそれぞれ1本ずつ計5個のSnめっき軟銅線をはんだ付けすることにより行った。計10個のSnめっき軟銅線をはんだ付けし、強度試験機でリード線の引張り接着強度を測定した。具体的には、接着強度試験用パターンが上面になるようにアルミナ基板を強度試験機に対して90度の角度となるように垂直に設置し、リード線をアルミナ基板に対して垂直に上方向に引っ張ることにより、引張り接着強度を測定した。リード線が剥がれたときの力(N)を引張り接着強度とした。 Next, Ni/Au plating was performed on the adhesive strength test pattern. Next, solder (M705 manufactured by Senju Metal Industry Co., Ltd., a Sn alloy containing 3.0% by weight of Sn-Ag and 0.5% by weight of Cu) was attached to the adhesive strength test pattern at 260°C for 3 seconds. After that, a Sn-plated annealed copper wire (diameter 0.8 mm) was soldered to the adhesive strength test pattern. For soldering the Sn-plated annealed copper wire, out of the 5 x 5 adhesive strength test patterns on the alumina board, one for each of the 5 pieces in the second row, for a total of 5 Sn-plated annealed copper wires. This was done by soldering a total of five Sn-plated annealed copper wires, one for each of the five wires in the fourth row. A total of 10 Sn-plated annealed copper wires were soldered, and the tensile adhesive strength of the lead wires was measured using a strength testing machine. Specifically, the alumina substrate was installed perpendicularly to the strength testing machine at a 90 degree angle so that the adhesive strength test pattern was on the top surface, and the lead wires were placed upward perpendicularly to the alumina substrate. The tensile adhesive strength was measured by pulling the sample. The force (N) when the lead wire was peeled off was defined as the tensile adhesive strength.
 実施例1~19及び比較例1~3の試験片と同様に、実施例20~22として調製した導電性ペーストを用いて、20mm×20mm×1mm(t)のアルミナ基板(純度96%)上に、スクリーン印刷によって導電性ペーストを塗布した。これにより、一辺が1.5mmの角パッド形状からなる接着強度試験用パターンを、アルミナ基板上に25個(5個×5個)形成した。次に、熱風式乾燥機を用いて、150℃で10分間、導電性ペーストを熱処理することにより、導電性ペーストの接着強度試験用パターンを硬化させた。以上のようにして、実施例20~22の試験片を作製した。次に、実施例1~19及び比較例1~3と同様に、実施例20~22の接着強度試験用パターンにNi/Auめっきを行った。次に、実施例1~19及び比較例1~3の試験片と同様に、Snめっき軟銅線(リード線)を接着強度試験用パターンにはんだ付けし、強度試験機でリード線の引張り接着強度を測定した。 Similar to the test pieces of Examples 1 to 19 and Comparative Examples 1 to 3, the conductive pastes prepared as Examples 20 to 22 were used on a 20 mm x 20 mm x 1 mm (t) alumina substrate (purity 96%). Then, a conductive paste was applied by screen printing. As a result, 25 (5×5) adhesive strength test patterns each having a square pad shape of 1.5 mm on a side were formed on the alumina substrate. Next, the conductive paste was heat-treated at 150° C. for 10 minutes using a hot air dryer to harden the adhesive strength test pattern of the conductive paste. In the manner described above, test pieces of Examples 20 to 22 were produced. Next, in the same manner as Examples 1 to 19 and Comparative Examples 1 to 3, Ni/Au plating was performed on the adhesive strength test patterns of Examples 20 to 22. Next, in the same way as the test pieces of Examples 1 to 19 and Comparative Examples 1 to 3, Sn-plated annealed copper wire (lead wire) was soldered to the adhesive strength test pattern, and the tensile adhesive strength of the lead wire was measured using a strength tester. was measured.
 各実施例及び各比較例の10個の試験片について引張り接着強度を測定することにより、接着強度試験の結果を得た。表1~4の「接着強度(N)」欄に、上述のようにして測定した各実施例及び各比較例の10個の試験片の引張り接着強度の平均値を示す。 The results of the adhesive strength test were obtained by measuring the tensile adhesive strength of 10 test pieces of each example and each comparative example. The "Adhesive Strength (N)" column of Tables 1 to 4 shows the average value of the tensile adhesive strength of the 10 test pieces of each Example and each Comparative Example measured as described above.
[耐マイグレーション試験]
 図3に、耐マイグレーション試験の試験片60の一例の試験用印刷パターン64a、64bの光学顕微鏡写真を示す。調製した導電性ペーストを用いて、以下の手順により、実施例3、4及び20~22、並びに比較例1の耐マイグレーション試験のための試験片60を作製した。
[Migration resistance test]
FIG. 3 shows an optical micrograph of test print patterns 64a and 64b of an example of the test piece 60 for the migration resistance test. Using the prepared conductive paste, test pieces 60 for the migration resistance test of Examples 3, 4, and 20 to 22, and Comparative Example 1 were prepared according to the following procedure.
 実施例3及び4、並びに比較例1の耐マイグレーション試験のための試験片60は、次の手順で作製した。まず、110mm×20mm×0.8mm(t)の耐マイグレーション試験用アルミナ基板62(純度96%)上に、スクリーン印刷によって、図3、及び図3の拡大写真である図4に示すように、2つのくし型状の耐マイグレーション試験用印刷パターン64a、64bが互い違いとなるように、導電性ペーストを塗布した。耐マイグレーション試験用印刷パターン64aは第1電極66aに接続し、耐マイグレーション試験用印刷パターン64bは第2電極66bに接続する。耐マイグレーション試験用印刷パターン64a、64bの印刷幅Lは200μmであり、耐マイグレーション試験用印刷パターン64a、64bの間のスペースSは200μmである。導電性ペーストの耐マイグレーション試験用印刷パターン64a、64b及び電極66a、66bを形成するために、ステンレス製の400メッシュのスクリーン(乳剤厚さ10μm)を用いてスクリーン印刷をした。次に、バッチ式の熱風式乾燥機を用いて、150℃で10分間、導電性ペーストの耐マイグレーション試験用印刷パターン64a、64b及び電極66a、66bを乾燥させた。導電性ペーストの耐マイグレーション試験用印刷パターン64a、64b及び電極66a、66bを乾燥させた後、ベルト式の焼成炉を用いて、耐マイグレーション試験用印刷パターン64a、64b及び電極66a、66bを焼成した。焼成温度は850℃で10分間保持した。焼成炉に入れてから取り出すまでの合計時間は60分だった。焼成後のマイグレーション試験用印刷パターン64a、64b及び電極66a、66bの厚さは10~20μmだった。以上のようにして、実施例3及び4、並びに比較例1の、耐マイグレーション試験のための試験片60を作製した。 The test pieces 60 for the migration resistance test of Examples 3 and 4 and Comparative Example 1 were produced in the following procedure. First, on a 110 mm x 20 mm x 0.8 mm (t) alumina substrate 62 (purity 96%) for migration resistance testing, as shown in FIG. 3 and FIG. The conductive paste was applied so that the two comb-shaped migration resistance test printed patterns 64a and 64b were alternated. The printed pattern for migration resistance test 64a is connected to the first electrode 66a, and the printed pattern for migration resistance test 64b is connected to the second electrode 66b. The print width L of the migration resistance test print patterns 64a, 64b is 200 μm, and the space S between the migration resistance test print patterns 64a, 64b is 200 μm. In order to form printed patterns 64a, 64b and electrodes 66a, 66b for conductive paste migration resistance testing, screen printing was performed using a 400 mesh screen made of stainless steel (emulsion thickness 10 μm). Next, the printed patterns 64a, 64b for the migration resistance test of the conductive paste and the electrodes 66a, 66b were dried at 150° C. for 10 minutes using a batch type hot air dryer. After drying the conductive paste migration resistance test printed patterns 64a, 64b and electrodes 66a, 66b, the migration resistance test printed patterns 64a, 64b and electrodes 66a, 66b were fired using a belt-type firing furnace. . The firing temperature was maintained at 850°C for 10 minutes. The total time from putting it in the kiln to taking it out was 60 minutes. The thickness of the migration test printed patterns 64a, 64b and the electrodes 66a, 66b after firing was 10 to 20 μm. As described above, test pieces 60 for the migration resistance test of Examples 3 and 4 and Comparative Example 1 were prepared.
 実施例20~22の耐マイグレーション試験のための試験片60は、次の手順で作製した。まず、実施例3及び4、並びに比較例1の試験片60と同様に、110mm×20mm×0.8mm(t)の耐マイグレーション試験用アルミナ基板62(純度96%)上に、スクリーン印刷によって、図3及び図4に示すように、2つのくし型状の耐マイグレーション試験用印刷パターン64a、64bが互い違いとなるように、導電性ペーストを塗布した。次に、熱風式乾燥機を用いて、200℃で30分間、導電性ペーストを熱処理することにより、導電性ペーストの接着強度試験用パターンを硬化させた。以上のようにして、実施例20~22の耐マイグレーション試験のための試験片を作製した。 The test piece 60 for the migration resistance test of Examples 20 to 22 was produced in the following procedure. First, similarly to the test piece 60 of Examples 3 and 4 and Comparative Example 1, a 110 mm x 20 mm x 0.8 mm (t) alumina substrate 62 (purity 96%) for migration resistance testing was coated with screen printing. As shown in FIGS. 3 and 4, the conductive paste was applied so that the two comb-shaped migration resistance test printed patterns 64a and 64b were alternated. Next, the conductive paste was heat-treated at 200° C. for 30 minutes using a hot air dryer to harden the adhesive strength test pattern of the conductive paste. In the manner described above, test pieces for the migration resistance tests of Examples 20 to 22 were prepared.
 実施例3、4及び20~22、並びに比較例1の耐マイグレーション試験用印刷パターン64a、64bの耐マイグレーション性を、以下の手順で測定した。まず、図3に示すように、2つの耐マイグレーション試験用印刷パターン64a、64bの第1電極66aと、第2電極66bとの間に電圧(40V)を印加した。温度85℃及び湿度85%の環境で保管した状態で、第1電極66aと第2電極66bとの間の絶縁抵抗値を測定した。絶縁抵抗値は、第1電極66aと、第2電極66bとの間に流れる電流の測定値と、印加電圧40Vとから算出した。印加電圧40Vを印加した試験片60を、最長500時間、温度85℃及び湿度85%の環境下に保持した。表9に、耐マイグレーション試験の結果を示す。試験前はすべての試料の絶縁抵抗値は、10Ω以上だった。500時間以内に絶縁抵抗値が10Ω以下になった試験片60を不良と判断し、表9に「不良」と記載した。500時間経過しても絶縁抵抗値が10Ω以下にならなかった試験片60を、耐マイグレーション性が優れていると判断し、表9に「良」と記載した。 The migration resistance of the printed patterns 64a and 64b for the migration resistance test of Examples 3, 4, and 20 to 22 and Comparative Example 1 was measured according to the following procedure. First, as shown in FIG. 3, a voltage (40 V) was applied between the first electrode 66a and the second electrode 66b of the two migration resistance test printed patterns 64a and 64b. The insulation resistance value between the first electrode 66a and the second electrode 66b was measured while stored in an environment with a temperature of 85° C. and a humidity of 85%. The insulation resistance value was calculated from the measured value of the current flowing between the first electrode 66a and the second electrode 66b and the applied voltage of 40V. The test piece 60 to which an applied voltage of 40 V was applied was held in an environment of a temperature of 85° C. and a humidity of 85% for a maximum of 500 hours. Table 9 shows the results of the migration resistance test. Before the test, the insulation resistance values of all samples were 10 7 Ω or more. A test piece 60 whose insulation resistance value became 10 6 Ω or less within 500 hours was judged to be defective, and was written as "defective" in Table 9. Test piece 60 whose insulation resistance value did not fall below 10 6 Ω even after 500 hours was judged to have excellent migration resistance, and was listed as "good" in Table 9.
[電極の亜鉛量]
 実施例3で調製した導電性ペーストを用いて、耐硫化性試験後の試験片の電極表面の亜鉛量をEDS(エネルギー分散型X線分光法)分析によって定量分析した。その結果、亜鉛の表面に3.09%亜鉛成分が析出されていることが確認できた。また、図13に、耐硫化性試験後の試験片の電極表面の亜鉛の分布をEDS分析するためのSEM写真(倍率5000倍)を示す。図14及び図15に、図13に示すSEM写真に対応する酸化亜鉛(ZnO)及びアルミニウム酸亜鉛(ZnAlO)の分布をEDS分析で測定した結果をグレースケールで示す。図13~15に示すように、電極表面には亜鉛単独ではなく、酸化亜鉛及びアルミニウム酸亜鉛として存在することが確認できた。
[Amount of zinc in electrode]
Using the conductive paste prepared in Example 3, the amount of zinc on the electrode surface of the test piece after the sulfidation resistance test was quantitatively analyzed by EDS (energy dispersive X-ray spectroscopy) analysis. As a result, it was confirmed that 3.09% zinc component was precipitated on the surface of zinc. Moreover, FIG. 13 shows an SEM photograph (5000x magnification) for EDS analysis of the zinc distribution on the electrode surface of the test piece after the sulfidation resistance test. 14 and 15 show in gray scale the results of measuring the distribution of zinc oxide (ZnO) and zinc aluminate (ZnAlO) by EDS analysis corresponding to the SEM photograph shown in FIG. 13. As shown in FIGS. 13 to 15, it was confirmed that zinc was not present alone on the electrode surface, but as zinc oxide and zinc aluminate.
[SEMによる表面及び断面観察、並びにEDS分析による断面観察]
 図5及び図6に、抵抗値変化割合が比較的小さかった実施例3の耐硫化性試験の試験片50と同様の条件で作製した試験片の表面及び断面を、5000倍の倍率で走査型電子顕微鏡(SEM)によって撮影したSEM写真を示す。図7及び図8に、実施例3の耐硫化性試験の試験片50と同様の条件で作製した試験片の断面を、EDS分析した結果を示す。図9及び図10に、抵抗値変化割合が大きかった比較例1の耐硫化性試験の試験片50と同様の条件で作製した試験片の表面及び断面を、5000倍の倍率でSEMによって撮影したSEM写真を示す。図11及び図12に、比較例1の耐硫化性試験の試験片50と同様の条件で作製した試験片の断面を、EDS分析した結果を示す。なお、試験片は、耐硫化性試験の場合と同様に、硫黄雰囲気(60℃)で150時間、保管した後に、SEM観察、及びEDS分析を行った。
[Surface and cross-sectional observation by SEM, and cross-sectional observation by EDS analysis]
Figures 5 and 6 show the surface and cross section of a test piece prepared under the same conditions as test piece 50 of the sulfidation resistance test of Example 3, in which the rate of change in resistance value was relatively small. A SEM photograph taken by an electron microscope (SEM) is shown. 7 and 8 show the results of EDS analysis of a cross section of a test piece prepared under the same conditions as the test piece 50 of the sulfidation resistance test of Example 3. 9 and 10, the surface and cross section of a test piece prepared under the same conditions as test piece 50 of the sulfidation resistance test of Comparative Example 1, in which the rate of change in resistance value was large, was photographed by SEM at a magnification of 5000 times. A SEM photograph is shown. 11 and 12 show the results of EDS analysis of a cross section of a test piece prepared under the same conditions as the test piece 50 of the sulfidation resistance test of Comparative Example 1. Note that, as in the case of the sulfidation resistance test, the test piece was stored in a sulfur atmosphere (60° C.) for 150 hours, and then subjected to SEM observation and EDS analysis.
[評価]
 表1~4に示す結果から明らかなように、実施例1~22の導電性ペーストを焼成して得られた電極パターンは、抵抗値変化割合は220.2%(実施例19)以下であり、比較的低かった。これに対し、比較例1~3の導電性ペーストを焼成して得られた電極パターンは、抵抗値変化割合が300%(比較例1)以上であるか、又は耐硫化性試験の硫黄雰囲気での保管後の電気抵抗値が高過ぎて、測定不能だった。
[evaluation]
As is clear from the results shown in Tables 1 to 4, the electrode patterns obtained by firing the conductive pastes of Examples 1 to 22 had a resistance change rate of 220.2% or less (Example 19). , was relatively low. On the other hand, the electrode patterns obtained by firing the conductive pastes of Comparative Examples 1 to 3 had a resistance value change rate of 300% or more (Comparative Example 1) or were exposed to a sulfur atmosphere in the sulfidation resistance test. The electrical resistance value after storage was too high to be measured.
 表1~4に示す結果から明らかなように、実施例1~22の導電性ペーストを焼成して得られた接着強度試験用パターンの引張り接着強度は、17.2N(実施例7、17及び21)~25.9N(実施例10)の範囲であり、高い引張り接着強度を得ることができた。一方、比較例1~3の導電性ペーストを焼成して得られた電極パターンの引張り接着強度は、10.1N(比較例3)~20.1N(比較例1)の範囲であり、引張り接着強度としては問題のない範囲だった。 As is clear from the results shown in Tables 1 to 4, the tensile adhesive strength of the adhesive strength test patterns obtained by firing the conductive pastes of Examples 1 to 22 was 17.2N (Examples 7, 17, and 21) to 25.9N (Example 10), and a high tensile adhesive strength could be obtained. On the other hand, the tensile adhesive strengths of the electrode patterns obtained by firing the conductive pastes of Comparative Examples 1 to 3 ranged from 10.1 N (Comparative Example 3) to 20.1 N (Comparative Example 1), and the tensile adhesive strength The strength was within a reasonable range.
 表9に示す結果から、本実施形態の実施例3、4及び20~22の電極は、比較例1と比べて、耐マイグレーション性が優れていることが明らかである。 From the results shown in Table 9, it is clear that the electrodes of Examples 3, 4, and 20 to 22 of the present embodiment have better migration resistance than Comparative Example 1.
 図5及び図6に示す実施例3と、図9及び図10に示す比較例1のSEM写真を比較すると、実施例3に比べ、比較例1は硫化により硫化銀20の結晶が大きく形成されていることが理解できる。比較例1の図10では、電極10の一部にボイド30が発生していることも見て取れる。また、図11及び図12に示す比較例1と、図7及び図8に示す実施例3のEDS分析結果からも、実施例3に比べ、比較例1は硫化により硫化銀20の結晶が大きく形成されているのが理解できる。したがって、本実施形態の実施例の電極は、比較例と比べて、高い耐硫化性を有するといえる。 Comparing the SEM photographs of Example 3 shown in FIGS. 5 and 6 and Comparative Example 1 shown in FIGS. 9 and 10, it is found that in Comparative Example 1, larger crystals of silver sulfide 20 were formed due to sulfidation than in Example 3. I can understand that. In FIG. 10 of Comparative Example 1, it can also be seen that voids 30 are generated in a part of the electrode 10. Furthermore, from the EDS analysis results of Comparative Example 1 shown in FIGS. 11 and 12 and Example 3 shown in FIGS. I can understand what is being formed. Therefore, it can be said that the electrode of the example of this embodiment has higher sulfidation resistance than that of the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 10 電極
 20 硫化銀
 30 ボイド
 50 耐硫化性試験の試験片
 52 耐硫化性試験用アルミナ基板
 54 耐硫化性試験用印刷パターン
 54a、54b 耐硫化性試験用印刷パターンの端部
 60 耐マイグレーション試験の試験片
 62 耐マイグレーション試験用アルミナ基板
 64a、64b 耐マイグレーション試験用印刷パターン
 66a 第1電極
 66b 第2電極
 100 チップ抵抗器
 102 アルミナ基板
 104 抵抗体
 106 取り出し電極
 108 下面電極
 110 接続電極
 112 ニッケルめっき膜
 114 スズめっき膜
10 Electrode 20 Silver sulfide 30 Void 50 Test piece for sulfidation resistance test 52 Alumina substrate for sulfidation resistance test 54 Printed pattern for sulfidation resistance test 54a, 54b Edge of printed pattern for sulfidation resistance test 60 Test for migration resistance test Piece 62 Alumina substrate for migration resistance test 64a, 64b Printed pattern for migration resistance test 66a First electrode 66b Second electrode 100 Chip resistor 102 Alumina substrate 104 Resistor 106 Takeout electrode 108 Bottom electrode 110 Connection electrode 112 Nickel plating film 114 Tin Plating film

Claims (12)

  1.  (A)導電性粒子と、
     (B)バインダー樹脂と
    を含む導電性ペーストであって、
     (A)導電性粒子が、表面処理金属粒子を含み、
     前記表面処理金属粒子が、金属粒子と、前記金属粒子の表面の少なくとも一部に配置される表面処理層とを含み、
     前記表面処理層が、亜鉛化合物を含む、導電性ペースト。
    (A) conductive particles;
    (B) A conductive paste containing a binder resin,
    (A) the conductive particles include surface-treated metal particles,
    The surface-treated metal particles include metal particles and a surface treatment layer disposed on at least a portion of the surface of the metal particles,
    A conductive paste, wherein the surface treatment layer contains a zinc compound.
  2.  前記表面処理金属粒子に含まれる亜鉛の含有量が10~1000ppmである、請求項1に記載の導電性ペースト。 The conductive paste according to claim 1, wherein the zinc content contained in the surface-treated metal particles is 10 to 1000 ppm.
  3.  前記表面処理層が、更に有機物を含む、請求項1又は2に記載の導電性ペースト。 The conductive paste according to claim 1 or 2, wherein the surface treatment layer further contains an organic substance.
  4.  前記金属粒子が、銀を50重量%以上含む、請求項1~3のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 3, wherein the metal particles contain 50% by weight or more of silver.
  5.  前記(A)導電性粒子の平均粒径(D50)が0.5~10μmである、請求項1~4のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 4, wherein the conductive particles (A) have an average particle diameter (D50) of 0.5 to 10 μm.
  6.  前記(B)バインダー樹脂の含有量が、前記(A)導電性粒子100重量部に対して0.1~30重量部である、請求項1~5のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 5, wherein the content of the (B) binder resin is 0.1 to 30 parts by weight based on 100 parts by weight of the (A) conductive particles. .
  7.  前記導電性ペーストが、(C)ガラスフリットを更に含む、請求項1~6のいずれか1項に記載の導電性ペースト。 The conductive paste according to any one of claims 1 to 6, wherein the conductive paste further contains (C) glass frit.
  8.  前記(C)ガラスフリットが、ZnOを含む、請求項7に記載の導電性ペースト。 The conductive paste according to claim 7, wherein the glass frit (C) contains ZnO.
  9.  前記導電性ペーストの前記(C)ガラスフリットの含有量が、前記(A)導電性粒子100重量部に対し0.05~10重量部である、請求項7又は8に記載の導電性ペースト。 The conductive paste according to claim 7 or 8, wherein the content of the (C) glass frit in the conductive paste is 0.05 to 10 parts by weight based on 100 parts by weight of the (A) conductive particles.
  10.  請求項1~9のいずれか1項に記載の導電性ペーストを焼成又は熱処理して得られる電極。 An electrode obtained by firing or heat-treating the conductive paste according to any one of claims 1 to 9.
  11.  前記電極が、亜鉛を0.1~10重量%含む、請求項10に記載の電極。 The electrode according to claim 10, wherein the electrode contains 0.1 to 10% by weight of zinc.
  12.  請求項10又は11に記載の電極を含む、電子部品又は電子機器。 An electronic component or electronic device comprising the electrode according to claim 10 or 11.
PCT/JP2023/030674 2022-08-26 2023-08-25 Electroconductive paste, electrode, electronic component, and electronic appliance WO2024043328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022134752 2022-08-26
JP2022-134752 2022-08-26

Publications (1)

Publication Number Publication Date
WO2024043328A1 true WO2024043328A1 (en) 2024-02-29

Family

ID=90013509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030674 WO2024043328A1 (en) 2022-08-26 2023-08-25 Electroconductive paste, electrode, electronic component, and electronic appliance

Country Status (1)

Country Link
WO (1) WO2024043328A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217952A (en) * 2003-01-09 2004-08-05 Mitsui Mining & Smelting Co Ltd Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
JP2015036442A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Method for producing surface-treated metal powder
JP2021155846A (en) * 2020-03-27 2021-10-07 三井金属鉱業株式会社 Surface-treated particle and method for producing the same, and conductive composition containing surface-treated particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217952A (en) * 2003-01-09 2004-08-05 Mitsui Mining & Smelting Co Ltd Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
JP2015036442A (en) * 2013-08-13 2015-02-23 Jx日鉱日石金属株式会社 Method for producing surface-treated metal powder
JP2021155846A (en) * 2020-03-27 2021-10-07 三井金属鉱業株式会社 Surface-treated particle and method for producing the same, and conductive composition containing surface-treated particle

Similar Documents

Publication Publication Date Title
KR102079148B1 (en) Electroconductive paste
US20120219787A1 (en) Conductive metal paste composition and method of manufacturing the same
EP3121819B1 (en) Conductive paste, processes using the conductive paste and uses of the conductive paste for forming a laminated ceramic component, printed wiring board and electronic device
JP2006049147A (en) Conductive paste
KR20140094690A (en) Electroconductive ink comoposition and method for forming an electrode by using the same
KR20150064054A (en) Silver hybrid copper powder, method for producing same, conductive paste containing silver hybrid copper powder, conductive adhesive, conductive film and electrical circuit
JP2006049148A (en) Conductive paste
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
EP3419028B1 (en) Conductive paste
JP6737506B2 (en) Conductive paste, chip electronic component and manufacturing method thereof
WO2024043328A1 (en) Electroconductive paste, electrode, electronic component, and electronic appliance
CN112602158B (en) conductive paste
WO2024042764A1 (en) Conductive paste, electrode, electronic component, and electronic device
JP7335671B1 (en) Conductive pastes, electrodes, electronic components and electronic equipment
WO2021145269A1 (en) Electroconductive paste, electrode and chip resistor
TW202419587A (en) Conductive paste, electrode, electronic component and electronic instrument
TW202413548A (en) Conductive paste, electrode, electronic component, and electronic instrument
JP4024787B2 (en) Conductive paste for forming conductive portion of ferrite multilayer circuit board and ferrite multilayer circuit board using the conductive paste
CN110809806B (en) Conductive paste
JP6357599B1 (en) Conductive paste

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857436

Country of ref document: EP

Kind code of ref document: A1