WO2024042601A1 - Hot rolling mill plate thickness control device - Google Patents

Hot rolling mill plate thickness control device Download PDF

Info

Publication number
WO2024042601A1
WO2024042601A1 PCT/JP2022/031680 JP2022031680W WO2024042601A1 WO 2024042601 A1 WO2024042601 A1 WO 2024042601A1 JP 2022031680 W JP2022031680 W JP 2022031680W WO 2024042601 A1 WO2024042601 A1 WO 2024042601A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate thickness
rolled
thickness
gap
rolling
Prior art date
Application number
PCT/JP2022/031680
Other languages
French (fr)
Japanese (ja)
Inventor
稔 橘
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2022/031680 priority Critical patent/WO2024042601A1/en
Publication of WO2024042601A1 publication Critical patent/WO2024042601A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/18Automatic gauge control
    • B21B37/20Automatic gauge control in tandem mills

Definitions

  • the present disclosure relates to a plate thickness control device for a hot rolling mill in which a plurality of rolling stands are arranged in parallel and a material to be rolled, such as a heated steel plate, is sequentially rolled by the plurality of rolling stands, and in particular, the present disclosure relates to a plate thickness control device for a hot rolling mill in which a plurality of rolling stands are arranged in parallel and a material to be rolled, such as a heated steel plate, is sequentially rolled by the plurality of rolling stands.
  • the present invention relates to a product suitable for manufacturing ultra-thin hot-rolled steel strips having a thickness of 1.0 mm or less.
  • hot-rolled steel strip is produced by heating a slab, which is the material to be rolled, to a predetermined temperature in a heating furnace, and then rough-rolling the heated slab to a thickness of about 30 mm in a rough rolling mill to obtain a rough bar.
  • the rough bar is rolled into a hot-rolled steel strip with a predetermined thickness by, for example, a finishing mill with seven rolling stands installed in parallel, and this hot-rolled steel strip is cooled on a run-out table and then rolled. It is manufactured by winding it with a coiler.
  • the reduction in finishing temperature at the tip of the hot-rolled steel strip increases as the thickness of the hot-rolled steel strip becomes thinner. For this reason, the thinner the hot-rolled steel strip is, the more difficult it is to ensure the finishing temperature at the tip, and furthermore, since the rolling speed is high, there is a problem in that it is difficult to thread the tip.
  • a plurality of rough bars are connected to each other, and the connected bars are passed through a finishing mill at high speed, thereby making finishing rolling continuous.
  • this method requires installation of a joining device such as a welding device, which increases equipment costs.
  • the thickness of the rough bar is set to less than 20 mm, and a rough rolling mill and a finishing rolling mill are used.
  • a coil box or online heating device between the bar and the bar, the temperature drop in the rough bar is compensated for.
  • the method of Patent Document 1 focuses on improving the precision of product dimensions, and it is important to ensure the finishing temperature of the tip of the steel strip, especially the temperature at the entry side of the finishing mill, and especially to prevent scale surface defects. No consideration has been given to countermeasures for the surface properties of the product.
  • the thickness of the rough bar is less than 20 mm, the temperature drop during the rough rolling process will be significantly large, and in order to compensate for this temperature drop, it is necessary to install an extremely high-output online heating device as described above. Equipment costs will rise.
  • the thickness of the rough bar is within the range of 20 to 30 mm, and the rough bar is heated using an online heating device installed at the entrance side of a finishing mill.
  • the bar is heated so that the finishing input temperature falls within the range of 1000 to 1150°C, and the rough bar heated to this temperature is finished rolled.
  • it is necessary to install an online heating device, which increases the equipment cost.
  • the shape of the tip of the rolled material deteriorates due to the temperature drop, and since the material is rolled at high speed, the tip of the rolled material is warped or meandered, making it difficult to thread the tip of the rolled material. difficult.
  • the above-mentioned prior art proposes a rolling schedule in which the plate thickness is increased on the outlet side of the roughing mill, and the installation of a heating device on the inlet side of the finishing mill to prevent the temperature of the rolled material from dropping.
  • there are limitations such as equipment cost and rolling schedule.
  • An object of the present invention is to provide a plate thickness control device for a hot rolling mill that can control the thickness of a hot rolling mill.
  • the first aspect relates to a plate thickness control device for a hot rolling mill in which a plurality of rolling stands are arranged in parallel and a heated material to be rolled is sequentially rolled by the plurality of rolling stands.
  • the plate thickness control device is installed on the exit side of the final rolling stand in the side-by-side direction, and includes a plate thickness gauge that measures the thickness of the rolled material and a plate thickness that is larger than the product target thickness of the rolled material.
  • a gap calculation unit that calculates the gap between the rolls of each rolling stand corresponding to the thickness of the plate that can stably pass the tip of the sheet, and sets the gap calculated by the gap calculation unit to each rolling stand.
  • a gap setting section an automatic thickness control section that performs automatic thickness control to minimize the deviation between the thickness measured by the thickness gauge and the passable thickness, and After the tip of the plate is threaded, a target plate thickness changing unit is provided that changes the passable plate thickness to the product target plate thickness by adding a plate thickness bias to the plate thickness deviation at a predetermined ramp rate.
  • the second aspect further has the following characteristics.
  • the target thickness change section adds a thickness bias at a predetermined ramp rate to the thickness deviation before the tail end of the rolled material is passed through the first rolling stand in the parallel direction. It is configured to change the target plate thickness to a plate thickness that allows the plate to pass through.
  • the tip of the material to be rolled can be reliably passed through the hot rolling mill. It can be made into a board. Therefore, unlike the prior art, there is no need to install a heating device on the inlet side of the hot rolling mill, and an increase in equipment costs can be prevented. Furthermore, after the tip of the rolled material is passed through the final rolling stand, a thickness bias is added to the thickness deviation between the measured thickness value and the passable thickness. By executing automatic plate thickness control using the plate thickness deviation, the portion of the material to be rolled after the tip end is rolled to an ultra-thin product target thickness. Moreover, since the plate thickness bias is gradually added to the plate thickness deviation, the passable plate thickness is gradually changed to the product target plate thickness. Thereby, the material to be rolled can be stably rolled into an extremely thin material.
  • the product target thickness is changed to a passable thickness. That is, automatic plate thickness control is performed for the tail end of the material to be rolled using the plate thickness deviation between the plate thickness measurement value and the passable plate thickness. This makes it possible to suppress the occurrence of tail end meandering and tail end squeezing of the rolled material.
  • FIG. 1 is a diagram for explaining the configuration of a rolling plant including a plate thickness control device for a hot rolling mill according to an embodiment.
  • FIG. 2 is a block diagram for explaining the configuration of main parts of the plate thickness control device. It is a diagram showing an example of the hardware configuration of a process computer included in a rolling plant. It is a timing chart for explaining the flow of plate thickness control using the plate thickness control device. It is a flow chart for explaining the flow of plate thickness control using a plate thickness control device.
  • FIG. 1 is a schematic diagram showing the configuration of a rolling plant 1 equipped with a plate thickness control device for a hot rolling mill according to an embodiment.
  • the rolling plant 1 uses steel or other metal materials as a material to be rolled M, and hot-rolls the material to be rolled into a plate shape.
  • the rolling plant 1 is equipped with a heating furnace 2, a rough rolling mill 3, a crop shear 4, a finishing mill 5 as a hot rolling mill, a cooling device 6, and a winding machine 7.
  • a case will be described as an example in which the plate thickness at the outlet side of the finishing rolling mill 5 as a hot rolling mill is controlled to an extremely thin (for example, 1.0 mm or less) product target plate thickness.
  • the heating furnace 2 is configured to heat a slab as the material to be rolled M to a predetermined temperature.
  • the rough rolling mill 3 has at least one rolling stand and is configured to roll the material M to be rolled heated in the heating furnace 2 .
  • the crop shear 4 is configured to use upper and lower blades to cut a shape-defective portion at the tail end of the rolled material M based on the shape measured by a shape detector 81, which will be described later.
  • the finishing rolling mill 5 is a tandem rolling mill equipped with a plurality of rolling stands Fi (1 ⁇ i ⁇ N) arranged in parallel in the conveying direction of the material M to be rolled.
  • a plurality of rolling stands Fi (1 ⁇ i ⁇ N) arranged in parallel in the conveying direction of the material M to be rolled.
  • the rolling stands F1 to F7 include two upper and lower work rolls 51, two upper and lower backup rolls 52, and an electric motor 53 for rotating the rolls.
  • the backup roll 52 is provided with a rolling down device 54, and is configured such that the gap between the upper and lower work rolls 51 can be adjusted by the rolling down device 54.
  • the cooling device 6 is configured to be able to cool the rolled material M by injecting water into the rolled material M using a cooling bank.
  • the cooled rolled material M is wound up by a winding machine 7. This results in a coiled product.
  • Important points of the rolling plant 1 include, for example, the outlet side of the heating furnace 2, the outlet side of the rough rolling mill 3, the outlet side of the finishing mill 5, and the inlet side of the winder 7.
  • Various sensors may also be provided between the rolling stands F1 to F7 of the finishing rolling mill 5.
  • the various sensors include a shape detector 81 that can measure the shape of the rolled material M on the exit side of the rough rolling mill 3, a thermometer 82 that measures the surface temperature of the rolled material M on the entry side of the finishing mill 5, A thermometer 83 that measures the surface temperature of the rolled material M on the exit side of the finishing rolling mill 5, a plate thickness gauge 84 that measures the plate thickness Ta of the rolled material M on the exit side of the finishing rolling mill 5, and It includes a rolling load sensor 85 that measures the rolling load at stands F1 to F5. Various sensors sequentially measure the condition of the rolled material M and each device.
  • the rolling plant 1 is operated (operated) by a control system using a computer.
  • the computer includes a host computer 10 and a process computer 11 that are connected to each other via a network.
  • An interface screen 12, which is an operation screen, and a database 13 are connected to the process computer 11 via a network.
  • Past rolling data is sequentially stored in the database 13.
  • the past rolling data includes actual values of the inter-roller gap (hereinafter sometimes abbreviated as "gap") of each rolling stand F1 to F7.
  • the actual value of the gap is classified by steel type and product target plate thickness Tt.
  • the database 23 contains the actual value of the gap in which the tip of the material to be rolled M is stably passed through without any trouble at the tip, that is, the sheet thickness at that time (described later as " (corresponding to the "thickness that can be passed through the plate").
  • the plate thickness control device 20 of the present embodiment uses not only the product target plate thickness Tt but also the passable plate thickness Ts that allows the tip of the rolled material M to be stably passed through. It is configured to control the plate thickness.
  • FIG. 2 is a block diagram for explaining the configuration of main parts of the plate pressure control device 20. As shown in FIG.
  • the plate thickness control device 20 includes the plate thickness meter 84, a gap calculation section 21, a gap setting section 22, a thickness deviation calculation section 23, an automatic thickness control section 24, and a target thickness change section 25. .
  • the gap calculation unit 21 determines a thickness that is larger than the target product thickness Tt and that allows the tip of the rolled material M to be stably passed through. It is configured to calculate the gap between the work rolls 51 of each rolling stand F1 to F7 corresponding to Ts. For example, the gap calculation unit 21 acquires the passable plate thickness Ts stored in the database 23 in association with the product target plate thickness Tt, and uses each rolling stand F1 to realize the obtained passable plate thickness Ts. ⁇ F7 gaps are calculated respectively. Note that the gaps between the rolling stands F1 to F7 are calculated such that they become smaller in the order from the first rolling stand F1 to the last rolling stand F7 in the juxtaposed direction.
  • the gap setting unit 22 is configured to set a gap in each of the rolling stands F1 to F7 by controlling the rolling device 54 of each of the rolling stands F1 to F7 in accordance with the gap calculated by the gap calculating unit 21. ing.
  • the automatic board thickness control unit 24 controls the board so that the board thickness deviation FBK1 calculated by the board thickness deviation calculation unit 23 becomes the minimum, or the board to which a board thickness bias Tb, which will be described later, is added (added) to the board thickness deviation FBK1.
  • the rolling device 54 of each rolling stand F1 to F7 is controlled so that the thickness deviation FBK2 is minimized.
  • the control by the automatic plate thickness control section 24 corresponds to AGC (Auto Gain Control) control. Further, the plate thickness deviations FBK1 and FBK2 being minimized means that the plate thickness deviations FBK1 and FBK2 converge to zero, for example.
  • the target plate thickness changing unit 25 includes a ramp 251, a timer 252, a bias amount 253 that is input to the ramp 251 when triggered by the timer 252, and a ramp rate 254 that is input to the ramp 251.
  • the bias amount 253, that is, the difference between the passable plate thickness Ts and the product target plate thickness Tt can be set depending on the steel type of the material to be rolled M, and can be set to 300 ⁇ m, for example.
  • the target plate thickness changing unit 25 can output (change) the plate thickness bias Tb added to the plate thickness deviation FBK1 at a predetermined ramp rate.
  • the plate thickness deviation FBK2 obtained by adding the plate thickness bias Tb is positive, and the automatic plate thickness control unit 24 performs AGC control to converge the plate thickness deviation FBK2 to zero, so each rolling stand F1 to F7 The gap is gradually changed in the tightening direction.
  • the timer 252 sets the trigger signal to SET after a predetermined time TD1 has elapsed from the time (F7_In) when the tip of the material to be rolled M passed through the final rolling stand F7.
  • the plate thickness bias Tb output from the target plate thickness changing unit 25 gradually increases at a predetermined ramp rate.
  • the timer 252 sets the trigger signal to RESET after the tail end of the rolled material M is cut by the crop shear 4.
  • the plate thickness bias Tb output from the target plate thickness changing unit 25 gradually decreases at a predetermined ramp rate.
  • the gaps of the rolling stands F1 to F7 are gradually changed in the loosening direction.
  • the plate thickness at the tail end of the rolled material M is gradually changed from the product target plate thickness Tt to the passable plate thickness Ts.
  • FIG. 3 is a diagram showing an example of the hardware configuration of the plate pressure control device 20.
  • the functions of the plate pressure control device 20 can be realized by a processing circuit shown in FIG.
  • This processing circuit may be dedicated hardware 20a.
  • This processing circuit may include a processor 20b and a memory 20c.
  • This processing circuit may be partially formed as dedicated hardware 20a and further include a processor 20b and a memory 20c.
  • part of the processing circuit is formed as dedicated hardware 20a, and the processing circuit also includes a processor 20b and a memory 20c.
  • At least a portion of the processing circuitry may be at least one piece of dedicated hardware 20a.
  • the processing circuit can be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the processing circuit may include at least one processor 20b and at least one memory 20c.
  • each function of the process computer 11 is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in the memory 20c.
  • the processor 20b realizes the functions of each section by reading and executing programs stored in the memory 20c.
  • the processor 20b is also called a CPU (Central Processing Unit), central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP.
  • the memory 20c is, for example, a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, or the like. Note that it is also possible to configure the memory 20c to also serve as the database 13.
  • the processing circuit can realize each function of the plate pressure control device 20 using hardware, software, firmware, or a combination thereof.
  • the material to be rolled M is heated in the heating furnace 2 and then extracted onto a roller table (not shown) of the rolling line.
  • the material M to be rolled at this stage is, for example, a steel billet.
  • the material to be rolled M at this stage is a bar having a thickness of, for example, several tens of millimeters.
  • a shape detector 81 on the exit side of the rough rolling mill 3 measures the shape of the material to be rolled M, and based on the measurement results, a portion of the tail end of the material to be rolled M having a defective shape is cut off by the crop shear 4.
  • the material to be rolled M is rolled while being sequentially bitten by the rolling stands F1 to F7 of the finishing mill 5, and is controlled to a desired product target thickness Tt.
  • FIG. 4 is a timing chart for explaining the flow of plate thickness control using the plate thickness control device 20.
  • FIG. 5 is a flowchart for explaining the flow of plate thickness control using the plate thickness control device 20.
  • the gap calculation unit 21 calculates the gap of each of the rolling stands F1 to F7 corresponding to the obtained passable plate thickness Ts.
  • the gap setting unit 22 sets a gap in each of the rolling stands F1 to F7 by controlling the rolling device 54 of each of the rolling stands F1 to F7 according to the gap calculated by the gap calculating unit 21.
  • the automatic plate thickness control unit 24 performs AGC control on the rolling devices 54 of each of the rolling stands F1 to F7, respectively, so that the plate thickness deviation FBK1 is minimized (for example, zero) (step S2).
  • the gap between each of the rolling stands F1 to F7 is controlled to be large in order to ensure that the tip of the material M to be rolled passes through the plate.
  • step S3 it is determined whether time TD1 has elapsed.
  • the time TD1 corresponds to a time delay. If the time TD1 has not elapsed, the trigger signal from the timer 252 is OFF, so the thickness bias Tb output from the target thickness changing unit 25 is zero (that is, the thickness bias Tb that is added to the thickness deviation FBK1 thickness bias Tb is zero).
  • the automatic plate thickness control section 24 performs AGC control on the rolling devices 54 of each of the rolling stands F1 to F7, respectively, so that the plate thickness deviation FBK1 is minimized (for example, zero) (step S4).
  • step S4 as well, the gaps between the rolling stands F1 to F7 are controlled to be large in order to ensure that the tip of the material to be rolled M passes through the plate. After that, the process returns to step S3.
  • the automatic plate thickness control unit 24 performs AGC control on the rolling devices 54 of each of the rolling stands F1 to F7, respectively, so that the positive plate thickness deviation FBK2 to which the plate thickness bias Tb is added is minimized (for example, zero) (step S5).
  • the gaps of each of the rolling stands F1 to F7 are controlled to be gradually smaller (the gaps are gradually tightened) by AGC control. Thereby, the plate thickness of the portion behind the tip of the rolled material M can be controlled to the extremely thin product target plate thickness Tt.
  • the tail end of the rolled material M becomes extremely thin, the tail end meandering and tail end narrowing of the rolled material M are likely to occur.
  • the tail end of the material to be rolled M is likely to become entangled with the work rolls 51 of each of the rolling stands F1 to F7, and there is a possibility that the number of replacements of the work rolls 51 will increase.
  • step S6 it is determined whether CS_TCut is ON, that is, whether the defective shape portion of the tail end of the rolled material M has been cut by the crop shear 4 (step S6). If CS_TCut is OFF, the process returns to step S5.
  • step S7 it is determined whether time TD2 has elapsed.
  • the time TD2 corresponds to a time delay.
  • the time TD2 is set so that the tail end of the material to be rolled M is not passed through the first rolling stand F1 after cutting by the crop shear 4.
  • step S8 plate thickness bias Tb output from target plate thickness changing unit 25 gradually decreases from 300 ⁇ m to 0 ⁇ m at a predetermined ramp rate. Therefore, the automatic plate thickness control unit 24 performs AGC control on the rolling devices 54 of the rolling stands F1 to F7, respectively, so that the plate thickness deviation FBK2 becomes the minimum (eg, zero) (step S8). As a result, from time t5 to time t6, the gaps of each rolling stand F1 to F7 are gradually changed to a larger value by each AGC control.
  • the thickness of the tail end of the rolled material M is gradually changed from the product target thickness Tt to the passable thickness Ts.
  • the occurrence of tail end meandering and tail end squeezing of the rolled material M can be suppressed. This makes it difficult for the tail end of the rolled material M to get entangled with the work rolls 51 of the rolling stands F1 to F7, and it is possible to suppress an increase in the number of replacements of the work rolls 51.
  • the gap between each rolling stand F1 to F7 corresponds to the thickness Ts that allows the material to pass through.
  • AGC control is performed using the thickness deviation FBK2, which is obtained by gradually adding the thickness bias Tb to the thickness deviation FBK1, so that each rolling stand F1 to The gap F7 is gradually changed to a gap corresponding to the target product thickness Tt.

Abstract

The present disclosure provides a hot rolling mill plate thickness control device capable of reliably threading a tip end portion of material being rolled, without increasing equipment costs, even if the material being rolled is being rolled to be extremely thin. The hot rolling mill plate thickness control device comprises: a plate thickness gauge installed on an exit side of a final rolling stand in a row-arrangement direction; a gap calculating unit for calculating a gap between rolls of each rolling stand, said gap being greater than a product target plate thickness of the material being rolled and corresponding to a threadable plate thickness with which the tip end portion of the material being rolled can be stably threaded; a gap setting unit for setting the gap calculated by the gap calculating unit for each rolling stand; an automatic plate thickness control unit for executing automatic plate thickness control to minimize a plate-thickness deviation between a plate thickness measured value from the plate thickness gauge and the threadable plate thickness; and a target plate thickness changing unit for changing the threadable plate thickness to the product target plate thickness by adding a plate-thickness bias to the plate-thickness deviation with a predetermined ramp rate, after the tip end portion of the material being rolled has been threaded through the final rolling stand.

Description

熱間圧延機の板厚制御装置Plate thickness control device for hot rolling mill
 本開示は、複数の圧延スタンドが並設され、加熱された鋼板等の被圧延材をこれら複数の圧延スタンドで順次圧延する熱間圧延機の板厚制御装置に関し、特に、仕上圧延機出側での板厚が1.0mm以下である極薄の熱延鋼帯の製造に適したものに関する。 The present disclosure relates to a plate thickness control device for a hot rolling mill in which a plurality of rolling stands are arranged in parallel and a material to be rolled, such as a heated steel plate, is sequentially rolled by the plurality of rolling stands, and in particular, the present disclosure relates to a plate thickness control device for a hot rolling mill in which a plurality of rolling stands are arranged in parallel and a material to be rolled, such as a heated steel plate, is sequentially rolled by the plurality of rolling stands. The present invention relates to a product suitable for manufacturing ultra-thin hot-rolled steel strips having a thickness of 1.0 mm or less.
 一般に、熱延鋼帯は、被圧延材であるスラブを加熱炉にて所定温度に加熱し、加熱されたスラブを粗圧延機で約30mm程度の厚さに粗圧延して粗バーとし、得られた粗バーを、例えば七基の圧延スタンドが並設される仕上圧延機で圧延して所定厚さの熱延鋼帯とし、この熱延鋼帯を、ランアウトテーブル上において冷却した後、巻取機であるコイラーで巻取ることにより製造される。 Generally, hot-rolled steel strip is produced by heating a slab, which is the material to be rolled, to a predetermined temperature in a heating furnace, and then rough-rolling the heated slab to a thickness of about 30 mm in a rough rolling mill to obtain a rough bar. The rough bar is rolled into a hot-rolled steel strip with a predetermined thickness by, for example, a finishing mill with seven rolling stands installed in parallel, and this hot-rolled steel strip is cooled on a run-out table and then rolled. It is manufactured by winding it with a coiler.
 熱延鋼帯の先端部の仕上げ温度の低下は、熱延鋼帯の板厚が薄いほど大きくなる。このため、薄い熱延鋼帯ほど、その先端部の仕上げ温度を確保することが困難になり、更に圧延速度が高速であるため、先端部の通板が困難となる問題があった。この問題を解決するため、従来の方法では、複数の粗バーを相互に接続し、接続したものを仕上圧延機に高速で通板させ、仕上げ圧延を連続化している。しかし、この方法では、溶接装置のような接合装置を設置しなければならず、設備コストが上昇する。 The reduction in finishing temperature at the tip of the hot-rolled steel strip increases as the thickness of the hot-rolled steel strip becomes thinner. For this reason, the thinner the hot-rolled steel strip is, the more difficult it is to ensure the finishing temperature at the tip, and furthermore, since the rolling speed is high, there is a problem in that it is difficult to thread the tip. In order to solve this problem, in the conventional method, a plurality of rough bars are connected to each other, and the connected bars are passed through a finishing mill at high speed, thereby making finishing rolling continuous. However, this method requires installation of a joining device such as a welding device, which increases equipment costs.
 下記特許文献1に開示されている方法では、板プロフィル、板形状、板幅、板厚等の寸法精度を向上させるために、粗バーの厚さを20mm未満とし、粗圧延機と仕上圧延機との間にコイルボックスやオンライン加熱装置を設置することによって、粗バーの温度低下を補償している。しかし、特許文献1の方法は、製品寸法の高精度化を主眼とするものであり、鋼帯先端部の仕上げ温度の確保、特に、仕上圧延機入側の温度や、特にスケール性表面疵などの製品表面性状に対する対策に関しては、何ら検討がなされていない。また、粗バーの厚さを20mm未満にすると、粗圧延工程における温度低下が著しく大きくなり、この温度低下を補償するために、前述した如く極めて高出力のオンライン加熱装置を設置する必要があり、設備コストが上昇する。 In the method disclosed in Patent Document 1 below, in order to improve the dimensional accuracy of plate profile, plate shape, plate width, plate thickness, etc., the thickness of the rough bar is set to less than 20 mm, and a rough rolling mill and a finishing rolling mill are used. By installing a coil box or online heating device between the bar and the bar, the temperature drop in the rough bar is compensated for. However, the method of Patent Document 1 focuses on improving the precision of product dimensions, and it is important to ensure the finishing temperature of the tip of the steel strip, especially the temperature at the entry side of the finishing mill, and especially to prevent scale surface defects. No consideration has been given to countermeasures for the surface properties of the product. Furthermore, if the thickness of the rough bar is less than 20 mm, the temperature drop during the rough rolling process will be significantly large, and in order to compensate for this temperature drop, it is necessary to install an extremely high-output online heating device as described above. Equipment costs will rise.
 また、粗バーの厚さを厚くする方法は、製品板厚が厚い場合には、仕上げ温度を確保でき有効である一方で、製品板厚が薄い場合には、仕上圧延機の荷重や動力等の圧延スケジュールの制約から実現が困難である。 In addition, increasing the thickness of the rough bar is effective when the product plate thickness is thick because it can secure the finishing temperature, but when the product plate thickness is thin, the load and power of the finishing mill etc. This is difficult to realize due to constraints on the rolling schedule.
 また、下記特許文献2に開示されている方法では、粗バーの厚さを20~30mmの範囲内とし、この粗バーを仕上圧延機の入側に設けられたオンライン加熱装置で、粗バーの仕上入側温度が1000~1150℃の範囲内になるように加熱し、この温度に加熱された粗バーを仕上圧延している。しかし、特許文献2の方法でも、オンライン加熱装置を設置する必要があり、設備コストが上昇する。 In addition, in the method disclosed in Patent Document 2 below, the thickness of the rough bar is within the range of 20 to 30 mm, and the rough bar is heated using an online heating device installed at the entrance side of a finishing mill. The bar is heated so that the finishing input temperature falls within the range of 1000 to 1150°C, and the rough bar heated to this temperature is finished rolled. However, even with the method of Patent Document 2, it is necessary to install an online heating device, which increases the equipment cost.
日本特開平2-165802号公報Japanese Patent Publication No. 2-165802 日本特開平9-300004号公報Japanese Patent Publication No. 9-300004
 このように、被圧延材の先端部の温度低下による形状悪化、且つ、被圧延材が高速で圧延されるため、先端部の上下反りや蛇行などにより、被圧延材の先端部の通板は難しい。先端部の温度低下を抑制するため、上記先行技術では粗圧延機出側の板厚を大きくする圧延スケジュール、仕上圧延機入側に被圧延材温度を下げないための加熱装置の設置等が提案されているが、設備コスト、圧延スケジュールなどの制限がある。 In this way, the shape of the tip of the rolled material deteriorates due to the temperature drop, and since the material is rolled at high speed, the tip of the rolled material is warped or meandered, making it difficult to thread the tip of the rolled material. difficult. In order to suppress the temperature drop at the tip, the above-mentioned prior art proposes a rolling schedule in which the plate thickness is increased on the outlet side of the roughing mill, and the installation of a heating device on the inlet side of the finishing mill to prevent the temperature of the rolled material from dropping. However, there are limitations such as equipment cost and rolling schedule.
 本開示は、上述のような課題を解決するためになされたもので、被圧延材を極薄に圧延する場合でも、設備コストを上昇させることなく、被圧延材の先端部を確実に通板させることが可能な熱間圧延機の板厚制御装置を提供することを目的とする。 The present disclosure has been made in order to solve the above-mentioned problems, and even when rolling the material to be extremely thin, it is possible to reliably pass the tip of the material to be rolled without increasing the equipment cost. An object of the present invention is to provide a plate thickness control device for a hot rolling mill that can control the thickness of a hot rolling mill.
 第1の観点は、複数の圧延スタンドが並設され、加熱された被圧延材を複数の圧延スタンドで順次圧延する熱間圧延機の板厚制御装置に関連する。板厚制御装置は、並設方向で最終の圧延スタンドの出側に設置され、被圧延材の板厚を計測する板厚計と、被圧延材の製品目標板厚よりも大きく、被圧延材の先端部を安定して通板可能な通板可能板厚に対応する各圧延スタンドのロール間のギャップを計算するギャップ計算部と、ギャップ計算部により計算されたギャップを各圧延スタンドに設定するギャップ設定部と、板厚計の板厚計測値と通板可能板厚との板厚偏差を最小にする自動板厚制御を実行する自動板厚制御部と、最終の圧延スタンドに被圧延材の先端部が通板された後に、板厚偏差に板厚バイアスを所定のランプレートで付加することで、通板可能板厚を製品目標板厚に変更する目標板厚変更部を備える。 The first aspect relates to a plate thickness control device for a hot rolling mill in which a plurality of rolling stands are arranged in parallel and a heated material to be rolled is sequentially rolled by the plurality of rolling stands. The plate thickness control device is installed on the exit side of the final rolling stand in the side-by-side direction, and includes a plate thickness gauge that measures the thickness of the rolled material and a plate thickness that is larger than the product target thickness of the rolled material. A gap calculation unit that calculates the gap between the rolls of each rolling stand corresponding to the thickness of the plate that can stably pass the tip of the sheet, and sets the gap calculated by the gap calculation unit to each rolling stand. A gap setting section, an automatic thickness control section that performs automatic thickness control to minimize the deviation between the thickness measured by the thickness gauge and the passable thickness, and After the tip of the plate is threaded, a target plate thickness changing unit is provided that changes the passable plate thickness to the product target plate thickness by adding a plate thickness bias to the plate thickness deviation at a predetermined ramp rate.
 第2の観点は、第1の観点に加えて、次の特徴を更に有する。目標板厚変更部は、並設方向で最初の圧延スタンドに被圧延材の尾端部が通板される前に、板厚偏差に所定のランプレートで板厚バイアスを付加することで、製品目標板厚を通板可能板厚に変更するように構成される。 In addition to the first aspect, the second aspect further has the following characteristics. The target thickness change section adds a thickness bias at a predetermined ramp rate to the thickness deviation before the tail end of the rolled material is passed through the first rolling stand in the parallel direction. It is configured to change the target plate thickness to a plate thickness that allows the plate to pass through.
 第1の観点によれば、被圧延材を極薄に圧延する場合でも、通板可能板厚に対応するギャップに設定することで、熱間圧延機に被圧延材の先端部を確実に通板させることができる。このため、先行技術の如く熱間圧延機入側に加熱装置を設置する必要がなく、設備コストの上昇を防ぐことができる。さらに、最終の圧延スタンドに被圧延材の先端部が通板された後に、板厚計測値と通板可能板厚との板厚偏差に板厚バイアスを付加し、板厚バイアスが付加された板厚偏差で自動板厚制御を実行することで、被圧延材の先端部より後の部分が極薄の製品目標板厚で圧延される。しかも、板厚偏差に対して板厚バイアスが徐々に付加されるため、通板可能板厚から製品目標板厚への変更が徐々に行われる。これにより、被圧延材を安定して極薄に圧延することができる。 According to the first viewpoint, even when rolling the material to be rolled extremely thin, by setting the gap to correspond to the thickness of the material that can be passed through, the tip of the material to be rolled can be reliably passed through the hot rolling mill. It can be made into a board. Therefore, unlike the prior art, there is no need to install a heating device on the inlet side of the hot rolling mill, and an increase in equipment costs can be prevented. Furthermore, after the tip of the rolled material is passed through the final rolling stand, a thickness bias is added to the thickness deviation between the measured thickness value and the passable thickness. By executing automatic plate thickness control using the plate thickness deviation, the portion of the material to be rolled after the tip end is rolled to an ultra-thin product target thickness. Moreover, since the plate thickness bias is gradually added to the plate thickness deviation, the passable plate thickness is gradually changed to the product target plate thickness. Thereby, the material to be rolled can be stably rolled into an extremely thin material.
 第2の観点によれば、被圧延材の尾端部の圧延に先立ち、製品目標板厚から通板可能板厚に変更される。即ち、被圧延材の尾端部に対して、板厚計測値と通板可能板厚の板厚偏差で自動板厚制御が実行される。これにより、被圧延材の尾端蛇行や尾端絞りの発生を抑制することができる。 According to the second viewpoint, prior to rolling the tail end of the material to be rolled, the product target thickness is changed to a passable thickness. That is, automatic plate thickness control is performed for the tail end of the material to be rolled using the plate thickness deviation between the plate thickness measurement value and the passable plate thickness. This makes it possible to suppress the occurrence of tail end meandering and tail end squeezing of the rolled material.
実施の形態による熱間圧延機の板厚制御装置を備える圧延プラントの構成を説明するための図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram for explaining the configuration of a rolling plant including a plate thickness control device for a hot rolling mill according to an embodiment. 板厚制御装置の要部の構成を説明するためのブロック図である。FIG. 2 is a block diagram for explaining the configuration of main parts of the plate thickness control device. 圧延プラントが備えるプロセス計算機のハードウェア構成の一例を示す図である。It is a diagram showing an example of the hardware configuration of a process computer included in a rolling plant. 板厚制御装置を用いた板厚制御の流れを説明するためのタイミングチャートである。It is a timing chart for explaining the flow of plate thickness control using the plate thickness control device. 板厚制御装置を用いた板厚制御の流れを説明するためのフローチャートである。It is a flow chart for explaining the flow of plate thickness control using a plate thickness control device.
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that common elements in each figure are given the same reference numerals and redundant explanations will be omitted.
 図1は、実施の形態による熱間圧延機の板厚制御装置を備える圧延プラント1の構成を示す模式図である。圧延プラント1は、鉄鋼又はその他の金属材を被圧延材Mとし、被圧延材Mを熱間で板状に圧延するものである。 FIG. 1 is a schematic diagram showing the configuration of a rolling plant 1 equipped with a plate thickness control device for a hot rolling mill according to an embodiment. The rolling plant 1 uses steel or other metal materials as a material to be rolled M, and hot-rolls the material to be rolled into a plate shape.
 圧延プラント1には、加熱炉2と、粗圧延機3と、クロップシャー4と、熱間圧延機としての仕上圧延機5と、冷却装置6と、巻取機7が設置されている。本実施の形態では、熱間圧延機としての仕上圧延機5の出側の板厚を極薄(例えば1.0mm以下)の製品目標板厚に制御する場合を例に説明する。 The rolling plant 1 is equipped with a heating furnace 2, a rough rolling mill 3, a crop shear 4, a finishing mill 5 as a hot rolling mill, a cooling device 6, and a winding machine 7. In the present embodiment, a case will be described as an example in which the plate thickness at the outlet side of the finishing rolling mill 5 as a hot rolling mill is controlled to an extremely thin (for example, 1.0 mm or less) product target plate thickness.
 加熱炉2は、被圧延材Mとしてのスラブを所定温度に加熱するように構成されている。粗圧延機3は、少なくとも一基の圧延スタンドを有し、加熱炉2で加熱された被圧延材Mを圧延するように構成されている。 The heating furnace 2 is configured to heat a slab as the material to be rolled M to a predetermined temperature. The rough rolling mill 3 has at least one rolling stand and is configured to roll the material M to be rolled heated in the heating furnace 2 .
 クロップシャー4は、後述する形状検出器81で測定された形状に基づいて、上下の刃により被圧延材Mの尾端部に存する形状不良部分を切断するように構成されている。 The crop shear 4 is configured to use upper and lower blades to cut a shape-defective portion at the tail end of the rolled material M based on the shape measured by a shape detector 81, which will be described later.
 仕上圧延機5は、被圧延材Mの搬送方向に並設される複数の圧延スタンドFi(1≦i≦N)を備えるタンデム圧延機である。本実施の形態では、七基の圧延スタンドF1~F7が並設される場合を例に説明する。各圧延スタンドF1~F7は、上下2本のワークロール51と、上下2本のバックアップロール52と、ロール回転用の電動機53を備える。バックアップロール52には圧下装置54が設けられ、圧下装置54により上下のワークロール51間のギャップを調整可能に構成されている。 The finishing rolling mill 5 is a tandem rolling mill equipped with a plurality of rolling stands Fi (1≦i≦N) arranged in parallel in the conveying direction of the material M to be rolled. In this embodiment, an example will be explained in which seven rolling stands F1 to F7 are arranged in parallel. Each of the rolling stands F1 to F7 includes two upper and lower work rolls 51, two upper and lower backup rolls 52, and an electric motor 53 for rotating the rolls. The backup roll 52 is provided with a rolling down device 54, and is configured such that the gap between the upper and lower work rolls 51 can be adjusted by the rolling down device 54.
 冷却装置6は、冷却バンクにより被圧延材Mに注水することで、被圧延材Mを冷却可能に構成されている。冷却された被圧延材Mは巻取機7で巻き取られる。これにより、コイル状製品が得られる。 The cooling device 6 is configured to be able to cool the rolled material M by injecting water into the rolled material M using a cooling bank. The cooled rolled material M is wound up by a winding machine 7. This results in a coiled product.
 圧延プラント1の要所には計測器としての各種センサが設置されている。圧延プラント1の要所とは、例えば、加熱炉2の出側、粗圧延機3の出側、仕上圧延機5の出側、及び巻取機7の入側などである。各種センサは、仕上圧延機5の圧延スタンドF1~F7の間にも設けられ得る。各種センサは、粗圧延機3出側で被圧延材Mの形状を測定可能な形状検出器81と、仕上圧延機5の入側で被圧延材Mの表面温度を計測する温度計82と、仕上圧延機5の出側で被圧延材Mの表面温度を計測する温度計83と、仕上圧延機5の出側で被圧延材Mの板厚Taを計測する板厚計84と、各圧延スタンドF1~F5での圧延荷重を計測する圧延荷重センサ85とを含む。各種センサは、被圧延材Mと各機器の状態とを逐次的に計測している。 Various sensors as measuring instruments are installed at important points in the rolling plant 1. Important points of the rolling plant 1 include, for example, the outlet side of the heating furnace 2, the outlet side of the rough rolling mill 3, the outlet side of the finishing mill 5, and the inlet side of the winder 7. Various sensors may also be provided between the rolling stands F1 to F7 of the finishing rolling mill 5. The various sensors include a shape detector 81 that can measure the shape of the rolled material M on the exit side of the rough rolling mill 3, a thermometer 82 that measures the surface temperature of the rolled material M on the entry side of the finishing mill 5, A thermometer 83 that measures the surface temperature of the rolled material M on the exit side of the finishing rolling mill 5, a plate thickness gauge 84 that measures the plate thickness Ta of the rolled material M on the exit side of the finishing rolling mill 5, and It includes a rolling load sensor 85 that measures the rolling load at stands F1 to F5. Various sensors sequentially measure the condition of the rolled material M and each device.
 圧延プラント1は、計算機を用いた制御システムにより運転(操業)されている。計算機は、ネットワークを介して互いに接続された上位計算機10とプロセス計算機11とを含む。プロセス計算機11には、ネットワークを介して、操作画面であるインターフェース画面12及びデータベース13が接続されている。データベース13には、過去の圧延データが逐次格納されるようになっている。過去の圧延データには、各圧延スタンドF1~F7のローラ間ギャップ(以下「ギャップ」と略す場合もある。)の実績値が含まれる。ギャップの実績値は、鋼種、製品目標板厚Ttごとに区分けされる。また、データベース23には、先端部の通板トラブルを生じることなく、即ち、被圧延材Mの先端部が安定して通板されたギャップの実績値が、そのときの板厚(後述する「通板可能板厚」に相当する)に対応させて格納されている。 The rolling plant 1 is operated (operated) by a control system using a computer. The computer includes a host computer 10 and a process computer 11 that are connected to each other via a network. An interface screen 12, which is an operation screen, and a database 13 are connected to the process computer 11 via a network. Past rolling data is sequentially stored in the database 13. The past rolling data includes actual values of the inter-roller gap (hereinafter sometimes abbreviated as "gap") of each rolling stand F1 to F7. The actual value of the gap is classified by steel type and product target plate thickness Tt. In addition, the database 23 contains the actual value of the gap in which the tip of the material to be rolled M is stably passed through without any trouble at the tip, that is, the sheet thickness at that time (described later as " (corresponding to the "thickness that can be passed through the plate").
 本実施の形態の板厚制御装置20は、製品目標板厚Ttだけでなく、被圧延材Mの先端部を安定して通板可能な通板可能板厚Tsも用いて、被圧延材Mの板厚を制御するように構成されている。図2は、板圧制御装置20の要部の構成を説明するためのブロック図である。 The plate thickness control device 20 of the present embodiment uses not only the product target plate thickness Tt but also the passable plate thickness Ts that allows the tip of the rolled material M to be stably passed through. It is configured to control the plate thickness. FIG. 2 is a block diagram for explaining the configuration of main parts of the plate pressure control device 20. As shown in FIG.
 板厚制御装置20は、上記板厚計84と、ギャップ計算部21と、ギャップ設定部22と、板厚偏差算出部23と、自動板厚制御部24と、目標板厚変更部25を備える。 The plate thickness control device 20 includes the plate thickness meter 84, a gap calculation section 21, a gap setting section 22, a thickness deviation calculation section 23, an automatic thickness control section 24, and a target thickness change section 25. .
 ギャップ計算部21は、上位計算機11から製品目標板厚Ttが入力されると、製品目標板厚Ttよりも大きく、被圧延材Mの先端部を安定して通板可能な通板可能板厚Tsに対応する各圧延スタンドF1~F7のワークロール51間のギャップを計算するように構成されている。例えば、ギャップ計算部21は、データベース23に製品目標板厚Ttに対応付けて格納される通板可能板厚Tsを取得し、取得した通板可能板厚Tsを実現するための各圧延スタンドF1~F7のギャップを夫々算出するように構成されている。尚、各圧延スタンドF1~F7のギャップは、並設方向で最初の圧延スタンドF1から最終の圧延スタンドF7の順に小さくなるように算出される。 When the target product thickness Tt is input from the host computer 11, the gap calculation unit 21 determines a thickness that is larger than the target product thickness Tt and that allows the tip of the rolled material M to be stably passed through. It is configured to calculate the gap between the work rolls 51 of each rolling stand F1 to F7 corresponding to Ts. For example, the gap calculation unit 21 acquires the passable plate thickness Ts stored in the database 23 in association with the product target plate thickness Tt, and uses each rolling stand F1 to realize the obtained passable plate thickness Ts. ~F7 gaps are calculated respectively. Note that the gaps between the rolling stands F1 to F7 are calculated such that they become smaller in the order from the first rolling stand F1 to the last rolling stand F7 in the juxtaposed direction.
 ギャップ設定部22は、ギャップ計算部21により計算されたギャップに応じて各圧延スタンドF1~F7の圧下装置54を夫々制御することで、ギャップを各圧延スタンドF1~F7に設定するように構成されている。 The gap setting unit 22 is configured to set a gap in each of the rolling stands F1 to F7 by controlling the rolling device 54 of each of the rolling stands F1 to F7 in accordance with the gap calculated by the gap calculating unit 21. ing.
 板厚偏差算出部23は、板厚計84で計測された板厚計測値(実板厚)Taから通板可能板厚Tsを減算することで、板厚偏差FBK1(=Ta-Ts)を算出する。自動板厚制御部24は、板厚偏差算出部23で算出された板厚偏差FBK1が最小になるように、または、板厚偏差FBK1に後述する板厚バイアスTbが付加(加算)された板厚偏差FBK2が最小になるように、各圧延スタンドF1~F7の圧下装置54を夫々制御するように構成される。自動板厚制御部24による制御は、AGC(Auto Gain Control)制御に相当する。また、板厚偏差FBK1,FBK2が最小になるとは、板厚偏差FBK1,FBK2が例えばゼロに収束することを意味する。 The plate thickness deviation calculation unit 23 calculates the plate thickness deviation FBK1 (=Ta−Ts) by subtracting the passable plate thickness Ts from the plate thickness measurement value (actual plate thickness) Ta measured by the plate thickness meter 84. calculate. The automatic board thickness control unit 24 controls the board so that the board thickness deviation FBK1 calculated by the board thickness deviation calculation unit 23 becomes the minimum, or the board to which a board thickness bias Tb, which will be described later, is added (added) to the board thickness deviation FBK1. The rolling device 54 of each rolling stand F1 to F7 is controlled so that the thickness deviation FBK2 is minimized. The control by the automatic plate thickness control section 24 corresponds to AGC (Auto Gain Control) control. Further, the plate thickness deviations FBK1 and FBK2 being minimized means that the plate thickness deviations FBK1 and FBK2 converge to zero, for example.
 目標板厚変更部25は、ランプ(Ramp)251と、タイマー252と、タイマー252によるトリガーによりランプ251に入力されるバイアス量253と、ランプ251に入力されるランプレート254を有する。バイアス量253、すなわち、通板可能板厚Tsと製品目標板厚Ttの差は、被圧延材Mの鋼種に応じて設定することができ、例えば、300μmとすることができる。目標板厚変更部25は、板厚偏差FBK1に付加される板厚バイアスTbを所定のランプレートで出力(変更)することができる。板厚バイアスTbを付加することで得られる板厚偏差FBK2はプラスであり、自動板厚制御部24は板厚偏差FBK2をゼロに収束させるようにAGC制御を行うため、各圧延スタンドF1~F7のギャップが締め方向に徐々に変更される。 The target plate thickness changing unit 25 includes a ramp 251, a timer 252, a bias amount 253 that is input to the ramp 251 when triggered by the timer 252, and a ramp rate 254 that is input to the ramp 251. The bias amount 253, that is, the difference between the passable plate thickness Ts and the product target plate thickness Tt, can be set depending on the steel type of the material to be rolled M, and can be set to 300 μm, for example. The target plate thickness changing unit 25 can output (change) the plate thickness bias Tb added to the plate thickness deviation FBK1 at a predetermined ramp rate. The plate thickness deviation FBK2 obtained by adding the plate thickness bias Tb is positive, and the automatic plate thickness control unit 24 performs AGC control to converge the plate thickness deviation FBK2 to zero, so each rolling stand F1 to F7 The gap is gradually changed in the tightening direction.
 ここで、タイマー252は、最終の圧延スタンドF7に被圧延材Mの先端部が通板した時刻(F7_In)から所定の時間TD1が経過した後、トリガー信号をSETにする。これにより、目標板厚変更部25から出力される板厚バイアスTbが所定のランプレートで徐々に大きくなる。この板厚バイアスTbが付加される板厚偏差FBK2でAGC制御が行われることで、各圧延スタンドF1~F7のギャップが締め方向に徐々に変更される。その結果、被圧延材Mの先端部より後の板厚が、通板可能板厚Tsから製品目標板厚Ttに徐々に変更される。 Here, the timer 252 sets the trigger signal to SET after a predetermined time TD1 has elapsed from the time (F7_In) when the tip of the material to be rolled M passed through the final rolling stand F7. As a result, the plate thickness bias Tb output from the target plate thickness changing unit 25 gradually increases at a predetermined ramp rate. By performing AGC control using the plate thickness deviation FBK2 to which the plate thickness bias Tb is applied, the gaps between the rolling stands F1 to F7 are gradually changed in the tightening direction. As a result, the thickness of the rolled material M after the tip end is gradually changed from the passable thickness Ts to the product target thickness Tt.
 また、タイマー252は、クロップシャー4による被圧延材Mの尾端部が切断された後、トリガー信号をRESETにする。これにより、目標板厚変更部25から出力される板厚バイアスTbが所定のランプレートで徐々に小さくなる。この板厚バイアスTbが付加される板厚偏差FBK2でAGC制御が行われることで、各圧延スタンドF1~F7のギャップが緩め方向に徐々に変更される。その結果、被圧延材Mの尾端部の板厚が、製品目標板厚Ttから通板可能板厚Tsに徐々に変更される。 Further, the timer 252 sets the trigger signal to RESET after the tail end of the rolled material M is cut by the crop shear 4. As a result, the plate thickness bias Tb output from the target plate thickness changing unit 25 gradually decreases at a predetermined ramp rate. By performing AGC control using the plate thickness deviation FBK2 to which the plate thickness bias Tb is applied, the gaps of the rolling stands F1 to F7 are gradually changed in the loosening direction. As a result, the plate thickness at the tail end of the rolled material M is gradually changed from the product target plate thickness Tt to the passable plate thickness Ts.
 板圧制御装置20の具体的構造に限定はないが、一例として次のようなものであってもよい。図3は、板圧制御装置20のハードウェア構成の一例を示す図である。板圧制御装置20の機能は、図3に示す処理回路により実現することができる。この処理回路は、専用ハードウェア20aであってもよい。この処理回路は、プロセッサ20b及びメモリ20cを備えていてもよい。この処理回路は、一部が専用ハードウェア20aとして形成され、更にプロセッサ20b及びメモリ20cを備えていてもよい。図3の例は、処理回路の一部が専用ハードウェア20aとして形成されるとともに、処理回路がプロセッサ20b及びメモリ20cをも備えている。 Although there is no limitation to the specific structure of the plate pressure control device 20, the following may be used as an example. FIG. 3 is a diagram showing an example of the hardware configuration of the plate pressure control device 20. As shown in FIG. The functions of the plate pressure control device 20 can be realized by a processing circuit shown in FIG. This processing circuit may be dedicated hardware 20a. This processing circuit may include a processor 20b and a memory 20c. This processing circuit may be partially formed as dedicated hardware 20a and further include a processor 20b and a memory 20c. In the example of FIG. 3, part of the processing circuit is formed as dedicated hardware 20a, and the processing circuit also includes a processor 20b and a memory 20c.
 処理回路の少なくとも一部が、少なくとも1つの専用ハードウェア20aであってもよい。この場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。 At least a portion of the processing circuitry may be at least one piece of dedicated hardware 20a. In this case, the processing circuit can be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 処理回路が、少なくとも1つのプロセッサ20b及び少なくとも1つのメモリ20cを備えてもよい。この場合、プロセス計算機11の各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリ20cに格納される。プロセッサ20bは、メモリ20cに記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。 The processing circuit may include at least one processor 20b and at least one memory 20c. In this case, each function of the process computer 11 is realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in the memory 20c. The processor 20b realizes the functions of each section by reading and executing programs stored in the memory 20c.
 プロセッサ20bは、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPとも呼ばれる。メモリ20cは、例えば、RAM、ROM、フラッシュメモリー、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリ等が該当する。なお、メモリ20cがデータベース13を兼用するように構成することもできる。 The processor 20b is also called a CPU (Central Processing Unit), central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, or DSP. The memory 20c is, for example, a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, or the like. Note that it is also possible to configure the memory 20c to also serve as the database 13.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、板圧制御装置20の各機能を実現することができる。 In this way, the processing circuit can realize each function of the plate pressure control device 20 using hardware, software, firmware, or a combination thereof.
 上記圧延プラント1において、被圧延材Mは、加熱炉2で昇温された後、圧延ラインのローラーテーブル(図示せず)の上に抽出される。この段階の被圧延材Mは、例えば鋼片である。被圧延材Mが粗圧延機3に到達すると、圧延方向を変えながら繰り返し圧延される。この段階の被圧延材Mは、例えば数十ミリメートル程度の厚みを持つバーである。粗圧延機3出側の形状検出器81により被圧延材Mの形状が測定され、測定結果に基づき、被圧延材Mの尾端部の形状不良部分がクロップシャー4により切断される。被圧延材Mは仕上圧延機5の圧延スタンドF1~F7に順次噛み込まれながら圧延され、所望の製品目標板厚Ttに制御される。 In the rolling plant 1, the material to be rolled M is heated in the heating furnace 2 and then extracted onto a roller table (not shown) of the rolling line. The material M to be rolled at this stage is, for example, a steel billet. When the rolled material M reaches the rough rolling mill 3, it is repeatedly rolled while changing the rolling direction. The material to be rolled M at this stage is a bar having a thickness of, for example, several tens of millimeters. A shape detector 81 on the exit side of the rough rolling mill 3 measures the shape of the material to be rolled M, and based on the measurement results, a portion of the tail end of the material to be rolled M having a defective shape is cut off by the crop shear 4. The material to be rolled M is rolled while being sequentially bitten by the rolling stands F1 to F7 of the finishing mill 5, and is controlled to a desired product target thickness Tt.
 次に、上記仕上圧延機5の板厚制御装置20を用いた板厚制御方法について説明する。図4は、板厚制御装置20を用いた板厚制御の流れを説明するためのタイミングチャートである。図5は、板厚制御装置20を用いた板厚制御の流れを説明するためのフローチャートである。 Next, a method of controlling plate thickness using the plate thickness control device 20 of the finishing rolling mill 5 will be described. FIG. 4 is a timing chart for explaining the flow of plate thickness control using the plate thickness control device 20. FIG. 5 is a flowchart for explaining the flow of plate thickness control using the plate thickness control device 20.
 図5に示すルーチンが起動される前に、上位計算機11からプロセス計算機12に製品目標板厚Ttが入力されると、ギャップ計算部21は、入力された製品目標板厚Ttよりも大きく、被圧延材Mの先端部を安定して通板可能な通板可能板厚Tsを取得する。ギャップ計算部21は、取得した通板可能板厚Tsに対応する各圧延スタンドF1~F7のギャップを計算する。ギャップ設定部22は、ギャップ計算部21で計算されたギャップに応じて各圧延スタンドF1~F7の圧下装置54を夫々制御することで、各圧延スタンドF1~F7にギャップを設定する。 When the target product thickness Tt is input from the host computer 11 to the process computer 12 before the routine shown in FIG. Obtain the passable plate thickness Ts that allows the tip of the rolled material M to be stably passed through. The gap calculation unit 21 calculates the gap of each of the rolling stands F1 to F7 corresponding to the obtained passable plate thickness Ts. The gap setting unit 22 sets a gap in each of the rolling stands F1 to F7 by controlling the rolling device 54 of each of the rolling stands F1 to F7 according to the gap calculated by the gap calculating unit 21.
 図5に示すルーチンが起動されると、F7_InがONであるか否か、即ち、最終圧延スタンドF7に被圧延材Mの先端部が通板されたか否かを判別する(ステップS1)。 When the routine shown in FIG. 5 is started, it is determined whether F7_In is ON, that is, whether the tip of the material to be rolled M has passed through the final rolling stand F7 (step S1).
 時刻t1よりも前では、F7_InがOFFであるため、目標板厚変更部25から出力される板厚バイアスTbがゼロである(つまり、板厚偏差FBK1に付加される板厚バイアスTbがゼロである)。この場合、自動板厚制御部24は、板厚偏差FBK1が最小(例えばゼロ)になるように、各圧延スタンドF1~F7の圧下装置54を夫々AGC制御する(ステップS2)。これにより、被圧延材Mの先端部を確実に通板させるために、各圧延スタンドF1~F7のギャップが大きく制御される。 Before time t1, F7_In is OFF, so the thickness bias Tb output from the target thickness changing unit 25 is zero (that is, the thickness bias Tb added to the thickness deviation FBK1 is zero). be). In this case, the automatic plate thickness control unit 24 performs AGC control on the rolling devices 54 of each of the rolling stands F1 to F7, respectively, so that the plate thickness deviation FBK1 is minimized (for example, zero) (step S2). As a result, the gap between each of the rolling stands F1 to F7 is controlled to be large in order to ensure that the tip of the material M to be rolled passes through the plate.
 ここで、形状検出器81により被圧延材Mの先端部が検出された時刻から所定時間経過後の時刻t1において、F7_InがONになると、ステップS3に移行する。 Here, when F7_In is turned ON at time t1 after a predetermined time has elapsed from the time when the tip of the material to be rolled M was detected by the shape detector 81, the process moves to step S3.
 ステップS3では、時間TD1が経過したか否かを判別する。時間TD1は、タイムディレイに相当する。時間TD1が経過していない場合、タイマー252からのトリガー信号がOFFであるため、目標板厚変更部25から出力される板厚バイアスTbがゼロである(つまり、板厚偏差FBK1に付加される板厚バイアスTbがゼロである)。この場合も、自動板厚制御部24は、板厚偏差FBK1が最小(例えばゼロ)になるように、各圧延スタンドF1~F7の圧下装置54を夫々AGC制御する(ステップS4)。ステップS4でも、被圧延材Mの先端部を確実に通板させるために、各圧延スタンドF1~F7のギャップが大きく制御される。その後、ステップS3に戻る。 In step S3, it is determined whether time TD1 has elapsed. The time TD1 corresponds to a time delay. If the time TD1 has not elapsed, the trigger signal from the timer 252 is OFF, so the thickness bias Tb output from the target thickness changing unit 25 is zero (that is, the thickness bias Tb that is added to the thickness deviation FBK1 thickness bias Tb is zero). In this case as well, the automatic plate thickness control section 24 performs AGC control on the rolling devices 54 of each of the rolling stands F1 to F7, respectively, so that the plate thickness deviation FBK1 is minimized (for example, zero) (step S4). In step S4 as well, the gaps between the rolling stands F1 to F7 are controlled to be large in order to ensure that the tip of the material to be rolled M passes through the plate. After that, the process returns to step S3.
 時刻t1から時間TD1が経過した時刻t2において、タイマー252からのトリガー信号がSETになると、被圧延材Mの先端部の通板が終了したと判断され、目標板厚変更部25から板厚バイアスTbが出力される。出力された板厚バイアスTbは板厚偏差FBK1に付加され、板厚偏差FBK2となる。ここで、板厚バイアスTbのバイアス量が例えば300μmである場合、時刻t2から時刻t3までの時間、目標板厚変更部25から出力される板厚バイアスTbが所定のランプレートで大きくなる。板厚バイアスTbが300μmに達すると、FBK2=Ta-Ts+300μmとなる。自動板厚制御部24は、板厚バイアスTbが付加されたプラスの板厚偏差FBK2が最小(例えばゼロ)になるように、各圧延スタンドF1~F7の圧下装置54を夫々AGC制御する(ステップS5)。時刻t2から時刻t3までの時間、AGC制御により、各圧延スタンドF1~F7のギャップが徐々に小さく制御される(ギャップが徐々に締め方向に制御される)。これにより、被圧延材Mの先端部より後ろの部分の板厚を極薄の製品目標板厚Ttに制御することができる。 At time t2 when time TD1 has elapsed from time t1, when the trigger signal from the timer 252 becomes SET, it is determined that the threading of the tip of the material to be rolled M has been completed, and the thickness bias is changed from the target thickness changing unit 25. Tb is output. The output plate thickness bias Tb is added to the plate thickness deviation FBK1, and becomes the plate thickness deviation FBK2. Here, when the bias amount of the plate thickness bias Tb is, for example, 300 μm, the plate thickness bias Tb output from the target plate thickness changing unit 25 increases at a predetermined ramp rate during the time from time t2 to time t3. When the plate thickness bias Tb reaches 300 μm, FBK2=Ta−Ts+300 μm. The automatic plate thickness control unit 24 performs AGC control on the rolling devices 54 of each of the rolling stands F1 to F7, respectively, so that the positive plate thickness deviation FBK2 to which the plate thickness bias Tb is added is minimized (for example, zero) (step S5). During the period from time t2 to time t3, the gaps of each of the rolling stands F1 to F7 are controlled to be gradually smaller (the gaps are gradually tightened) by AGC control. Thereby, the plate thickness of the portion behind the tip of the rolled material M can be controlled to the extremely thin product target plate thickness Tt.
 ここで、被圧延材Mの尾端部が極薄になると、被圧延材Mの尾端蛇行や尾端絞りが発生しやすくなる。その結果として、被圧延材Mの尾端部が各圧延スタンドF1~F7のワークロール51に絡まりやすくなり、ワークロール51の交換回数が増加する虞がある。 Here, when the tail end of the rolled material M becomes extremely thin, the tail end meandering and tail end narrowing of the rolled material M are likely to occur. As a result, the tail end of the material to be rolled M is likely to become entangled with the work rolls 51 of each of the rolling stands F1 to F7, and there is a possibility that the number of replacements of the work rolls 51 will increase.
 そこで、本実施形態では、次の制御を実行する。即ち、CS_TCutがONであるか否か、即ち、クロップシャー4により被圧延材Mの尾端部の形状不良部分が切断されたか否かを判別する(ステップS6)。CS_TCutがOFFである場合、上記ステップS5に戻る。 Therefore, in this embodiment, the following control is executed. That is, it is determined whether CS_TCut is ON, that is, whether the defective shape portion of the tail end of the rolled material M has been cut by the crop shear 4 (step S6). If CS_TCut is OFF, the process returns to step S5.
 時刻t4においてCS_TCutがONになると、即ち、クロップシャー4による切断が行われると、ステップS7に移行する。ステップS7では、時間TD2が経過したか否かを判別する。時間TD2は、タイムディレイに相当する。時間TD2は、クロップシャー4による切断後に被圧延材Mの尾端部が最初の圧延スタンドF1に通板されないように設定される。時間TD2は、通常、時間TD1と異なる。時間TD2が経過するまでは、上記ステップS5と同様に、Tb=300μmである製品目標板厚TtでAGC制御を引き続き実行する(ステップS8)。 When CS_TCut turns ON at time t4, that is, when cutting is performed by the crop shear 4, the process moves to step S7. In step S7, it is determined whether time TD2 has elapsed. The time TD2 corresponds to a time delay. The time TD2 is set so that the tail end of the material to be rolled M is not passed through the first rolling stand F1 after cutting by the crop shear 4. Time TD2 is usually different from time TD1. Until the time TD2 elapses, AGC control is continued to be performed at the product target thickness Tt, where Tb=300 μm, as in step S5 (step S8).
 時刻t4から時間TD2が経過した時刻t5において、タイマー252からのトリガーがRESETになると、目標板厚変更部25から出力される板厚バイアスTbが所定のランプレートで300μmから0μmからに徐々に小さくなり、自動板厚制御部24は、板厚偏差FBK2が最小(例えばゼロ)になるように、各圧延スタンドF1~F7の圧下装置54を夫々AGC制御する(ステップS8)。これにより、時刻t5から時刻t6までの時間、各AGC制御により各圧延スタンドF1~F7のギャップが夫々徐々に大きく変更される。その結果、被圧延材Mの尾端部の板厚が製品目標板厚Ttが通板可能板厚Tsに徐々に変更される。そして、被圧延材Mの尾端蛇行や尾端絞りの発生を抑制することができる。これにより、被圧延材Mの尾端部が各圧延スタンドF1~F7のワークロール51に絡まり難くなり、ワークロール51の交換回数の増加を抑制することができる。 At time t5 when time TD2 has elapsed from time t4, when the trigger from timer 252 becomes RESET, plate thickness bias Tb output from target plate thickness changing unit 25 gradually decreases from 300 μm to 0 μm at a predetermined ramp rate. Therefore, the automatic plate thickness control unit 24 performs AGC control on the rolling devices 54 of the rolling stands F1 to F7, respectively, so that the plate thickness deviation FBK2 becomes the minimum (eg, zero) (step S8). As a result, from time t5 to time t6, the gaps of each rolling stand F1 to F7 are gradually changed to a larger value by each AGC control. As a result, the thickness of the tail end of the rolled material M is gradually changed from the product target thickness Tt to the passable thickness Ts. In addition, the occurrence of tail end meandering and tail end squeezing of the rolled material M can be suppressed. This makes it difficult for the tail end of the rolled material M to get entangled with the work rolls 51 of the rolling stands F1 to F7, and it is possible to suppress an increase in the number of replacements of the work rolls 51.
 以上説明したように、本実施の形態によれば、被圧延材Mを極薄の製品目標板厚Ttに圧延する場合でも、各圧延スタンドF1~F7のギャップを通板可能板厚Tsに対応するギャップに設定することで、仕上圧延機5に被圧延材Mの先端部を確実に通板させることができる。このため、先行技術の如く仕上圧延機5の入側に加熱装置を設置する必要がなく、設備コストの上昇を防ぐことができる。しかも、被圧延材Mの先端部を確実に通板させた後、板厚偏差FBK1に板厚バイアスTbを徐々に付加した板厚偏差FBK2でAGC制御を実行することで、各圧延スタンドF1~F7のギャップが製品目標板厚Ttに対応するギャップへと徐々に変更される。これにより、各圧延スタンドF1~F7のギャップを急激に変更しないことと相俟って、被圧延材Mを安定して極薄に圧延することができる。 As explained above, according to the present embodiment, even when rolling the material M to be rolled to an ultra-thin product target thickness Tt, the gap between each rolling stand F1 to F7 corresponds to the thickness Ts that allows the material to pass through. By setting the gap to such a gap, it is possible to ensure that the finishing mill 5 passes the tip of the material M to be rolled. Therefore, unlike the prior art, there is no need to install a heating device on the entry side of the finishing rolling mill 5, and an increase in equipment costs can be prevented. Moreover, after the tip of the material to be rolled M is passed through the material M, AGC control is performed using the thickness deviation FBK2, which is obtained by gradually adding the thickness bias Tb to the thickness deviation FBK1, so that each rolling stand F1 to The gap F7 is gradually changed to a gap corresponding to the target product thickness Tt. This, together with the fact that the gaps between the rolling stands F1 to F7 are not changed suddenly, makes it possible to stably roll the material M to be rolled into an extremely thin sheet.
 以上、本発明の実施の形態について説明したが、本発明は、上記の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。上述した実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数にこの発明が限定されるものではない。また、上述した実施の形態において説明する構造等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the spirit of the present invention. In the embodiments described above, when the number, amount, amount, range, etc. of each element is referred to, unless it is specifically specified or it is clearly specified to the number in principle, the mentioned number does not apply. This invention is not limited. Furthermore, the structures described in the above-described embodiments are not necessarily essential to the present invention, unless explicitly stated or clearly specified in principle.
5…仕上圧延機(熱間圧延機)、20…板厚制御装置、21…ギャップ計算部、22…ギャップ設定部、23…板厚偏差算出部、24…自動板厚制御部、25…目標板厚変更部、84…板厚計、F1~F7…圧延スタンド、F1…最初の圧延スタンド、F7…最終の圧延スタンド、FBK1,FBK2…板厚偏差、M…被圧延材、Ta…板厚計測値、Tb…板厚バイアス、Ts…通板可能板厚、Tt…製品目標板厚 5... Finishing rolling mill (hot rolling mill), 20... Plate thickness control device, 21... Gap calculation section, 22... Gap setting section, 23... Plate thickness deviation calculation section, 24... Automatic plate thickness control section, 25... Target Plate thickness change section, 84... Plate thickness gauge, F1 to F7... Rolling stand, F1... First rolling stand, F7... Final rolling stand, FBK1, FBK2... Plate thickness deviation, M... Material to be rolled, Ta... Plate thickness Measured value, Tb...Thickness bias, Ts...Thickness that can be passed through, Tt...Product target thickness

Claims (2)

  1.  複数の圧延スタンドが並設され、加熱された被圧延材を前記複数の圧延スタンドで順次圧延する熱間圧延機の板厚制御装置において、
     並設方向で最終の前記圧延スタンドの出側に設置され、被圧延材の板厚を計測する板厚計と、
     被圧延材の製品目標板厚よりも大きく、被圧延材の先端部を安定して通板可能な通板可能板厚に対応する各圧延スタンドのロール間のギャップを計算するギャップ計算部と、
     前記ギャップ計算部により計算されたギャップを各圧延スタンドに設定するギャップ設定部と、
     前記板厚計の板厚計測値と前記通板可能板厚との板厚偏差を最小にする自動板厚制御を実行する自動板厚制御部と、
     前記最終の圧延スタンドに被圧延材の先端部が通板された後に、前記板厚偏差に板厚バイアスを所定のランプレートで付加することで、前記通板可能板厚を前記製品目標板厚に変更する目標板厚変更部を備える熱間圧延機の板厚制御装置。
    In a plate thickness control device for a hot rolling mill in which a plurality of rolling stands are arranged in parallel and a heated material to be rolled is sequentially rolled by the plurality of rolling stands,
    a plate thickness gauge installed on the exit side of the final rolling stand in the parallel arrangement direction and measuring the plate thickness of the rolled material;
    a gap calculation unit that calculates a gap between the rolls of each rolling stand that is larger than the product target thickness of the material to be rolled and corresponds to a passable thickness that allows the tip of the material to be rolled to pass stably;
    a gap setting unit that sets the gap calculated by the gap calculation unit to each rolling stand;
    an automatic plate thickness control unit that executes automatic plate thickness control that minimizes a plate thickness deviation between a plate thickness measurement value of the plate thickness meter and the passable plate thickness;
    After the tip of the material to be rolled is passed through the final rolling stand, a thickness bias is added to the thickness deviation at a predetermined ramp rate, thereby changing the passable thickness to the product target thickness. A plate thickness control device for a hot rolling mill equipped with a target plate thickness changing section that changes the target plate thickness.
  2.  前記目標板厚変更部は、前記並設方向で最初の前記圧延スタンドに被圧延材の尾端部が通板される前に、前記板厚偏差に所定のランプレートで板厚バイアスを付加することで、前記製品目標板厚を前記通板可能板厚に変更するように構成された請求項1記載の熱間圧延機の板厚制御装置。 The target plate thickness changing unit adds a plate thickness bias to the plate thickness deviation at a predetermined ramp rate before the tail end of the material to be rolled is passed through the first rolling stand in the juxtaposition direction. The plate thickness control device for a hot rolling mill according to claim 1, wherein the device is configured to change the product target plate thickness to the passable plate thickness.
PCT/JP2022/031680 2022-08-23 2022-08-23 Hot rolling mill plate thickness control device WO2024042601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031680 WO2024042601A1 (en) 2022-08-23 2022-08-23 Hot rolling mill plate thickness control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/031680 WO2024042601A1 (en) 2022-08-23 2022-08-23 Hot rolling mill plate thickness control device

Publications (1)

Publication Number Publication Date
WO2024042601A1 true WO2024042601A1 (en) 2024-02-29

Family

ID=90012713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031680 WO2024042601A1 (en) 2022-08-23 2022-08-23 Hot rolling mill plate thickness control device

Country Status (1)

Country Link
WO (1) WO2024042601A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187504A (en) * 1995-01-06 1996-07-23 Sumitomo Metal Ind Ltd Manufacture of tapered steel sheet
JPH08215730A (en) * 1995-02-21 1996-08-27 Nippon Steel Corp Roll bending equipment and plate rolling method of plate rolling mill
JPH11342409A (en) * 1998-05-29 1999-12-14 Nkk Corp Method of controlling cold-rolling mill
JP2004042058A (en) * 2002-07-09 2004-02-12 Nippon Steel Corp Control method for plate thickness by continuous hot rolling equipment
JP2009006373A (en) * 2007-06-28 2009-01-15 Hitachi Ltd Crown controller and crown control method in hot-rolling mill
JP2016107297A (en) * 2014-12-05 2016-06-20 株式会社日立製作所 Control apparatus for tandem rolling mill and control method for tandem rolling mill

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187504A (en) * 1995-01-06 1996-07-23 Sumitomo Metal Ind Ltd Manufacture of tapered steel sheet
JPH08215730A (en) * 1995-02-21 1996-08-27 Nippon Steel Corp Roll bending equipment and plate rolling method of plate rolling mill
JPH11342409A (en) * 1998-05-29 1999-12-14 Nkk Corp Method of controlling cold-rolling mill
JP2004042058A (en) * 2002-07-09 2004-02-12 Nippon Steel Corp Control method for plate thickness by continuous hot rolling equipment
JP2009006373A (en) * 2007-06-28 2009-01-15 Hitachi Ltd Crown controller and crown control method in hot-rolling mill
JP2016107297A (en) * 2014-12-05 2016-06-20 株式会社日立製作所 Control apparatus for tandem rolling mill and control method for tandem rolling mill

Similar Documents

Publication Publication Date Title
TWI458572B (en) Control device and control method
JP2013150990A (en) Apparatus and method of controlling hot rolling mill for thin plate
WO2024042601A1 (en) Hot rolling mill plate thickness control device
KR101403240B1 (en) Apparatus and method of controlling coiling temperature of hot rolled steel plate using in-plate learning
KR20240046210A (en) Plate thickness control device for hot rolling mill
CN117917971A (en) Plate thickness control device of hot rolling mill
US20230118015A1 (en) Method Of Controlling Flatness Of Strip Of Rolled Material, Control System And Production Line
JP7230880B2 (en) Rolling load prediction method, rolling method, method for manufacturing hot-rolled steel sheet, and method for generating rolling load prediction model
JP3109067B2 (en) Strip width control method in hot continuous rolling
JP2018153831A (en) Leveling setting method of rolling machine and leveling setting device of rolling machine
JP5637906B2 (en) Thickness control method and thickness control device for cold rolling mill
EP2933031B1 (en) Method for producing steel sheet
KR101879085B1 (en) Apparatus and method for endless hot rolling
JPH0275409A (en) Method for controlling winding temperature of hot rolled steel sheet
JP3341622B2 (en) Strip width control method in hot rolling line
KR20040044325A (en) Method for Controlling Thickness of Front Portion of Hot-Rolled Steel Sheet
WO2024033983A1 (en) Plate thickness control method for rolling mill and rigidity monitoring method
JP7211386B2 (en) Model learning method, running strip thickness changing method, steel plate manufacturing method, model learning device, running strip thickness changing device, and steel plate manufacturing device
JP7323799B2 (en) Hot-rolled steel plate manufacturing method and rolling mill
KR100496824B1 (en) Cooling control method of hot strip using intermediate pyrometer on run-out table
JP2018140400A (en) Rolling workpiece treatment method on hot-finished rolling abnormal time
JP3312568B2 (en) Hot rolling steel strip rolling method and manufacturing apparatus
EP4326453A1 (en) Roll steering control systems and methods for tandem mills
JP3237559B2 (en) Thickness control method of hot continuous rolling mill
JPH081220A (en) Method for controlling width of hot rolled plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956429

Country of ref document: EP

Kind code of ref document: A1