WO2022270384A1 - Hovering image display system - Google Patents

Hovering image display system Download PDF

Info

Publication number
WO2022270384A1
WO2022270384A1 PCT/JP2022/023995 JP2022023995W WO2022270384A1 WO 2022270384 A1 WO2022270384 A1 WO 2022270384A1 JP 2022023995 W JP2022023995 W JP 2022023995W WO 2022270384 A1 WO2022270384 A1 WO 2022270384A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating
image display
air
display device
air image
Prior art date
Application number
PCT/JP2022/023995
Other languages
French (fr)
Japanese (ja)
Inventor
克行 渡辺
拓也 清水
浩二 平田
浩司 藤田
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2022270384A1 publication Critical patent/WO2022270384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory

Definitions

  • the present invention relates to a floating image display system.
  • Patent Document 1 discloses a detection system that reduces erroneous detection of operations on an operation surface of a displayed aerial image.
  • the touch operation on the floating image is not performed on a physical button, touch panel, or the like. Therefore, the user may not be able to recognize whether a touch operation has been performed. Accordingly, it is an object of the present invention to provide a more suitable floating-in-air image display system or floating-in-air image display device.
  • a floating-in-air image display system includes a table including a light-transmissive top plate, and a first floating-in-air image display device and a second floating-in-air image display device arranged facing each other inside the table.
  • a video signal processing device for transmitting video signals to the first floating-in-air video display device and the second floating-in-the-air video display device; a sensor forming a surface, connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and based on the received sensing signal, the a controller for controlling the video signal processing device so that the floating images generated by the first floating-in-air image display device and the second floating-in-air image display device are respectively desired display images.
  • FIG. 1 is a diagram showing an example of a usage pattern of a spatially floating image display device according to an embodiment of the present invention
  • FIG. It is a figure which shows an example of a principal part structure and a retroreflection part structure of the space floating image display apparatus which concerns on one Example of this invention. It is a figure which shows an example of the installation method of a space floating image display apparatus.
  • FIG. 10 is a diagram showing another example of the installation method of the spatially floating image display device; It is a figure which shows the structural example of a spatial floating image display apparatus.
  • FIG. 4 is a diagram showing another example of the main configuration of the spatially floating image display device according to one embodiment of the present invention;
  • FIG. 4 is an explanatory diagram for explaining functions of a sensing device used in the spatially floating image display device;
  • FIG. 2 is an explanatory diagram of a measurement system for evaluating the characteristics of a reflective polarizing plate;
  • FIG. 4 is a characteristic diagram showing the transmittance characteristic of the transmission axis of the reflective polarizing plate with respect to the light incident angle;
  • FIG. 4 is a characteristic diagram showing transmittance characteristics of a reflection axis of a reflective polarizing plate with respect to a light incident angle;
  • FIG. 4 is a characteristic diagram showing the transmittance characteristic of the transmission axis of the reflective polarizing plate with respect to the light incident angle;
  • FIG. 4 is a characteristic diagram showing the transmittance characteristic of the transmission axis of the reflective polarizing plate with respect to the light incident angle;
  • FIG. 4 is a characteristic diagram showing transmittance characteristics of a reflection axis of a reflective polarizing plate with respect to a light incident angle; It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. It is a sectional view showing an example of concrete composition of a light source device. 1 is a layout diagram showing a main part of a spatial floating image display device according to an embodiment of the present invention; FIG. 1 is a cross-sectional view showing the configuration of a display device according to an embodiment of the present invention; FIG. FIG. 4 is an explanatory diagram for explaining light source diffusion characteristics of an image display device; FIG.
  • FIG. 4 is an explanatory diagram for explaining diffusion characteristics of an image display device; 1 is a cross-sectional view showing the configuration of a display device according to an embodiment of the present invention; FIG. 1 is a vertical cross-sectional view showing the configuration of a spatial floating image display system according to Example 1.
  • FIG. 1 is a horizontal sectional view showing the configuration of a spatial floating image display system according to Example 1;
  • FIG. 5 is a vertical cross-sectional view showing the configuration of a spatially floating image display system according to a modification of Example 1;
  • FIG. 11 is a vertical cross-sectional view showing the configuration of a spatially floating image display system according to Example 2;
  • FIG. 10 is a diagram showing a first example of a display screen in the spatially floating image system according to Example 2;
  • FIG. 11 is a diagram showing a second example of a display screen in the spatial floating video system according to the second embodiment;
  • FIG. 11 is a horizontal cross-sectional view showing the configuration of a spatially floating image display system according to Example 3;
  • FIG. 10 is a diagram showing a first example of a display screen in a spatially floating video system according to Example 3;
  • FIG. 11 is a horizontal cross-sectional view showing the configuration of a spatially floating image display system according to Example 4;
  • FIG. 11 is a horizontal cross-sectional view showing the configuration of a spatially floating image display system according to Example 5;
  • FIG. 11 is a horizontal cross-sectional view showing the configuration of a spatially floating image display system according to Example 6;
  • FIG. 11 is a vertical cross-sectional view showing the configuration of a spatially floating image display system according to Example 6;
  • FIG. 21 is a diagram for explaining trapezoidal distortion correction of a spatially floating image by the spatially floating image display system according to the sixth embodiment;
  • an image by image light from an image light source can be transmitted through a transparent member such as glass that partitions a space, and can be displayed as a spatially floating image outside the transparent member. It relates to a video display device.
  • a suitable image display device can be realized for ATMs in banks, ticket vending machines in stations, digital signage, and the like.
  • touch panels are usually used in bank ATMs and station ticket vending machines. It is possible to display high-resolution video information in a state of floating in space. At this time, by making the divergence angle of the emitted image light small, that is, by making it acute, and by aligning it with a specific polarized wave, only regular reflected light is efficiently reflected by the retroreflection plate, so that the light utilization efficiency is improved.
  • the device including the light source of this embodiment can provide a novel and highly usable spatial floating image display device (space floating image display system) capable of significantly reducing power consumption. Further, for example, it is possible to provide a spatially floating image display device for a vehicle capable of displaying a so-called unidirectional spatially floating image that is visible inside and/or outside the vehicle. ⁇ Spatial floating image display device 1>
  • FIG. 1 is a diagram showing an example of usage of a spatial floating image display device according to an embodiment of the present invention, and is a diagram showing the overall configuration of the spatial floating image display device according to this embodiment.
  • a specific configuration of the spatially floating image display device will be described in detail with reference to FIG.
  • a space is partitioned by a show window (also called “window glass”) 105, which is a translucent member such as glass.
  • a show window also called “window glass”
  • FIG. 1(A) the inside of the window glass 105 (inside the store) is shown in the depth direction, and the outside thereof (for example, the sidewalk) is in front.
  • the window glass 105 by providing means for reflecting the specific polarized wave on the window glass 105, it is possible to reflect the specific polarized wave and form an aerial image at a desired position in the store.
  • FIG. 1(B) is a schematic block diagram showing the configuration of the video display device 1 described above.
  • the video display device 1 includes a video display unit that displays an original image of an aerial image, a video control unit that converts the input video in accordance with the resolution of the panel, and a video signal reception unit that receives video signals.
  • the video signal receiving unit supports wired input signals such as HDMI (High-Definition Multimedia Interface) input, and wireless input signals such as Wi-Fi (Wireless Fidelity). It also functions independently, and can also display video information from tablets, smartphones, etc. Furthermore, if a stick PC or the like is connected, it is possible to give it the ability to perform calculation processing and video analysis processing.
  • HDMI High-Definition Multimedia Interface
  • Wi-Fi Wireless Fidelity
  • FIG. 2 is a diagram showing an example of the configuration of the main part and the configuration of the retroreflective part of the spatially floating image display device according to one embodiment of the present invention.
  • the configuration of the spatially floating image display device will be described more specifically with reference to FIG.
  • a display device 1 for diverging image light of a specific polarized wave at a narrow angle is provided in an oblique direction of a transparent member 100 such as glass.
  • the display device 1 includes a liquid crystal display panel 11 and a light source device 13 that generates specific polarized light having narrow-angle diffusion characteristics.
  • the image light of the specific polarized wave from the display device 1 is transferred to a polarization separation member 101 (in the drawing, the polarization separation member 101 is formed in a sheet form) provided on the transparent member 100 and has a film that selectively reflects the image light of the specific polarized wave. and is adhered to the transparent member 100 ), and is incident on the retroreflection plate 2 .
  • a ⁇ /4 plate 21 is provided on the image light incident surface of the retroreflection plate. The image light is passed through the ⁇ /4 plate 21 twice, when it enters the retroreflection plate and when it exits, so that the specific polarized wave is polarization-converted into the other polarized wave.
  • the polarization separating member 101 that selectively reflects the image light of the specific polarized wave has the property of transmitting the other polarized light that has undergone polarization conversion, the image light of the specific polarized wave after the polarization conversion is It is transmitted through the polarization separation member 101 .
  • the image light transmitted through the polarization separation member 101 forms a space floating image 3 which is a real image outside the transparent member 100 .
  • the light that forms the spatially floating image 3 is a set of light rays converging from the retroreflection plate 2 to the optical image of the spatially floating image 3, and these rays travel straight even after passing through the optical image of the spatially floating image 3. . Therefore, the spatially floating image 3 is an image having high directivity, unlike diffuse image light formed on a screen by a general projector or the like. Therefore, in the configuration of FIG. 2, when the user views from the direction of the arrow A, the spatial floating image 3 is viewed as a bright image. However, when another person visually recognizes from the direction of the arrow B, the spatial floating image 3 cannot be visually recognized as an image at all. This characteristic is very suitable for use in a system that displays a video that requires high security or a highly confidential video that should be kept secret from a person facing the user.
  • the polarization axes of the reflected image light may become uneven.
  • part of the image light whose polarization axes are not aligned is reflected by the polarization separation member 101 described above and returns to the display device 1 .
  • This light may be re-reflected on the image display surface of the liquid crystal display panel 11 constituting the display device 1 to generate a ghost image and degrade the image quality of the spatially floating image. Therefore, in this embodiment, an absorptive polarizing plate 12 is provided on the image display surface of the display device 1 .
  • the image light emitted from the display device 1 is transmitted through the absorptive polarizing plate 12, and the reflected light returning from the polarization separating member 101 is absorbed by the absorptive polarizing plate 12, thereby suppressing the re-reflection. As a result, it is possible to prevent deterioration in image quality due to ghost images of spatially floating images.
  • the polarization separation member 101 described above may be formed of, for example, a reflective polarizing plate or a metal multilayer film that reflects a specific polarized wave.
  • FIG. 2(B) shows the surface shape of the retroreflector manufactured by Nippon Carbide Industry Co., Ltd. used in this study as a typical retroreflector 2 .
  • Light rays incident on the inside of the regularly arranged hexagonal prisms are reflected by the wall surface and bottom surface of the hexagonal prisms and emitted as retroreflected light in the direction corresponding to the incident light.
  • Display a certain spatial floating image The resolution of this spatially floating image largely depends on the resolution of the liquid crystal display panel 11 as well as the outer shape D and the pitch P of the retroreflecting portion of the retroreflecting plate 2 shown in FIG. 2(B).
  • the diameter D of the retroreflective portion is 240 ⁇ m and the pitch is 300 ⁇ m.
  • one pixel of the spatial floating image corresponds to 300 ⁇ m.
  • the effective resolution of the spatially floating image is reduced to about 1/3. Therefore, in order to make the resolution of the spatially floating image equal to the resolution of the display device 1, it is desired that the diameter and pitch of the retroreflecting portions be close to one pixel of the liquid crystal display panel.
  • the shape of the retroreflective portion is arranged so that no one side of the retroreflective portion overlaps any one side of one pixel of the liquid crystal display panel.
  • the surface shape of the retroreflection plate according to the present embodiment is not limited to the above example. It may have various surface geometries that achieve retroreflection.
  • retroreflective elements in which triangular pyramidal prisms, hexagonal pyramidal prisms, other polygonal prisms, or combinations thereof are periodically arranged may be provided on the surface of the retroreflective plate of the present embodiment.
  • a retroreflecting element in which these prisms are arranged periodically to form a cube corner may be provided on the surface of the retroreflecting plate of the present embodiment.
  • capsule lens type retroreflective elements in which glass beads are periodically arranged may be provided on the surface of the retroreflective plate of the present embodiment.
  • FIG. 3A is a diagram showing an example of a method of installing a spatially floating image display device.
  • the spatially floating image display device shown in FIG. 3A is installed horizontally so that the surface on which the spatially floating image 3 is formed faces upward. That is, in FIG. 3A, the spatial floating image display device is installed such that the transparent member 100 faces upward, and the spatial floating image 3 is formed above the spatial floating image display device.
  • FIG. 3B is a diagram showing another example of the installation method of the spatially floating image display device.
  • the spatially floating image display device shown in FIG. 3B is installed vertically so that the surface on which the spatially floating image 3 is formed faces the side (toward the user 230). That is, in FIG. 3B, the spatially floating image display device is installed so that the transparent member 100 faces sideways, and the spatially floating image 3 is formed laterally of the spatially floating image display device (in the direction of the user 230).
  • FIG. 4 is a block diagram showing an example of the internal configuration of the spatial floating image display device 1000. As shown in FIG. 4
  • the spatial floating image display device 1000 includes a retroreflection unit 1101, an image display unit 1102, a light guide 1104, a light source 1105, a power supply 1106, an operation input unit 1107, a nonvolatile memory 1108, a memory 1109, a control unit 1110, and an image signal input unit. 1131, an audio signal input unit 1133, a communication unit 1132, an air operation detection sensor 1351, an air operation detection unit 1350, an audio output unit 1140, a video control unit 1160, a storage unit 1170, an imaging unit 1180, and the like.
  • Each component of the spatial floating image display device 1000 is arranged in a housing 1190 .
  • the imaging unit 1180 and the mid-air operation detection sensor 1351 shown in FIG. 4 may be provided outside the housing 1190 .
  • the retroreflective portion 1101 in FIG. 4 corresponds to the retroreflective plate 2 in FIG.
  • the retroreflection section 1101 retroreflects the light modulated by the image display section 1102 .
  • the spatially floating image 3 is formed by the light output from the spatially floating image display device 1000 out of the reflected light from the retroreflector 1101 .
  • the image display unit 1102 in FIG. 4 corresponds to the liquid crystal display panel 11 in FIG.
  • a light source 1105 in FIG. 4 corresponds to the light source device 13 in FIG. 4 correspond to the display device 1 in FIG.
  • the image display unit 1102 is a display unit that modulates transmitted light and generates an image based on a video signal that is input under the control of the image control unit 1160, which will be described later.
  • a video display unit 1102 corresponds to the liquid crystal display panel 11 in FIG.
  • a transmissive liquid crystal panel is used as the image display unit 1102 .
  • the image display unit 1102 for example, a reflective liquid crystal panel or a DMD (Digital Micromirror Device: registered trademark) panel that modulates reflected light may be used.
  • a light source 1105 generates light for the image display unit 1102, and is a solid-state light source such as an LED light source or a laser light source.
  • the power supply 1106 converts AC current input from the outside into DC current to power the light source 1105 .
  • the power supply 1106 supplies necessary DC current to each part in the spatially floating image display device 1000 .
  • the light guide 1104 guides the light generated by the light source 1105 to illuminate the image display section 1102 .
  • a combination of the light guide 1104 and the light source 1105 can also be called a backlight of the image display section 1102 .
  • Various methods are conceivable for the combination of the light guide 1104 and the light source 1105 .
  • a specific configuration example of the combination of the light guide 1104 and the light source 1105 will be described later in detail.
  • the mid-air operation detection sensor 1351 is a sensor that detects the operation of the floating image 3 by the user's 230 finger.
  • the mid-air operation detection sensor 1351 senses a range that overlaps with the entire display range of the floating image 3, for example. Note that the mid-air operation detection sensor 1351 may sense only a range that overlaps with at least a part of the display range of the floating image 3 .
  • the aerial operation detection sensor 1351 include distance sensors that use invisible light such as infrared rays, invisible light lasers, and ultrasonic waves. Also, the aerial operation detection sensor 1351 may be configured to detect coordinates on a two-dimensional plane by combining a plurality of sensors. In addition, the aerial operation detection sensor 1351 may be composed of a ToF (Time of Flight) type LiDAR (Light Detection and Ranging) or an image sensor.
  • ToF Time of Flight
  • LiDAR Light Detection and Ranging
  • the mid-air operation detection sensor 1351 only needs to be able to perform sensing for detecting a touch operation or the like on an object displayed as the floating image 3 by the user's finger. Such sensing can be performed using existing technology.
  • the mid-air operation detection unit 1350 acquires a sensing signal from the mid-air operation detection sensor 1351, and based on the sensing signal, determines whether or not the finger of the user 230 touches the object in the floating image 3, and whether the finger of the user 230 touches the object. Calculation of the contact position (contact position) is performed.
  • the aerial operation detection unit 1350 is configured by a circuit such as an FPGA (Field Programmable Gate Array), for example. Also, part of the functions of the aerial operation detection unit 1350 may be realized by software, for example, by a spatial operation detection program executed by the control unit 1110 .
  • the aerial operation detection sensor 1351 and the aerial operation detection unit 1350 may be built in the floating image display device 1000 or may be provided outside the floating image display device 1000 separately. When provided separately from the spatially floating image display device 1000, the aerial operation detection sensor 1351 and the aerial operation detection unit 1350 transmit information and information to the spatially floating image display device 1000 via a wired or wireless communication connection path or a video signal transmission path. configured to transmit a signal;
  • the aerial operation detection sensor 1351 and the aerial operation detection unit 1350 may be provided separately. As a result, it is possible to construct a system in which only the aerial operation detection function can be added as an option, using the space floating image display device 1000 without the aerial operation detection function as a main body. Alternatively, only the aerial operation detection sensor 1351 may be provided separately, and the aerial operation detection unit 1350 may be incorporated in the floating image display device 1000 . When it is desired to arrange the air operation detection sensor 1351 more freely with respect to the installation position of the floating image display device 1000, there is an advantage in the configuration in which only the air operation detection sensor 1351 is provided separately.
  • the imaging unit 1180 is a camera having an image sensor, and images the space near the floating image 3 and/or the face, arms, fingers, etc. of the user 230 .
  • a plurality of imaging units 1180 may be provided.
  • the imaging unit 1180 may be provided separately from the spatial floating image display device 1000 .
  • the imaging unit 1180 may be configured such that an imaging signal can be transmitted to the spatially floating image display device 1000 via a wired or wireless communication connection path.
  • the aerial operation detection sensor 1351 is configured as an object intrusion sensor that targets a plane (intrusion detection plane) including the display surface of the floating image 3 and detects whether or not an object has entered the intrusion detection plane. In this case, information such as how far away an object (e.g., a user's finger) that has not entered the intrusion detection plane is from the intrusion detection plane, or how close the object is to the intrusion detection plane, is detected by the mid-air operation detection sensor. 1351 may not be detected.
  • a plane intrusion detection plane
  • information such as how far away an object (e.g., a user's finger) that has not entered the intrusion detection plane is from the intrusion detection plane, or how close the object is to the intrusion detection plane, is detected by the mid-air operation detection sensor. 1351 may not be detected.
  • the distance between the object and the intrusion detection plane can be calculated by using information such as object depth calculation information based on images captured by a plurality of imaging units 1180 and object depth information obtained by a depth sensor. . These information and various information such as the distance between the object and the intrusion detection plane are used for various display controls for the floating image 3 .
  • the air operation detection unit 1350 may detect the touch operation of the floating image 3 by the user 230 based on the image captured by the imaging unit 1180.
  • the image capturing unit 1180 may capture an image of the face of the user 230 who operates the floating image 3, and the control unit 1110 may perform user 230 identification processing.
  • the imaging unit 1180 A range including the user 230 operating the spatial floating image 3 and the surrounding area of the user 230 may be imaged.
  • the operation input unit 1107 is, for example, an operation button or a light-receiving unit of a remote controller, and inputs a signal for an operation other than an aerial operation (touch operation) by the user 230 .
  • the operation input unit 1107 may be used, for example, by an administrator to operate the spatially floating image display device 1000.
  • the video signal input unit 1131 connects an external video output device and inputs video data.
  • the audio signal input unit 1133 connects an external audio output device to input audio data.
  • the audio output unit 1140 can output audio based on audio data input to the audio signal input unit 1133 . Also, the audio output unit 1140 may output a built-in operation sound or an error warning sound.
  • the non-volatile memory 1108 stores various data used in the spatial floating image display device 1000 .
  • the data stored in the non-volatile memory 1108 includes, for example, data for various operations to be displayed on the floating image 3, display icons, data of objects to be operated by the user, layout information, and the like.
  • the memory 1109 stores image data to be displayed as the spatial floating image 3, control data for the device, and the like.
  • the control unit 1110 controls the operation of each connected unit. Further, the control unit 1110 may cooperate with a program stored in the memory 1109 to perform arithmetic processing based on information acquired from each unit in the floating image display device 1000 .
  • the communication unit 1132 communicates with an external device, an external server, or the like via a wired or wireless interface. Various data such as video data, image data, and audio data are transmitted and received through communication via the communication unit 1132 .
  • the storage unit 1170 is a storage device that records various types of data & information such as video data, image data, and audio data. For example, various types of information such as video data, image data, audio data, etc. may be recorded in the storage unit 1170 in advance at the time of product shipment. Also, the storage unit 1170 may record various types of information such as various data such as video data, image data, and audio data acquired from an external device, an external server, or the like via the communication unit 1132 .
  • the video data, image data, etc., recorded in the storage unit 1170 are output as the spatially floating video 3 via the video display unit 1102 and the retroreflection unit 1101 .
  • the storage unit 1170 also records layout information such as display icons and objects displayed as the spatial floating image 3, and various metadata information related to the objects.
  • the audio data recorded in the storage unit 1170 is output as audio from the audio output unit 1140, for example.
  • a video control unit 1160 performs various controls related to video signals input to the video display unit 1102 .
  • the video control unit 1160 controls, for example, the video signal to be stored in the memory 1109 and the video signal (video data) input to the video signal input unit 1131 , which video signal is to be input to the video display unit 1102 . Controls switching, etc.
  • the video control unit 1160 generates a superimposed video signal by superimposing the video signal to be stored in the memory 1109 and the video signal input from the video signal input unit 1131, and inputs the superimposed video signal to the video display unit 1102.
  • control may be performed to form the synthesized image as the spatially floating image 3 .
  • the video control unit 1160 may perform image processing control on the video signal input from the video signal input unit 1131 and the video signal to be stored in the memory 1109 .
  • image processing include scaling processing for enlarging, reducing, and transforming an image, brightness adjustment processing for changing brightness, contrast adjustment processing for changing the contrast curve of an image, and decomposition of an image into light components for each component.
  • Retinex processing that changes the weighting of .
  • the image control unit 1160 may perform special effect image processing, etc. for assisting the user 230's aerial operation (touch operation) on the image signal input to the image display unit 1102 .
  • the special effect video processing is performed based on, for example, the detection result of the touch operation of the user 230 by the aerial operation detection unit 1350 and the captured image of the user 230 by the imaging unit 1180 .
  • the spatial floating image display device 1000 is equipped with various functions. However, the spatially floating image display device 1000 does not need to have all of these functions, and may have any configuration as long as it has the function of forming the spatially floating image 3 . ⁇ Spatial Floating Image Display Device 2>
  • FIG. 5 is a diagram showing another example of the main configuration of the spatial floating image display device according to one embodiment of the present invention.
  • the display device 1 includes a liquid crystal display panel 11 and a light source device 13 that generates specific polarized light having diffusion characteristics with a narrow angle. For example, it is composed of a small liquid crystal display panel with a screen size of about 5 inches to a large liquid crystal display panel with a screen size exceeding 80 inches.
  • the folding mirror 22 uses a transparent member 100 as a substrate. On the surface of the transparent member 100 facing the display device 1, a polarization separating member 101 such as a reflective polarizing plate for selectively reflecting image light of a specific polarized wave is provided, and the image light from the liquid crystal display panel 11 is reflected.
  • the folding mirror 22 has a function as a mirror.
  • Image light of a specific polarized wave from the display device 1 is reflected by a polarization separation member 101 (in the drawing, a sheet-like polarization separation member 101 is adhered) provided on a transparent member 100 , and is incident on the retroreflection plate 2 .
  • An optical film having a polarization separation characteristic may be vapor-deposited on the surface of the transparent member 100 instead of the polarization separation member 101 .
  • a ⁇ /4 plate 21 is provided on the light incident surface of the retroreflector, and the image light is passed through twice to convert the polarization of the specific polarized wave into the other polarized wave with a phase difference of 90°.
  • the retroreflected image light is transmitted through the polarization separation member 101 and the space floating image 3 as a real image is displayed outside the transparent member 100 .
  • the polarization axes become uneven due to the retroreflection in the polarization separating member 101 described above, part of the image light is reflected and returns to the display device 1 . This light is reflected again by the image display surface of the liquid crystal display panel 11 that constitutes the display device 1, generating a ghost image and significantly deteriorating the image quality of the spatially floating image.
  • the absorptive polarizing plate 12 may be provided on the image display surface of the display device 1 .
  • Image light emitted from the display device 1 is transmitted, and reflected light from the polarization separation member 101 is absorbed, thereby preventing deterioration in image quality due to ghost images of spatially floating images.
  • a sensor 44 having a TOF (Time Of Fly) function is provided so as to sense the relationship between the distance and the position between the object and the sensor 44 with respect to the space floating image obtained by the space floating image display device described above. 6, it is possible to detect not only the coordinates in the planar direction of the object but also the coordinates in the depth direction and the direction and speed of movement of the object.
  • a plurality of combinations of infrared light emitting units and light receiving units are arranged in a straight line, the light from the light emitting points is irradiated onto the object, and the reflected light is received by the light receiving unit.
  • the product of the difference between the light emission time and the light reception time and the speed of light makes the distance to the object clear. Further, the coordinates on the plane can be read from the coordinates at the portion where the difference between the light emission time and the light reception time is the smallest among a plurality of light emitting units and light receiving units. As described above, it is also possible to obtain three-dimensional coordinate information by combining the coordinates of an object on a plane (two-dimensional) with a plurality of the sensors described above. ⁇ Reflective polarizing plate>
  • the polarization separating member 101 is used to improve the contrast performance that determines the image quality of the image compared to a general half mirror. Characteristics of a reflective polarizing plate will be described as an example of the polarization separation member 101 of this embodiment.
  • FIG. 7 is an explanatory diagram of a measurement system for evaluating the characteristics of the reflective polarizing plate. 8 and 9 show, as V-AOI, the transmission characteristics and reflection characteristics of the reflective polarizing plate of FIG. Similarly, the transmission characteristics and reflection characteristics of the reflective polarizing plate with respect to the incident angle of light from the horizontal direction with respect to the polarization axis are shown as H-AOI in FIGS. 10 and 11, respectively.
  • the reflective polarizing plate having a grid structure deteriorates in characteristics for light from a direction perpendicular to the polarization axis. For this reason, specifications along the polarization axis are desirable, and the light source of this embodiment, which can emit the image light emitted from the liquid crystal display panel at a narrow angle, is an ideal light source. In addition, the characteristics in the horizontal direction are similarly degraded with respect to oblique light. Considering the above characteristics, a configuration example of this embodiment will be described below, in which a light source capable of emitting image light from the liquid crystal display panel at a narrower angle is used as the backlight of the liquid crystal display panel. This makes it possible to provide high-contrast spatial floating images. ⁇ Display device>
  • the display device 1 of this embodiment includes an image display element 11 (liquid crystal display panel) and a light source device 13 constituting a light source thereof.
  • This liquid crystal display panel (image display element 11) has a narrow-angle diffusion characteristic from the light source device 13, which is a backlight device, as indicated by an arrow 30 in FIG. Also, it receives an illumination light beam having characteristics similar to those of a laser beam whose plane of polarization is aligned in one direction.
  • the liquid crystal display panel (image display element 11) modulates the received illumination light beam according to the input image signal.
  • the modulated image light is reflected by the retroreflection plate 2 and transmitted through the transparent member 100 to form a spatially floating image, which is a real image. (See Figure 1). Further, in FIG.
  • a liquid crystal display panel 11 constituting the display device 1 a liquid crystal display panel 11 constituting the display device 1
  • a light direction conversion panel 54 for controlling the directivity of the light flux emitted from the light source device 13, and, if necessary, a narrow angle diffusion plate (not shown). That is, polarizing plates are provided on both sides of the liquid crystal display panel 11, and image light of a specific polarized wave is emitted after modulating the intensity of the light according to the image signal (see arrow 30 in FIG. 12). .
  • a desired image is projected toward the retroreflector 2 through the light direction conversion panel 54 as light of a specific polarized wave with high directivity (straightness).
  • a spatially floating image 3 is formed by being transmitted to the observer's eyes outside the (space).
  • a protective cover 50 may be provided on the surface of the light direction conversion panel 54 described above.
  • each LED element 201 has a shape in which the cross-sectional area gradually increases toward the opposite side of the light receiving part in order to convert the divergent light from each LED element 201 into a substantially parallel light flux.
  • a lens shape is provided that has the effect of gradually decreasing the divergence angle by performing total reflection multiple times while propagating inside.
  • a liquid crystal display panel 11 constituting the display device 1 is attached to the upper surface thereof.
  • a light emitting diode (LED) element 201 which is a semiconductor light source, and an LED board 202 on which a control circuit is mounted are attached to one side surface (the left end surface in this example) of the case of the light source device 13.
  • a heat sink which is a member for cooling the heat generated by the LED elements and the control circuit, may be attached to the outer surface of the LED substrate 202 .
  • liquid crystal display panel 11 attached to the frame (not shown) attached to the upper surface of the case of the light source device 13 is electrically connected to the liquid crystal display panel 11 .
  • a FPC Flexible Printed Circuits
  • the generated image light has a narrow diffusion angle and only a specific polarized wave component, so a new image display device that has not existed in the past, which is similar to a surface emitting laser image source driven by a video signal, can be obtained.
  • a laser beam having the same size as the image obtained by the display device 1 using a laser device it is technically and safely impossible to obtain a laser beam having the same size as the image obtained by the display device 1 using a laser device. Therefore, in this embodiment, for example, light close to the above-described surface emitting laser image light is obtained from a luminous flux from a general light source provided with an LED element.
  • FIG. 13 the configuration of the optical system housed in the case of the light source device 13 will be described in detail with reference to FIGS. 13 and 14.
  • FIG. 13 the configuration of the optical system housed in the case of the light source device 13 will be described in detail with reference to FIGS. 13 and 14.
  • FIGS. 13 and 14 are cross-sectional views, only one of the plurality of LED elements 201 constituting the light source is shown, and these are converted into substantially collimated light by the shape of the light receiving end surface 203a of the light guide 203. . For this reason, the light receiving portion on the end face of the light guide and the LED element are attached while maintaining a predetermined positional relationship.
  • Each of the light guides 203 is made of translucent resin such as acryl.
  • the LED light receiving surface at the end of the light guide has, for example, a conical convex outer peripheral surface obtained by rotating the parabolic cross section, and at the top, a convex portion (that is, a convex lens surface ), and in the central portion of the planar portion, a convex lens surface protruding outward (or a concave lens surface recessed inward) is provided (not shown).
  • the outer shape of the light receiving portion of the light guide to which the LED element 201 is attached has a parabolic shape forming a conical outer peripheral surface, and the light emitted from the LED element in the peripheral direction can be totally reflected inside. It is set within the range of possible angles, or a reflective surface is formed.
  • the LED elements 201 are arranged at predetermined positions on the surface of the LED board 202, which is the circuit board.
  • the LED substrate 202 is arranged and fixed to the LED collimator (light-receiving end surface 203a) so that the LED elements 201 on the surface thereof are positioned in the central portions of the recesses described above.
  • the shape of the light receiving end surface 203a of the light guide 203 makes it possible to extract the light emitted from the LED element 201 as substantially parallel light, thereby improving the utilization efficiency of the generated light. Become.
  • the light source device 13 is configured by attaching a light source unit in which a plurality of LED elements 201 as light sources are arranged on the light receiving end surface 203a, which is a light receiving portion provided on the end surface of the light guide 203. is converted into substantially parallel light by the lens shape of the light receiving end face 203a of the light guide body end face, and guided inside the light guide body 203 as indicated by the arrow (in the direction parallel to the drawing). , toward the liquid crystal display panel 11 arranged substantially parallel to the light guide 203 (direction perpendicular to the front of the drawing).
  • the light beam direction changing means 204 described above directs the light beam propagated in the light guide 203 substantially parallel to the light guide 203 by providing a portion having a different refractive index, for example, in the shape of the light guide surface or inside the light guide. The light is emitted toward the arranged liquid crystal display panel 11 (in a direction perpendicular to the front of the drawing).
  • the relative brightness ratio of the center of the screen and the peripheral part of the screen is 20% or more for practical use. There is no problem with the above, and if it exceeds 30%, the characteristics are even more excellent.
  • FIG. 13 is a cross-sectional layout diagram for explaining the configuration and operation of the light source of this embodiment for polarization conversion in the light source device 13 including the light guide 203 and the LED element 201 described above.
  • the light source device 13 includes, for example, a light guide 203 formed of plastic or the like and provided with a light beam direction changing means 204 on its surface or inside, an LED element 201 as a light source, a reflection sheet 205, a retardation plate 206, It is composed of a lenticular lens or the like, and a liquid crystal display panel 11 having polarizing plates on the light source light entrance surface and the image light exit surface is attached to the upper surface thereof.
  • a film or sheet-like reflective polarizing plate 49 is provided on the light source light incident surface (bottom surface in the drawing) of the liquid crystal display panel 11 corresponding to the light source device 13 .
  • a polarized wave (for example, P wave) 212 on one side is selectively reflected.
  • the reflected light is reflected again by a reflective sheet 205 provided on one surface (lower side in the figure) of the light guide 203 and directed toward the liquid crystal display panel 11 . Therefore, a retardation plate ( ⁇ /4 plate) is provided between the reflective sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49 so that the light is reflected by the reflective sheet 205 and passed through twice.
  • the image light flux (arrow 213 in FIG. 13) whose light intensity is modulated by the image signal on the liquid crystal display panel 11 is incident on the retroreflection plate 2 .
  • a spatially floating image which is a real image, can be obtained after being reflected by the retroreflection plate 2 .
  • FIG. 14 is a cross-sectional layout diagram for explaining the configuration and action of the light source of this embodiment that performs polarization conversion in the light source device 13 including the light guide 203 and the LED element 201, as in FIG.
  • the light source device 13 also includes a light guide 203 formed of plastic or the like and provided with a light beam direction changing means 204 on its surface or inside, an LED element 201 as a light source, a reflection sheet 205, a retardation plate 206, and a lenticular lens.
  • a liquid crystal display panel 11 having polarizing plates on the light source light entrance surface and the image light exit surface is attached as an image display element on the upper surface thereof.
  • a film or sheet-like reflective polarizing plate 49 is provided on the light source light incident surface (lower surface in the drawing) of the liquid crystal display panel 11 corresponding to the light source device 13 to polarize the natural light beam 210 emitted from the LED light source 201 to one side.
  • Waves (eg, S-waves) 211 are selectively reflected. That is, in the example of FIG. 14, the selective reflection characteristics of the reflective polarizing plate 49 are different from those in FIG.
  • the reflected light is reflected by a reflective sheet 205 provided on one surface (lower side in the drawing) of the light guide 203 and directed toward the liquid crystal display panel 11 again.
  • a retardation plate ( ⁇ /4 plate) is provided between the reflective sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49, and the light is reflected by the reflective sheet 205 and passed twice.
  • the luminous flux is converted from S-polarized light to P-polarized light to improve the utilization efficiency of light source light as image light.
  • the image light beam (arrow 214 in FIG. 14) whose light intensity is modulated by the image signal on the liquid crystal display panel 11 is incident on the retroreflection plate 2 .
  • a spatially floating image which is a real image, can be obtained after being reflected by the retroreflection plate 2 .
  • the reflective polarizing plate In the light source device shown in FIGS. 13 and 14, in addition to the action of the polarizing plate provided on the light incident surface of the corresponding liquid crystal display panel 11, the reflective polarizing plate reflects the polarized component on one side, so theoretically The obtained contrast ratio is obtained by multiplying the reciprocal of the cross transmittance of the reflective polarizing plate by the reciprocal of the cross transmittance obtained by the two polarizing plates attached to the liquid crystal display panel. This provides high contrast performance. In practice, it was confirmed through experiments that the contrast performance of the displayed image is improved by ten times or more. As a result, a high-quality image comparable to that of a self-luminous organic EL was obtained. ⁇ Example 2 of display device>
  • FIG. 15 shows another example of a specific configuration of the display device 1.
  • the light source device 13 is configured by housing an LED, a collimator, a synthetic diffusion block, a light guide, etc. in a case made of plastic, for example, and a liquid crystal display panel 11 is attached to the upper surface thereof.
  • LED (Light Emitting Diode) elements 14a and 14b which are semiconductor light sources, and an LED board on which the control circuit is mounted are attached, and on the outer side of the LED board , a heat sink 103, which is a member for cooling the heat generated by the LED element and the control circuit, is attached.
  • the liquid crystal display panel frame attached to the upper surface of the case includes the liquid crystal display panel 11 attached to the frame and FPCs (Flexible Printed Circuits: flexible wiring boards) electrically connected to the liquid crystal display panel 11. ) 403 (see FIG. 7) and the like are attached. That is, the liquid crystal display panel 11, which is a liquid crystal display element, together with the LED elements 14a and 14b, which are solid-state light sources, adjusts the intensity of transmitted light based on a control signal from a control circuit (not shown here) that constitutes the electronic device. to generate the displayed image by modulating the ⁇ Example 3 of display device>
  • FPCs Flexible Printed Circuits: flexible wiring boards
  • the light source device of this display device 1 converts a divergent light beam (P-polarized light and S-polarized light are mixed) from the LED into a substantially parallel light beam by the collimator 18, and the reflective surface of the reflective light guide 304 converts the light to the liquid crystal display panel 11. reflect towards.
  • the reflected light enters the reflective polarizing plate 49 arranged between the liquid crystal display panel 11 and the reflective light guide 304 .
  • a specific polarized wave (for example, P-polarized light) is transmitted through the reflective polarizing plate 49 and enters the liquid crystal display panel 11 .
  • the other polarized wave (for example, S-polarized light) is reflected by the reflective polarizing plate and directed to the reflective light guide 304 again.
  • the reflective polarizing plate 49 is installed at an angle so as not to be perpendicular to the principal ray of light from the reflecting surface of the reflective light guide 304, and the principal ray of light reflected by the reflective polarizing plate 49 is , is incident on the transmission surface of the reflective light guide 304 .
  • the light incident on the transmissive surface of the reflective light guide 304 is transmitted through the back surface of the reflective light guide 304 , transmitted through the ⁇ /4 plate 270 as a retardation plate, and reflected by the reflector 271 .
  • the light reflected by the reflecting plate 271 passes through the ⁇ /4 plate 270 again and passes through the transmitting surface of the reflective light guide 304 .
  • Light transmitted through the transmissive surface of the reflective light guide 304 enters the reflective polarizing plate 49 again.
  • the light incident on the reflective polarizing plate 49 again passes through the ⁇ /4 plate 270 twice, so that the polarization is converted into a polarized wave (for example, P-polarized light) that passes through the reflective polarizing plate 49. ing. Therefore, the light whose polarization has been converted passes through the reflective polarizing plate 49 and enters the liquid crystal display panel 11 .
  • the polarization may be reversed (reversing the S-polarized light and the P-polarized light) from the above description.
  • the light from the LEDs is aligned with a specific polarized wave (for example, P-polarized light), enters the liquid crystal display panel 11, is luminance-modulated in accordance with the video signal, and displays an image on the panel surface.
  • a specific polarized wave for example, P-polarized light
  • enters the liquid crystal display panel 11 is luminance-modulated in accordance with the video signal, and displays an image on the panel surface.
  • a plurality of LEDs constituting the light source are shown (only one is shown in FIG. 16 because of the longitudinal section), which are mounted at predetermined positions with respect to the collimator 18, as in the above example.
  • the collimators 18 are made of translucent resin such as acrylic or glass.
  • the collimator 18 may have a convex conical outer peripheral surface obtained by rotating the parabolic section.
  • the top portion may have a concave portion with a convex portion (that is, a convex lens surface) formed in the central portion.
  • the central portion of the planar portion has an outwardly projecting convex lens surface (or an inwardly recessed concave lens surface may be used).
  • the paraboloid that forms the conical outer peripheral surface of the collimator 18 is set within an angle range that allows total internal reflection of the light emitted from the LED in the peripheral direction, or the reflecting surface is formed.
  • the LEDs are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board.
  • the LED substrate 102 is arranged and fixed to the collimator 18 so that the LEDs on the surface thereof are positioned at the central portion of the top of the conical convex shape (if the top has a concave portion, the concave portion). be.
  • the collimator 18 which has a convex lens in its central portion and a parabolic surface in its peripheral portion, makes it possible to extract almost all of the light generated by the LED as parallel light. It is possible to improve the utilization efficiency of the light.
  • the light converted into substantially parallel light by the collimator 18 shown in FIG. 16 is reflected by the reflective light guide 304 .
  • the light of a specific polarized wave is transmitted through the reflective polarizing plate 49 by the action of the reflective polarizing plate 49, and the light of the other polarized wave reflected by the action of the reflective polarizing plate 49 is again reflected. It passes through the light guide 304 .
  • the light is reflected by the reflector 271 located opposite to the liquid crystal display panel 11 with respect to the reflective light guide 304 .
  • the light is polarization-converted by passing through the ⁇ /4 plate 270, which is a retardation plate, twice.
  • the light reflected by the reflector 271 passes through the reflective light guide 304 again and enters the reflective polarizing plate 49 provided on the opposite surface. Since the incident light has undergone polarization conversion, it passes through the reflective polarizing plate 49 and enters the liquid crystal display panel 11 with the polarization direction aligned. As a result, all of the light from the light source can be used, and the geometrical optics utilization efficiency of light is doubled. Further, since the degree of polarization (extinction ratio) of the reflective polarizing plate can be added to the extinction ratio of the entire system, the use of the light source device of this embodiment greatly improves the contrast ratio of the entire display device.
  • the reflection diffusion angle of light on each reflecting surface can be adjusted.
  • the surface roughness of the reflective surface of the reflective light guide 304 and the surface roughness of the reflector 271 may be adjusted for each design so that the uniformity of the light incident on the liquid crystal display panel 11 is more favorable.
  • ⁇ /4 plate 270 which is the retardation plate in FIG. In the configuration of FIG. 16, any retardation plate that changes the phase by 90° ( ⁇ /2) by passing the polarized light twice may be used.
  • the thickness of the retardation plate may be adjusted according to the incident angle distribution of polarized light.
  • FIG. 4 Another example of the configuration of the optical system such as the light source device of the display device (Example 4 of the display device) will be described with reference to FIG.
  • This is a configuration example in which a diffusion sheet is used in place of the reflective light guide 304 in the light source device of Example 3 of the display device.
  • two optical sheets an optical sheet 207A and an optical sheet 207B
  • the light from the collimator 18 is made incident between two optical sheets (diffusion sheets).
  • This optical sheet may be composed of one sheet instead of two sheets.
  • the vertical and horizontal diffusion characteristics are adjusted by the fine shapes of the front and back surfaces of one optical sheet.
  • a plurality of diffusion sheets may be used to share the action.
  • FIG. 1 In the example of FIG.
  • the number of LEDs and the number of LEDs and The divergence angle from the LED substrate (optical element) 102 and the optical specifications of the collimator 18 should be used as design parameters for optimal design. That is, the diffusion characteristics are adjusted by the surface shape of a plurality of diffusion sheets instead of the light guide.
  • the polarization conversion is performed in the same manner as in Example 3 of the display device described above. That is, in the example of FIG. 19, the reflective polarizing plate 49 may be configured to have the property of reflecting S-polarized light (and transmitting P-polarized light). In that case, the P-polarized light of the light emitted from the LED, which is the light source, is transmitted, and the transmitted light is incident on the liquid crystal display panel 11 .
  • the ⁇ /4 plate 270 which is the retardation plate in FIG. In the configuration of FIG. 19, a retardation plate that changes the phase by 90° ( ⁇ /2) by passing the polarized light twice may be used.
  • the thickness of the retardation plate may be adjusted according to the incident angle distribution of polarized light.
  • the polarized waves may be reversed from the above description (S-polarized light and P-polarized light may be reversed).
  • Light emitted from the liquid crystal display panel 11 has similar diffusion characteristics in the horizontal direction of the screen (indicated by the X-axis in FIG. 18(a)) and in the vertical direction of the screen (indicated by the Y-axis in FIG. 18(b)) in the conventional TV set. have.
  • the diffusion characteristic of the emitted light flux from the liquid crystal display panel of this embodiment is such that the viewing angle at which the brightness is 50% of the front view (angle of 0 degrees) is 13 degrees, as shown in Example 1 of FIG. As a result, it becomes 1/5 of the conventional 62 degrees.
  • the viewing angle in the vertical direction is not uniform in the vertical direction, and the reflection angle of the reflective light guide and the area of the reflecting surface are optimized so that the upper viewing angle is suppressed to about 1/3 of the lower viewing angle. do.
  • the amount of image light directed toward the monitoring direction is greatly improved, and the luminance is increased by 50 times or more.
  • the brightness becomes 50% of the front view (angle of 0 degree). .
  • the angle of view in the vertical direction is uniform in the vertical direction, and the angle of reflection and the area of the reflective surface of the reflective light guide are optimized so that the angle of view is suppressed to about 1/12 of the conventional angle.
  • the amount of image light directed toward the monitoring direction is greatly improved, and the luminance is increased by 100 times or more.
  • the amount of luminous flux directed toward the monitoring direction can be concentrated, so that the utilization efficiency of light is greatly improved.
  • a video display device compatible with the system can be provided.
  • FIG. 17 shows the convergence angles of the long sides and short sides of the panel when the distance L from the panel of the observer and the panel size (screen ratio 16:10) are used as parameters. If you want to monitor the screen vertically, you can set the convergence angle according to the short side. Image light from the four corners can be effectively directed to the observer.
  • the image light from the four corners of the screen can be effectively directed to the monitor.
  • the overall brightness of the screen can be improved by directing the image light at the periphery of the screen to the monitor who is in the optimum position for monitoring the center of the screen. can be improved.
  • a luminous flux with a narrow-angle directional characteristic is made incident on the liquid crystal display panel 11 by a light source device, and is displayed on the screen of the liquid crystal display panel 11 by performing luminance modulation in accordance with a video signal.
  • a spatially floating image obtained by reflecting the image information on the retroreflection plate is displayed outside or inside the room through the transparent member 100.
  • the spatial floating image display system described below assumes a case in which a first user and a second user each use a spatially floating image display device provided for their own use. Combinations of the first user and the second user are, for example, a store clerk and a customer, a lecturer and a listener, and a lecturer and a student.
  • Embodiment 1 is an example in which a first spatially floating image display device for a first user and a second spatially floating image display device for a second user are configured to face each other. .
  • the first user is also called the main user, and the second user is also called the sub-user.
  • the first spatially floating image display device is also called a master device, and the second spatially floating image display device is also called a slave device.
  • the spatially floating image display system includes a table including a light-transmissive top plate, a first spatially floating image display device arranged to face each other inside the table, and generated by a second spatially floating image display device, a video signal processing device that transmits video signals to the first spatially floating image display device and the second spatially floating image display device, and the first spatially floating image display device;
  • a sensor that forms a sensing surface in a spatially floating image, and is connected to the sensor and the video signal processing device, receives a sensing signal from the sensor in response to a user's touch operation on the sensing surface, and based on the received sensing signal, a controller for controlling the video signal processing device so that the spatially floating images generated by the first spatially floating image display device and the second spatially floating image display device are respectively desired display images. It is configured.
  • controller controls the image so that the spatially floating image generated by the first spatially floating image display device and the spatially floating image generated by the second spatially floating image display device are different from each other. Control the signal processor.
  • FIG. 20 is a vertical sectional view showing the configuration of the spatial floating image display system according to the first embodiment. Also, FIG. 21 is a horizontal cross-sectional view showing the configuration of the spatial floating image display system according to the first embodiment.
  • the spatial floating image display system 501 includes a table 10.
  • a master device 2a for the main user 1a and a slave device 2b for the sub-user 1b are arranged so as to face each other.
  • the table 10 has a top plate 14. - ⁇
  • the top plate 14 is made of a light-transmissive material such as glass or acrylic.
  • the master device 2a includes a display device 3a, a reflector 4a provided with a ⁇ /4 plate on the light incident surface of the retroreflector, a polarization separation member 6a, and a sensor 7a.
  • the slave device 2b includes a display device 3b, a reflector 4b provided with a ⁇ /4 plate on the light incident surface of the retroreflector, and a polarization separation member 6b.
  • the display device 3a emits video light based on the video signal input from the video signal processing device 9.
  • the emitted image light is polarized and separated by the polarization separation member 6a and reflected by the reflector 4a to generate the spatially floating image 5a.
  • the main user 1a can visually recognize the generated spatial floating image 5a.
  • the display device 3a emits video light based on the video signal input from the video signal processing device 9.
  • the emitted image light is polarized and separated by the polarization separation member 6b and reflected by the reflector 4b to generate the spatially floating image 5b.
  • the sub-user 1b can visually recognize the generated spatial floating image 5b.
  • the spatially floating video display system 501 further includes a controller 8 and a video signal processing device 9 .
  • the controller 8 is connected to the video signal processing device 9 and the sensor 7a.
  • the video signal processing device 9 is connected to the display device 3a and the display device 3b.
  • the sensor 7a virtually generates a sensing surface 12a on the spatial floating image 5a.
  • the main user 1a can perform non-contact touch screen operations on the sensing surface 12a on the floating image 5a.
  • the sensor 7a outputs a sensing signal to the controller 8 according to the touch screen operation.
  • the controller 8 receives an operation by the main user 1a based on the sensing signal input from the sensor 7a, and outputs a control signal corresponding to the operation to the video signal processing device 9.
  • the video signal processing device 9 outputs video signals to the display device 3a and the display device 3b. Further, the video signal processing device 9 turns on/off the video signal or switches the video signal to be output based on the input control signal.
  • the video signal processing device 9 is configured so as to be able to output the video signal output to the display device 3a and the video signal output to the display device 3b separately and independently.
  • the controller 8 is configured to be able to output to the video signal processing device 9 a control signal for separately controlling the video signal output to the display device 3a and the video signal output to the display device 3b. It is Therefore, the spatially floating image 5a for the main user 1a and the spatially floating image 5b for the sub user 1b can be different images or the same image.
  • the main user 1a can turn on/off the image provided to the sub-user 1b by performing a non-contact touch screen operation. , the video can be switched, and the sub-user 1b can be dealt with smoothly. For example, when the main user 1a is a store clerk and the sub-user 1b is a customer, it is possible to serve customers smoothly.
  • [Modification of Embodiment 1] 22 is a vertical cross-sectional view showing the configuration of a spatial floating image display system according to a modification of the first embodiment; FIG. As shown in FIG. 22, a spatial floating image display system 501a according to a modification of the first embodiment is based on the spatial floating image display system 501 described above, but differs in the configuration and arrangement of the controller and the video signal processing device. .
  • the controller includes a first controller 8a and a second controller 8b
  • the video signal processing device includes a first video signal processing device 9a and a second video signal processing device 9b.
  • the first controller 8a and the first video signal processing device 9a are installed inside the housing of the master device 2a
  • the second controller 8b and the second video signal processing device 9b are installed inside the housing of the slave device 2b.
  • the first video signal processing device 9a transmits video signals to the master device 2a
  • the second video signal processing device 9b transmits video signals to the slave device 2b.
  • the first controller 8a is connected to the sensor 7a, the first video signal processing device 9a, and the second controller 8b, and controls the master device 2a and the second controller 8b based on sensing signals.
  • the second controller 8b is connected to the slave device 2b and controls the second video signal processing device 9b according to the control by the first controller 8a.
  • the master device 2a includes a first controller 8a and a first video signal processing device 9a inside the housing.
  • the slave device 2b has a second controller 8b and a second video signal processing device 9b inside the housing.
  • the first controller 8a is connected to the sensor 7a and the first video signal processing device 9a.
  • the first video signal processing device 9a is connected to the display device 3a.
  • the second controller 8b is connected to the second video signal processing device 9b.
  • the second video signal processing device 9b is connected to the display device 3b.
  • the first controller 8a is connected to the second controller 8b.
  • the first controller 8a can indirectly control the second video signal processing device 9b by sending a control signal to the second controller 8b.
  • the spatial floating image display system 501a similarly to the spatial floating image display system 501, when the main user 1a performs a non-contact touch screen operation, The video provided to the sub-user 1b can be turned on/off, or the video can be switched, making it possible to smoothly respond to the sub-user 1b.
  • the controller 8 controls the first video signal processing device 9a so that the spatially floating video 5a generated by the master device 2a and the spatially floating video 5b generated by the slave device 2b are different from each other. can be controlled.
  • the master device 2a and the slave device 2b have the same configuration except for the sensor 7a. Therefore, the master device 2a and the slave device 2b can use spatially floating image display devices having the same configuration, reducing costs and man-hours required for designing or manufacturing, and efficiently producing a spatially floating image display system. .
  • a second embodiment is an example in which the display screen size of the spatially floating image on the master device side is larger than that of the spatially floating image on the slave device side.
  • the spatially floating image display system includes a table including a light-transmissive top plate, first spatially floating image display devices arranged to face each other inside the table, and generated by a second spatially floating image display device, a video signal processing device that transmits video signals to the first spatially floating image display device and the second spatially floating image display device, and the first spatially floating image display device;
  • a sensor that forms a sensing surface in the space floating image is connected to the sensor and the image signal processing device, receives a sensing signal from the sensor in response to a user's touch operation on the sensing surface, and based on the received sensing signal, a controller for controlling the video signal processing device so that the spatial floating video generated by the first spatial floating video display device and the second spatial floating video display device becomes a desired display video;
  • the size of the first image light exit surface of the spatially floating image display device is larger than the size of the second image light exit surface of the second spatially floating image display device.
  • FIG. 23 is a vertical sectional view showing the configuration of the spatial floating image display system according to the second embodiment.
  • the spatial floating image display system 502 according to the second embodiment is based on the spatial floating image display system 501 described above, and the master device 2A has a display device 3A instead of the display device 3a. and has a reflector 4A instead of the reflector 4a.
  • the display device 3A on the master device 2A side has a relatively larger image light exit surface than the display device 3b on the slave device 2b side.
  • the reflecting plate 4A on the master device 2A side has a light reflecting surface relatively larger in size than the reflecting plate 4b on the slave device 2b side. With such a configuration, the display size of the spatially floating image 5A viewed by the main user 1a is larger than the spatially floating image 5b viewed by the sub-user 1b.
  • the display screen size of the spatial floating image is basically determined by the size of the image light exit surface of the display device.
  • the spatial floating image 5A on the master device 2A side has a size of 10 inches, 2160 pixels ⁇ 1620 pixels
  • the spatial floating image 5b on the side of the slave device 2b has a size of 5.5 inches, 1920 pixels ⁇ 1920 pixels. It can be 1080 pixels.
  • controller 8 displays a plurality of screens as the spatial floating image 5A generated by the master device 2A, and displays one of the plurality of screens as the spatial floating image 5b generated by the slave device 2b.
  • the video signal processing device 9 is controlled.
  • the controller 8 displays a plurality of pieces of information as the spatial floating image 5A generated by the master device 2A, and displays part of the plurality of pieces of information as the spatial floating image 5b generated by the slave device 2b.
  • the video signal processing device 9 is controlled as follows.
  • FIG. 24 is a diagram showing a first example of a display screen in the spatial floating video system according to the second embodiment.
  • 24(a) shows the display screen of the spatially floating image 5A on the master device 2A side
  • FIG. 24(b) shows the display screen of the spatially floating image 5b on the slave device 2b side.
  • the video signal processing device 9 divides the display screen of the floating image 5A into four, and displays different images or information on each of the divided screens A to D.
  • a video signal is output to the device 3A.
  • the video signal processing device 9 outputs a video signal to the display device 3b so that only one of the screens A to D is displayed on the display screen of the spatially floating video 5b on the slave device 2b side. .
  • FIG. 1a An example of a touch operation by the main user 1a is shown.
  • the main user 1a touches one of the screens A to D on the sensing surface 12a in the spatial floating image 5A on the master device 2A side.
  • the controller 8 receives a sensing signal corresponding to the touch operation of the main user 1a from the sensor 7a, and controls the video signal processing device so that the touched screen is displayed on the display screen of the floating image 5b on the side of the slave device 2b.
  • control 9. Also, the main user 1a touches the same screen again.
  • the controller 8 receives a sensing signal corresponding to the touch operation of the main user 1a from the sensor 7a, and controls the video signal processing device 9 so that the touched screen disappears from the display screen of the spatial floating image 5b on the slave device 2b side. Control.
  • FIG. 25 is a diagram showing a second example of the display screen in the spatial floating video system according to the second embodiment.
  • 25(a) shows the display screen of the spatially floating image 5A on the master device 2A side
  • FIG. 25(b) shows the display screen of the spatially floating image 5b on the slave device 2b side.
  • the video signal processing device 9 divides the display screen of the space floating image 5A into four, and displays information A1, customer information, information such as confirmation items, and store information on each of the divided screens.
  • a video signal is output to the display device 3A so as to display other information such as.
  • the video signal processing device 9 outputs a video signal to the display device 3b so that the screen showing the information A1 is displayed on the display screen of the spatially floating video 5b on the slave device 2b side.
  • the main user 1a can visually recognize the spatially floating image having a display size larger than that of the sub-user 1b, and the sub-user 1b can be notified. It is possible to obtain more information from the spatially floating image 5A without being distorted.
  • the main user 1a can sequentially present necessary information to the sub-user 1b while grasping a plurality or all of the patterns to be explained to the sub-user 1b. As a result, it becomes possible to improve the efficiency of services such as explanations and customer service, and to automatically acquire skills. As a result, it becomes easier for the main user 1a to provide explanations and serve customers to the sub-user 1b. Also, the main user 1a can input information about the sub-user 1b accurately and smoothly.
  • the number of screens or information displayed as the spatial floating image 5A on the master device 2A side or the number of screens or information displayed as the spatial floating image 5b on the slave device 2b side is not limited to this embodiment.
  • the third embodiment is an example in which one master device is installed and a plurality of slave devices are installed.
  • FIG. 26 is a horizontal sectional view showing the configuration of the spatial floating image display system according to the third embodiment.
  • the spatial floating image display system 503 includes a table 20. As shown in FIG. Inside the table 20, a master device 2a for the main user 1a and slave devices 2b and 2c for the sub-users 1b and 1c are installed so as to face each other. .
  • the table 20 is provided with a light-transmitting top plate (not shown).
  • the master device 2a includes a display device 3A, a reflector 4A, a polarization separating member (not shown), and a sensor 7a.
  • the slave device 2b includes a display device 3b, a reflector 4b, and a polarization separating member (not shown).
  • the slave device 2c includes a display device 3c, a reflector 4c, and a polarization separating member (not shown).
  • the controller (not shown) is connected to the sensor 7a and to a video signal processing device (not shown).
  • a video signal processing device (not shown) transmits video signals to the display device 3A, the display device 3b, and the display device 3c.
  • a spatially floating image 5A is generated on the master device 2A side.
  • a spatially floating image 5b is generated on the slave device 2b side, and a spatially floating image 5c is generated on the slave device 2c side.
  • the display screen size of the spatial floating image 5A on the master device 2A side is larger than the spatial floating images 5b, 5c on the slave devices 2b, 2c side.
  • the display screen size of the spatially floating image 5A on the master device 2A side may be the same as that of the spatially floating images 5b and 5c on the slave devices 2b and 2c side.
  • the display screen size and the number of pixels of each spatial floating image may be the same as those in the first and second embodiments, for example.
  • the sensor 7a transmits a sensing signal according to the operation to the controller.
  • the main user 1a performs a touch operation on the spatially floating image 5A to control the contents displayed as the spatially floating images 5b and 5c on the side of the sub-users 1b and 1c.
  • FIG. 27 is a diagram showing a first example of the display screen in the spatial floating video system according to the third embodiment.
  • FIG. 27(a) shows the display screen of the spatial floating image 5A on the master device 2A side.
  • FIG. 27(b) shows the display screen of the spatially floating image 5b on the side of the slave device 2b
  • FIG. 27(c) shows the display screen of the spatially floating image 5c on the side of the slave device 2c.
  • the video signal processing device divides the display screen of the spatially floating image 5A into four, and displays different images or information on each of the divided screens A to D. outputs the video signal to the Further, the video signal processing device controls the display device so that only one of the divided screens A to D is displayed on the display screens of the spatially floating images 5b and 5c of the slave devices 2b and 2c. to output the video signal.
  • the screen A is displayed in the spatially floating images 5b and 5c.
  • the display screen as the spatial floating image 5b and the display screen as the spatial floating image 5c may always synchronize and display the same information, or may display independent information. good too.
  • the screen A may be displayed as the spatially floating image 5b
  • the screen B may be displayed as the spatially floating image 5c.
  • the main user can simultaneously explain to a plurality of sub-users while sharing the screen, and the sub-users can can provide the same service to each other.
  • this system is suitable for such a scene.
  • a fourth embodiment is an example configured based on the third embodiment so as to have a slide mechanism for the master device.
  • movement of the master device means movement of the optical system including the sensor in the master device, and does not mean movement of only the housing of the master device.
  • the spatially floating image display system includes a table including a light-transmissive top plate, first spatially floating image display devices arranged to face each other inside the table, and A plurality of second spatially floating image display devices, a video signal processing device for transmitting image signals to the first spatially floating image display device and the plurality of second spatially floating image display devices, and a first spatially floating image display A sensor forming a sensing surface in a space-floating image generated by the device, connected to the sensor and the image signal processing device, receiving a sensing signal from the sensor according to a user's touch operation on the sensing surface, and receiving the received sensing A controller for controlling the video signal processing device so that the spatially floating video generated by the first spatially floating video display device and the plurality of second spatially floating video display devices, based on the signal, becomes a desired display video. and a slide mechanism for sliding the first spatially floating image display device horizontally and in a direction parallel to the direction in which the plurality of second spatially floating image display
  • FIG. 28 is a horizontal sectional view showing the configuration of the spatial floating image display system according to the fourth embodiment.
  • the master device 2a is initialized in the horizontal direction parallel to the direction (x-axis direction) in which the plurality of slave devices 2b and 2c are arranged. It has a slide mechanism 35 that can be moved from the position 2as.
  • the slide mechanism 35 may be composed of, for example, rails provided on the table 20 and wheels provided on the master device 2a. Alternatively, for example, it may be configured by a rack and pinion.
  • the movement of the master device 2a may be configured to be performed manually, or may be configured to be electrically performed using a drive source such as a motor.
  • the master device 2a when the master device 2a is electrically moved, the master device 2a may be configured to be automatically moved so as to match the position of the sub-user on the slave device side.
  • a position detection device that detects the position of the sub-user corresponding to the slave device is provided, and a controller (not shown) determines the slide position of the master device 2a based on the detection result of this position detection device, and slides the master device 2a. It controls the drive source provided in the mechanism 35 .
  • the controller determines the slide position of the master device 2a to a position facing the slave device 2b corresponding to the sub-user 1b.
  • a motion sensor may be provided on the slave device 2b side, or image recognition processing may be performed based on an image taken by a camera.
  • the position of the sub-user is detected, and the drive source is driven based on the detection result.
  • the position of the master device 2a can be detected and controlled by using a linear scale or the like.
  • the master device 2a can be slid according to the position of the sub-user.
  • the main user 1a can stand or sit at a position directly facing the sub-user while viewing the spatially floating image 5a from the front, thereby providing services to the sub-user in a more suitable situation. can be done.
  • a fifth embodiment is an example configured based on the third embodiment so as to have a rotation mechanism for the master device.
  • rotation of the master device means rotation of the optical system including the sensor in the master device, and does not mean rotation of only the housing of the master device.
  • the spatially floating image display system includes a table including a light-transmissive top plate, first spatially floating image display devices arranged to face each other inside the table, and A plurality of second spatially floating image display devices, a video signal processing device for transmitting image signals to the first spatially floating image display device and the plurality of second spatially floating image display devices, and a first spatially floating image display A sensor forming a sensing surface in the space-floating image generated by the device, connected to the sensor and the video signal processing device, and receiving a sensing signal from the sensor in response to a user's touch operation on the sensing surface.
  • the video signal processing device is operated so that the spatially floating video generated by the first spatially floating video display device and the plurality of second spatially floating video display devices is a desired display video, based on the sensing signal. and a rotating mechanism for rotating the first spatial floating image display device in the swivel direction.
  • FIG. 29 is a horizontal sectional view showing the configuration of the spatial floating image display system according to the fifth embodiment.
  • the spatially floating image display system 505 according to the fifth embodiment has an angle range including an angle in the horizontal direction (swivel direction) at which the master device 2A faces each of the plurality of slave devices 2b and 2c.
  • the master device 2A is provided with a rotation mechanism 36 that can rotate from the initial position 2As.
  • the rotating mechanism 36 may be, for example, a swivel stand or a turntable provided inside the table 20, the lower part of which is fixed to the table 20, and the master device 2A is placed on the upper part.
  • it may be composed of rails provided on the table 20 and wheels provided on the master device 2A.
  • it may be configured by a rack and pinion.
  • the rotation of the master device 2A may be manual or electric as in the fourth embodiment.
  • the master device 2A may rotate automatically.
  • a position detection device for detecting the position of the sub-user corresponding to the slave device is provided, and the controller (not shown) determines the rotation position of the master device 2a based on the detection result of the position detection device, It controls the driving source of the rotating mechanism 36 .
  • the controller determines the rotation position of the master device 2A to a position where the slave device 2b corresponding to the sub-user 1b faces a certain direction.
  • a motion sensor or a camera for image recognition can be used as the position detection device.
  • the position detection device can detect the position of the main user. In this case, the main user stands at a position facing the sub-user, and the controller determines the rotation position of the master device 2A to face the direction corresponding to the main user 1a.
  • the master device can be rotated to match the position of the sub-user or the main user.
  • the main user can stand or sit in a position directly facing the sub-user while viewing the spatially floating image from a suitable position, thereby providing services to the sub-user in a more suitable situation. can be done.
  • a sixth embodiment is an example configured based on the third embodiment so as to have a slide mechanism for a slave device.
  • the movement of the slave device means the movement of the optical system in the slave device, and does not mean the movement of only the housing of the slave device.
  • the spatially floating image display system includes a table including a light-transmissive top plate, a first spatially floating image display device arranged to face each other inside the table, and A plurality of second spatially floating image display devices, a video signal processing device for transmitting image signals to the first spatially floating image display device and the plurality of second spatially floating image display devices, and a first spatially floating image display A sensor forming a sensing surface in a space-floating image generated by the device, connected to the sensor and the image signal processing device, receiving a sensing signal from the sensor according to a user's touch operation on the sensing surface, and receiving the received sensing A controller for controlling the video signal processing device so that the spatially floating video generated by the first spatially floating video display device and the plurality of second spatially floating video display devices, based on the signal, becomes a desired display video. Then, at least one of the plurality of second spatially floating image display devices is slid horizontally in a direction in which the first spatially floating image
  • FIG. 30 is a horizontal sectional view showing the configuration of the spatial floating image display system according to the sixth embodiment. Also, FIG. 31 is a vertical sectional view showing the configuration of the spatial floating image display system according to the sixth embodiment.
  • a slide mechanism 37 is provided to allow the slave devices 2b and 2c to move from the initial positions 2bs and 2cs, respectively.
  • the slide mechanism 37 may be composed of, for example, rails provided on the table 20 and wheels provided on the slave devices 2b and 2c. Alternatively, for example, it may be configured by a rack and pinion.
  • the movement of the slave devices 2b and 2c may be configured to be performed manually, or may be configured to be electrically performed by providing the slide mechanism 37 with a drive source such as a motor.
  • the slave device when the slave device is electrically moved, the slave device may be automatically moved to match the position, height, or eye level of the sub-user on the side of the slave device. good.
  • the slave device for example, by providing a distance sensor on the slave device side or performing image recognition processing based on the image taken by the camera, the position of the sub-user on the slave side, Height or eye height is detected, and the driving source is driven based on the detection result.
  • the position of the slave device can be detected by using a linear scale or the like.
  • the slide mechanism 37 is connected to the controller 8 and the operation unit 33 provided on the sub-user 1b, 1c side of the table 20.
  • the movement of the slave device may be performed by the main user 1a through the controller 8 by performing a touch operation on the spatially floating image 5a, or by the sub-users 1b and 1c themselves by performing an operation on the operation unit 33 to their liking. You may make it move to a position.
  • the operation unit 33 may be of a contact type or may be of a non-contact type.
  • the position of the slave device is moved to a position where the sub-user can easily see the spatial floating image according to the height of the sub-user. be able to. That is, the sub-user can select a comfortable posture. For example, if the sub-user is tall, by moving the position of the slave device away from the sub-user, the sub-user can maintain a natural and comfortable angle without lowering the neck too much and float in space. You can see the video.
  • the positions in the sliding direction of the plurality of slave devices 2b and 2c may be controlled to be the same, or may be independently controlled so that each position can be set separately.
  • the operation unit 33 is provided for each of the slave devices 2b and 2c. In this case, even for a plurality of sub-users whose heights are significantly different from each other, the plurality of sub-users can view the spatially floating image in their respective preferred postures.
  • the y-axis direction slide mechanism provided in the slave device may also be provided in the master device.
  • the master device can be moved according to the height of the main user, and the main user can also view the spatially floating image and perform the touch operation while taking a natural and comfortable posture.
  • the controller 8 causes the slave device 2b to project such that the spatially floating image 5b generated by the slave device 2b after sliding is viewed in the same shape as the spatially floating image 5B generated by the slave device 2b before sliding.
  • a video signal processing device is controlled to correct the shape of the video.
  • FIG. 32 is a diagram for explaining trapezoidal distortion correction of a spatially floating image by the spatially floating image display system according to the sixth embodiment.
  • the visible spatial floating image 5b is rectangular. designed to be shaped
  • the shape of the spatially floating image 5b at this time can be represented by, for example, a shape image shown in FIG. 32(a).
  • the sub-user 1b moves in the spatially floating image 5B.
  • the image 5B is viewed from below compared to before the slide movement. Therefore, the sub-user 1b sees the spatially floating image 5B in a trapezoidally distorted state.
  • the shape of the spatially floating image 5B at this time can be represented by, for example, a shape image shown in FIG. 32(b).
  • the shape of the image is corrected so that the image projected from the display device 3b is an upside down trapezoid so that the sub-user 1b can see the spatial floating image 5B in a rectangular state. do. That is, the video signal processing device 9 controls the video signal sent to the display device 3b so as to apply such correction.
  • the shape of the projected image at this time can be represented by, for example, a shape image shown in FIG. 32(c).
  • the spatially floating image 5B appears rectangular when viewed from the sub-user 1b.
  • the shape of the spatially floating image 5B at this time can be represented by, for example, a shape image shown in FIG. 32(d).
  • the degree of correction is obtained by calculating back from the position of the slave device 2b (the amount of slide from the initial position), assuming that the sub-user 1b has an average height and is in an average position. good too.
  • a detection device for detecting the height or eye level of the sub-user 1b viewing the spatially floating image generated by the slave device 2b, and the controller 8 detects the height or eye level of the subuser 1b detected by the detection device.
  • the driving source of the slide mechanism 37 may be controlled in order to adjust the amount of slide (sliding position) of the slave device 2b based on such factors as. For example, an image of the sub-user 1b may be captured by a camera or the like, image recognition processing may be performed on the obtained image, the height and the like of the sub-user 1b may be detected, and the slide amount may be calculated based on the detection result.
  • the sub-user 1b can visually recognize the floating image 5B without distortion.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments describe the entire system in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Example 2 it is possible to combine Example 2, in which the display size of the spatial floating image on the master device side is increased, with Examples 3 to 6.
  • the fourth embodiment in which the master device is provided with a slide mechanism or the fifth embodiment in which the master device is provided with a rotating mechanism can be combined with the sixth embodiment in which the slave device is provided with a slide mechanism.
  • [Appendix 1] a table including a top plate having optical transparency; a first floating-in-the-air image display device and a second floating-in-the-air image display device arranged to face each other inside the table; a video signal processing device that transmits a video signal to the first floating-in-air image display device and the second floating-in-air image display device; a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device; Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal.
  • the floating-in-air image display system wherein the size of the first image light exit surface of the first floating-in-air image display device is larger than the size of the second image light exit surface of the second floating-in-air image display device.
  • Appendix 2 In the floating-in-air video display system according to Appendix 1, The controller displays a plurality of pieces of information as floating-in-air images generated by the first floating-in-air image display device, and displays the plurality of pieces of information as floating-in-air images generated by the second floating-in-air image display device.
  • a floating-in-air video display system that controls the video signal processor so that a portion of the video signal processor is displayed.
  • the plurality of pieces of information are information indicating confirmation items to be confirmed by the first user corresponding to the first floating-in-air image display device, and related to the second user corresponding to the second floating-in-air image display device.
  • a floating-in-the-air video display system containing information or information indicating a situation in a facility where the first user is.
  • a controller for controlling the video signal processing device so that the floating-in-air video generated by the device and the plurality of second floating-in-air video display devices becomes a desired display video; a sliding mechanism for sliding the first floating-in-air image display device horizontally and in a direction parallel to the direction in which the plurality of second floating-in-air image display devices are arranged; A floating image display system.
  • a position detection device for detecting a position of a second user corresponding to the second floating-in-air image display device determines a slide position of the first floating-in-air image display device based on a detection result by the position detection device, and controls the slide mechanism.
  • a floating image display system comprising:
  • a slide amount detection device for detecting a slide amount of the second floating-in-air image display device The controller enables the floating image generated by the second floating image display device after sliding to be visually recognized in the same shape as the floating image generated by the second floating image display device before sliding. and controlling the video signal processing device based on the slide amount detected by the slide amount detection device in order to correct the shape of the image projected by the second floating-in-air video display device. video display system.
  • the user can operate without feeling anxious about contact infection of infectious diseases. to enable. If the technology according to this embodiment is applied to a system used by an unspecified number of users, it will be possible to reduce the risk of contact infection of infectious diseases and provide a non-contact user interface that can be used without anxiety. . In this way, we will contribute to "3 good health and well-being for all" in the Sustainable Development Goals (SDGs) advocated by the United Nations.
  • SDGs Sustainable Development Goals
  • the technology according to the present embodiment by making the angle of divergence of emitted image light small and aligning it to a specific polarized wave, only normal reflected light can be efficiently reflected by the retroreflective member. To obtain a bright and clear spatial floating image with high utilization efficiency. According to the technology according to the present embodiment, it is possible to provide a highly usable non-contact user interface capable of significantly reducing power consumption. In this way, we will contribute to the Sustainable Development Goals (SDGs) advocated by the United Nations.
  • SDGs Sustainable Development Goals
  • Display device 4a, 4b... Reflector 5a... Spatial floating image (first spatial floating image) 5b... Spatial winter image (second spatial floating image) 6a, 6b... Polarization separation member 7a... Sensor 8... Controller, 9... Video signal processing device, 10... Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Position Input By Displaying (AREA)
  • Controls And Circuits For Display Device (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The present invention addresses the problem of providing a more suitable hovering image display system. The present invention contributes to the sustainable development goals of "3 Healthy lives and well-being for all" and "9 Build the foundation of industry and innovation". The present invention comprises: a table which includes a light-transmitting top panel 14; a first hovering image display device and a second hovering image display device which are arranged so as to face one another inside the table; an image signal processing device which transmits image signals to the first and second hovering image display devices; a sensor which forms a sensing surface in a hovering image generated by the first hovering image display device; and a controller which is connected to the sensor and the image signal processing device, receives sensing signals from the sensor, which are based on touch operations by a user on the sensing surface, and, on the basis of the received sensing signals, controls the image signal processing device such that the hovering image generated by the first and second hovering image display devices are both desired display images.

Description

空中浮遊映像表示システムFloating image display system
 本発明は、空中浮遊映像表示システムに関する。 The present invention relates to a floating image display system.
 空中浮遊情報表示システムとして、直接外部に向かって映像を表示する映像表示装置と空間画面として表示される表示法は既に知られている。また、表示された空間像の操作面における操作に対する誤検知を低減する検知システムについても、例えば、特許文献1に開示されている。 As a floating information display system, a video display device that displays video directly to the outside and a display method that displays as a spatial screen are already known. Further, for example, Patent Document 1 discloses a detection system that reduces erroneous detection of operations on an operation surface of a displayed aerial image.
特開2019-128722号公報JP 2019-128722 A
 しかしながら、空中浮遊映像に対するタッチ操作は、物理的なボタンやタッチパネル等に対し行うものではない。このため、タッチ操作がなされたか否かを、ユーザが認識できない場合がある。
 そこで、本発明は、より好適な空中浮遊映像表示システムまたは空中浮遊映像表示装置を提供することを目的とする。
However, the touch operation on the floating image is not performed on a physical button, touch panel, or the like. Therefore, the user may not be able to recognize whether a touch operation has been performed.
Accordingly, it is an object of the present invention to provide a more suitable floating-in-air image display system or floating-in-air image display device.
 上記課題を解決するために、例えば、次のように構成すればよい。
 空中浮遊映像表示システムは、光透過性を有する天板を含むテーブルと、前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および第2の空中浮遊映像表示装置と、前記第1の空中浮遊映像表示装置および前記第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、前記第1の空中浮遊映像表示装置により生成される空中浮遊映像においてセンシング面を形成するセンサと、前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記第2の空中浮遊映像表示装置により生成される空中浮遊映像が、それぞれ所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、を備える。
In order to solve the above problems, for example, the configuration may be as follows.
A floating-in-air image display system includes a table including a light-transmissive top plate, and a first floating-in-air image display device and a second floating-in-air image display device arranged facing each other inside the table. , a video signal processing device for transmitting video signals to the first floating-in-air video display device and the second floating-in-the-air video display device; a sensor forming a surface, connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and based on the received sensing signal, the a controller for controlling the video signal processing device so that the floating images generated by the first floating-in-air image display device and the second floating-in-air image display device are respectively desired display images. .
 本発明によれば、より好適な空中浮遊映像表示システムまたは空中浮遊映像表示装置を実現できる。これ以外の課題、構成、および効果は、以下の実施形態の説明において明らかにされる。 According to the present invention, a more suitable floating-in-air image display system or floating-in-air image display device can be realized. Problems, configurations, and effects other than this will be clarified in the following description of the embodiments.
本発明の一実施例に係る空間浮遊映像表示装置の使用形態の一例を示す図である。1 is a diagram showing an example of a usage pattern of a spatially floating image display device according to an embodiment of the present invention; FIG. 本発明の一実施例に係る空間浮遊映像表示装置の主要部構成と再帰反射部構成の一例を示す図である。It is a figure which shows an example of a principal part structure and a retroreflection part structure of the space floating image display apparatus which concerns on one Example of this invention. 空間浮遊映像表示装置の設置方法の一例を示す図である。It is a figure which shows an example of the installation method of a space floating image display apparatus. 空間浮遊映像表示装置の設置方法の他の例を示す図である。FIG. 10 is a diagram showing another example of the installation method of the spatially floating image display device; 空間浮遊映像表示装置の構成例を示す図である。It is a figure which shows the structural example of a spatial floating image display apparatus. 本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の例を示す図である。FIG. 4 is a diagram showing another example of the main configuration of the spatially floating image display device according to one embodiment of the present invention; 空間浮遊映像表示装置で用いるセンシング装置の機能を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining functions of a sensing device used in the spatially floating image display device; 反射型偏光板の特性を評価した測定系の説明図である。FIG. 2 is an explanatory diagram of a measurement system for evaluating the characteristics of a reflective polarizing plate; 反射型偏光板透過軸の光線入射角度に対する透過率特性を示す特性図である。FIG. 4 is a characteristic diagram showing the transmittance characteristic of the transmission axis of the reflective polarizing plate with respect to the light incident angle; 反射型偏光板反射軸の光線入射角度に対する透過率特性を示す特性図である。FIG. 4 is a characteristic diagram showing transmittance characteristics of a reflection axis of a reflective polarizing plate with respect to a light incident angle; 反射型偏光板透過軸の光線入射角度に対する透過率特性を示す特性図である。FIG. 4 is a characteristic diagram showing the transmittance characteristic of the transmission axis of the reflective polarizing plate with respect to the light incident angle; 反射型偏光板反射軸の光線入射角度に対する透過率特性を示す特性図である。FIG. 4 is a characteristic diagram showing transmittance characteristics of a reflection axis of a reflective polarizing plate with respect to a light incident angle; 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 光源装置の具体的な構成の一例を示す断面図である。It is a sectional view showing an example of concrete composition of a light source device. 本発明の一実施例に係る空間浮遊映像表示装置の主要部を示す配置図である。1 is a layout diagram showing a main part of a spatial floating image display device according to an embodiment of the present invention; FIG. 本発明の一実施例に係る表示装置の構成を示す断面図である。1 is a cross-sectional view showing the configuration of a display device according to an embodiment of the present invention; FIG. 映像表示装置の光源拡散特性を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining light source diffusion characteristics of an image display device; 映像表示装置の拡散特性を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining diffusion characteristics of an image display device; 本発明の一実施例に係る表示装置の構成を示す断面図である。1 is a cross-sectional view showing the configuration of a display device according to an embodiment of the present invention; FIG. 実施例1に係る空間浮遊映像表示システムの構成を示す鉛直断面図である。1 is a vertical cross-sectional view showing the configuration of a spatial floating image display system according to Example 1. FIG. 実施例1に係る空間浮遊映像表示システムの構成を示す水平断面図である。1 is a horizontal sectional view showing the configuration of a spatial floating image display system according to Example 1; FIG. 実施例1の変形例に係る空間浮遊映像表示システムの構成を示す鉛直断面図である。FIG. 5 is a vertical cross-sectional view showing the configuration of a spatially floating image display system according to a modification of Example 1; 実施例2に係る空間浮遊映像表示システムの構成を示す鉛直断面図である。FIG. 11 is a vertical cross-sectional view showing the configuration of a spatially floating image display system according to Example 2; 実施例2に係る空間浮遊映像システムにおける表示画面の第1例を示す図である。FIG. 10 is a diagram showing a first example of a display screen in the spatially floating image system according to Example 2; 実施例2に係る空間浮遊映像システムにおける表示画面の第2例を示す図である。FIG. 11 is a diagram showing a second example of a display screen in the spatial floating video system according to the second embodiment; 実施例3に係る空間浮遊映像表示システムの構成を示す水平断面図である。FIG. 11 is a horizontal cross-sectional view showing the configuration of a spatially floating image display system according to Example 3; 実施例3に係る空間浮遊映像システムにおける表示画面の第1例を示す図である。FIG. 10 is a diagram showing a first example of a display screen in a spatially floating video system according to Example 3; 実施例4に係る空間浮遊映像表示システムの構成を示す水平断面図である。FIG. 11 is a horizontal cross-sectional view showing the configuration of a spatially floating image display system according to Example 4; 実施例5に係る空間浮遊映像表示システムの構成を示す水平断面図である。FIG. 11 is a horizontal cross-sectional view showing the configuration of a spatially floating image display system according to Example 5; 実施例6に係る空間浮遊映像表示システムの構成を示す水平断面図である。FIG. 11 is a horizontal cross-sectional view showing the configuration of a spatially floating image display system according to Example 6; 実施例6に係る空間浮遊映像表示システムの構成を示す鉛直断面図である。FIG. 11 is a vertical cross-sectional view showing the configuration of a spatially floating image display system according to Example 6; 実施例6に係る空間浮遊映像表示システムによる空間浮遊映像の台形歪補正について説明するための図である。FIG. 21 is a diagram for explaining trapezoidal distortion correction of a spatially floating image by the spatially floating image display system according to the sixth embodiment;
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、本発明は実施例の説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものには、同一の符号を付与し、その繰り返しの説明は省略する場合がある。なお、以下の実施例の説明において、空間に浮遊する映像を「空間浮遊映像」という用語で表現している。この用語の代わりに、「空中浮遊映像」、「表示映像の空間浮遊光学像」、「表示映像の空中浮遊光学像」と表現してもかまわない。実施例の説明で用いる「空間浮遊映像」との用語は、これらの用語の代表例として用いている。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The present invention is not limited to the description of the embodiments, and various changes and modifications can be made by those skilled in the art within the scope of the technical ideas disclosed in this specification. Moreover, in all the drawings for explaining the present invention, the same reference numerals are given to the parts having the same functions, and the repeated explanation may be omitted. In the following description of the embodiments, an image floating in space is expressed by the term "space floating image". Instead of this term, the expressions "floating in air", "floating in space optical image of displayed image", and "floating in air optical image of displayed image" may be used. The term "space floating image" used in the description of the embodiments is used as a representative example of these terms.
 以下の実施例は、映像発光源からの映像光による映像を、ガラス等の空間を仕切る透明な部材を介して透過して、前記透明な部材の外部に空間浮遊映像として表示することが可能な映像表示装置に関する。 In the following embodiments, an image by image light from an image light source can be transmitted through a transparent member such as glass that partitions a space, and can be displayed as a spatially floating image outside the transparent member. It relates to a video display device.
 以下の実施例によれば、例えば、銀行のATMや駅の券売機やデジタルサイネージ等において好適な映像表示装置を実現できる。例えば、現状、銀行のATMや駅の券売機等では、通常、タッチパネルが用いられているが、透明なガラス面や光透過性の板材を用いて、このガラス面や光透過性の板材上に高解像度な映像情報を空間浮遊した状態で表示可能となる。この時、出射する映像光の発散角を小さく、即ち鋭角とし、さらに特定の偏波に揃えることで、再帰反射板に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、従来の再帰反射方式での課題となっていた主空間浮遊像の他に発生するゴースト像を抑えることができ、鮮明な空間浮遊映像を得ることができる。また、本実施例の光源を含む装置により、消費電力を大幅に低減することが可能な、新規で利用性に優れた空間浮遊映像表示装置(空間浮遊映像表示システム)を提供することができる。また、例えば、車両において車両内部および/または外部において視認可能である、いわゆる、一方向性の空間浮遊映像表示が可能な車両用空間浮遊映像表示装置を提供することができる。
 <空間浮遊映像表示装置1>
According to the following embodiments, for example, a suitable image display device can be realized for ATMs in banks, ticket vending machines in stations, digital signage, and the like. For example, at present, touch panels are usually used in bank ATMs and station ticket vending machines. It is possible to display high-resolution video information in a state of floating in space. At this time, by making the divergence angle of the emitted image light small, that is, by making it acute, and by aligning it with a specific polarized wave, only regular reflected light is efficiently reflected by the retroreflection plate, so that the light utilization efficiency is improved. In addition to the main space floating image, which was a problem with the conventional retroreflection method, the ghost image that occurs can be suppressed, and a clear space floating image can be obtained. In addition, the device including the light source of this embodiment can provide a novel and highly usable spatial floating image display device (space floating image display system) capable of significantly reducing power consumption. Further, for example, it is possible to provide a spatially floating image display device for a vehicle capable of displaying a so-called unidirectional spatially floating image that is visible inside and/or outside the vehicle.
<Spatial floating image display device 1>
 図1は、本発明の一実施例に係る空間浮遊映像表示装置の使用形態の一例を示す図であり、本実施例に係る空間浮遊映像表示装置の全体構成を示す図である。空間浮遊映像表示装置の具体的な構成については、図2等を用いて詳述するが、映像表示装置1から挟角な指向特性でかつ特定偏波の光が、映像光束として出射し、再帰反射板2に一旦入射し、再帰反射して透明な部材100(ガラス等)を透過して、ガラス面の外側に、実像である空中像(空間浮遊映像3)を形成する。 FIG. 1 is a diagram showing an example of usage of a spatial floating image display device according to an embodiment of the present invention, and is a diagram showing the overall configuration of the spatial floating image display device according to this embodiment. A specific configuration of the spatially floating image display device will be described in detail with reference to FIG. Once incident on the reflecting plate 2, the light is retroreflected and transmitted through a transparent member 100 (glass or the like) to form an aerial image (space floating image 3), which is a real image, outside the glass surface.
 また、店舗等においては、ガラス等の透光性の部材であるショーウィンド(「ウィンドガラス」とも言う)105により空間が仕切られている。本実施例の空間浮遊映像表示装置によれば、かかる透明な部材を透過して、浮遊映像を店舗(空間)の外部および/または内部に対して一方向に表示することが可能である。 Also, in a store or the like, a space is partitioned by a show window (also called "window glass") 105, which is a translucent member such as glass. According to the spatial floating image display device of this embodiment, it is possible to transmit the transparent member and display the floating image in one direction to the outside and/or inside of the store (space).
 図1(A)では、ウィンドガラス105の内側(店舗内)を奥行方向にしてその外側(例えば、歩道)が手前になるように示している。他方、ウィンドガラス105に特定偏波を反射する手段を設けることで反射させ、店内の所望の位置に空中像を形成することもできる。 In FIG. 1(A), the inside of the window glass 105 (inside the store) is shown in the depth direction, and the outside thereof (for example, the sidewalk) is in front. On the other hand, by providing means for reflecting the specific polarized wave on the window glass 105, it is possible to reflect the specific polarized wave and form an aerial image at a desired position in the store.
 図1(B)は、上述した映像表示装置1の構成を示す概略ブロック図である。映像表示装置1は、空中像の原画像を表示する映像表示部と、入力された映像をパネルの解像度に合わせて変換する映像制御部と、映像信号を受信する映像信号受信部とを含んでいる。映像信号受信部は、HDMI(High-Definition Multimedia Interface)入力など有線での入力信号への対応と、Wi-Fi(Wireless Fidelity)などの無線入力信号への対応を行い、映像受信・表示装置として単独で機能するものでもあり、タブレット、スマートフォンなどからの映像情報を表示することもできる。更にステックPCなどを接続すれば計算処理や映像解析処理などの能力を持たせることもできる。 FIG. 1(B) is a schematic block diagram showing the configuration of the video display device 1 described above. The video display device 1 includes a video display unit that displays an original image of an aerial image, a video control unit that converts the input video in accordance with the resolution of the panel, and a video signal reception unit that receives video signals. there is The video signal receiving unit supports wired input signals such as HDMI (High-Definition Multimedia Interface) input, and wireless input signals such as Wi-Fi (Wireless Fidelity). It also functions independently, and can also display video information from tablets, smartphones, etc. Furthermore, if a stick PC or the like is connected, it is possible to give it the ability to perform calculation processing and video analysis processing.
 図2は、本発明の一実施例に係る空間浮遊映像表示装置の主要部構成と再帰反射部構成の一例を示す図である。図2を用いて、空間浮遊映像表示装置の構成をより具体的に説明する。図2(A)に示すように、ガラス等の透明な部材100の斜め方向には、特定偏波の映像光を挟角に発散させる表示装置1を備える。表示装置1は、液晶表示パネル11と挟角な拡散特性を有する特定偏波の光を生成する光源装置13とを備えている。 FIG. 2 is a diagram showing an example of the configuration of the main part and the configuration of the retroreflective part of the spatially floating image display device according to one embodiment of the present invention. The configuration of the spatially floating image display device will be described more specifically with reference to FIG. As shown in FIG. 2A, a display device 1 for diverging image light of a specific polarized wave at a narrow angle is provided in an oblique direction of a transparent member 100 such as glass. The display device 1 includes a liquid crystal display panel 11 and a light source device 13 that generates specific polarized light having narrow-angle diffusion characteristics.
 表示装置1からの特定偏波の映像光は、透明な部材100に設けた特定偏波の映像光を選択的に反射する膜を有する偏光分離部材101(図中は偏光分離部材101をシート状に形成して透明な部材100に粘着している)で反射され、再帰反射板2に入射する。再帰反射板の映像光入射面にはλ/4板21を設ける。映像光は、再帰反射板への入射のときと出射のときの2回、λ/4板21を通過させられることで特定偏波から他方の偏波へ偏光変換される。ここで、特定偏波の映像光を選択的に反射する偏光分離部材101は偏光変換された他方の偏波の偏光は透過する性質を有するので、偏光変換後の特定偏波の映像光は、偏光分離部材101を透過する。偏光分離部材101を透過した映像光が、透明な部材100の外側に実像である空間浮遊映像3を形成する。 The image light of the specific polarized wave from the display device 1 is transferred to a polarization separation member 101 (in the drawing, the polarization separation member 101 is formed in a sheet form) provided on the transparent member 100 and has a film that selectively reflects the image light of the specific polarized wave. and is adhered to the transparent member 100 ), and is incident on the retroreflection plate 2 . A λ/4 plate 21 is provided on the image light incident surface of the retroreflection plate. The image light is passed through the λ/4 plate 21 twice, when it enters the retroreflection plate and when it exits, so that the specific polarized wave is polarization-converted into the other polarized wave. Here, since the polarization separating member 101 that selectively reflects the image light of the specific polarized wave has the property of transmitting the other polarized light that has undergone polarization conversion, the image light of the specific polarized wave after the polarization conversion is It is transmitted through the polarization separation member 101 . The image light transmitted through the polarization separation member 101 forms a space floating image 3 which is a real image outside the transparent member 100 .
 なお、空間浮遊映像3を形成する光は再帰反射板2から空間浮遊映像3の光学像へ収束する光線の集合であり、これらの光線は、空間浮遊映像3の光学像を通過後も直進する。よって、空間浮遊映像3は、一般的なプロジェクタなどでスクリーン上に形成される拡散映像光とは異なり、高い指向性を有する映像である。よって、図2の構成では、矢印Aの方向からユーザが視認する場合は、空間浮遊映像3は明るい映像として視認される。しかし、矢印Bの方向から他の人物が視認する場合は、空間浮遊映像3は映像として一切視認することはできない。この特性は、高いセキュリティが求められる映像や、ユーザに正対する人物には秘匿したい秘匿性の高い映像を表示するシステムに採用する場合に非常に好適である。 The light that forms the spatially floating image 3 is a set of light rays converging from the retroreflection plate 2 to the optical image of the spatially floating image 3, and these rays travel straight even after passing through the optical image of the spatially floating image 3. . Therefore, the spatially floating image 3 is an image having high directivity, unlike diffuse image light formed on a screen by a general projector or the like. Therefore, in the configuration of FIG. 2, when the user views from the direction of the arrow A, the spatial floating image 3 is viewed as a bright image. However, when another person visually recognizes from the direction of the arrow B, the spatial floating image 3 cannot be visually recognized as an image at all. This characteristic is very suitable for use in a system that displays a video that requires high security or a highly confidential video that should be kept secret from a person facing the user.
 なお、再帰反射板2の性能によっては、反射後の映像光の偏光軸が不揃いになることがある。この場合、偏光軸が不揃いになった一部の映像光は、上述した偏光分離部材101で反射され表示装置1に戻る。この光が、表示装置1を構成する液晶表示パネル11の映像表示面で再反射し、ゴースト像を発生させ空間浮遊像の画質を低下させる可能性がある。そこで、本実施例では表示装置1の映像表示面に吸収型偏光板12を設ける。表示装置1から出射する映像光は吸収型偏光板12を透過させ、偏光分離部材101から戻ってくる反射光は吸収型偏光板12で吸収させることで、上記再反射を抑制できる。これにより、空間浮遊像のゴースト像による画質低下を防止することができる。 Depending on the performance of the retroreflection plate 2, the polarization axes of the reflected image light may become uneven. In this case, part of the image light whose polarization axes are not aligned is reflected by the polarization separation member 101 described above and returns to the display device 1 . This light may be re-reflected on the image display surface of the liquid crystal display panel 11 constituting the display device 1 to generate a ghost image and degrade the image quality of the spatially floating image. Therefore, in this embodiment, an absorptive polarizing plate 12 is provided on the image display surface of the display device 1 . The image light emitted from the display device 1 is transmitted through the absorptive polarizing plate 12, and the reflected light returning from the polarization separating member 101 is absorbed by the absorptive polarizing plate 12, thereby suppressing the re-reflection. As a result, it is possible to prevent deterioration in image quality due to ghost images of spatially floating images.
 上述した偏光分離部材101は、例えば反射型偏光板や特定偏波を反射させる金属多層膜などで形成すればよい。 The polarization separation member 101 described above may be formed of, for example, a reflective polarizing plate or a metal multilayer film that reflects a specific polarized wave.
 次に、図2(B)に代表的な再帰反射板2として、今回の検討に用いた日本カーバイド工業株式会社製の再帰反射板の表面形状を示す。規則的に配列された6角柱の内部に入射した光線は、6角柱の壁面と底面で反射され再帰反射光として入射光に対応した方向に出射し、表示装置1に表示した映像に基づき実像である空間浮遊映像を表示する。この空間浮遊像の解像度は液晶表示パネル11の解像度の他に、図2(B)で示す再帰反射板2の再帰反射部の外形DとピッチPに大きく依存する。例えば、7インチのWUXGA(1920×1200画素)液晶表示パネルを用いる場合には、1画素(1トリプレット)が約80μmであっても、例えば再帰反射部の直径Dが240μmでピッチが300μmであれば空間浮遊像の1画素は300μm相当となる。このため、空間浮遊映像の実効的な解像度は1/3程度に低下する。そこで空間浮遊映像の解像度を表示装置1の解像度と同等にするためには、再帰反射部の直径とピッチを液晶表示パネルの1画素に近づけることが望まれる。他方、再帰反射板と液晶表示パネルの画素によるモアレの発生を抑えるため、それぞれのピッチ比を1画素の整数倍から外して設計すると良い。また形状は再帰反射部のいずれの一辺も液晶表示パネルの1画素のいずれの一辺と重ならないように配置すると良い。 Next, FIG. 2(B) shows the surface shape of the retroreflector manufactured by Nippon Carbide Industry Co., Ltd. used in this study as a typical retroreflector 2 . Light rays incident on the inside of the regularly arranged hexagonal prisms are reflected by the wall surface and bottom surface of the hexagonal prisms and emitted as retroreflected light in the direction corresponding to the incident light. Display a certain spatial floating image. The resolution of this spatially floating image largely depends on the resolution of the liquid crystal display panel 11 as well as the outer shape D and the pitch P of the retroreflecting portion of the retroreflecting plate 2 shown in FIG. 2(B). For example, when using a 7-inch WUXGA (1920×1200 pixels) liquid crystal display panel, even if one pixel (one triplet) is about 80 μm, for example, the diameter D of the retroreflective portion is 240 μm and the pitch is 300 μm. For example, one pixel of the spatial floating image corresponds to 300 μm. For this reason, the effective resolution of the spatially floating image is reduced to about 1/3. Therefore, in order to make the resolution of the spatially floating image equal to the resolution of the display device 1, it is desired that the diameter and pitch of the retroreflecting portions be close to one pixel of the liquid crystal display panel. On the other hand, in order to suppress the occurrence of moire caused by the pixels of the retroreflector and the liquid crystal display panel, it is preferable to design the respective pitch ratios outside the integral multiple of one pixel. In addition, it is preferable that the shape of the retroreflective portion is arranged so that no one side of the retroreflective portion overlaps any one side of one pixel of the liquid crystal display panel.
 なお、本実施例に係る再帰反射板の表面形状は上述の例に限られない。再帰性反射を実現するさまざまな表面形状を有してよい。具体的には、三角錐プリズム、六角錐プリズム、その他多角形プリズムまたはこれらの組み合わせを周期的に配置した再帰反射素子を、本実施例の再帰反射板の表面に備えても良い。または、これらのプリズムを周期的に配置してキューブコーナーを形成する再帰反射素子を、本実施例の再帰反射板の表面に備えても良い。または、ガラスビーズを周期的に配置したカプセルレンズ型再帰反射素子を、本実施例の再帰反射板の表面に備えても良い。これらの再帰反射素子の詳細な構成は、既存の技術を用いれば良いので、詳細な説明は省略する。具体的には、特開2001-33609号公報、特開2001-264525号公報、特開2005-181555号公報、特開2008-70898号公報、特開2009-229942号公報などに開示される技術を用いればよい。
 <<空間浮遊映像表示装置の設置方法>>
In addition, the surface shape of the retroreflection plate according to the present embodiment is not limited to the above example. It may have various surface geometries that achieve retroreflection. Specifically, retroreflective elements in which triangular pyramidal prisms, hexagonal pyramidal prisms, other polygonal prisms, or combinations thereof are periodically arranged may be provided on the surface of the retroreflective plate of the present embodiment. Alternatively, a retroreflecting element in which these prisms are arranged periodically to form a cube corner may be provided on the surface of the retroreflecting plate of the present embodiment. Alternatively, capsule lens type retroreflective elements in which glass beads are periodically arranged may be provided on the surface of the retroreflective plate of the present embodiment. The detailed configuration of these retroreflecting elements may use existing technology, so detailed description is omitted. Specifically, the technology disclosed in JP-A-2001-33609, JP-A-2001-264525, JP-A-2005-181555, JP-A-2008-70898, JP-A-2009-229942, etc. should be used.
<<How to install a floating image display device>>
 次に、空間浮遊映像表示装置の設置方法について説明する。空間浮遊映像表示装置は、使用形態に応じて設置方法を自在に変更することが可能である。図3Aは、空間浮遊映像表示装置の設置方法の一例を示す図である。図3Aに示す空間浮遊映像表示装置は、空間浮遊映像3が形成される側の面が上方を向くように横置きにして設置される。すなわち、図3Aでは、空間浮遊映像表示装置は、透明な部材100が上方を向くように設置され、空間浮遊映像3が、空間浮遊映像表示装置の上方に形成される。 Next, we will explain how to install the spatial floating image display device. The installation method of the spatially floating image display device can be freely changed according to the usage pattern. FIG. 3A is a diagram showing an example of a method of installing a spatially floating image display device. The spatially floating image display device shown in FIG. 3A is installed horizontally so that the surface on which the spatially floating image 3 is formed faces upward. That is, in FIG. 3A, the spatial floating image display device is installed such that the transparent member 100 faces upward, and the spatial floating image 3 is formed above the spatial floating image display device.
 図3Bは、空間浮遊映像表示装置の設置方法の他の例を示す図である。図3Bに示す空間浮遊映像表示装置は、空間浮遊映像3が形成される側の面が側方(ユーザ230の方向)を向くように縦置きにして設置される。すなわち、図3Bでは、空間浮遊映像表示装置は、透明な部材100が側方を向くように設置され、空間浮遊映像3が、空間浮遊映像表示装置の側方(ユーザ230の方向)に形成される。
 <<空間浮遊映像表示装置の構成>>
FIG. 3B is a diagram showing another example of the installation method of the spatially floating image display device. The spatially floating image display device shown in FIG. 3B is installed vertically so that the surface on which the spatially floating image 3 is formed faces the side (toward the user 230). That is, in FIG. 3B, the spatially floating image display device is installed so that the transparent member 100 faces sideways, and the spatially floating image 3 is formed laterally of the spatially floating image display device (in the direction of the user 230). be.
<<Structure of Spatial Floating Image Display>>
 次に、空間浮遊映像表示装置1000の構成について説明する。図4は、空間浮遊映像表示装置1000の内部構成の一例を示すブロック図である。 Next, the configuration of the spatial floating image display device 1000 will be described. FIG. 4 is a block diagram showing an example of the internal configuration of the spatial floating image display device 1000. As shown in FIG.
 空間浮遊映像表示装置1000は、再帰反射部1101、映像表示部1102、導光体1104、光源1105、電源1106、操作入力部1107、不揮発性メモリ1108、メモリ1109、制御部1110、映像信号入力部1131、音声信号入力部1133、通信部1132、空中操作検出センサ1351、空中操作検出部1350、音声出力部1140、映像制御部1160、ストレージ部1170、撮像部1180等を備えている。 The spatial floating image display device 1000 includes a retroreflection unit 1101, an image display unit 1102, a light guide 1104, a light source 1105, a power supply 1106, an operation input unit 1107, a nonvolatile memory 1108, a memory 1109, a control unit 1110, and an image signal input unit. 1131, an audio signal input unit 1133, a communication unit 1132, an air operation detection sensor 1351, an air operation detection unit 1350, an audio output unit 1140, a video control unit 1160, a storage unit 1170, an imaging unit 1180, and the like.
 空間浮遊映像表示装置1000の各構成要素は、筐体1190に配置されている。なお、図4に示す撮像部1180および空中操作検出センサ1351は、筐体1190の外側に設けられてもよい。 Each component of the spatial floating image display device 1000 is arranged in a housing 1190 . Note that the imaging unit 1180 and the mid-air operation detection sensor 1351 shown in FIG. 4 may be provided outside the housing 1190 .
 図4の再帰反射部1101は、図2の再帰反射板2に対応している。再帰反射部1101は、映像表示部1102により変調された光を再帰性反射する。再帰反射部1101からの反射光のうち、空間浮遊映像表示装置1000の外部に出力された光により空間浮遊映像3が形成される。 The retroreflective portion 1101 in FIG. 4 corresponds to the retroreflective plate 2 in FIG. The retroreflection section 1101 retroreflects the light modulated by the image display section 1102 . The spatially floating image 3 is formed by the light output from the spatially floating image display device 1000 out of the reflected light from the retroreflector 1101 .
 図4の映像表示部1102は、図2の液晶表示パネル11に対応している。図4の光源1105は、図2の光源装置13と対応している。そして、図4の映像表示部1102、導光体1104、および光源1105は、図2の表示装置1に対応している。 The image display unit 1102 in FIG. 4 corresponds to the liquid crystal display panel 11 in FIG. A light source 1105 in FIG. 4 corresponds to the light source device 13 in FIG. 4 correspond to the display device 1 in FIG.
 映像表示部1102は、後述する映像制御部1160による制御により入力される映像信号に基づいて、透過する光を変調して映像を生成する表示部である。映像表示部1102は、図2の液晶表示パネル11に対応している。映像表示部1102として、例えば透過型液晶パネルが用いられる。また、映像表示部1102として、例えば反射する光を変調する方式の反射型液晶パネルやDMD(Digital Micromirror Device:登録商標)パネル等が用いてられてもよい。 The image display unit 1102 is a display unit that modulates transmitted light and generates an image based on a video signal that is input under the control of the image control unit 1160, which will be described later. A video display unit 1102 corresponds to the liquid crystal display panel 11 in FIG. For example, a transmissive liquid crystal panel is used as the image display unit 1102 . As the image display unit 1102, for example, a reflective liquid crystal panel or a DMD (Digital Micromirror Device: registered trademark) panel that modulates reflected light may be used.
 光源1105は、映像表示部1102用の光を発生するもので、LED光源、レーザ光源等の固体光源である。電源1106は、外部から入力されるAC電流をDC電流に変換し、光源1105に電力を供給する。また、電源1106は、空間浮遊映像表示装置1000内の各部に、それぞれ必要なDC電流を供給する。 A light source 1105 generates light for the image display unit 1102, and is a solid-state light source such as an LED light source or a laser light source. The power supply 1106 converts AC current input from the outside into DC current to power the light source 1105 . In addition, the power supply 1106 supplies necessary DC current to each part in the spatially floating image display device 1000 .
 導光体1104は、光源1105で発生した光を導光し、映像表示部1102に照射させる。導光体1104と光源1105とを組み合わせたものを、映像表示部1102のバックライトと称することもできる。導光体1104と光源1105との組み合わせには、さまざまな方式が考えられる。導光体1104と光源1105との組み合わせについての具体的な構成例については、後で詳しく説明する。 The light guide 1104 guides the light generated by the light source 1105 to illuminate the image display section 1102 . A combination of the light guide 1104 and the light source 1105 can also be called a backlight of the image display section 1102 . Various methods are conceivable for the combination of the light guide 1104 and the light source 1105 . A specific configuration example of the combination of the light guide 1104 and the light source 1105 will be described later in detail.
 空中操作検出センサ1351は、ユーザ230の指による空間浮遊映像3の操作を検出するセンサである。空中操作検出センサ1351は、例えば空間浮遊映像3の表示範囲の全部と重畳する範囲をセンシングする。なお、空中操作検出センサ1351は、空間浮遊映像3の表示範囲の少なくとも一部と重畳する範囲のみをセンシングしてもよい。 The mid-air operation detection sensor 1351 is a sensor that detects the operation of the floating image 3 by the user's 230 finger. The mid-air operation detection sensor 1351 senses a range that overlaps with the entire display range of the floating image 3, for example. Note that the mid-air operation detection sensor 1351 may sense only a range that overlaps with at least a part of the display range of the floating image 3 .
 空中操作検出センサ1351の具体例としては、赤外線などの非可視光、非可視光レーザ、超音波等を用いた距離センサが挙げられる。また、空中操作検出センサ1351は、複数のセンサを複数組み合わせ、2次元平面の座標を検出できるように構成されたものでもよい。また、空中操作検出センサ1351は、ToF(Time of Flight)方式のLiDAR(Light Detection and Ranging)や、画像センサで構成されてもよい。 Specific examples of the aerial operation detection sensor 1351 include distance sensors that use invisible light such as infrared rays, invisible light lasers, and ultrasonic waves. Also, the aerial operation detection sensor 1351 may be configured to detect coordinates on a two-dimensional plane by combining a plurality of sensors. In addition, the aerial operation detection sensor 1351 may be composed of a ToF (Time of Flight) type LiDAR (Light Detection and Ranging) or an image sensor.
 空中操作検出センサ1351は、ユーザが指で空間浮遊映像3として表示されるオブジェクトに対するタッチ操作等を検出するためのセンシングができればよい。このようなセンシングは、既存の技術を用いて行うことができる。 The mid-air operation detection sensor 1351 only needs to be able to perform sensing for detecting a touch operation or the like on an object displayed as the floating image 3 by the user's finger. Such sensing can be performed using existing technology.
 空中操作検出部1350は、空中操作検出センサ1351からセンシング信号を取得し、センシング信号に基づいてユーザ230の指による空間浮遊映像3のオブジェクトに対する接触の有無や、ユーザ230の指とオブジェクトとが接触した位置(接触位置)の算出等を行う。空中操作検出部1350は、例えば、FPGA(Field Programmable Gate Array)等の回路で構成される。また、空中操作検出部1350の一部の機能は、例えば制御部1110で実行される空間操作検出用プログラムによりソフトウェアで実現されてもよい。 The mid-air operation detection unit 1350 acquires a sensing signal from the mid-air operation detection sensor 1351, and based on the sensing signal, determines whether or not the finger of the user 230 touches the object in the floating image 3, and whether the finger of the user 230 touches the object. Calculation of the contact position (contact position) is performed. The aerial operation detection unit 1350 is configured by a circuit such as an FPGA (Field Programmable Gate Array), for example. Also, part of the functions of the aerial operation detection unit 1350 may be realized by software, for example, by a spatial operation detection program executed by the control unit 1110 .
 空中操作検出センサ1351および空中操作検出部1350は、空間浮遊映像表示装置1000に内蔵された構成としてもよいが、空間浮遊映像表示装置1000とは別体で外部に設けられてもよい。空間浮遊映像表示装置1000と別体で設ける場合、空中操作検出センサ1351および空中操作検出部1350は、有線または無線の通信接続路や映像信号伝送路を介して空間浮遊映像表示装置1000に情報や信号を伝達できるように構成される。 The aerial operation detection sensor 1351 and the aerial operation detection unit 1350 may be built in the floating image display device 1000 or may be provided outside the floating image display device 1000 separately. When provided separately from the spatially floating image display device 1000, the aerial operation detection sensor 1351 and the aerial operation detection unit 1350 transmit information and information to the spatially floating image display device 1000 via a wired or wireless communication connection path or a video signal transmission path. configured to transmit a signal;
 また、空中操作検出センサ1351および空中操作検出部1350が別体で設けられてもよい。これにより、空中操作検出機能の無い空間浮遊映像表示装置1000を本体として、空中操作検出機能のみをオプションで追加できるようなシステムを構築することが可能である。また、空中操作検出センサ1351のみを別体とし、空中操作検出部1350が空間浮遊映像表示装置1000に内蔵された構成でもよい。空間浮遊映像表示装置1000の設置位置に対して空中操作検出センサ1351をより自由に配置したい場合等には、空中操作検出センサ1351のみを別体とする構成に利点がある。 Also, the aerial operation detection sensor 1351 and the aerial operation detection unit 1350 may be provided separately. As a result, it is possible to construct a system in which only the aerial operation detection function can be added as an option, using the space floating image display device 1000 without the aerial operation detection function as a main body. Alternatively, only the aerial operation detection sensor 1351 may be provided separately, and the aerial operation detection unit 1350 may be incorporated in the floating image display device 1000 . When it is desired to arrange the air operation detection sensor 1351 more freely with respect to the installation position of the floating image display device 1000, there is an advantage in the configuration in which only the air operation detection sensor 1351 is provided separately.
 撮像部1180は、イメージセンサを有するカメラであり、空間浮遊映像3付近の空間、および/またはユーザ230の顔、腕、指などを撮像する。撮像部1180は、複数設けられてもよい。複数の撮像部1180を用いることで、あるいは深度センサ付きの撮像部を用いることで、ユーザ230による空間浮遊映像3のタッチ操作の検出処理の際、空中操作検出部1350を補助することができる。撮像部1180は空間浮遊映像表示装置1000と別体で設けられてもよい。撮像部1180を空間浮遊映像表示装置1000と別体で設ける場合、有線または無線の通信接続路などを介して空間浮遊映像表示装置1000に撮像信号を伝達できるように構成すればよい。 The imaging unit 1180 is a camera having an image sensor, and images the space near the floating image 3 and/or the face, arms, fingers, etc. of the user 230 . A plurality of imaging units 1180 may be provided. By using a plurality of image pickup units 1180 or by using an image pickup unit with a depth sensor, it is possible to assist the mid-air operation detection unit 1350 when the user 230 detects a touch operation on the floating image 3 . The imaging unit 1180 may be provided separately from the spatial floating image display device 1000 . When the imaging unit 1180 is provided separately from the spatially floating image display device 1000, it may be configured such that an imaging signal can be transmitted to the spatially floating image display device 1000 via a wired or wireless communication connection path.
 例えば、空中操作検出センサ1351が、空間浮遊映像3の表示面を含む平面(侵入検出平面)を対象として、この侵入検出平面内への物体の侵入の有無を検出する物体侵入センサとして構成された場合、侵入検出平面内に侵入していない物体(例えば、ユーザの指)が侵入検出平面からどれだけ離れているのか、あるいは物体が侵入検出平面にどれだけ近いのかといった情報を、空中操作検出センサ1351では検出できない場合がある。 For example, the aerial operation detection sensor 1351 is configured as an object intrusion sensor that targets a plane (intrusion detection plane) including the display surface of the floating image 3 and detects whether or not an object has entered the intrusion detection plane. In this case, information such as how far away an object (e.g., a user's finger) that has not entered the intrusion detection plane is from the intrusion detection plane, or how close the object is to the intrusion detection plane, is detected by the mid-air operation detection sensor. 1351 may not be detected.
 このような場合、複数の撮像部1180の撮像画像に基づく物体の深度算出情報や深度センサによる物体の深度情報等の情報を用いることにより、物体と侵入検出平面との距離を算出することができる。そして、これらの情報や、物体と侵入検出平面との距離等の各種情報は、空間浮遊映像3に対する各種表示制御に用いられる。 In such a case, the distance between the object and the intrusion detection plane can be calculated by using information such as object depth calculation information based on images captured by a plurality of imaging units 1180 and object depth information obtained by a depth sensor. . These information and various information such as the distance between the object and the intrusion detection plane are used for various display controls for the floating image 3 .
 また、空中操作検出センサ1351を用いずに、撮像部1180の撮像画像に基づき、空中操作検出部1350がユーザ230による空間浮遊映像3のタッチ操作を検出するようにしてもよい。 Also, without using the air operation detection sensor 1351, the air operation detection unit 1350 may detect the touch operation of the floating image 3 by the user 230 based on the image captured by the imaging unit 1180.
 また、撮像部1180が空間浮遊映像3を操作するユーザ230の顔を撮像し、制御部1110がユーザ230の識別処理を行うようにしてもよい。また、空間浮遊映像3を操作するユーザ230の周辺や背後に他人が立っており、他人が空間浮遊映像3に対するユーザ230の操作を覗き見ていないか等を判別するため、撮像部1180は、空間浮遊映像3を操作するユーザ230と、ユーザ230の周辺領域とを含めた範囲を撮像するようにしてもよい。 Alternatively, the image capturing unit 1180 may capture an image of the face of the user 230 who operates the floating image 3, and the control unit 1110 may perform user 230 identification processing. In addition, in order to determine whether or not another person is standing around or behind the user 230 who operates the spatially floating image 3 and is peeping at the operation of the user 230 with respect to the spatially floating image 3, the imaging unit 1180 A range including the user 230 operating the spatial floating image 3 and the surrounding area of the user 230 may be imaged.
 操作入力部1107は、例えば操作ボタンやリモートコントローラの受光部であり、ユーザ230による空中操作(タッチ操作)とは異なる操作についての信号を入力する。空間浮遊映像3をタッチ操作する前述のユーザ230とは別に、操作入力部1107は、例えば管理者が空間浮遊映像表示装置1000を操作するために用いられてもよい。 The operation input unit 1107 is, for example, an operation button or a light-receiving unit of a remote controller, and inputs a signal for an operation other than an aerial operation (touch operation) by the user 230 . Apart from the above-described user 230 who touch-operates the spatially floating image 3, the operation input unit 1107 may be used, for example, by an administrator to operate the spatially floating image display device 1000. FIG.
 映像信号入力部1131は、外部の映像出力装置を接続して映像データを入力する。音声信号入力部1133は、外部の音声出力装置を接続して音声データを入力する。音声出力部1140は、音声信号入力部1133に入力された音声データに基づいた音声出力を行うことが可能である。また、音声出力部1140は内蔵の操作音やエラー警告音を出力してもよい。 The video signal input unit 1131 connects an external video output device and inputs video data. The audio signal input unit 1133 connects an external audio output device to input audio data. The audio output unit 1140 can output audio based on audio data input to the audio signal input unit 1133 . Also, the audio output unit 1140 may output a built-in operation sound or an error warning sound.
 不揮発性メモリ1108は、空間浮遊映像表示装置1000で用いる各種データを格納する。不揮発性メモリ1108に格納されるデータには、例えば、空間浮遊映像3に表示する各種操作用のデータ、表示アイコン、ユーザの操作が操作するためのオブジェクトのデータやレイアウト情報等が含まれる。メモリ1109は、空間浮遊映像3として表示する映像データや装置の制御用データ等を記憶する。 The non-volatile memory 1108 stores various data used in the spatial floating image display device 1000 . The data stored in the non-volatile memory 1108 includes, for example, data for various operations to be displayed on the floating image 3, display icons, data of objects to be operated by the user, layout information, and the like. The memory 1109 stores image data to be displayed as the spatial floating image 3, control data for the device, and the like.
 制御部1110は、接続される各部の動作を制御する。また、制御部1110は、メモリ1109に記憶されるプログラムと協働して、空間浮遊映像表示装置1000内の各部から取得した情報に基づく演算処理を行ってもよい。通信部1132は、有線または無線のインタフェースを介して、外部機器や外部のサーバ等と通信を行う。通信部1132を介した通信により、映像データ、画像データ、音声データ等の各種データが送受信される。 The control unit 1110 controls the operation of each connected unit. Further, the control unit 1110 may cooperate with a program stored in the memory 1109 to perform arithmetic processing based on information acquired from each unit in the floating image display device 1000 . The communication unit 1132 communicates with an external device, an external server, or the like via a wired or wireless interface. Various data such as video data, image data, and audio data are transmitted and received through communication via the communication unit 1132 .
 ストレージ部1170は、映像データ、画像データ、音声データ等の各種データ&の各種情報を記録する記憶装置である。ストレージ部1170には、例えば、製品出荷時に予め映像データ、画像データ、音声データ等の各種データ等の各種情報が記録されていてもよい。また、ストレージ部1170は、通信部1132を介して外部機器や外部のサーバ等から取得した映像データ、画像データ、音声データ等の各種データ等の各種情報を記録してもよい。 The storage unit 1170 is a storage device that records various types of data & information such as video data, image data, and audio data. For example, various types of information such as video data, image data, audio data, etc. may be recorded in the storage unit 1170 in advance at the time of product shipment. Also, the storage unit 1170 may record various types of information such as various data such as video data, image data, and audio data acquired from an external device, an external server, or the like via the communication unit 1132 .
 ストレージ部1170に記録された映像データ、画像データ等は、映像表示部1102と再帰反射部1101とを介して空間浮遊映像3として出力される。空間浮遊映像3として表示される、表示アイコンやユーザが操作するためのオブジェクト等の映像データ、画像データ等も、ストレージ部1170に記録される。 The video data, image data, etc., recorded in the storage unit 1170 are output as the spatially floating video 3 via the video display unit 1102 and the retroreflection unit 1101 . Video data, image data, etc., such as display icons and objects for the user to operate, which are displayed as the space-floating video 3, are also recorded in the storage unit 1170 .
 空間浮遊映像3として表示される表示アイコンやオブジェクト等のレイアウト情報や、オブジェクトに関する各種メタデータの情報等もストレージ部1170に記録される。ストレージ部1170に記録された音声データは、例えば音声出力部1140から音声として出力される。 The storage unit 1170 also records layout information such as display icons and objects displayed as the spatial floating image 3, and various metadata information related to the objects. The audio data recorded in the storage unit 1170 is output as audio from the audio output unit 1140, for example.
 映像制御部1160は、映像表示部1102に入力する映像信号に関する各種制御を行う。映像制御部1160は、例えば、メモリ1109に記憶させる映像信号と、映像信号入力部1131に入力された映像信号(映像データ)等のうち、どの映像信号を映像表示部1102に入力するかといった映像切り替えの制御等を行う。 A video control unit 1160 performs various controls related to video signals input to the video display unit 1102 . The video control unit 1160 controls, for example, the video signal to be stored in the memory 1109 and the video signal (video data) input to the video signal input unit 1131 , which video signal is to be input to the video display unit 1102 . Controls switching, etc.
 また、映像制御部1160は、メモリ1109に記憶させる映像信号と、映像信号入力部1131から入力された映像信号とを重畳した重畳映像信号を生成し、重畳映像信号を映像表示部1102に入力することで、合成映像を空間浮遊映像3として形成する制御を行ってもよい。 Further, the video control unit 1160 generates a superimposed video signal by superimposing the video signal to be stored in the memory 1109 and the video signal input from the video signal input unit 1131, and inputs the superimposed video signal to the video display unit 1102. Thus, control may be performed to form the synthesized image as the spatially floating image 3 .
 また、映像制御部1160は、映像信号入力部1131から入力された映像信号やメモリ1109に記憶させる映像信号等に対して画像処理を行う制御を行ってもよい。画像処理としては、例えば、画像の拡大、縮小、変形等を行うスケーリング処理、輝度を変更するブライト調整処理、画像のコントラストカーブを変更するコントラスト調整処理、画像を光の成分に分解して成分ごとの重みづけを変更するレティネックス処理等がある。 Also, the video control unit 1160 may perform image processing control on the video signal input from the video signal input unit 1131 and the video signal to be stored in the memory 1109 . Examples of image processing include scaling processing for enlarging, reducing, and transforming an image, brightness adjustment processing for changing brightness, contrast adjustment processing for changing the contrast curve of an image, and decomposition of an image into light components for each component. There is Retinex processing that changes the weighting of .
 また、映像制御部1160は、映像表示部1102に入力する映像信号に対して、ユーザ230の空中操作(タッチ操作)を補助するための特殊効果映像処理等を行ってもよい。特殊効果映像処理は、例えば、空中操作検出部1350によるユーザ230のタッチ操作の検出結果や、撮像部1180によるユーザ230の撮像画像に基づいて行われる。 In addition, the image control unit 1160 may perform special effect image processing, etc. for assisting the user 230's aerial operation (touch operation) on the image signal input to the image display unit 1102 . The special effect video processing is performed based on, for example, the detection result of the touch operation of the user 230 by the aerial operation detection unit 1350 and the captured image of the user 230 by the imaging unit 1180 .
 ここまで説明したように空間浮遊映像表示装置1000には、さまざまな機能が搭載されている。ただし、空間浮遊映像表示装置1000は、これらのすべての機能を備える必要はなく、空間浮遊映像3を形成する機能があればどのような構成でもよい。
 <空間浮遊映像表示装置2>
As described so far, the spatial floating image display device 1000 is equipped with various functions. However, the spatially floating image display device 1000 does not need to have all of these functions, and may have any configuration as long as it has the function of forming the spatially floating image 3 .
<Spatial Floating Image Display Device 2>
 図5は、本発明の一実施例に係る空間浮遊映像表示装置の主要部構成の他の例を示す図である。表示装置1は、液晶表示パネル11と挟角な拡散特性を有する特定偏波の光を生成する光源装置13を備える。例えば、画面サイズが5インチ程度の小型のものから80インチを超える大型な液晶表示パネルで構成される。折り返しミラー22は透明な部材100を基板とする。透明な部材100の表示装置1側の表面には、反射型偏光板のような特定偏波の映像光を選択的に反射する偏光分離部材101を設け、液晶表示パネル11からの映像光を再帰反射板2に向けて反射する。これにより、折り返しミラー22はミラーとしての機能を有する。表示装置1からの特定偏波の映像光は、透明な部材100に設けた偏光分離部材101(図中はシート状の偏光分離部材101を粘着)で反射され、再帰反射板2に入射する。なお、偏光分離部材101の代わりに、透明な部材100の表面に偏光分離特性を有する光学膜を蒸着してもよい。 FIG. 5 is a diagram showing another example of the main configuration of the spatial floating image display device according to one embodiment of the present invention. The display device 1 includes a liquid crystal display panel 11 and a light source device 13 that generates specific polarized light having diffusion characteristics with a narrow angle. For example, it is composed of a small liquid crystal display panel with a screen size of about 5 inches to a large liquid crystal display panel with a screen size exceeding 80 inches. The folding mirror 22 uses a transparent member 100 as a substrate. On the surface of the transparent member 100 facing the display device 1, a polarization separating member 101 such as a reflective polarizing plate for selectively reflecting image light of a specific polarized wave is provided, and the image light from the liquid crystal display panel 11 is reflected. It reflects toward the reflector 2 . Thereby, the folding mirror 22 has a function as a mirror. Image light of a specific polarized wave from the display device 1 is reflected by a polarization separation member 101 (in the drawing, a sheet-like polarization separation member 101 is adhered) provided on a transparent member 100 , and is incident on the retroreflection plate 2 . An optical film having a polarization separation characteristic may be vapor-deposited on the surface of the transparent member 100 instead of the polarization separation member 101 .
 再帰反射板の光入射面にはλ/4板21を設け、映像光を2度通過させることで偏光変換し特定偏波を、位相が90°異なる他方の偏波に変換する。これにより、再帰反射後の映像光について偏光分離部材101を透過させ、透明な部材100の外側に実像である空間浮遊映像3を表示する。ここで、上述した偏光分離部材101では再帰反射することで偏光軸が不揃いになるため一部の映像光は反射し表示装置1に戻る。この光が再度表示装置1を構成する液晶表示パネル11の映像表示面で反射し、ゴースト像を発生させ空間浮遊像の画質を著しく低下させる。そこで、本実施例では表示装置1の映像表示面に吸収型偏光板12を設けてもよい。表示装置1から発せられる映像光は透過させ、上述した偏光分離部材101からの反射光を吸収させることで空間浮遊像のゴースト像による画質低下を防止する。また、セット外部の太陽光や照明光による画質低下を軽減するため、透明な部材100の映像光透過出力側の表面に吸収型偏光板102aを設けると良い。 A λ/4 plate 21 is provided on the light incident surface of the retroreflector, and the image light is passed through twice to convert the polarization of the specific polarized wave into the other polarized wave with a phase difference of 90°. As a result, the retroreflected image light is transmitted through the polarization separation member 101 and the space floating image 3 as a real image is displayed outside the transparent member 100 . Here, since the polarization axes become uneven due to the retroreflection in the polarization separating member 101 described above, part of the image light is reflected and returns to the display device 1 . This light is reflected again by the image display surface of the liquid crystal display panel 11 that constitutes the display device 1, generating a ghost image and significantly deteriorating the image quality of the spatially floating image. Therefore, in this embodiment, the absorptive polarizing plate 12 may be provided on the image display surface of the display device 1 . Image light emitted from the display device 1 is transmitted, and reflected light from the polarization separation member 101 is absorbed, thereby preventing deterioration in image quality due to ghost images of spatially floating images. Also, in order to reduce deterioration in image quality due to sunlight or illumination light outside the set, it is preferable to provide an absorptive polarizing plate 102a on the surface of the transparent member 100 on the image light transmission output side.
 次に、上述した空間浮遊映像表示装置により得られた空間浮遊映像に対して対象物とセンサ44の距離と位置の関係をセンシングするように、TOF(Time Of Fly)機能を有するセンサ44を図6に示すように複数層に配置して、対象物の平面方向の座標の他に奥行方向の座標と対象物の移動方向、移動速度も感知することが可能となる。2次元の距離と位置を読み取るために赤外線発光部と受光部の組み合わせを複数直線的に配置し、発光点からの光を対象物に照射し反射した光を受光部で受光する。発光した時間と受光した時間との差と、光速の積により対象物との距離が明確になる。また平面上の座標は複数の発光部と受光部で、発光時間と受光時間の差が最も小さい部分での座標から読み取ることができる。以上により平面(2次元)での対象物の座標と、前述したセンサを複数組み合わせることで3次元の座標情報を得ることもできる。
 <反射型偏光板>
Next, a sensor 44 having a TOF (Time Of Fly) function is provided so as to sense the relationship between the distance and the position between the object and the sensor 44 with respect to the space floating image obtained by the space floating image display device described above. 6, it is possible to detect not only the coordinates in the planar direction of the object but also the coordinates in the depth direction and the direction and speed of movement of the object. In order to read the two-dimensional distance and position, a plurality of combinations of infrared light emitting units and light receiving units are arranged in a straight line, the light from the light emitting points is irradiated onto the object, and the reflected light is received by the light receiving unit. The product of the difference between the light emission time and the light reception time and the speed of light makes the distance to the object clear. Further, the coordinates on the plane can be read from the coordinates at the portion where the difference between the light emission time and the light reception time is the smallest among a plurality of light emitting units and light receiving units. As described above, it is also possible to obtain three-dimensional coordinate information by combining the coordinates of an object on a plane (two-dimensional) with a plurality of the sensors described above.
<Reflective polarizing plate>
 本実施例の空間浮遊映像表示装置において、偏光分離部材101は、映像の画質を決めるコントラスト性能を、一般的なハーフミラーよりも向上させるために用いられる。本実施例の偏光分離部材101の一例として反射型偏光板の特性を説明する。図7は、反射型偏光板の特性を評価した測定系の説明図である。図7の反射型偏光板の偏光軸に対して垂直方向からの光線入射角に対する透過特性と反射特性をV-AOIとして、図8及び図9にそれぞれ示す。同様に反射型偏光板の偏光軸に対して水平方向からの光線入射角に対する透過特性と反射特性をH-AOIとして、図10及び図11にそれぞれ示す。 In the spatially floating image display device of this embodiment, the polarization separating member 101 is used to improve the contrast performance that determines the image quality of the image compared to a general half mirror. Characteristics of a reflective polarizing plate will be described as an example of the polarization separation member 101 of this embodiment. FIG. 7 is an explanatory diagram of a measurement system for evaluating the characteristics of the reflective polarizing plate. 8 and 9 show, as V-AOI, the transmission characteristics and reflection characteristics of the reflective polarizing plate of FIG. Similarly, the transmission characteristics and reflection characteristics of the reflective polarizing plate with respect to the incident angle of light from the horizontal direction with respect to the polarization axis are shown as H-AOI in FIGS. 10 and 11, respectively.
 図8及び図9に示すようにグリッド構造の反射型偏光板は、偏光軸に対して垂直方向からの光についての特性は低下する。このため、偏光軸に沿った仕様が望ましく、液晶表示パネルからの出射映像光を挟角で出射可能な本実施例の光源が理想的な光源となる。また、水平方向の特性も同様に斜めからの光については特性低下がある。以上の特性を考慮して、以下、液晶表示パネルからの出射映像光をより挟角に出射可能な光源を液晶表示パネルのバックライトとして使用する、本実施例の構成例について説明する。これにより、高コントラストな空間浮遊映像が提供可能となる。
 <表示装置>
As shown in FIGS. 8 and 9, the reflective polarizing plate having a grid structure deteriorates in characteristics for light from a direction perpendicular to the polarization axis. For this reason, specifications along the polarization axis are desirable, and the light source of this embodiment, which can emit the image light emitted from the liquid crystal display panel at a narrow angle, is an ideal light source. In addition, the characteristics in the horizontal direction are similarly degraded with respect to oblique light. Considering the above characteristics, a configuration example of this embodiment will be described below, in which a light source capable of emitting image light from the liquid crystal display panel at a narrower angle is used as the backlight of the liquid crystal display panel. This makes it possible to provide high-contrast spatial floating images.
<Display device>
 次に、本実施例の表示装置1について図を用いて説明する。本実施例の表示装置1は映像表示素子11(液晶表示パネル)と共に、その光源を構成する光源装置13を備えており、図12では、光源装置13を液晶表示パネルと共に展開斜視図として示している。 Next, the display device 1 of this embodiment will be described with reference to the drawings. The display device 1 of this embodiment includes an image display element 11 (liquid crystal display panel) and a light source device 13 constituting a light source thereof. there is
 この液晶表示パネル(映像表示素子11)は、図12に矢印30で示すように、バックライト装置である光源装置13から、挟角な拡散特性を有する、即ち、指向性(直進性)が強く、かつ、偏光面を一方向に揃えたレーザ光に似た特性の照明光束を受光する。液晶表示パネル(映像表示素子11)は、入力される映像信号に応じて受光した照明光束を変調する。変調された映像光は、再帰反射板2により反射し透明な部材100を透過して実像である空間浮遊像を形成する。(図1参照)。また、図12では、表示装置1を構成する液晶表示パネル11と、更に、光源装置13からの出射光束の指向特性を制御する光方向変換パネル54、および、必要に応じて挟角拡散板(図示せず)を備えて構成されている。即ち、液晶表示パネル11の両面には偏光板が設けられ、特定の偏波の映像光が映像信号により光の強度を変調して出射する(図12の矢印30を参照)構成となっている。これにより、所望の映像を指向性(直進性)の高い特定偏波の光として、光方向変換パネル54を介して、再帰反射板2に向けて投写し、再帰反射板2で反射後、店舗(空間)の外部の監視者の眼に向けて透過して空間浮遊映像3を形成する。なお、上述した光方向変換パネル54の表面には保護カバー50(図13、図14を参照)を設けてよい。
 <表示装置の例1>
This liquid crystal display panel (image display element 11) has a narrow-angle diffusion characteristic from the light source device 13, which is a backlight device, as indicated by an arrow 30 in FIG. Also, it receives an illumination light beam having characteristics similar to those of a laser beam whose plane of polarization is aligned in one direction. The liquid crystal display panel (image display element 11) modulates the received illumination light beam according to the input image signal. The modulated image light is reflected by the retroreflection plate 2 and transmitted through the transparent member 100 to form a spatially floating image, which is a real image. (See Figure 1). Further, in FIG. 12, a liquid crystal display panel 11 constituting the display device 1, a light direction conversion panel 54 for controlling the directivity of the light flux emitted from the light source device 13, and, if necessary, a narrow angle diffusion plate ( not shown). That is, polarizing plates are provided on both sides of the liquid crystal display panel 11, and image light of a specific polarized wave is emitted after modulating the intensity of the light according to the image signal (see arrow 30 in FIG. 12). . As a result, a desired image is projected toward the retroreflector 2 through the light direction conversion panel 54 as light of a specific polarized wave with high directivity (straightness). A spatially floating image 3 is formed by being transmitted to the observer's eyes outside the (space). A protective cover 50 (see FIGS. 13 and 14) may be provided on the surface of the light direction conversion panel 54 described above.
<Example 1 of display device>
 図13には、表示装置1の具体的な構成の一例を示す。図13では、図12の光源装置13の上に液晶表示パネル11と光方向変換パネル54を配置している。この光源装置13は、図12に示したケース上に、例えば、プラスチックなどにより形成され、その内部にLED素子201、導光体203を収納して構成されており、導光体203の端面には、図12等にも示したように、それぞれのLED素子201からの発散光を略平行光束に変換するために、受光部に対して対面に向かって徐々に断面積が大きくなる形状を有し、内部を伝搬する際に複数回全反射することで発散角が徐々に小さくなるような作用を有するレンズ形状を設けている。その上面には、表示装置1を構成する液晶表示パネル11が取り付けられている。また、光源装置13のケースのひとつの側面(本例では左側の端面)には、半導体光源であるLED(Light Emitting Diode)素子201や、その制御回路を実装したLED基板202が取り付けられる。LED基板202の外側面には、LED素子および制御回路で発生する熱を冷却するための部材であるヒートシンクが取り付けられてもよい。 13 shows an example of a specific configuration of the display device 1. FIG. In FIG. 13, the liquid crystal display panel 11 and the light direction changing panel 54 are arranged on the light source device 13 of FIG. The light source device 13 is formed of, for example, plastic on the case shown in FIG. As shown in FIG. 12 and the like, each LED element 201 has a shape in which the cross-sectional area gradually increases toward the opposite side of the light receiving part in order to convert the divergent light from each LED element 201 into a substantially parallel light flux. A lens shape is provided that has the effect of gradually decreasing the divergence angle by performing total reflection multiple times while propagating inside. A liquid crystal display panel 11 constituting the display device 1 is attached to the upper surface thereof. A light emitting diode (LED) element 201, which is a semiconductor light source, and an LED board 202 on which a control circuit is mounted are attached to one side surface (the left end surface in this example) of the case of the light source device 13. A heat sink, which is a member for cooling the heat generated by the LED elements and the control circuit, may be attached to the outer surface of the LED substrate 202 .
 また、光源装置13のケースの上面に取り付けられる液晶表示パネルのフレーム(図示せず)には、当該フレームに取り付けられた液晶表示パネル11と、更に、当該液晶表示パネル11に電気的に接続されたFPC(Flexible Printed Circuits:フレキシブル配線基板)(図示せず)などが取り付けられて構成される。即ち、映像表示素子である液晶表示パネル11は、固体光源であるLED素子201と共に、電子装置を構成する制御回路(図4の映像制御部1160)からの制御信号に基づいて、透過光の強度を変調することによって表示映像を生成する。この時、生成される映像光は拡散角度が狭く特定の偏波成分のみとなるため、映像信号により駆動された面発光レーザ映像源に近い、従来にない新しい映像表示装置が得られることとなる。なお、現状では、レーザ装置により、上述した表示装置1で得られる画像と同等のサイズのレーザ光束を得ることは、技術的にも安全上からも不可能である。そこで、本実施例では、例えば、LED素子を備えた一般的な光源からの光束から、上述した面発光レーザ映像光に近い光を得る。 In addition, the liquid crystal display panel 11 attached to the frame (not shown) attached to the upper surface of the case of the light source device 13 is electrically connected to the liquid crystal display panel 11 . A FPC (Flexible Printed Circuits) (not shown) and the like are attached. That is, the liquid crystal display panel 11, which is an image display element, together with the LED element 201, which is a solid-state light source, adjusts the intensity of transmitted light based on a control signal from a control circuit (image control unit 1160 in FIG. 4) that constitutes the electronic device. to generate the displayed image by modulating the At this time, the generated image light has a narrow diffusion angle and only a specific polarized wave component, so a new image display device that has not existed in the past, which is similar to a surface emitting laser image source driven by a video signal, can be obtained. . At present, it is technically and safely impossible to obtain a laser beam having the same size as the image obtained by the display device 1 using a laser device. Therefore, in this embodiment, for example, light close to the above-described surface emitting laser image light is obtained from a luminous flux from a general light source provided with an LED element.
 続いて、光源装置13のケース内に収納されている光学系の構成について、図13と共に、図14を参照しながら詳細に説明する。 Next, the configuration of the optical system housed in the case of the light source device 13 will be described in detail with reference to FIGS. 13 and 14. FIG.
 図13および図14は断面図であるため、光源を構成する複数のLED素子201が1つだけ示されており、これらは導光体203の受光端面203aの形状により略コリメート光に変換される。このため導光体端面の受光部とLED素子は所定の位置関係を保って取り付けられている。なお、この導光体203は、各々、例えば、アクリル等の透光性の樹脂により形成されている。そして、この導光体端部のLED受光面は、例えば、放物断面を回転して得られる円錐凸形状の外周面を有し、その頂部では、その中央部に凸部(即ち、凸レンズ面)を形成した凹部を有し、その平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)を有するものである(図示せず)。なお、LED素子201を取り付ける導光体の受光部外形形状は、円錐形状の外周面を形成する放物面形状をなし、LED素子から周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。 Since FIGS. 13 and 14 are cross-sectional views, only one of the plurality of LED elements 201 constituting the light source is shown, and these are converted into substantially collimated light by the shape of the light receiving end surface 203a of the light guide 203. . For this reason, the light receiving portion on the end face of the light guide and the LED element are attached while maintaining a predetermined positional relationship. Each of the light guides 203 is made of translucent resin such as acryl. The LED light receiving surface at the end of the light guide has, for example, a conical convex outer peripheral surface obtained by rotating the parabolic cross section, and at the top, a convex portion (that is, a convex lens surface ), and in the central portion of the planar portion, a convex lens surface protruding outward (or a concave lens surface recessed inward) is provided (not shown). The outer shape of the light receiving portion of the light guide to which the LED element 201 is attached has a parabolic shape forming a conical outer peripheral surface, and the light emitted from the LED element in the peripheral direction can be totally reflected inside. It is set within the range of possible angles, or a reflective surface is formed.
 他方、LED素子201は、その回路基板である、LED基板202の表面上の所定の位置にそれぞれ配置されている。このLED基板202は、LEDコリメータ(受光端面203a)に対して、その表面上のLED素子201が、それぞれ、前述した凹部の中央部に位置するように配置されて固定される。 On the other hand, the LED elements 201 are arranged at predetermined positions on the surface of the LED board 202, which is the circuit board. The LED substrate 202 is arranged and fixed to the LED collimator (light-receiving end surface 203a) so that the LED elements 201 on the surface thereof are positioned in the central portions of the recesses described above.
 かかる構成によれば、導光体203の受光端面203aの形状によって、LED素子201から放射される光は略平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。 According to such a configuration, the shape of the light receiving end surface 203a of the light guide 203 makes it possible to extract the light emitted from the LED element 201 as substantially parallel light, thereby improving the utilization efficiency of the generated light. Become.
 以上述べたように、光源装置13は、導光体203の端面に設けた受光部である受光端面203aに光源であるLED素子201を複数並べた光源ユニットを取り付けて構成され、LED素子201からの発散光束を導光体端面の受光端面203aのレンズ形状によって略平行光として、矢印で示すように、導光体203内部を導光し(図面に平行な方向)、光束方向変換手段204によって、導光体203に対して略平行に配置された液晶表示パネル11に向かって(図面から手前に垂直な方向)出射する。導光体内部または表面の形状によってこの光束方向変換手段の分布(密度)を最適化することで、液晶表示パネル11に入射する光束の均一性を制御することができる。上述した光束方向変換手段204は導光体表面の形状や導光体内部に例えば屈折率の異なる部分を設けることで、導光体内を伝搬した光束を、導光体203に対して略平行に配置された液晶表示パネル11に向かって(図面から手前に垂直な方向)出射する。この時、液晶表示パネル11を画面中央に正対し画面対角寸法と同じ位置に視点を置いた状態で画面中央と画面周辺部の輝度を比較した場合の相対輝度比が20%以上あれば実用上問題なく、30%を超えていれば更に優れた特性となる。 As described above, the light source device 13 is configured by attaching a light source unit in which a plurality of LED elements 201 as light sources are arranged on the light receiving end surface 203a, which is a light receiving portion provided on the end surface of the light guide 203. is converted into substantially parallel light by the lens shape of the light receiving end face 203a of the light guide body end face, and guided inside the light guide body 203 as indicated by the arrow (in the direction parallel to the drawing). , toward the liquid crystal display panel 11 arranged substantially parallel to the light guide 203 (direction perpendicular to the front of the drawing). By optimizing the distribution (density) of the luminous flux direction changing means according to the shape of the interior or surface of the light guide, the uniformity of the luminous flux incident on the liquid crystal display panel 11 can be controlled. The light beam direction changing means 204 described above directs the light beam propagated in the light guide 203 substantially parallel to the light guide 203 by providing a portion having a different refractive index, for example, in the shape of the light guide surface or inside the light guide. The light is emitted toward the arranged liquid crystal display panel 11 (in a direction perpendicular to the front of the drawing). At this time, when the liquid crystal display panel 11 faces the center of the screen and the viewpoint is placed at the same position as the diagonal dimension of the screen, the relative brightness ratio of the center of the screen and the peripheral part of the screen is 20% or more for practical use. There is no problem with the above, and if it exceeds 30%, the characteristics are even more excellent.
 なお、図13は上述した導光体203とLED素子201を含む光源装置13において、偏光変換する本実施例の光源の構成とその作用を説明するための断面配置図である。図13において、光源装置13は、例えば、プラスチックなどにより形成される表面または内部に光束方向変換手段204を設けた導光体203、光源としてのLED素子201、反射シート205、位相差板206、レンチキュラーレンズなどから構成されており、その上面には、光源光入射面と映像光出射面に偏光板を備える液晶表示パネル11が取り付けられている。 FIG. 13 is a cross-sectional layout diagram for explaining the configuration and operation of the light source of this embodiment for polarization conversion in the light source device 13 including the light guide 203 and the LED element 201 described above. In FIG. 13, the light source device 13 includes, for example, a light guide 203 formed of plastic or the like and provided with a light beam direction changing means 204 on its surface or inside, an LED element 201 as a light source, a reflection sheet 205, a retardation plate 206, It is composed of a lenticular lens or the like, and a liquid crystal display panel 11 having polarizing plates on the light source light entrance surface and the image light exit surface is attached to the upper surface thereof.
 また、光源装置13に対応した液晶表示パネル11の光源光入射面(図の下面)にはフィルムまたはシート状の反射型偏光板49を設けており、LED素子201から出射した自然光束210のうち片側の偏波(例えばP波)212を選択的に反射させる。反射光は、導光体203の一方(図の下方)の面に設けた反射シート205で再度、反射して、液晶表示パネル11に向かうようにする。そこで、反射シート205と導光体203の間もしくは導光体203と反射型偏光板49の間に位相差板(λ/4板)を設けて反射シート205で反射させ、2回通過させることで反射光束をP偏光からS偏光に変換し、映像光としての光源光の利用効率を向上する。液晶表示パネル11で映像信号により光強度を変調された映像光束は(図13の矢印213)、再帰反射板2に入射する。再帰反射板2で反射した後に実像である空間浮遊像を得ることができる。 A film or sheet-like reflective polarizing plate 49 is provided on the light source light incident surface (bottom surface in the drawing) of the liquid crystal display panel 11 corresponding to the light source device 13 . A polarized wave (for example, P wave) 212 on one side is selectively reflected. The reflected light is reflected again by a reflective sheet 205 provided on one surface (lower side in the figure) of the light guide 203 and directed toward the liquid crystal display panel 11 . Therefore, a retardation plate (λ/4 plate) is provided between the reflective sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49 so that the light is reflected by the reflective sheet 205 and passed through twice. converts the reflected luminous flux from P-polarized light to S-polarized light to improve the utilization efficiency of the light source light as image light. The image light flux (arrow 213 in FIG. 13) whose light intensity is modulated by the image signal on the liquid crystal display panel 11 is incident on the retroreflection plate 2 . A spatially floating image, which is a real image, can be obtained after being reflected by the retroreflection plate 2 .
 図14は、図13と同様に、導光体203とLED素子201を含む光源装置13において、偏光変換する本実施例の光源の構成と作用を説明するための断面配置図である。光源装置13も、同様に、例えばプラスチックなどにより形成される表面または内部に光束方向変換手段204を設けた導光体203、光源としてのLED素子201、反射シート205、位相差板206、レンチキュラーレンズなどから構成されており、その上面には、映像表示素子として、光源光入射面と映像光出射面に偏光板を備える液晶表示パネル11が取り付けられている。 FIG. 14 is a cross-sectional layout diagram for explaining the configuration and action of the light source of this embodiment that performs polarization conversion in the light source device 13 including the light guide 203 and the LED element 201, as in FIG. Similarly, the light source device 13 also includes a light guide 203 formed of plastic or the like and provided with a light beam direction changing means 204 on its surface or inside, an LED element 201 as a light source, a reflection sheet 205, a retardation plate 206, and a lenticular lens. A liquid crystal display panel 11 having polarizing plates on the light source light entrance surface and the image light exit surface is attached as an image display element on the upper surface thereof.
 また、光源装置13に対応した液晶表示パネル11の光源光入射面(図の下面)にはフィルムまたはシート状の反射型偏光板49を設け、LED光源201から出射した自然光束210うち片側の偏波(例えばS波)211を選択的に反射させる。すなわち、図14の例では、反射型偏光板49の選択反射特性が図14と異なる。反射光は、導光体203の一方(図の下方)の面に設けた反射シート205で反射して、再度、液晶表示パネル11に向かう。反射シート205と導光体203の間もしくは導光体203と反射型偏光板49の間に位相差板(λ/4板)を設けて反射シート205で反射させ、2回通過させることで反射光束をS偏光からP偏光に変換し、映像光として光源光の利用効率を向上する。液晶表示パネル11で映像信号により光強度変調された映像光束は(図14の矢印214)、再帰反射板2に入射する。再帰反射板2で反射した後に実像である空間浮遊像を得ることができる。 In addition, a film or sheet-like reflective polarizing plate 49 is provided on the light source light incident surface (lower surface in the drawing) of the liquid crystal display panel 11 corresponding to the light source device 13 to polarize the natural light beam 210 emitted from the LED light source 201 to one side. Waves (eg, S-waves) 211 are selectively reflected. That is, in the example of FIG. 14, the selective reflection characteristics of the reflective polarizing plate 49 are different from those in FIG. The reflected light is reflected by a reflective sheet 205 provided on one surface (lower side in the drawing) of the light guide 203 and directed toward the liquid crystal display panel 11 again. A retardation plate (λ/4 plate) is provided between the reflective sheet 205 and the light guide 203 or between the light guide 203 and the reflective polarizing plate 49, and the light is reflected by the reflective sheet 205 and passed twice. The luminous flux is converted from S-polarized light to P-polarized light to improve the utilization efficiency of light source light as image light. The image light beam (arrow 214 in FIG. 14) whose light intensity is modulated by the image signal on the liquid crystal display panel 11 is incident on the retroreflection plate 2 . A spatially floating image, which is a real image, can be obtained after being reflected by the retroreflection plate 2 .
 図13および図14に示す光源装置においては、対応する液晶表示パネル11の光入射面に設けた偏光板の作用の他に、反射型偏光板で片側の偏光成分を反射するため、理論上得られるコントラスト比は、反射型偏光板のクロス透過率の逆数と液晶表示パネルに付帯した2枚の偏光板により得られるクロス透過率の逆数を乗じたものとなる。これにより、高いコントラスト性能が得られる。実際には、表示画像のコントラスト性能が10倍以上向上することを実験により確認した。この結果、自発光型の有機ELに比較しても遜色ない高品位な映像が得られた。
 <表示装置の例2>
In the light source device shown in FIGS. 13 and 14, in addition to the action of the polarizing plate provided on the light incident surface of the corresponding liquid crystal display panel 11, the reflective polarizing plate reflects the polarized component on one side, so theoretically The obtained contrast ratio is obtained by multiplying the reciprocal of the cross transmittance of the reflective polarizing plate by the reciprocal of the cross transmittance obtained by the two polarizing plates attached to the liquid crystal display panel. This provides high contrast performance. In practice, it was confirmed through experiments that the contrast performance of the displayed image is improved by ten times or more. As a result, a high-quality image comparable to that of a self-luminous organic EL was obtained.
<Example 2 of display device>
 図15には、表示装置1の具体的な構成の他の一例を示す。この光源装置13は、例えばプラスチックなどのケース内にLED、コリメータ、合成拡散ブロック、導光体等を収納して構成されており、その上面には液晶表示パネル11が取り付けられている。また、光源装置13のケースのひとつの側面には、半導体光源であるLED(Light Emitting Diode)素子14a、14bや、その制御回路を実装したLED基板が取り付けられると共に、LED基板の外側面には、LED素子および制御回路で発生する熱を冷却するための部材であるヒートシンク103が取り付けられている。 FIG. 15 shows another example of a specific configuration of the display device 1. FIG. The light source device 13 is configured by housing an LED, a collimator, a synthetic diffusion block, a light guide, etc. in a case made of plastic, for example, and a liquid crystal display panel 11 is attached to the upper surface thereof. In addition, on one side of the case of the light source device 13, LED (Light Emitting Diode) elements 14a and 14b, which are semiconductor light sources, and an LED board on which the control circuit is mounted are attached, and on the outer side of the LED board , a heat sink 103, which is a member for cooling the heat generated by the LED element and the control circuit, is attached.
 また、ケースの上面に取り付けられた液晶表示パネルフレームには、当該フレームに取り付けられた液晶表示パネル11と、更に、液晶表示パネル11に電気的に接続されたFPC(Flexible Printed Circuits:フレキシブル配線基板)403(図7参照)などが取り付けられて構成されている。即ち、液晶表示素子である液晶表示パネル11は、固体光源であるLED素子14a,14bと共に、電子装置を構成する制御回路(ここでは図示せず)からの制御信号に基づいて、透過光の強度を変調することによって表示映像を生成する。
 <表示装置の例3>
Further, the liquid crystal display panel frame attached to the upper surface of the case includes the liquid crystal display panel 11 attached to the frame and FPCs (Flexible Printed Circuits: flexible wiring boards) electrically connected to the liquid crystal display panel 11. ) 403 (see FIG. 7) and the like are attached. That is, the liquid crystal display panel 11, which is a liquid crystal display element, together with the LED elements 14a and 14b, which are solid-state light sources, adjusts the intensity of transmitted light based on a control signal from a control circuit (not shown here) that constitutes the electronic device. to generate the displayed image by modulating the
<Example 3 of display device>
 続いて、図16を用いて表示装置1の具体的な構成の他の例(表示装置の例3)を説明する。この表示装置1の光源装置は、LEDからの光(P偏光とS偏光が混在)の発散光束をコリメータ18により略平行光束に変換し、反射型導光体304の反射面により液晶表示パネル11に向け反射する。反射光は液晶表示パネル11と反射型導光体304の間に配置された反射型偏光板49に入射する。反射型偏光板49では特定の偏波(例えばP偏光)は透過して液晶表示パネル11に入射する。反射型偏光板で他方の偏波(例えばS偏光)は反射され再び反射型導光体304へ向かう。反射型偏光板49は、反射型導光体304の反射面からの光の主光線に対して垂直とならないよう傾きを以て設置されており、反射型偏光板49で反射された光の主光線は、反射型導光体304の透過面に入射する。反射型導光体304の透過面に入射した光は、反射型導光体304の背面を透過し、位相差板であるλ/4板270を透過し、反射板271で反射される。反射板271で反射された光は、再びλ/4板270を透過し、反射型導光体304の透過面を透過する。反射型導光体304の透過面を透過した光は再び反射型偏光板49に入射する。このとき、反射型偏光板49に再度入射する光は、λ/4板270を2回通過しているため、反射型偏光板49を透過する偏波(例えば、P偏光)へ偏光が変換されている。よって、偏光が変換されている光は反射型偏光板49を透過し、液晶表示パネル11に入射する。なお、偏光変換に係る偏光設計について、上述の説明から偏波を逆に構成(S偏光とP偏光を逆にする)してもかまわない。 Next, another example of the specific configuration of the display device 1 (example 3 of the display device) will be described with reference to FIG. The light source device of this display device 1 converts a divergent light beam (P-polarized light and S-polarized light are mixed) from the LED into a substantially parallel light beam by the collimator 18, and the reflective surface of the reflective light guide 304 converts the light to the liquid crystal display panel 11. reflect towards. The reflected light enters the reflective polarizing plate 49 arranged between the liquid crystal display panel 11 and the reflective light guide 304 . A specific polarized wave (for example, P-polarized light) is transmitted through the reflective polarizing plate 49 and enters the liquid crystal display panel 11 . The other polarized wave (for example, S-polarized light) is reflected by the reflective polarizing plate and directed to the reflective light guide 304 again. The reflective polarizing plate 49 is installed at an angle so as not to be perpendicular to the principal ray of light from the reflecting surface of the reflective light guide 304, and the principal ray of light reflected by the reflective polarizing plate 49 is , is incident on the transmission surface of the reflective light guide 304 . The light incident on the transmissive surface of the reflective light guide 304 is transmitted through the back surface of the reflective light guide 304 , transmitted through the λ/4 plate 270 as a retardation plate, and reflected by the reflector 271 . The light reflected by the reflecting plate 271 passes through the λ/4 plate 270 again and passes through the transmitting surface of the reflective light guide 304 . Light transmitted through the transmissive surface of the reflective light guide 304 enters the reflective polarizing plate 49 again. At this time, the light incident on the reflective polarizing plate 49 again passes through the λ/4 plate 270 twice, so that the polarization is converted into a polarized wave (for example, P-polarized light) that passes through the reflective polarizing plate 49. ing. Therefore, the light whose polarization has been converted passes through the reflective polarizing plate 49 and enters the liquid crystal display panel 11 . Regarding the polarization design related to polarization conversion, the polarization may be reversed (reversing the S-polarized light and the P-polarized light) from the above description.
 この結果、LEDからの光は特定の偏波(例えばP偏光)に揃えられ、液晶表示パネル11に入射し、映像信号に合わせて輝度変調されパネル面に映像を表示する。上述の例と同様に光源を構成する複数のLEDが示されており(ただし、縦断面のため図16では1個のみ図示)、これらはコリメータ18に対して所定の位置に取り付けられている。なお、コリメータ18は、各々、例えばアクリル等の透光性の樹脂またはガラスにより形成されている。そして、このコリメータ18は、放物断面を回転して得られる円錐凸形状の外周面を有してもよい。その頂部では、その中央部に凸部(即ち、凸レンズ面)を形成した凹部を有してもよい。また、その平面部の中央部には、外側に突出した凸レンズ面(あるいは、内側に凹んだ凹レンズ面でも良い)を有している。なお、コリメータ18の円錐形状の外周面を形成する放物面は、LEDから周辺方向に出射する光をその内部で全反射することが可能な角度の範囲内において設定され、あるいは、反射面が形成されている。 As a result, the light from the LEDs is aligned with a specific polarized wave (for example, P-polarized light), enters the liquid crystal display panel 11, is luminance-modulated in accordance with the video signal, and displays an image on the panel surface. A plurality of LEDs constituting the light source are shown (only one is shown in FIG. 16 because of the longitudinal section), which are mounted at predetermined positions with respect to the collimator 18, as in the above example. The collimators 18 are made of translucent resin such as acrylic or glass. The collimator 18 may have a convex conical outer peripheral surface obtained by rotating the parabolic section. The top portion may have a concave portion with a convex portion (that is, a convex lens surface) formed in the central portion. In addition, the central portion of the planar portion has an outwardly projecting convex lens surface (or an inwardly recessed concave lens surface may be used). In addition, the paraboloid that forms the conical outer peripheral surface of the collimator 18 is set within an angle range that allows total internal reflection of the light emitted from the LED in the peripheral direction, or the reflecting surface is formed.
 なお、LEDは、その回路基板である、LED基板102の表面上の所定の位置にそれぞれ配置されている。このLED基板102は、コリメータ18に対して、その表面上のLEDが、それぞれ、円錐凸形状の頂部の中央部(頂部に凹部が有る場合はその凹部)に位置するように配置されて固定される。 Note that the LEDs are arranged at predetermined positions on the surface of the LED board 102, which is the circuit board. The LED substrate 102 is arranged and fixed to the collimator 18 so that the LEDs on the surface thereof are positioned at the central portion of the top of the conical convex shape (if the top has a concave portion, the concave portion). be.
 かかる構成によれば、コリメータ18によって、LEDから放射される光のうち、特に、その中央部分から放射される光は、コリメータ18の外形を形成する凸レンズ面により集光されて平行光となる。また、その他の部分から周辺方向に向かって出射される光は、コリメータ18の円錐形状の外周面を形成する放物面によって反射され、同様に、集光されて平行光となる。換言すれば、その中央部に凸レンズを構成すると共に、その周辺部に放物面を形成したコリメータ18によれば、LEDにより発生された光のほぼ全てを平行光として取り出すことが可能となり、発生した光の利用効率を向上することが可能となる。 According to such a configuration, of the light emitted from the LED by the collimator 18, particularly the light emitted from the central portion is collected by the convex lens surface forming the outer shape of the collimator 18 and becomes parallel light. Also, the light emitted in the peripheral direction from other portions is reflected by the paraboloid forming the conical outer peripheral surface of the collimator 18, and is similarly condensed into parallel light. In other words, the collimator 18, which has a convex lens in its central portion and a parabolic surface in its peripheral portion, makes it possible to extract almost all of the light generated by the LED as parallel light. It is possible to improve the utilization efficiency of the light.
 さらに、図16に示したコリメータ18により略平行光に変換された光は、反射型導光体304で反射される。当該光のうち、反射型偏光板49の作用により特定の偏波の光は反射型偏光板49透過し、反射型偏光板49の作用により反射された他方の偏波の光は再度、反射型導光体304を透過する。当該光は、反射型導光体304に対して、液晶表示パネル11とは逆の位置にある反射板271で反射する。この時、当該光は位相差板であるλ/4板270を2度通過することで偏光変換される。反射板271で反射した光は、再び反射型導光体304を透過して、反対面に設けた反射型偏光板49に入射する。当該入射光は、偏光変換がなされているので、反射型偏光板49を透過して、偏光方向を揃えて液晶表示パネル11に入射される。この結果、光源の光を全て利用できるので光の幾何光学的な利用効率が2倍になる。また、反射型偏光板の偏光度(消光比)もシステム全体の消光比に乗せられるので、本実施例の光源装置を用いることで表示装置全体としてのコントラスト比が大幅に向上する。なお、反射型導光体304の反射面の面粗さおよび反射板271の面粗さを調整することで、それぞれの反射面での光の反射拡散角を調整することができる。液晶表示パネル11に入射する光の均一性がより好適になるように、設計毎に、反射型導光体304の反射面の面粗さおよび反射板271の面粗さを調整すればよい。 Furthermore, the light converted into substantially parallel light by the collimator 18 shown in FIG. 16 is reflected by the reflective light guide 304 . Of the light, the light of a specific polarized wave is transmitted through the reflective polarizing plate 49 by the action of the reflective polarizing plate 49, and the light of the other polarized wave reflected by the action of the reflective polarizing plate 49 is again reflected. It passes through the light guide 304 . The light is reflected by the reflector 271 located opposite to the liquid crystal display panel 11 with respect to the reflective light guide 304 . At this time, the light is polarization-converted by passing through the λ/4 plate 270, which is a retardation plate, twice. The light reflected by the reflector 271 passes through the reflective light guide 304 again and enters the reflective polarizing plate 49 provided on the opposite surface. Since the incident light has undergone polarization conversion, it passes through the reflective polarizing plate 49 and enters the liquid crystal display panel 11 with the polarization direction aligned. As a result, all of the light from the light source can be used, and the geometrical optics utilization efficiency of light is doubled. Further, since the degree of polarization (extinction ratio) of the reflective polarizing plate can be added to the extinction ratio of the entire system, the use of the light source device of this embodiment greatly improves the contrast ratio of the entire display device. By adjusting the surface roughness of the reflecting surface of the reflective light guide 304 and the surface roughness of the reflecting plate 271, the reflection diffusion angle of light on each reflecting surface can be adjusted. The surface roughness of the reflective surface of the reflective light guide 304 and the surface roughness of the reflector 271 may be adjusted for each design so that the uniformity of the light incident on the liquid crystal display panel 11 is more favorable.
 なお、図16の位相差板であるλ/4板270は、必ずしもλ/4板270へ垂直に入射した偏光に対する位相差がλ/4である必要はない。図16の構成において、偏光が2回通過することで、位相が90°(λ/2)変わる位相差板であればよい。位相差板の厚さは偏光の入射角度分布に応じて調整すればよい。
 <表示装置の例4>
It should be noted that the λ/4 plate 270, which is the retardation plate in FIG. In the configuration of FIG. 16, any retardation plate that changes the phase by 90° (λ/2) by passing the polarized light twice may be used. The thickness of the retardation plate may be adjusted according to the incident angle distribution of polarized light.
<Display Device Example 4>
 さらに、表示装置の光源装置等の光学系の構成についての他の例(表示装置の例4)を、図19を用いて説明する。表示装置の例3の光源装置において、反射型導光体304の代わりに拡散シートを用いる場合の構成例である。具体的には、コリメータ18の光の出射側には図面の垂直方向と水平方向(図の前後方向で図示せず)の拡散特性を変換する光学シートを2枚用い(光学シート207Aおよび光学シート207B)、コリメータ18からの光を2枚の光学シート(拡散シート)の間に入射させる。この光学シートは、2枚構成ではなく1枚としても良い。1枚構成とする場合には1枚の光学シートの表面と裏面の微細形状で垂直と水平の拡散特性を調整する。また、拡散シートを複数枚使用して作用を分担しても良い。ここで、図19の例では、光学シート207Aと光学シート207Bの表面形状と裏面形状による反射拡散特性について、液晶表示パネル11から出射する光束の面密度が均一になるように、LEDの数量とLED基板(光学素子)102からの発散角およびコリメータ18の光学仕様を設計パラメータとして最適設計すると良い。つまり、導光体の代わりに複数の拡散シートの表面形状により拡散特性を調整する。図19の例では偏光変換は上述した表示装置の例3と同様の方法で行われる。すなわち、図19の例において、反射型偏光板49はS偏光を反射(P偏光は透過)させる特性を有するように構成すればよい。その場合、光源であるLEDから発した光のうちP偏光を透過して、透過した光は液晶表示パネル11に入射する。光源であるLEDから発した光のうちS偏光を反射し、反射した光は、図19に示した位相差板270を通過する。位相差板270を通過した光は、反射板271で反射される。反射板271で反射した光は、再び位相差板270を通過することでP偏光に変換される。偏光変換された光は、反射型偏光板49を透過し、液晶表示パネル11に入射する。なお、図19の位相差板であるλ/4板270は、必ずしもλ/4板270へ垂直に入射した偏光に対する位相差がλ/4である必要はない。図19の構成において、偏光が2回通過することで、位相が90°(λ/2)変わる位相差板であればよい。位相差板の厚さは偏光の入射角度分布に応じて調整すればよい。なお、図19においても、偏光変換に係る偏光設計について、上述の説明から偏波を逆に構成(S偏光とP偏光を逆にする)してもかまわない。 Furthermore, another example of the configuration of the optical system such as the light source device of the display device (Example 4 of the display device) will be described with reference to FIG. This is a configuration example in which a diffusion sheet is used in place of the reflective light guide 304 in the light source device of Example 3 of the display device. Specifically, two optical sheets (an optical sheet 207A and an optical sheet 207B), the light from the collimator 18 is made incident between two optical sheets (diffusion sheets). This optical sheet may be composed of one sheet instead of two sheets. In the case of a one-sheet structure, the vertical and horizontal diffusion characteristics are adjusted by the fine shapes of the front and back surfaces of one optical sheet. Also, a plurality of diffusion sheets may be used to share the action. Here, in the example of FIG. 19, the number of LEDs and the number of LEDs and The divergence angle from the LED substrate (optical element) 102 and the optical specifications of the collimator 18 should be used as design parameters for optimal design. That is, the diffusion characteristics are adjusted by the surface shape of a plurality of diffusion sheets instead of the light guide. In the example of FIG. 19, the polarization conversion is performed in the same manner as in Example 3 of the display device described above. That is, in the example of FIG. 19, the reflective polarizing plate 49 may be configured to have the property of reflecting S-polarized light (and transmitting P-polarized light). In that case, the P-polarized light of the light emitted from the LED, which is the light source, is transmitted, and the transmitted light is incident on the liquid crystal display panel 11 . Of the light emitted from the LED, which is the light source, S-polarized light is reflected, and the reflected light passes through the retardation plate 270 shown in FIG. The light that has passed through the retardation plate 270 is reflected by the reflector 271 . The light reflected by the reflector 271 passes through the retardation plate 270 again and is converted into P-polarized light. The polarized light is transmitted through the reflective polarizing plate 49 and enters the liquid crystal display panel 11 . It should be noted that the λ/4 plate 270, which is the retardation plate in FIG. In the configuration of FIG. 19, a retardation plate that changes the phase by 90° (λ/2) by passing the polarized light twice may be used. The thickness of the retardation plate may be adjusted according to the incident angle distribution of polarized light. In FIG. 19 as well, regarding the polarization design related to polarization conversion, the polarized waves may be reversed from the above description (S-polarized light and P-polarized light may be reversed).
 液晶表示パネル11からの出射光は、従来のTVセットでは画面水平方向(図18(a)X軸で表示)と画面垂直方向(図18(b)Y軸で表示)ともに同様な拡散特性を持っている。これに対して、本実施例の液晶表示パネルからの出射光束の拡散特性は、例えば図18の例1に示すように輝度が正面視(角度0度)の50%になる視野角が13度とすることで、従来の62度に対して1/5となる。同様に垂直方向の視野角は上下不均等として上側の視野角を下側の視野角に対して1/3程度に抑えるように反射型導光体の反射角度と反射面の面積等を最適化する。この結果、従来の液晶TVに比べ監視方向に向かう映像光量が大幅に向上し、輝度は50倍以上となる。 Light emitted from the liquid crystal display panel 11 has similar diffusion characteristics in the horizontal direction of the screen (indicated by the X-axis in FIG. 18(a)) and in the vertical direction of the screen (indicated by the Y-axis in FIG. 18(b)) in the conventional TV set. have. On the other hand, the diffusion characteristic of the emitted light flux from the liquid crystal display panel of this embodiment is such that the viewing angle at which the brightness is 50% of the front view (angle of 0 degrees) is 13 degrees, as shown in Example 1 of FIG. As a result, it becomes 1/5 of the conventional 62 degrees. Similarly, the viewing angle in the vertical direction is not uniform in the vertical direction, and the reflection angle of the reflective light guide and the area of the reflecting surface are optimized so that the upper viewing angle is suppressed to about 1/3 of the lower viewing angle. do. As a result, compared with the conventional liquid crystal TV, the amount of image light directed toward the monitoring direction is greatly improved, and the luminance is increased by 50 times or more.
 更に、図18の例2に示す視野角特性とすれば輝度が正面視(角度0度)の50%になる視野角が5度とすることで従来の62度に対して1/12となる。同様に垂直方向の視野角は上下均等として視野角を従来に対して1/12程度に抑えるように反射型導光体の反射角度と反射面の面積等を最適化する。この結果、従来の液晶TVに比べ監視方向に向かう映像光量が大幅に向上し、輝度は100倍以上となる。以上述べたように視野角を挟角とすることで監視方向に向かう光束量を集中できるので光の利用効率が大幅に向上する。この結果、従来のTV用の液晶表示パネルを使用しても、光源装置の光拡散特性を制御することで同様な消費電力で大幅な輝度向上が実現可能で、明るい屋外に向けての情報表示システムに対応した映像表示装置とすることができる。 Furthermore, if the viewing angle characteristics shown in Example 2 of FIG. 18 are used, the brightness becomes 50% of the front view (angle of 0 degree). . Similarly, the angle of view in the vertical direction is uniform in the vertical direction, and the angle of reflection and the area of the reflective surface of the reflective light guide are optimized so that the angle of view is suppressed to about 1/12 of the conventional angle. As a result, compared with the conventional liquid crystal TV, the amount of image light directed toward the monitoring direction is greatly improved, and the luminance is increased by 100 times or more. As described above, by narrowing the viewing angle, the amount of luminous flux directed toward the monitoring direction can be concentrated, so that the utilization efficiency of light is greatly improved. As a result, even if a conventional liquid crystal display panel for TVs is used, by controlling the light diffusion characteristics of the light source device, it is possible to realize a significant improvement in brightness with the same power consumption, and to display information for the bright outdoors. A video display device compatible with the system can be provided.
 大型の液晶表示パネルを使用する場合には、画面周辺の光は画面中央を監視者が正対した場合に監視者の方向に向かうように内側に向けることで、画面明るさの全面性が向上する。図17は監視者のパネルからの距離Lと、パネルサイズ(画面比16:10)とをパラメータとしたときのパネル長辺と短辺の収斂角度を求めたものである。画面を縦長として監視する場合には、短辺に合わせて収斂角度を設定すればよく、例えば22“パネルの縦使いで監視距離が0.8mの場合には収斂角度を10度とすれば画面4コーナからの映像光を有効に監視者に向けることができる。 When using a large liquid crystal display panel, the brightness of the screen is improved by directing the light around the screen inward so that when the monitor is facing the center of the screen, the light is directed toward the monitor. do. FIG. 17 shows the convergence angles of the long sides and short sides of the panel when the distance L from the panel of the observer and the panel size (screen ratio 16:10) are used as parameters. If you want to monitor the screen vertically, you can set the convergence angle according to the short side. Image light from the four corners can be effectively directed to the observer.
 同様に、15”パネルの縦使いで監視する場合には監視距離が0.8mの場合には収斂角度を7度とすれば画面4コーナからの映像光を有効に監視者に向けることができる。以上述べたように液晶表示パネルのサイズ及び縦使いか横使いかによって画面周辺の映像光を、画面中央を監視するのに最適な位置にいる監視者に向けることで画面明るさの全面性を向上できる。 Similarly, when a 15″ panel is used vertically for monitoring, if the monitoring distance is 0.8 m and the convergence angle is set to 7 degrees, the image light from the four corners of the screen can be effectively directed to the monitor. As described above, depending on the size of the liquid crystal display panel and whether it is used vertically or horizontally, the overall brightness of the screen can be improved by directing the image light at the periphery of the screen to the monitor who is in the optimum position for monitoring the center of the screen. can be improved.
 基本構成としては、図16に示すように光源装置により挟角な指向特性の光束を液晶表示パネル11に入射させ、映像信号に合わせて輝度変調することで、液晶表示パネル11の画面上に表示した映像情報を、再帰反射板で反射させ得られた空間浮遊映像を、透明な部材100を介して室外または室内に表示する。 As a basic configuration, as shown in FIG. 16, a luminous flux with a narrow-angle directional characteristic is made incident on the liquid crystal display panel 11 by a light source device, and is displayed on the screen of the liquid crystal display panel 11 by performing luminance modulation in accordance with a video signal. A spatially floating image obtained by reflecting the image information on the retroreflection plate is displayed outside or inside the room through the transparent member 100. - 特許庁
 以上説明した、本発明の一実施例に係る表示装置や光源装置を用いれば、光の利用効率がより高い空間浮遊映像表示装置を実現することが可能となる。 By using the display device and the light source device according to the embodiment of the present invention described above, it is possible to realize a spatially floating image display device with higher light utilization efficiency.
 <空間浮遊映像表示装置を用いた空間浮遊映像表示システムの実施例>
 これより、上述の空間浮遊映像表示装置を用いた空間浮遊映像表示システムの実施例について説明する。以下に説明する空間浮遊映像表示システムは、第1のユーザと第2のユーザとが、それぞれ自身用に設けられた空間浮遊映像表示装置を利用するケースを想定したものである。第1のユーザと第2のユーザとの組合せは、例えば、店員と客、説明員と聴講者、講師と受講者などである。
<Embodiment of Spatial Floating Image Display System Using Spatial Floating Image Display Device>
An embodiment of a spatial floating image display system using the spatial floating image display device described above will now be described. The spatial floating image display system described below assumes a case in which a first user and a second user each use a spatially floating image display device provided for their own use. Combinations of the first user and the second user are, for example, a store clerk and a customer, a lecturer and a listener, and a lecturer and a student.
 ≪実施例1≫(マスタ装置とスレーブ装置とを対向配置する例)
 実施例1は、第1のユーザ用である第1の空間浮遊映像表示装置と、第2のユーザ用である第2の空間浮遊映像表示装置とが互いに対向するように構成された例である。
<<Embodiment 1>> (Example in which a master device and a slave device are arranged facing each other)
Embodiment 1 is an example in which a first spatially floating image display device for a first user and a second spatially floating image display device for a second user are configured to face each other. .
 なお、以下の各実施例においては、第1のユーザのことをメインユーザともいい、第2のユーザことをサブユーザともいう。また、第1の空間浮遊映像表示装置のことをマスタ装置ともいい、第2の空間浮遊映像表示装置のことをスレーブ装置ともいう。 It should be noted that in each of the embodiments below, the first user is also called the main user, and the second user is also called the sub-user. The first spatially floating image display device is also called a master device, and the second spatially floating image display device is also called a slave device.
 具体的には、実施例1に係る空間浮遊映像表示システムは、光透過性を有する天板を含むテーブルと、テーブルの内部において互いに対向するように配置された第1の空間浮遊映像表示装置および第2の空間浮遊映像表示装置と、第1の空間浮遊映像表示装置および第2の空間浮遊映像表示装置に映像信号を送信する映像信号処理装置と、第1の空間浮遊映像表示装置により生成される空間浮遊映像においてセンシング面を形成するセンサと、センサおよび映像信号処理装置に接続され、センシング面におけるユーザによるタッチ操作に応じたセンシング信号をセンサより受信し、受信されたセンシング信号に基づいて、第1の空間浮遊映像表示装置および第2の空間浮遊映像表示装置により生成される空間浮遊映像が、それぞれ所望の表示映像となるように、映像信号処理装置を制御するコントローラと、を備えるように構成されている。 Specifically, the spatially floating image display system according to the first embodiment includes a table including a light-transmissive top plate, a first spatially floating image display device arranged to face each other inside the table, and generated by a second spatially floating image display device, a video signal processing device that transmits video signals to the first spatially floating image display device and the second spatially floating image display device, and the first spatially floating image display device; A sensor that forms a sensing surface in a spatially floating image, and is connected to the sensor and the video signal processing device, receives a sensing signal from the sensor in response to a user's touch operation on the sensing surface, and based on the received sensing signal, a controller for controlling the video signal processing device so that the spatially floating images generated by the first spatially floating image display device and the second spatially floating image display device are respectively desired display images. It is configured.
 また、コントローラは、第1の空間浮遊映像表示装置により生成される空間浮遊映像と、第2の空間浮遊映像表示装置により生成される空間浮遊映像とが、それぞれ異なる表示映像となるように、映像信号処理装置を制御する。 Further, the controller controls the image so that the spatially floating image generated by the first spatially floating image display device and the spatially floating image generated by the second spatially floating image display device are different from each other. Control the signal processor.
 図20は、実施例1に係る空間浮遊映像表示システムの構成を示す鉛直断面図である。また、図21は、実施例1に係る空間浮遊映像表示システムの構成を示す水平断面図である。 FIG. 20 is a vertical sectional view showing the configuration of the spatial floating image display system according to the first embodiment. Also, FIG. 21 is a horizontal cross-sectional view showing the configuration of the spatial floating image display system according to the first embodiment.
 図20および図21に示すように、実施例1に係る空間浮遊映像表示システム501は、テーブル10を備えている。テーブル10の内部には、メインユーザ1a用のマスタ装置2aと、サブユーザ1b用のスレーブ装置2bとが、互に対向するように、すなわち、対面状に配されるように設置されている。テーブル10は、天板14を備えている。天板14は、光透過性を有する材質、例えば、ガラスあるいはアクリル等により構成される。 As shown in FIGS. 20 and 21, the spatial floating image display system 501 according to the first embodiment includes a table 10. FIG. Inside the table 10, a master device 2a for the main user 1a and a slave device 2b for the sub-user 1b are arranged so as to face each other. The table 10 has a top plate 14. - 特許庁The top plate 14 is made of a light-transmissive material such as glass or acrylic.
 マスタ装置2aは、表示装置3aと、再帰反射板の光入射面にλ/4板が設けられた反射板4aと、偏光分離部材6aと、センサ7aとを備えている。 The master device 2a includes a display device 3a, a reflector 4a provided with a λ/4 plate on the light incident surface of the retroreflector, a polarization separation member 6a, and a sensor 7a.
 スレーブ装置2bは、表示装置3bと、再帰反射板の光入射面にλ/4板が設けられた反射板4bと、偏光分離部材6bとを備えている。 The slave device 2b includes a display device 3b, a reflector 4b provided with a λ/4 plate on the light incident surface of the retroreflector, and a polarization separation member 6b.
 マスタ装置2aでは、表示装置3aが、映像信号処理装置9から入力された映像信号に基づいて映像光を射出する。射出された映像光は、偏光分離部材6aにより偏光分離され、反射板4aにより反射され、空間浮遊映像5aが生成される。メインユーザ1aは、生成された空間浮遊映像5aを視認することができる。 In the master device 2a, the display device 3a emits video light based on the video signal input from the video signal processing device 9. The emitted image light is polarized and separated by the polarization separation member 6a and reflected by the reflector 4a to generate the spatially floating image 5a. The main user 1a can visually recognize the generated spatial floating image 5a.
 スレーブ装置2bでは、表示装置3aが、映像信号処理装置9から入力された映像信号に基づいて映像光を射出する。射出された映像光は、偏光分離部材6bにより偏光分離され、反射板4bにより反射され、空間浮遊映像5bが生成される。サブユーザ1bは、生成された空間浮遊映像5bを視認することができる。 In the slave device 2b, the display device 3a emits video light based on the video signal input from the video signal processing device 9. The emitted image light is polarized and separated by the polarization separation member 6b and reflected by the reflector 4b to generate the spatially floating image 5b. The sub-user 1b can visually recognize the generated spatial floating image 5b.
 空間浮遊映像表示システム501は、さらに、コントローラ8と、映像信号処理装置9とを備えている。コントローラ8は、映像信号処理装置9およびセンサ7aと接続されている。映像信号処理装置9は、表示装置3aおよび表示装置3bと接続されている。 The spatially floating video display system 501 further includes a controller 8 and a video signal processing device 9 . The controller 8 is connected to the video signal processing device 9 and the sensor 7a. The video signal processing device 9 is connected to the display device 3a and the display device 3b.
 センサ7aは、空間浮遊映像5a上に、センシング面12aを仮想的に生成する。メインユーザ1aは、空間浮遊映像5a上のセンシング面12aで非接触のタッチ画面操作を行うことができる。センサ7aは、タッチ画面操作に応じたセンシング信号をコントローラ8に出力する。コントローラ8は、センサ7aから入力されたセンシング信号に基づいて、メインユーザ1aによる操作を受け付け、その操作に応じた制御信号を映像信号処理装置9に出力する。映像信号処理装置9は、表示装置3aおよび表示装置3bに映像信号を出力する。また、映像信号処理装置9は、入力された制御信号に基づいて、映像信号をオン/オフしたり、出力する映像信号を切り替えたりする。 The sensor 7a virtually generates a sensing surface 12a on the spatial floating image 5a. The main user 1a can perform non-contact touch screen operations on the sensing surface 12a on the floating image 5a. The sensor 7a outputs a sensing signal to the controller 8 according to the touch screen operation. The controller 8 receives an operation by the main user 1a based on the sensing signal input from the sensor 7a, and outputs a control signal corresponding to the operation to the video signal processing device 9. The video signal processing device 9 outputs video signals to the display device 3a and the display device 3b. Further, the video signal processing device 9 turns on/off the video signal or switches the video signal to be output based on the input control signal.
 なお、映像信号処理装置9は、表示装置3aに出力される映像信号と、表示装置3bに出力される映像信号とを、別々に独立して出力することができるように構成されている。コントローラ8は、映像信号処理装置9に対して、表示装置3aに出力される映像信号と、表示装置3bに出力される映像信号とを別々に制御する制御信号を出力することができるように構成されている。したがって、メインユーザ1a用の空間浮遊映像5aと、サブユーザ1b用の空間浮遊映像5bとは、互いに異なる映像とすることもできるし、同じ映像とすることもできる。 The video signal processing device 9 is configured so as to be able to output the video signal output to the display device 3a and the video signal output to the display device 3b separately and independently. The controller 8 is configured to be able to output to the video signal processing device 9 a control signal for separately controlling the video signal output to the display device 3a and the video signal output to the display device 3b. It is Therefore, the spatially floating image 5a for the main user 1a and the spatially floating image 5b for the sub user 1b can be different images or the same image.
 このような構成を有する実施例1に係る空間浮遊映像表示システム501によれば、メインユーザ1aが、非接触のタッチ画面操作を行うことにより、サブユーザ1bに提供する映像をオン/オフしたり、映像を切り替えたりすることができ、サブユーザ1bに対してスムーズな対応が可能になる。例えば、メインユーザ1aが店員であり、サブユーザ1bが客である場合には、客に対するスムーズな接客が可能になる。 According to the space-floating image display system 501 according to the first embodiment having such a configuration, the main user 1a can turn on/off the image provided to the sub-user 1b by performing a non-contact touch screen operation. , the video can be switched, and the sub-user 1b can be dealt with smoothly. For example, when the main user 1a is a store clerk and the sub-user 1b is a customer, it is possible to serve customers smoothly.
  〔実施例1の変形例〕
 図22は、実施例1の変形例に係る空間浮遊映像表示システムの構成を示す鉛直断面図である。図22に示すように、実施例1の変形例に係る空間浮遊映像表示システム501aは、上述の空間浮遊映像表示システム501を基礎としつつ、コントローラおよび映像信号処理装置の構成および配置が異なっている。
[Modification of Embodiment 1]
22 is a vertical cross-sectional view showing the configuration of a spatial floating image display system according to a modification of the first embodiment; FIG. As shown in FIG. 22, a spatial floating image display system 501a according to a modification of the first embodiment is based on the spatial floating image display system 501 described above, but differs in the configuration and arrangement of the controller and the video signal processing device. .
 具体的には、コントローラは、第1のコントローラ8aおよび第2のコントローラ8bを含み、映像信号処理装置は、第1の映像信号処理装置9aおよび第2の映像信号処理装置9bを含む。第1のコントローラ8aおよび第1の映像信号処理装置9aは、マスタ装置2aの筐体内部に設置され、第2のコントローラ8bおよび第2の映像信号処理装置9bは、スレーブ装置2bの筐体内部に設置される。第1の映像信号処理装置9aは、マスタ装置2aに映像信号を送信し、第2の映像信号処理装置9bは、スレーブ装置2bに映像信号を送信する。第1のコントローラ8aは、センサ7a、第1の映像信号処理装置9a、および第2のコントローラ8bと接続され、センシング信号に基づいて、マスタ装置2aおよび第2のコントローラ8bを制御する。第2のコントローラ8bは、スレーブ装置2bと接続され、第1のコントローラ8aによる制御に応じて第2の映像信号処理装置9bを制御する。 Specifically, the controller includes a first controller 8a and a second controller 8b, and the video signal processing device includes a first video signal processing device 9a and a second video signal processing device 9b. The first controller 8a and the first video signal processing device 9a are installed inside the housing of the master device 2a, and the second controller 8b and the second video signal processing device 9b are installed inside the housing of the slave device 2b. is installed in The first video signal processing device 9a transmits video signals to the master device 2a, and the second video signal processing device 9b transmits video signals to the slave device 2b. The first controller 8a is connected to the sensor 7a, the first video signal processing device 9a, and the second controller 8b, and controls the master device 2a and the second controller 8b based on sensing signals. The second controller 8b is connected to the slave device 2b and controls the second video signal processing device 9b according to the control by the first controller 8a.
 マスタ装置2aは、第1のコントローラ8aおよび第1の映像信号処理装置9aを筐体内部に備えている。同様に、スレーブ装置2bは、第2のコントローラ8bおよび第2の映像信号処理装置9bを筐体内部に備えている。第1のコントローラ8aは、センサ7aおよび第1の映像信号処理装置9aと接続されている。第1の映像信号処理装置9aは、表示装置3aと接続されている。 The master device 2a includes a first controller 8a and a first video signal processing device 9a inside the housing. Similarly, the slave device 2b has a second controller 8b and a second video signal processing device 9b inside the housing. The first controller 8a is connected to the sensor 7a and the first video signal processing device 9a. The first video signal processing device 9a is connected to the display device 3a.
 第2のコントローラ8bは、第2の映像信号処理装置9bと接続されている。第2の映像信号処理装置9bは、表示装置3bと接続されている。 The second controller 8b is connected to the second video signal processing device 9b. The second video signal processing device 9b is connected to the display device 3b.
 第1のコントローラ8aは、第2のコントローラ8bと接続されている。第1のコントローラ8aは、第2のコントローラ8bに制御信号を送り、第2の映像信号処理装置9bを間接的に制御することができる。 The first controller 8a is connected to the second controller 8b. The first controller 8a can indirectly control the second video signal processing device 9b by sending a control signal to the second controller 8b.
 このような構成を有する実施例1の変形例に係る空間浮遊映像表示システム501aによれば、空間浮遊映像表示システム501と同様に、メインユーザ1aが、非接触のタッチ画面操作を行うことにより、サブユーザ1bに提供する映像をオン/オフしたり、映像を切り替えたりすることができ、サブユーザ1bに対してスムーズな対応が可能になる。 According to the spatial floating image display system 501a according to the modification of the first embodiment having such a configuration, similarly to the spatial floating image display system 501, when the main user 1a performs a non-contact touch screen operation, The video provided to the sub-user 1b can be turned on/off, or the video can be switched, making it possible to smoothly respond to the sub-user 1b.
 つまり、コントローラ8は、マスタ装置2aにより生成される空間浮遊映像5aと、スレーブ装置2bにより生成される空間浮遊映像5bとが、それぞれ異なる表示映像となるように、第1の映像信号処理装置9aを制御することができる。 That is, the controller 8 controls the first video signal processing device 9a so that the spatially floating video 5a generated by the master device 2a and the spatially floating video 5b generated by the slave device 2b are different from each other. can be controlled.
 また、マスタ装置2aとスレーブ装置2bとは、センサ7aを除いて、同じ構成を備えている。そのため、マスタ装置2aおよびスレーブ装置2bは、同じ構成の空間浮遊映像表示装置を用いることができ、設計あるいは製造に掛かるコストおよび工数を低減し、空間浮遊映像表示システムを効率良く生産することができる。 Also, the master device 2a and the slave device 2b have the same configuration except for the sensor 7a. Therefore, the master device 2a and the slave device 2b can use spatially floating image display devices having the same configuration, reducing costs and man-hours required for designing or manufacturing, and efficiently producing a spatially floating image display system. .
 ≪実施例2≫(マスタ装置側の表示画面サイズを相対的に大きくする例)
 実施例2は、マスタ装置側における空間浮遊映像の表示画面サイズが、スレーブ装置側の空間浮遊映像よりも大きくなるように構成した例である。
<<Embodiment 2>> (Example of relatively increasing the display screen size on the master device side)
A second embodiment is an example in which the display screen size of the spatially floating image on the master device side is larger than that of the spatially floating image on the slave device side.
 具体的には、実施例2に係る空間浮遊映像表示システムは、光透過性を有する天板を含むテーブルと、テーブルの内部において互いに対向するように配置された第1の空間浮遊映像表示装置および第2の空間浮遊映像表示装置と、第1の空間浮遊映像表示装置および第2の空間浮遊映像表示装置に映像信号を送信する映像信号処理装置と、第1の空間浮遊映像表示装置により生成された空間浮遊映像においてセンシング面を形成するセンサと、センサおよび映像信号処理装置に接続され、センシング面におけるユーザによるタッチ操作に応じたセンシング信号をセンサより受信し、受信されたセンシング信号に基づいて、第1の空間浮遊映像表示装置および第2の空間浮遊映像表示装置により生成される空間浮遊映像が、所望の表示映像となるように、映像信号処理装置を制御するコントローラと、を備え、第1の空間浮遊映像表示装置が有する第1の映像光射出面のサイズは、第2の空間浮遊映像表示装置が有する第2の映像光射出面のサイズより大きくなるように構成されている。 Specifically, the spatially floating image display system according to the second embodiment includes a table including a light-transmissive top plate, first spatially floating image display devices arranged to face each other inside the table, and generated by a second spatially floating image display device, a video signal processing device that transmits video signals to the first spatially floating image display device and the second spatially floating image display device, and the first spatially floating image display device; A sensor that forms a sensing surface in the space floating image, is connected to the sensor and the image signal processing device, receives a sensing signal from the sensor in response to a user's touch operation on the sensing surface, and based on the received sensing signal, a controller for controlling the video signal processing device so that the spatial floating video generated by the first spatial floating video display device and the second spatial floating video display device becomes a desired display video; The size of the first image light exit surface of the spatially floating image display device is larger than the size of the second image light exit surface of the second spatially floating image display device.
 図23は、実施例2に係る空間浮遊映像表示システムの構成を示す鉛直断面図である。図23に示すように、実施例2に係る空間浮遊映像表示システム502では、上述の空間浮遊映像表示システム501を基礎としつつ、マスタ装置2Aは、表示装置3aに代えて表示装置3Aを有しており、反射板4aに代えて反射板4Aを有している。マスタ装置2A側における表示装置3Aは、スレーブ装置2b側における表示装置3bよりも相対的に大きなサイズの映像光射出面を有している。また、マスタ装置2A側における反射板4Aは、スレーブ装置2b側における反射板4bよりも相対的に大きなサイズの光反射面を有している。このような構成により、メインユーザ1aが視認する空間浮遊映像5Aの表示サイズは、サブユーザ1bが視認する空間浮遊映像5bよりも大きくなる。 FIG. 23 is a vertical sectional view showing the configuration of the spatial floating image display system according to the second embodiment. As shown in FIG. 23, the spatial floating image display system 502 according to the second embodiment is based on the spatial floating image display system 501 described above, and the master device 2A has a display device 3A instead of the display device 3a. and has a reflector 4A instead of the reflector 4a. The display device 3A on the master device 2A side has a relatively larger image light exit surface than the display device 3b on the slave device 2b side. Further, the reflecting plate 4A on the master device 2A side has a light reflecting surface relatively larger in size than the reflecting plate 4b on the slave device 2b side. With such a configuration, the display size of the spatially floating image 5A viewed by the main user 1a is larger than the spatially floating image 5b viewed by the sub-user 1b.
 空間浮遊映像の表示画面サイズは、基本的に、表示装置の映像光射出面のサイズで決定される。表示画面サイズとしては、例えば、マスタ装置2A側の空間浮遊映像5Aにおいて、10インチサイズ、2160画素×1620画素とし、スレーブ装置2b側の空間浮遊映像5bにおいて、5.5インチサイズ、1920画素×1080画素とすることができる。 The display screen size of the spatial floating image is basically determined by the size of the image light exit surface of the display device. As for the display screen size, for example, the spatial floating image 5A on the master device 2A side has a size of 10 inches, 2160 pixels×1620 pixels, and the spatial floating image 5b on the side of the slave device 2b has a size of 5.5 inches, 1920 pixels×1920 pixels. It can be 1080 pixels.
 また、コントローラ8は、マスタ装置2Aにより生成される空間浮遊映像5Aとして複数の画面が表示され、スレーブ装置2bにより生成される空間浮遊映像5bとして上記の複数の画面のうちの1つが表示されるように、映像信号処理装置9を制御する。 Further, the controller 8 displays a plurality of screens as the spatial floating image 5A generated by the master device 2A, and displays one of the plurality of screens as the spatial floating image 5b generated by the slave device 2b. Thus, the video signal processing device 9 is controlled.
 あるいは、コントローラ8は、マスタ装置2Aにより生成される空間浮遊映像5Aとして複数の情報が表示され、スレーブ装置2bにより生成される空間浮遊映像5bとして上記の複数の情報のうちの一部が表示されるように、映像信号処理装置9を制御する。 Alternatively, the controller 8 displays a plurality of pieces of information as the spatial floating image 5A generated by the master device 2A, and displays part of the plurality of pieces of information as the spatial floating image 5b generated by the slave device 2b. The video signal processing device 9 is controlled as follows.
 図24は、実施例2に係る空間浮遊映像システムにおける表示画面の第1例を示す図である。図24(a)は、マスタ装置2A側の空間浮遊映像5Aの表示画面を示しており、図24(b)は、スレーブ装置2b側の空間浮遊映像5bの表示画面を示している。 FIG. 24 is a diagram showing a first example of a display screen in the spatial floating video system according to the second embodiment. 24(a) shows the display screen of the spatially floating image 5A on the master device 2A side, and FIG. 24(b) shows the display screen of the spatially floating image 5b on the slave device 2b side.
 図24に示すように、例えば、映像信号処理装置9は、空間浮遊映像5Aの表示画面を四分割し、分割されたそれぞれの画面A~Dに、異なる画像あるいは情報が表示されるように表示装置3Aに対して映像信号を出力する。また、映像信号処理装置9は、スレーブ装置2b側の空間浮遊映像5bの表示画面に、画面A~Dのうちの一つだけが表示されるように表示装置3bに対して映像信号を出力する。 As shown in FIG. 24, for example, the video signal processing device 9 divides the display screen of the floating image 5A into four, and displays different images or information on each of the divided screens A to D. A video signal is output to the device 3A. Further, the video signal processing device 9 outputs a video signal to the display device 3b so that only one of the screens A to D is displayed on the display screen of the spatially floating video 5b on the slave device 2b side. .
 メインユーザ1aによるタッチ操作の一例を示す。例えば、メインユーザ1aは、マスタ装置2A側の空間浮遊映像5Aにおけるセンシング面12a上で、画面A~Dのうち一つをタッチする。コントローラ8は、センサ7aからメインユーザ1aのタッチ操作に応じたセンシング信号を受信し、タッチされた画面がスレーブ装置2b側の空間浮遊映像5bの表示画面に表示されるように、映像信号処理装置9を制御する。また、メインユーザ1aは、同じ画面をもう一度タッチする。コントローラ8は、センサ7aからメインユーザ1aのタッチ操作に応じたセンシング信号を受信し、タッチされた画面がスレーブ装置2b側の空間浮遊映像5bの表示画面から消えるように、映像信号処理装置9を制御する。 An example of a touch operation by the main user 1a is shown. For example, the main user 1a touches one of the screens A to D on the sensing surface 12a in the spatial floating image 5A on the master device 2A side. The controller 8 receives a sensing signal corresponding to the touch operation of the main user 1a from the sensor 7a, and controls the video signal processing device so that the touched screen is displayed on the display screen of the floating image 5b on the side of the slave device 2b. control 9. Also, the main user 1a touches the same screen again. The controller 8 receives a sensing signal corresponding to the touch operation of the main user 1a from the sensor 7a, and controls the video signal processing device 9 so that the touched screen disappears from the display screen of the spatial floating image 5b on the slave device 2b side. Control.
 図25は、実施例2に係る空間浮遊映像システムにおける表示画面の第2例を示す図である。図25(a)は、マスタ装置2A側の空間浮遊映像5Aの表示画面を示しており、図25(b)は、スレーブ装置2b側の空間浮遊映像5bの表示画面を示している。 FIG. 25 is a diagram showing a second example of the display screen in the spatial floating video system according to the second embodiment. 25(a) shows the display screen of the spatially floating image 5A on the master device 2A side, and FIG. 25(b) shows the display screen of the spatially floating image 5b on the slave device 2b side.
 図25に示すように、例えば、映像信号処理装置9は、空間浮遊映像5Aの表示画面を四分割し、分割されたそれぞれの画面に、情報A1、お客様情報、確認事項等の情報、店内情報等のその他の情報が表示されるように表示装置3Aに対して映像信号を出力する。また、映像信号処理装置9は、スレーブ装置2b側の空間浮遊映像5bの表示画面に、情報A1を示す画面が表示されるように表示装置3bに対して映像信号を出力する。 As shown in FIG. 25, for example, the video signal processing device 9 divides the display screen of the space floating image 5A into four, and displays information A1, customer information, information such as confirmation items, and store information on each of the divided screens. A video signal is output to the display device 3A so as to display other information such as. Further, the video signal processing device 9 outputs a video signal to the display device 3b so that the screen showing the information A1 is displayed on the display screen of the spatially floating video 5b on the slave device 2b side.
 このような構成を有する実施例2に係る空間浮遊映像表示システム502によれば、メインユーザ1aは、サブユーザ1bよりも大きい表示サイズの空間浮遊映像を視認することができ、サブユーザ1bに知られることなく、空間浮遊映像5Aからより多くの情報を取得することができる。 According to the spatially floating image display system 502 according to the second embodiment having such a configuration, the main user 1a can visually recognize the spatially floating image having a display size larger than that of the sub-user 1b, and the sub-user 1b can be notified. It is possible to obtain more information from the spatially floating image 5A without being distorted.
 例えば、メインユーザ1aは、サブユーザ1bに対して説明する複数あるいは全部のパターンを把握しながら、順次必要な情報をサブユーザ1bに提示することができる。その結果、説明あるいは接客等のサービスにおける効率の向上、スキルの自動取得等が可能となる。その結果、メインユーザ1aは、サブユーザ1bに対する説明や接客がより容易になり、正確でスムーズな対応、サブユーザ1bがより満足する対応等が可能となる。また、メインユーザ1aは、サブユーザ1bに関する情報の正確でスムーズな入力等が可能となる。 For example, the main user 1a can sequentially present necessary information to the sub-user 1b while grasping a plurality or all of the patterns to be explained to the sub-user 1b. As a result, it becomes possible to improve the efficiency of services such as explanations and customer service, and to automatically acquire skills. As a result, it becomes easier for the main user 1a to provide explanations and serve customers to the sub-user 1b. Also, the main user 1a can input information about the sub-user 1b accurately and smoothly.
 なお、マスタ装置2A側の空間浮遊映像5Aとして表示する画面もしくは情報の数、あるいは、スレーブ装置2b側の空間浮遊映像5bとして表示する画面もしくは情報の数は、本実施例に限定されない。 The number of screens or information displayed as the spatial floating image 5A on the master device 2A side or the number of screens or information displayed as the spatial floating image 5b on the slave device 2b side is not limited to this embodiment.
 ≪実施例3≫(複数のスレーブ装置を設ける例)
 実施例3は、マスタ装置が1台設置されるのに対して、スレーブ装置が複数台設置されるように構成した例である。
<<Embodiment 3>> (Example of providing a plurality of slave devices)
The third embodiment is an example in which one master device is installed and a plurality of slave devices are installed.
 図26は、実施例3に係る空間浮遊映像表示システムの構成を示す水平断面図である。 FIG. 26 is a horizontal sectional view showing the configuration of the spatial floating image display system according to the third embodiment.
 図26に示すように、実施例3に係る空間浮遊映像表示システム503は、テーブル20を備えている。テーブル20の内部には、メインユーザ1a用のマスタ装置2aと、サブユーザ1b,1c用のスレーブ装置2b,2cとが、対向するように、すなわち対面状に配されるように設置されている。テーブル20は、光透過性を有する天板(不図示)が設置されている。 As shown in FIG. 26, the spatial floating image display system 503 according to the third embodiment includes a table 20. As shown in FIG. Inside the table 20, a master device 2a for the main user 1a and slave devices 2b and 2c for the sub-users 1b and 1c are installed so as to face each other. . The table 20 is provided with a light-transmitting top plate (not shown).
 マスタ装置2aは、表示装置3Aと、反射板4Aと、偏光分離部材(不図示)と、センサ7aとを備えている。スレーブ装置2bは、表示装置3bと、反射板4bと、偏光分離部材(不図示)とを備えている。同様に、スレーブ装置2cは、表示装置3cと、反射板4cと、偏光分離部材(不図示)とを備えている。 The master device 2a includes a display device 3A, a reflector 4A, a polarization separating member (not shown), and a sensor 7a. The slave device 2b includes a display device 3b, a reflector 4b, and a polarization separating member (not shown). Similarly, the slave device 2c includes a display device 3c, a reflector 4c, and a polarization separating member (not shown).
 コントローラ(不図示)は、センサ7aと接続されるとともに、映像信号処理装置(不図示)に接続されている。映像信号処理装置(不図示)は、表示装置3A、表示装置3b、および表示装置3cに、映像信号を送信する。 The controller (not shown) is connected to the sensor 7a and to a video signal processing device (not shown). A video signal processing device (not shown) transmits video signals to the display device 3A, the display device 3b, and the display device 3c.
 このような構成により、マスタ装置2A側には空間浮遊映像5Aが生成される。スレーブ装置2b側には空間浮遊映像5bが生成され、スレーブ装置2c側には空間浮遊映像5cが生成される。マスタ装置2A側の空間浮遊映像5Aの表示画面サイズは、スレーブ装置2b,2c側の空間浮遊映像5b,5cより大きい。または、マスタ装置2A側の空間浮遊映像5Aの表示画面サイズは、スレーブ装置2b,2c側の空間浮遊映像5b,5cと同じでもよい。各空間浮遊映像の表示画面サイズおよび画素数は、例えば、実施例1と実施例2と同様であってよい。 With such a configuration, a spatially floating image 5A is generated on the master device 2A side. A spatially floating image 5b is generated on the slave device 2b side, and a spatially floating image 5c is generated on the slave device 2c side. The display screen size of the spatial floating image 5A on the master device 2A side is larger than the spatial floating images 5b, 5c on the slave devices 2b, 2c side. Alternatively, the display screen size of the spatially floating image 5A on the master device 2A side may be the same as that of the spatially floating images 5b and 5c on the slave devices 2b and 2c side. The display screen size and the number of pixels of each spatial floating image may be the same as those in the first and second embodiments, for example.
 メインユーザ1aが、空間浮遊映像5Aにおいてタッチ操作を行うと、センサ7aはその操作に応じたセンシング信号をコントローラに送信する。メインユーザ1aは、空間浮遊映像5Aにおいてタッチ操作を行い、サブユーザ1b,1c側の空間浮遊映像5b,5cとして表示するコンテンツを制御する。 When the main user 1a performs a touch operation on the floating image 5A, the sensor 7a transmits a sensing signal according to the operation to the controller. The main user 1a performs a touch operation on the spatially floating image 5A to control the contents displayed as the spatially floating images 5b and 5c on the side of the sub-users 1b and 1c.
 図27は、実施例3に係る空間浮遊映像システムにおける表示画面の第1例を示す図である。図27(a)は、マスタ装置2A側の空間浮遊映像5Aの表示画面を示している。図27(b)は、スレーブ装置2b側の空間浮遊映像5bの表示画面を、図27(c)は、スレーブ装置2c側の空間浮遊映像5cの表示画面を、それぞれ示している。 FIG. 27 is a diagram showing a first example of the display screen in the spatial floating video system according to the third embodiment. FIG. 27(a) shows the display screen of the spatial floating image 5A on the master device 2A side. FIG. 27(b) shows the display screen of the spatially floating image 5b on the side of the slave device 2b, and FIG. 27(c) shows the display screen of the spatially floating image 5c on the side of the slave device 2c.
 図27に示すように、例えば、映像信号処理装置は、空間浮遊映像5Aの表示画面を四分割し、分割されたそれぞれの画面A~Dに、異なる画像あるいは情報が表示されるように表示装置に対して映像信号を出力する。また、映像信号処理装置は、スレーブ装置2b,2c側の空間浮遊映像5b,5cの表示画面に、分割された画面A~Dのうちの1つだけがそれぞれ表示されるように表示装置に対して映像信号を出力する。本表示例では、空間浮遊映像5b,5cに画面Aが表示されている。なお、空間浮遊映像5bとしての表示画面と、空間浮遊映像5cとしての表示画面とは、常に同期して同じ情報が表示されるようにしてもよいし、それぞれ独立した情報が表示できるようにしてもよい。例えば、空間浮遊映像5bとして画面Aを表示し、空間浮遊映像5cとして画面Bを表示するようにしてもよい。 As shown in FIG. 27, for example, the video signal processing device divides the display screen of the spatially floating image 5A into four, and displays different images or information on each of the divided screens A to D. outputs the video signal to the Further, the video signal processing device controls the display device so that only one of the divided screens A to D is displayed on the display screens of the spatially floating images 5b and 5c of the slave devices 2b and 2c. to output the video signal. In this display example, the screen A is displayed in the spatially floating images 5b and 5c. The display screen as the spatial floating image 5b and the display screen as the spatial floating image 5c may always synchronize and display the same information, or may display independent information. good too. For example, the screen A may be displayed as the spatially floating image 5b, and the screen B may be displayed as the spatially floating image 5c.
 このような構成を有する実施例3に係る空間浮遊映像表示システム503によれば、メインユーザは、複数のサブユーザに対して、画面を共有しながら同時に説明を行うことができ、サブユーザが複数であっても同等のサービスをそれぞれに提供することができる。特に、店あるいは施設などにおける接客の場面では二人のペア客が来訪することが多いため、本システムは、このような現場に適している。 According to the spatial floating image display system 503 according to the third embodiment having such a configuration, the main user can simultaneously explain to a plurality of sub-users while sharing the screen, and the sub-users can can provide the same service to each other. In particular, in the scene of customer service at a store or facility, a pair of customers often visit, so this system is suitable for such a scene.
 ≪実施例4≫(マスタ装置の横方向スライド機構を設ける例)
 実施例4は、実施例3を基礎に、マスタ装置のスライド機構を有するように構成した例である。なお、本実施例において、マスタ装置の移動は、マスタ装置におけるセンサを含めた光学系の移動を伴うものを意味しており、マスタ装置の筐体のみの移動を意味しない。
<<Embodiment 4>> (Example of providing a lateral slide mechanism for the master device)
A fourth embodiment is an example configured based on the third embodiment so as to have a slide mechanism for the master device. In this embodiment, movement of the master device means movement of the optical system including the sensor in the master device, and does not mean movement of only the housing of the master device.
 具体的には、実施例4に係る空間浮遊映像表示システムは、光透過性を有する天板を含むテーブルと、テーブルの内部において互いに対向するように配置された第1の空間浮遊映像表示装置および複数の第2の空間浮遊映像表示装置と、第1の空間浮遊映像表示装置および複数の第2の空間浮遊映像表示装置に映像信号を送信する映像信号処理装置と、第1の空間浮遊映像表示装置により生成された空間浮遊映像においてセンシング面を形成するセンサと、センサおよび前記映像信号処理装置に接続され、センシング面におけるユーザによるタッチ操作に応じたセンシング信号をセンサより受信し、受信されたセンシング信号に基づいて、第1の空間浮遊映像表示装置および複数の第2の空間浮遊映像表示装置により生成される空間浮遊映像が、所望の表示映像となるように、映像信号処理装置を制御するコントローラと、第1の空間浮遊映像表示装置を、水平、かつ、前記複数の第2の空間浮遊映像表示装置が並ぶ方向と平行な方向において、スライドさせるスライド機構と、を備えるように構成されている。 Specifically, the spatially floating image display system according to the fourth embodiment includes a table including a light-transmissive top plate, first spatially floating image display devices arranged to face each other inside the table, and A plurality of second spatially floating image display devices, a video signal processing device for transmitting image signals to the first spatially floating image display device and the plurality of second spatially floating image display devices, and a first spatially floating image display A sensor forming a sensing surface in a space-floating image generated by the device, connected to the sensor and the image signal processing device, receiving a sensing signal from the sensor according to a user's touch operation on the sensing surface, and receiving the received sensing A controller for controlling the video signal processing device so that the spatially floating video generated by the first spatially floating video display device and the plurality of second spatially floating video display devices, based on the signal, becomes a desired display video. and a slide mechanism for sliding the first spatially floating image display device horizontally and in a direction parallel to the direction in which the plurality of second spatially floating image display devices are arranged. .
 図28は、実施例4に係る空間浮遊映像表示システムの構成を示す水平断面図である。図28に示すように、実施例4に係る空間浮遊映像表示システム504は、水平方向のうち複数のスレーブ装置2b,2cが並ぶ方向(x軸方向)と平行な方向において、マスタ装置2aが初期位置2asから移動可能となるスライド機構35を備えている。 FIG. 28 is a horizontal sectional view showing the configuration of the spatial floating image display system according to the fourth embodiment. As shown in FIG. 28, in the spatial floating image display system 504 according to the fourth embodiment, the master device 2a is initialized in the horizontal direction parallel to the direction (x-axis direction) in which the plurality of slave devices 2b and 2c are arranged. It has a slide mechanism 35 that can be moved from the position 2as.
 スライド機構35は、例えば、テーブル20に設けられるレールと、マスタ装置2aに設けられ車輪とにより構成されてもよい。また例えば、ラック・アンド・ピニオンにより構成されてもよい。 The slide mechanism 35 may be composed of, for example, rails provided on the table 20 and wheels provided on the master device 2a. Alternatively, for example, it may be configured by a rack and pinion.
 マスタ装置2aの移動は、手動で行うように構成されてもよいし、モータ等の駆動源を用いて電動で行うように構成されてもよい。 The movement of the master device 2a may be configured to be performed manually, or may be configured to be electrically performed using a drive source such as a motor.
 また、マスタ装置2aの移動を電動で行う場合には、マスタ装置2aが、スレーブ装置側に居るサブユーザの位置に合うよう、自動で移動されるように構成してもよい。例えば、スレーブ装置に対応したサブユーザが居る位置を検出する位置検出装置を備え、コントローラ(不図示)は、この位置検出装置による検出結果に基づいて、マスタ装置2aのスライド位置を決定し、スライド機構35に設けられた駆動源を制御する。 Further, when the master device 2a is electrically moved, the master device 2a may be configured to be automatically moved so as to match the position of the sub-user on the slave device side. For example, a position detection device that detects the position of the sub-user corresponding to the slave device is provided, and a controller (not shown) determines the slide position of the master device 2a based on the detection result of this position detection device, and slides the master device 2a. It controls the drive source provided in the mechanism 35 .
 このとき、例えば、コントローラは、マスタ装置2aのスライド位置を、サブユーザ1bに対応するスレーブ装置2bと対向する位置に決定する。マスタ装置2aを自動で移動させる方法の具体例としては、スレーブ装置2b側に人感センサを設けたり、カメラで撮った画像を基に画像認識処理を行ったりすることにより、スレーブ装置側に居るサブユーザの位置を検出し、その検出結果に基づいて駆動源を駆動する。マスタ装置2aの位置は、リニアスケール等を用いることにより検知し、制御することができる。 At this time, for example, the controller determines the slide position of the master device 2a to a position facing the slave device 2b corresponding to the sub-user 1b. As a specific example of the method of automatically moving the master device 2a, a motion sensor may be provided on the slave device 2b side, or image recognition processing may be performed based on an image taken by a camera. The position of the sub-user is detected, and the drive source is driven based on the detection result. The position of the master device 2a can be detected and controlled by using a linear scale or the like.
 このような構成を有する実施例4に係る空間浮遊映像表示システム504によれば、2名もしくはそれ以上のサブユーザに対応できる空間浮遊映像表示システムにおいて、サブユーザが1名だけ居る場合であっても、マスタ装置2aをサブユーザの位置に合わせてスライドさせることができる。その結果、メインユーザ1aは、空間浮遊映像5aを正面から視認しつつ、サブユーザに対して正対する位置に立つまたは着座ことができ、サブユーザに対してより好適な状況でサービスを提供することができる。 According to the spatial floating image display system 504 according to the fourth embodiment having such a configuration, in the spatial floating image display system capable of supporting two or more sub-users, even if there is only one sub-user, Also, the master device 2a can be slid according to the position of the sub-user. As a result, the main user 1a can stand or sit at a position directly facing the sub-user while viewing the spatially floating image 5a from the front, thereby providing services to the sub-user in a more suitable situation. can be done.
 ≪実施例5≫(マスタ装置の回動機構を設ける例)
 実施例5は、実施例3を基礎に、マスタ装置の回動機構を有するように構成した例である。なお、本実施例において、マスタ装置の回動は、マスタ装置におけるセンサを含めた光学系の回動を伴うものを意味しており、マスタ装置の筐体のみの回動を意味しない。
<<Embodiment 5>> (Example of providing a rotating mechanism for the master device)
A fifth embodiment is an example configured based on the third embodiment so as to have a rotation mechanism for the master device. In this embodiment, rotation of the master device means rotation of the optical system including the sensor in the master device, and does not mean rotation of only the housing of the master device.
 具体的には、実施例5に係る空間浮遊映像表示システムは、光透過性を有する天板を含むテーブルと、テーブルの内部において互いに対向するように配置された第1の空間浮遊映像表示装置および複数の第2の空間浮遊映像表示装置と、第1の空間浮遊映像表示装置および複数の第2の空間浮遊映像表示装置に映像信号を送信する映像信号処理装置と、第1の空間浮遊映像表示装置により生成された空間浮遊映像においてセンシング面を形成するセンサと、センサおよび前記映像信号処理装置に接続され、センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信されたセンシング信号に基づいて、第1の空間浮遊映像表示装置および前記複数の第2の空間浮遊映像表示装置により生成される空間浮遊映像が、所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、第1の空間浮遊映像表示装置を、スイーベル方向において回動させる回動機構と、を備えるように構成されている。 Specifically, the spatially floating image display system according to the fifth embodiment includes a table including a light-transmissive top plate, first spatially floating image display devices arranged to face each other inside the table, and A plurality of second spatially floating image display devices, a video signal processing device for transmitting image signals to the first spatially floating image display device and the plurality of second spatially floating image display devices, and a first spatially floating image display A sensor forming a sensing surface in the space-floating image generated by the device, connected to the sensor and the video signal processing device, and receiving a sensing signal from the sensor in response to a user's touch operation on the sensing surface. The video signal processing device is operated so that the spatially floating video generated by the first spatially floating video display device and the plurality of second spatially floating video display devices is a desired display video, based on the sensing signal. and a rotating mechanism for rotating the first spatial floating image display device in the swivel direction.
 図29は、実施例5に係る空間浮遊映像表示システムの構成を示す水平断面図である。図29に示すように、実施例5に係る空間浮遊映像表示システム505は、水平方向(スイーベル方向)のうちマスタ装置2Aが複数のスレーブ装置2b,2cの各々に向くような角度を含む角度範囲において、マスタ装置2Aが初期位置2Asから回動可能となる回動機構36を備えている。 FIG. 29 is a horizontal sectional view showing the configuration of the spatial floating image display system according to the fifth embodiment. As shown in FIG. 29, the spatially floating image display system 505 according to the fifth embodiment has an angle range including an angle in the horizontal direction (swivel direction) at which the master device 2A faces each of the plurality of slave devices 2b and 2c. , the master device 2A is provided with a rotation mechanism 36 that can rotate from the initial position 2As.
 回動機構36は、例えば、テーブル20内部に設けられたスイーベルスタンド、あるいはターンテーブルであって、下部をテーブル20に固定し、上部にマスタ装置2Aを載置するものにより構成されてもよい。また例えば、テーブル20に設けられるレールと、マスタ装置2Aに設けられる車輪と、により構成されてもよい。また例えば、ラック・アンド・ピニオンにより構成されてもよい。 The rotating mechanism 36 may be, for example, a swivel stand or a turntable provided inside the table 20, the lower part of which is fixed to the table 20, and the master device 2A is placed on the upper part. Alternatively, for example, it may be composed of rails provided on the table 20 and wheels provided on the master device 2A. Alternatively, for example, it may be configured by a rack and pinion.
 マスタ装置2Aの回動は、実施例4と同様に、手動であってもよいし電動であってもよい。電動の場合、マスタ装置2Aは、自動で回動するようにしてもよい。例えば、スレーブ装置に対応したサブユーザが居る位置を検出する位置検出装置を備え、コントローラ(不図示)は、その位置検出装置による検出結果に基づいて、マスタ装置2aの回動位置を決定し、回動機構36の駆動源を制御する。この場合、例えば、コントローラは、マスタ装置2Aの回動位置を、サブユーザ1bに対応するスレーブ装置2bがある方向を向く位置に決定する。位置検出装置には、例えば、人感センサあるいは画像認識のためのカメラ等を用いることができる。または、位置検出装置は、メインユーザが居る位置を検出することも可能である。この場合、メインユーザがサブユーザに対向する位置に立ち、コントローラは、マスタ装置2Aの回動位置を、メインユーザ1aに対応する方向を向く位置に決定する。 The rotation of the master device 2A may be manual or electric as in the fourth embodiment. In the case of an electric drive, the master device 2A may rotate automatically. For example, a position detection device for detecting the position of the sub-user corresponding to the slave device is provided, and the controller (not shown) determines the rotation position of the master device 2a based on the detection result of the position detection device, It controls the driving source of the rotating mechanism 36 . In this case, for example, the controller determines the rotation position of the master device 2A to a position where the slave device 2b corresponding to the sub-user 1b faces a certain direction. For example, a motion sensor or a camera for image recognition can be used as the position detection device. Alternatively, the position detection device can detect the position of the main user. In this case, the main user stands at a position facing the sub-user, and the controller determines the rotation position of the master device 2A to face the direction corresponding to the main user 1a.
 このような構成を有する実施例5に係る空間浮遊映像表示システム505によれば、2名もしくはそれ以上のサブユーザに対応できる空間浮遊映像表示システムにおいて、サブユーザが1名だけ居る場合であっても、マスタ装置をサブユーザまたはメインユーザの位置に合わせて回動させることができる。その結果、メインユーザは、空間浮遊映像を好適な位置から視認しつつ、サブユーザに対して正対する位置に立つまたは着座ことができ、サブユーザに対してより好適な状況でサービスを提供することができる。 According to the spatial floating image display system 505 according to the fifth embodiment having such a configuration, in the spatial floating image display system capable of supporting two or more sub-users, even if there is only one sub-user, Also, the master device can be rotated to match the position of the sub-user or the main user. As a result, the main user can stand or sit in a position directly facing the sub-user while viewing the spatially floating image from a suitable position, thereby providing services to the sub-user in a more suitable situation. can be done.
 ≪実施例6≫(スレーブ装置の奥行方向スライド機構を設ける例)
 実施例6は、実施例3を基礎に、スレーブ装置のスライド機構を有するように構成した例である。なお、本実施例において、スレーブ装置の移動は、スレーブ装置における光学系の移動を伴うものを意味しており、スレーブ装置の筐体のみの移動を意味しない。
<<Embodiment 6>> (Example of providing a depth direction slide mechanism for the slave device)
A sixth embodiment is an example configured based on the third embodiment so as to have a slide mechanism for a slave device. In this embodiment, the movement of the slave device means the movement of the optical system in the slave device, and does not mean the movement of only the housing of the slave device.
 具体的には、実施例6に係る空間浮遊映像表示システムは、光透過性を有する天板を含むテーブルと、テーブルの内部において互いに対向するように配置された第1の空間浮遊映像表示装置および複数の第2の空間浮遊映像表示装置と、第1の空間浮遊映像表示装置および複数の第2の空間浮遊映像表示装置に映像信号を送信する映像信号処理装置と、第1の空間浮遊映像表示装置により生成された空間浮遊映像においてセンシング面を形成するセンサと、センサおよび前記映像信号処理装置に接続され、センシング面におけるユーザによるタッチ操作に応じたセンシング信号をセンサより受信し、受信されたセンシング信号に基づいて、第1の空間浮遊映像表示装置および複数の第2の空間浮遊映像表示装置により生成される空間浮遊映像が、所望の表示映像となるように、映像信号処理装置を制御するコントローラと、複数の第2の空間浮遊映像表示装置のうち少なくとも一方を、水平、かつ、第1の空間浮遊映像表示装置と複数の第2の空間浮遊映像表示装置とが対向する方向において、スライドさせるスライド機構と、を備えるように構成されている。 Specifically, the spatially floating image display system according to the sixth embodiment includes a table including a light-transmissive top plate, a first spatially floating image display device arranged to face each other inside the table, and A plurality of second spatially floating image display devices, a video signal processing device for transmitting image signals to the first spatially floating image display device and the plurality of second spatially floating image display devices, and a first spatially floating image display A sensor forming a sensing surface in a space-floating image generated by the device, connected to the sensor and the image signal processing device, receiving a sensing signal from the sensor according to a user's touch operation on the sensing surface, and receiving the received sensing A controller for controlling the video signal processing device so that the spatially floating video generated by the first spatially floating video display device and the plurality of second spatially floating video display devices, based on the signal, becomes a desired display video. Then, at least one of the plurality of second spatially floating image display devices is slid horizontally in a direction in which the first spatially floating image display device and the plurality of second spatially floating image display devices face each other. and a sliding mechanism.
 図30は、実施例6に係る空間浮遊映像表示システムの構成を示す水平断面図である。また、図31は、実施例6に係る空間浮遊映像表示システムの構成を示す鉛直断面図である。 FIG. 30 is a horizontal sectional view showing the configuration of the spatial floating image display system according to the sixth embodiment. Also, FIG. 31 is a vertical sectional view showing the configuration of the spatial floating image display system according to the sixth embodiment.
 図30および図31に示すように、実施例6に係る空間浮遊映像表示システム506は、水平方向のうちマスタ装置2Aと複数のスレーブ装置2b,2cとが正対する方向(y軸方向)において、スレーブ装置2b,2cが初期位置2bs,2csからそれぞれ移動可能となるスライド機構37を備えている。 As shown in FIGS. 30 and 31, in the spatially floating image display system 506 according to the sixth embodiment, in the horizontal direction (y-axis direction) in which the master device 2A faces the plurality of slave devices 2b and 2c, A slide mechanism 37 is provided to allow the slave devices 2b and 2c to move from the initial positions 2bs and 2cs, respectively.
 スライド機構37は、例えば、テーブル20に設けられるレールと、スレーブ装置2b,2cに設けられ車輪とにより構成されてもよい。また例えば、ラック・アンド・ピニオンにより構成されてもよい。 The slide mechanism 37 may be composed of, for example, rails provided on the table 20 and wheels provided on the slave devices 2b and 2c. Alternatively, for example, it may be configured by a rack and pinion.
 スレーブ装置2b,2cの移動は、手動で行うように構成されてもよいし、スライド機構37にモータ等の駆動源を設けて電動で行うように構成されてもよい。 The movement of the slave devices 2b and 2c may be configured to be performed manually, or may be configured to be electrically performed by providing the slide mechanism 37 with a drive source such as a motor.
 また、スレーブ装置の移動を電動で行う場合には、スレーブ装置が、スレーブ装置側に居るサブユーザの位置、身長、あるいは目の高さに合うよう、自動で移動されるように構成してもよい。スレーブ装置を自動で移動させる方法としては、例えば、スレーブ装置側に距離センサを設けたり、カメラで撮った画像を基に画像認識処理を行ったりすることにより、スレーブ側に居るサブユーザの位置、身長、あるいは目の高さを検出し、その検出結果に基づいて駆動源を駆動する。スレーブ装置の位置は、リニアスケール等を用いることにより検知することができる。 Further, when the slave device is electrically moved, the slave device may be automatically moved to match the position, height, or eye level of the sub-user on the side of the slave device. good. As a method of automatically moving the slave device, for example, by providing a distance sensor on the slave device side or performing image recognition processing based on the image taken by the camera, the position of the sub-user on the slave side, Height or eye height is detected, and the driving source is driven based on the detection result. The position of the slave device can be detected by using a linear scale or the like.
 本実施例に係る空間浮遊映像表示システム506において、スライド機構37は、コントローラ8と、テーブル20のサブユーザ1b,1c側に設けられた操作部33とに接続されている。スレーブ装置の移動は、メインユーザ1aが、空間浮遊映像5aにおけるタッチ操作により、コントローラ8を介して行ってもよいし、サブユーザ1b,1c自身が、操作部33における操作により、自分の好みの位置に移動させるようにしてもよい。なお、操作部33は、接触型であってもよいし、非接触型であってもよい。 In the spatial floating image display system 506 according to this embodiment, the slide mechanism 37 is connected to the controller 8 and the operation unit 33 provided on the sub-user 1b, 1c side of the table 20. The movement of the slave device may be performed by the main user 1a through the controller 8 by performing a touch operation on the spatially floating image 5a, or by the sub-users 1b and 1c themselves by performing an operation on the operation unit 33 to their liking. You may make it move to a position. Note that the operation unit 33 may be of a contact type or may be of a non-contact type.
 このような構成を有する実施例6に係る空間浮遊映像表示システム506によれば、スレーブ装置の位置を、サブユーザの身長に合わせて、サブユーザにとって空間浮遊映像が見易くなるような位置に移動させることができる。すなわち、サブユーザは、楽な姿勢を選択することができる。例えば、サブユーザが高身長である場合には、スレーブ装置の位置を、サブユーザから離れる向きに移動させることにより、サブユーザは、首を下げ過ぎない自然で楽な角度に保って、空間浮遊映像を視認することができる。 According to the spatial floating image display system 506 according to the sixth embodiment having such a configuration, the position of the slave device is moved to a position where the sub-user can easily see the spatial floating image according to the height of the sub-user. be able to. That is, the sub-user can select a comfortable posture. For example, if the sub-user is tall, by moving the position of the slave device away from the sub-user, the sub-user can maintain a natural and comfortable angle without lowering the neck too much and float in space. You can see the video.
 なお、複数のスレーブ装置2b,2cのスライド方向における位置は、すべて同じになるように制御されてもよいし、それぞれの位置が別々に設定できるように、独立に制御されてもよい。独立に制御される場合には、操作部33は、スレーブ装置2b,2cごとに設けられる。この場合、身長が互いに大きく異なる複数のサブユーザに対しても、複数のサブユーザは、それぞれ好適な姿勢で空間浮遊映像を視認することができる。 The positions in the sliding direction of the plurality of slave devices 2b and 2c may be controlled to be the same, or may be independently controlled so that each position can be set separately. When controlled independently, the operation unit 33 is provided for each of the slave devices 2b and 2c. In this case, even for a plurality of sub-users whose heights are significantly different from each other, the plurality of sub-users can view the spatially floating image in their respective preferred postures.
 また、スレーブ装置に設けたy軸方向のスライド機構を、マスタ装置側にも設けるようにしてもよい。この場合、メインユーザの身長に合わせてマスタ装置を移動させることでき、メインユーザも自然で楽な姿勢を取りながら空間浮遊映像を視認し、またタッチ操作をすることができる。 Also, the y-axis direction slide mechanism provided in the slave device may also be provided in the master device. In this case, the master device can be moved according to the height of the main user, and the main user can also view the spatially floating image and perform the touch operation while taking a natural and comfortable posture.
  〔実施例6の変形例〕
 コントローラ8は、スライド後におけるスレーブ装置2bにより生成される空間浮遊映像5bが、スライド前におけるスレーブ装置2bにより生成される空間浮遊映像5Bと同じ形状で視認されるように、スレーブ装置2bが射出する映像の形状を補正するべく、映像信号処理装置を制御する。
 図32は、実施例6に係る空間浮遊映像表示システムによる空間浮遊映像の台形歪補正について説明するための図である。
[Modification of Embodiment 6]
The controller 8 causes the slave device 2b to project such that the spatially floating image 5b generated by the slave device 2b after sliding is viewed in the same shape as the spatially floating image 5B generated by the slave device 2b before sliding. A video signal processing device is controlled to correct the shape of the video.
FIG. 32 is a diagram for explaining trapezoidal distortion correction of a spatially floating image by the spatially floating image display system according to the sixth embodiment.
 空間浮遊映像表示システム506は、スレーブ装置が初期位置に位置し、平均的な身長のサブユーザが、平均的な位置から空間浮遊映像5bを見た場合に、視認される空間浮遊映像5bが矩形状となるように設計される。このときの空間浮遊映像5bの形状は、例えば、図32(a)に示す形状イメージで表すことができる。 In the spatial floating image display system 506, when the slave device is positioned at the initial position and a sub-user of average height views the spatial floating image 5b from an average position, the visible spatial floating image 5b is rectangular. designed to be shaped The shape of the spatially floating image 5b at this time can be represented by, for example, a shape image shown in FIG. 32(a).
 一方、スレーブ装置2bを初期位置2bsからスライド方向(y軸方向)に移動させ、空間浮遊映像5bをスライド方向に移動した空間浮遊映像5Bとして出現させた場合には、サブユーザ1bは、空間浮遊映像5Bをスライド移動前と比較してより下方から見ることになる。そのため、サブユーザ1bは、空間浮遊映像5Bを、台形状に歪んだ状態で見ることになる。このときの空間浮遊映像5Bの形状は、例えば、図32(b)に示す形状イメージで表すことができる。 On the other hand, when the slave device 2b is moved in the sliding direction (y-axis direction) from the initial position 2bs, and the spatially floating image 5b is caused to appear as the spatially floating image 5B moved in the sliding direction, the sub-user 1b moves in the spatially floating image 5B. The image 5B is viewed from below compared to before the slide movement. Therefore, the sub-user 1b sees the spatially floating image 5B in a trapezoidally distorted state. The shape of the spatially floating image 5B at this time can be represented by, for example, a shape image shown in FIG. 32(b).
 そこで、空間浮遊映像表示システム506では、サブユーザ1bが空間浮遊映像5Bを矩形状の状態で見えるよう、表示装置3bから射出される映像が上下逆の台形状となるように映像の形状を補正する。すなわち、映像信号処理装置9は、このような補正が掛かるように表示装置3bに送る映像信号を制御する。このときの射出映像の形状は、例えば、図32(c)に示す形状イメージで表すことができる。 Therefore, in the spatial floating image display system 506, the shape of the image is corrected so that the image projected from the display device 3b is an upside down trapezoid so that the sub-user 1b can see the spatial floating image 5B in a rectangular state. do. That is, the video signal processing device 9 controls the video signal sent to the display device 3b so as to apply such correction. The shape of the projected image at this time can be represented by, for example, a shape image shown in FIG. 32(c).
 このような補正により、空間浮遊映像5Bは、サブユーザ1bから見たとき矩形状に見えるようになる。このときの空間浮遊映像5Bの形状は、例えば、図32(d)に示す形状イメージで表すことができる。 With such correction, the spatially floating image 5B appears rectangular when viewed from the sub-user 1b. The shape of the spatially floating image 5B at this time can be represented by, for example, a shape image shown in FIG. 32(d).
 なお、補正の程度は、例えば、サブユーザ1bが平均的な身長であり、平均的な位置に居ると仮定して、スレーブ装置2bの位置(初期位置からのスライド量)から逆算して求めてもよい。 The degree of correction is obtained by calculating back from the position of the slave device 2b (the amount of slide from the initial position), assuming that the sub-user 1b has an average height and is in an average position. good too.
 あるいは、スレーブ装置2bにより生成される空間浮遊映像を視認するサブユーザ1bの身長または目線の高さなどを検出する検出装置を備え、コントローラ8は、その検出装置により検出された身長または目線の高さなどに基づいて、スレーブ装置2bのスライド量(スライド位置)を調整するべく、スライド機構37の駆動源を制御するようにしてもよい。例えば、カメラ等でサブユーザ1bを撮像し、得られた画像に対して画像認識処理を行い、サブユーザ1bの身長等を検出し、その検出結果に基づいてスライド量を算出してもよい。 Alternatively, a detection device is provided for detecting the height or eye level of the sub-user 1b viewing the spatially floating image generated by the slave device 2b, and the controller 8 detects the height or eye level of the subuser 1b detected by the detection device. The driving source of the slide mechanism 37 may be controlled in order to adjust the amount of slide (sliding position) of the slave device 2b based on such factors as. For example, an image of the sub-user 1b may be captured by a camera or the like, image recognition processing may be performed on the obtained image, the height and the like of the sub-user 1b may be detected, and the slide amount may be calculated based on the detection result.
 このような構成を有する実施例6の変形例によれば、スレーブ装置2bを正対方向に移動させても、サブユーザ1bは、空間浮遊映像5Bを歪みない状態で視認することができる。 According to the modified example of the sixth embodiment having such a configuration, even if the slave device 2b is moved in the facing direction, the sub-user 1b can visually recognize the floating image 5B without distortion.
 以上、種々の実施例について詳述したが、本発明は、上述した実施例のみに限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although various embodiments have been described in detail above, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments describe the entire system in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
 例えば、マスタ装置側の空間浮遊映像の表示サイズを大きくした実施例2を、実施例3~実施例6と組み合わせることが可能である。また例えば、マスタ装置にスライド機構を設けた実施例4、あるいはマスタ装置に回動機構を設けた実施例5を、スレーブ装置にスライド機構を設けた実施例6と組み合わせることも可能である。 For example, it is possible to combine Example 2, in which the display size of the spatial floating image on the master device side is increased, with Examples 3 to 6. Further, for example, the fourth embodiment in which the master device is provided with a slide mechanism or the fifth embodiment in which the master device is provided with a rotating mechanism can be combined with the sixth embodiment in which the slave device is provided with a slide mechanism.
 本発明の考えられる形態について次の通り付記する。
 [付記1]
 光透過性を有する天板を含むテーブルと、
 前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および第2の空中浮遊映像表示装置と、
 前記第1の空中浮遊映像表示装置および前記第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、
 前記第1の空中浮遊映像表示装置により生成された空中浮遊映像においてセンシング面を形成するセンサと、
 前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記第2の空中浮遊映像表示装置により生成される空中浮遊映像が、所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、を備え、
 前記第1の空中浮遊映像表示装置が有する第1の映像光射出面のサイズは、前記第2の空中浮遊映像表示装置が有する第2の映像光射出面のサイズより大きい、空中浮遊映像表示システム。
Possible forms of the invention are noted as follows.
[Appendix 1]
a table including a top plate having optical transparency;
a first floating-in-the-air image display device and a second floating-in-the-air image display device arranged to face each other inside the table;
a video signal processing device that transmits a video signal to the first floating-in-air image display device and the second floating-in-air image display device;
a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device;
Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal. a controller for controlling the video signal processing device so that the floating video generated by the device and the second floating video display device becomes a desired display video,
The floating-in-air image display system, wherein the size of the first image light exit surface of the first floating-in-air image display device is larger than the size of the second image light exit surface of the second floating-in-air image display device. .
 [付記2]
 付記1に記載の空中浮遊映像表示システムにおいて、
 前記コントローラは、前記第1の空中浮遊映像表示装置により生成される空中浮遊映像として複数の情報が表示され、前記第2の空中浮遊映像表示装置により生成される空中浮遊映像として前記複数の情報のうちの一部が表示されるように、前記映像信号処理装置を制御する、空中浮遊映像表示システム。
[Appendix 2]
In the floating-in-air video display system according to Appendix 1,
The controller displays a plurality of pieces of information as floating-in-air images generated by the first floating-in-air image display device, and displays the plurality of pieces of information as floating-in-air images generated by the second floating-in-air image display device. A floating-in-air video display system that controls the video signal processor so that a portion of the video signal processor is displayed.
 [付記3]
 付記2に記載の空中浮遊映像表示システムにおいて、
 前記複数の情報は、前記第1の空中浮遊映像表示装置に対応する第1のユーザが確認すべき確認事項を示す情報、前記第2の空中浮遊映像表示装置に対応する第2のユーザに係る情報、または前記第1のユーザが居る施設内の状況を示す情報を含む、空中浮遊映像表示システム。
[Appendix 3]
In the floating-in-air image display system according to Appendix 2,
The plurality of pieces of information are information indicating confirmation items to be confirmed by the first user corresponding to the first floating-in-air image display device, and related to the second user corresponding to the second floating-in-air image display device. A floating-in-the-air video display system containing information or information indicating a situation in a facility where the first user is.
 [付記4]
 光透過性を有する天板を含むテーブルと、
 前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および複数の第2の空中浮遊映像表示装置と、
 前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、
 前記第1の空中浮遊映像表示装置により生成された空中浮遊映像においてセンシング面を形成するセンサと、
 前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置により生成される空中浮遊映像が、所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、
 前記第1の空中浮遊映像表示装置を、水平、かつ、前記複数の第2の空中浮遊映像表示装置が並ぶ方向と平行な方向において、スライドさせるスライド機構と、
 を備える、空中浮遊映像表示システム。
[Appendix 4]
a table including a top plate having optical transparency;
a first floating-in-air image display device and a plurality of second floating-in-air image display devices arranged to face each other inside the table;
a video signal processing device that transmits a video signal to the first floating-in-air image display device and the plurality of second floating-in-air image display devices;
a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device;
Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal. a controller for controlling the video signal processing device so that the floating-in-air video generated by the device and the plurality of second floating-in-air video display devices becomes a desired display video;
a sliding mechanism for sliding the first floating-in-air image display device horizontally and in a direction parallel to the direction in which the plurality of second floating-in-air image display devices are arranged;
A floating image display system.
 [付記5]
 付記4に記載の空中浮遊映像表示システムにおいて、
 前記第2の空中浮遊映像表示装置に対応した第2のユーザが居る位置を検出する位置検出装置を備え、
 前記コントローラは、前記位置検出装置による検出結果に基づいて、前記第1の空中浮遊映像表示装置のスライド位置を決定し、前記スライド機構を制御する、空中浮遊映像表示システム。
[Appendix 5]
In the floating-in-air video display system according to Supplementary Note 4,
A position detection device for detecting a position of a second user corresponding to the second floating-in-air image display device,
The floating-in-air image display system, wherein the controller determines a slide position of the first floating-in-air image display device based on a detection result by the position detection device, and controls the slide mechanism.
 [付記6]
 付記5に記載の空中浮遊映像表示システムにおいて、
 前記コントローラは、前記第1の空中浮遊映像表示装置のスライド位置を、前記第2のユーザに対応する前記第2の空中浮遊映像表示装置と対角になる位置に決定する、空中浮遊映像表示システム。
[Appendix 6]
In the floating-in-air video display system according to Appendix 5,
The floating-in-air image display system, wherein the controller determines a slide position of the first floating-in-air image display device to a position diagonal to the second floating-in-air image display device corresponding to the second user. .
 [付記7]
 光透過性を有する天板を含むテーブルと、
 前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および複数の第2の空中浮遊映像表示装置と、
 前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、
 前記第1の空中浮遊映像表示装置により生成された空中浮遊映像においてセンシング面を形成するセンサと、
 前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置により生成される空中浮遊映像が、所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、
 前記複数の第2の空中浮遊映像表示装置のうち少なくとも一方を、水平、かつ、前記第1の空中浮遊映像表示装置と前記複数の第2の空中浮遊映像表示装置とが対向する方向において、スライドさせるスライド機構と、を備える、空中浮遊映像表示システム。
[Appendix 7]
a table including a top plate having optical transparency;
a first floating-in-air image display device and a plurality of second floating-in-air image display devices arranged to face each other inside the table;
a video signal processing device that transmits a video signal to the first floating-in-air image display device and the plurality of second floating-in-air image display devices;
a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device;
Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal. a controller for controlling the video signal processing device so that the floating-in-air video generated by the device and the plurality of second floating-in-air video display devices becomes a desired display video;
At least one of the plurality of second floating-in-air image display devices is slid horizontally in a direction in which the first floating-in-air image display device and the plurality of second floating-in-air image display devices face each other. A floating image display system, comprising:
 [付記8]
 付記7に記載の空中浮遊映像表示システムにおいて、
 前記第2の空中浮遊映像表示装置のスライド量を検出するスライド量検出装置を備え、
 前記コントローラは、スライド後における前記第2の空中浮遊映像表示装置により生成される空中浮遊映像が、スライド前における該第2の空中浮遊映像表示装置により生成される空中浮遊映像と同じ形状で視認されるように、該第2の空中浮遊映像表示装置が射出する映像の形状を補正するべく、前記スライド量検出装置により検出されたスライド量に基づいて、前記映像信号処理装置を制御する、空中浮遊映像表示システム。
[Appendix 8]
In the floating-in-air image display system according to Supplementary Note 7,
A slide amount detection device for detecting a slide amount of the second floating-in-air image display device,
The controller enables the floating image generated by the second floating image display device after sliding to be visually recognized in the same shape as the floating image generated by the second floating image display device before sliding. and controlling the video signal processing device based on the slide amount detected by the slide amount detection device in order to correct the shape of the image projected by the second floating-in-air video display device. video display system.
 本実施例に係る技術では、空間浮遊映像を高解像度かつ高輝度な映像情報を空中浮遊した状態で表示することにより、例えば、ユーザは感染症の接触感染に対する不安を感じることなく操作することを可能にする。不特定多数のユーザが使用するシステムに本実施例に係る技術を用いれば、感染症の接触感染のリスクを低減し、不安を感じることなく使用できる非接触ユーザインタフェースを提供することを可能にする。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3すべての人に健康と福祉を」に貢献する。 In the technology according to the present embodiment, by displaying high-resolution and high-brightness video information floating in the air, the user can operate without feeling anxious about contact infection of infectious diseases. to enable. If the technology according to this embodiment is applied to a system used by an unspecified number of users, it will be possible to reduce the risk of contact infection of infectious diseases and provide a non-contact user interface that can be used without anxiety. . In this way, we will contribute to "3 good health and well-being for all" in the Sustainable Development Goals (SDGs) advocated by the United Nations.
 また、本実施例に係る技術では、出射する映像光の発散角を小さく、さらに特定の偏波に揃えることで、再帰反射部材に対して正規の反射光だけを効率良く反射させるため、光の利用効率が高く、明るく鮮明な空間浮遊映像を得ることを可能にする。本実施例に係る技術によれば、消費電力を大幅に低減することが可能な、利用性に優れた非接触ユーザインタフェースを提供することができる。これにより、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「9産業と技術革新の基盤をつくろう」に貢献する。 In addition, in the technology according to the present embodiment, by making the angle of divergence of emitted image light small and aligning it to a specific polarized wave, only normal reflected light can be efficiently reflected by the retroreflective member. To obtain a bright and clear spatial floating image with high utilization efficiency. According to the technology according to the present embodiment, it is possible to provide a highly usable non-contact user interface capable of significantly reducing power consumption. In this way, we will contribute to the Sustainable Development Goals (SDGs) advocated by the United Nations.
 1…表示装置、2…再帰反射板、3…空間像(空間浮遊映像)、105…ウィンドガラス、100…透明な部材、101…偏光分離部材、12…吸収型偏光板、13…光源装置、54…光方向変換パネル、151…再帰反射板、102、202…LED基板、203…導光体、205…反射シート、206、270…位相差板、271…反射板、230…ユーザ、1000…空間浮遊映像表示装置、1110…制御部、1160…映像制御部、1180…撮像部、1102…映像表示部、1350…空中操作検出部、1351…空中操作検出センサ、1a…メインユーザ(第1のユーザ)、1b…サブユーザ(第2のユーザ)、2a…マスタ装置(第1の空間浮遊映像表示装置)、2b…スレーブ装置(第2の空間浮遊映像表示装置)、3a,3b…表示装置、4a,4b…反射板、5a…空間浮遊映像(第1の空間浮遊映像)、5b…空間冬映像(第2の空間浮遊映像)、6a,6b…偏光分離部材、7a…センサ、8…コントローラ、9…映像信号処理装置、10…テーブル REFERENCE SIGNS LIST 1 display device 2 retroreflector 3 spatial image (space floating image) 105 window glass 100 transparent member 101 polarization separation member 12 absorption polarizing plate 13 light source device 54... Light direction conversion panel 151... Retroreflector 102, 202... LED board 203... Light guide 205... Reflective sheet 206, 270... Retardation plate 271... Reflector 230... User 1000... Spatial floating image display device 1110 Control unit 1160 Image control unit 1180 Imaging unit 1102 Image display unit 1350 Mid-air operation detection unit 1351 Mid-air operation detection sensor 1a Main user (first user), 1b... sub-user (second user), 2a... master device (first spatial floating image display device), 2b... slave device (second spatial floating image display device), 3a, 3b... display device , 4a, 4b... Reflector 5a... Spatial floating image (first spatial floating image) 5b... Spatial winter image (second spatial floating image) 6a, 6b... Polarization separation member 7a... Sensor 8... Controller, 9... Video signal processing device, 10... Table

Claims (15)

  1.  光透過性を有する天板を含むテーブルと、
     前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および第2の空中浮遊映像表示装置と、
     前記第1の空中浮遊映像表示装置および前記第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、
     前記第1の空中浮遊映像表示装置により生成される空中浮遊映像においてセンシング面を形成するセンサと、
     前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記第2の空中浮遊映像表示装置により生成される空中浮遊映像が、それぞれ所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、
     を備える、空中浮遊映像表示システム。
    a table including a top plate having optical transparency;
    a first floating-in-the-air image display device and a second floating-in-the-air image display device arranged to face each other inside the table;
    a video signal processing device that transmits a video signal to the first floating-in-air image display device and the second floating-in-air image display device;
    a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device;
    Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal. a controller for controlling the video signal processing device so that the floating images generated by the device and the second floating-in-air image display device are respectively desired display images;
    A floating image display system.
  2.  請求項1に記載の空中浮遊映像表示システムにおいて、
     前記コントローラは、前記第1の空中浮遊映像表示装置により生成される空中浮遊映像と、前記第2の空中浮遊映像表示装置により生成される空中浮遊映像とが、それぞれ異なる表示映像となるように、前記映像信号処理装置を制御する、空中浮遊映像表示システム。
    The floating-in-air image display system according to claim 1,
    The controller controls the floating-in-air image generated by the first floating-in-air image display device and the floating-in-air image generated by the second floating-in-air image display device to be different display images, A floating image display system that controls the image signal processing device.
  3.  請求項1に記載の空中浮遊映像表示システムにおいて、
     前記コントローラは、第1のコントローラおよび第2のコントローラを含み、
     前記映像信号処理装置は、第1の映像信号処理装置および第2の映像信号処理装置を含み、
     前記第1のコントローラおよび前記第1の映像信号処理装置は、前記第1の空中浮遊映像表示装置の筐体内部に設置され、
     前記第2のコントローラおよび前記第2の映像信号処理装置は、前記第2の空中浮遊映像表示装置の筐体内部に設置され、
     前記第1の映像信号処理装置は、前記第1の空中浮遊映像表示装置に映像信号を送信し、
     前記第2の映像信号処理装置は、前記第2の空中浮遊映像表示装置に映像信号を送信し、
     前記第1のコントローラは、前記センサ、前記第1の映像信号処理装置、および前記第2のコントローラと接続され、前記センシング信号に基づいて、前記第1の映像信号処理装置および前記第2のコントローラを制御し、
     前記第2のコントローラは、前記第2の映像信号処理装置と接続され、前記第1のコントローラによる制御に応じて前記第2の映像信号処理装置を制御する、空中浮遊映像表示システム。
    The floating-in-air image display system according to claim 1,
    the controller includes a first controller and a second controller;
    The video signal processing device includes a first video signal processing device and a second video signal processing device,
    The first controller and the first video signal processing device are installed inside a housing of the first floating-in-air video display device,
    The second controller and the second video signal processing device are installed inside a housing of the second floating-in-air video display device,
    The first video signal processing device transmits a video signal to the first floating-in-air video display device,
    The second video signal processing device transmits a video signal to the second floating-in-air video display device,
    The first controller is connected to the sensor, the first video signal processing device, and the second controller, and controls the first video signal processing device and the second controller based on the sensing signal. to control the
    The floating-in-air image display system, wherein the second controller is connected to the second image signal processing device and controls the second image signal processing device according to control by the first controller.
  4.  光透過性を有する天板を含むテーブルと、
     前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および第2の空中浮遊映像表示装置と、
     前記第1の空中浮遊映像表示装置および前記第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、
     前記第1の空中浮遊映像表示装置により生成された空中浮遊映像においてセンシング面を形成するセンサと、
     前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記第2の空中浮遊映像表示装置により生成される空中浮遊映像が、所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、を備え、
     前記第1の空中浮遊映像表示装置が有する第1の映像光射出面のサイズは、前記第2の空中浮遊映像表示装置が有する第2の映像光射出面のサイズより大きい、空中浮遊映像表示システム。
    a table including a top plate having optical transparency;
    a first floating-in-the-air image display device and a second floating-in-the-air image display device arranged to face each other inside the table;
    a video signal processing device that transmits a video signal to the first floating-in-air image display device and the second floating-in-air image display device;
    a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device;
    Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal. a controller for controlling the video signal processing device so that the floating video generated by the device and the second floating video display device becomes a desired display video,
    The floating-in-air image display system, wherein the size of the first image light exit surface of the first floating-in-air image display device is larger than the size of the second image light exit surface of the second floating-in-air image display device. .
  5.  請求項1または請求項4に記載の空中浮遊映像表示システムにおいて、
     前記コントローラは、前記第1の空中浮遊映像表示装置により生成される空中浮遊映像として複数の画面が表示され、前記第2の空中浮遊映像表示装置により生成される空中浮遊映像として前記複数の画面のうちの1つが表示されるように、前記映像信号処理装置を制御する、空中浮遊映像表示システム。
    In the floating-in-air image display system according to claim 1 or claim 4,
    The controller displays a plurality of screens as the floating-in-air image generated by the first floating-in-air image display device, and displays the plurality of screens as the floating-in-air image generated by the second floating-in-air image display device. A floating-in-the-air video display system for controlling the video signal processor so that one of them is displayed.
  6.  請求項1または請求項4に記載の空中浮遊映像表示システムにおいて、
     前記コントローラは、前記第1の空中浮遊映像表示装置により生成される空中浮遊映像として複数の情報が表示され、前記第2の空中浮遊映像表示装置により生成される空中浮遊映像として前記複数の情報のうちの一部が表示されるように、前記映像信号処理装置を制御する、空中浮遊映像表示システム。
    In the floating-in-air image display system according to claim 1 or claim 4,
    The controller displays a plurality of pieces of information as floating-in-air images generated by the first floating-in-air image display device, and displays the plurality of pieces of information as floating-in-air images generated by the second floating-in-air image display device. A floating-in-air video display system that controls the video signal processor so that a portion of the video signal processor is displayed.
  7.  光透過性を有する天板を含むテーブルと、
     前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および複数の第2の空中浮遊映像表示装置と、
     前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、
     前記第1の空中浮遊映像表示装置により生成された空中浮遊映像においてセンシング面を形成するセンサと、
     前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置により生成される空中浮遊映像が、所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、
     前記第1の空中浮遊映像表示装置を、水平、かつ、前記複数の第2の空中浮遊映像表示装置が並ぶ方向と平行な方向において、スライドさせるスライド機構と、
     を備える、空中浮遊映像表示システム。
    a table including a top plate having optical transparency;
    a first floating-in-air image display device and a plurality of second floating-in-air image display devices arranged to face each other inside the table;
    a video signal processing device that transmits a video signal to the first floating-in-air image display device and the plurality of second floating-in-air image display devices;
    a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device;
    Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal. a controller for controlling the video signal processing device so that the floating-in-air video generated by the device and the plurality of second floating-in-air video display devices becomes a desired display video;
    a sliding mechanism for sliding the first floating-in-air image display device horizontally and in a direction parallel to the direction in which the plurality of second floating-in-air image display devices are arranged;
    A floating image display system.
  8.  請求項7に記載の空中浮遊映像表示システムにおいて、
     前記第2の空中浮遊映像表示装置に対応した第2のユーザが居る位置を検出する位置検出装置を備え、
     前記コントローラは、前記位置検出装置による検出結果に基づいて、前記第1の空中浮遊映像表示装置のスライド位置を決定し、前記スライド機構を制御する、空中浮遊映像表示システム。
    In the floating-in-air image display system according to claim 7,
    A position detection device for detecting a position of a second user corresponding to the second floating-in-air image display device,
    The floating-in-air image display system, wherein the controller determines a slide position of the first floating-in-air image display device based on a detection result by the position detection device, and controls the slide mechanism.
  9.  請求項8に記載の空中浮遊映像表示システムにおいて、
     前記コントローラは、前記第1の空中浮遊映像表示装置のスライド位置を、前記第2のユーザに対応する前記第2の空中浮遊映像表示装置と対向する位置に決定する、空中浮遊映像表示システム。
    In the floating-in-air image display system according to claim 8,
    The floating-in-air image display system, wherein the controller determines a sliding position of the first floating-in-air image display device to a position facing the second floating-in-air image display device corresponding to the second user.
  10.  光透過性を有する天板を含むテーブルと、
     前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および複数の第2の空中浮遊映像表示装置と、
     前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、
     前記第1の空中浮遊映像表示装置により生成された空中浮遊映像においてセンシング面を形成するセンサと、
     前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置により生成される空中浮遊映像が、所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、
     前記複数の第2の空中浮遊映像表示装置のうち少なくとも一方を、水平、かつ、前記第1の空中浮遊映像表示装置と前記複数の第2の空中浮遊映像表示装置とが対向する方向において、スライドさせるスライド機構と、を備える、空中浮遊映像表示システム。
    a table including a top plate having optical transparency;
    a first floating-in-air image display device and a plurality of second floating-in-air image display devices arranged to face each other inside the table;
    a video signal processing device that transmits a video signal to the first floating-in-air image display device and the plurality of second floating-in-air image display devices;
    a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device;
    Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal. a controller for controlling the video signal processing device so that the floating-in-air video generated by the device and the plurality of second floating-in-air video display devices becomes a desired display video;
    At least one of the plurality of second floating-in-air image display devices is slid horizontally in a direction in which the first floating-in-air image display device and the plurality of second floating-in-air image display devices face each other. A floating image display system, comprising:
  11.  請求項10に記載の空中浮遊映像表示システムにおいて、
     前記コントローラは、スライド後における前記第2の空中浮遊映像表示装置により生成される空中浮遊映像が、スライド前における該第2の空中浮遊映像表示装置により生成される空中浮遊映像と同じ形状で視認されるように、該第2の空中浮遊映像表示装置が射出する映像の形状を補正するべく、前記映像信号処理装置を制御する、空中浮遊映像表示システム。
    The floating-in-air image display system according to claim 10,
    The controller enables the floating image generated by the second floating image display device after sliding to be visually recognized in the same shape as the floating image generated by the second floating image display device before sliding. A floating-in-air image display system for controlling the image signal processing device to correct the shape of the image projected by the second floating-in-air image display device.
  12.  請求項10に記載の空中浮遊映像表示システムにおいて、
     前記第2の空中浮遊映像表示装置により生成される空中浮遊映像を視認するユーザの身長または目線の高さを検出する検出装置を備え、
     前記コントローラは、前記検出装置により検出された身長に基づいて、前記第2の空中浮遊映像表示装置のスライド量を調整するべく、前記スライド機構を制御する、空中浮遊映像表示システム。
    The floating-in-air image display system according to claim 10,
    A detection device for detecting the height or eye level of a user viewing the floating image generated by the second floating image display device,
    The floating-in-air image display system, wherein the controller controls the slide mechanism to adjust the slide amount of the second floating-in-air image display device based on the height detected by the detection device.
  13.  光透過性を有する天板を含むテーブルと、
     前記テーブルの内部において互いに対向するように配置された第1の空中浮遊映像表示装置および複数の第2の空中浮遊映像表示装置と、
     前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置に映像信号を送信する映像信号処理装置と、
     前記第1の空中浮遊映像表示装置により生成された空中浮遊映像においてセンシング面を形成するセンサと、
     前記センサおよび前記映像信号処理装置に接続され、前記センシング面におけるユーザによるタッチ操作に応じたセンシング信号を前記センサより受信し、受信された前記センシング信号に基づいて、前記第1の空中浮遊映像表示装置および前記複数の第2の空中浮遊映像表示装置により生成される空中浮遊映像が、所望の表示映像となるように、前記映像信号処理装置を制御するコントローラと、
     前記第1の空中浮遊映像表示装置を、スイーベル方向において回動させる回動機構と、を備える、空中浮遊映像表示システム。
    a table including a top plate having optical transparency;
    a first floating-in-air image display device and a plurality of second floating-in-air image display devices arranged to face each other inside the table;
    a video signal processing device that transmits a video signal to the first floating-in-air image display device and the plurality of second floating-in-air image display devices;
    a sensor forming a sensing surface in the floating-in-air image generated by the first floating-in-air image display device;
    Connected to the sensor and the video signal processing device, receiving from the sensor a sensing signal corresponding to a user's touch operation on the sensing surface, and displaying the first floating-in-air image based on the received sensing signal. a controller for controlling the video signal processing device so that the floating-in-air video generated by the device and the plurality of second floating-in-air video display devices becomes a desired display video;
    A floating-in-air image display system, comprising: a rotation mechanism for rotating the first floating-in-air image display device in a swivel direction.
  14.  請求項13に記載の空中浮遊映像表示システムにおいて、
     前記第2の空中浮遊映像表示装置に対応した第2のユーザが居る位置または前記第1の空中浮遊映像表示装置に対応した第1のユーザが居る位置を検出する位置検出装置を備え、
     前記コントローラは、前記位置検出装置による検出結果に基づいて、前記第1の空中浮遊映像表示装置の回動位置を決定し、前記回動機構を制御する、空中浮遊映像表示システム。
    The floating-in-air video display system according to claim 13,
    A position detection device for detecting the position of the second user corresponding to the second floating-in-air image display device or the position of the first user corresponding to the first floating-in-air image display device,
    The floating-in-air image display system, wherein the controller determines a rotation position of the first floating-in-air image display device based on a detection result of the position detection device, and controls the rotation mechanism.
  15.  請求項14に記載の空中浮遊映像表示システムにおいて、
     前記コントローラは、前記第1の空中浮遊映像表示装置の回動位置を、前記第2のユーザに対応する前記第2の空中浮遊映像表示装置がある方向または前記第1のユーザが居る方向を向く位置に決定する、空中浮遊映像表示システム。
    The floating-in-air image display system according to claim 14,
    The controller directs the rotation position of the first floating-in-air image display device to the direction in which the second floating-in-air image display device corresponding to the second user is present or the direction in which the first user is. A floating image display system that determines the position.
PCT/JP2022/023995 2021-06-23 2022-06-15 Hovering image display system WO2022270384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021103885A JP2023002989A (en) 2021-06-23 2021-06-23 Aerial floating video display system
JP2021-103885 2021-06-23

Publications (1)

Publication Number Publication Date
WO2022270384A1 true WO2022270384A1 (en) 2022-12-29

Family

ID=84544319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023995 WO2022270384A1 (en) 2021-06-23 2022-06-15 Hovering image display system

Country Status (2)

Country Link
JP (1) JP2023002989A (en)
WO (1) WO2022270384A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088811A (en) * 2008-10-10 2010-04-22 Toshiba Tec Corp Restaurant table and electronic menu system using the table
WO2017125984A1 (en) * 2016-01-21 2017-07-27 パナソニックIpマネジメント株式会社 Aerial display device
JP2019035810A (en) * 2017-08-10 2019-03-07 株式会社野村総合研究所 Display device
JP2019101755A (en) * 2017-12-01 2019-06-24 三菱自動車工業株式会社 On-vehicle user interface device
JP2020081017A (en) * 2018-11-16 2020-06-04 日立オムロンターミナルソリューションズ株式会社 Face-to-face counter and face-to-face communication support system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088811A (en) * 2008-10-10 2010-04-22 Toshiba Tec Corp Restaurant table and electronic menu system using the table
WO2017125984A1 (en) * 2016-01-21 2017-07-27 パナソニックIpマネジメント株式会社 Aerial display device
JP2019035810A (en) * 2017-08-10 2019-03-07 株式会社野村総合研究所 Display device
JP2019101755A (en) * 2017-12-01 2019-06-24 三菱自動車工業株式会社 On-vehicle user interface device
JP2020081017A (en) * 2018-11-16 2020-06-04 日立オムロンターミナルソリューションズ株式会社 Face-to-face counter and face-to-face communication support system

Also Published As

Publication number Publication date
JP2023002989A (en) 2023-01-11

Similar Documents

Publication Publication Date Title
WO2022030538A1 (en) Spatial floating image information display system and light source device used therefor
WO2022113745A1 (en) Floating-in-space-image display device
WO2022138297A1 (en) Mid-air image display device
WO2022137940A1 (en) Spatial floating image display apparatus
WO2022158209A1 (en) Spatial floating image display device
WO2023276921A1 (en) Air floating video display apparatus
WO2022270384A1 (en) Hovering image display system
US20230375854A1 (en) Space floating video display apparatus and light source apparatus
WO2023068021A1 (en) Aerial floating video display system
JP2022097901A (en) Space floating video display device
WO2023162690A1 (en) Floating video display device
WO2023085069A1 (en) Air floating image display apparatus
WO2024062749A1 (en) Floating-aerial-video display device
WO2024042761A1 (en) Space floating video display device
US20240192518A1 (en) Air floating video display apparatus
WO2024122391A1 (en) Air floating image display device
JP7367148B2 (en) Space floating video display device
JP7370433B2 (en) Light source device used in spatial floating video information display system
JP2023006618A (en) Space floating image display device
WO2023037813A1 (en) Floating-in-space video information displaying system and stereo sensing device used therein
WO2023112463A1 (en) Aerial image information display system
WO2023243181A1 (en) Aerial floating video information display system
CN101109894A (en) Table type large-size imaging apparatus
JP2022029901A (en) Space floating video information display system and light source device used for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE