WO2024042761A1 - Space floating video display device - Google Patents

Space floating video display device Download PDF

Info

Publication number
WO2024042761A1
WO2024042761A1 PCT/JP2023/012608 JP2023012608W WO2024042761A1 WO 2024042761 A1 WO2024042761 A1 WO 2024042761A1 JP 2023012608 W JP2023012608 W JP 2023012608W WO 2024042761 A1 WO2024042761 A1 WO 2024042761A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display device
image
floating
image display
Prior art date
Application number
PCT/JP2023/012608
Other languages
French (fr)
Japanese (ja)
Inventor
宏明 ▲高▼橋
浩二 平田
浩司 藤田
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2024042761A1 publication Critical patent/WO2024042761A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects

Definitions

  • the present disclosure relates to technology for a spatially floating video display device.
  • Patent Document 1 states, ⁇ The CPU of the information processing device includes an approach direction detection section that detects the direction in which the user approaches an image formed in the air, and an input coordinate detection section that detects the coordinates at which the input is detected. , includes an operation reception unit that processes the reception of an operation, and an operation screen update unit that updates the operation screen according to the received operation.When the user approaches the image from a predetermined direction, the CPU detects the movement of the user. is accepted as an operation, and the process corresponding to the operation is executed.''
  • Patent Document 1 can improve the operability of the spatially floating video, it does not take into consideration the improvement in the apparent resolution and contrast of the spatially floating video. There is a real need for further improvement in the quality of floating images.
  • Floating video display devices have a wide range of uses, and when used as signage (advertisement billboards), they attract the attention of many people due to the unusual feature of ⁇ images floating in space,'' which is not found on conventional flat displays. Effects can be obtained. Furthermore, as described in Patent Document 1, if a floating image is used as a human interface for performing some kind of operation, the non-contact feature prevents virus infection through contact parts such as push buttons. Effects can be obtained. Furthermore, if a floating image display device could be easily installed in a home's study, living room, or workplace, characters, figures, or videos that were previously simply displayed on an LCD screen could be displayed as floating images. It is visually pleasing and suitable as an interior accessory.
  • the spatially floating video is It is desirable that only the
  • the image light emitted from the image source that is the source of the spatially floating image can be seen even by a person on the opposite side of the user's eye position. It has been desired to solve this problem, that is, to make the image light invisible to people other than the user who are on the opposite side of the user's eye position.
  • An object of the present disclosure is to make it possible to prevent the image light from being visible to a person on the opposite side of the user's eye position when the user views the spatially floating image with respect to a spatially floating image display device.
  • the goal is to provide technology.
  • an object of the present disclosure is to provide a technology that is suitable for indoor use and can display a highly visible spatial floating image.
  • a space-floating video display device is a space-floating video display device that displays a space-floating video, and is disposed opposite to the video display device, and has a ⁇ /4 plate (retardation plate) on a retroreflective surface.
  • a retroreflective member provided with a quarter-wave plate), and polarized light arranged at a predetermined angle with respect to the video display device and the retroreflective member in a space connecting the video display device and the retroreflective member.
  • the image display device includes a light source device and a liquid crystal display panel as an image source, and the image light of a specific polarization emitted from the liquid crystal display panel, specifically, P
  • the polarized image light passes through the polarization separation member (also referred to as a beam splitter), is reflected by the retroreflection member, and passes through the ⁇ /4 plate twice to be polarized into S-polarized image light. Ru.
  • the S-polarized image light reflected by the retroreflection member is reflected by the polarization separation member, and a spatial floating image, which is a real image, is displayed at a predetermined position based on the reflected image light.
  • the P-polarized image light passes through the beam splitter, a part of the P-polarized image light is reflected without passing through the beam splitter. A portion of the reflected image light reflected by this beam splitter can be seen by a person on the back side of the floating image display device, more specifically, from a person on the opposite side from the eye position of the user viewing the floating image. This problem arises.
  • the spatially floating image display device of the present embodiment has a configuration in which the reflected image light reflected by the beam splitter is not generated, or the amount of the reflected image light is sufficiently reduced. More specifically, the spatial floating image display device of this embodiment sets the incident angle of the image light (P-polarized image light) to the beam splitter at a predetermined angle (Brewster's angle: ⁇ B), so that The structure is such that the reflected image light does not occur.
  • a space floating video display when a user views a space floating video, video light is visible from a person on the opposite side of the user's eye position. You can make it impossible. Further, according to the representative embodiment, it is possible to display a floating image in space that is suitable for indoor use and has high visibility. According to the representative embodiment, a bright and highly visible spatially floating image can be displayed, and reflected image light that is generated when the image light that forms the spatially floating image is reflected by a beam splitter does not occur. , or a configuration that sufficiently reduces the amount of reflected image light.
  • FIG. 1 is a diagram illustrating an example of a usage pattern of a floating image display device according to an embodiment.
  • 1 is a diagram showing a V-shaped configuration as an example of the main part configuration of a floating image display device according to an embodiment
  • FIG. 1 is a diagram illustrating a Z-shaped configuration as an example of a main configuration of a floating image display device according to an embodiment
  • FIG. 3 is a diagram showing an example of a detailed structure of a retroreflective member.
  • FIG. 3 is a characteristic diagram showing the relationship between the surface roughness of a retroreflective member and the amount of blur of a retroreflective image (a spatially floating image).
  • 1 is a diagram illustrating a configuration example of a video display device according to an embodiment.
  • FIG. 1 is a diagram illustrating an example of the external configuration of a floating image display device according to an embodiment (first embodiment);
  • FIG. 1 is a diagram illustrating a cross-sectional configuration example of a floating video display device according to an embodiment (first embodiment) when viewed from the side;
  • FIG. 2 is a perspective view showing an example of the external configuration of a floating image display device according to an example (second example).
  • FIG. 2 is a diagram illustrating a cross-sectional configuration example of a floating image display device according to an embodiment (second embodiment) when viewed from the side.
  • FIG. 3 is a diagram showing the relationship between the incident angle and reflectance, and the Brewster angle.
  • FIG. 1 is a diagram illustrating an example of the external configuration of a floating image display device according to an embodiment (first embodiment)
  • FIG. 1 is a diagram illustrating a cross-sectional configuration example of a floating video display device according to an embodiment (first embodiment) when viewed from the side
  • FIG. 2 is a perspective view showing
  • FIG. 2 is a perspective view showing an example of the external configuration of a floating video display device according to an embodiment (third embodiment).
  • FIG. 7 is a diagram illustrating a cross-sectional configuration example of a space floating video display device according to an embodiment (third embodiment) when viewed from the side.
  • FIG. 7 is a diagram illustrating an example of mounting a ⁇ /2 plate in a video display unit in a floating video display device according to an embodiment (a modification of the second embodiment).
  • the processor is composed of, for example, a semiconductor device such as a CPU/MPU or a GPU.
  • a processor is composed of devices and circuits that can perform predetermined operations.
  • the processing is not limited to software program processing, but can also be implemented using a dedicated circuit.
  • As the dedicated circuit FPGA, ASIC, CPLD, etc. can be applied.
  • the program may be installed as data in the target computer in advance, or may be distributed as data from a program source to the target computer and installed.
  • the program source may be a program distribution server on a communication network, or may be a non-transitory computer-readable storage medium such as a memory card or disk.
  • a program may be composed of multiple modules.
  • a computer system may be configured by multiple devices.
  • the computer system may be configured with a client/server system, a cloud computing system, etc.
  • Various types of data and information are configured, for example, in a structure such as a table or a list, but are not limited thereto. Expressions such as identification information, identifier, ID, name, number, etc. can be replaced with each other.
  • the spatially floating image display device includes an image display device, a beam splitter which is a polarization separation member, and a retroreflection device in which a ⁇ /4 plate (retardation plate, quarter wavelength plate) is provided on a retroreflection surface. and a reflective member.
  • a video display device includes a light source device and a display panel or liquid crystal display panel that emits video light of a specific polarization (for example, P-polarized light) as a video source (video display element). The light source device generates and supplies light as a backlight to the liquid crystal display panel.
  • a polarization separation member is arranged in a space connecting the liquid crystal display panel of the video display device and the retroreflection member.
  • the polarization separation member transmits image light of a specific polarization from the liquid crystal display panel toward the retroreflection member, and converts the image light of the other polarization (for example, S-polarized light) into the other polarization after polarization conversion by the retroreflection member and the ⁇ /4 plate. ) has the property of reflecting image light. After reflection, the image light of the other polarization generates and displays a spatially floating image, which is a real image, at a predetermined position in a direction different from that of the image display device.
  • the image display device may be provided with a polarization conversion unit that aligns the light source light from the light source device to polarization in a specific direction in order to improve the contrast performance of the spatially floating image.
  • a light source device includes a point-like or planar light source, an optical element section that reduces the divergence angle of light from the light source, and a polarization conversion section (such as a polarization conversion element) that aligns the light from the light source with polarization in a specific direction. and a light guide having a reflective surface that propagates the light from the light source to the liquid crystal display panel, and controls the image luminous flux of the image light from the liquid crystal display panel by the shape and surface roughness of the reflective surface of the light guide.
  • the space-floating video display device of the embodiment is designed to be used particularly, but not exclusively, indoors, and includes a video display device portion having a casing that can be installed on a desk, and a space-floating video display portion having a frame structure. It is composed of
  • the video display device section mainly includes a liquid crystal display panel and a light source (backlight).
  • the spatially floating image display section is configured with an optical system consisting of a polarization separation member, a retroreflection member, and the like.
  • the optical system of this embodiment has a structure supported by a frame made of metal or resin.
  • spatial floating image display device In the following embodiments, for example, an image generated by image light from a large-area image light source is transmitted through a transparent member that partitions the space, such as the glass of a shop window, to create a space inside or outside the store space.
  • the present invention relates to a spatial floating image display device that can display floating images.
  • an image generated by image light from an image light emitting source having a smaller area can be produced using a polarization separation member (in other words, a polarization beam splitter, or simply a beam
  • a polarization separation member in other words, a polarization beam splitter, or simply a beam
  • the present invention relates to a spatially floating image display device that uses an optical system composed of a splitter (splitter) and a retroreflector, and is mainly used for displaying spatially floating images indoors.
  • an image floating in space is expressed using the term “space floating image.” Instead of this term, it may be expressed as “aerial image”, “aerial floating image”, “aerial floating optical image of a displayed image”, “aerial floating optical image of a displayed image”, etc.
  • space floating image used in the description of the embodiments is used as a representative example of these terms.
  • the spatial floating image display device of the embodiment can be installed in a relatively small space such as on a desk in a study, on a table in a living room, or at a kitchen counter.
  • the reflected image light (details will be described later) is made invisible to the user who can see the spatially floating image, but to the person on the opposite side of the spatially floating image display device. It becomes possible to provide a spatially floating image display device.
  • the spatially floating image display device of the prior art uses an organic EL panel or a liquid crystal display panel as a high-resolution color display image source in combination with a retroreflective member.
  • the image light is diffused over a wide angle, and therefore the following problems occur.
  • the retroreflective member 2 since the retroreflective portion 2a is a hexahedron, in addition to the normally reflected reflected light, a ghost image is created by the image light incident obliquely on the retroreflective member 2. There was a problem in that the image quality of floating images was degraded.
  • the retroreflective member 2 is also called a retroreflective plate, a retroreflective sheet, or the like.
  • the spatially floating image obtained by reflecting the image light from the image display device, which is the image source, on the retroreflective member 2 includes the pixels of the liquid crystal display panel, in addition to the above-mentioned ghost image. There was also the issue of blurring occurring at different times.
  • FIG. 1 shows an example of a usage pattern and a configuration example of a spatially floating video display device according to an embodiment.
  • FIG. 1A shows the overall configuration of a spatially floating video display device according to this embodiment.
  • a space is partitioned by a show window (window glass) 105 that is a light-transmissive member (also referred to as a transparent member) such as glass.
  • the spatial floating image can be displayed in one direction to the outside of the store space through the transparent member.
  • FIG. 1A shows a case where, in the depth direction, the back side of the window glass 105 is the inside of the store, and the front side is the outside of the store (for example, a sidewalk).
  • a means such as an optical member
  • FIG. 1B shows a block configuration of the video display device 1 described above.
  • the video display device 1 includes a video display section 1a that displays the original image of the spatial floating video 3, a video control section 1b that converts the input video according to the resolution of the panel of the video display section 1a, and receives a video signal.
  • the video signal receiving unit 1c includes a video signal receiving unit 1c and a receiving antenna 1d.
  • the video signal receiving unit 1c supports wired input signals such as USB (Universal Serial Bus: registered trademark) input and HDMI (High-Definition Multimedia Interface: registered trademark) input, as well as Wi-Fi (Wireless Fidelity: registered (Trademark) and other wireless input signals.
  • the video display device 1 functions independently as a video receiving/displaying device, and can also display video information from an external PC, tablet, smartphone, or the like. Furthermore, the video display device 1 can be provided with capabilities such as calculation processing and video analysis processing by connecting a stick PC or the like.
  • FIG. 2 shows an example of the configuration of the main parts of a floating image display device according to an embodiment.
  • the embodiment shown in FIG. 2 shows a configuration in which an image display device 1 and a retroreflective member (in other words, a retroreflective plate) 2 are arranged in a substantially V shape (hereinafter referred to as a V shape).
  • a V shape a substantially V shape
  • a specific polarized light is generated in an oblique direction (direction corresponding to the optical axis A1) with respect to a transparent member 100 such as a flat glass (disposed horizontally in this example).
  • the image display device 1 is provided with an image display device 1 that generates image light.
  • the video display device 1 includes a light source device 13, a liquid crystal display panel 11 which is a liquid crystal display element, an absorption type polarizing plate 12, and the like.
  • image light of a specific polarization emitted from the liquid crystal display panel 11 of the image display device 1 travels in the direction of the optical axis A1, and selectively reflects the image light of a specific polarization provided on the transparent member 100. It is reflected by the beam splitter 101 (polarization separation member) having a film, travels in the direction of the optical axis A2, and enters the retroreflection member 2.
  • the beam splitter 101 is formed into a sheet shape and is adhered to the lower surface of a transparent member 100 such as flat glass.
  • the beam splitter 101 may be formed by directly depositing an optical thin film on flat glass.
  • a ⁇ /4 plate 21 is provided on the image light incident surface (in other words, the retroreflective surface) of the retroreflective member 2.
  • the ⁇ /4 plate 21 is a polarization conversion element, a retardation plate, and a quarter wavelength plate.
  • the image light on the optical axis A2 from the beam splitter 101 is passed through the ⁇ /4 plate 21 twice, once when it enters the retroreflector 2 and when it exits from the retroreflector 2.
  • Polarization conversion is performed from a specific polarization (one polarization) to the other polarization.
  • the beam splitter 101 that selectively reflects the image light of a specific polarization has a property of transmitting the image light of the other polarization after polarization conversion. Therefore, the image light of the other polarization after polarization conversion is transmitted through the beam splitter 101.
  • the image light transmitted through the beam splitter 101 forms and displays a spatially floating image 3, which is a real image, at a predetermined position outside the transparent member 100 in the direction of the optical axis A3 corresponding to the optical axis A2.
  • the light forming the space floating image 3 is a collection of light rays that converge from the retroreflective member 2 to the optical image of the space floating image 3, and these light rays continue to travel straight even after passing through the optical image of the space floating image 3. do. Therefore, in the configuration of FIG. 2, when the user views the image from the direction A indicated by the arrow corresponding to the optical axis A3, the spatially floating image 3 is viewed as a bright image. However, when viewed by another person from the direction B indicated by the arrow, for example, the floating image 3 cannot be viewed as an image at all. Such characteristics are very suitable for use in systems that display videos that require high security or highly confidential videos that should be kept secret from the person directly facing the user.
  • the polarization axes of the reflected image light may become uneven. In this case, some of the image light whose polarization axes are not aligned is reflected by the beam splitter 101 described above and returns to the image display device 1 . When this returned light is reflected again on the image display surface of the liquid crystal display panel 11 that constitutes the image display device 1, a ghost image may be generated and the image quality of the spatially floating image 3 may be degraded. Therefore, in this embodiment, an absorption type polarizing plate 12 is provided on the image display surface of the image display device 1.
  • the image light emitted from the image display device 1 is transmitted through the absorption type polarizing plate 12, and the reflected light returning from the beam splitter 101 is absorbed by the absorption type polarizing plate 12. Thereby, the above-mentioned re-reflection can be suppressed, and image quality deterioration due to ghost images of the spatially floating image 3 can be prevented.
  • the beam splitter (polarization separation member) 101 described above is formed of, for example, a reflective polarizing plate or a metal multilayer film that reflects a specific polarized wave. More specifically, the beam splitter 101 can be constructed by depositing an optical thin film on flat glass (for example, quartz glass).
  • FIG. 3 shows a configuration example of a main part of a floating image display device according to an embodiment, which is different from the embodiment shown in FIG.
  • a video display device 1 and a retroreflective member 2 are arranged facing each other, and a beam splitter 101 is installed between the video display device 1 and the retroreflective member 2 in a space connecting them.
  • This figure shows a configuration (hereinafter referred to as Z-shape) in which they are arranged approximately in a Z-shape (or inverted Z-shape) at an angle of about 45 degrees with respect to each other.
  • a transparent member 100 such as a glass plate and a An absorption type polarizing plate 112 is provided.
  • the video display device 1 and the retroreflective member 2 are arranged at an angle of approximately 90 degrees with the transparent member 100 and the absorption polarizing plate 112, and are arranged at an angle of approximately 45 degrees with the beam splitter 101. are arranged at an angle.
  • the beam splitter 101 is arranged in the horizontal direction, and the position of the image displayed on the image display device 1, more specifically, the liquid crystal display panel 11, and the position where the spatial floating image 3 is formed. This means that the beam splitter 101 has a plane-symmetrical positional relationship.
  • FIG. 4A shows the surface shape of a retroreflective member 2 (retroreflector plate) manufactured by Nippon Carbide Industries Co., Ltd. used in this study as a typical retroreflective member 2.
  • FIG. 4A shows a top view
  • FIG. 4B shows a side view.
  • This emitted light forms a spatially floating image 3 as a regular reflected image (regular image), for example, in the configuration shown in FIGS. 2 and 3.
  • a regular reflected image regular image
  • some of the image light from the image display device 1 that is obliquely incident on the retroreflective member 2 may be placed at a position different from the normal image.
  • a ghost image is formed. This ghost image reduces the visibility of the spatially floating image 3.
  • a real image floating in space 3 is displayed without forming a ghost image.
  • the resolution of this spatially floating image 3 largely depends on the outer diameter D and pitch P of the retroreflective portion 2a of the retroreflective member 2 shown in FIG. 4A, in addition to the resolution of the liquid crystal display panel 11.
  • the diameter D of the retroreflective portion 2a is 240 ⁇ m and the pitch P is 300 ⁇ m, one pixel of the spatial floating image 3 is equivalent to 300 ⁇ m.
  • the effective resolution of the spatial floating image 3 is reduced to about 1/3. Therefore, in order to make the resolution of the floating image 3 equivalent to that of the image display device 1, it is desirable to make the diameter D and pitch P of the retroreflective portion 2a close to one pixel of the liquid crystal display panel. On the other hand, in order to suppress the occurrence of moiré due to the pixels of the retroreflective member 2 and the liquid crystal display panel 11, it is preferable to design the pitch ratio of each of them to be outside an integral multiple of one pixel. Further, the shape may be such that none of the sides of the retroreflective portion 2a overlaps any one side of one pixel of the liquid crystal display panel 11.
  • the present inventor has determined the relationship between the amount of image blur l (small L) and the pixel size L (large L) of the image of the spatially floating image 3 that is permissible in order to improve visibility in a liquid crystal display panel 11 with a pixel pitch of 40 ⁇ m.
  • the image display device 1 was created in combination with the light source device 13 having a narrow divergence angle (divergence angle of 15°) of this example, and was determined through experiments.
  • FIG. 5 shows the experimental results. It was found that the amount of blur l that deteriorates visibility is desirably 40% or less of the pixel size, and is hardly noticeable if it is 15% or less.
  • the surface roughness of the reflective surface for which this blur amount l is an acceptable level is that the average roughness is 160 nm or less within a measurement distance of 40 ⁇ m, and for a less noticeable blur amount l, the surface roughness of the reflective surface is 120 nm or less. was found to be desirable. For this reason, it is desirable to reduce the surface roughness of the retroreflective member 2 described above, and to make the surface roughness including the reflective film forming the reflective surface and its protective film below the above-mentioned value.
  • the retroreflective member 2 in order to manufacture the retroreflective member 2 at a low cost, it is preferable to mold it using a roll press method. Specifically, this is a method in which the retroreflective parts 2a are aligned and shaped on the film. In this method, the reverse shape of the shape to be shaped is formed on the roll surface, an ultraviolet curing resin is applied on the fixing base material, and the resin is passed between the rolls to form the required shape, and is irradiated and cured to obtain a retroreflective member 2 having a desired shape.
  • the video display device 1 of this embodiment uses a liquid crystal display panel 11 and a light source device 13 (details shown in FIG. 6) as a light source that generates light of a specific polarization to provide an image that is viewed obliquely from the above-mentioned retroreflective member 2.
  • the possibility of image light entering is reduced.
  • a structurally superior system is obtained in which the generation of ghost images is suppressed, and even if a ghost image occurs, the brightness of the ghost image is low.
  • the beam splitter 101 is arranged at an angle of about 45 degrees with respect to the horizontal beam splitter 101.
  • the image light from the image display device 1 passes through the beam splitter 101 in the direction of the optical axis B1 (diagonal direction with respect to the beam splitter 101), and passes through the beam splitter 101 in the direction of the optical axis B2 (corresponding to the direction D) corresponding to the optical axis B1. Then, it moves toward the retroreflective member 2.
  • the image light from the image display device 1 is light of a specific polarization, for example, image light having characteristics of P-polarized light (Parallel Polarization).
  • the beam splitter 101 is a polarization separation member such as a reflective polarizing plate, and transmits the P-polarized image light from the image display device 1, but transmits the S-polarized (vertical polarization) image light. It has a reflective property.
  • This beam splitter 101 is formed from a reflective polarizing plate or a metal multilayer film that reflects a specific polarized wave.
  • a ⁇ /4 plate 21 is provided on the light incidence surface (retroreflection surface) of the retroreflection member 2.
  • the P-polarized image light transmitted through the beam splitter 101 from the image display device 1 passes through the ⁇ /4 plate 21 twice in total when entering and exiting the retroreflective member 2, thereby converting the P-polarized light into S-polarized light.
  • the polarization is converted to As a result, the S-polarized image light after polarization conversion from the retroreflective member 2 is reflected by the beam splitter 101 and proceeds toward the transparent member 100 and the like.
  • the S-polarized image light that has traveled in the direction corresponding to the optical axis B3 after reflection (oblique direction with respect to the beam splitter 101) is transmitted through the transparent member 100 such as a glass plate and the absorptive polarizing plate 112, and is A spatial floating image 3, which is a real image, is generated and displayed at a predetermined position on the outside.
  • the optical system composed of optical components such as the video display device 1, retroreflective member 2, and beam splitter 101
  • transparent It is preferable to provide an absorption type polarizing plate 112 on the outer surface of the member 100. Since the polarization axes may become misaligned due to retroreflection of the light by the retroreflection member 2, some of the image light may be reflected by the beam splitter 101 and returned to the image display device 1. This returned light is reflected again on the image display surface of the liquid crystal display panel 11 constituting the image display device 1, thereby generating a ghost image and significantly degrading the image quality of the spatially floating image 3.
  • an absorption polarizing plate 12 is provided on the image display surface of the image display device 1.
  • an anti-reflection film (not shown) may be provided on the image exit side surface of the absorptive polarizing plate 12 provided on the surface of the image display device 1.
  • the absorption type polarizing plate 12 absorbs light that causes a ghost image, thereby preventing image quality deterioration of the spatially floating image 3 due to the ghost image.
  • the retroreflective member 2 is tilted downward with respect to the direction of incidence of external light, thereby blocking the incidence of external light.
  • the main incident direction of external light is set to be a direction (diagonal direction such as optical axis B3) corresponding to direction C shown by the arrow (direction in which the user views the floating image 3 from the front).
  • the retroreflective member 2 is arranged such that the optical axis B2 is at an angle of, for example, about 90 degrees with respect to the direction C (optical axis B3).
  • the main surface of the retroreflective member 2 is arranged at an angle of, for example, about 90 degrees with respect to the main surface of the transparent member 100 and the like.
  • the video display device 1 is also arranged in a direction different from the direction of incidence of external light (direction C). Specifically, the main surface (image light exit surface) of the video display device 1 is arranged in the same direction (in other words, parallel) as the main surface of the retroreflective member 2, and the optical axis B1 of the video display device 1 is aligned with the main surface of the retroreflective member 2. It is arranged at about 90 degrees with respect to the optical axis B3 corresponding to the direction of incidence of external light (direction C). Furthermore, when considering the range of luminous flux when external light enters the main surface of the transparent member 100 that functions as an opening in the direction C, the image display device 1 is placed at a position slightly away from the outside of the range. has been done. These reduce the occurrence of ghost images caused by re-reflection on the video display device 1.
  • FIG. 6 shows a configuration example of a video display device 1 that is applicable to the embodiments of FIGS. 2 and 3.
  • the video display device 1 includes a light source device 13, a liquid crystal display panel 11, a light direction conversion panel 54, and the like.
  • the aforementioned absorptive polarizing plate 12 may be provided on the image exit surface side of the liquid crystal display panel 11.
  • the light source device 13 includes a plurality of LED elements 201 (LEDs: Light Emitting Diodes) that are semiconductor light sources (solid light sources) constituting a light source, a light guide 203, and the like.
  • FIG. 6 is a developed perspective view showing a state in which the liquid crystal display panel 11 and the light direction conversion panel 54 are arranged on the light output side of the light source device 13.
  • the light source device 13 is formed of, for example, a case (not shown) made of plastic or the like, and includes an LED element 201 and a light guide 203 housed inside.
  • a light receiving end surface 203a is provided on the light incident side of the light guide 203 in order to convert the diverging light from each LED element 201 into a substantially parallel light beam.
  • the light-receiving end face 203a has a shape in which the cross-sectional area gradually increases toward the side facing the light-receiving part, and has an effect that the divergence angle gradually decreases by being totally reflected multiple times while propagating inside.
  • a lens shape is provided.
  • a liquid crystal display panel 11 arranged substantially parallel to the light guide 203 is attached to the upper surface of the light guide 203.
  • the upper surface of the light guide 203 refers to an exit surface from which light reflected by the light guide 203 is emitted.
  • a plurality of LED elements 201 are attached to one side surface (lower side surface in FIG. 6) of the case of the light source device 13. The light from the plurality of LED elements 201 is converted into substantially collimated light (substantially parallel light) depending on the shape of the light receiving end surface 203a of the light guide 203. Therefore, the light receiving portion of the light receiving end surface 203a and the LED element 201 are attached while maintaining a predetermined positional relationship.
  • the light source device 13 is configured by attaching a light source unit in which a plurality of LED elements 201, which are light sources, are arranged on a light receiving end face 203a, which is a light receiving section provided on the light incident side of the light guide 203.
  • the diverging light flux from the LED element 201 is made into approximately collimated light by the lens shape of the light receiving end surface 203a of the light guide 203. This substantially collimated light is guided inside the light guide 203 in the direction A indicated by the arrow.
  • Direction A is a direction substantially parallel to the liquid crystal display panel 11 (from bottom to top in the drawing).
  • the light guided in direction A has its light flux direction converted by a light flux direction conversion unit 204 provided in the light guide 203, and is directed toward the liquid crystal display panel 11, which is substantially parallel to the light guide 203, in the direction B shown by the arrow. emitted to.
  • Direction B is a direction substantially perpendicular to the display surface of the liquid crystal display panel 11.
  • the light guide 203 has a configuration in which the distribution (in other words, the density) of the light flux direction converting portions 204 is optimized depending on the shape of the inside or surface of the light guide 203. Thereby, the uniformity of the light, which is the light flux emitted from the light source device 13 shown in the direction B and is the light flux incident on the liquid crystal display panel 11, can be controlled.
  • the directivity of the light in direction B from the light source device 13 can also be controlled.
  • the light source device 13 can be configured as a light source having a narrow divergence angle.
  • the image light from the image display device 1 efficiently reaches the viewer with high directivity (in other words, straight-line propagation) like laser light, and displays high-quality spatial floating images with high resolution. can.
  • the power consumption by the video display device 1 including the LED element 201 of the light source device 13 can be significantly reduced.
  • a frame (not shown) of the liquid crystal display panel 11 attached to the top surface of a case (not shown) of the light source device 13 includes the liquid crystal display panel 11 attached to the frame, and a frame (not illustrated) electrically connected to the liquid crystal display panel 11. It is constructed by attaching a flexible printed circuit board (FPC), etc.
  • FIG. 7 shows an example of the external appearance of a floating image display device suitable for use on a desk, according to an embodiment (referred to as a first embodiment).
  • the space floating video display device of the first embodiment shown in FIG. 7 is roughly divided into a video display device section 300 (corresponding housing 106) and a space floating video display section 400.
  • the video display device section 300 is mounted and housed in the housing 106 (in other words, the storage section of the video display device 1).
  • the floating image display section 400 is composed of a retroreflective member 2, a ⁇ /4 plate 21, a beam splitter 101, a frame 108 that supports them, and the like.
  • the casing 106 is placed on the desk surface.
  • the housing 106 has a generally rectangular shape and a flat plate shape with a predetermined height.
  • the video display device 1 is arranged inside the casing 106 along the desk surface.
  • a floating video display section 400 is arranged above the housing 106.
  • a beam splitter 101 is arranged diagonally with respect to the desk surface.
  • a retroreflective member 2 and a ⁇ /4 plate 21 are arranged along the desk surface.
  • the ⁇ /4 plate 21 is arranged facing downward with respect to the retroreflective member 2 located above. That is, the ⁇ /4 plate 21 is arranged on the light incident side of the retroreflective member 2.
  • the spatially floating image 3 is formed between the housing 106 and the retroreflective member 2 so as to come out from the beam splitter 101 to the front side (Y direction) and stand in the vertical direction (XZ plane).
  • the spatial floating image 3 is formed between the casing 106 and the retroreflective member 2 so as to exit from the beam splitter 101 to the front side (Y direction) and stand in the vertical direction (XZ plane).
  • the housing 106 of the floating image display device is not limited to being placed at the bottom. Depending on the situation, the positional relationship between the housing 106 and the retroreflective member 2 may be reversed, or may be arranged not only vertically but also horizontally. That is, the beam splitter 101 is arranged between the light output side of the housing 106 and the retroreflective member 2, and the light output side of the housing 106 and the light input/output side of the retroreflective member 2 are arranged opposite to each other.
  • the beam splitter 101 is arranged obliquely to the light input/output surface of the retroreflective member 2.
  • the frame 108 is a member that supports the beam splitter 101, the retroreflective member 2, and the ⁇ /4 plate 21.
  • the frame 108 protrudes upward from the two corners of the top surface of the housing 106, extends diagonally upward along the two oblique sides of the beam splitter 101, bends in the horizontal direction (Y direction), and extends to the retroreflective member 108. , and then their ends extend along the X direction and are closed.
  • the components of the video display device 1 as shown in FIG. 6, that is, the light source device 13, the liquid crystal display panel 11, which is a liquid crystal display element, the absorptive polarizing plate 12, etc. are housed and fixed in the housing 106. has been done.
  • An opening 1061 is provided at the top of the housing 106.
  • the opening 1061 is a portion through which image light passes.
  • a transparent member or the like may be provided in the opening 1061. Image light corresponding to an image displayed on the image display device 1, more specifically, on the liquid crystal display panel 11, passes through this opening 1061 and travels toward the beam splitter 101 above.
  • FIG. 7 shows a perspective view of the external appearance of the floating image display device when viewed from the upper side (diagonally above).
  • the front of the device is a surface corresponding to the direction in which the user can view the space floating image 3 (indicated by a broken line frame) formed by the space floating image display section 400 from the front.
  • Direction F is the direction in which the user views the floating image 3 from the front, and corresponds to the negative direction of the Y direction.
  • a coordinate system and directions such as (X, Y, Z) shown in the drawings may be used.
  • the Z direction is the vertical direction
  • the up and down direction (the vertical direction within the screen of the spatial floating image 3)
  • the X direction and the Y direction are two horizontal directions
  • the X direction is the left and right direction (the vertical direction within the screen of the spatial floating image 3).
  • the Y direction is the depth direction and the front-back direction (the direction in which the user views the spatial floating image 3).
  • the spatially floating image display section 400 has a configuration in which the beam splitter 101, the retroreflective member 2, etc. are exposed and placed without being covered with a housing. Further, the housing 106 is relatively small (compact) and thin with a small thickness in the Z direction. In this embodiment, the spatial floating image display section 400 is arranged and fixed on the upper side of the housing 106 via a frame 108 which is a support so as to support the beam splitter 101, the retroreflective member 2, etc. .
  • the thin casing 106 is the only casing in the user's field of view. becomes. Therefore, in this embodiment, there are few objects obstructing the user's field of view, and the floating feeling of the floating image 3 can be enhanced, making it suitable for use.
  • the beam splitter 101 and the retroreflective member 2 are sufficiently thin.
  • the main surface of the retroreflective member 2 made of a resin material is arranged along the X direction and the Y direction (for example, the horizontal direction). Therefore, when the user views the floating image 3 in the Y direction from the front (direction F), the retroreflective member 2 is not very noticeable.
  • the beam splitter 101 is It looks like a transparent plate, and the back side of the beam splitter 101 can be seen to some extent.
  • the beam splitter 101 has the property of transmitting P-polarized light and reflecting S-polarized light, and can be formed, for example, by depositing an optical thin film on a flat glass substrate. At this time, the incident angle of the polarized light to the beam splitter 101 is generally about 45 degrees ⁇ 15 degrees. Further, the video display unit 300, the beam splitter 101, the retroreflective member 2, etc. are arranged and fixed in a predetermined positional relationship, similar to the Z-shaped configuration in FIG.
  • a beam splitter 101 is installed in the XY plane through a frame 108, which is a support, on the housing 106, that is, on the upper side of the image display unit 300 or on the light output side of the image display unit 300. They are arranged so as to form an inclined surface. Further, a retroreflective member 2 and a ⁇ /4 plate 21 are arranged on the XY plane with respect to the beam splitter 101 via a frame 108 that is a support.
  • the beam splitter 101 and the retroreflective member 2 are each fixed at two or three sides of a rectangular main surface by adhering to a frame 108 which is a corresponding support. Then, as shown in the figure, a spatially floating image 3 is formed at a predetermined position in front of the beam splitter 101 in the Y direction.
  • FIG. 8 shows the internal structure of the video display unit 300 and the floating video display unit 400 of FIG. 7 in a cross-sectional view when viewed from the side and the X direction (direction E in FIG. 7).
  • the video display unit 300 and the floating video display unit 400 have a Z-shaped structure in FIG. 3, as shown.
  • the configuration of FIG. 3 is rotated in the drawing so that the direction D in FIG. 3 becomes the vertical direction (Z direction)
  • the configuration of FIG. 3 and FIG. has a similar configuration.
  • the video light from the liquid crystal display panel 11 is emitted upward in the Z direction. It is located in That is, the image display surface of the liquid crystal display panel 11 is arranged on the XY plane (horizontal plane). Further, within the housing 106, a light source device 13, a liquid crystal display panel 11, and an absorption type polarizing plate 12 are arranged in order from the bottom.
  • the image light emitted upward from the image display device 1 onto the optical axis C1 through the opening 1061 is indicated by a broken line arrow. The center of the three broken arrows indicates the optical axis, and the left and right sides indicate the range of the luminous flux.
  • the image light emitted from the liquid crystal display panel 11 is light having predetermined polarization characteristics, for example, P-polarized light (parallel polarized light: P stands for Parallel).
  • This P-polarized image light passes directly through the beam splitter 101 upward, and travels toward the retroreflective member 2 on the optical axis C2 corresponding to the optical axis C1.
  • the beam splitter 101 has the property of passing P-polarized light and reflecting S-polarized light (vertically polarized light; S stands for Senkrecht).
  • the beam splitter 101 is arranged to form an angle of, for example, about 45 degrees with this P-polarized image light (optical axis C1, Z direction). That is, the beam splitter 101 is arranged so that its main surface forms an angle of about 45 degrees with respect to the Y direction of the main surfaces of the liquid crystal display panel 11 and the retroreflective member 2.
  • a ⁇ /4 plate 21 is provided on the light incident surface of the retroreflective member 2.
  • the P-polarized image light on the optical axis C2 emitted from the image display device 1 and transmitted through the beam splitter 101 passes through the ⁇ /4 plate twice, once before being reflected by the retroreflective member 2 and once after being reflected. 21, the polarization is converted from P polarized light to S polarized light.
  • the S-polarized image light that travels on the optical axis C2 after being reflected by the retroreflective member 2 is reflected by the beam splitter 101 and travels on the optical axis C3 in the Y direction.
  • This S-polarized image light generates and displays a spatially floating image 3, which is a real image, at a predetermined position on the near side in the Y direction as shown in the figure.
  • the predetermined position where the spatially floating image 3 is formed is determined according to the optical distance of the optical path of the optical system including the image display device 1, the beam splitter 101, and the polarization separation member 2.
  • the space floating image 3 is formed near the front end of the main surface area of the retroreflective member 2 in the depth direction (Y direction).
  • This predetermined position is adjustable by design.
  • the spatially floating image 3 is generated by linearly polarized (S-polarized in this embodiment) image light.
  • the user observeer observing the spatially floating image 3 can suitably view the spatially floating image 3 from the front side in the Y direction, that is, from the direction F indicated by the arrow.
  • the image display device 1, the beam splitter 101, and the retroreflective member 2 maintain a Z-shaped positional relationship as shown in FIG.
  • a floating image 3 can be provided.
  • the floating image display device of the above embodiment can be suitably used when placed on a horizontal surface such as a desk, table, or shelf.
  • the beam splitter 101 is arranged at an angle of about 45 degrees with respect to the P-polarized image light (optical axis C1, Z direction) as shown in FIG.
  • the image displayed on the liquid crystal display panel 11 is generated and displayed as a spatially floating image 3 while maintaining its aspect ratio. More specifically, when a perfect circle is displayed on the liquid crystal display panel 11, a perfect circle is also displayed as the spatial floating image 3.
  • the beam splitter 101 has the property of transmitting P-polarized light and reflecting S-polarized light, and can be formed, for example, by depositing an optical thin film on a flat glass substrate. Therefore, when the surface of the beam splitter 101 is irradiated with image light (in this case, P-polarized image light emitted from the liquid crystal display panel 11 constituting the image display device 1), most of the light passes through the beam splitter 101. On the other hand, at least a portion of the light irradiated onto the beam splitter 101 is visually recognized as reflected light on the beam splitter 101.
  • image light in this case, P-polarized image light emitted from the liquid crystal display panel 11 constituting the image display device 1
  • FIGS. 9 and 10 show an embodiment in which the space floating video display unit 400 shown in FIGS. 7 and 8 is modified to be more vertically elongated in order to solve the above problem, and the space floating video display device is moved upwardly (diagonally).
  • a perspective view of the exterior as seen from above) is shown.
  • the height of the entire device in the Z direction in FIG. 9 is greater than the height of the entire device in the Z direction in FIG.
  • the angle B2 of the slope arrangement of the beam splitter 101 in FIG. 10 is larger than the angle B1 (approximately 45 degrees) in FIG. 8.
  • FIG. 8 shows an embodiment in which the space floating video display unit 400 shown in FIGS. 7 and 8 is modified to be more vertically elongated in order to solve the above problem, and the space floating video display device is moved upwardly (diagonally).
  • a perspective view of the exterior as seen from above) is shown.
  • the height of the entire device in the Z direction in FIG. 9 is greater than the height of the entire device in the Z direction
  • the front of the device here is a surface corresponding to the direction F that allows the user to view the space floating image 3 (indicated by a broken line frame) formed by the space floating image display section 400 from approximately the front.
  • the Z direction is the vertical direction
  • the X direction and the Y direction are two horizontal directions
  • the X direction is the left and right direction (horizontal direction within the screen of the spatial floating image 3)
  • the Y direction is the depth direction.
  • the front-back direction the direction in which the user views the spatial floating image 3).
  • a beam splitter 101 forms an inclined surface with respect to the XY plane (horizontal plane) on the upper side of the casing 106, that is, the video display unit 300, via the frame 108 that is a support. It is arranged so that Further, a retroreflective member 2 and a ⁇ /4 plate 21 are arranged on the XY plane with respect to the beam splitter 101 via a frame 108 that is a support.
  • the beam splitter 101 and the retroreflective member 2 are each fixed by adhesively bonding two or three sides of a rectangle to a frame 108 which is a corresponding support.
  • the space floating image 3 is formed at a predetermined position on the near side in the Y direction with respect to the beam splitter 101 so that the upper part of the space floating image 3 is slightly inclined toward the near side of the user. That is, in the Z direction, the upper part of the spatially floating image 3 is formed to be more inclined toward the user than the lower part of the spatially floating image 3. As illustrated, two sides of the spatial floating image 3 extending in the Z direction are inclined at a predetermined angle ⁇ with respect to the Z direction (vertical direction).
  • FIG. 10 is a schematic diagram of the floating image display device shown in FIG. 9 viewed from the side, that is, the X-axis direction, direction H in FIG. 9.
  • the above-mentioned direction F is also the negative direction of the Y direction
  • direction F' is an oblique direction when the space floating image 3 formed slightly obliquely is viewed from the front (direction perpendicular to the surface). Showing.
  • the image light emitted from the liquid crystal display panel 11 is generally linearly polarized light (S-polarized light or P-polarized light).
  • the image light emitted from the liquid crystal display panel 11 is P-polarized image light.
  • the image light emitted from the liquid crystal display panel 11 is P-polarized light, it may be emitted as is to the beam splitter 101.
  • the image light emitted from the liquid crystal display panel 11 is S-polarized light
  • the S-polarized image light is passed through the ⁇ /2 plate 14 (FIG. 14) in order to convert it into P-polarized light.
  • FIG. 14 shows an example of the arrangement of the ⁇ /2 plate 14 in an embodiment (a modification of the second embodiment) in which the image light emitted from the liquid crystal display panel 11 is S-polarized light.
  • This ⁇ /2 plate 14 is a separate element from the ⁇ /4 plate 21 of the retroreflection member 2, and is a polarization conversion element, a retardation plate, and a half-wave plate that converts S-polarized light into P-polarized light.
  • the liquid crystal display panel 11 and the ⁇ /2 plate 14 are arranged, together with the light source device 13 and the absorption type polarizing plate 12, in the housing 106, for example, at the position shown in the figure.
  • a ⁇ /2 plate 14 is provided on the image light output surface of the liquid crystal display panel 11 in contact with the upper side in the Z direction, and an absorption type polarizing plate 12 is provided in contact with the upper side of the ⁇ /2 plate 14.
  • the ⁇ /2 plate 14 may be provided on the lower surface of the transparent member in the opening 1061 of the housing 106.
  • the light passes through the ⁇ /4 plate 21 and enters the retroreflective member 2 .
  • the image light incident on the retroreflective member 2 passes through the ⁇ /4 plate 21 twice, once upon incidence on the retroreflective member 2 and once upon reflection, so that it is converted into S-polarized image light.
  • the image light reflected by the retroreflective member 2 is converted into S-polarized image light as described above, and is therefore reflected by the beam splitter 101.
  • a spatial floating image 3 is generated at the position shown in FIG.
  • the P-polarized image light from the liquid crystal display panel 11 or the image light converted to P-polarized light after passing through the ⁇ /2 plate 14 enters the beam splitter 101.
  • the ratio of reflection on the beam splitter 101 (reflectance) differs depending on the incident angle ⁇ to the beam splitter 101.
  • the curve shown with a broken line shows the change in reflectance with respect to a change in the incident angle of S-polarized image light
  • the curve shown with a solid line shows the change in reflectance with respect to a change in the angle of incidence of P-polarized image light. Showing.
  • S-polarized image light the reflectance increases monotonically as the incident angle increases, whereas for P-polarized image light, the reflectance decreases to 0 as the incident angle increases. , the reflectance becomes 0 at a certain angle, and as the angle of incidence increases, the reflectance increases again.
  • the reflectance of S-polarized image light is always greater than the reflectance of P-polarized image light at the same incident angle.
  • the incident angle at which the reflectance is 0 is called the Brewster angle (denoted as ⁇ B).
  • This Brewster angle ⁇ B is determined by the following equation 1 from the refractive index of two substances (here, air and glass).
  • n1 is the refractive index on the incident side (i.e., air)
  • n2 is the refractive index on the transmission side (i.e., glass).
  • the Brewster angle ⁇ B of light incident on glass having a refractive index of 1.5 from air having a refractive index of 1 is 56.3 degrees.
  • the configuration is such that P-polarized image light is incident on the beam splitter 101 at the Brewster angle determined by equation 1 from the refractive index (n2) on the transmission side depending on the material of the beam splitter 101, the beam It will no longer be reflected on the splitter 101.
  • the Brewster angle ⁇ B of the beam splitter 101 is the Brewster angle ⁇ B of the glass (more specifically, quartz glass). It has the same value as the angle ⁇ B (56.3 degrees).
  • the beam splitter 101 As a result, in FIG. 10, if the P-polarized image light emitted from the image display device 1 based on the image light from the liquid crystal display panel 11 is incident on the beam splitter 101 at the Brewster angle ⁇ B, the beam splitter The reflected image light R reflected on 101 is approximately 0. The reflected image light R cannot be seen from the direction opposite to the direction in which the spatially floating image 3 is formed, specifically, from the direction L in FIG. 10 . This has the effect of making it difficult for others to see the image light, which may be a nuisance to others other than the user of the floating image display device. You can obtain the effect that this will not be seen by others.
  • the incident angle ⁇ of the image light onto the beam splitter 101 is set to the Brewster angle ⁇ B (56.3 degrees) or a somewhat smaller angle close to the Brewster angle ⁇ B (for example, , an angle within the range from 50 degrees to less than 56.3 degrees) (50 degrees ⁇ ⁇ ⁇ ⁇ B), although it is not possible to completely reduce the reflected image light R to 0, the image light beam splitter The reflectance at 101 is 2% or less, and the reflected image light R can be reduced to an almost invisible level. Furthermore, even if the incident angle ⁇ to the beam splitter 101 is far from the Brewster angle ⁇ B (for example, ⁇ 50 degrees), it is clear from the graph shown in FIG. The brightness of the reflected image light R can be reduced simply by converting S-polarized light into P-polarized light using the /2 plate 14.
  • the incident angle ⁇ at which the image light emitted from the image display device 1 is incident on the beam splitter 101 on the optical axis C1 is set to the Brewster angle ⁇ B (specifically, 56.3 degrees) or the Brewster angle ⁇ B (specifically, 56.3 degrees).
  • the angle is configured to be within a range close to the star angle ⁇ B (50 degrees ⁇ B). That is, as shown in FIG. 10, the angle of arrangement of each component and the like are defined.
  • the reflected image light R of the image light at the beam splitter 101 can be reduced to zero or close to zero, to the extent that it does not pose a problem in practice. That is, when the beam splitter 101 is viewed from the opposite side (direction L) from the side where the spatially floating image 3 is visible, the reflected image light R can be reduced to such an extent that it cannot be seen.
  • the specific incident angle ⁇ at the time of incidence on the beam splitter 101 is not limited to the above-mentioned Brewster angle ⁇ B, but an effect close to that of the above embodiment can be obtained by setting it to an angle within the range of 45 degrees to 60 degrees. .
  • the spatial floating image 3 is When viewed from (direction F), it is generated diagonally downward (direction corresponding to direction F').
  • the S-polarized image light from the beam splitter 101 is reflected on an optical axis C3 having an angle corresponding to ( ⁇ B ⁇ 2) with respect to the vertical direction (Z direction), as shown.
  • the surface of the space floating image 3 has a predetermined angle ⁇ (an angle determined in relation to ⁇ B and ⁇ ) with respect to the XZ plane as a surface perpendicular to the direction of the optical axis C3, and the upper side is the lower side. It is arranged as a slope slanted to the top.
  • FIGS. 12 and 13 show an embodiment that corresponds to a solution to the above-mentioned problem such as deterioration of visibility.
  • FIG. 12 similarly shows a perspective view of the spatial floating image display device of this embodiment.
  • the housing 106 has been deformed so that the spatial floating image 3 coincides with the XZ plane.
  • the height of the front surface 106s1 of the housing 106 in the Y direction corresponding to the side on which the spatially floating image 3 is formed is made higher than in the case of FIG. 9, and the spatially floating image 3 is formed.
  • the height of the rear surface 106s2 corresponding to the opposite side is lowered.
  • FIG. 12 similarly shows a perspective view of the spatial floating image display device of this embodiment.
  • the housing 106 has been deformed so that the spatial floating image 3 coincides with the XZ plane.
  • the height of the front surface 106s1 of the housing 106 in the Y direction corresponding to the side on which the spatially floating image 3 is formed is made higher than in the case
  • the height of the casing 106 in the Z direction is 10 mm
  • the width in the X direction is 80 mm
  • the depth in the Y direction is 30 mm
  • the difference in height between the front side and the back side is 20 mm.
  • the depth between the front side and the back side is the same, 30 mm. Therefore, the floating image display unit 400 in FIG. 12 is tilted backward at an angle arctan(20/30), that is, 33.7 degrees.
  • This 33.7 degrees corresponds to the angle ⁇ of the difference between 90 degrees and 56.3 degrees, which is the Brewster angle ⁇ B.
  • the angle formed by the light exit surface of the liquid crystal display panel and the light entrance surface of the retroreflective member 2 corresponds to the difference between 90 degrees and the Brewster angle ⁇ B.
  • FIG. 13 shows a cross-sectional view seen from direction H, corresponding to FIG. 12.
  • the top surface of the housing 106 which has different heights on the front and back sides, is sloped with respect to the XY plane, and the upper side of the top surface has the same positional relationship as in FIGS.
  • a spatial floating image display section 400 is arranged.
  • the light emitting surface of the image display device 1 or the surface of the liquid crystal display panel is arranged diagonally, or the light emitting surface of the image display device 1 on the side of the casing 106 connected to the beam splitter 101 and the retroreflective member 2 are arranged diagonally.
  • the distance is shorter than the distance between the exit surface of the video display device 1 on the side of the casing 106 that is not connected to the beam splitter 101 and the retroreflective member 2.
  • the side corresponding to the formed spatially floating image is shorter in distance from the retroreflective member 2 than the side facing the spatially floating image.
  • the plane on which the spatially floating image 3 is formed coincides with the XZ plane.
  • the spatial floating image 3 In the direction of the user's line of sight (direction M corresponding to the negative Y direction in FIG. 12), the spatial floating image 3 has the best visibility from the user's perspective, that is, has high brightness, and The aspect ratio of the spatial floating image 3 also becomes an image having the original aspect ratio (the same aspect ratio as the image displayed on the liquid crystal display panel 11).
  • the incident angle of the P-polarized image light displayed on the liquid crystal display panel 11 to the beam splitter 101 is 56.3 degrees, which is the Brewster angle ⁇ B
  • a spatially floating image as shown in FIG. 3 will be generated diagonally downward, resulting in poor visibility for the user. Therefore, as shown in FIG. 12, by making the front side of the casing 106 containing the image display device 1 higher and the rear side lower, the plane on which the spatially floating image 3 is formed can be made to coincide with the XZ plane. can. This makes it possible to optimize the visibility of the spatially floating image 3, making it suitable for use.
  • the spatially floating image display device of each embodiment and modification example it is possible to display a spatially floating image that is suitable mainly for indoor use and has high visibility. Furthermore, the brightness of the reflected image light caused by the image light from the image display device 1 based on the image light from the liquid crystal display panel 11 being reflected on the beam splitter 101 is reduced to zero, or the brightness is reduced.
  • a spatial floating image display device can be provided. As a result, the reflected image light cannot be seen by a person on the opposite side of the spatial floating image display device from a user who is in a position where the spatial floating image can be observed. In a room where a floating image display device is installed, the image light, which is unnecessary or may be bothersome to people other than the user, has the effect of making it difficult to see.
  • the floating image display device of each embodiment and modification example can be used in a relatively small room without emitting unnecessary image light to people other than the user, and is bright and highly visible. It can display an excellent floating image in space, and is small and lightweight, making it suitable for easy installation on a desk, table, or shelf indoors.
  • 1 Image display device
  • 2 Retroreflective member
  • 3 Space floating image
  • 11 Liquid crystal display panel
  • 12 Absorption type polarizing plate
  • 13 Light source device
  • 21 ⁇ /4 plate
  • 100 Transparent member
  • 101 Beam splitter (polarization separation member)
  • 106 Housing
  • 108 Frame
  • 300 Image display unit
  • 400 Space floating image display unit
  • 1061 Opening.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

Provided is technology that is suited for use in a room interior and with which it is possible to display a space floating video with high visibility. The present invention contributes to the Sustainable Development Goals of "3. Health and well-being for all" and "9. Build a foundation for industry and technological innovation." This space floating video display device comprises a casing 106 in which a video display device 1 is stored, and which can be suitably mounted on the surface of a table, for example, in a room interior. A retroreflective member 2 provided with a λ/4 plate 21 and a polarization separation member 101 (beam splitter) disposed at a predetermined angle are provided outside the the casing 106. Video light of P-polarized light from the video display device 1 is converted into S-polarized light through the polarization separation member 101, the retroreflective member 2, and the like, and a space floating video 3 is displayed at a prescribed location on the basis of video light of the S-polarized light.

Description

空間浮遊映像表示装置Space floating video display device
 本開示は、空間浮遊映像表示装置の技術に関する。 The present disclosure relates to technology for a spatially floating video display device.
 空間浮遊映像表示装置の一例として、特開2019-128722号公報(特許文献1)が挙げられる。特許文献1には、「情報処理装置のCPUは、空気中に形成される像へのユーザの接近方向を検知する接近方向検知部と、入力が検知された座標を検知する入力座標検知部と、操作の受け付けを処理する操作受付部と、受け付けた操作に応じて操作画面を更新する操作画面更新部とを備える。CPUは、ユーザが予め定めた方向から像に接近する場合、ユーザの動きを操作として受け付け、操作に応じた処理を実行する」旨が記載されている。 An example of a spatially floating video display device is JP-A-2019-128722 (Patent Document 1). Patent Document 1 states, ``The CPU of the information processing device includes an approach direction detection section that detects the direction in which the user approaches an image formed in the air, and an input coordinate detection section that detects the coordinates at which the input is detected. , includes an operation reception unit that processes the reception of an operation, and an operation screen update unit that updates the operation screen according to the received operation.When the user approaches the image from a predetermined direction, the CPU detects the movement of the user. is accepted as an operation, and the process corresponding to the operation is executed.''
特開2019-128722号公報JP2019-128722A
 特許文献1のような空間浮遊映像表示装置は、空間浮遊映像の操作性を向上させることはできても、空間浮遊映像の見た目の解像度やコントラストの向上については考慮されていない。空間浮遊映像について更なる映像品質の向上が求められている実情がある。 Although the spatially floating video display device as disclosed in Patent Document 1 can improve the operability of the spatially floating video, it does not take into consideration the improvement in the apparent resolution and contrast of the spatially floating video. There is a real need for further improvement in the quality of floating images.
 空間浮遊映像表示装置の用途は幅広く、サイネージ(広告用看板)として用いれば、従来の平面ディスプレイには無い「空間に映像が浮かんで表示される」という珍しさから、多くの人の関心を引き寄せる効果が得られる。また、特許文献1にも記載のように、空間浮遊映像をなんらかの操作を行うためのヒューマン・インタフェースとして用いれば、非接触という特徴から、押しボタン等の接触部分を媒介としたウイルス感染を防止する効果が得られる。さらに、空間浮遊映像表示装置を自宅の書斎や居間、あるいは職場等に手軽に設置することができれば、従来は液晶画面などに単に表示されていた文字や図形、あるいは動画などが、空間浮遊映像として表示されることとなり、見た目にも楽しく、インテリアのアクセサリーとしても、好適である。 Floating video display devices have a wide range of uses, and when used as signage (advertisement billboards), they attract the attention of many people due to the unusual feature of ``images floating in space,'' which is not found on conventional flat displays. Effects can be obtained. Furthermore, as described in Patent Document 1, if a floating image is used as a human interface for performing some kind of operation, the non-contact feature prevents virus infection through contact parts such as push buttons. Effects can be obtained. Furthermore, if a floating image display device could be easily installed in a home's study, living room, or workplace, characters, figures, or videos that were previously simply displayed on an LCD screen could be displayed as floating images. It is visually pleasing and suitable as an interior accessory.
 一方、空間浮遊映像表示装置を室内で用いる場合、特に、家族が集まる居間や、職場で少なくとも複数の人が存在する事務室などでは、空間浮遊映像は、利用する特定の個人(以後、利用者と称する)だけが見えるようにすることが望ましい。ところが、後述するように、利用者の目の位置とは反対側にいる人からも、空間浮遊映像の元となる映像源から発せられた映像光が視認できてしまうという課題がある。この課題を解決すること、すなわち、利用者以外の人として利用者の目の位置とは反対側にいる人から、映像光を視認できないようにすることが望まれていた。 On the other hand, when using a spatially floating video display device indoors, especially in a living room where families gather or an office where at least several people are present at work, the spatially floating video is It is desirable that only the However, as will be described later, there is a problem in that the image light emitted from the image source that is the source of the spatially floating image can be seen even by a person on the opposite side of the user's eye position. It has been desired to solve this problem, that is, to make the image light invisible to people other than the user who are on the opposite side of the user's eye position.
 本開示の目的は、空間浮遊映像表示装置に関して、利用者が空間浮遊映像を視認する場合に、利用者の目の位置とは反対側にいる人から映像光が視認できないようにすることができる技術を提供することである。また、本開示の目的は、室内での使用に好適で、視認性の高い空間浮遊映像を表示できる技術を提供することである。 An object of the present disclosure is to make it possible to prevent the image light from being visible to a person on the opposite side of the user's eye position when the user views the spatially floating image with respect to a spatially floating image display device. The goal is to provide technology. Further, an object of the present disclosure is to provide a technology that is suitable for indoor use and can display a highly visible spatial floating image.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、一例を挙げるならば以下の通りである。一実施の形態の空間浮遊映像表示装置は、空間浮遊映像を表示する空間浮遊映像表示装置であって、映像表示装置と対向して配置され、再帰反射面にλ/4板(位相差板、四分の一波長板)が設けられた再帰反射部材と、前記映像表示装置と前記再帰反射部材とを結ぶ空間に、前記映像表示装置および前記再帰反射部材に対し所定の角度で配置された偏光分離部材と、を備え、前記映像表示装置は、光源装置と、映像源としての液晶表示パネルとを有し、前記液晶表示パネルから出射される特定偏波の映像光、具体的には、P偏光の映像光は、前記偏光分離部材(ビームスプリッタともいう)を透過し、前記再帰反射部材で反射され、前記λ/4板を2度通過することによって、S偏光の映像光に偏光変換される。この結果、再帰反射部材で反射したS偏波の映像光は、前記偏光分離部材によって反射し、反射された映像光に基づいて、所定の位置に、実像である空間浮遊映像を表示する。 In order to solve the above problem, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems, and one example is as follows. A space-floating video display device according to an embodiment is a space-floating video display device that displays a space-floating video, and is disposed opposite to the video display device, and has a λ/4 plate (retardation plate) on a retroreflective surface. a retroreflective member provided with a quarter-wave plate), and polarized light arranged at a predetermined angle with respect to the video display device and the retroreflective member in a space connecting the video display device and the retroreflective member. The image display device includes a light source device and a liquid crystal display panel as an image source, and the image light of a specific polarization emitted from the liquid crystal display panel, specifically, P The polarized image light passes through the polarization separation member (also referred to as a beam splitter), is reflected by the retroreflection member, and passes through the λ/4 plate twice to be polarized into S-polarized image light. Ru. As a result, the S-polarized image light reflected by the retroreflection member is reflected by the polarization separation member, and a spatial floating image, which is a real image, is displayed at a predetermined position based on the reflected image light.
 ここで、上記P偏光の映像光が、ビームスプリッタを透過する際、P偏光の映像光の一部はビームスプリッタを透過せずに反射する。このビームスプリッタで反射した一部の反射映像光は、空間浮遊映像表示装置の裏側、より詳細には、空間浮遊映像を視認する利用者の目の位置とは反対側にいる人からも視認できるという課題が生じる。 Here, when the P-polarized image light passes through the beam splitter, a part of the P-polarized image light is reflected without passing through the beam splitter. A portion of the reflected image light reflected by this beam splitter can be seen by a person on the back side of the floating image display device, more specifically, from a person on the opposite side from the eye position of the user viewing the floating image. This problem arises.
 本実施の形態の空間浮遊映像表示装置は、上記ビームスプリッタで反射した上記反射映像光を生じない、または、上記反射映像光の光量を十分に低減させる構成とした。より具体的には、本実施の形態の空間浮遊映像表示装置は、上記映像光(P偏光映像光)のビームスプリッタへの入射角を所定の角度(ブリュースター角:θB)とすることで、上記反射映像光が生じない構成とした。 The spatially floating image display device of the present embodiment has a configuration in which the reflected image light reflected by the beam splitter is not generated, or the amount of the reflected image light is sufficiently reduced. More specifically, the spatial floating image display device of this embodiment sets the incident angle of the image light (P-polarized image light) to the beam splitter at a predetermined angle (Brewster's angle: θB), so that The structure is such that the reflected image light does not occur.
 本開示のうち代表的な実施の形態によれば、空間浮遊映像表示に関して、利用者が空間浮遊映像を視認する場合に、利用者の目の位置とは反対側にいる人から映像光が視認できないようにすることができる。また、代表的な実施の形態によれば、室内での使用に好適で、視認性の高い空間浮遊映像を表示できる。代表的な実施の形態によれば、明るく、視認性の高い空間浮遊映像を表示できると共に、空間浮遊映像を形成する元となる映像光がビームスプリッタで反射することによって生じる反射映像光が生じない、またはその反射映像光の光量を十分に低減させる構成とする。これにより、利用者の目の位置とは反対側にいる人からは上記反射映像光を視認できないという効果をもたらす空間浮遊映像表示装置を提供できる。上記した課題および上記以外の課題、ならびにそれらの課題を解決する構成、および効果等については、以下の実施形態の説明により明らかにされる。 According to a representative embodiment of the present disclosure, regarding a space floating video display, when a user views a space floating video, video light is visible from a person on the opposite side of the user's eye position. You can make it impossible. Further, according to the representative embodiment, it is possible to display a floating image in space that is suitable for indoor use and has high visibility. According to the representative embodiment, a bright and highly visible spatially floating image can be displayed, and reflected image light that is generated when the image light that forms the spatially floating image is reflected by a beam splitter does not occur. , or a configuration that sufficiently reduces the amount of reflected image light. Thereby, it is possible to provide a spatially floating image display device that provides the effect that the reflected image light cannot be seen by a person on the opposite side of the user's eye position. The above-mentioned problems, problems other than the above, configurations for solving these problems, effects, etc. will be made clear by the description of the embodiments below.
一実施例に係る空間浮遊映像表示装置の使用形態の一例を示す図である。FIG. 1 is a diagram illustrating an example of a usage pattern of a floating image display device according to an embodiment. 一実施例に係る空間浮遊映像表示装置の主要部構成の一例としてV型の構成を示す図である。1 is a diagram showing a V-shaped configuration as an example of the main part configuration of a floating image display device according to an embodiment; FIG. 一実施例に係る空間浮遊映像表示装置の主要部構成の一例としてZ型の構成を示す図である。1 is a diagram illustrating a Z-shaped configuration as an example of a main configuration of a floating image display device according to an embodiment; FIG. 再帰反射部材の詳細な構造の例を示す図である。FIG. 3 is a diagram showing an example of a detailed structure of a retroreflective member. 再帰反射部材の表面粗さと再帰反射像(空間浮遊映像)のボケ量との関係を表す特性図である。FIG. 3 is a characteristic diagram showing the relationship between the surface roughness of a retroreflective member and the amount of blur of a retroreflective image (a spatially floating image). 一実施例に係る映像表示装置の構成例を示す図である。1 is a diagram illustrating a configuration example of a video display device according to an embodiment. 一実施例(第1実施例)に係る空間浮遊映像表示装置の外観構成例を示す図である。1 is a diagram illustrating an example of the external configuration of a floating image display device according to an embodiment (first embodiment); FIG. 一実施例(第1実施例)に係る空間浮遊映像表示装置で、横から見た断面の構成例を示す図である。1 is a diagram illustrating a cross-sectional configuration example of a floating video display device according to an embodiment (first embodiment) when viewed from the side; FIG. 一実施例(第2実施例)に係る空間浮遊映像表示装置の外観構成例を示す斜視図である。FIG. 2 is a perspective view showing an example of the external configuration of a floating image display device according to an example (second example). 一実施例(第2実施例)に係る空間浮遊映像表示装置で、横から見た断面の構成例を示す図である。FIG. 2 is a diagram illustrating a cross-sectional configuration example of a floating image display device according to an embodiment (second embodiment) when viewed from the side. 入射角と反射率の関係、ブリュースター角について示す図である。FIG. 3 is a diagram showing the relationship between the incident angle and reflectance, and the Brewster angle. 一実施例(第3実施例)に係る空間浮遊映像表示装置の外観構成例を示す斜視図である。FIG. 2 is a perspective view showing an example of the external configuration of a floating video display device according to an embodiment (third embodiment). 一実施例(第3実施例)に係る空間浮遊映像表示装置で、横から見た断面の構成例を示す図である。FIG. 7 is a diagram illustrating a cross-sectional configuration example of a space floating video display device according to an embodiment (third embodiment) when viewed from the side. 一実施例(第2実施例の変形例)に係る空間浮遊映像表示装置で、映像表示装置部におけるλ/2板の実装例を示す図である。FIG. 7 is a diagram illustrating an example of mounting a λ/2 plate in a video display unit in a floating video display device according to an embodiment (a modification of the second embodiment).
 以下、図面を参照しながら本開示の実施の形態を詳細に説明する。図面において、同一部には原則として同一符号を付し、繰り返しの説明を省略する。図面において、各構成要素の表現は、発明の理解を容易にするために、実際の位置、大きさ、形状、範囲等を表していない場合がある。説明上、プログラムによる処理について説明する場合に、プログラムや機能や処理部等を主体として説明する場合があるが、それらについてのハードウェアとしての主体は、プロセッサ、あるいはそのプロセッサ等で構成されるコントローラ、装置、計算機、システム等である。計算機は、プロセッサによって、適宜にメモリや通信インタフェース等の資源を用いながら、メモリ上に読み出されたプログラムに従った処理を実行する。これにより、所定の機能や処理部等が実現される。プロセッサは、例えばCPU/MPUやGPU等の半導体デバイス等で構成される。プロセッサは、所定の演算が可能な装置や回路で構成される。処理は、ソフトウェアプログラム処理に限らず、専用回路でも実装可能である。専用回路は、FPGA、ASIC、CPLD等が適用可能である。プログラムは、対象計算機に予めデータとしてインストールされていてもよいし、プログラムソースから対象計算機にデータとして配布されてインストールされてもよい。プログラムソースは、通信網上のプログラム配布サーバでもよいし、非一過性のコンピュータ読み取り可能な記憶媒体、例えばメモリカードやディスク等でもよい。プログラムは、複数のモジュールから構成されてもよい。コンピュータシステムは、複数台の装置によって構成されてもよい。コンピュータシステムは、クライアント・サーバシステム、クラウドコンピューティングシステム等で構成されてもよい。各種のデータや情報は、例えばテーブルやリスト等の構造で構成されるが、これに限定されない。識別情報、識別子、ID、名前、番号等の表現は互いに置換可能である。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the drawings, the same parts are generally designated by the same reference numerals, and repeated explanations will be omitted. In the drawings, the representation of each component may not represent its actual position, size, shape, range, etc. in order to facilitate understanding of the invention. For the purpose of explanation, when explaining processing by a program, the program, function, processing unit, etc. are sometimes explained as the main body, but the main body of hardware for these is the processor or the controller made up of the processor, etc. , equipment, computers, systems, etc. A computer executes processing according to a program read onto a memory, using resources such as a memory and a communication interface as appropriate by a processor. Thereby, predetermined functions, processing units, etc. are realized. The processor is composed of, for example, a semiconductor device such as a CPU/MPU or a GPU. A processor is composed of devices and circuits that can perform predetermined operations. The processing is not limited to software program processing, but can also be implemented using a dedicated circuit. As the dedicated circuit, FPGA, ASIC, CPLD, etc. can be applied. The program may be installed as data in the target computer in advance, or may be distributed as data from a program source to the target computer and installed. The program source may be a program distribution server on a communication network, or may be a non-transitory computer-readable storage medium such as a memory card or disk. A program may be composed of multiple modules. A computer system may be configured by multiple devices. The computer system may be configured with a client/server system, a cloud computing system, etc. Various types of data and information are configured, for example, in a structure such as a table or a list, but are not limited thereto. Expressions such as identification information, identifier, ID, name, number, etc. can be replaced with each other.
 <実施の形態>
 実施の形態の空間浮遊映像表示装置は、映像表示装置と、偏光分離部材であるビームスプリッタと、再帰反射面にλ/4板(位相差板、四分の一波長板)が設けられた再帰反射部材とを有して構成される。映像表示装置は、光源装置と、映像源(映像表示素子)として特定偏波の映像光(例えばP偏光)を発する表示パネルまたは液晶表示パネルとを有して構成される。光源装置は、液晶表示パネルにバックライトとしての光を発生・供給する。映像表示装置の液晶表示パネルと再帰反射部材とを結んだ空間には、偏光分離部材が配置される。偏光分離部材は、液晶表示パネルからの特定偏波の映像光を、再帰反射部材に向けて透過させ、再帰反射部材およびλ/4板によって偏光変換された後の他方の偏波(例えばS偏光)の映像光を反射させる性質を有する。反射後の他方の偏波の映像光は、映像表示装置とは異なる方向における所定の位置に、実像である空間浮遊映像を生成・表示する。
<Embodiment>
The spatially floating image display device according to the embodiment includes an image display device, a beam splitter which is a polarization separation member, and a retroreflection device in which a λ/4 plate (retardation plate, quarter wavelength plate) is provided on a retroreflection surface. and a reflective member. A video display device includes a light source device and a display panel or liquid crystal display panel that emits video light of a specific polarization (for example, P-polarized light) as a video source (video display element). The light source device generates and supplies light as a backlight to the liquid crystal display panel. A polarization separation member is arranged in a space connecting the liquid crystal display panel of the video display device and the retroreflection member. The polarization separation member transmits image light of a specific polarization from the liquid crystal display panel toward the retroreflection member, and converts the image light of the other polarization (for example, S-polarized light) into the other polarization after polarization conversion by the retroreflection member and the λ/4 plate. ) has the property of reflecting image light. After reflection, the image light of the other polarization generates and displays a spatially floating image, which is a real image, at a predetermined position in a direction different from that of the image display device.
 映像表示装置は、空間浮遊映像のコントラスト性能を改善するために、光源装置からの光源光を特定方向の偏光に揃える偏光変換部を設けてもよい。例えば、光源装置は、点状または面状の光源と、光源からの光の発散角を低減する光学素子部と、光源からの光を特定方向の偏光に揃える偏光変換部(偏光変換素子など)と、光源からの光を液晶表示パネルに伝搬する反射面を有する導光体とを備え、導光体の反射面の形状と面粗さによって液晶表示パネルからの映像光の映像光束を制御する。 The image display device may be provided with a polarization conversion unit that aligns the light source light from the light source device to polarization in a specific direction in order to improve the contrast performance of the spatially floating image. For example, a light source device includes a point-like or planar light source, an optical element section that reduces the divergence angle of light from the light source, and a polarization conversion section (such as a polarization conversion element) that aligns the light from the light source with polarization in a specific direction. and a light guide having a reflective surface that propagates the light from the light source to the liquid crystal display panel, and controls the image luminous flux of the image light from the liquid crystal display panel by the shape and surface roughness of the reflective surface of the light guide. .
 実施の形態の空間浮遊映像表示装置は、限定しないが特に室内での使用を考慮し、机の上に設置可能な筐体を有する映像表示装置部と、フレーム構造より成る空間浮遊映像表示部とを有して構成される。 The space-floating video display device of the embodiment is designed to be used particularly, but not exclusively, indoors, and includes a video display device portion having a casing that can be installed on a desk, and a space-floating video display portion having a frame structure. It is composed of
 映像表示装置部は、主に、液晶表示パネルと、光源(バックライト)とを有して構成される。 The video display device section mainly includes a liquid crystal display panel and a light source (backlight).
 空間浮遊映像表示部は、偏光分離部材および再帰反射部材などから成る光学系を有して構成される。本実施例の光学系は、金属や樹脂によるフレームで支えられる構造を備える。 The spatially floating image display section is configured with an optical system consisting of a polarization separation member, a retroreflection member, and the like. The optical system of this embodiment has a structure supported by a frame made of metal or resin.
 [空間浮遊映像表示装置]
 以下の実施例は、例えば、大面積な映像発光源からの映像光による映像を、ショーウィンドゥのガラス等の、空間を仕切る透明部材を介して透過して、店舗の空間の内部または外部に空間浮遊映像として表示可能な、空間浮遊映像表示装置に関する。また、上記実施例とは別に、より小面積(例えば、2~5インチ程度)の映像発光源からの映像光による映像を、後述する偏光分離部材(言い換えると、偏光ビームスプリッタ、または単に、ビームスプリッタ)および再帰反射板などで構成された光学系を用いた、主に室内での空間浮遊映像の表示に供せられる、空間浮遊映像表示装置に関する。
[Spatial floating image display device]
In the following embodiments, for example, an image generated by image light from a large-area image light source is transmitted through a transparent member that partitions the space, such as the glass of a shop window, to create a space inside or outside the store space. The present invention relates to a spatial floating image display device that can display floating images. In addition to the above-mentioned embodiments, an image generated by image light from an image light emitting source having a smaller area (for example, about 2 to 5 inches) can be produced using a polarization separation member (in other words, a polarization beam splitter, or simply a beam The present invention relates to a spatially floating image display device that uses an optical system composed of a splitter (splitter) and a retroreflector, and is mainly used for displaying spatially floating images indoors.
 なお、以下の実施例の説明では、空間に浮遊する映像を「空間浮遊映像」という用語で表現している。この用語の代わりに、「空中像」、「空中浮遊映像」、「表示映像の空間浮遊光学像」、「表示映像の空中浮遊光学像」等と表現しても構わない。実施例の説明で用いる「空間浮遊映像」との用語は、これらの用語の代表例として用いている。 In the following description of the embodiment, an image floating in space is expressed using the term "space floating image." Instead of this term, it may be expressed as "aerial image", "aerial floating image", "aerial floating optical image of a displayed image", "aerial floating optical image of a displayed image", etc. The term "space floating image" used in the description of the embodiments is used as a representative example of these terms.
 以下の実施例によれば、例えば、ショーウィンドゥのガラス面や光透過性の板材上に高解像度の映像情報を空間浮遊した状態で表示可能となる。また、実施例の空間浮遊映像表示装置は、書斎の机の上、リビングルームのテーブル上、カウンターキッチンなど、比較的小さな空間においても設置可能である。また、実施例によれば、特に、空間浮遊映像を視認できる利用者に対し空間浮遊映像表示装置をはさんで反対側にいる人からは反射映像光(詳細は後述)を視認できないようにした空間浮遊映像表示装置を提供可能となる。実施例によれば、特に、室内でインテリア小物、あるいは、情報機器の表示装置として好適な空間浮遊映像表示装置を提供可能となる。 According to the following embodiments, it is possible to display high-resolution video information floating in space, for example, on the glass surface of a show window or on a light-transmitting board. Further, the spatial floating image display device of the embodiment can be installed in a relatively small space such as on a desk in a study, on a table in a living room, or at a kitchen counter. Further, according to the embodiment, in particular, the reflected image light (details will be described later) is made invisible to the user who can see the spatially floating image, but to the person on the opposite side of the spatially floating image display device. It becomes possible to provide a spatially floating image display device. According to the embodiment, it is possible to provide a spatially floating video display device that is particularly suitable as a display device for interior accessories or information equipment indoors.
 従来技術例の空間浮遊映像表示装置では、高解像度なカラー表示映像源としての有機ELパネルや液晶表示パネルを、再帰反射部材と組み合わせて用いている。従来技術例の空間浮遊映像表示装置では、映像光が広角で拡散するため、以下のような課題があった。 The spatially floating image display device of the prior art uses an organic EL panel or a liquid crystal display panel as a high-resolution color display image source in combination with a retroreflective member. In the spatially floating image display device of the prior art example, the image light is diffused over a wide angle, and therefore the following problems occur.
 図4に示すように、再帰反射部材2において、再帰反射部2aが6面体であるために、正規に反射する反射光の他に、再帰反射部材2に斜めから入射する映像光よってゴースト像が発生し、空間浮遊映像の画質を損ねるという課題があった。再帰反射部材2は、再帰反射板、あるいは再帰反射シート等とも呼ばれる。 As shown in FIG. 4, in the retroreflective member 2, since the retroreflective portion 2a is a hexahedron, in addition to the normally reflected reflected light, a ghost image is created by the image light incident obliquely on the retroreflective member 2. There was a problem in that the image quality of floating images was degraded. The retroreflective member 2 is also called a retroreflective plate, a retroreflective sheet, or the like.
 また、図5に示すように、映像源である映像表示装置からの映像光を再帰反射部材2で反射させて得られた空間浮遊映像は、上述したゴースト像の他に、液晶表示パネルの画素ごとにボケが生じるという課題もあった。 In addition, as shown in FIG. 5, the spatially floating image obtained by reflecting the image light from the image display device, which is the image source, on the retroreflective member 2 includes the pixels of the liquid crystal display panel, in addition to the above-mentioned ghost image. There was also the issue of blurring occurring at different times.
 図1は、一実施例に係る空間浮遊映像表示装置の使用形態の一例と構成例を示す。図1の(A)は、本実施例に係る空間浮遊映像表示装置の全体構成を示す。例えば、店舗等においては、ガラス等の光透過性部材(透明部材とも記載)であるショーウィンドゥ(ウィンドゥガラス)105により空間が仕切られている。本実施例の空間浮遊情報表示装置によれば、かかる透明部材を透過して、空間浮遊映像を店舗の空間の外部に対して一方向に表示可能である。具体的には、空間浮遊情報表示装置における映像表示装置1から、狭角な指向特性でかつ特定偏波の光が、映像光束として出射し、再帰反射部材2に一旦入射し、再帰反射して、ウィンドガラス105を透過して、店舗の空間の外側に、実像である空間浮遊映像3を形成する。図1の(A)では、奥行き方向において、ウィンドゥガラス105に対し奥側が店舗内空間、手前側が店舗外空間(例えば歩道)である場合を示している。他方、ウィンドゥガラス105に特定偏波を反射する手段(光学部材など)を設けることで、映像光束を反射させて、店舗内の所望の位置に空間浮遊映像3を形成することもできる。 FIG. 1 shows an example of a usage pattern and a configuration example of a spatially floating video display device according to an embodiment. FIG. 1A shows the overall configuration of a spatially floating video display device according to this embodiment. For example, in a store or the like, a space is partitioned by a show window (window glass) 105 that is a light-transmissive member (also referred to as a transparent member) such as glass. According to the spatial floating information display device of this embodiment, the spatial floating image can be displayed in one direction to the outside of the store space through the transparent member. Specifically, light with a narrow directional characteristic and a specific polarization is emitted from an image display device 1 in a space floating information display device as an image light beam, once enters a retroreflective member 2, and is retroreflected. , a real image floating in space 3 is formed outside the store space through the window glass 105. FIG. 1A shows a case where, in the depth direction, the back side of the window glass 105 is the inside of the store, and the front side is the outside of the store (for example, a sidewalk). On the other hand, by providing a means (such as an optical member) for reflecting specific polarized waves on the window glass 105, it is also possible to reflect the image light flux and form the spatially floating image 3 at a desired position within the store.
 図1の(B)は、上述した映像表示装置1のブロック構成を示す。映像表示装置1は、空間浮遊映像3の原画像を表示する映像表示部1aと、入力された映像を映像表示部1aのパネルの解像度に合わせて変換する映像制御部1bと、映像信号を受信する映像信号受信部1cと、受信アンテナ1dとを含んでいる。映像信号受信部1cは、USB(Universal Serial Bus:登録商標)入力やHDMI(High-Definition Multimedia Interface:登録商標)入力などの有線での入力信号への対応と、Wi-Fi(Wireless Fidelity:登録商標)などの無線での入力信号への対応とを行う。映像表示装置1は、映像受信・表示装置として単独で機能するものでもあり、外部PC、タブレットやスマートフォンなどからの映像情報を表示することもできる。更に、映像表示装置1は、スティックPCなどを接続すれば、計算処理や映像解析処理などの能力を持たせることもできる。 FIG. 1B shows a block configuration of the video display device 1 described above. The video display device 1 includes a video display section 1a that displays the original image of the spatial floating video 3, a video control section 1b that converts the input video according to the resolution of the panel of the video display section 1a, and receives a video signal. The video signal receiving unit 1c includes a video signal receiving unit 1c and a receiving antenna 1d. The video signal receiving unit 1c supports wired input signals such as USB (Universal Serial Bus: registered trademark) input and HDMI (High-Definition Multimedia Interface: registered trademark) input, as well as Wi-Fi (Wireless Fidelity: registered (Trademark) and other wireless input signals. The video display device 1 functions independently as a video receiving/displaying device, and can also display video information from an external PC, tablet, smartphone, or the like. Furthermore, the video display device 1 can be provided with capabilities such as calculation processing and video analysis processing by connecting a stick PC or the like.
 [空間浮遊映像表示装置 V型]
 図2は、一実施例に係る空間浮遊映像表示装置の主要部の構成例を示す。図2の実施例は、映像表示装置1と、再帰反射部材(言い換えると再帰反射板)2とが、略V字型に配置されている構成(以下、V型と記載)を示す。図2に示すように、V型の構成では、平面ガラス等の透明部材100(本例では水平方向に配置されている)に対する斜め方向(光軸A1に対応する方向)には、特定偏波の映像光を発生する映像表示装置1を備える。また、平面ガラス等の透明部材100に対する他の斜め方向(光軸A2に対応する方向)には、再帰反射部材2を備える。映像表示装置1は、光源装置13、液晶表示素子である液晶表示パネル11、吸収型偏光板12等で構成されている。
[Spatial floating video display device V type]
FIG. 2 shows an example of the configuration of the main parts of a floating image display device according to an embodiment. The embodiment shown in FIG. 2 shows a configuration in which an image display device 1 and a retroreflective member (in other words, a retroreflective plate) 2 are arranged in a substantially V shape (hereinafter referred to as a V shape). As shown in FIG. 2, in the V-shaped configuration, a specific polarized light is generated in an oblique direction (direction corresponding to the optical axis A1) with respect to a transparent member 100 such as a flat glass (disposed horizontally in this example). The image display device 1 is provided with an image display device 1 that generates image light. Further, a retroreflective member 2 is provided in another diagonal direction (direction corresponding to the optical axis A2) with respect to the transparent member 100 such as flat glass. The video display device 1 includes a light source device 13, a liquid crystal display panel 11 which is a liquid crystal display element, an absorption type polarizing plate 12, and the like.
 図2で、映像表示装置1の液晶表示パネル11から発する特定偏波の映像光は、光軸A1の方向に進み、透明部材100に設けられた特定偏波の映像光を選択的に反射する膜を有するビームスプリッタ101(偏光分離部材)で反射され、光軸A2の方向に進み、再帰反射部材2に入射する。本例では、ビームスプリッタ101は、シート状に形成されて、平面ガラス等の透明部材100の下面に粘着されている。または、平面ガラスに直接、光学薄膜を蒸着することで、ビームスプリッタ101が形成されてもよい。 In FIG. 2, image light of a specific polarization emitted from the liquid crystal display panel 11 of the image display device 1 travels in the direction of the optical axis A1, and selectively reflects the image light of a specific polarization provided on the transparent member 100. It is reflected by the beam splitter 101 (polarization separation member) having a film, travels in the direction of the optical axis A2, and enters the retroreflection member 2. In this example, the beam splitter 101 is formed into a sheet shape and is adhered to the lower surface of a transparent member 100 such as flat glass. Alternatively, the beam splitter 101 may be formed by directly depositing an optical thin film on flat glass.
 再帰反射部材2の映像光入射面(言い換えると再帰反射面)には、λ/4板21が設けられている。λ/4板21は、言い換えると、偏光変換素子、位相差板、四分の一波長板である。 A λ/4 plate 21 is provided on the image light incident surface (in other words, the retroreflective surface) of the retroreflective member 2. In other words, the λ/4 plate 21 is a polarization conversion element, a retardation plate, and a quarter wavelength plate.
 ビームスプリッタ101からの光軸A2上の映像光は、再帰反射部材2への入射の際と再帰反射部材2から出射の際との計2回、λ/4板21を通過させられることで、特定偏波(一方の偏波)から他方の偏波へ偏光変換される。ここで、特定偏波の映像光を選択的に反射するビームスプリッタ101は、偏光変換後の他方の偏波の映像光については透過する性質を有する。よって、偏光変換後の他方の偏波の映像光は、ビームスプリッタ101を透過する。ビームスプリッタ101を透過した映像光は、光軸A2に対応する光軸A3の方向で、透明部材100の外側の所定の位置に、実像である空間浮遊映像3を形成・表示する。 The image light on the optical axis A2 from the beam splitter 101 is passed through the λ/4 plate 21 twice, once when it enters the retroreflector 2 and when it exits from the retroreflector 2. Polarization conversion is performed from a specific polarization (one polarization) to the other polarization. Here, the beam splitter 101 that selectively reflects the image light of a specific polarization has a property of transmitting the image light of the other polarization after polarization conversion. Therefore, the image light of the other polarization after polarization conversion is transmitted through the beam splitter 101. The image light transmitted through the beam splitter 101 forms and displays a spatially floating image 3, which is a real image, at a predetermined position outside the transparent member 100 in the direction of the optical axis A3 corresponding to the optical axis A2.
 なお、空間浮遊映像3を形成する光は、再帰反射部材2から空間浮遊映像3の光学像へ収束する光線の集合であり、これらの光線は、空間浮遊映像3の光学像を通過後も直進する。よって、図2の構成では、光軸A3に対応した、矢印で示す方向Aから、利用者が視認する場合には、空間浮遊映像3は明るい映像として視認される。しかし、例えば矢印で示す方向Bから他の人が視認する場合には、空間浮遊映像3は映像として一切視認できない。このような特性は、高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示するシステムなどに採用する場合に、非常に好適である。 Note that the light forming the space floating image 3 is a collection of light rays that converge from the retroreflective member 2 to the optical image of the space floating image 3, and these light rays continue to travel straight even after passing through the optical image of the space floating image 3. do. Therefore, in the configuration of FIG. 2, when the user views the image from the direction A indicated by the arrow corresponding to the optical axis A3, the spatially floating image 3 is viewed as a bright image. However, when viewed by another person from the direction B indicated by the arrow, for example, the floating image 3 cannot be viewed as an image at all. Such characteristics are very suitable for use in systems that display videos that require high security or highly confidential videos that should be kept secret from the person directly facing the user.
 なお、再帰反射部材2の性能によっては、反射後の映像光の偏光軸が不揃いになることがある。この場合、偏光軸が不揃いになった一部の映像光は、上述したビームスプリッタ101で反射されて映像表示装置1の方に戻る。この戻った光が、映像表示装置1を構成する液晶表示パネル11の映像表示面で再反射することで、ゴースト像を発生させ、空間浮遊映像3の画質を低下させる可能性がある。そこで、本実施例では、映像表示装置1の映像表示面には吸収型偏光板12が設けられている。映像表示装置1から出射する映像光については吸収型偏光板12を透過させ、ビームスプリッタ101から戻ってくる反射光については吸収型偏光板12で吸収させる。これにより、上記再反射を抑制でき、空間浮遊映像3のゴースト像による画質低下を防止することができる。 Note that depending on the performance of the retroreflective member 2, the polarization axes of the reflected image light may become uneven. In this case, some of the image light whose polarization axes are not aligned is reflected by the beam splitter 101 described above and returns to the image display device 1 . When this returned light is reflected again on the image display surface of the liquid crystal display panel 11 that constitutes the image display device 1, a ghost image may be generated and the image quality of the spatially floating image 3 may be degraded. Therefore, in this embodiment, an absorption type polarizing plate 12 is provided on the image display surface of the image display device 1. The image light emitted from the image display device 1 is transmitted through the absorption type polarizing plate 12, and the reflected light returning from the beam splitter 101 is absorbed by the absorption type polarizing plate 12. Thereby, the above-mentioned re-reflection can be suppressed, and image quality deterioration due to ghost images of the spatially floating image 3 can be prevented.
 上述したビームスプリッタ(偏光分離部材)101は、例えば反射型偏光板や特定偏波を反射させる金属多層膜などで形成される。より具体的には、ビームスプリッタ101は、平面ガラス(例えば石英ガラス)上に光学薄膜を蒸着して構成することができる。 The beam splitter (polarization separation member) 101 described above is formed of, for example, a reflective polarizing plate or a metal multilayer film that reflects a specific polarized wave. More specifically, the beam splitter 101 can be constructed by depositing an optical thin film on flat glass (for example, quartz glass).
 [空間浮遊映像表示装置 Z型]
 図3は、図2の実施例とは異なる、一実施例に係る空間浮遊映像表示装置の主要部の構成例を示す。図3の実施例は、映像表示装置1と再帰反射部材2(再帰反射板)とが対向して配置され、それらを結ぶ空間に、ビームスプリッタ101が、映像表示装置1と再帰反射部材2に対し互いに45度程度の角度をなして、概略的にZ字型(または、逆Z字型)に配置されている構成(以下、Z型と記載)を示している。
[Spatial floating video display device Z type]
FIG. 3 shows a configuration example of a main part of a floating image display device according to an embodiment, which is different from the embodiment shown in FIG. In the embodiment shown in FIG. 3, a video display device 1 and a retroreflective member 2 (retroreflective plate) are arranged facing each other, and a beam splitter 101 is installed between the video display device 1 and the retroreflective member 2 in a space connecting them. This figure shows a configuration (hereinafter referred to as Z-shape) in which they are arranged approximately in a Z-shape (or inverted Z-shape) at an angle of about 45 degrees with respect to each other.
 図3に示すZ型の構成では、方向Cから入射してくる外光の再帰反射部材2や映像表示装置1に対しての影響を低減することを目的として、ガラス板等の透明部材100および吸収型偏光板112を備えている。図3に示すように、映像表示装置1および再帰反射部材2は、透明部材100および吸収型偏光板112と90度程度の角度をなして配置されており、ビームスプリッタ101とは略45度程度の角度をなして配置されている。本実施例では、ビームスプリッタ101は水平方向に配置されており、映像表示装置1、より具体的には液晶表示パネル11上に表示された映像の位置と、空間浮遊映像3が形成される位置とは、ビームスプリッタ101と面対称の位置関係となる。 In the Z-type configuration shown in FIG. 3, a transparent member 100 such as a glass plate and a An absorption type polarizing plate 112 is provided. As shown in FIG. 3, the video display device 1 and the retroreflective member 2 are arranged at an angle of approximately 90 degrees with the transparent member 100 and the absorption polarizing plate 112, and are arranged at an angle of approximately 45 degrees with the beam splitter 101. are arranged at an angle. In this embodiment, the beam splitter 101 is arranged in the horizontal direction, and the position of the image displayed on the image display device 1, more specifically, the liquid crystal display panel 11, and the position where the spatial floating image 3 is formed. This means that the beam splitter 101 has a plane-symmetrical positional relationship.
 [再帰反射部材]
 図4の(A)には、代表的な再帰反射部材2として、今回の検討に用いた日本カ-バイト工業株式会社製の再帰反射部材2(再帰反射板)の表面形状を示す。図4の(A)は上面図、図4の(B)は側面図を示す。再帰反射部材2の表面において、規則的に配列された6角柱からなる再帰反射部2aを有する。再帰反射部2aの内部に入射した光線は、6角柱の壁面と底面で反射されて、再帰反射光として、入射光に対応した方向に出射する。この出射した光は、例えば図2や図3に示す構成で、正規な反射像(正規像)として空間浮遊映像3を形成する。一方、図4の(B)に示したように、映像表示装置1からの映像光のうちで再帰反射部材2に対し斜めに入射した映像光によっては、正規像とは別の位置に、図示しないゴースト像が形成される。このゴースト像が空間浮遊映像3の視認性を低下させる。
[Retroreflective member]
FIG. 4A shows the surface shape of a retroreflective member 2 (retroreflector plate) manufactured by Nippon Carbide Industries Co., Ltd. used in this study as a typical retroreflective member 2. FIG. 4A shows a top view, and FIG. 4B shows a side view. On the surface of the retroreflective member 2, there is a retroreflective portion 2a formed of regularly arranged hexagonal columns. The light beam that has entered the interior of the retroreflector 2a is reflected by the wall and bottom surfaces of the hexagonal prism, and is emitted as retroreflected light in a direction corresponding to the incident light. This emitted light forms a spatially floating image 3 as a regular reflected image (regular image), for example, in the configuration shown in FIGS. 2 and 3. On the other hand, as shown in FIG. 4B, some of the image light from the image display device 1 that is obliquely incident on the retroreflective member 2 may be placed at a position different from the normal image. A ghost image is formed. This ghost image reduces the visibility of the spatially floating image 3.
 そこで、本実施例(図3)では、映像表示装置1に表示した映像に基づき、ゴースト像を形成すること無く、実像である空間浮遊映像3を表示する。この空間浮遊映像3の解像度は、液晶表示パネル11の解像度の他に、図4の(A)で示す再帰反射部材2の再帰反射部2aの外径DとピッチPに大きく依存する。例えば、7インチのWUXGA(1920×1200画素)の液晶表示パネル11を用いる場合には、1画素(1トリプレット)が約80μmであっても、例えば再帰反射部2aの直径Dが240μmでピッチPが300μmであれば、空間浮遊映像3の1画素は300μm相当となる。このため、空間浮遊映像3の実効的な解像度は1/3程度に低下する。そこで、空間浮遊映像3の解像度を映像表示装置1の解像度と同等にするためには、再帰反射部2aの直径DとピッチPを、液晶表示パネルの1画素に近づけることが望まれる。他方、再帰反射部材2と液晶表示パネル11の画素によるモアレの発生を抑えるためには、それぞれのピッチ比を1画素の整数倍から外して設計するとよい。また、形状は、再帰反射部2aのいずれの一辺も液晶表示パネル11の1画素のいずれの一辺と重ならないように配置した形状とするとよい。 Therefore, in this embodiment (FIG. 3), based on the image displayed on the image display device 1, a real image floating in space 3 is displayed without forming a ghost image. The resolution of this spatially floating image 3 largely depends on the outer diameter D and pitch P of the retroreflective portion 2a of the retroreflective member 2 shown in FIG. 4A, in addition to the resolution of the liquid crystal display panel 11. For example, when using a 7-inch WUXGA (1920 x 1200 pixels) liquid crystal display panel 11, even if one pixel (one triplet) is approximately 80 μm, the diameter D of the retroreflective portion 2a is 240 μm and the pitch P is 300 μm, one pixel of the spatial floating image 3 is equivalent to 300 μm. Therefore, the effective resolution of the spatial floating image 3 is reduced to about 1/3. Therefore, in order to make the resolution of the floating image 3 equivalent to that of the image display device 1, it is desirable to make the diameter D and pitch P of the retroreflective portion 2a close to one pixel of the liquid crystal display panel. On the other hand, in order to suppress the occurrence of moiré due to the pixels of the retroreflective member 2 and the liquid crystal display panel 11, it is preferable to design the pitch ratio of each of them to be outside an integral multiple of one pixel. Further, the shape may be such that none of the sides of the retroreflective portion 2a overlaps any one side of one pixel of the liquid crystal display panel 11.
 本発明者は、視認性を向上するために許容できる空間浮遊映像3の像のボケ量l(スモールL)と画素サイズL(ラージL)との関係を、画素ピッチ40μmの液晶表示パネル11と本実施例の狭発散角(発散角15°)の光源装置13とを組み合わせた映像表示装置1を作成して実験により求めた。図5に、その実験結果を示す。視認性が悪化するボケ量lは、画素サイズの40%以下が望ましく、15%以下であれば殆ど目立たないことが分かった。このボケ量lが許容量となる反射面の面粗さは、測定距離40μmの範囲において平均粗さが160nm以下であり、より目立たないボケ量lとなるには、反射面の面粗さは120nm以下が望ましいことが分かった。このため、前述した再帰反射部材2の表面粗さを軽減するとともに、反射面を形成する反射膜とその保護膜を含めた面粗さを、上述した値以下とすることが望まれる。 The present inventor has determined the relationship between the amount of image blur l (small L) and the pixel size L (large L) of the image of the spatially floating image 3 that is permissible in order to improve visibility in a liquid crystal display panel 11 with a pixel pitch of 40 μm. The image display device 1 was created in combination with the light source device 13 having a narrow divergence angle (divergence angle of 15°) of this example, and was determined through experiments. FIG. 5 shows the experimental results. It was found that the amount of blur l that deteriorates visibility is desirably 40% or less of the pixel size, and is hardly noticeable if it is 15% or less. The surface roughness of the reflective surface for which this blur amount l is an acceptable level is that the average roughness is 160 nm or less within a measurement distance of 40 μm, and for a less noticeable blur amount l, the surface roughness of the reflective surface is 120 nm or less. was found to be desirable. For this reason, it is desirable to reduce the surface roughness of the retroreflective member 2 described above, and to make the surface roughness including the reflective film forming the reflective surface and its protective film below the above-mentioned value.
 一方、再帰反射部材2を低価格で製造するためには、ロールプレス法を用いて成形するとよい。具体的には、再帰反射部2aを整列させてフィルム上に賦形する方法である。この方法では、賦形する形状の逆形状をロール表面に形成し、固定用のベース材の上に紫外線硬化樹脂を塗布し、ロール間を通過させることで、必要な形状を賦形し、紫外線を照射して硬化させ、所望形状の再帰反射部材2を得る。 On the other hand, in order to manufacture the retroreflective member 2 at a low cost, it is preferable to mold it using a roll press method. Specifically, this is a method in which the retroreflective parts 2a are aligned and shaped on the film. In this method, the reverse shape of the shape to be shaped is formed on the roll surface, an ultraviolet curing resin is applied on the fixing base material, and the resin is passed between the rolls to form the required shape, and is irradiated and cured to obtain a retroreflective member 2 having a desired shape.
 本実施例の映像表示装置1は、液晶表示パネル11と、特定偏波の光を生成する光源としての光源装置13(詳しくは図6)とにより、上述した再帰反射部材2に対して斜めから映像光が入射する可能性が小さくなる。その結果、ゴースト像の発生を抑え、たとえゴースト像が発生したとしても、そのゴースト像の輝度が低いという、構造的に優れたシステムとなる。 The video display device 1 of this embodiment uses a liquid crystal display panel 11 and a light source device 13 (details shown in FIG. 6) as a light source that generates light of a specific polarization to provide an image that is viewed obliquely from the above-mentioned retroreflective member 2. The possibility of image light entering is reduced. As a result, a structurally superior system is obtained in which the generation of ghost images is suppressed, and even if a ghost image occurs, the brightness of the ghost image is low.
 一方、図3に示すZ型の空間浮遊映像表示装置の構成では、液晶表示パネル11と吸収型偏光板12と光源装置13とを有して構成された映像表示装置1は、所定の角度(例えば水平面のビームスプリッタ101に対して45度程度の角度)をもって配置されている。映像表示装置1からの映像光は、光軸B1の方向(ビームスプリッタ101に対する斜め方向)で、ビームスプリッタ101を通過し、光軸B1に対応した光軸B2の方向(方向Dと対応する)で、再帰反射部材2に向かって進む。 On the other hand, in the configuration of the Z-type spatially floating image display device shown in FIG. For example, the beam splitter 101 is arranged at an angle of about 45 degrees with respect to the horizontal beam splitter 101. The image light from the image display device 1 passes through the beam splitter 101 in the direction of the optical axis B1 (diagonal direction with respect to the beam splitter 101), and passes through the beam splitter 101 in the direction of the optical axis B2 (corresponding to the direction D) corresponding to the optical axis B1. Then, it moves toward the retroreflective member 2.
 ここで、映像表示装置1からの映像光は、特定偏波の光として、例えば、P偏光(平行偏光:Parallel Polarization)の特性を有する映像光である。また、ビームスプリッタ101は、反射型偏光板のような偏光分離部材であって、映像表示装置1からのP偏光の映像光については透過するが、S偏光(垂直偏光:Senkrecht Polarization)の映像光については反射する性質を有している。このビームスプリッタ101は、反射型偏光板や特定偏波を反射させる金属多層膜から形成される。このビームスプリッタ101は、一般的に平板ガラス基板上に光学薄膜を蒸着することで形成することができる。したがって、ビームスプリッタ101の屈折率は、実質的に平板ガラスの屈折率n(n=約1.5)と同じ値を有する。 Here, the image light from the image display device 1 is light of a specific polarization, for example, image light having characteristics of P-polarized light (Parallel Polarization). The beam splitter 101 is a polarization separation member such as a reflective polarizing plate, and transmits the P-polarized image light from the image display device 1, but transmits the S-polarized (vertical polarization) image light. It has a reflective property. This beam splitter 101 is formed from a reflective polarizing plate or a metal multilayer film that reflects a specific polarized wave. This beam splitter 101 can generally be formed by depositing an optical thin film on a flat glass substrate. Therefore, the refractive index of the beam splitter 101 has substantially the same value as the refractive index n (n=about 1.5) of the flat glass.
 一方、再帰反射部材2の光入射面(再帰反射面)には、λ/4板21が設けられている。映像表示装置1からのビームスプリッタ101を透過したP偏光の映像光は、再帰反射部材2に対する入射と出射の際にλ/4板21を計2度通過させられることで、P偏光からS偏光に偏光変換される。この結果、再帰反射部材2からの偏光変換後のS偏光の映像光は、ビームスプリッタ101で反射され、透明部材100等に向かって進む。反射後の光軸B3に対応する方向(ビームスプリッタ101に対する斜め方向)を進んだS偏光の映像光は、ガラス板等による透明部材100および吸収型偏光板112を透過し、透明部材100等の外側の所定の位置に、実像である空間浮遊映像3を生成・表示する。 On the other hand, a λ/4 plate 21 is provided on the light incidence surface (retroreflection surface) of the retroreflection member 2. The P-polarized image light transmitted through the beam splitter 101 from the image display device 1 passes through the λ/4 plate 21 twice in total when entering and exiting the retroreflective member 2, thereby converting the P-polarized light into S-polarized light. The polarization is converted to As a result, the S-polarized image light after polarization conversion from the retroreflective member 2 is reflected by the beam splitter 101 and proceeds toward the transparent member 100 and the like. The S-polarized image light that has traveled in the direction corresponding to the optical axis B3 after reflection (oblique direction with respect to the beam splitter 101) is transmitted through the transparent member 100 such as a glass plate and the absorptive polarizing plate 112, and is A spatial floating image 3, which is a real image, is generated and displayed at a predetermined position on the outside.
 ここで、映像表示装置1や再帰反射部材2やビームスプリッタ101等の光学部品により構成される光学系に対して、太陽光や照明光が入射することによる画質低下を軽減するためには、透明部材100の外表面に吸収型偏光板112を設けるとよい。再帰反射部材2で光が再帰反射することで偏光軸が不揃いになる場合があるため、ビームスプリッタ101では一部の映像光が反射して映像表示装置1の方に戻る場合がある。この戻った光が、再度、映像表示装置1を構成する液晶表示パネル11の映像表示面で反射することで、ゴースト像を発生させ、空間浮遊映像3の画質を著しく低下させる。 Here, in order to reduce image quality deterioration due to sunlight and illumination light entering the optical system composed of optical components such as the video display device 1, retroreflective member 2, and beam splitter 101, transparent It is preferable to provide an absorption type polarizing plate 112 on the outer surface of the member 100. Since the polarization axes may become misaligned due to retroreflection of the light by the retroreflection member 2, some of the image light may be reflected by the beam splitter 101 and returned to the image display device 1. This returned light is reflected again on the image display surface of the liquid crystal display panel 11 constituting the image display device 1, thereby generating a ghost image and significantly degrading the image quality of the spatially floating image 3.
 そこで、図2および図3に示すいずれの実施例においても、映像表示装置1の映像表示面には吸収型偏光板12が設けられている。もしくは、映像表示装置1の表面に設けた吸収型偏光板12の映像出射側面に、図示しない反射防止膜を設けてもよい。これにより、ゴースト像を発生させる原因となる光を、吸収型偏光板12で吸収させることで、空間浮遊映像3のゴースト像による画質低下を防止する。 Therefore, in both the embodiments shown in FIGS. 2 and 3, an absorption polarizing plate 12 is provided on the image display surface of the image display device 1. Alternatively, an anti-reflection film (not shown) may be provided on the image exit side surface of the absorptive polarizing plate 12 provided on the surface of the image display device 1. As a result, the absorption type polarizing plate 12 absorbs light that causes a ghost image, thereby preventing image quality deterioration of the spatially floating image 3 due to the ghost image.
 さらに、図3のZ型の構成では、再帰反射部材2に外光が直接入射すると、強力なゴースト像を発生させる。そのため、このゴースト像の発生を抑制・防止するために、この実施例では、再帰反射部材2を外光の入射方向に対して下向きに傾けることで、外光の入射を妨げる構成とする。具体的には、外光の主な入射方向を、矢印で示す方向C(利用者が空間浮遊映像3を正面から視認する方向)に対応する方向(光軸B3のような斜め方向)とする。その場合に、再帰反射部材2は、光軸B2が、その方向C(光軸B3)に対し、例えば90度程度の関係となるように配置されている。言い換えると、再帰反射部材2の主面が、透明部材100等の主面に対し、例えば90度程度の関係となるように配置されている。これにより、方向Cで入射した場合の外光は、再帰反射部材2の主面(再帰反射面)に直接的に入射することが無いので、ゴースト像の発生が防止される。 Furthermore, in the Z-shaped configuration shown in FIG. 3, when external light directly enters the retroreflective member 2, a strong ghost image is generated. Therefore, in order to suppress and prevent the occurrence of this ghost image, in this embodiment, the retroreflective member 2 is tilted downward with respect to the direction of incidence of external light, thereby blocking the incidence of external light. Specifically, the main incident direction of external light is set to be a direction (diagonal direction such as optical axis B3) corresponding to direction C shown by the arrow (direction in which the user views the floating image 3 from the front). . In that case, the retroreflective member 2 is arranged such that the optical axis B2 is at an angle of, for example, about 90 degrees with respect to the direction C (optical axis B3). In other words, the main surface of the retroreflective member 2 is arranged at an angle of, for example, about 90 degrees with respect to the main surface of the transparent member 100 and the like. As a result, external light incident in direction C does not directly enter the main surface (retroreflective surface) of the retroreflective member 2, thereby preventing the generation of ghost images.
 また、映像表示装置1についても、外光の入射方向(方向C)とは異なる向きに配置されている。具体的には、映像表示装置1の主面(映像光出射面)は、再帰反射部材2の主面と同じ向き(言い換えると平行)に配置されており、映像表示装置1の光軸B1が外光の入射方向(方向C)に対応する光軸B3に対して90度程度の関係で配置されている。また、開口部として機能する透明部材100の主面に対し方向Cで外光が入射する場合の光束の範囲を考えた場合に、その範囲の外側にやや離れた位置に映像表示装置1が配置されている。これらにより、映像表示装置1での再反射を原因とするゴースト像の発生が軽減される。 Furthermore, the video display device 1 is also arranged in a direction different from the direction of incidence of external light (direction C). Specifically, the main surface (image light exit surface) of the video display device 1 is arranged in the same direction (in other words, parallel) as the main surface of the retroreflective member 2, and the optical axis B1 of the video display device 1 is aligned with the main surface of the retroreflective member 2. It is arranged at about 90 degrees with respect to the optical axis B3 corresponding to the direction of incidence of external light (direction C). Furthermore, when considering the range of luminous flux when external light enters the main surface of the transparent member 100 that functions as an opening in the direction C, the image display device 1 is placed at a position slightly away from the outside of the range. has been done. These reduce the occurrence of ghost images caused by re-reflection on the video display device 1.
 [映像表示装置]
 図6は、図2や図3の実施例に適用可能である映像表示装置1の構成例を示す。この映像表示装置1は、光源装置13、液晶表示パネル11、光方向変換パネル54等を有して構成されている。液晶表示パネル11の映像出射面側には、前述の吸収型偏光板12が設けられてもよい。光源装置13は、光源を構成する半導体光源(固体光源)である複数のLED素子201(LED:Light Emitting Diode)、および導光体203等を有して構成されている。図6では、光源装置13の光出射側に液晶表示パネル11と光方向変換パネル54が配置された状態を展開斜視図として示している。
[Video display device]
FIG. 6 shows a configuration example of a video display device 1 that is applicable to the embodiments of FIGS. 2 and 3. The video display device 1 includes a light source device 13, a liquid crystal display panel 11, a light direction conversion panel 54, and the like. The aforementioned absorptive polarizing plate 12 may be provided on the image exit surface side of the liquid crystal display panel 11. The light source device 13 includes a plurality of LED elements 201 (LEDs: Light Emitting Diodes) that are semiconductor light sources (solid light sources) constituting a light source, a light guide 203, and the like. FIG. 6 is a developed perspective view showing a state in which the liquid crystal display panel 11 and the light direction conversion panel 54 are arranged on the light output side of the light source device 13.
 光源装置13は、例えば、プラスチック等のケース(図示しない)により形成され、内部にLED素子201、および導光体203を収納して構成されている。導光体203の光入射側には、それぞれのLED素子201からの発散光を略平行光束に変換するために、受光端面203aが設けられている。受光端面203aは、受光部に対して対面に向かって徐々に断面積が大きくなる形状を有し、内部を伝搬する際に複数回全反射することで発散角が徐々に小さくなるような作用を有するレンズ形状が設けられている。 The light source device 13 is formed of, for example, a case (not shown) made of plastic or the like, and includes an LED element 201 and a light guide 203 housed inside. A light receiving end surface 203a is provided on the light incident side of the light guide 203 in order to convert the diverging light from each LED element 201 into a substantially parallel light beam. The light-receiving end face 203a has a shape in which the cross-sectional area gradually increases toward the side facing the light-receiving part, and has an effect that the divergence angle gradually decreases by being totally reflected multiple times while propagating inside. A lens shape is provided.
 さらに、導光体203の上面には、導光体203に対して略平行に配置された液晶表示パネル11が取り付けられている。導光体203の上面とは、導光体203の反射で反射された光を出射する出射面のことを言う。また、光源装置13のケースの1つの側面(図6では下側の側面)には、複数のLED素子201が取り付けられている。複数のLED素子201からの光は、導光体203の受光端面203aの形状によって、略コリメート光(略平行光)に変換される。このため、受光端面203aの受光部とLED素子201とは、所定の位置関係を保って取り付けられている。 Furthermore, a liquid crystal display panel 11 arranged substantially parallel to the light guide 203 is attached to the upper surface of the light guide 203. The upper surface of the light guide 203 refers to an exit surface from which light reflected by the light guide 203 is emitted. Further, a plurality of LED elements 201 are attached to one side surface (lower side surface in FIG. 6) of the case of the light source device 13. The light from the plurality of LED elements 201 is converted into substantially collimated light (substantially parallel light) depending on the shape of the light receiving end surface 203a of the light guide 203. Therefore, the light receiving portion of the light receiving end surface 203a and the LED element 201 are attached while maintaining a predetermined positional relationship.
 光源装置13は、導光体203の光入射側に設けられた受光部である受光端面203aに、光源であるLED素子201が複数並べられた光源ユニットを取り付けて構成されている。LED素子201からの発散光束は、導光体203の受光端面203aのレンズ形状によって、略コリメート光とされる。この略コリメート光は、導光体203の内部を矢印で示す方向Aに導光する。方向Aは、液晶表示パネル11に対して略平行な方向(図面では下から上への方向)である。方向Aに導光した光は、導光体203に備える光束方向変換部204によって光束方向が変換されて、導光体203に対し略平行な液晶表示パネル11に向かって、矢印で示す方向Bに出射する。方向Bは、液晶表示パネル11の表示面に対して略垂直な方向である。 The light source device 13 is configured by attaching a light source unit in which a plurality of LED elements 201, which are light sources, are arranged on a light receiving end face 203a, which is a light receiving section provided on the light incident side of the light guide 203. The diverging light flux from the LED element 201 is made into approximately collimated light by the lens shape of the light receiving end surface 203a of the light guide 203. This substantially collimated light is guided inside the light guide 203 in the direction A indicated by the arrow. Direction A is a direction substantially parallel to the liquid crystal display panel 11 (from bottom to top in the drawing). The light guided in direction A has its light flux direction converted by a light flux direction conversion unit 204 provided in the light guide 203, and is directed toward the liquid crystal display panel 11, which is substantially parallel to the light guide 203, in the direction B shown by the arrow. emitted to. Direction B is a direction substantially perpendicular to the display surface of the liquid crystal display panel 11.
 導光体203は、導光体203内部または表面の形状によって、光束方向変換部204の分布(言い換えると密度)が最適化されている構成を有する。これにより、方向Bで示す光源装置13からの出射光束であって液晶表示パネル11への入射光束である光の均一性を制御することができる。 The light guide 203 has a configuration in which the distribution (in other words, the density) of the light flux direction converting portions 204 is optimized depending on the shape of the inside or surface of the light guide 203. Thereby, the uniformity of the light, which is the light flux emitted from the light source device 13 shown in the direction B and is the light flux incident on the liquid crystal display panel 11, can be controlled.
 さらに、光源装置13と液晶表示パネル11とを含んで構成される映像表示装置1において、方向Bで示す光源装置13からの出射光束の利用効率を向上させ、消費電力を大幅に低減するために、光源装置13からの方向Bの光の指向性を制御することもできる。より具体的には、光源装置13として、狭角な発散角を有する光源を構成することができる。この結果、映像表示装置1からの映像光は、レーザ光のように観察者に対して高い指向性(言い換えると直進性)で効率良く届くこととなり、高品位な空間浮遊映像を高解像度で表示できる。それとともに、光源装置13のLED素子201を含む映像表示装置1による消費電力を著しく低減可能となる。 Furthermore, in the video display device 1 including the light source device 13 and the liquid crystal display panel 11, in order to improve the utilization efficiency of the emitted light flux from the light source device 13 shown in direction B and to significantly reduce power consumption. , the directivity of the light in direction B from the light source device 13 can also be controlled. More specifically, the light source device 13 can be configured as a light source having a narrow divergence angle. As a result, the image light from the image display device 1 efficiently reaches the viewer with high directivity (in other words, straight-line propagation) like laser light, and displays high-quality spatial floating images with high resolution. can. At the same time, the power consumption by the video display device 1 including the LED element 201 of the light source device 13 can be significantly reduced.
 また、光源装置13の図示しないケースの上面に取り付けられる液晶表示パネル11の図示しないフレームには、当該フレームに取り付けられた液晶表示パネル11と、当該液晶表示パネル11に電気的に接続された図示しないフレキシブル配線基板(FPC:Flexible Printed Circuits)等とが取り付けられて構成されている。液晶表示素子である液晶表示パネル11は、LED素子201と共に、電子装置を構成する図示しない制御回路からの制御信号に基づいて、透過光の強度を変調することによって、表示映像を生成する。 In addition, a frame (not shown) of the liquid crystal display panel 11 attached to the top surface of a case (not shown) of the light source device 13 includes the liquid crystal display panel 11 attached to the frame, and a frame (not illustrated) electrically connected to the liquid crystal display panel 11. It is constructed by attaching a flexible printed circuit board (FPC), etc. The liquid crystal display panel 11, which is a liquid crystal display element, generates a display image by modulating the intensity of transmitted light, together with the LED elements 201, based on a control signal from a control circuit (not shown) that constitutes an electronic device.
 <机上設置型(Z型)の空間浮遊映像表示装置>
 次に、図7以降を用いて、一実施例に係る、机上設置型の空間浮遊映像表示装置について説明する。以降に示す各実施例の空間浮遊映像表示装置は、基本構成としては、図3に示すZ型の構成に該当する。空間浮遊映像3を形成する機能のために、空間浮遊映像表示装置の各構成要素(映像表示装置1、ビームスプリッタ101、再帰反射部材2等)は、所定の位置関係を有して相互に固定されている。
<Desktop type (Z type) spatial floating video display device>
Next, a desk-mounted space floating video display device according to an embodiment will be described with reference to FIG. 7 and subsequent figures. The basic configuration of the spatial floating video display device of each embodiment shown below corresponds to the Z-type configuration shown in FIG. 3. In order to form the space floating image 3, each component of the space floating image display device (image display device 1, beam splitter 101, retroreflective member 2, etc.) is fixed to each other in a predetermined positional relationship. has been done.
 [第1実施例]
 図7は、一実施例(第1実施例とする)に係る、机上設置用として好適な空間浮遊映像表示装置の外観構成例を示す。図7に示す第1実施例の空間浮遊映像表示装置は、大別して、映像表示装置部300(それに対応する筐体106)と、空間浮遊映像表示部400とを備える。映像表示装置部300は、筐体106(言い換えると映像表示装置1の収納部)に実装・収納されている。空間浮遊映像表示部400は、再帰反射部材2、λ/4板21、ビームスプリッタ101、および、これらを支えるフレーム108などにより構成される。
[First example]
FIG. 7 shows an example of the external appearance of a floating image display device suitable for use on a desk, according to an embodiment (referred to as a first embodiment). The space floating video display device of the first embodiment shown in FIG. 7 is roughly divided into a video display device section 300 (corresponding housing 106) and a space floating video display section 400. The video display device section 300 is mounted and housed in the housing 106 (in other words, the storage section of the video display device 1). The floating image display section 400 is composed of a retroreflective member 2, a λ/4 plate 21, a beam splitter 101, a frame 108 that supports them, and the like.
 図7では、図示のX-Y面を机面(本例では水平面)とした場合に、その机面上に筐体106が配置されている。筐体106は概略的に長方体形状、所定の高さの平板形状である。筐体106内には机面に沿って映像表示装置1が配置されている。筐体106の上に、空間浮遊映像表示部400が配置されている。ビームスプリッタ101が机面に対し斜めに配置されている。ビームスプリッタ101の上に、再帰反射部材2およびλ/4板21が、机面に沿って配置されている。λ/4板21は、上側にある再帰反射部材2に対し下側に向いて配置されている。つまり、λ/4板21は、再帰反射部材2の光入射側に配置されている。空間浮遊映像3は、筐体106と再帰反射部材2との間で、ビームスプリッタ101から前側(Y方向)に出て、鉛直方向(X-Z面)に立つように形成される。 In FIG. 7, when the illustrated XY plane is a desk surface (horizontal surface in this example), the casing 106 is placed on the desk surface. The housing 106 has a generally rectangular shape and a flat plate shape with a predetermined height. The video display device 1 is arranged inside the casing 106 along the desk surface. A floating video display section 400 is arranged above the housing 106. A beam splitter 101 is arranged diagonally with respect to the desk surface. Above the beam splitter 101, a retroreflective member 2 and a λ/4 plate 21 are arranged along the desk surface. The λ/4 plate 21 is arranged facing downward with respect to the retroreflective member 2 located above. That is, the λ/4 plate 21 is arranged on the light incident side of the retroreflective member 2. The spatially floating image 3 is formed between the housing 106 and the retroreflective member 2 so as to come out from the beam splitter 101 to the front side (Y direction) and stand in the vertical direction (XZ plane).
 空間浮遊映像3は、筐体106と再帰反射部材2との間で、ビームスプリッタ101から前側(Y方向)に出て、鉛直方向(X-Z面)に立つように形成される。空間浮遊映像表示装置の筐体106が一番下に配置されることには限定されない。状況に応じて、筐体106と再帰反射部材2との位置関係は逆でもよいし、上下だけではなく、左右配置でもよい。つまり、ビームスプリッタ101は筐体106の光出射側と再帰反射部材2との間に配置されており、筐体106の光出射側と再帰反射部材2の光入出射側とは対向して配置され、ビームスプリッタ101は再帰反射部材2の光入出射面に対して斜めに配置されている。 The spatial floating image 3 is formed between the casing 106 and the retroreflective member 2 so as to exit from the beam splitter 101 to the front side (Y direction) and stand in the vertical direction (XZ plane). The housing 106 of the floating image display device is not limited to being placed at the bottom. Depending on the situation, the positional relationship between the housing 106 and the retroreflective member 2 may be reversed, or may be arranged not only vertically but also horizontally. That is, the beam splitter 101 is arranged between the light output side of the housing 106 and the retroreflective member 2, and the light output side of the housing 106 and the light input/output side of the retroreflective member 2 are arranged opposite to each other. The beam splitter 101 is arranged obliquely to the light input/output surface of the retroreflective member 2.
 フレーム108は、ビームスプリッタ101、再帰反射部材2およびλ/4板21を支持する部材である。フレーム108は、筐体106の上面の2つの角から上に出て、ビームスプリッタ101の2つの斜辺に沿って斜め上に延在し、水平方向(Y方向)に曲がって、再帰反射部材2等の2つの辺に沿って延在したあと、それらの端部がX方向に沿って延在して閉じている。 The frame 108 is a member that supports the beam splitter 101, the retroreflective member 2, and the λ/4 plate 21. The frame 108 protrudes upward from the two corners of the top surface of the housing 106, extends diagonally upward along the two oblique sides of the beam splitter 101, bends in the horizontal direction (Y direction), and extends to the retroreflective member 108. , and then their ends extend along the X direction and are closed.
 本実施例では、筐体106内に、図6のような映像表示装置1の構成要素、すなわち、光源装置13、液晶表示素子である液晶表示パネル11、吸収型偏光板12等が収容され固定されている。筐体106の上部には開口部1061が設けられている。開口部1061は映像光が透過する部分である。開口部1061には透明部材などが設けられてもよい。映像表示装置1上、より具体的には、液晶表示パネル11上に表示された映像に対応する映像光は、この開口部1061を経て、上方のビームスプリッタ101に向かって進む。 In this embodiment, the components of the video display device 1 as shown in FIG. 6, that is, the light source device 13, the liquid crystal display panel 11, which is a liquid crystal display element, the absorptive polarizing plate 12, etc. are housed and fixed in the housing 106. has been done. An opening 1061 is provided at the top of the housing 106. The opening 1061 is a portion through which image light passes. A transparent member or the like may be provided in the opening 1061. Image light corresponding to an image displayed on the image display device 1, more specifically, on the liquid crystal display panel 11, passes through this opening 1061 and travels toward the beam splitter 101 above.
 図7では、空間浮遊映像表示装置を上側方(斜め上)から見た場合の外観の斜視図を示している。ここでの装置正面は、空間浮遊映像表示部400で形成する空間浮遊映像3(破線枠で示す)を利用者が正面から視認できる方向に対応した面とする。方向Fは、利用者が空間浮遊映像3を正面から視認する方向であり、Y方向の負方向と対応している。 FIG. 7 shows a perspective view of the external appearance of the floating image display device when viewed from the upper side (diagonally above). Here, the front of the device is a surface corresponding to the direction in which the user can view the space floating image 3 (indicated by a broken line frame) formed by the space floating image display section 400 from the front. Direction F is the direction in which the user views the floating image 3 from the front, and corresponds to the negative direction of the Y direction.
 説明上、図示の(X,Y,Z)のような座標系や方向を用いる場合がある。Z方向は、鉛直方向、上下方向(空間浮遊映像3の画面内での垂直方向)であり、X方向およびY方向は、2つの水平方向であり、X方向は、左右方向(空間浮遊映像3の画面内での水平方向)であり、Y方向は、奥行き方向、前後方向(利用者が空間浮遊映像3を見る方向)である。 For the purpose of explanation, a coordinate system and directions such as (X, Y, Z) shown in the drawings may be used. The Z direction is the vertical direction, the up and down direction (the vertical direction within the screen of the spatial floating image 3), the X direction and the Y direction are two horizontal directions, and the X direction is the left and right direction (the vertical direction within the screen of the spatial floating image 3). (horizontal direction within the screen), and the Y direction is the depth direction and the front-back direction (the direction in which the user views the spatial floating image 3).
 本実施例では、図示のように、空間浮遊映像表示部400は、ビームスプリッタ101および再帰反射部材2等を、筐体で覆わずに露出して配置した構成としている。また、筐体106は、比較的小型(コンパクト)でZ方向の厚さが小さく抑えられた薄型となっている。本実施例では、空間浮遊映像表示部400は、筐体106の上側に、支柱であるフレーム108を介して、ビームスプリッタ101および再帰反射部材2等を支えるようにして、配置・固定されている。よって、利用者の視点からY方向、正面(方向F)で空間浮遊映像表示部400(特に空間浮遊映像3)を見る場合、利用者の視界に入る筐体は、薄型である筐体106のみとなる。そのため、本実施例は、利用者の視界を遮る物が少なく、空間浮遊映像3の空中浮遊感を高めることができ、利用に好適である。 In this embodiment, as shown in the figure, the spatially floating image display section 400 has a configuration in which the beam splitter 101, the retroreflective member 2, etc. are exposed and placed without being covered with a housing. Further, the housing 106 is relatively small (compact) and thin with a small thickness in the Z direction. In this embodiment, the spatial floating image display section 400 is arranged and fixed on the upper side of the housing 106 via a frame 108 which is a support so as to support the beam splitter 101, the retroreflective member 2, etc. . Therefore, when viewing the space-floating video display section 400 (particularly the space-floating video 3) from the user's viewpoint in the Y direction and from the front (direction F), the thin casing 106 is the only casing in the user's field of view. becomes. Therefore, in this embodiment, there are few objects obstructing the user's field of view, and the floating feeling of the floating image 3 can be enhanced, making it suitable for use.
 ビームスプリッタ101や再帰反射部材2は、厚さが十分に薄い。樹脂材で構成される再帰反射部材2の主面は、X方向およびY方向(例えば水平方向)に沿って配置されている。よって、利用者の視点からY方向、正面(方向F)で空間浮遊映像3を視認する際には、再帰反射部材2はあまり目立たない。また、空間浮遊映像3を表示せず空間浮遊映像表示装置を利用しない時には、利用者の視点からY方向(方向F)で空間浮遊映像表示部400を見た場合には、ビームスプリッタ101は半透明板に見え、ビームスプリッタ101の奥側をある程度視認可能である。 The beam splitter 101 and the retroreflective member 2 are sufficiently thin. The main surface of the retroreflective member 2 made of a resin material is arranged along the X direction and the Y direction (for example, the horizontal direction). Therefore, when the user views the floating image 3 in the Y direction from the front (direction F), the retroreflective member 2 is not very noticeable. Furthermore, when the spatial floating image display unit 400 is not displayed and the spatial floating image display device is not used, and the spatial floating image display unit 400 is viewed from the user's viewpoint in the Y direction (direction F), the beam splitter 101 is It looks like a transparent plate, and the back side of the beam splitter 101 can be seen to some extent.
 すでに述べたように、ビームスプリッタ101は、P偏光を透過し、S偏光を反射する性質を有し、例えば平板ガラス基板上に光学薄膜を蒸着することで形成できる。このとき、ビームスプリッタ101に対する偏光光の入射角としては、45度±15度程度のものが一般的に用いられる。また、映像表示装置部300、ビームスプリッタ101、および再帰反射部材2等は、図3のZ型の構成と同様に、所定の位置関係を有して配置・固定されている。 As already mentioned, the beam splitter 101 has the property of transmitting P-polarized light and reflecting S-polarized light, and can be formed, for example, by depositing an optical thin film on a flat glass substrate. At this time, the incident angle of the polarized light to the beam splitter 101 is generally about 45 degrees ±15 degrees. Further, the video display unit 300, the beam splitter 101, the retroreflective member 2, etc. are arranged and fixed in a predetermined positional relationship, similar to the Z-shaped configuration in FIG.
 図7に示すように、筐体106、すなわち映像表示装置部300の上側または映像表示装置部300の光出射側には、支柱であるフレーム108を介して、ビームスプリッタ101がX-Y面に対し斜面を形成するように配置されている。さらに、ビームスプリッタ101に対し、支柱であるフレーム108を介して、再帰反射部材2およびλ/4板21がX-Y面に配置されている。ここで、ビームスプリッタ101や再帰反射部材2は、それぞれ、主面の長方形の2辺または3辺が、対応する支柱であるフレーム108に接着されて固定されている。そして、図示のように、ビームスプリッタ101に対しY方向で手前側の所定の位置に、空間浮遊映像3が形成される。 As shown in FIG. 7, a beam splitter 101 is installed in the XY plane through a frame 108, which is a support, on the housing 106, that is, on the upper side of the image display unit 300 or on the light output side of the image display unit 300. They are arranged so as to form an inclined surface. Further, a retroreflective member 2 and a λ/4 plate 21 are arranged on the XY plane with respect to the beam splitter 101 via a frame 108 that is a support. Here, the beam splitter 101 and the retroreflective member 2 are each fixed at two or three sides of a rectangular main surface by adhering to a frame 108 which is a corresponding support. Then, as shown in the figure, a spatially floating image 3 is formed at a predetermined position in front of the beam splitter 101 in the Y direction.
 図8は、図7の映像表示装置部300、および空間浮遊映像表示部400を、側面、X方向(図7における方向E)から見た場合の断面図による内部構造を示す。この映像表示装置部300、および空間浮遊映像表示部400は、図示のように、図3のZ型の構造を有する。図3の構成を図面内で回転させ、図3における方向Dを鉛直方向(Z方向)となるようにした場合、透明部材100と吸収型偏光板112を除けば、図3の構成と図8の構成は同様の構成となる。 FIG. 8 shows the internal structure of the video display unit 300 and the floating video display unit 400 of FIG. 7 in a cross-sectional view when viewed from the side and the X direction (direction E in FIG. 7). The video display unit 300 and the floating video display unit 400 have a Z-shaped structure in FIG. 3, as shown. When the configuration of FIG. 3 is rotated in the drawing so that the direction D in FIG. 3 becomes the vertical direction (Z direction), the configuration of FIG. 3 and FIG. has a similar configuration.
 図8において、映像表示装置部300、すなわち、筐体106、および筐体106内に収容されている映像表示装置1において、液晶表示パネル11からの映像光がZ方向で上向きに出射される向きに配置されている。すなわち、液晶表示パネル11の映像表示面は、X-Y面(水平面)に配置されている。また、筐体106内において、下から順に、光源装置13、液晶表示パネル11、吸収型偏光板12が配置されている。図8では、映像表示装置1から、開口部1061を経て、上向きに光軸C1上に出射される映像光を、破線矢印で示している。3本の破線矢印の中央が光軸、左右両側が光束の範囲を示す。 In FIG. 8, in the video display device section 300, that is, the housing 106 and the video display device 1 housed in the housing 106, the video light from the liquid crystal display panel 11 is emitted upward in the Z direction. It is located in That is, the image display surface of the liquid crystal display panel 11 is arranged on the XY plane (horizontal plane). Further, within the housing 106, a light source device 13, a liquid crystal display panel 11, and an absorption type polarizing plate 12 are arranged in order from the bottom. In FIG. 8, the image light emitted upward from the image display device 1 onto the optical axis C1 through the opening 1061 is indicated by a broken line arrow. The center of the three broken arrows indicates the optical axis, and the left and right sides indicate the range of the luminous flux.
 液晶表示パネル11より出射された映像光は、所定の偏光特性、例えば、P偏光(平行偏光:PはParallelの略)を有する光とする。このP偏光の映像光は、ビームスプリッタ101をそのまま上方に通過し、光軸C1に対応した光軸C2上を再帰反射部材2に向かって進む。ビームスプリッタ101は、P偏光を通過させ、S偏光(垂直偏光:SはSenkrechtの略)を反射させる性質を有する。ビームスプリッタ101は、このP偏光の映像光(光軸C1、Z方向)と、例えば約45度の角度をなすように配置されている。すなわち、ビームスプリッタ101は、主面が、液晶表示パネル11および再帰反射部材2の主面のY方向に対し約45度の角度をなすように配置されている。 The image light emitted from the liquid crystal display panel 11 is light having predetermined polarization characteristics, for example, P-polarized light (parallel polarized light: P stands for Parallel). This P-polarized image light passes directly through the beam splitter 101 upward, and travels toward the retroreflective member 2 on the optical axis C2 corresponding to the optical axis C1. The beam splitter 101 has the property of passing P-polarized light and reflecting S-polarized light (vertically polarized light; S stands for Senkrecht). The beam splitter 101 is arranged to form an angle of, for example, about 45 degrees with this P-polarized image light (optical axis C1, Z direction). That is, the beam splitter 101 is arranged so that its main surface forms an angle of about 45 degrees with respect to the Y direction of the main surfaces of the liquid crystal display panel 11 and the retroreflective member 2.
 一方、再帰反射部材2の光入射面には、λ/4板21が設けられている。映像表示装置1から発射され、ビームスプリッタ101を透過した光軸C2上のP偏光の映像光は、再帰反射部材2で反射される前と反射された後との計2回、λ/4板21を通過することで、P偏光からS偏光に偏光変換される。この結果、再帰反射部材2で反射後の光軸C2上を進んだS偏光の映像光は、ビームスプリッタ101で反射され、Y方向の光軸C3上を進む。このS偏光の映像光は、図示のようにY方向で手前側の所定の位置に、実像である空間浮遊映像3を生成・表示する。 On the other hand, a λ/4 plate 21 is provided on the light incident surface of the retroreflective member 2. The P-polarized image light on the optical axis C2 emitted from the image display device 1 and transmitted through the beam splitter 101 passes through the λ/4 plate twice, once before being reflected by the retroreflective member 2 and once after being reflected. 21, the polarization is converted from P polarized light to S polarized light. As a result, the S-polarized image light that travels on the optical axis C2 after being reflected by the retroreflective member 2 is reflected by the beam splitter 101 and travels on the optical axis C3 in the Y direction. This S-polarized image light generates and displays a spatially floating image 3, which is a real image, at a predetermined position on the near side in the Y direction as shown in the figure.
 空間浮遊映像3が形成される所定の位置は、映像表示装置1、ビームスプリッタ101、および偏光分離部材2を含む光学系の光路の光学距離に応じて定まる。本実施例では、この空間浮遊映像3の形成の位置は、奥行き方向(Y方向)で、再帰反射部材2の主面の領域のうちの手前側の端部付近の位置とされている。この所定の位置は、設計によって調整可能である。上述の通り、本実施例では、空間浮遊映像3は、直線偏光(本実施例ではS偏光)した映像光により生成される。利用者(空間浮遊映像3を観察する観察者)は、Y方向の手前側、すなわち矢印で示す方向Fから、この空間浮遊映像3を好適に視認できる。 The predetermined position where the spatially floating image 3 is formed is determined according to the optical distance of the optical path of the optical system including the image display device 1, the beam splitter 101, and the polarization separation member 2. In this embodiment, the space floating image 3 is formed near the front end of the main surface area of the retroreflective member 2 in the depth direction (Y direction). This predetermined position is adjustable by design. As described above, in this embodiment, the spatially floating image 3 is generated by linearly polarized (S-polarized in this embodiment) image light. The user (observer observing the spatially floating image 3) can suitably view the spatially floating image 3 from the front side in the Y direction, that is, from the direction F indicated by the arrow.
 上記実施例では、映像表示装置1、ビームスプリッタ101、および再帰反射部材2は、図8のようにZ型の位置関係を保ち、かつ、利用者(観察者)に対し視認性に優れた空間浮遊映像3を提供することができる。上記実施例の空間浮遊映像表示装置は、机やテーブルや棚などの水平面上に配置した状態で好適に利用可能である。 In the above embodiment, the image display device 1, the beam splitter 101, and the retroreflective member 2 maintain a Z-shaped positional relationship as shown in FIG. A floating image 3 can be provided. The floating image display device of the above embodiment can be suitably used when placed on a horizontal surface such as a desk, table, or shelf.
 なお、図8のように、P偏光の映像光(光軸C1、Z方向)に対してビームスプリッタ101が約45度の角度をなすように配置されている場合、映像表示装置1上、すなわち、液晶表示パネル11上に表示された映像は、その縦横比を保ったまま、空間浮遊映像3として生成・表示される。より具体的には、液晶表示パネル11上に真円が表示された場合には、空間浮遊映像3としても、同じく真円が表示される。 Note that when the beam splitter 101 is arranged at an angle of about 45 degrees with respect to the P-polarized image light (optical axis C1, Z direction) as shown in FIG. The image displayed on the liquid crystal display panel 11 is generated and displayed as a spatially floating image 3 while maintaining its aspect ratio. More specifically, when a perfect circle is displayed on the liquid crystal display panel 11, a perfect circle is also displayed as the spatial floating image 3.
 [第2実施例]
 ここで、上記第1実施例の空間浮遊映像表示装置の利用時に、利用者(観察者)の視点からY方向(水平方向)で空間浮遊映像表示部400を見た場合、すなわち、図8の方向Fからは、ビームスプリッタ101は半透明板のように見える。そのため、利用者は、空間浮遊像3を観察しながら、ビームスプリッタ101の奥側(利用者から見て、ビームスプリッタ101の反対側)の様子をある程度視認可能である。このことは、逆に、ビームスプリッタ101の奥側、すなわち、利用者から見てビームスプリッタ101の反対側、すなわち図8の方向Gからも、ビームスプリッタ101を介して、利用者側の様子をある程度視認可能であることを意味する。ただし、実像である空間浮遊映像3そのものは、方向Gから視認することはできない。
[Second example]
Here, when the space floating video display unit 400 of the first embodiment is viewed from the viewpoint of the user (observer) in the Y direction (horizontal direction), that is, as shown in FIG. From direction F, beam splitter 101 looks like a semi-transparent plate. Therefore, while observing the spatial floating image 3, the user can visually recognize the situation on the back side of the beam splitter 101 (the side opposite to the beam splitter 101 when viewed from the user) to some extent. Conversely, this means that the situation on the user's side can also be seen from the back side of the beam splitter 101, that is, from the opposite side of the beam splitter 101 seen from the user, that is, from the direction G in FIG. It means that it is visible to some extent. However, the spatial floating image 3 itself, which is a real image, cannot be viewed from the direction G.
 すでに述べたように、ビームスプリッタ101は、P偏光を透過し、S偏光を反射する性質を有し、例えば平板ガラス基板上に光学薄膜を蒸着することで形成できる。したがって、ビームスプリッタ101の表面に映像光(ここでは、映像表示装置1を構成する液晶表示パネル11から照射されたP偏光映像光)が照射されると、その光の多くはビームスプリッタ101を透過する一方で、上記ビームスプリッタ101に照射された光の少なくとも一部は、ビームスプリッタ101上の反射光として視認されることになる。 As already mentioned, the beam splitter 101 has the property of transmitting P-polarized light and reflecting S-polarized light, and can be formed, for example, by depositing an optical thin film on a flat glass substrate. Therefore, when the surface of the beam splitter 101 is irradiated with image light (in this case, P-polarized image light emitted from the liquid crystal display panel 11 constituting the image display device 1), most of the light passes through the beam splitter 101. On the other hand, at least a portion of the light irradiated onto the beam splitter 101 is visually recognized as reflected light on the beam splitter 101.
 すなわち、図8において、映像表示装置1から出射された光軸C1上の映像光がビームスプリッタ101に照射された場合には、上記映像光の大部分(略90%以上)は、ビームスプリッタ101を透過して再帰反射シート2に到達する一方で、上記映像光の一部(略5~10%程度)は、ビームスプリッタ101上で反射する。この反射する光を反射映像光Rとして示す。 That is, in FIG. 8, when the image light on the optical axis C1 emitted from the image display device 1 is irradiated onto the beam splitter 101, most of the image light (approximately 90% or more) is transmitted to the beam splitter 101. , and reaches the retroreflective sheet 2 , while a portion (approximately 5 to 10%) of the image light is reflected on the beam splitter 101 . This reflected light is shown as reflected image light R.
 言い換えると、図8において、空間浮遊映像表示部400を、本来の利用者の視点の方向Fとは反対の方向Gから観察すると、ビームスプリッタ101上で反射した映像光(図8での反射映像光R)が見えてしまうという課題がある。この反射映像光Rは、空間浮遊映像表示部400の周囲の明るさが小さい場合、すなわち、室内が暗い場合には、より顕著に視認できる。 In other words, in FIG. 8, when the floating image display section 400 is observed from the direction G opposite to the direction F of the original user's viewpoint, the image light reflected on the beam splitter 101 (the reflected image in FIG. There is a problem that light R) can be seen. This reflected image light R is more clearly visible when the brightness around the floating image display section 400 is low, that is, when the room is dark.
 以下、この課題に対する解決手段、すなわち、図8の方向Gから反射映像光Rを見えないようにする、あるいは、反射映像光Rの輝度を低減する方法について記載する。 Hereinafter, a solution to this problem, that is, a method of making the reflected image light R invisible from the direction G in FIG. 8 or reducing the brightness of the reflected image light R will be described.
 図9,図10は、上記課題を解決するために、図7,図8に示す空間浮遊映像表示部400を、より縦長に変形した実施例であり、空間浮遊映像表示装置を上側方(斜め上)から見た場合の外観の斜視図を示す。図9での装置全体のZ方向の高さは、図7での装置全体のZ方向の高さよりも大きい。図10でのビームスプリッタ101の斜面の配置の角度B2は、図8での角度B1(45度程度)よりも大きい。ここでの装置正面は、図7と同様に、空間浮遊映像表示部400で形成する空間浮遊映像3(破線枠で示す)を利用者が略正面から視認できる方向Fに対応した面とする。図9において、Z方向は鉛直方向であり、X方向およびY方向は2つの水平方向であり、X方向は左右方向(空間浮遊映像3の画面内での水平方向)であり、Y方向は奥行き方向、前後方向(利用者が空間浮遊映像3を見る方向)である。 9 and 10 show an embodiment in which the space floating video display unit 400 shown in FIGS. 7 and 8 is modified to be more vertically elongated in order to solve the above problem, and the space floating video display device is moved upwardly (diagonally). A perspective view of the exterior as seen from above) is shown. The height of the entire device in the Z direction in FIG. 9 is greater than the height of the entire device in the Z direction in FIG. The angle B2 of the slope arrangement of the beam splitter 101 in FIG. 10 is larger than the angle B1 (approximately 45 degrees) in FIG. 8. As in FIG. 7, the front of the device here is a surface corresponding to the direction F that allows the user to view the space floating image 3 (indicated by a broken line frame) formed by the space floating image display section 400 from approximately the front. In FIG. 9, the Z direction is the vertical direction, the X direction and the Y direction are two horizontal directions, the X direction is the left and right direction (horizontal direction within the screen of the spatial floating image 3), and the Y direction is the depth direction. direction, the front-back direction (the direction in which the user views the spatial floating image 3).
 図9では、図7と同様に、筐体106、すなわち映像表示装置部300の上側には、支柱であるフレーム108を介して、ビームスプリッタ101がX-Y面(水平面)に対し斜面を形成するように配置されている。さらに、ビームスプリッタ101に対し、支柱であるフレーム108を介して、再帰反射部材2およびλ/4板21がX-Y面に配置されている。ここで、ビームスプリッタ101や再帰反射部材2は、それぞれ、長方形の2辺または3辺が、対応する支柱であるフレーム108に接着されて固定されている。そして、図示のように、ビームスプリッタ101に対しY方向で手前側の所定の位置に、空間浮遊映像3の上部が利用者の手前側にやや傾くように形成される。つまり、Z方向において、空間浮遊映像3の上部は空間浮遊映像3の下部より利用者側に傾くように形成される。図示のように、空間浮遊映像3のZ方向に延在する2つの辺が、Z方向(鉛直方向)に対し所定の角度γで傾いている。 In FIG. 9, similarly to FIG. 7, a beam splitter 101 forms an inclined surface with respect to the XY plane (horizontal plane) on the upper side of the casing 106, that is, the video display unit 300, via the frame 108 that is a support. It is arranged so that Further, a retroreflective member 2 and a λ/4 plate 21 are arranged on the XY plane with respect to the beam splitter 101 via a frame 108 that is a support. Here, the beam splitter 101 and the retroreflective member 2 are each fixed by adhesively bonding two or three sides of a rectangle to a frame 108 which is a corresponding support. As shown in the figure, the space floating image 3 is formed at a predetermined position on the near side in the Y direction with respect to the beam splitter 101 so that the upper part of the space floating image 3 is slightly inclined toward the near side of the user. That is, in the Z direction, the upper part of the spatially floating image 3 is formed to be more inclined toward the user than the lower part of the spatially floating image 3. As illustrated, two sides of the spatial floating image 3 extending in the Z direction are inclined at a predetermined angle γ with respect to the Z direction (vertical direction).
 図10は、図9に示す空間浮遊映像表示装置を側面、すなわち、X軸方向、図9の方向Hから見た模式図である。なお、図10では、前述の方向Fを同じくY方向の負方向とし、方向F’は、やや斜めに形成された空間浮遊映像3を正面(面垂直方向)から視認する場合の斜め方向として図示している。 FIG. 10 is a schematic diagram of the floating image display device shown in FIG. 9 viewed from the side, that is, the X-axis direction, direction H in FIG. 9. In addition, in FIG. 10, the above-mentioned direction F is also the negative direction of the Y direction, and direction F' is an oblique direction when the space floating image 3 formed slightly obliquely is viewed from the front (direction perpendicular to the surface). Showing.
 図10において、液晶表示パネル11から出射される映像光は、一般的に直線偏光(S偏光、または、P偏光)の映像光である。図10の実施例では、液晶表示パネル11から出射される映像光は、P偏光の映像光である。本実施例では、上記映像光がビームスプリッタ101を透過するようにするために、液晶表示パネル11から出射される映像光がP偏光である場合には、そのままビームスプリッタ101に出射すればよい。それに対し、液晶表示パネル11から出射される映像光がS偏光である場合には、このS偏光映像光をP偏光に変換するために、λ/2板14(図14)を通過させる。 In FIG. 10, the image light emitted from the liquid crystal display panel 11 is generally linearly polarized light (S-polarized light or P-polarized light). In the embodiment shown in FIG. 10, the image light emitted from the liquid crystal display panel 11 is P-polarized image light. In this embodiment, in order for the image light to pass through the beam splitter 101, if the image light emitted from the liquid crystal display panel 11 is P-polarized light, it may be emitted as is to the beam splitter 101. On the other hand, when the image light emitted from the liquid crystal display panel 11 is S-polarized light, the S-polarized image light is passed through the λ/2 plate 14 (FIG. 14) in order to convert it into P-polarized light.
 図14には、液晶表示パネル11から出射される映像光がS偏光である場合の一実施例(第2実施例の変形例)でのλ/2板14の配置例を示す。このλ/2板14は、再帰反射部材2のλ/4板21とは別の素子であり、S偏光をP偏光に変換する、偏光変換素子、位相差板、二分の一波長板である。ここで、上記液晶表示パネル11とλ/2板14は、光源装置13、および吸収型偏光板12と共に、筐体106内の例えば図示する位置に配置されている。図14では、液晶表示パネル11の映像光出射面に、Z方向で上側に接してλ/2板14が設けられ、その上側に接して吸収型偏光板12が設けられている。 FIG. 14 shows an example of the arrangement of the λ/2 plate 14 in an embodiment (a modification of the second embodiment) in which the image light emitted from the liquid crystal display panel 11 is S-polarized light. This λ/2 plate 14 is a separate element from the λ/4 plate 21 of the retroreflection member 2, and is a polarization conversion element, a retardation plate, and a half-wave plate that converts S-polarized light into P-polarized light. . Here, the liquid crystal display panel 11 and the λ/2 plate 14 are arranged, together with the light source device 13 and the absorption type polarizing plate 12, in the housing 106, for example, at the position shown in the figure. In FIG. 14, a λ/2 plate 14 is provided on the image light output surface of the liquid crystal display panel 11 in contact with the upper side in the Z direction, and an absorption type polarizing plate 12 is provided in contact with the upper side of the λ/2 plate 14.
 図14の例に限らず、他の構成例としては、筐体106の開口部1061において、透明部材の下面にλ/2板14が設けられてもよい。 Not limited to the example shown in FIG. 14, as another example configuration, the λ/2 plate 14 may be provided on the lower surface of the transparent member in the opening 1061 of the housing 106.
 図10で液晶表示パネル11からのP偏光のままの映像光、または図14でλ/2板14によってP偏光に変換された映像光(P偏光映像光)は、図10でビームスプリッタ101を透過し、λ/4板21を介して、再帰反射部材2に入射する。このとき、再帰反射部材2に入射した映像光は、再帰反射部材2への入射時と反射時の2回、λ/4板21を通過するため、S偏光映像光に変換される。再帰反射部材2で反射した映像光は、上記の通り、S偏光映像光に変換されているため、ビームスプリッタ101で反射する。その結果、図10に示す位置に、空間浮遊映像3が生成される。 The P-polarized image light from the liquid crystal display panel 11 in FIG. 10 or the P-polarized image light converted to P-polarized light by the λ/2 plate 14 in FIG. The light passes through the λ/4 plate 21 and enters the retroreflective member 2 . At this time, the image light incident on the retroreflective member 2 passes through the λ/4 plate 21 twice, once upon incidence on the retroreflective member 2 and once upon reflection, so that it is converted into S-polarized image light. The image light reflected by the retroreflective member 2 is converted into S-polarized image light as described above, and is therefore reflected by the beam splitter 101. As a result, a spatial floating image 3 is generated at the position shown in FIG.
 このとき、図10において、液晶表示パネル11からのP偏光のままの映像光、または上記λ/2板14を通過してP偏光に変換された映像光は、ビームスプリッタ101に入射した際に、ビームスプリッタ101への入射角αに応じて、ビームスプリッタ101上で反射する割合(反射率)が異なる。 At this time, in FIG. 10, the P-polarized image light from the liquid crystal display panel 11 or the image light converted to P-polarized light after passing through the λ/2 plate 14 enters the beam splitter 101. , the ratio of reflection on the beam splitter 101 (reflectance) differs depending on the incident angle α to the beam splitter 101.
 図11に示すグラフは、空気中から、屈折率n=1.5のガラスにS偏光およびP偏光の光を入射させた場合の、入射角とガラス表面での反射率(%R)を表すグラフである。図11において、破線で示した曲線はS偏光の映像光の入射角の変化に対する反射率の変化を示し、実線で示した曲線はP偏光の映像光の入射角の変化に対する反射率の変化を示している。図11に示すように、S偏光の映像光では、入射角が大きいほど反射率が増加する単調増加の関係であるのに対し、P偏光の映像光では、入射角が大きくなるほど反射率が0に近づき、ある角度で反射率は0となり、さらに入射角が大きくなると再び反射率が増加する関係を有する。また、S偏光の映像光の反射率は、同じ入射角であれば、常にP偏光の映像光の反射率よりも大きい。 The graph shown in Figure 11 represents the incident angle and the reflectance (%R) on the glass surface when S-polarized light and P-polarized light are incident on glass with a refractive index n = 1.5 from the air. It is a graph. In FIG. 11, the curve shown with a broken line shows the change in reflectance with respect to a change in the incident angle of S-polarized image light, and the curve shown with a solid line shows the change in reflectance with respect to a change in the angle of incidence of P-polarized image light. Showing. As shown in FIG. 11, for S-polarized image light, the reflectance increases monotonically as the incident angle increases, whereas for P-polarized image light, the reflectance decreases to 0 as the incident angle increases. , the reflectance becomes 0 at a certain angle, and as the angle of incidence increases, the reflectance increases again. Furthermore, the reflectance of S-polarized image light is always greater than the reflectance of P-polarized image light at the same incident angle.
 図11に示すように、P偏光の映像光において、反射率が0となる入射角は、ブリュースター角(θBとする)と呼ばれる。このブリュースター角θBは、2つの物質(ここでは空気とガラス)の屈折率から、次の式1で定まる。 As shown in FIG. 11, in P-polarized image light, the incident angle at which the reflectance is 0 is called the Brewster angle (denoted as θB). This Brewster angle θB is determined by the following equation 1 from the refractive index of two substances (here, air and glass).
 (式1)   θB=arctan(n2/n1) (Formula 1) θB=arctan(n2/n1)
 式1において、n1は入射側(すなわち空気)の屈折率、n2は透過側(すなわちガラス)の屈折率である。例えば、屈折率1の空気中から屈折率が1.5のガラスに入射する光のブリュースター角θBは、56.3度である。 In Equation 1, n1 is the refractive index on the incident side (i.e., air), and n2 is the refractive index on the transmission side (i.e., glass). For example, the Brewster angle θB of light incident on glass having a refractive index of 1.5 from air having a refractive index of 1 is 56.3 degrees.
 図11から明らかなように、S偏光の映像光では、入射角を変えても絶えず反射が起き、P偏光の映像光では、入射角がブリュースター角θBとなったとき、物質(ガラス)の中に入ってしまい反射されなくなる。すなわち、ブリュースター角θBでは反射率(%R)が0となるという性質がある。一方、式1から明らかなように、ブリュースター角は、入射する物質の屈折率により変化し、入射側に対し透過側の屈折率が大きいほどブリュースター角が大きくなる。 As is clear from FIG. 11, in the case of S-polarized image light, reflection occurs constantly even if the incident angle is changed, and in the case of P-polarized image light, when the incident angle reaches Brewster's angle θB, the reflection of the material (glass) It goes inside and is no longer reflected. That is, there is a property that the reflectance (%R) becomes 0 at the Brewster angle θB. On the other hand, as is clear from Equation 1, the Brewster angle changes depending on the refractive index of the incident substance, and the larger the refractive index on the transmission side relative to the incident side, the larger the Brewster angle becomes.
 上記の通り、ビームスプリッタ101の材質に応じた透過側の屈折率(n2)から、式1で求められるブリュースター角で、P偏光の映像光をビームスプリッタ101に入射する構成とした場合、ビームスプリッタ101上で反射することはなくなる。なお、すでに述べたように、ビームスプリッタ101は、例えば平面ガラス上に光学薄膜として形成されるため、ビームスプリッタ101のブリュースター角θBは、ガラス(より具体的には、石英ガラス)のブリュースター角θBと同じ値(56.3度)となる。 As mentioned above, if the configuration is such that P-polarized image light is incident on the beam splitter 101 at the Brewster angle determined by equation 1 from the refractive index (n2) on the transmission side depending on the material of the beam splitter 101, the beam It will no longer be reflected on the splitter 101. As already mentioned, since the beam splitter 101 is formed as an optical thin film on, for example, a plane glass, the Brewster angle θB of the beam splitter 101 is the Brewster angle θB of the glass (more specifically, quartz glass). It has the same value as the angle θB (56.3 degrees).
 この結果、図10において、液晶表示パネル11からの映像光に基づいて映像表示装置1から発せられるP偏光の映像光を、ブリュースター角θBでビームスプリッタ101に入射する構成とすれば、ビームスプリッタ101上で反射する反射映像光Rはほぼ0となる。空間浮遊映像3が形成されるのとは逆の向き、具体的には、図10の方向Lからその反射映像光Rを視認することはできなくなる。これにより、空間浮遊映像表示装置の利用者以外の他者にとっては煩わしいかもしれない映像光が他者から見えにくいという効果、一方で、利用者としては、他者からは視認されたくない映像光を、他者から見られることがなくなるという効果を得ることができる。 As a result, in FIG. 10, if the P-polarized image light emitted from the image display device 1 based on the image light from the liquid crystal display panel 11 is incident on the beam splitter 101 at the Brewster angle θB, the beam splitter The reflected image light R reflected on 101 is approximately 0. The reflected image light R cannot be seen from the direction opposite to the direction in which the spatially floating image 3 is formed, specifically, from the direction L in FIG. 10 . This has the effect of making it difficult for others to see the image light, which may be a nuisance to others other than the user of the floating image display device. You can obtain the effect that this will not be seen by others.
 また、図11に示すグラフから明らかなように、映像光のビームスプリッタ101への入射角αをブリュースター角θB(56.3度)、または、ブリュースター角θBに近い、いくぶん小さい角度(例えば、50度から56.3度未満までの範囲内の角度)(50度≦α<θB)とするだけでも、反射映像光Rを完全に0とすることはできないまでも、映像光のビームスプリッタ101での反射率は2%以下となり、反射映像光Rをほぼ視認できない程度に低減させることができる。また、ビームスプリッタ101への入射角αがブリュースター角θBから離れた角度(例えばα<50度)であっても、図11に示すグラフから、ビームスプリッタ101に入射する映像光を、例えばλ/2板14を用いて、S偏光からP偏光に変換するだけでも、反射映像光Rの輝度を低減させることができる。 Further, as is clear from the graph shown in FIG. 11, the incident angle α of the image light onto the beam splitter 101 is set to the Brewster angle θB (56.3 degrees) or a somewhat smaller angle close to the Brewster angle θB (for example, , an angle within the range from 50 degrees to less than 56.3 degrees) (50 degrees ≦ α < θB), although it is not possible to completely reduce the reflected image light R to 0, the image light beam splitter The reflectance at 101 is 2% or less, and the reflected image light R can be reduced to an almost invisible level. Furthermore, even if the incident angle α to the beam splitter 101 is far from the Brewster angle θB (for example, α<50 degrees), it is clear from the graph shown in FIG. The brightness of the reflected image light R can be reduced simply by converting S-polarized light into P-polarized light using the /2 plate 14.
 上記の通り、映像表示装置1から発せられた映像光が光軸C1上でビームスプリッタ101に入射する際の入射角αを、ブリュースター角θB(具体的には、56.3度)もしくはブリュースター角θBに近い範囲(50度≦α<θB)内の角度となるように構成する。すなわち、図10のように、各構成要素の配置の角度などが規定される。図10はα=θBとした例である。また、特に、ビームスプリッタ101の斜面の配置の角度は、Z方向(鉛直方向)に対しては角度β(β=90度-θB=33.7度)となり、水平面(Y方向)に対して角度B2(B2=θB=56.3度)となる。 As described above, the incident angle α at which the image light emitted from the image display device 1 is incident on the beam splitter 101 on the optical axis C1 is set to the Brewster angle θB (specifically, 56.3 degrees) or the Brewster angle θB (specifically, 56.3 degrees). The angle is configured to be within a range close to the star angle θB (50 degrees≦α<θB). That is, as shown in FIG. 10, the angle of arrangement of each component and the like are defined. FIG. 10 is an example in which α=θB. In particular, the angle of the slope of the beam splitter 101 is an angle β (β = 90 degrees - θB = 33.7 degrees) with respect to the Z direction (vertical direction), and an angle β (β = 90 degrees - θB = 33.7 degrees) with respect to the horizontal plane (Y direction). The angle is B2 (B2=θB=56.3 degrees).
 これにより、ビームスプリッタ101における上記映像光の反射映像光Rをゼロ、もしくはゼロに近く、実用上問題とならない程度にできる。すなわち、空間浮遊映像3を視認できる側の反対側(方向L)からビームスプリッタ101を見た場合に、反射映像光Rを視認できない程度に低減可能となる。 As a result, the reflected image light R of the image light at the beam splitter 101 can be reduced to zero or close to zero, to the extent that it does not pose a problem in practice. That is, when the beam splitter 101 is viewed from the opposite side (direction L) from the side where the spatially floating image 3 is visible, the reflected image light R can be reduced to such an extent that it cannot be seen.
 ビームスプリッタ101に対して入射する際の特定の入射角αは、上記ブリュースター角θBに限らずに、45度~60度の範囲内の角度とすれば、上記実施例に近い効果が得られる。 The specific incident angle α at the time of incidence on the beam splitter 101 is not limited to the above-mentioned Brewster angle θB, but an effect close to that of the above embodiment can be obtained by setting it to an angle within the range of 45 degrees to 60 degrees. .
 [変形例(第3実施例)]
 ここで、ビームスプリッタ101に対する入射角をブリュースター角とした場合、さらに、以下に記載するような新たな課題が生じる。図8に示したように、P偏光の映像光(光軸C1、Z方向)に対してビームスプリッタ101が略45度をなすように配置されている構成の場合には、映像表示装置1上、すなわち、液晶表示パネル11上に表示された映像は、その縦横比を保ったまま、空間浮遊映像3は、利用者の想定される視線の向き、すなわち水平方向(Y方向)に対応した方向Fに生成・表示される。
[Modified example (third embodiment)]
Here, when the incident angle to the beam splitter 101 is set to Brewster's angle, a new problem as described below arises. As shown in FIG. 8, in the case of a configuration in which the beam splitter 101 is arranged at approximately 45 degrees with respect to the P-polarized image light (optical axis C1, Z direction), That is, the image displayed on the liquid crystal display panel 11 maintains its aspect ratio, and the space floating image 3 is displayed in a direction corresponding to the user's expected line of sight, that is, the horizontal direction (Y direction). Generated and displayed in F.
 一方、図10に示すように、P偏光の映像光のビームスプリッタ101への入射角αをブリュースター角θBである56.3度となるようにした構成では、空間浮遊映像3は、利用者(方向F)から見て、斜め下側の向き(方向F’に対応した向き)に生成されることとなる。図10では、ビームスプリッタ101からのS偏光の映像光は、図示のように、鉛直方向(Z方向)に対し(θB×2)に対応した角度を有する光軸C3上で反射されてくる。そのため、空間浮遊映像3の面は、その光軸C3の方向に対し垂直な面として、X-Z面に対し所定の角度γ(θBやβと関係して定まる角度)を有する、上辺が下に傾いた斜面として配置されている。 On the other hand, as shown in FIG. 10, in a configuration in which the incident angle α of the P-polarized image light on the beam splitter 101 is set to 56.3 degrees, which is the Brewster angle θB, the spatial floating image 3 is When viewed from (direction F), it is generated diagonally downward (direction corresponding to direction F'). In FIG. 10, the S-polarized image light from the beam splitter 101 is reflected on an optical axis C3 having an angle corresponding to (θB×2) with respect to the vertical direction (Z direction), as shown. Therefore, the surface of the space floating image 3 has a predetermined angle γ (an angle determined in relation to θB and β) with respect to the XZ plane as a surface perpendicular to the direction of the optical axis C3, and the upper side is the lower side. It is arranged as a slope slanted to the top.
 この構成の場合には、利用者が方向Fから空間浮遊映像3を見る場合に、視認性が悪化するばかりか、利用者の目の位置によっては、空間浮遊映像3を視認できないという新たな課題が生じる。 In the case of this configuration, when a user views the floating image 3 in space from direction F, not only does visibility deteriorate, but also a new problem arises in that the floating image 3 cannot be viewed depending on the position of the user's eyes. occurs.
 そこで、図12,図13は、上記視認性が悪化する等の課題に対する解決手段に対応した実施例を示す。図12では、この実施例の空間浮遊映像表示装置の斜視図を同様に示している。図12において、空間浮遊映像3がX-Z平面と一致するように、筐体106が変形されている。具体的には、筐体106における空間浮遊映像3が形成される側に対応したY方向で前側の面106s1の高さを、図9の場合よりも高くし、空間浮遊映像3が形成される側の反対側に対応した後ろ側の面106s2の高さを低くする。図9の例では、筐体106のZ方向の高さが10mm、X方向の幅が80mm、Y方向の奥行が30mmであるのに対し、図12では面106s1の高さが26mm、面106s2の高さが6mmである。この結果、図12では、前側と後ろ側との高さの差は20mmとなる。一方、前側と後ろ側との間の奥行は、同じ30mmである。このことから、図12での空間浮遊映像表示部400は、全体として角度arctan(20/30)、すなわち33.7度、後方に倒れた配置になる。この33.7度は、90度と、ブリュースター角θBである56.3度との差分の角度βに相当する。あるいは、液晶表示パネルの光出射面と再帰反射部材2の光入射面のなす角の角度は、90度と、ブリュースター角θBとの差分の角度に相当する。 Therefore, FIGS. 12 and 13 show an embodiment that corresponds to a solution to the above-mentioned problem such as deterioration of visibility. FIG. 12 similarly shows a perspective view of the spatial floating image display device of this embodiment. In FIG. 12, the housing 106 has been deformed so that the spatial floating image 3 coincides with the XZ plane. Specifically, the height of the front surface 106s1 of the housing 106 in the Y direction corresponding to the side on which the spatially floating image 3 is formed is made higher than in the case of FIG. 9, and the spatially floating image 3 is formed. The height of the rear surface 106s2 corresponding to the opposite side is lowered. In the example of FIG. 9, the height of the casing 106 in the Z direction is 10 mm, the width in the X direction is 80 mm, and the depth in the Y direction is 30 mm, whereas in FIG. The height is 6 mm. As a result, in FIG. 12, the difference in height between the front side and the back side is 20 mm. On the other hand, the depth between the front side and the back side is the same, 30 mm. Therefore, the floating image display unit 400 in FIG. 12 is tilted backward at an angle arctan(20/30), that is, 33.7 degrees. This 33.7 degrees corresponds to the angle β of the difference between 90 degrees and 56.3 degrees, which is the Brewster angle θB. Alternatively, the angle formed by the light exit surface of the liquid crystal display panel and the light entrance surface of the retroreflective member 2 corresponds to the difference between 90 degrees and the Brewster angle θB.
 図13には、図12に対応した、方向Hから見た断面図を示す。図12,図13で、前後面で高さが異なる筐体106の上面はX-Y面に対し斜面となっており、その上面の上側には、図9,図10と同様の位置関係で空間浮遊映像表示部400が配置されている。映像表示装置1の光出射面が上記筐体106の上面に沿って配置される場合、筐体106内において、映像表示装置1は、ビームスプリッタ101および再帰反射部材2に対しZ形状をなすように、斜めに配置されている。つまり、映像表示装置1の光出射面または液晶表示パネルの表面は斜めに配置されており、または、ビームスプリッタ101と連結する筐体106側の映像表示装置1の出射面と再帰反射部材2との距離は、ビームスプリッタ101と連結していない筐体106側の映像表示装置1の出射面と再帰反射部材2との距離より短い。あるいは、映像表示装置1の光出射面または液晶表示パネルの光出射面は、形成された空間浮遊映像に対応する側が、空間浮遊映像に対向する側より再帰反射部材2との距離が短い。 FIG. 13 shows a cross-sectional view seen from direction H, corresponding to FIG. 12. In FIGS. 12 and 13, the top surface of the housing 106, which has different heights on the front and back sides, is sloped with respect to the XY plane, and the upper side of the top surface has the same positional relationship as in FIGS. A spatial floating image display section 400 is arranged. When the light exit surface of the video display device 1 is disposed along the top surface of the housing 106, the video display device 1 is arranged in a Z-shape with respect to the beam splitter 101 and the retroreflective member 2 within the housing 106. is placed diagonally. That is, the light emitting surface of the image display device 1 or the surface of the liquid crystal display panel is arranged diagonally, or the light emitting surface of the image display device 1 on the side of the casing 106 connected to the beam splitter 101 and the retroreflective member 2 are arranged diagonally. The distance is shorter than the distance between the exit surface of the video display device 1 on the side of the casing 106 that is not connected to the beam splitter 101 and the retroreflective member 2. Alternatively, in the light exit surface of the image display device 1 or the light exit surface of the liquid crystal display panel, the side corresponding to the formed spatially floating image is shorter in distance from the retroreflective member 2 than the side facing the spatially floating image.
 したがって、図12の構成により、空間浮遊映像3が形成される面はX-Z平面と一致することとなる。利用者の視線の向き(図12でのY方向の負方向に対応した方向M)のとき、空間浮遊映像3は、利用者から見て、もっとも視認性の良い、すなわち、輝度が高く、また空間浮遊映像3の縦横比も本来の縦横比(液晶表示パネル11に表示された映像と同じ縦横比)を有する映像となる。 Therefore, with the configuration of FIG. 12, the plane on which the spatially floating image 3 is formed coincides with the XZ plane. In the direction of the user's line of sight (direction M corresponding to the negative Y direction in FIG. 12), the spatial floating image 3 has the best visibility from the user's perspective, that is, has high brightness, and The aspect ratio of the spatial floating image 3 also becomes an image having the original aspect ratio (the same aspect ratio as the image displayed on the liquid crystal display panel 11).
 上記の通り、液晶表示パネル11に表示されるP偏光の映像光のビームスプリッタ101への入射角がブリュースター角θBである56.3度である場合には、図9のように空間浮遊映像3が、斜め下の向きに生成されることとなり、利用者にとって視認性が悪化する。そこで、図12のように、映像表示装置1を含む筐体106の前側を高く、後ろ側を低くすることで、空間浮遊映像3が形成される平面を、X-Z平面と一致させることができる。これにより、空間浮遊映像3の視認性を最適にすることができ、利用に好適となる。 As mentioned above, when the incident angle of the P-polarized image light displayed on the liquid crystal display panel 11 to the beam splitter 101 is 56.3 degrees, which is the Brewster angle θB, a spatially floating image as shown in FIG. 3 will be generated diagonally downward, resulting in poor visibility for the user. Therefore, as shown in FIG. 12, by making the front side of the casing 106 containing the image display device 1 higher and the rear side lower, the plane on which the spatially floating image 3 is formed can be made to coincide with the XZ plane. can. This makes it possible to optimize the visibility of the spatially floating image 3, making it suitable for use.
 [効果等]
 以上のように、各実施例や変形例の空間浮遊映像表示装置によれば、主に室内での使用に好適で、視認性の高い空間浮遊映像を表示することができる。さらに、液晶表示パネル11からの映像光に基づいた映像表示装置1からの映像光が、ビームスプリッタ101上で反射することに起因する、反射映像光の輝度をゼロ、もしくはその輝度を低減した、空間浮遊映像表示装置を提供できる。この結果、空間浮遊映像を観察できる位置にいる利用者から見て、空間浮遊映像表示装置の反対側にいる人からは、上記反射映像光を視認できなくなる。空間浮遊映像表示装置が設置された室内等で、利用者以外の人にとって不要な、あるいは煩わしいかもしれない映像光が、見えにくくなる効果をもたらす。
[Effects etc.]
As described above, according to the spatially floating image display device of each embodiment and modification example, it is possible to display a spatially floating image that is suitable mainly for indoor use and has high visibility. Furthermore, the brightness of the reflected image light caused by the image light from the image display device 1 based on the image light from the liquid crystal display panel 11 being reflected on the beam splitter 101 is reduced to zero, or the brightness is reduced. A spatial floating image display device can be provided. As a result, the reflected image light cannot be seen by a person on the opposite side of the spatial floating image display device from a user who is in a position where the spatial floating image can be observed. In a room where a floating image display device is installed, the image light, which is unnecessary or may be bothersome to people other than the user, has the effect of making it difficult to see.
 また、上記反射映像光の輝度をゼロ、もしくは低減するために、ビームスプリッタ101に対する映像光の入射角を45度からブリュースター角θBである56.3度と大きくする必要があることに起因して、空間浮遊映像が利用者から見て下側に傾くことで、視認性が悪化するという課題が生じる。この課題に対しては、映像表示装置1を含む筐体106の前側と後ろ側の高さを適切に変更することで、空間浮遊映像3が形成される面を鉛直面として、視認性を最適にすることができるという効果をもたらす。 Another reason is that in order to zero or reduce the brightness of the reflected image light, it is necessary to increase the incident angle of the image light to the beam splitter 101 from 45 degrees to 56.3 degrees, which is the Brewster angle θB. Therefore, a problem arises in that the spatially floating image is tilted downward when viewed from the user, resulting in poor visibility. To solve this problem, by appropriately changing the height of the front and rear sides of the casing 106 containing the image display device 1, the surface on which the floating image 3 is formed is set as a vertical plane, and visibility is optimized. It has the effect of being able to
 以上の効果により、各実施例や変形例の空間浮遊映像表示装置は、比較的狭い室内で使用しても、利用者以外の人にとっては不要な映像光を照射することなく、明るく、視認性に優れた空間浮遊映像を表示することができ、かつ、小型・軽量であるため、室内の机、テーブルの上や、棚などに、手軽に設置するのに好適である。 As a result of the above-mentioned effects, the floating image display device of each embodiment and modification example can be used in a relatively small room without emitting unnecessary image light to people other than the user, and is bright and highly visible. It can display an excellent floating image in space, and is small and lightweight, making it suitable for easy installation on a desk, table, or shelf indoors.
 本実施例に係る技術では、空間浮遊映像を高解像度かつ高輝度な映像情報を空間浮遊した状態で表示することにより、この空間浮遊映像を非接触型のユーザインタフェースとして使用することも可能であり、利用者は感染症の接触感染に対する不安を感じることなく操作することができる。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3すべての人に健康と福祉を」に貢献する。 With the technology according to this embodiment, by displaying high-resolution and high-brightness video information in a space-floating state, it is also possible to use this space-floating video as a non-contact user interface. , users can operate the device without worrying about contact transmission of infectious diseases. In this way, we will contribute to the 3 Sustainable Development Goals (SDGs) advocated by the United Nations: ``Good health and well-being for all.''
 また、本実施例に係る技術では、出射する映像光の発散角を小さく、さらに特定の偏波(偏光)に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、明るく鮮明な空間浮遊映像を得ることを可能にする。本実施例に係る技術によれば、消費電力を大幅に低減することが可能な、利用性に優れた非接触ユーザインタフェースを提供することができる。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「9産業と技術革新の基盤をつくろう」に貢献する。 In addition, in the technology according to this embodiment, by reducing the divergence angle of the emitted image light and aligning it with a specific polarization (polarized light), only the regular reflected light is efficiently reflected by the retroreflective member. , which makes it possible to obtain bright and clear spatial floating images with high light utilization efficiency. According to the technology according to the present embodiment, it is possible to provide a contactless user interface with excellent usability and which can significantly reduce power consumption. In this way, we will contribute to the Sustainable Development Goals (SDGs) advocated by the United Nations: ``Create a foundation for nine industries and technological innovation.''
 以上、本開示の実施の形態について具体的に説明したが、前述の実施の形態に限定されず、要旨を逸脱しない範囲で種々変更可能である。特に限定しない場合、各構成要素は、単数でも複数でもよい。各実施例の構成要素について、必須構成要素を除き、追加・削除・置換などが可能である。各実施例を組み合わせた形態も可能である。 Although the embodiments of the present disclosure have been specifically described above, the embodiments are not limited to the above-described embodiments, and various changes can be made without departing from the gist. Unless specifically limited, each component may be singular or plural. The components of each embodiment can be added, deleted, replaced, etc., except for essential components. A form in which each of the embodiments is combined is also possible.
 1:映像表示装置、2:再帰反射部材、3:空間浮遊映像、11:液晶表示パネル、12,112:吸収型偏光板、13:光源装置、21:λ/4板、100:透明部材、101:ビームスプリッタ(偏光分離部材)、106:筐体、108:フレーム、300:映像表示装置部、400:空間浮遊映像表示部、1061:開口部。 1: Image display device, 2: Retroreflective member, 3: Space floating image, 11: Liquid crystal display panel, 12, 112: Absorption type polarizing plate, 13: Light source device, 21: λ/4 plate, 100: Transparent member, 101: Beam splitter (polarization separation member), 106: Housing, 108: Frame, 300: Image display unit, 400: Space floating image display unit, 1061: Opening.

Claims (9)

  1.  空間浮遊映像を表示する空間浮遊映像表示装置であって、
     映像表示装置が収容された筐体と、
     前記筐体の外側に前記映像表示装置と対向して配置され、再帰反射面にλ/4板が設けられた再帰反射部材と、
     前記筐体の外側で前記映像表示装置と前記再帰反射部材とを結ぶ空間に、前記映像表示装置および前記再帰反射部材に対し所定の角度で配置された偏光分離部材と、
     を備え、
     前記映像表示装置は、光源装置と、映像源としての液晶表示パネルとを有し、
     前記液晶表示パネルから出射する特定偏波の映像光は、前記偏光分離部材に対して、特定の入射角をもって入射し、前記偏光分離部材を通過し、前記再帰反射部材で反射され、前記λ/4板の通過によって偏光変換されることで、他方の偏波の映像光となり、前記他方の偏波の映像光は、前記偏光分離部材によって反射され、反射された映像光に基づいて、所定の位置に、実像である空間浮遊映像を表示する、
     空間浮遊映像表示装置。
    A space floating image display device that displays a space floating image,
    A casing housing a video display device;
    a retroreflective member disposed outside the casing facing the video display device, and having a λ/4 plate provided on the retroreflective surface;
    a polarization separation member disposed at a predetermined angle with respect to the video display device and the retroreflective member in a space connecting the video display device and the retroreflective member outside the casing;
    Equipped with
    The video display device includes a light source device and a liquid crystal display panel as a video source,
    Image light of a specific polarization emitted from the liquid crystal display panel is incident on the polarization separation member at a specific angle of incidence, passes through the polarization separation member, is reflected by the retroreflection member, and is reflected by the λ/ The polarization is converted by passing through the four plates, and the image light becomes the other polarized image, and the other polarized image light is reflected by the polarization separation member, and a predetermined image light is generated based on the reflected image light. Displaying a real image floating in space at a certain location.
    Space floating image display device.
  2.  請求項1記載の空間浮遊映像表示装置において、
     前記偏光分離部材に対して入射する、特定偏波の映像光は、P偏光である、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 1,
    The image light of a specific polarization that is incident on the polarization separation member is P-polarized light.
    Space floating image display device.
  3.  請求項1記載の空間浮遊映像表示装置において、
     前記偏光分離部材に対して入射する、特定の入射角は、45度以上、60度以下の範囲内の角度である、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 1,
    The specific angle of incidence of the light incident on the polarization separation member is within a range of 45 degrees or more and 60 degrees or less.
    Space floating image display device.
  4.  請求項1記載の空間浮遊映像表示装置において、
     前記偏光分離部材に対して入射する、特定の入射角は、前記偏光分離部材の材質に対応したブリュースター角、もしくは、前記ブリュースター角よりも小さい、50度から前記ブリュースター角未満までの範囲内の角度である、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 1,
    The specific angle of incidence with respect to the polarization separation member is a Brewster angle corresponding to the material of the polarization separation member, or a range from 50 degrees to less than the Brewster angle, which is smaller than the Brewster angle. is the angle within,
    Space floating image display device.
  5.  請求項4記載の空間浮遊映像表示装置において、
     形成された前記空間浮遊映像の表示される面が鉛直面となるように、前記映像表示装置が収容された前記筐体は、前記空間浮遊映像が形成される側に対応した前側の面が、後ろ側の面よりも高さが高くされている、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 4,
    The casing in which the image display device is housed has a front surface corresponding to the side on which the space floating image is formed so that the surface on which the space floating image is displayed is a vertical plane. The height is higher than the rear surface,
    Space floating image display device.
  6.  請求項1記載の空間浮遊映像表示装置において、
     前記偏光分離部材および前記再帰反射部材は、前記映像表示装置が収容された前記筐体に対し、フレームによって支持されている、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 1,
    The polarization separation member and the retroreflection member are supported by a frame with respect to the casing in which the video display device is housed.
    Space floating image display device.
  7.  請求項1記載の空間浮遊映像表示装置において、
     前記偏光分離部材は、反射型偏光板あるいは特定偏波を反射させる金属多層膜が、ガラス基板上に光学薄膜として形成されている、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 1,
    The polarized light separating member includes a reflective polarizing plate or a metal multilayer film that reflects a specific polarized wave, which is formed as an optical thin film on a glass substrate.
    Space floating image display device.
  8.  請求項1記載の空間浮遊映像表示装置において、
     前記再帰反射部材の再帰反射面の面粗さは、前記空間浮遊映像のボケ量と前記映像表示装置の画素サイズとの比率が40%以下となるように設定されており、
     前記光源装置は、
     点状または面状の光源と、
     前記光源からの光の発散角を低減する光学素子部と、
     前記光源からの光を特定方向の偏光に揃える偏光変換部と、
     前記光源からの光を前記液晶表示パネルに伝搬する反射面を有する導光体と、
     を備え、
     前記反射面の形状と面粗さによって前記液晶表示パネルからの映像光の映像光束を制御する、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 1,
    The surface roughness of the retroreflective surface of the retroreflective member is set so that the ratio of the amount of blur of the spatially floating image to the pixel size of the image display device is 40% or less,
    The light source device includes:
    A point or planar light source,
    an optical element section that reduces the divergence angle of light from the light source;
    a polarization conversion unit that aligns the light from the light source with polarization in a specific direction;
    a light guide having a reflective surface that propagates light from the light source to the liquid crystal display panel;
    Equipped with
    controlling the image luminous flux of the image light from the liquid crystal display panel according to the shape and surface roughness of the reflective surface;
    Space floating image display device.
  9.  請求項2記載の空間浮遊映像表示装置において、
     前記液晶表示パネルからの映像光は、S偏光であり、
     前記液晶表示パネルからのS偏光の映像光を、前記偏光分離部材に対して入射するための前記P偏光に変換する、λ/2板を備える、
     空間浮遊映像表示装置。
    The spatial floating image display device according to claim 2,
    The image light from the liquid crystal display panel is S-polarized light,
    comprising a λ/2 plate that converts S-polarized image light from the liquid crystal display panel into the P-polarized light to be incident on the polarization separation member;
    Space floating image display device.
PCT/JP2023/012608 2022-08-23 2023-03-28 Space floating video display device WO2024042761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022132214A JP2024029819A (en) 2022-08-23 2022-08-23 Space floating picture display device
JP2022-132214 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024042761A1 true WO2024042761A1 (en) 2024-02-29

Family

ID=90012961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012608 WO2024042761A1 (en) 2022-08-23 2023-03-28 Space floating video display device

Country Status (2)

Country Link
JP (1) JP2024029819A (en)
WO (1) WO2024042761A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188276A1 (en) * 2016-04-26 2017-11-02 京セラ株式会社 Vehicle display apparatus
US20180259784A1 (en) * 2016-07-25 2018-09-13 Disney Enterprises, Inc. Retroreflector display system for generating floating image effects
US20190094562A1 (en) * 2017-01-05 2019-03-28 Looking Glass Factory, Inc. Advanced retroreflecting aerial displays
US20190285904A1 (en) * 2016-05-16 2019-09-19 Samsung Electronics Co., Ltd. Three-dimensional imaging device and electronic device including same
JP2020134843A (en) * 2019-02-22 2020-08-31 日立オムロンターミナルソリューションズ株式会社 Aerial image display device, transaction device, and method for controlling formation of aerial image in aerial image display device
WO2022118752A1 (en) * 2020-12-04 2022-06-09 マクセル株式会社 Floating-in-space-image display device and light source device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188276A1 (en) * 2016-04-26 2017-11-02 京セラ株式会社 Vehicle display apparatus
US20190285904A1 (en) * 2016-05-16 2019-09-19 Samsung Electronics Co., Ltd. Three-dimensional imaging device and electronic device including same
US20180259784A1 (en) * 2016-07-25 2018-09-13 Disney Enterprises, Inc. Retroreflector display system for generating floating image effects
US20190094562A1 (en) * 2017-01-05 2019-03-28 Looking Glass Factory, Inc. Advanced retroreflecting aerial displays
JP2020134843A (en) * 2019-02-22 2020-08-31 日立オムロンターミナルソリューションズ株式会社 Aerial image display device, transaction device, and method for controlling formation of aerial image in aerial image display device
WO2022118752A1 (en) * 2020-12-04 2022-06-09 マクセル株式会社 Floating-in-space-image display device and light source device

Also Published As

Publication number Publication date
JP2024029819A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
US10012866B2 (en) Mirror display and electronic device
WO2022030538A1 (en) Spatial floating image information display system and light source device used therefor
WO2022209722A1 (en) Spatial floating image display apparatus
WO2022113745A1 (en) Floating-in-space-image display device
WO2023276921A1 (en) Air floating video display apparatus
WO2022118752A1 (en) Floating-in-space-image display device and light source device
WO2024042761A1 (en) Space floating video display device
WO2022080117A1 (en) Space-floating video image display apparatus and light source device
US20240192518A1 (en) Air floating video display apparatus
WO2022270384A1 (en) Hovering image display system
WO2023068021A1 (en) Aerial floating video display system
JP2024082787A (en) Space-floating image display device
WO2023085069A1 (en) Air floating image display apparatus
WO2023162690A1 (en) Floating video display device
JP7481289B2 (en) Space-floating image display device
JP7165792B1 (en) Spatial floating image information display system and light source device used therefor
WO2022270636A1 (en) Aerial video display device
WO2023008125A1 (en) Space floating video display device
WO2024062749A1 (en) Floating-aerial-video display device
JP2022089750A (en) Space floating video display device and light source device
JP7167282B1 (en) Spatial floating image information display system and light source device used therefor
CN118169902A (en) Space suspension image display device
JP2022029901A (en) Space floating video information display system and light source device used for the same
CN116710817A (en) Space suspension image display device and light source device
KR101731112B1 (en) Reflective Display Device Using Front Light Unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856881

Country of ref document: EP

Kind code of ref document: A1