WO2024041663A1 - 有机固废热解-化学链重整制备清洁合成气装置及方法 - Google Patents

有机固废热解-化学链重整制备清洁合成气装置及方法 Download PDF

Info

Publication number
WO2024041663A1
WO2024041663A1 PCT/CN2023/119588 CN2023119588W WO2024041663A1 WO 2024041663 A1 WO2024041663 A1 WO 2024041663A1 CN 2023119588 W CN2023119588 W CN 2023119588W WO 2024041663 A1 WO2024041663 A1 WO 2024041663A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
zone
solid waste
organic solid
air
Prior art date
Application number
PCT/CN2023/119588
Other languages
English (en)
French (fr)
Inventor
黄振
林延
陈新飞
颜舒畅
卢灿铭
赵坤
赵增立
黄宏宇
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2024041663A1 publication Critical patent/WO2024041663A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes

Definitions

  • the invention relates to the technical fields of environmental protection and chemical chain applications, and specifically to a device and method for preparing clean synthesis gas through pyrolysis of organic solid waste and chemical chain reforming.
  • Organic solid waste refers to solid and semi-solid waste with high organic matter content produced by people in production and life. With the development of economy and the improvement of people's living standards, organic solid waste (hereinafter referred to as "organic solid waste”) The amount produced is increasing year by year. If it is not properly treated, it will cause pollution to the environment and further threaten human health.
  • organic solid waste At present, the main disposal methods of organic solid waste include sanitary landfill, land utilization, building material utilization and incineration.
  • a large number of studies have shown that the two disposal methods of sanitary landfill and land utilization can easily cause the leakage of toxic and harmful substances in organic solid waste, thereby causing secondary pollution to the surrounding environment.
  • organic solid waste is usually rich in heavy metals and other components, the building materials made by using the building materials disposal method have low performance and high production costs.
  • due to the risk of heavy metal leaching the use scenarios of solid waste building materials will be affected. Some restrictions.
  • incineration technology seems to be an effective technical means to achieve the reduction, harmlessness and stabilization of organic solid waste.
  • Pyrolysis gasification technology refers to the process of causing organic matter to undergo a series of chemical reactions at high temperatures under anaerobic or anoxic conditions to produce flammable gases such as H 2 , CH 4 , CO, C n H m , tar and coke. .
  • flammable gases such as H 2 , CH 4 , CO, C n H m , tar and coke.
  • a large number of studies have shown that compared with incineration technology, pyrolysis and gasification technology produces fewer pollutants after treating organic solid waste.
  • the treatment cost of pyrolysis and gasification technology is much lower than that of incineration technology.
  • Pollutants such as tar and N/S/Cl cause certain environmental risks.
  • Chemical Looping Refoming is a novel reforming technology (shown in Figure 1) that oxidizes fuel to CO in a fuel reactor through lattice oxygen in a solid oxygen carrier (MeO) , H 2 and other synthesis gases, and the reduced oxygen carrier (Me) after the reaction is re-oxidized by air in the air reactor to restore the lattice oxygen for recycling.
  • chemical chain reforming technology avoids direct contact between fuel and oxygen, and at the same time converts organic solid waste into energy to play a greater role. Since organic solid waste often contains ash with complex composition, the oxygen carrier may lose activity during the reaction process due to high-temperature sintering and oxidation of metal parts. Therefore, it is of great significance to explore an organic solid waste disposal technology that has low initial investment, low pollutant emissions and can convert organic solid waste into energy to replace the traditional organic solid waste disposal technology and be widely used in the organic solid waste disposal industry.
  • the present invention provides a device and method for preparing clean synthesis gas through pyrolysis-chemical chain reforming of organic solid waste, which has low pollutant emissions and can convert the generated waste gas into usable synthetic gas. Characteristics of Qi.
  • the present invention can adopt the following technical solutions:
  • the present invention provides a device for preparing clean syngas by pyrolysis-chemical chain reforming of organic solid waste, which includes: a shell;
  • a chemical chain reforming zone is provided at the upper part of the shell.
  • the chemical chain reforming zone is provided with a honeycomb reactor that can rotate around the axis of the shell.
  • the honeycomb reactor is provided with several passages. hole, at least part of the hole wall surface of the through hole is arranged with an oxygen carrier, the top of the chemical chain reforming zone is divided into an air reaction zone, a fuel reaction zone, an upper transition zone and a lower transition zone, the air reaction zone , fan-shaped baffles are provided below the upper transition area and the lower transition area;
  • a pyrolysis gasification zone located in the middle of the housing
  • a coke combustion zone is provided at the lower part of the casing, wherein,
  • the organic solid waste is pyrolyzed in the pyrolysis gasification zone, the gas mixture produced by pyrolysis enters the fuel reaction zone, the solid mixture produced by pyrolysis enters the coke combustion zone, and the gas mixture is in the chemical chain reforming zone
  • a chemical reaction occurs with the oxygen carrier on the honeycomb reactor, thereby producing CO, H 2 and N 2 and discharged from the device.
  • Pollutants containing S/Cl solidify on the oxygen carrier and are released into the air with the rotation of the honeycomb reactor.
  • the incoming air oxidizes the oxygen carrier containing solidified S/Cl pollutants.
  • Argon gas is introduced into the argon gas inlet between the upper transition area and the fan-shaped baffle, and the argon gas reacts with the oxygen carrier.
  • the remaining pyrolysis gas is discharged to the pyrolysis gas pipeline, and then transported back to the pyrolysis reaction zone through the pyrolysis gas pipeline;
  • argon gas is introduced into the argon gas inlet between the lower transition zone and the fan-shaped baffle to mix with the reduced oxygen carrier The remaining air after the reaction is discharged from the device.
  • the above-mentioned organic solid waste pyrolysis-chemical chain reforming device for preparing clean syngas further, the air reaction zone and the fuel reaction zone are also separated by an upper transition zone and a lower transition zone respectively, wherein, The air reaction zone and the fuel reaction zone are both regions corresponding to a central angle of 120°, the upper transition region and the lower transition region are regions corresponding to a central angle of 60°, and the upper transition region and An opening is provided at the top of the lower transition area, the opening of the upper transition area is connected to the front end of the pyrolysis gas pipeline, and the opening of the lower transition area is directly connected to the atmosphere.
  • the above-mentioned organic solid waste pyrolysis-chemical chain reforming device for preparing clean syngas further includes a motor, which drives the honeycomb reactor to rotate around the axis of the housing through a transmission shaft.
  • the above-mentioned organic solid waste pyrolysis-chemical chain reforming device for preparing clean syngas further includes two fixed baffles arranged below the honeycomb reactor, and both fixed baffles pass through the The diameter of the bottom circle of the honeycomb reactor and the angle between each other is 60°.
  • the areas separated by the two fixed baffles correspond to the air reaction area, the fuel reaction area, the upper transition area and the lower transition area.
  • the above-mentioned organic solid waste pyrolysis-chemical chain reforming device for preparing clean syngas further, the pyrolysis gasification zone
  • a quartz baffle is provided, wherein one end of the quartz baffle is connected to the inner wall of the housing and a grate furnace is provided on the quartz baffle, and the other end of the quartz baffle is connected to the inner wall of the housing.
  • a coke outlet is provided between the inner walls; the housing is also provided with an inlet for introducing organic solid waste into the pyrolysis gasification zone.
  • the coke combustion zone is provided with a sloping plate and a vertical baffle, wherein the vertical baffle is provided in the The free end of the quartz baffle extends downward, and the inclined plate is provided at the bottom of the housing; the housing is also provided with an inlet for argon gas, air and coke to the coke combustion zone, and the The ramp slopes gradually downwards along the inlet towards the air and coke.
  • the present invention provides a method for preparing clean syngas through autothermal operation of organic solid waste pyrolysis-chemical chain reforming, which is realized by the above-mentioned device and includes the following steps:
  • Air is introduced into the air reaction zone through the fan-shaped gap corresponding to the air reaction zone, the organic solid waste is sent to the grate furnace in the pyrolysis gasification zone through the organic solid waste inlet, and air is introduced into the coke combustion zone air inlet. , add a set amount of coke, and introduce argon gas at a set angle to the vertical baffle at the argon gas inlet of the coke combustion zone. The introduction of argon gas will form a high pressure between the grate furnace and the coke outlet, blocking the coke combustion zone. The air enters the organic solid waste pyrolysis zone;
  • the honeycomb reactor is made of an oxygen carrier.
  • the method for preparing clean syngas through autothermal operation of organic solid waste pyrolysis-chemical chain reforming further, the oxygen carrier is adhered to the hole wall of the honeycomb reactor.
  • the oxygen carrier is a natural metal ore
  • the natural metal ore includes iron ore, copper ore Any one or any combination of stone, manganese ore and nickel ore; the natural metal ore is loaded or doped with any kind of exogenous ions of K/Ca/Na/Ni/Mn/Cu.
  • the device proposed by the present invention uses chemical chain reforming to convert organic solid waste into energy, greatly reducing environmental pollution and maximizing the benefits of organic solid waste.
  • the device proposed by the present invention uses a grate furnace and a quartz baffle, which not only reduces the cost required for pretreatment of organic solid waste and makes the pyrolysis degree more thorough, but also makes the entire Organic solid waste pyrolysis-chemical chain reforming realizes self-heating operation, which greatly reduces the energy consumed in the pyrolysis and gasification process.
  • the device proposed by the present invention first performs pyrolysis and gasification treatment of the organic solid waste, thereby avoiding direct contact between the complex ash contained in the organic solid waste and the oxygen carrier, greatly improving improves the service life of the oxygen carrier.
  • the device proposed by the present invention not only effectively disposes organic solid waste in terms of reduction, harmlessness and energy conversion, but also achieves a significant reduction in disposal costs during the disposal process. cost.
  • this device also has the characteristics of small initial investment and low operation difficulty, and is suitable for scenarios with small processing volume.
  • Figure 1 is a schematic diagram of the principle of chemical chain reforming according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the principle of a method for preparing clean syngas through organic solid waste pyrolysis-chemical chain reforming according to an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of a device for preparing clean syngas through organic solid waste pyrolysis-chemical chain reforming according to an embodiment of the present invention
  • Figure 4 is a schematic structural diagram of a honeycomb reactor according to an embodiment of the present invention.
  • Figure 5 is a half-section view of the housing according to the embodiment of the present invention.
  • a process, method, system, product or equipment that includes a series of steps or units is not necessarily limited to Those steps or elements that are expressly listed may instead include other steps or elements that are not expressly listed or that are inherent to the process, method, product or apparatus.
  • connection means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • installation should be understood in a broad sense. For example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection.
  • a connection can also be an electrical connection; it can be a direct connection, or an indirect connection through an intermediate medium, or an internal connection between two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium. touch.
  • the first characteristic is in the The two features "above”, “above” and “above” can mean that the first feature is directly above or diagonally above the second feature, or simply means that the level of the first feature is higher than that of the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the present invention provides a device for preparing clean synthesis gas through pyrolysis and chemical chain reforming of organic solid waste. Compared with traditional organic solid waste treatment devices, it not only reduces the amount of organic solid waste , harmless and energy-based effective disposal, while achieving a significant reduction in disposal costs during the disposal process. It may include: a shell, a chemical chain reforming zone 14 arranged in the upper part of the shell, a pyrolysis gasification zone 8 arranged in the middle of the shell, and a coke combustion zone 13 arranged in the lower part of the shell.
  • the chemical chain reforming zone 14 A honeycomb reactor 6 is provided that can rotate around the axis of the shell.
  • the honeycomb reactor 6 is provided with a number of through holes.
  • the chemical chain reforming zone 14 is The top is divided into an air reaction zone 4, a fuel reaction zone 5, an upper transition zone 403 and a lower transition zone 404.
  • a fan-shaped baffle 7 is provided below the air reaction zone 4, the upper transition zone 403 and the lower transition zone 404; wherein, the organic solid
  • the waste is pyrolyzed in the pyrolysis gasification zone 8.
  • the gas mixture produced by pyrolysis enters the fuel reaction zone 5.
  • the solid mixture produced by pyrolysis enters the coke combustion zone 13.
  • the gas mixture is mixed with the honeycomb in the chemical chain reforming zone 14.
  • the oxygen carrier on the reactor 6 undergoes a chemical reaction to produce CO, H 2 and N 2 and are discharged from the device. Pollutants containing S/Cl solidify on the oxygen carrier and are transferred to the air reaction area with the rotation of the honeycomb reactor 6 4. The incoming air oxidizes the oxygen carrier solidified with S/Cl-containing pollutants.
  • Argon gas is introduced into the argon gas inlet between the upper transition area 403 and the fan-shaped baffle 7, and the argon gas reacts with the oxygen carrier.
  • the remaining pyrolysis gas is discharged to the pyrolysis gas pipeline 15 and transported back to the pyrolysis reaction zone through the pyrolysis gas pipeline 15;
  • Argon is introduced into the first argon gas inlet 502 between the lower transition area 404 and the fan-shaped baffle 7 gas, and the air remaining after reacting with the reduced oxygen carrier is discharged from the device.
  • the organic solid waste is first subjected to pyrolysis and gasification treatment.
  • the pyrolysis gas and tar generated during the pyrolysis and gasification process are passed into the chemical chain reforming zone 14 to undergo a series of chemical reactions to prepare synthesis gas, containing N pollutants are converted into N 2 , S/Cl-containing pollutants are solidified on the oxygen carrier, and the coke produced during the pyrolysis gasification process
  • the residue enters the coke combustion zone 13 due to gravity, and the heat generated by the coke combustion is transferred to the pyrolysis gasification zone 8 to provide heat for the pyrolysis of organic solid waste, which not only achieves the reduction and energy conversion of organic solid waste, but also It realizes self-heating operation and greatly reduces the cost of effective disposal of organic solid waste. It is a very innovative idea for the disposal of organic solid waste.
  • this device Compared with traditional incineration technology, this device has the advantages of small initial investment and extremely low pollutant emissions. Compared with pyrolysis gasification technology, this device has the characteristics of converting the generated waste gas into usable synthesis gas. The treatment process Simple and low cost.
  • Figure 3 shows an organic solid waste pyrolysis-chemical chain reforming device for preparing clean syngas, which may include: motor 2, pyrolysis gas pipeline 15, chemical chain reforming area 14, pyrolysis gas Chemicalization zone 8 and coke combustion zone 13. Except for the motor 2 and the pyrolysis gas pipeline 15, the chemical chain reforming zone 14, the pyrolysis gasification zone 8 and the coke combustion zone 13 are all cylindrical and arranged in sequence from top to bottom. Among them, the chemical chain reforming zone 14 is equipped with a honeycomb reactor 6. The motor 2 is installed on the bottom plate 1 and cooperates with the honeycomb reactor 6 through the transmission shaft 3. The chemical chain reforming zone 14 is connected with the pyrolysis gasification zone. 8 is in an incompletely closed state through the fan-shaped baffle 7; the pyrolysis gasification zone 8 and the coke combustion zone 13 are in an incompletely closed state through the quartz baffle 10.
  • the chemical chain reforming zone 14 includes an air reaction zone 4 and a fuel reaction zone 5.
  • the chemical chain reforming zone 14 is provided with a honeycomb reactor that can rotate around the axis of the shell. 6.
  • the circular plate on the top of the chemical chain reforming zone 14 separates it to form four zones: air reaction zone 4, fuel reaction zone 5, upper transition zone 403 and lower transition zone 404, where , the left and right are sector-shaped areas corresponding to a central angle of 120°.
  • the left side corresponds to the air reaction zone 4, and the right side corresponds to the fuel reaction zone 5.
  • the circular plate is completely removed from this area.
  • the left sector-shaped gap is used to introduce air
  • the right sector-shaped gap is used to introduce air.
  • the gap is used to collect syngas; the upper and lower parts are fan-shaped areas corresponding to a central angle of 60°, and the upper and lower parts correspond to the upper transition area 403 and the lower transition area 404 respectively.
  • the circular plate in this area is just a shell, and the purpose is to divide the four areas into Separate, thus playing a transitional role.
  • an opening is provided at the top of the upper transition area 403 and the lower transition area 404.
  • the opening of the upper transition area 403 is connected to the front end of the pyrolysis gas pipeline 15, and the opening of the lower transition area 404 is directly connected to the large Qi is connected.
  • the bottom of the chemical chain reforming zone 14 is separated from the pyrolysis gasification zone 8 by a sector-shaped baffle 7 .
  • this plan by using chemical chain reforming to convert organic solid waste into energy, environmental pollution can be greatly reduced while maximizing the benefits of organic solid waste.
  • the honeycomb reactor 6 is provided with several through holes, one of which cooperates with the transmission shaft 3 carried by the motor 2, thereby realizing counterclockwise rotation movement, and at least partially An oxygen carrier is arranged on the wall surface of the through hole.
  • the bottom of the honeycomb reactor 6 is provided with two fixed baffles with a diameter of 60° and an included angle of 60°, namely the first fixed baffle 405 and the second fixed baffle 406, and both fixed baffles are not accompanied by the honeycomb briquettes. Make a rotational motion and correspond to the structure at the top of the chemical chain reforming zone 14.
  • the pyrolysis gasification zone 8 is provided with an organic solid waste inlet 506, a coke outlet 504, a quartz baffle 10, a grate furnace 11 and a tube nozzle, wherein the tube nozzle is connected to the pyrolysis
  • the ends of the gas pipeline 15 are connected; one end of the quartz baffle 10 is connected to the inner wall of the casing and a grate furnace 11 is provided on the quartz baffle 10.
  • a coke outlet is provided between the other end of the quartz baffle 10 and the inner wall of the casing. 504;
  • the organic solid waste inlet 506 is provided in the casing for introducing organic solid waste into the pyrolysis gasification zone 8.
  • the device first pyrolyzes and gasifies the organic solid waste, which can avoid direct contact between the complex ash contained in the organic solid waste and the oxygen carrier, and greatly improves the service life of the oxygen carrier.
  • the use of the grate furnace 11 and the quartz baffle 10 not only reduces the cost required for pretreatment of organic solid waste and makes the pyrolysis more thorough, but also allows the entire organic solid waste pyrolysis-chemical chain reformation to be realized Self-heating operation greatly reduces the energy consumed in the pyrolysis and gasification process.
  • the coke combustion zone 13 is provided with an air inlet, a second argon gas inlet 505, a vertical baffle 9 and an inclined plate 12, wherein the vertical baffle 9 is disposed on the quartz baffle The free end of 10 extends downward, and the inclined plate 12 is arranged at the bottom of the shell; the shell is also provided with an air and coke inlet 507 that introduces air and coke to the coke combustion zone 13, and the inclined plate 12 faces the air and coke along the The entrance slopes gradually downwards.
  • Pyrolysis and gasification zone 8 The organic solid waste is sent into the grate furnace 11 through the organic solid waste inlet 506, and pyrolysis is performed on the grate furnace 11 device. Due to the obstruction of the fan-shaped baffle 7, the heat generated by pyrolysis is Degassing, pollutants containing N/S/Cl and tar can only be discharged to the fuel reaction zone 5, and residues such as coke are discharged to the coke combustion zone 13 through the coke outlet 504.
  • Chemical chain reforming zone 14 Pyrolysis gas, N/S/Cl-containing pollutants and tar are discharged to the fuel reaction zone 5 and undergo a series of chemical reactions with the oxygen carrier attached to the honeycomb reactor 6 to produce CO , H 2 and N 2 are discharged through the right fan-shaped gap corresponding to the fuel reaction zone 5 and collected. S/Cl-containing pollutants are solidified on the oxygen carrier, and the reduced oxygen carrier passes through the rotation of the honeycomb reactor 6 to Air reaction zone 4, corresponding to the left fan-shaped gap of air reaction zone 4, air is introduced to oxidize it.
  • Argon gas is introduced into the argon gas inlet between the upper transition area 403 and the fan-shaped baffle 7, and the remaining pyrolysis gas after reacting with the oxygen carrier is discharged to the pyrolysis gas pipeline 15, and then transported back through the pyrolysis gas pipeline 15.
  • Pyrolysis reaction zone Introduce argon gas into the argon gas inlet between the lower transition zone 404 and the sector-shaped baffle 7, and discharge the remaining air after reacting with the reduced oxygen carrier.
  • Coke combustion zone 13 The coke and other residues produced by pyrolysis in the pyrolysis and gasification zone 8 are discharged to the coke combustion zone 13 for combustion to provide heat for further pyrolysis.
  • the argon gas inlet is at a certain angle to the vertical baffle 9 The argon gas is introduced to form a high pressure between the grate furnace 11 and the coke outlet 504, blocking the air in the coke combustion zone 13 from entering the organic solid waste pyrolysis zone.
  • the present invention also proposes a method for preparing clean syngas through organic solid waste pyrolysis-chemical chain reforming that can be operated by autothermal operation, which is accomplished by the above-mentioned organic solid waste pyrolysis-chemical chain reforming device for preparing clean syngas.
  • Implementation may include the following steps:
  • Air is introduced into the air reaction zone 4 through the fan-shaped gap corresponding to the air reaction zone 4, and the organic solid waste is sent to the grate furnace 11 of the pyrolysis gasification zone 8 through the organic solid waste inlet 506.
  • Air is introduced into the air inlet 13 and a small amount of coke is added.
  • the argon gas inlet of the coke combustion zone 13 is introduced at a certain angle toward the vertical baffle 9. The introduction of argon gas makes the gap between the grate furnace 11 and the coke outlet 504 A high pressure is formed between the coke combustion zone 13 and the air in the coke combustion zone 13 from entering the organic solid waste pyrolysis zone to prevent it from affecting the pyrolysis of the organic solid waste.
  • Residues such as coke generated during the pyrolysis of organic solid waste will enter the coke combustion zone 13, and the heat generated by combustion is transferred to the organic solid waste pyrolysis zone to provide heat for the pyrolysis of organic solid waste, thereby achieving self-heating operation. the process of.
  • the oxygen carrier is placed in the honeycomb reactor 6, which can be that the entire honeycomb reactor 6 is made of the oxygen carrier, or it can be placed in the honeycomb reactor 6.
  • the oxygen carrier is sintered in the hole of the reactor 6 to adhere to the hole wall.
  • the oxygen carrier is a natural metal ore
  • the natural metal ore is at least one selected from the group consisting of iron ore, copper ore, manganese ore and nickel ore.
  • the selected natural metal ores can improve the ability of the oxygen carrier to remove tar and N/S/Cl pollutants by loading/doping K, Ca, Na, Ni, Mn, Cu and other external ions.
  • the self-heating organic solid waste pyrolysis-chemical chain reforming method for preparing clean syngas proposed by the present invention includes three parts: organic solid waste pyrolysis gasification, coke and other residue combustion, and chemical chain reforming.
  • Its principle diagram is as follows As shown in Figure 2.
  • the pyrolysis and gasification process of organic solid waste is: converting organic solid waste into pyrolysis gas, tar and pollutants containing N/S/Cl through the pyrolysis and gasification zone 8.
  • the combustion process of coke and other residues is: coke and other residues generated during the pyrolysis and gasification process enter the coke combustion zone 13 for combustion to provide heat for pyrolysis.
  • the chemical chain reforming process is: through the chemical chain reforming zone 14, the organic solid waste pyrolysis gas containing a large amount of tar and N/S/Cl pollutants is converted into synthetic gases such as CO and H2 , and N pollutants are converted into N 2.
  • the S/Cl element is solidified on the oxygen carrier.
  • the chemical chain reforming zone 14 includes a fuel reaction zone 5 and an air reaction zone 4 .
  • the fuel reaction zone 5 the pyrolysis product reacts with the oxygen carrier, the pyrolysis gas is converted into synthesis gas such as CO, H 2, etc., N-containing pollutants are converted into N 2 , and S/Cl-containing pollutants are solidified on the oxygen carrier.
  • the air reaction zone 4 the reduced oxygen carrier is re-oxidized by the air into an oxidizing oxygen carrier.
  • the heat required in the pyrolysis gasification process is provided by the combustion of coke and other residues produced by pyrolysis gasification.
  • the heat required in the fuel reaction zone 5 is released by the heat of the pyrolysis gas itself and the oxidation reaction that occurs in the air reaction zone 4.
  • the heat is provided by two parts of the heat, thereby realizing the self-heating operation of organic solid waste pyrolysis-chemical chain reforming.
  • a method for preparing clean synthesis gas by pyrolysis-chemical chain reforming of organic solid waste that can be operated by self-heating which is realized by the above-mentioned pyrolysis-chemical chain reforming of organic solid waste that can be operated by self-heating, and includes the following steps :
  • Air is introduced into the air reaction zone 4 through the fan-shaped gap corresponding to the air reaction zone 4, and the urban sludge is sent to the grate furnace 11 of the pyrolysis gasification zone 8 through the organic solid waste inlet 506.
  • Air is introduced into the air inlet and a small amount of coke is added.
  • the coke combustion provides heat for the initial pyrolysis of the sludge.
  • the argon gas inlet of the coke combustion zone 13 is introduced into the argon gas at a certain angle toward the vertical baffle 9.
  • argon creates a high pressure between the grate furnace 11 and the coke outlet 504, blocking the air in the coke combustion zone 13 from entering the organic solid waste pyrolysis zone and preventing it from affecting the pyrolysis of urban sludge.
  • Residues such as coke generated during the pyrolysis of urban sludge will enter the coke combustion zone 13, and the heat generated by combustion is transferred to the organic solid waste pyrolysis zone to provide heat for the pyrolysis of urban sludge, thereby achieving self-heating operation. the process of.
  • the oxygen carrier was changed to 8% Ca-loaded copper ore oxygen carrier.
  • the other steps were the same as in Example 1 and will not be described again.
  • the oxygen carrier was changed to 8% loaded Na copper ore oxygen carrier, and other steps were the same as in Example 1, which will not be described again.
  • Example 1 The N-containing pollutant emissions obtained in Example 1 and Comparative Example 1 are shown in Table 1:
  • Example 1 The dechlorination efficiencies obtained in Example 1, Example 2, Example 3 and Comparative Example 1 are shown in Table 3:
  • Example 4 The tar content obtained in Example 4, Example 5, Example 6 and Comparative Example 2 is shown in Table 4:
  • the self-heating organic solid waste pyrolysis-chemical chain reforming method for preparing clean syngas proposed by the present invention can be used in the disposal of organic solid waste.
  • the emissions of tar and N/S/Cl and other pollutants produced during the process, as well as the cost of organic solid waste disposal, have obvious advantages over traditional incineration technology and traditional pyrolysis gasification technology. , therefore it is of great significance to apply the present invention to the organic solid waste disposal industry.

Abstract

本发明公开了一种有机固废热解-化学链重整制备清洁合成气装置及方法,涉及环保及化学链应用技术领域,本装置包括电机、热解气管道、化学链重整区、热解气化区和焦炭燃烧区,化学链重整区设有蜂窝式反应器、两个氩气入口和空气出口,同时包括空气反应区和燃料反应区。热解气化区设有焦炭出口、有机固废入口、管口、炉排炉和石英挡板。焦炭燃烧区设有氩气入口、空气入口、斜板和竖直挡板。本发明的装置与传统的有机固废处理装置相比,不仅对有机固废进行了减量化、无害化和能源化的有效处置,同时实现了在处置过程中大大缩减了处置成本。另外,本装置还具有初期投资小,操作难度低等特点,适用于小处理量的场景。

Description

有机固废热解-化学链重整制备清洁合成气装置及方法 技术领域:
本发明涉及环保及化学链应用技术领域,具体涉及一种有机固废热解-化学链重整制备清洁合成气装置及方法。
背景技术:
有机固体废物是指人们在生产和生活中产生的具有较高有机质含量的固态、半固态废弃物,随着经济的发展和人民生活水平的提高,有机固体废物(下称“有机固废”)产生量呈逐年增长趋势,如得不到妥善处理,将会对环境造成污染,并进一步威胁人体健康。
目前有机固废的主要处置方式包括卫生填埋、土地利用、建材利用和焚烧。大量研究表明,卫生填埋和土地利用这两种处置方式容易造成有机固废中有毒有害物质的泄露,从而对周围环境造成二次污染。由于有机固废通常富含重金属等成分,采用建材利用的处置方式所制成的建材性能强度较低,制作成本较高,而且出于对重金属浸出风险的考虑,固废建材的使用场景会受到一些限制。总体来看,焚烧技术似乎是实现有机固废减量化、无害化和稳定化的有效技术手段,但是有机固废焚烧过程中产生的含N/S/Cl以及重金属等污染物将对环境造成一定的污染,同时焚烧技术和对焚烧产生的污染物进行有效处理时投资大,占用资金周期长。
热解气化技术是指在无氧或者缺氧条件下,通过高温使有机物发生一系列的化学反应,产生H2、CH4、CO、CnHm等可燃性气体、焦油和焦炭的过程。大量研究表明,与焚烧技术相比,热解气化技术对有机固废处理后所产生的污染物较少,同时热解气化技术的处理成本远低于焚烧技术。但由于有机固废具有很高的挥发分,从而在热解气化过程中会产生一定量的 焦油及N/S/Cl等污染物,造成一定的环境风险。
化学链重整(Chemical Looping Refoming,CLR)是一种新颖的重整技术(如图1所示),通过固体载氧体(MeO)中的晶格氧在燃料反应器中将燃料氧化成CO、H2等合成气,反应后的还原态载氧体(Me)在空气反应器中被空气重新氧化恢复晶格氧循环使用的过程。与焚烧技术相比,化学链重整技术避免了燃料与氧气的直接接触,同时将有机固废能源化使其发挥更大的作用。由于有机固废中常有成分复杂的灰分,所以载氧体在反应过程中可能会因为高温烧结和金属部位的氧化等原因而失去活性。因此,探寻一种初期投资少,污染物排放量低以及可将有机固废能源化的有机固废处置技术代替传统的有机固废处置技术,广泛运用于有机固废处置行业具有重要意义。
发明内容:
针对现有技术中的不足,本发明提供一种有机固废热解-化学链重整制备清洁合成气装置及方法,其具有污染物排放量低、所产生的废气可以转化成可利用的合成气的特点。
为实现上述目的,本发明可以采用以下技术方案进行:
第一方面,本发明提供一种有机固废热解-化学链重整制备清洁合成气装置,其包括:壳体;
设置在所述壳体上部的化学链重整区,所述化学链重整区设置有可绕所述壳体的轴心转动的蜂窝式反应器,所述蜂窝式反应器设有若干个通孔,至少部分所述通孔的孔壁面上布置有载氧体,所述化学链重整区的顶部分隔有空气反应区、燃料反应区、上过渡区域和下过渡区域,所述空气反应区、所述上过渡区域和所述下过渡区域的下方设置有扇形挡板;
设置在所述壳体中部的热解气化区;
设置在所述壳体下部的焦炭燃烧区,其中,
有机固废在所述热解气化区中进行热解,热解产生的气体混合物进入所述燃料反应区,热解产生的固体混合物进入所述焦炭燃烧区,气体混合物在化学链重整区中与蜂窝式反应器上的载氧体发生化学反应,进而产生CO、H2和N2并排出装置,含S/Cl污染物固化于载氧体上并随蜂窝式反应器的转动到空气反应区,通入的空气对固化有含S/Cl污染物的载氧体进行氧化,在上过渡区域与扇形挡板之间的氩气入口通入氩气,氩气将载氧体反应后剩余的热解气排至热解气管道,通过热解气管道重新输送回热解反应区;在下过渡区域与扇形挡板之间的氩气入口通入氩气,将与还原态载氧体反应后剩余的空气排出装置。
如上所述的有机固废热解-化学链重整制备清洁合成气装置,进一步地,所述空气反应区和所述燃料反应区之间还分别分隔有上过渡区域和下过渡区域,其中,所述空气反应区和所述燃料反应区均是对应圆心角为120°的区域,所述上过渡区域和所述下过渡区域均是对应圆心角为60°的区域,所述上过渡区域和所述下过渡区域顶部均设有一个开口,所述上过渡区域的开口与热解气管道前端相连,所述下过渡区域的开口直接与大气相通。
如上所述的有机固废热解-化学链重整制备清洁合成气装置,进一步地,还包括电机,所述电机通过传动轴驱动所述蜂窝式反应器绕所述壳体的轴心转动。
如上所述的有机固废热解-化学链重整制备清洁合成气装置,进一步地,还包括设置在所述蜂窝式反应器下方的两固定挡板,两所述固定挡板均经过所述蜂窝式反应器的底部圆直径且相互的夹角为60°,两所述固定挡板分隔的区域与空气反应区、燃料反应区、上过渡区域和下过渡区域对应。
如上所述的有机固废热解-化学链重整制备清洁合成气装置,进一步地,所述热解气化区 设有石英挡板,其中,所述石英挡板的一端与所述壳体的内壁连接且所述石英挡板上设有炉排炉,所述石英挡板的另一端与所述壳体的内壁之间设置有焦炭出口;所述壳体还设有向所述热解气化区通入有机固废的入口。
如上所述的有机固废热解-化学链重整制备清洁合成气装置,进一步地,所述焦炭燃烧区设有斜板和竖直挡板,其中,所述竖直挡板设置在所述石英挡板的自由端并向下延伸,所述斜板设置在所述壳体的底部;所述壳体还设有向所述焦炭燃烧区通入氩气、空气和焦炭的入口,所述斜板沿朝向空气和焦炭的入口逐渐向下倾斜。
第二方面,本发明提供一种可自热运行的有机固废热解-化学链重整制备清洁合成气方法,其通过上述的装置来实现,包括如下步骤:
S1:将载氧体置于蜂窝式反应器的孔壁面中,打开电机使蜂窝式反应器进行逆时针旋转,在上过渡区域与扇形挡板之间的氩气入口通入氩气,将与载氧体反应后剩余的热解气排至热解气管道,通过热解气管道重新输送回热解反应区;在下过渡区域与扇形挡板之间的氩气入口通入氩气,将与还原态载氧体反应后剩余的空气排出;
S2:在对应空气反应区的扇形缺口向空气反应区通入空气,将有机固废通过有机固废入口送入到热解气化区的炉排炉中,在焦炭燃烧区空气入口通入空气、加设定量焦炭,在焦炭燃烧区的氩气入口对着竖直挡板成设定角度通入氩气,通入氩气使炉排炉和焦炭出口之间形成高压,阻挡焦炭燃烧区的空气进入到有机固废热解区;
S3:有机固废热解产生的热解气、焦油以及含N/S/Cl污染物进入到燃料反应区与载氧体进行反应,产生的合成气直接从燃料反应区顶部的扇形缺口进行排出并对合成气进行收集,通过蜂窝式反应器的旋转将还原态载氧体带到空气反应区进行氧化;
S4:将有机固废热解时产生的焦炭进入到焦炭燃烧区,燃烧产生的热量传递到有机固废热解区,为有机固废的热解提供热量。
如上所述的可自热运行的有机固废热解-化学链重整制备清洁合成气方法,进一步地,所述蜂窝式反应器由载氧体制成。
如上所述的可自热运行的有机固废热解-化学链重整制备清洁合成气方法,进一步地,所述载氧体粘附在所述蜂窝式反应器的孔壁上。
如上所述的可自热运行的有机固废热解-化学链重整制备清洁合成气方法,进一步地,所述载氧体为天然金属矿石,所述天然金属矿石包括铁矿石、铜矿石、锰矿石和镍矿石的任一种或任意组合;所述天然金属矿石负载或掺杂有K/Ca/Na/Ni/Mn/Cu的任一种外源离子。
本发明与现有技术相比,其有益效果在于:
1、与传统焚烧装置对比,本发明提出的装置利用化学链重整将有机固废能源化,大幅度减少对环境产生污染,同时让有机固废实现利益最大化。
2、与热解气化装置相比,本发明提出的装置使用了炉排炉以及石英挡板,不仅减少了对有机固废进行预处理所需的成本且热解程度更彻底,同时让整个有机固废热解—化学链重整实现自热运行,大幅度的减少热解气化过程中所需消耗的能源。
3、与化学链重整装置相比,本发明提出的装置先对有机固废进行了热解气化处理,从而避免了有机固废中所含复杂灰分和载氧体的直接接触,大大提高了载氧体的使用寿命。
4、本发明提出的装置与传统的有机固废处理装置相比,不仅对有机固废进行了减量化、无害化和能源化的有效处置,同时实现了在处置过程中大大缩减了处置成本。此外,本装置还具有初期投资小,操作难度低等特点,适用于小处理量的场景。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图进行简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的化学链重整的原理示意图;
图2为本发明实施例的有机固废热解-化学链重整制备清洁合成气方法的原理示意图;
图3为本发明实施例的有机固废热解-化学链重整制备清洁合成气装置的结构示意图;
图4为本发明实施例的蜂窝式反应器的结构示意图;
图5为本发明实施例的壳体的半剖图。
其中:1、底板;2、电机;3、传动轴;4、空气反应区;5、燃料反应区;6、蜂窝式反应器;7、扇形挡板;8、热解气化区;9、竖直挡板;10、石英挡板;11、炉排炉;12、斜板;13、焦炭燃烧区;14、化学链重整区;15、热解气管道;403、上过渡区域;404、下过渡区域;405、第一固定挡板;406、第二固定挡板;502、第一氩气入口;503、空气出口;504、焦炭出口;505、第二氩气入口;506、有机固废入口;507、空气、焦炭入口。
具体实施方式:
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例:
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,本发明实施例的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第 二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
参见图1至图5,本发明提供一种有机固废热解-化学链重整制备清洁合成气装置,其与传统的有机固废处理装置相比,不仅对有机固废进行了减量化、无害化和能源化的有效处置,同时实现了在处置过程中大大缩减了处置成本。其可以包括:壳体、设置在壳体上部的化学链重整区14、设置在壳体中部的热解气化区8以及设置在壳体下部的焦炭燃烧区13,化学链重整区14设置有可绕壳体的轴心转动的蜂窝式反应器6,蜂窝式反应器6设有若干个通孔,至少部分通孔的孔壁面上布置有载氧体,化学链重整区14的顶部分隔有空气反应区4、燃料反应区5、上过渡区域403和下过渡区域404,空气反应区4、上过渡区域403和下过渡区域404的下方设置有扇形挡板7;其中,有机固废在热解气化区8中进行热解,热解产生的气体混合物进入燃料反应区5,热解产生的固体混合物进入焦炭燃烧区13,气体混合物在化学链重整区14中与蜂窝式反应器6上的载氧体发生化学反应,进而产生CO、H2和N2并排出装置,含S/Cl污染物固化于载氧体上并随蜂窝式反应器6的转动到空气反应区4,通入的空气对固化有含S/Cl污染物的载氧体进行氧化,在上过渡区域403与扇形挡板7之间的氩气入口通入氩气,氩气将载氧体反应后剩余的热解气排至热解气管道15,通过热解气管道15从行输送回热解反应区;在下过渡区域404与扇形挡板7之间的第一氩气入口502通入氩气,将与还原态载氧体反应后剩余的空气排出装置。本实施例中,首先对有机固废先进行热解气化处理,热解气化过程产生的热解气、焦油通入化学链重整区14进行一系列的化学反应后制备合成气,含N污染物转化为N2,含S/Cl污染物固化于载氧体上,热解气化过程产生的焦炭 等残渣由于重力作用进入到焦炭燃烧区13,焦炭燃烧产生的热量传递到热解气化区8为有机固废的热解提供热量,不仅实现了有机固废的减量化、能源化,同时实现了自热运行,大幅度降低了对有机固废进行有效处置的成本,是一种极具创新性的有机固废处置思路。此外,本装置与传统焚烧技术相比具有初期投资小,污染物排放量极低等优势,与热解气化技术相比具有将所产生的废气转化成可利用的合成气等特点,处理流程简单,成本低。
再次参见图3,图3展示了一种有机固废热解-化学链重整制备清洁合成气装置,其可以包括:电机2、热解气管道15、化学链重整区14、热解气化区8和焦炭燃烧区13。除电机2和热解气管道15以外,化学链重整区14、热解气化区8和焦炭燃烧区13均呈圆柱形,且从上到下依次排列。其中,化学链重整区14置有蜂窝式反应器6,电机2安装在底板1上,且通过传动轴3与蜂窝式反应器6形成配合,化学链重整区14与热解气化区8通过扇形挡板7形成不完全封闭状态;热解气化区8与焦炭燃烧区13通过石英挡板10形成不完全封闭状态。
参见图5,上述实施例中,进一步地,化学链重整区14包括空气反应区4和燃料反应区5,化学链重整区14设置有可绕壳体的轴心转动的蜂窝式反应器6、两个氩气入口和空气出口503,化学链重整区14顶部的圆板将其分隔形成空气反应区4、燃料反应区5、上过渡区域403和下过渡区域404四个区域,其中,左右分别为对应圆心角为120°的扇形区域,左边对应的是空气反应区4,右边对应的是燃料反应区5,该区域完全去除圆板,左边扇形缺口用于通入空气,右边扇形缺口用于收集合成气;上下为对应圆心角为60°的扇形区域,上下分别对应上过渡区域403和下过渡区域404,该区域的圆板只是个壳体,目的是为了将四个区域分隔开,从而起到过渡作用。另外,上过渡区域403和下过渡区域404的顶部均设有一个开口,上过渡区域403的开口与热解气管道15前端相连,下过渡区域404的开口直接与大 气相连。此外,化学链重整区14的底部通过一块扇形挡板7与热解气化区8进行分隔。在本方案中,通过利用化学链重整将有机固废能源化,可以大幅度减少对环境产生污染,同时让有机固废实现利益最大化。
参见图4,上述实施例中,进一步地,蜂窝式反应器6设有若干个通孔,其中一个通孔与电机2所带的传动轴3相配合,从而实现逆时针旋转运动,且至少部分通孔的孔壁面上布置有载氧体。另外,蜂窝式反应器6的底部设有两个经过直径且夹角为60°的固定挡板,分别为第一固定挡板405和第二固定挡板406,且两固定挡板均不随蜂窝煤做旋转运动,并与化学链重整区14顶部的结构相对应。
再次参见图5,在某些实施例中,热解气化区8设有有机固废入口506,焦炭出口504,石英挡板10,炉排炉11和管口,其中,管口与热解气管道15的末端相连;石英挡板10的一端与壳体的内壁连接且石英挡板10上设有炉排炉11,石英挡板10的另一端与壳体的内壁之间设置有焦炭出口504;有机固废入口506设置在壳体,用于向热解气化区8通入有机固废。在本实施例中,本装置先对有机固废进行了热解气化处理,可以避免了有机固废中所含复杂灰分和载氧体的直接接触,大大提高了载氧体的使用寿命。另外,通过使用了炉排炉11以及石英挡板10,不仅减少了对有机固废进行预处理所需的成本且热解程度更彻底,同时让整个有机固废热解—化学链重整实现自热运行,大幅度的减少热解气化过程中所需消耗的能源。
再次参见图5,在某些实施例中,焦炭燃烧区13设有空气入口,第二氩气入口505,竖直挡板9和斜板12,其中,竖直挡板9设置在石英挡板10的自由端并向下延伸,斜板12设置在壳体的底部;壳体还设有向焦炭燃烧区13通入空气和焦炭的空气、焦炭入口507,斜板12沿朝向空气和焦炭的入口逐渐向下倾斜。
为了更好地理解本发明,下面对本发明实施例的装置的各区域的工作过程进行阐述。
热解气化区8:通过有机固废入口506将有机固废送入到炉排炉11中,在炉排炉11装置上进行热解,由于扇形挡板7的阻隔,热解产生的热解气、含N/S/Cl污染物以及焦油只能排放到燃料反应区5,焦炭等残渣通过焦炭出口504排放到焦炭燃烧区13。
化学链重整区14:热解气、含N/S/Cl污染物以及焦油排放到燃料反应区5与蜂窝式反应器6所附着的载氧体进行一系列的化学反应后、产生的CO、H2和N2通过对应燃料反应区5的右边扇形缺口排出并且对其进行收集,含S/Cl污染物固化于载氧体上,还原态载氧体通过蜂窝式反应器6的转动到空气反应区4,对应空气反应区4的左边扇形缺口通入空气对其进行氧化。在上过渡区域403与扇形挡板7之间的氩气入口通入氩气,将与载氧体反应后剩余的热解气排至热解气管道15,通过热解气管道15重新输送回热解反应区;在下过渡区域404与扇形挡板7之间的氩气入口通入氩气,将与还原态载氧体反应后剩余的空气排出。
焦炭燃烧区13:热解气化区8热解产生的焦炭等残渣排到焦炭燃烧区13后进行燃烧,为进一步的热解提供热量,在氩气入口对着竖直挡板9成一定角度通入氩气,通入氩气使炉排炉11和焦炭出口504之间形成高压,阻挡焦炭燃烧区13的空气进入到有机固废热解区。
基于相同原理,本发明还提出一种可自热运行的有机固废热解-化学链重整制备清洁合成气方法,其通过上述有机固废热解-化学链重整制备清洁合成气装置来实现,可以包括如下步骤:
S1:首先将载氧体置于蜂窝式反应器6的孔壁面中,打开电机2使蜂窝式反应器6进行逆时针旋转,在上过渡区域403与扇形挡板7之间的氩气入口通入氩气,将与载氧体反应后剩余的热解气排至热解气管道15,通过热解气管道15重新输送回热解反应区;在下过渡区 域404与扇形挡板7之间的氩气入口通入氩气,将与还原态载氧体反应后剩余的空气排出。
S2:在对应空气反应区4的扇形缺口向空气反应区4通入空气,将有机固废通过有机固废入口506送入到热解气化区8的炉排炉11中,在焦炭燃烧区13空气入口通入空气、加少量焦炭,此时焦炭燃烧区13的氩气入口对着竖直挡板9成一定角度通入氩气,通入氩气使炉排炉11和焦炭出口504之间形成一个高压,阻挡焦炭燃烧区13的空气进入到有机固废热解区,防止其对有机固废的热解产生影响。
S3:有机固废的热解产生的热解气、焦油以及含N/S/Cl等污染物由于扇形挡板7的阻挡,只能进入到燃料反应区5与载氧体进行反应,产生的合成气直接从燃料反应区5顶部的扇形缺口进行排出并对其进行收集,通过蜂窝煤的旋转将还原态载氧体带到空气反应区4进行氧化,实现载氧体循环使用的过程。
S4:有机固废热解时产生的焦炭等残渣将进入到焦炭燃烧区13,燃烧产生的热量又传递到有机固废热解区,为有机固废的热解提供热量,从而实现自热运行的过程。
作为一种优选地实施方式,在某些实施例中,载氧体置于蜂窝式反应器6的方式,可以是将整个蜂窝式反应器6用该载氧体制成,也可以是在蜂窝式反应器6的孔中将载氧体烧结使其附着于孔壁。
作为一种优选地实施方式,在某些实施例中,载氧体为天然金属矿石,天然金属矿石选自铁矿石、铜矿石、锰矿石和镍矿石中的一种以上。选用的天然金属矿石通过负载/掺杂K、Ca、Na、Ni、Mn、Cu等外源离子,可以提升载氧体对焦油及N/S/Cl污染物的脱除能力。
本发明提出的可自热运行的有机固废热解-化学链重整制备清洁合成气方法包括有机固废热解气化、焦炭等残渣燃烧和化学链重整三个部分,其原理示意图如图2所示。其中,有 机固废热解气化过程是:通过热解气化区8将有机固废转化为热解气、焦油以及含N/S/Cl等污染物。焦炭等残渣燃烧过程是:热解气化过程中产生的焦炭等残渣进入到焦炭燃烧区13进行燃烧为热解提供热量。化学链重整过程是:通过化学链重整区14,将含有大量焦油及N/S/Cl污染物的有机固废热解气转化为CO、H2等合成气体、N污染物转化为N2,S/Cl元素固化在载氧体上。
进一步地,化学链重整区14包括燃料反应区5和空气反应区4。在燃料反应区5中,热解产物与载氧体发生反应,热解气转化成CO、H2等合成气,含N污染物转化为N2,含S/Cl污染物固化于载氧体上;在空气反应区4中,还原态载氧体被空气重新氧化成具有氧化性的载氧体。热解气化过程中所需的热量均由热解气化产生的焦炭等残渣的燃烧提供,燃料反应区5所需的热量由热解气自身的热量和空气反应区4发生的氧化反应放出的热量两部分热量提供,从而实现有机固废热解-化学链重整的自热运行。
为了更好地理解本发明,下面通过具体实施例对本发明的方法进行阐述。
实施例1
一种可自热运行的有机固废热解-化学链重整制备清洁合成气方法,通过上述可自热运行的有机固废热解-化学链重整制备清洁合装置来实现,包括如下步骤:
S1:首先将8%负载K铜矿石的载氧体烧结于蜂窝式反应器6壁面中,打开电机2使蜂窝式反应器6进行逆时针旋转,在上过渡区域403与扇形挡板7之间的氩气入口通入氩气,将与载氧体反应后剩余的热解气排至热解气管道15,通过热解气管道15重新输送回热解反应区;在下过渡区域404与扇形挡板7之间的氩气入口通入氩气,将与还原态载氧体反应后剩余的空气排出。
S2:在对应空气反应区4的扇形缺口向空气反应区4通入空气,将城市污泥通过有机固废入口506送入到热解气化区8的炉排炉11中,在焦炭燃烧区13空气入口通入空气、加少量焦炭,通过焦炭燃烧为一开始污泥的热解提供热量,此时焦炭燃烧区13的氩气入口对着竖直挡板9成一定角度通入氩气,通入氩气使炉排炉11和焦炭出口504之间形成一个高压,阻挡焦炭燃烧区13的空气进入到有机固废热解区,防止其对城市污泥的热解产生影响。
S3:城市污泥热解产生的热解气、焦油以及含N/S/Cl等污染物进入到燃料反应区5与载氧体进行反应,产生的合成气直接从燃料反应区5顶部的扇形缺口进行排出并对其进行收集,通过蜂窝煤的旋转将还原态载氧体带到空气反应区4进行氧化,实现载氧体循环使用的过程。
S4:城市污泥热解时产生的焦炭等残渣将进入到焦炭燃烧区13,燃烧产生的热量又传递到有机固废热解区,为城市污泥的热解提供热量,从而实现自热运行的过程。
实施例2
载氧体改为8%负载Ca铜矿石载氧体,其他步骤均与实施例1相同,在此不再赘述。
实施例3
载氧体改为8%负载Na铜矿石载氧体,其他步骤均与实施例1相同,在此不再赘述。
实施例4
有机固废采用工业有机固废,载氧体采用Fe基载氧体,其他步骤均与实施例1相同,在此不再赘述。
实施例5
有机固废采用工业有机固废,载氧体采用Ni基载氧体,其他步骤均与实施例1相同,在此不再赘述。
实施例6
有机固废采用工业有机固废,载氧体采用NiFe2O4载氧体,其他步骤均与实施例1相同,在此不再赘述。
对照例1
采用传统焚烧技术,用氧气充当氧化剂对污泥进行焚烧处置。
对照例2
采用传统热解气化技术,在无氧状态下通过高温对工业有机固废进行处置。
实施例1和对照例1得到的含N污染物排放如表1所示:
表1不同处置方式下含N污染物排放的对比
实施例1和对照例1得到的脱硫效率如表2所示:
表2不同处置方式下脱硫效率的对比
实施例1、实施例2、实施例3和对照例1得到的脱氯效率如表3所示:
表3不同处置方式下脱氯效率的对比
实施例4、实施例5、实施例6和对照例2得到的焦油含量如表4所示:
表4不同处置方式下焦油含量的对比
通过上述具体的实施案例以及实施案例所得出的实验结果,可充分表明本发明提出的可自热运行的有机固废热解-化学链重整制备清洁合成气方法,不管是在有机固废处置过程中产生的焦油和含N/S/Cl等污染物的排放,还是在有机固废处置所需的成本上,相比于传统的焚烧技术和传统的热解气化技术都具有明显的优势,因此将本发明运用到有机固废处置行业具有重要意义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不 必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (18)

  1. 一种有机固废热解-化学链重整制备清洁合成气装置,其特征在于,包括:壳体;
  2. 设置在所述壳体上部的化学链重整区,所述化学链重整区设置有可绕所述壳体的轴心转动的蜂窝式反应器,所述蜂窝式反应器设有若干个通孔,至少部分所述通孔的孔壁面上布置有载氧体,所述化学链重整区的顶部分隔有空气反应区、燃料反应区、上过渡区域和下过渡区域,所述空气反应区、所述上过渡区域和所述下过渡区域的下方设置有扇形挡板;
  3. 设置在所述壳体中部的热解气化区;
  4. 设置在所述壳体下部的焦炭燃烧区,其中,
  5. 有机固废在所述热解气化区中进行热解,热解产生的气体混合物进入所述燃料反应区,热解产生的固体混合物进入所述焦炭燃烧区,气体混合物在化学链重整区中与蜂窝式反应器上的载氧体发生化学反应,进而产生CO、H2和N2并排出装置,含S/Cl污染物固化于载氧体上并随蜂窝式反应器的转动到空气反应区,通入的空气对固化有含S/Cl污染物的载氧体进行氧化,在上过渡区域与扇形挡板之间的氩气入口通入氩气,氩气将载氧体反应后剩余的热解气排至热解气管道,通过热解气管道重新输送回热解反应区;在下过渡区域与扇形挡板之间的氩气入口通入氩气,将与还原态载氧体反应后剩余的空气排出装置。
  6. 根据权利要求1所述的有机固废热解-化学链重整制备清洁合成气装置,其特征在于,所述空气反应区和所述燃料反应区之间还分别分隔有上过渡区域和下过渡区域,其中,所述空气反应区和所述燃料反应区均是对应圆心角为120°的区域,所述上过渡区域和所述下过渡区域均是对应圆心角为60°的区域,所述上过渡区域和所述下过渡区域顶部均设有一个开口,所述上过渡区域的开口与热解气管道前端相连,所述下过渡区域的开口直接与大气相通。
  7. 根据权利要求1所述的有机固废热解-化学链重整制备清洁合成气装置,其特征在于,还包括电机,所述电机通过传动轴驱动所述蜂窝式反应器绕所述壳体的轴心转动。
  8. 根据权利要求1所述的有机固废热解-化学链重整制备清洁合成气装置,其特征在于,还包括设置在所述蜂窝式反应器下方的两固定挡板,两所述固定挡板均经过所述蜂窝式反应器的底部圆直径且相互的夹角为60°,两所述固定挡板分隔的区域与空气反应区、燃料反应区、上过渡区域和下过渡区域对应。
  9. 根据权利要求1所述的有机固废热解-化学链重整制备清洁合成气装置,其特征在于,所述热解气化区设有石英挡板,其中,所述石英挡板的一端与所述壳体的内壁连接且所述石英挡板上设有炉排炉,所述石英挡板的另一端与所述壳体的内壁之间设置有焦炭出口;所述壳体还设有向所述热解气化区通入有机固废的入口。
  10. 根据权利要求5所述的有机固废热解-化学链重整制备清洁合成气装置,其特征在于,所述焦炭燃烧区设有斜板和竖直挡板,其中,所述竖直挡板设置在所述石英挡板的自由端并向下延伸,所述斜板设置在所述壳体的底部;所述壳体还设有向所述焦炭燃烧区通入氩气、空气和焦炭的入口,所述斜板沿朝向空气和焦炭的入口逐渐向下倾斜。
  11. 一种可自热运行的有机固废热解-化学链重整制备清洁合成气方法,其特征在于,通过如权利要求1至6任一所述的装置来实现,包括如下步骤:
  12. S1:将载氧体置于蜂窝式反应器的孔壁面中,打开电机使蜂窝式反应器进行逆时针旋转,在上过渡区域与扇形挡板之间的氩气入口通入氩气,将与载氧体反应后剩余的热解气排至热解气管道,通过热解气管道重新输送回热解反应区;在下过渡区域与扇形挡板之间的氩气入口通入氩气,将与还原态载氧体反应后剩余的空气排出;
  13. S2:在对应空气反应区的扇形缺口向空气反应区通入空气,将有机固废通过有机固废入口送入到热解气化区的炉排炉中,在焦炭燃烧区空气入口通入空气、加设定量焦炭,在焦炭燃烧区的氩气入口对着竖直挡板成设定角度通入氩气,通入氩气使炉排炉和焦炭出口之间形成高压,阻挡焦炭燃烧区的空气进入到有机固废热解区;
  14. S3:有机固废热解产生的热解气、焦油以及含N/S/Cl污染物进入到燃料反应区与载氧体进行反应,产生的合成气直接从燃料反应区顶部的扇形缺口进行排出并对合成气进行收集,通过蜂窝式反应器的旋转将还原态载氧体带到空气反应区进行氧化;
  15. S4:将有机固废热解时产生的焦炭进入到焦炭燃烧区,燃烧产生的热量传递到有机固废热解区,为有机固废的热解提供热量。
  16. 根据权利要求7所述的可自热运行的有机固废热解-化学链重整制备清洁合成气方法,其特征在于,所述蜂窝式反应器由载氧体制成。
  17. 根据权利要求7所述的可自热运行的有机固废热解-化学链重整制备清洁合成气方法,其特征在于,所述载氧体粘附在所述蜂窝式反应器的孔壁上。
  18. 根据权利要求7所述的可自热运行的有机固废热解-化学链重整制备清洁合成气方法,其特征在于,所述载氧体为天然金属矿石,所述天然金属矿石包括铁矿石、铜矿石、锰矿石和镍矿石的任一种或任意组合;所述天然金属矿石负载或掺杂有K/Ca/Na/Ni/Mn/Cu的任一种外源离子。
PCT/CN2023/119588 2022-12-29 2023-09-19 有机固废热解-化学链重整制备清洁合成气装置及方法 WO2024041663A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211715802.1A CN115948172B (zh) 2022-12-29 2022-12-29 有机固废热解-化学链重整制备清洁合成气装置及方法
CN202211715802.1 2022-12-29

Publications (1)

Publication Number Publication Date
WO2024041663A1 true WO2024041663A1 (zh) 2024-02-29

Family

ID=87296864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119588 WO2024041663A1 (zh) 2022-12-29 2023-09-19 有机固废热解-化学链重整制备清洁合成气装置及方法

Country Status (2)

Country Link
CN (1) CN115948172B (zh)
WO (1) WO2024041663A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948172B (zh) * 2022-12-29 2024-04-09 中国科学院广州能源研究所 有机固废热解-化学链重整制备清洁合成气装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060112639A1 (en) * 2003-11-29 2006-06-01 Nick Peter A Process for pyrolytic heat recovery enhanced with gasification of organic material
US20090020052A1 (en) * 2005-05-02 2009-01-22 Francesco Becchetti Integrated process for waste treatment by pyrolysis and related plant
CN104129754A (zh) * 2014-07-09 2014-11-05 中国科学院广州能源研究所 一种生物质热解及化学链制氢耦合连续反应装置及利用该装置制备氢气的方法
CN113188129A (zh) * 2020-12-25 2021-07-30 中国科学院广州能源研究所 一种有机固废热解耦合化学链燃烧脱除污染物的方法及装置
CN113604233A (zh) * 2021-07-09 2021-11-05 华北电力大学 一种齿笼式多室有机固废热解反应器及其热解方法
CN113979409A (zh) * 2021-11-05 2022-01-28 华中科技大学 一种有机固废的处理装置及处理方法
CN115948172A (zh) * 2022-12-29 2023-04-11 中国科学院广州能源研究所 有机固废热解-化学链重整制备清洁合成气装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108954303A (zh) * 2018-05-10 2018-12-07 哈尔滨理工大学 一体式固定床化学链燃烧装置
CN112624039B (zh) * 2020-12-31 2023-01-06 华中科技大学 一种基于化学链制氢的有机固废处理装置及其使用方法
CN115451410A (zh) * 2022-08-23 2022-12-09 中国科学院广州能源研究所 一种分布式有机固体废弃物处理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060112639A1 (en) * 2003-11-29 2006-06-01 Nick Peter A Process for pyrolytic heat recovery enhanced with gasification of organic material
US20090020052A1 (en) * 2005-05-02 2009-01-22 Francesco Becchetti Integrated process for waste treatment by pyrolysis and related plant
CN104129754A (zh) * 2014-07-09 2014-11-05 中国科学院广州能源研究所 一种生物质热解及化学链制氢耦合连续反应装置及利用该装置制备氢气的方法
CN113188129A (zh) * 2020-12-25 2021-07-30 中国科学院广州能源研究所 一种有机固废热解耦合化学链燃烧脱除污染物的方法及装置
CN113604233A (zh) * 2021-07-09 2021-11-05 华北电力大学 一种齿笼式多室有机固废热解反应器及其热解方法
CN113979409A (zh) * 2021-11-05 2022-01-28 华中科技大学 一种有机固废的处理装置及处理方法
CN115948172A (zh) * 2022-12-29 2023-04-11 中国科学院广州能源研究所 有机固废热解-化学链重整制备清洁合成气装置及方法

Also Published As

Publication number Publication date
CN115948172A (zh) 2023-04-11
CN115948172B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2024041663A1 (zh) 有机固废热解-化学链重整制备清洁合成气装置及方法
Niu et al. Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu–Fe oxygen carrier
CN108870407B (zh) 一种基于铜渣为载氧体的化学链气化处理污泥的方法及实现该方法的装置
CN104456544A (zh) 煤层气的化学链燃烧方法及串行流化床系统
CN112624039B (zh) 一种基于化学链制氢的有机固废处理装置及其使用方法
US20230194080A1 (en) Method and apparatus for removing pollutants from organic solid waste by pyrolysis coupled with chemical looping combustion
CN104870657B (zh) 铁水制造设备及铁水制造方法
CN208090661U (zh) 一种基于化学链的碳基燃料分级燃烧与干馏装置
Zhou et al. Application of the magnetic material in incineration bottom ash as oxygen carrier for biomass chemical looping gasification
KR20010073025A (ko) 오일 및 산화철이 포함된 잔여물의 열처리 방법
Wang et al. Alkali metal modified iron‐nickel oxygen carrier to produce hydrogen‐rich synthesis gas by chemical looping gasification with pine sawdust
CN108488786B (zh) 一种基于化学链的碳基燃料分级燃烧与干馏装置及方法
CN110125160A (zh) 一种贫铁矿作为载氧体的化学链燃烧处理修复植物的方法
CN105602630A (zh) 一种废弃物气化气催化提质的工艺
CN210855751U (zh) 一种基于钢渣载氧体的污泥化学链气化系统
Han et al. Fluidized bed chemical looping gasification of sewage sludge with bituminous coal to produce H2 rich syngas: An examination on fuel synergy and reaction conditions
JP3725339B2 (ja) 反応装置および反応方法および火力発電システム
CN113499776A (zh) 一种多孔结构碳基纳米零价铁铜复合材料及其制备方法和应用
JP2000290666A (ja) 水蒸気改質方法及び水蒸気改質装置
JP2011021061A (ja) ガス化方法、精錬方法及びガス化装置
CN213901070U (zh) 一种生活垃圾热解气化协同化学链式燃烧的系统
CN115322812B (zh) 一种固定式污泥气化除焦除灰耦合垃圾焚烧发电装置及方法
CN113719843B (zh) 一种低浓度瓦斯资源再利用的方法
JP2004168883A (ja) 廃棄物からの可燃性ガス回収方法及び装置
CN112374583B (zh) 一种功能化污泥基碳三维颗粒电极的制备及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856748

Country of ref document: EP

Kind code of ref document: A1