WO2024041615A1 - 一种井下电磁波信号谐波解码方法及装置 - Google Patents

一种井下电磁波信号谐波解码方法及装置 Download PDF

Info

Publication number
WO2024041615A1
WO2024041615A1 PCT/CN2023/114755 CN2023114755W WO2024041615A1 WO 2024041615 A1 WO2024041615 A1 WO 2024041615A1 CN 2023114755 W CN2023114755 W CN 2023114755W WO 2024041615 A1 WO2024041615 A1 WO 2024041615A1
Authority
WO
WIPO (PCT)
Prior art keywords
function
signal
functions
time domain
target
Prior art date
Application number
PCT/CN2023/114755
Other languages
English (en)
French (fr)
Inventor
李枝林
韩雄
庞东晓
许期聪
邓虎
唐贵
王志敏
卢齐
黄崇君
刘欣
Original Assignee
中国石油天然气集团有限公司
中国石油集团川庆钻探工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团有限公司, 中国石油集团川庆钻探工程有限公司 filed Critical 中国石油天然气集团有限公司
Publication of WO2024041615A1 publication Critical patent/WO2024041615A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of well logging technology, and in particular, to a method and device for harmonic decoding of underground electromagnetic wave signals.
  • Manchester codes are often used for modulation and demodulation of collected signals.
  • demodulating signals currently only filters are used to filter out high-frequency signals, and fundamental waves are used to detect and demodulate fundamental frequency signals.
  • fundamental frequency signals are often interfered to a greater extent than high-frequency signals. If in this case, the fundamental wave is still used to demodulate the low-frequency signal of the signal, accurate symbols cannot be demodulated.
  • embodiments of the present disclosure provide a logging signal demodulation method, device, computer equipment and storage medium.
  • the determined target harmonic demodulation signal is demodulated.
  • the frequency band is subject to the least interference, so the symbols obtained by demodulation are more accurate.
  • embodiments of the present disclosure provide a logging signal demodulation method, including:
  • the target harmonic process a plurality of preset second time domain functions and the first time domain function to obtain a plurality of filter functions and functions to be processed;
  • the signal to be demodulated is demodulated to obtain a plurality of symbols.
  • determining the target harmonic for demodulation according to the power spectrum image further includes:
  • At least one energy difference between the frequency segment and at least one target frequency segment is determined respectively.
  • the target harmonic is determined according to the frequency segment corresponding to the at least one energy difference that satisfies the preset condition.
  • processing a plurality of preset second time domain functions according to the target harmonic to obtain a plurality of filter functions further includes:
  • the plurality of second time domain functions further include:
  • the g 1 (t) and the g 2 (t) are the second time domain functions respectively, t is the time, and T is the period.
  • the first time domain function is processed according to the target harmonic, and the function to be processed includes:
  • demodulating the signal to be demodulated according to the plurality of filter functions and the function to be processed to obtain a plurality of symbols further includes:
  • the judgment further includes:
  • the n is a positive integer
  • the T is a period
  • the y 1 () and the y 2 () are the objective functions respectively
  • the d n is the code element at the corresponding time
  • the d n+ 1 is the symbol at the next moment of the corresponding moment.
  • embodiments of the present disclosure also provide a logging signal demodulation device, including:
  • a first determination unit configured to determine, in response to receiving a signal to be demodulated, a first time domain function and a power spectrum image corresponding to the signal to be demodulated;
  • a second determination unit configured to determine the target harmonic used for demodulating the signal according to the power spectrum image
  • a processing module configured to process a plurality of preset second time domain functions and the first time domain function according to the target harmonic to obtain a plurality of filter functions and functions to be processed;
  • a third determination unit is configured to demodulate the signal to be demodulated according to the plurality of filter functions and the function to be processed to obtain a plurality of symbols.
  • embodiments of the present disclosure also provide a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • a computer program stored in the memory and executable on the processor.
  • embodiments of the present disclosure also provide a computer-readable storage medium on which computer instructions are stored, and when the computer instructions are executed by a processor, the above method is implemented.
  • the target frequency segment with the smallest degree of interference is determined. Then, based on the target harmonic corresponding to the target frequency band, multiple filter functions are constructed. According to the plurality of filter functions and the to-be-processed function corresponding to the signal to be demodulated, the signal to be demodulated is demodulated to improve the accuracy of the symbols obtained by demodulation.
  • Figure 1 shows a schematic diagram of an implementation system of a logging signal demodulation method according to an embodiment of the present disclosure
  • Figure 2 shows a flow chart of a logging signal demodulation method according to an embodiment of the present disclosure
  • Figure 3A shows a flow chart of a logging signal demodulation method according to another embodiment of the present disclosure
  • Figure 3B shows a flow chart of a logging signal demodulation method according to another embodiment of the present disclosure
  • Figure 4 shows a schematic diagram of an ideal power spectrum according to an embodiment of the present disclosure
  • Figure 5 shows a schematic diagram of logging signal demodulation according to another embodiment of the present disclosure
  • Figure 6 shows a schematic structural diagram of a logging signal demodulation device according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a computer device according to an embodiment of the present disclosure.
  • Computer equipment 704. Processing equipment; 706. Storage resources; 708. Driving mechanism; 710. Input/ Output module; 712, input device; 714, output device; 716, presentation device; 718, graphical user interface; 720, network interface; 722, communication link; 724, communication bus.
  • Figure 1 shows a schematic diagram of an implementation system of a logging signal demodulation method according to an embodiment of the present disclosure. It may include: a collection terminal 101 and a server 102.
  • the collection terminal 101 and the server 102 communicate through a network.
  • the network may include a local area network. (Local Area Network, referred to as LAN), Wide Area Network (Wide Area Network, referred to as WAN), the Internet or a combination thereof, and is connected to the website, user equipment (such as computing equipment) and back-end systems.
  • the server 102 can demodulate the signal to be demodulated obtained by the collection terminal 101, determine multiple symbols or target information corresponding to the signal to be demodulated, and then send the multiple symbols or target information to the collection terminal through the network. 101.
  • the collection terminal 101 displays multiple code elements or target information provided by the server 102, so that the corresponding user of the collection terminal 101 can view it on the collection terminal 101.
  • the server 102 may be a node of a cloud computing system (not shown in the figure), or each server 102 may be a separate cloud computing system including multiple computers interconnected by a network and operating as a distributed processing system.
  • the collection terminal 101 may include downhole instruments and uphole electronics.
  • a downhole instrument may be, for example, any sensor that can collect signals.
  • Uphole electronic equipment and downhole oil instruments communicate through the network to receive signals.
  • the uphole electronic equipment is not limited to smartphones, collection equipment, desktop computers, tablets, laptops, smart speakers, digital assistants, augmented reality (AR, Augmented Reality) )/Virtual Reality (VR, Virtual Reality) equipment, smart wearable devices and other types of electronic devices.
  • the operating system running on the electronic device may include but is not limited to Android system, IOS system, Linux, Windows, etc.
  • Figure 1 is only an application environment provided by the present disclosure. In actual applications, it may also include multiple collection terminals 101, which is not limited by this description.
  • Figure 2 is a flow chart of a logging signal demodulation method according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a logging signal demodulation method, which realizes the determination of appropriate The wave used for demodulation improves the accuracy of the symbols obtained by demodulation.
  • the process of logging signal demodulation is described in this figure, but more or fewer steps may be included based on routine or non-creative efforts.
  • the sequence of steps listed in the embodiment is only one way of executing the sequence of many steps, and does not represent the only execution sequence.
  • the methods shown in the embodiments or drawings may be executed sequentially or in parallel. Specifically as shown in Figure 2, the method may include:
  • S230 Process multiple preset second time domain functions and first time domain functions according to the target harmonics to obtain multiple filter functions and functions to be processed;
  • S240 Demodulate the signal to be demodulated according to multiple filter functions and functions to be processed, and obtain multiple symbols.
  • the target frequency band with the smallest degree of interference is determined. Then, based on the target harmonic corresponding to the target frequency band, multiple filter functions are constructed. According to the plurality of filter functions and the to-be-processed function corresponding to the signal to be demodulated, the signal to be demodulated is demodulated to improve the accuracy of the symbols obtained by demodulation.
  • the signal to be demodulated includes a signal collected by a downhole instrument. After receiving the signal to be demodulated, the signal to be demodulated is encoded using a signal coding model to obtain a coded function, and the coded function is transmitted back to Inoue's electronic equipment. Inoue electronic equipment processes the received signal to obtain the first time domain function.
  • the signal coding model can be any model that can encode signals, for example, the Manchester coding model.
  • the frequency of the signal to be demodulated is processed to determine a power spectrum image.
  • the power of different frequency bands is integrated to determine the energy value carried by the frequency band.
  • the interference degree of the signal to be demodulated in this frequency band is determined.
  • the target harmonic is determined based on the target frequency range. For example, based on the energy, it is determined that among the frequency bands 0Hz-40Hz, 40Hz-80Hz, 80Hz-120Hz and 120Hz-160Hz, 40Hz-80Hz is the least interfered by the signal to be demodulated, then 40Hz-80Hz is determined as the target frequency band. Because fundamental harmonics are used for demodulation in the field of signal demodulation.
  • the target frequency range 40Hz-80Hz corresponds to the third harmonic component, and the target harmonic is determined to be the third harmonic. Therefore, it is possible to determine the target frequency band with the least interference based on the power spectrum image of the signal to be demodulated, and then determine the target harmonics most suitable for demodulation.
  • the time domain function used to generate the filter function is preset.
  • this time domain function is called the second time domain function.
  • multiple second time domain functions are processed according to the order value of the target harmonic to obtain multiple filter functions.
  • the filter functions are used to construct filters. Multiple filter functions construct multiple filter. According to the order value of the target harmonic, the first time domain function is processed to obtain a function to be processed.
  • Input the function to be processed into multiple filters to obtain multiple objective functions.
  • the values at each moment are brought into the objective function to obtain multiple target values corresponding to each moment.
  • Decisions are made on multiple target values at each time, and the symbols corresponding to each time are obtained. For the determined multiple symbols, they are spliced in accordance with the corresponding time sequence to obtain a symbol diagram for subsequent processing.
  • the plurality of second time domain functions may further include:
  • g 1 (t) and g 2 (t) are the second time domain functions respectively, t is the time, and T is the period.
  • processing a plurality of preset second time domain functions according to the target harmonic to obtain a plurality of filter functions further includes: for each second The time domain function is Fourier transformed to obtain multiple first Fourier series expansions; according to the target harmonic, multiple first zero-setting terms in each first Fourier series expansion are determined; and The coefficients of multiple first zeroing terms in each first Fourier series expansion are determined to be zero, and multiple filter functions are obtained.
  • Determining the first zero-setting term may, for example, determine for each first Fourier series expansion in the plurality of first Fourier series expansions, in addition to the terms corresponding to the order value of the target harmonic.
  • the item is the first zero-setting item.
  • the second time domain function is often directly used to construct the filter, and the second time domain function is not processed and converted.
  • the present disclosure determines corresponding high-order harmonic components for multiple preset second time domain functions, and uses the high-order harmonic components to construct a filter. As a result, the accuracy in the signal demodulation process is further improved.
  • processing the first time domain function according to the target harmonic to obtain the function to be processed further includes: performing Fourier transform on the first time domain function to obtain a second Fourier series expansion; According to the target harmonic, determine the multiple second zero-setting terms in the second Fourier series expansion formula; determine the coefficients of the multiple second zero-setting terms in the second Fourier series expansion formula to be zero, and get Pre-processing function; and performing inverse Fourier transform on the pre-processing function to obtain the processing function.
  • the first time domain function is s(t).
  • s(t) perform the derivation process of the above formula (3)-formula (6) to perform Fourier transformation, and obtain the second Fourier transform corresponding to s(t). Lieye series expansion.
  • Set the coefficients of multiple second zeroing terms to zero such as the process of converting the above formula (6) to formula (11) or formula (10) to formula (12)
  • m(t) perform inverse Fourier transform to obtain the function to be processed f(t) corresponding to m(t).
  • the Fourier transform and the inverse Fourier transform are reciprocal transforms.
  • demodulating the signal to be demodulated according to multiple filter functions and the function to be processed to obtain multiple symbols further includes: performing a convolution operation on the function to be processed and each filter function to obtain multiple symbols.
  • An objective function according to the objective function, multiple target values are determined for each moment; and judgments are made on multiple target values at each moment to obtain the code elements corresponding to each moment, and according to the corresponding symbol to obtain multiple symbols corresponding to the signal to be demodulated.
  • the above-determined function f(t) to be processed and the multiple filter functions are and Perform convolution operations separately to obtain multiple objective functions, such as y 1 (t) and y 1 (t) obtained by the following formula (13) and formula (14).
  • * is the convolution operation
  • y 1 (t) and y 2 (t) are the objective functions respectively.
  • n value corresponding to each moment is substituted into the objective function y 1 (t) and y 1 (t) respectively, and two target values corresponding to each moment (each n value) are obtained. A decision is made based on the two target values to determine the symbol corresponding to each moment. Thus, the symbol map is determined for subsequent processing.
  • the decision includes the following formula (15), formula (16), formula (17), and formula (18).
  • n is a positive integer
  • T is the period
  • y 1 () and y 2 () are the objective functions respectively
  • d n is the code element at the corresponding time
  • d n+1 is the code element at the next time of the corresponding time.
  • the decision point selected is the middle point of a cycle ((3/2)T) to adapt to the filter function in this disclosure, instead of the boundary point of a cycle ((3/2)T) which was used in the past. T).
  • n only takes odd numbers or n only takes even numbers.
  • Figure 3A shows a flow chart of a logging signal demodulation method according to another embodiment of the present disclosure.
  • the Manchester coding model is used to encode the signal to be demodulated 301 to obtain a coded function, and the coded function is obtained.
  • the encoding function returns.
  • the received signal corresponding to the interfered encoded function is processed to obtain the first time domain function 303.
  • the energy value of each frequency band is determined. According to the energy value of each frequency band, after interference analysis, the target harmonic 302 is obtained.
  • a convolution operation is performed on the function to be processed 330 and multiple filter functions 320 to obtain multiple objective functions 340.
  • the target value corresponding to each moment is determined.
  • a decision is made for each target value to determine a plurality of symbols 350.
  • determining the target harmonic for demodulation according to the power spectrum image further includes: determining, according to the power spectrum image, a plurality of frequencies The energy value corresponding to the segment is obtained to obtain multiple energy values; for each frequency segment, at least one energy difference between the frequency segment and at least one target frequency segment is determined; and corresponding to at least one energy difference that meets the preset conditions frequency range to determine the target harmonic.
  • the 3rd harmonic is 10.9dBm smaller than the fundamental wave energy
  • the 5th harmonic is 4.52dBm smaller than the 3rd harmonic
  • the 5th harmonic is 15.42dBm smaller than the fundamental energy
  • the 7th harmonic is smaller than the 5th harmonic.
  • the harmonic energy is 2.94dBm smaller
  • the 7th harmonic is 7.46dBm smaller than the 3rd harmonic
  • the 7th harmonic is 19.36dBm smaller than the fundamental energy
  • the target frequency range is 0Hz-40Hz (fundamental wave); for the frequency range 80Hz-120Hz (5th harmonic), the target frequency range is 0Hz-40Hz ( Fundamental wave) and 40Hz-80Hz (3rd harmonic); for the frequency range 120Hz-160Hz (7th harmonic), the target frequency range is 0Hz-40Hz (fundamental wave), 40Hz-80Hz (3rd harmonic) and 80Hz-120Hz (5th harmonic).
  • Determining the target harmonic according to the frequency segment corresponding to at least one energy difference that satisfies the preset condition may include, for example: determining the corresponding threshold according to the frequency segment and the target frequency segment, and determining the frequency segment and each target frequency segment. able If the quantity differences are all greater than the corresponding threshold, it is determined that the frequency range meets the preset conditions, and the harmonic corresponding to the frequency range is determined to be the target harmonic.
  • the corresponding threshold is 10.9dBm.
  • the corresponding threshold is 4.52dBm; in the frequency range 80Hz-120Hz (5th harmonic), When the target frequency range is 0Hz-40Hz (fundamental wave), the corresponding threshold is 15.42dBm.
  • the corresponding threshold is 2.94dBm; in the frequency range 120Hz-160Hz (7th harmonic), When the target frequency range is 40Hz-80Hz (3rd harmonic), the corresponding threshold is 7.46dBm; in the frequency range 120Hz-160Hz (7th harmonic), the target frequency range is 0Hz-40Hz (fundamental wave) Below, the corresponding threshold is 19.36dBm.
  • the target frequency range is 0Hz-40Hz (fundamental wave). It is determined that the energy value in the frequency range 40Hz-80Hz is 19dBm, and the energy value in the target frequency range 0Hz-40Hz is 32dBm, so the energy difference is 13dBm.
  • the corresponding threshold value for the frequency range 40Hz-80Hz (3rd harmonic) and the target frequency range 0Hz-40Hz (fundamental wave) is 10.9dBm. Compare the energy difference 13dBm with the corresponding threshold 10.9dBm.
  • the energy difference is greater than the corresponding threshold, then it is determined that the frequency range 40Hz-80Hz (3rd harmonic) meets the preset conditions, and the 3rd harmonic is determined as the target. harmonic. It should be noted that the energy difference must be a number greater than or equal to zero.
  • the target frequency bands are 0Hz-40Hz (fundamental wave) and 40Hz-80Hz (3rd harmonic).
  • the energy value in the frequency range 80Hz-120Hz (5th harmonic) is 14
  • the energy value in the target frequency range 40Hz-80Hz is 19dBm
  • the energy value in the target frequency range 0Hz-40Hz is 32dBm
  • the energy value in the frequency range 80Hz- is 18dBm
  • the energy difference between the frequency range 80Hz-120Hz and the target frequency range 40Hz-80Hz is 5dBm.
  • the threshold is 15.42dBm in the frequency range 80Hz-120Hz (5th harmonic) and the target frequency range 0Hz-40Hz (fundamental).
  • the threshold in the frequency range 80Hz-120Hz (5th harmonic) and the target frequency range is 40Hz-80Hz (fundamental).
  • wave) threshold is 4.52dBm. That is, compare 18dBm with the threshold 15.42dBm, and compare 5dBm with 4.52dBm. Based on the above comparison, it can be seen that the energy difference between the frequency range 80Hz-120Hz (5th harmonic) and the target frequency range is greater than the corresponding threshold. Therefore, it is determined that the frequency range 80Hz-120Hz (5th harmonic) meets the preset conditions. Determine the 5th harmonic as the target harmonic. It should be noted that the target harmonic is not the fundamental wave (1st harmonic).
  • Figure 3B shows a flow chart of a logging signal demodulation method according to another embodiment of the present disclosure.
  • the flow chart of the logging signal demodulation method of this embodiment can be as shown in FIG. 3B.
  • the filter function 321 is obtained. In the same way, perform the same operation on the second time domain function 312 to obtain the filter function 322.
  • a convolution operation is performed on the function to be processed 330 and the filter function 321 to obtain the objective function 341.
  • a convolution operation is performed on the function to be processed 330 and the filter function 322 to obtain the objective function 342.
  • two target values corresponding to each moment are determined. Then a decision is made for each target value to obtain the corresponding symbol. For example, symbol 351 can be obtained for one time point, and symbol 352 can be obtained for another time point.
  • code elements in this embodiment can be any value.
  • the two code elements in the above example are only for illustration and do not constitute an actual limitation.
  • Figure 5 shows a schematic diagram of logging signal demodulation according to another embodiment of the present disclosure.
  • the original signal collected by the downhole instrument is encoded using the Manchester coding model to obtain the encoded function diagram 502. Due to the interference of the underground environment, the uphole electronic equipment obtains The post-interference signal is shown in the first time domain function graph 503.
  • the target harmonics are determined as disclosed in the present disclosure for the first time domain function diagram 503, and according to a plurality of second time domain functions, the first time domain function diagram 503 Domain function and the target harmonic, after determining multiple target functions, for each moment, determine the corresponding target value to obtain an image as shown in the harmonic component diagram 504. Then, the target value is determined to obtain multiple symbol maps 505.
  • An embodiment of the present disclosure also provides a logging signal demodulation device, as shown in Figure 6, including:
  • the first determination unit 610 is configured to determine the first time domain function and power spectrum image corresponding to the signal to be demodulated in response to receiving the signal to be demodulated;
  • the second determination unit 620 is used to determine the target harmonic for demodulation according to the power spectrum image
  • the processing unit 630 is configured to process a plurality of preset second time domain functions and the first time domain function according to the target harmonic to obtain a plurality of filter functions and functions to be processed;
  • the third determination unit 640 is used to demodulate the signal to be demodulated according to multiple filter functions and the function to be processed to obtain multiple symbols.
  • FIG. 7 is a schematic structural diagram of a computer device according to an embodiment of the present disclosure.
  • the device in the present disclosure may be the computer device in this embodiment and executes the method of the present disclosure.
  • Computer device 702 may include one or more processing devices 704, such as one or more central processing units (CPUs), each of which may implement one or more hardware threads.
  • Computer device 702 may also include any storage resources 706 for storing information such as code, settings, data, etc. Any kind of information such as data, etc.
  • the storage resource 706 may include any one or more combinations of the following: any type of RAM, any type of ROM, flash memory device, hard disk, optical disk, etc. More generally, any storage resource can use any technology to store information.
  • any storage resource can provide volatile or non-volatile retention of information.
  • any storage resource may represent a fixed or removable component of computer device 702.
  • processing device 704 executes associated instructions stored in any storage resource or combination of storage resources
  • computer device 702 may perform any operation of the associated instructions.
  • Computer device 702 also includes one or more drive mechanisms 708 for interacting with any storage resources, such as a hard disk drive, an optical disk drive, and the like.
  • Computer device 702 may also include an input/output module 710 (I/O) for receiving various inputs (via input device 712) and for providing various outputs (via output device 714).
  • One particular output mechanism may include a presentation device 716 and an associated graphical user interface (GUI) 718.
  • GUI graphical user interface
  • the input/output module 710 (I/O), the input device 712 and the output device 714 may not be included, and may only be used as a computer device in the network.
  • Computer device 702 may also include one or more network interfaces 720 for exchanging data with other devices via one or more communication links 722 .
  • One or more communication buses 724 couple together the components described above.
  • Communication link 722 may be implemented in any manner, such as through a local area network, a wide area network (eg, the Internet), a point-to-point connection, etc., or any combination thereof.
  • Communication link 722 may include any combination of hardwired links, wireless links, routers, gateway functions, name servers, etc. governed by any protocol or combination of protocols.
  • Embodiments of the present disclosure also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program. When the computer program is executed by a processor, the above method is implemented.
  • Embodiments of the present disclosure also provide a computer program product.
  • the computer program product includes a computer program. When the computer program is executed by a processor, the above method is implemented.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geophysics (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本公开涉及测井技术领域,尤其涉及一种井下电磁波信号谐波解码方法及装置。其中方法包括响应于接收到待解调信号,确定与待解调信号对应的第一时域函数和功率谱图像;根据功率谱图像,确定用于解调信号的目标谐波;根据目标谐波,对预设的多个第二时域函数和第一时域函数进行处理,得到多个滤波函数和待处理函数;以及根据多个滤波函数和待处理函数,解调待解调信号,得到多个码元。利用本公开实施例,通过功率谱图像,确定的目标谐波解调的该待解调信号的频率段受干扰程度最小,实现了解调得到的码元更准确。

Description

一种井下电磁波信号谐波解码方法及装置
相关申请
本申请要求于2022年08月24日递交的申请号为202211023979.5的中国发明专利申请的优先权,并引用上述专利申请公开的全部内容作为本申请的一部分。
技术领域
本公开涉及测井技术领域,尤其涉及一种井下电磁波信号谐波解码方法及装置。
背景技术
目前,在石油测井仪器的使用过程中,针对采集来的信号多采用曼彻斯特码进行调制和解调。在信号解调时,目前仅采用滤波器将高频信号滤掉,使用基波针对基频信号进行检测和解调。但是,由于油井下的环境非常复杂,基频信号时常受干扰程度比高频信号受干扰程度更大。若在该种情况下,依旧采用基波针对信号的低频信号进行解调,则无法解调出准确的码元。
如何确定合适的用于解调的波,以提高信号解调准确率是现有技术中亟需解决的问题。
发明内容
为解决现有技术中的问题,本公开实施例提供了一种测井信号解调方法、装置、计算机设备及存储介质,通过功率谱图像,确定的目标谐波解调的该待解调信号的频率段受干扰程度最小,实现了解调得到的码元更准确。
为了解决上述技术问题,本公开的具体技术方案如下:
一方面,本公开实施例提供了一种测井信号解调方法,包括,
响应于接收到待解调信号,确定与所述待解调信号对应的第一时域函数和功率谱图像;
根据所述功率谱图像,确定用于解调信号的目标谐波;
根据所述目标谐波,对预设的多个第二时域函数和所述第一时域函数进行处理,得到多个滤波函数和待处理函数;以及
根据所述多个滤波函数和所述待处理函数,解调所述待解调信号,得到多个码元。
进一步,根据所述功率谱图像,确定用于解调的目标谐波进一步包括:
根据所述功率谱图像,确定与多个频率段对应的能量数值,得到多个能量数值;
针对每个频率段,分别确定所述频率段与至少一个目标频率段之间的至少一个能量差值;以及
根据满足预设条件的所述至少一个能量差值对应的所述频率段,确定所述目标谐波。
进一步,根据所述目标谐波,对预设的多个第二时域函数进行处理,得到多个滤波函数进一步包括:
针对每个第二时域函数进行傅里叶变换,得到多个第一傅里叶级数展开式;
根据所述目标谐波,确定每个第一傅里叶级数展开式中的多个第一置零项;以及
确定所述每个第一傅里叶级数展开式中的所述多个第一置零项的系数为零,得到多个滤波函数。
进一步,在所述多个第二时域函数为两个的情况下,多个第二时域函数进一步包括:

其中,所述g1(t)和所述g2(t)分别为第二时域函数,t为时刻,以及T为周期。
进一步,根据所述目标谐波,对所述第一时域函数进行处理,得到待处理函数包括:
针对所述第一时域函数进行傅里叶变换,得到第二傅里叶级数展开式;
根据所述目标谐波,确定所述第二傅里叶级数展开式中的多个第二置零项;
确定所述第二傅里叶级数展开式中的所述多个第二置零项的系数为零,得到预待处理函数;以及
针对所述预待处理函数进行傅里叶逆变换,得到待处理函数。
进一步,根据所述多个滤波函数和所述待处理函数,解调所述待解调信号,得到多个码元进一步包括:
针对所述待处理函数和每个滤波函数进行卷积运算,得到多个目标函数;
根据所述目标函数,针对每个时刻,确定多个目标值;以及
针对每个时刻的多个目标值进行判决,得到与每个时刻对应的码元,以及
根据所述与每个时刻对应的码元,得到与所述待解调信号对应的多个码元。
进一步,在所述多个目标值为两个的情况下,所述判决进一步包括:
则dn=-1,dn+1=-1
则dn=1,dn+1=1
则dn=-1,dn+1=-1
则dn=-1,dn+1=1
其中,所述n为正整数,所述T为周期,所述y1()和所述y2()分别为目标函数,所述dn为对应时刻的码元,以及所述dn+1为所述对应时刻的下一时刻的码元。
另一方面,本公开实施例还提供了测井信号解调装置,包括,
第一确定单元,用于响应于接收到待解调信号,确定与所述待解调信号对应的第一时域函数和功率谱图像;
第二确定单元,用于根据所述功率谱图像,确定用于解调信号的目标谐波;
处理模块,用于根据所述目标谐波,对预设的多个第二时域函数和所述第一时域函数进行处理,得到多个滤波函数和待处理函数;以及
第三确定单元,用于根据所述多个滤波函数和所述待处理函数,解调所述待解调信号,得到多个码元。
另一方面,本公开实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的方法。
另一方面,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,该计算机指令被处理器执行时实现上述的方法。
利用本公开实施例,首先根据待解调信号的功率谱图像,确定受干扰程度最小的目标频率段。进而基于与该目标频率段对应的目标谐波,构建多个滤波函数。根据该多个滤波函数和与待解调信号对应的待处理函数,对该待解调信号进行解调,提高了解调得到的码元的准确率。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为本公开实施例一种测井信号解调方法的实施系统示意图;
图2所示为本公开实施例一种测井信号解调方法的流程图;
图3A所示为本公开另一实施例一种测井信号解调方法的流程图;
图3B所示为本公开另一实施例一种测井信号解调方法的流程图;
图4所示为本公开实施例一种理想功率谱的示意图;
图5所示为本公开另一实施例一种测井信号解调的示意图;
图6所示为本公开实施例一种测井信号解调装置的结构示意图;
图7为本公开实施例一种计算机设备的结构示意图。
【附图标记说明】
101、采集终端;102、服务器;301、待解调信号;302、目标谐波;303、第一时域
函数;310、多个第二时域函数;311、第二时域函数;312、第二时域函数;320、多个滤波函数;321、滤波函数;322、滤波函数;330、待处理函数;340、多个目标函数;341、目标函数;342、目标函数;350、多个码元;351、码元;352、码元;501、待解调信号图;502、已编码函数图;503、第一时域函数图;504、谐波成分图;505、码元图;610、第一确定单元;620、第二确定单元;630、处理单元;640、第三确定单元;702、计算机设备;704、处理设备;706、存储资源;708、驱动机构;710、输入/输出模块;712、输入设备;714、输出设备;716、呈现设备;718、图形用户接口;720、网络接口;722、通信链路;724、通信总线。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图1所示为本公开实施例一种测井信号解调方法的实施系统示意图,可以包括:采集终端101以及服务器102,采集终端101和服务器102之间通过网络进行通信,网络可以包括局域网(Local Area Network,简称为LAN)、广域网(Wide Area Network,简称为WAN)、因特网或其组合,并连接至网站、用户设备(例如计算设备)和后端系统。服务器102可以根据采集终端101得到的待解调信号进行解调,确定与该待解调信号对应的多个码元或目标信息,然后通过网络将该多个码元或目标信息发送给采集终端101,采集终端101将服务器102提供的多个码元或目标信息进行展示,以便于采集终端101对应的用户在采集终端101上进行查看。可选地,服务器102可以是云计算系统的节点(图中未显示),或者每个服务器102可以是单独的云计算系统,包括由网络互连并作为分布式处理系统工作的多台计算机。
在一个可选的实施例中,采集终端101可以包括油井下仪器和井上电子设备。油井下仪器例如可以是任何可以采集信号的传感器。井上电子设备和油井下仪器通过网络进行通信,以接收信号,该井上电子设备不限于智能手机、采集设备、台式计算机、平板电脑、笔记本电脑、智能音箱、数字助理、增强现实(AR,Augmented Reality)/虚拟现实(VR,Virtual Reality)设备、智能可穿戴设备等类型的电子设备。可选的,电子设备上运行的操作系统可以包括但不限于安卓系统、IOS系统、Linux、Windows等。
此外,需要说明的是,图1所示的仅仅是本公开提供的一种应用环境,在实际应用中,还可以包括多个采集终端101,本说明书不做限制。
如图2所示为本公开实施例一种测井信号解调方法的流程图,针对现有技术中存在的问题,本公开实施例提供了一种测井信号解调方法,实现了确定合适的用于解调的波,提高了解调得到的码元的准确率。在本图中描述了测井信号解调的过程,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的系统或装置产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行。具体的如图2所示,方法可以包括:
S210,响应于接收到待解调信号,确定与待解调信号对应的第一时域函数和功率谱图像;
S220,根据功率谱图像,确定用于解调的目标谐波;
S230,根据目标谐波,对预设的多个第二时域函数和第一时域函数进行处理,得到多个滤波函数和待处理函数;
S240,根据多个滤波函数和待处理函数,解调待解调信号,得到多个码元。
通过本公开实施例的方法,首先根据待解调信号的功率谱图像,确定受干扰程度最小的目标频率段。进而基于与该目标频率段对应的目标谐波,构建多个滤波函数。根据该多个滤波函数和与待解调信号对应的待处理函数,对该待解调信号进行解调,提高了解调得到的码元的准确率。
根据本公开的实施例,待解调信号包括油井下仪器采集的信号。在接收到该待解调信号后,利用信号编码模型对该待解调信号进行编码处理,得到已编码函数,并将该已编码函数传回井上电子设备。井上电子设备针对接收到的信号进行处理,得到第一时域函数。信号编码模型可以为任意可以对信号进行编码处理的模型,例如,曼彻斯特编码模型。根据接收到的该待解调信号,针对该待解调信号的频率进行处理,确定功率谱图像。
针对不同频率段的功率进行积分,确定该频率段携带的能量数值。根据每个频率段的能量数值,确定待解调信号在该频率段的受干扰程度。对比每个频率段的受干扰程度,确定用于解调的目标频率段。进而根据该目标频率段,确定目标谐波。例如,根据能量确定待解调信号在频率段0Hz-40Hz、40Hz-80Hz、80Hz-120Hz和120Hz-160Hz中,40Hz-80Hz受干扰程度最小,则确定40Hz-80Hz为目标频率段。由于在信号解调领域内采用基次谐波进行解调。由于频域分布情况是分成若干奇次谐波成分,因此目标频率段40Hz-80Hz对应的是三次谐波成分,确定目标谐波为三次谐波。从而,实现了根据待解调信号的功率谱图像,确定受干扰最小的目标频率段,进而确定了最适合用于解调的目标谐波。
在进行待解调信号解调之前,预先设置用于生成滤波函数的时域函数。在本公开中,该时域函数被称为第二时域函数。在确定了目标谐波之后,根据该目标谐波的次数值,对多个第二时域函数进行处理,得到多个滤波函数,该滤波函数用于构建滤波器,多个滤波函数构建多个滤波器。根据该目标谐波的次数值,对第一时域函数进行处理,得到待处理函数。
将该待处理函数输入多个滤波器中,得到多个目标函数。将每个时刻的数值分别带入该目标函数中,得到与每个时刻分别对应的多个目标值。针对每个时刻的多个目标值进行判决,得到与每个时刻对应的码元。针对确定的多个码元,按照对应的时刻顺序进行拼接,得到码元图,以用于后续的处理。
根据本公开的另一个实施例,多个第二时域函数进一步可以包括:

其中,g1(t)和g2(t)分别为第二时域函数,t为时刻,以及T为周期。
根据本公开的另一个实施例,为了解调的准确率更高,根据目标谐波,对预设的多个第二时域函数进行处理,得到多个滤波函数进一步包括:针对每个第二时域函数进行傅里叶变换,得到多个第一傅里叶级数展开式;根据目标谐波,确定每个第一傅里叶级数展开式中的多个第一置零项;以及确定每个第一傅里叶级数展开式中的多个第一置零项的系数为零,得到多个滤波函数。
确定第一置零项例如可以是,针对多个第一傅里叶级数展开式中的每个第一傅里叶级数展开式,确定除了与目标谐波的次数值对应的项之外的项为第一置零项。
例如,在确定目标谐波的次数值为3(即3次谐波)的情况下,确定第一傅里叶级数展开式中的除了第三项(n=3)之外的项为第一置零项。以公式(1)和公式(2)中的第二时域函数为例进行继续说明。针对公式(1)和公式(2)分别进行傅里叶变换,得到如公式(6)所示的第一傅里叶级数展开式(公式(3)-公式(6)为推导过程的示例),如公式(10)所示的第一傅里叶级数展开式(公式(7)-公式(10)为推导过程的示例)。
其中,

因此,当t∈(0,T)时,

其中,

因此,当t∈(0,T)时,
在确定多个第一傅里叶级数展开式如公式(6)和公式(10)后,确定除了n=3之外的n对应的项为第一置零项。进而将第一置零项的系数确定为0,得到多个滤波函数如下公式(11)中的和公式(12)中的

需要说明的是,目前在采用基波解调的过程中,多直接采用第二时域函数构建滤波器,并不对该第二时域函数进行处理和转换。而本公开对预设的多个第二时域函数均确定了对应的高次谐波分量,且采用该高次谐波分量构建滤波器。由此,进一步提高了在信号解调过程中的准确率。
根据本公开的另一个实施例,根据目标谐波,对第一时域函数进行处理,得到待处理函数进一步包括:针对第一时域函数进行傅里叶变换,得到第二傅里叶级数展开式; 根据目标谐波,确定第二傅里叶级数展开式中的多个第二置零项;确定第二傅里叶级数展开式中的多个第二置零项的系数为零,得到预待处理函数;以及针对预待处理函数进行傅里叶逆变换,得到待处理函数。
例如,第一时域函数为s(t),针对s(t)执行如上述公式(3)-公式(6)的推导过程进行傅里叶变化,得到与s(t)对应的第二傅里叶级数展开式。在确定目标谐波的次数值为3的情况下,确定第二傅里叶级数展开式中的除了第三项(n=3)之外的项为第二置零项。将多个第二置零项的系数设置为零(如上述公式(6)转换为公式(11)或公式(10)转换为公式(12)的过程),得到预待处理函数m(t)。针对m(t),进行傅里叶逆变换,得到与m(t)对应的待处理函数f(t)。傅里叶变换和傅里叶逆变换为互逆变换。
根据本公开的另一个实施例,根据多个滤波函数和待处理函数,解调待解调信号,得到多个码元进一步包括:针对待处理函数和每个滤波函数进行卷积运算,得到多个目标函数;根据目标函数,针对每个时刻,确定多个目标值;以及针对每个时刻的多个目标值进行判决,得到与每个时刻对应的码元,以及根据与每个时刻对应的码元,得到与待解调信号对应的多个码元。
例如,在确定目标谐波的次数值为3,且多个第二时域函数为两个的情况下,将上述确定的待处理函数f(t)和多个滤波函数分别进行卷积运算,得到多个目标函数,如下公式(13)和公式(14)得到的y1(t)和y1(t)。

其中,*为卷积运算,y1(t)和y2(t)分别为目标函数。
将与每个时刻对应的n值分别代入目标函数y1(t)和y1(t)中,得到与每个时刻(每个n值)分别对应的两个目标值。针对该两个目标值进行判决,确定与每个时刻对应的码元。从而确定码元图,以用于后续的处理。
根据本公开的另一个实施例,在多个目标值为两个的情况下,判决包括以下公式(15)、公式(16)、公式(17)和公式(18)。
则dn=-1,dn+1=-1    公式(15)
则dn=1,dn+1=1    公式(16)
则dn=-1,dn+1=-1    公式(17)
则dn=-1,dn+1=1    公式(18)
其中,n为正整数,T为周期,y1()和y2()分别为目标函数,dn为对应时刻的码元,以及dn+1为对应时刻的下一时刻的码元。
针对每个时刻(每个n),即可得到两个目标值,确定两个目标值中较大的第一目标值。确定该第一目标值是否大于零。进而进行如公式(15)、公式(16)、公式(17)和公式(18)所示的判决,确定与该时刻(n)对应码元(dn)和与该时刻的下一个时刻n+1对应的码元(dn+1)。
需要注意的是,本公开在判决的时候,选用的判决点为一个周期的中间点((3/2)T),以适应本公开中的滤波函数,而并非过往采用一个周期的边界点(T)。
根据本公开的另一个实施例,为了提高解调得到的码元的准确率,在多个目标值为两个的情况下,在判决的时候,仅仅进行n取奇次项或偶次项的判决。也就是说,n只取奇数或n只取偶数。
在仅进行n取奇次项或偶次项的判决的情况下,可以针对每个时刻仅生成一个对应的码元。若针对所有的n均进行判决,则会针对一个时刻产生两个对应的码元,从而使得生成的码元不准确。
如图3A所示的为本公开另一实施例一种测井信号解调方法的流程图。
根据本公开的另一个实施例,如图3A所示,在接收到待解调信号301后,利用曼彻斯特编码模型对该待解调信号301进行编码处理后,得到已编码函数,并将该已编码函数传回。针对接收到的被干扰的已编码函数对应的信号进行处理,得到第一时域函数303。针对该待解调信号301,确定每个频率段的能量数值。根据该每个频率段的能量数值,进行干扰分析后,得到目标谐波302。
针对第一时域函数303进行傅里叶变换,得到第二傅里叶级数展开式,确定与目标谐波302的次数对应的项不一致的项为第二置零项,将第二置零项的系数均设置为零,得到待处理函数330。同理,针对多个第二时域函数310中的每个第二时域函数均进行相同操作,得到多个滤波函数320。
针对待处理函数330和多个滤波函数320进行卷积运算,得到多个目标函数340。通过多个目标函数340,确定与每个时刻对应的目标值。进而针对每个目标值进行判决,确定多个码元350。
根据本公开的另一个实施例,为了更加准确地确定用于解调的目标谐波,根据功率谱图像,确定用于解调的目标谐波进一步包括:根据功率谱图像,确定与多个频率段对应的能量数值,得到多个能量数值;针对每个频率段,分别确定频率段与至少一个目标频率段之间的至少一个能量差值;以及根据满足预设条件的至少一个能量差值对应的频率段,确定目标谐波。
在没有干扰的情况下,理想的功率谱图像如图4所示。针对该理想的功率谱图像,确定每个频率段的能量,得到如下表1所示的不同频率段的能量分布表。
表1
由表1可知,3次谐波比基波能量小10.9dBm,5次谐波比3次谐波能量小4.52dBm,5次谐波比基波能量小15.42dBm,7次谐波比5次谐波能量小2.94dBm,7次谐波比3次谐波小7.46dBm,7次谐波比基波能量小19.36dBm,以此确定预设条件。由于本公开的预设条件是基于理想的功率谱图像确定的,保证了所确定的预设条件的合理性,从而可以从多个谐波中确定最合适解调待解调信号的目标谐波,进而提高解调得到的码元的准确率。
针对每个频率段,确定比该频率段小的所有频率段为目标频率段。例如,针对频率段为40Hz-80Hz(3次谐波),目标频率段为0Hz-40Hz(基波);针对频率段为80Hz-120Hz(5次谐波),目标频率段为0Hz-40Hz(基波)和40Hz-80Hz(3次谐波);针对频率段为120Hz-160Hz(7次谐波),目标频率段为0Hz-40Hz(基波)、40Hz-80Hz(3次谐波)和80Hz-120Hz(5次谐波)。
根据满足预设条件的至少一个能量差值对应的频率段,确定目标谐波例如可以包括:根据频率段和目标频率段,确定对应的阈值,在确定该频率段和该每个目标频率段的能 量差值均大于该对应的阈值的情况下,确定该频率段满足预设条件,确定与该频率段对应的谐波为目标谐波。
在频率段为40Hz-80Hz(3次谐波),目标频率段为0Hz-40Hz(基波)的情况下,对应的阈值为10.9dBm。
在频率段80Hz-120Hz(5次谐波),目标频率段为40Hz-80Hz(3次谐波)的情况下,对应的阈值为4.52dBm;在频率段80Hz-120Hz(5次谐波),目标频率段为0Hz-40Hz(基波)的情况下,对应的阈值为15.42dBm。
在频率段120Hz-160Hz(7次谐波),目标频率段为80Hz-120Hz(5次谐波)的情况下,对应的阈值为2.94dBm;在频率段120Hz-160Hz(7次谐波),目标频率段为40Hz-80Hz(3次谐波)的情况下,对应的阈值为7.46dBm;在频率段120Hz-160Hz(7次谐波),目标频率段为0Hz-40Hz(基波)的情况下,对应的阈值为19.36dBm。
例如,针对频率段40Hz-80Hz(3次谐波),目标频率段为0Hz-40Hz(基波)。确定频率段40Hz-80Hz的能量数值为19dBm,目标频率段0Hz-40Hz的能量数值为32dBm,则能量差值为13dBm。频率段40Hz-80Hz(3次谐波)和目标频率段为0Hz-40Hz(基波)对应的阈值为10.9dBm。将能量差值13dBm和对应的阈值10.9dBm进行对比,确定能量差值大于该对应的阈值,则确定该频率段40Hz-80Hz(3次谐波)满足预设条件,确定3次谐波为目标谐波。需要注意的是,能量差值一定是大于等于零的数字。
为了说明存在多个目标频率段的情况,再例如,针对频率段80Hz-120Hz(5次谐波),目标频率段为0Hz-40Hz(基波)和40Hz-80Hz(3次谐波)。同理,确定频率段80Hz-120Hz(5次谐波)的能量数值为14,目标频率段40Hz-80Hz的能量数值为19dBm,目标频率段0Hz-40Hz的能量数值为32dBm,则频率段80Hz-120Hz与目标频率段40Hz-80Hz的能量差值为18dBm,频率段80Hz-120Hz与目标频率段40Hz-80Hz的能量差值为5dBm。频率段80Hz-120Hz(5次谐波)和目标频率段为0Hz-40Hz(基波)的阈值为15.42dBm,频率段80Hz-120Hz(5次谐波)和目标频率段为40Hz-80Hz(基波)的阈值为4.52dBm。即比较18dBm和阈值15.42dBm的大小,比较5dBm和4.52dBm的大小。基于前述比较可知,频率段80Hz-120Hz(5次谐波)与目标频率段的能量差值均大于对应的阈值,从而,确定该频率段80Hz-120Hz(5次谐波)满足预设条件,确定5次谐波为目标谐波。需要注意的是,该目标谐波不为基波(1次谐波)。
图3B所示的本公开另一实施例一种测井信号解调方法的流程图。
根据本公开的另一个实施例,在多个第二时域函数为两个的情况下,本实施例的测井信号解调方法的流程图可以如图3B所示。在确定目标谐波302后,针对第二时域函数 311进行傅里叶变换,得到第一傅里叶级数展开式,确定与目标谐波302的次数对应的项不一致的项为第一置零项,将第一置零项的系数均设置为零,得到滤波函数321。同理,针对第二时域函数312进行相同操作,得到滤波函数322。
针对待处理函数330和滤波函数321进行卷积运算,得到目标函数341。针对待处理函数330和滤波函数322进行卷积运算,得到目标函数342。通过目标函数341和目标函数342,确定与每个时刻对应的两个目标值。进而针对每个目标值进行判决,得到对应的码元。例如,可以针对一个时刻,得到码元351,针对另一个时刻,得到码元352。
需要注意的是,本实施例中码元的个数可以为任意数值,以上示例中的两个码元仅作为说明,并不构成实际限定。
如图5所示为本公开另一实施例一种测井信号解调的示意图。
根据本公开的另一个实施例,油井下仪器采集的原始信号如待解调信号图501所示,采用曼彻斯特编码模型进行编码,得到已编码函数图502,由于地下环境的干扰,井上电子设备得到干扰后信号如第一时域函数图503所示。在接收到油井下仪器传回的第一时域函数图503后,针对该第一时域函数图503采用如本公开的确定目标谐波,以及根据多个第二时域函数、第一时域函数和该目标谐波,确定多个目标函数后,针对每个时刻,确定对应的目标值得到的一个图像如谐波成分图504所示。进而对该目标值进行判决,得到多个码元图505。
本公开实施例还提供了一种测井信号解调装置,如图6所示,包括,
第一确定单元610,用于响应于接收到待解调信号,确定与待解调信号对应的第一时域函数和功率谱图像;
第二确定单元620,用于根据功率谱图像,确定用于解调的目标谐波;
处理单元630,用于根据目标谐波,对预设的多个第二时域函数和所述第一时域函数进行处理,得到多个滤波函数和待处理函数;以及
第三确定单元640,用于根据多个滤波函数和待处理函数,解调待解调信号,得到多个码元。
由于上述装置解决问题的原理与上述方法相似,因此上述装置的实施可以参见上述方法的实施,重复之处不再赘述。
如图7所示为本公开实施例一种计算机设备的结构示意图,本公开中的装置可以为本实施例中的计算机设备,执行上述本公开的方法。计算机设备702可以包括一个或多个处理设备704,诸如一个或多个中央处理单元(CPU),每个处理单元可以实现一个或多个硬件线程。计算机设备702还可以包括任何存储资源706,其用于存储诸如代码、设置、数 据等之类的任何种类的信息。非限制性的,比如,存储资源706可以包括以下任一项或多种组合:任何类型的RAM,任何类型的ROM,闪存设备,硬盘,光盘等。更一般地,任何存储资源都可以使用任何技术来存储信息。进一步地,任何存储资源可以提供信息的易失性或非易失性保留。进一步地,任何存储资源可以表示计算机设备702的固定或可移除部件。在一种情况下,当处理设备704执行被存储在任何存储资源或存储资源的组合中的相关联的指令时,计算机设备702可以执行相关联指令的任一操作。计算机设备702还包括用于与任何存储资源交互的一个或多个驱动机构708,诸如硬盘驱动机构、光盘驱动机构等。
计算机设备702还可以包括输入/输出模块710(I/O),其用于接收各种输入(经由输入设备712)和用于提供各种输出(经由输出设备714)。一个具体输出机构可以包括呈现设备716和相关联的图形用户接口(GUI)718。在其他实施例中,还可以不包括输入/输出模块710(I/O)、输入设备712以及输出设备714,仅作为网络中的一台计算机设备。计算机设备702还可以包括一个或多个网络接口720,其用于经由一个或多个通信链路722与其他设备交换数据。一个或多个通信总线724将上文所描述的部件耦合在一起。
通信链路722可以以任何方式实现,例如,通过局域网、广域网(例如,因特网)、点对点连接等、或其任何组合。通信链路722可以包括由任何协议或协议组合支配的硬连线链路、无线链路、路由器、网关功能、名称服务器等的任何组合。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述方法。
本公开实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序,计算机程序被处理器执行时实现上述方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产 生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本公开的具体实施例而已,并不用于限定本公开的保护范围,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种测井信号解调方法,其特征在于,包括:
    响应于接收到待解调信号,确定与所述待解调信号对应的第一时域函数和功率谱图像;
    根据所述功率谱图像,确定用于解调的目标谐波;
    根据所述目标谐波,对预设的多个第二时域函数和所述第一时域函数进行处理,得到多个滤波函数和待处理函数;以及
    根据所述多个滤波函数和所述待处理函数,解调所述待解调信号,得到多个码元。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述功率谱图像,确定用于解调的目标谐波包括:
    根据所述功率谱图像,确定与多个频率段对应的能量数值,得到多个能量数值;
    针对每个频率段,分别确定所述频率段与至少一个目标频率段之间的至少一个能量差值;以及
    根据满足预设条件的所述至少一个能量差值对应的所述频率段,确定所述目标谐波。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述目标谐波,对预设的多个第二时域函数进行处理,得到多个滤波函数包括:
    针对每个第二时域函数进行傅里叶变换,得到多个第一傅里叶级数展开式;
    根据所述目标谐波,确定每个第一傅里叶级数展开式中的多个第一置零项;以及
    确定所述每个第一傅里叶级数展开式中的所述多个第一置零项的系数为零,得到多个滤波函数。
  4. 根据权利要求1或3所述的方法,在所述多个第二时域函数为两个的情况下,其特征在于,所述多个第二时域函数包括:

    其中,所述g1(t)和所述g2(t)分别为第二时域函数,t为时刻,以及T为周期。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述目标谐波,对所述第一时域函数进行处理,得到待处理函数包括:
    针对所述第一时域函数进行傅里叶变换,得到第二傅里叶级数展开式;
    根据所述目标谐波,确定所述第二傅里叶级数展开式中的多个第二置零项;
    确定所述第二傅里叶级数展开式中的所述多个第二置零项的系数为零,得到预待处理函数;以及
    针对所述预待处理函数进行傅里叶逆变换,得到待处理函数。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述多个滤波函数和所述待处理函数,解调所述待解调信号,得到多个码元包括:
    针对所述待处理函数和每个滤波函数进行卷积运算,得到多个目标函数;
    根据所述目标函数,针对每个时刻,确定多个目标值;以及
    针对每个时刻的多个目标值进行判决,得到与每个时刻对应的码元,以及
    根据所述与每个时刻对应的码元,得到与所述待解调信号对应的多个码元。
  7. 根据权利要求6所述的方法,其特征在于,在所述多个目标值为两个的情况下,所述判决包括:
    则dn=-1,dn+1=-1
    则dn=1,dn+1=1
    则dn=-1,dn+1=-1
    则dn=-1,dn+1=1
    其中,所述n为正整数,所述T为周期,所述y1()和所述y2()分别为目标函数,所述dn为对应时刻的码元,以及所述dn+1为所述对应时刻的下一时刻的码元。
  8. 一种测井信号解调装置,其特征在于,包括,
    第一确定单元,用于响应于接收到待解调信号,确定与所述待解调信号对应的第一时域函数和功率谱图像;
    第二确定单元,用于根据所述功率谱图像,确定用于解调的目标谐波;
    处理单元,用于根据所述目标谐波,对预设的多个第二时域函数和所述第一时域函数进行处理,得到多个滤波函数和待处理函数;以及
    第三确定单元,用于根据所述多个滤波函数和所述待处理函数,解调所述待解调信号,得到多个码元。
  9. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述权利要求1-7中任一项的方法。
  10. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述权利要求1-7任一项的方法。
PCT/CN2023/114755 2022-08-24 2023-08-24 一种井下电磁波信号谐波解码方法及装置 WO2024041615A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211023979.5 2022-08-24
CN202211023979.5A CN117675091A (zh) 2022-08-24 2022-08-24 一种测井信号解调方法、装置、计算机设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024041615A1 true WO2024041615A1 (zh) 2024-02-29

Family

ID=90012606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114755 WO2024041615A1 (zh) 2022-08-24 2023-08-24 一种井下电磁波信号谐波解码方法及装置

Country Status (2)

Country Link
CN (1) CN117675091A (zh)
WO (1) WO2024041615A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338176A (zh) * 2013-06-13 2013-10-02 上海理工大学 一种波形复用调制解调器的实现方法
US20160174163A1 (en) * 2014-12-16 2016-06-16 Netgear, Inc. Systems and methods for cable and wlan coexistence
CN112235222A (zh) * 2020-01-21 2021-01-15 南京新频点电子科技有限公司 一种基于ofdm干扰信号调制装置及调制方法
CN114609593A (zh) * 2022-03-09 2022-06-10 北京航空航天大学 一种基于fpga和深度学习的谐波雷达

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103338176A (zh) * 2013-06-13 2013-10-02 上海理工大学 一种波形复用调制解调器的实现方法
US20160174163A1 (en) * 2014-12-16 2016-06-16 Netgear, Inc. Systems and methods for cable and wlan coexistence
CN112235222A (zh) * 2020-01-21 2021-01-15 南京新频点电子科技有限公司 一种基于ofdm干扰信号调制装置及调制方法
CN114609593A (zh) * 2022-03-09 2022-06-10 北京航空航天大学 一种基于fpga和深度学习的谐波雷达

Also Published As

Publication number Publication date
CN117675091A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
US10547618B2 (en) Method and apparatus for setting access privilege, server and storage medium
CN112069398A (zh) 一种基于图网络的信息推送方法及装置
CN107463683B (zh) 代码元素的命名方法及终端设备
CN106532969B (zh) 无线充电设备中实现fsk信号高效解调的电路结构
CN110084208B (zh) 一种自适应降噪并避免阶次混叠的计算阶次跟踪方法
CN111949850B (zh) 多源数据的采集方法、装置、设备及存储介质
CN108989256A (zh) 一种fsk/gfsk解调方法及装置
CN106487424B (zh) 无线充电设备中fsk信号的解调电路
US20170109253A1 (en) System and method for filtering system log under operating system
WO2024041615A1 (zh) 一种井下电磁波信号谐波解码方法及装置
CN114861059A (zh) 资源推荐方法、装置、电子设备及存储介质
CN110071828A (zh) 告警方法、装置、设备及存储介质
US20130124588A1 (en) Encoding densely packed decimals
US20180278448A1 (en) Signal processing system and method, and apparatus
Moss et al. An FPGA-based spectral anomaly detection system
CN112580701B (zh) 一种基于分类变换扰动机制的均值估计方法及装置
CN107135182A (zh) 调频信号的频偏计算方法及装置
CN207460228U (zh) 无线充电设备中实现fsk信号高效解调的电路结构
CN103106283B (zh) 去重处理方法及装置
Steinhardt et al. Spectral estimation via minimum energy correlation extension
WO2017027469A1 (en) Efficient data transmission using orthogonal pulse shapes
US10116475B1 (en) Automatic electrical signal decoding discovery and electrical signal coding between a device and its remote controller
Wenbin et al. Design and verification of MSK based on FPGA
Zhao et al. A single-channel blind source separation algorithm based on improved wavelet packet and variational mode decomposition
CN109543053A (zh) 电路图的查询方法、装置、终端及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856703

Country of ref document: EP

Kind code of ref document: A1