WO2024041260A1 - 频率选择表面 - Google Patents

频率选择表面 Download PDF

Info

Publication number
WO2024041260A1
WO2024041260A1 PCT/CN2023/107304 CN2023107304W WO2024041260A1 WO 2024041260 A1 WO2024041260 A1 WO 2024041260A1 CN 2023107304 W CN2023107304 W CN 2023107304W WO 2024041260 A1 WO2024041260 A1 WO 2024041260A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
branch
bandpass
band
dielectric substrate
Prior art date
Application number
PCT/CN2023/107304
Other languages
English (en)
French (fr)
Inventor
桑联佳
傅随道
梁修业
沈楠
毛胤电
李名定
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024041260A1 publication Critical patent/WO2024041260A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices

Definitions

  • Embodiments of the present disclosure relate to the field of communications, and in particular, to a frequency selective surface.
  • Frequency selective surface is an artificial electromagnetic material with special filtering function and is widely used in radar, aviation, communications and other fields.
  • multi-frequency integration is an important direction.
  • the problem of mutual interference between frequency bands in multi-frequency integration has become increasingly prominent, and the research on multi-frequency FSS has become Top priority.
  • multi-frequency FSS often used multi-layer FSS cascade technology or multi-resonant branch technology.
  • Multi-layer FSS cascade increases the difficulty and cost of design and processing, which is highly restricted in the civilian field.
  • the multi-resonant branch technology refers to integrating multiple branches in an FSS unit, and generating passbands of multiple frequency bands through the resonance of multiple branches.
  • the problem with this technology is that when the second passband wavelength is smaller than the first passband, the filtering performance of the FSS structure in the second passband is difficult to guarantee, because the size of the FSS unit is often determined by the first passband.
  • the filtering performance of the second passband deteriorates sharply, including the distortion of its directional characteristics after the electromagnetic wave is transmitted.
  • the transmission loss is extremely large. The problem.
  • Embodiments of the present disclosure provide a frequency selective surface to at least solve the problems in the related art that a single layer of FSS can support few passbands and has poor wide-angle filtering performance.
  • a frequency selective surface unit including: at least one first bandpass branch, wherein the first bandpass branch includes a first metal line and two first metal patches, wherein, The two first metal patches are spaced apart to form a first capacitor with a physical width L, where L is a positive number.
  • the first metal line is connected to the two first metal patches to form a first inductor, where the first metal line
  • the connection positions with the two first metal patches are located at L/4 to 3L/4 of the physical width L of the first capacitor; the dielectric substrate is used to fix the first bandpass branch.
  • a frequency selective surface is also provided, including a plurality of the above frequency selective surface units.
  • Figure 1 is a structural block diagram of a frequency selective surface unit according to an embodiment of the present disclosure
  • Figure 2 is a structural block diagram of a frequency selective surface unit according to an embodiment of the present disclosure
  • Figure 3 is a structural block diagram of a frequency selective surface unit according to an embodiment of the present disclosure.
  • Figure 4 is a structural block diagram of an FSS unit according to an embodiment of the disclosed scenario
  • Figure 5 is a schematic structural diagram of the first bandwidth link according to an embodiment of the disclosed scenario
  • Figure 6 is a schematic structural diagram of a second bandpass link according to an embodiment of the disclosed scenario.
  • Figure 7 is a schematic structural diagram of the first blocking branch according to an embodiment of the disclosed scenario.
  • Figure 8 is a graph of transmission coefficient of FSS according to an embodiment of the disclosed scenario.
  • Figure 9 is a structural block diagram of the first bandwidth link according to an embodiment of the disclosed scenario.
  • Figure 10 is a structural block diagram of the first bandwidth link according to an embodiment of the disclosed scenario.
  • Figure 11 is a structural block diagram of an FSS according to an embodiment of the disclosed scenario.
  • Figure 12 is a graph of transmission coefficient of FSS according to an embodiment of the disclosed scenario.
  • FIG. 1 is a structural block diagram of a frequency selective surface unit according to an embodiment of the present disclosure.
  • the frequency selective surface unit 10 includes: at least one The first bandpass branch 110, wherein the first bandpass branch 110 includes two first metal patches and a first metal line, wherein the two first metal patches are spaced apart to form a first capacitor with a physical width L , L is a positive number, the first metal line is connected to the two first metal patches to form the first inductor, where the connection position between the first metal line and the two first metal patches is located at the physical width L of the first capacitor L/4 to 3L/4;
  • the dielectric substrate 120 is used to fix the first bandpass branch 110 .
  • the above embodiment provides a frequency selective surface unit, including: a first bandpass branch 110 and a dielectric substrate 120 for fixing the first bandpass branch 110, wherein the first bandpass branch 110 includes two first metal The patch and the first metal line, where the two first metal patches are spaced apart to form a first capacitor with a physical width of L, L is a positive number, and the first metal line is connected to the two first metal patches to form
  • the first inductor in which the connection position of the first metal line and the two first metal patches is located at L/4 to 3L/4 of the physical width L of the first capacitor, solves the problem in the related technology that a single layer FSS can support passthrough
  • the problem of less bandwidth and poor wide-angle filtering performance has been achieved by improving the FSS filtering performance.
  • the method of fixing the first bandpass branch 110 to the dielectric substrate 120 includes: two first metal patches are fixed on the same side of the dielectric substrate; or the two first metal patches are fixed on the dielectric substrate respectively.
  • the first metal line is fixed on the front and back sides of the dielectric substrate and connected through metallized via holes.
  • the first metal line may include multiple sections of metal lines fixed on the front and back sides of the dielectric substrate, and the multiple sections of metal lines are connected through a plurality of metallized via holes.
  • the shape of the first metal patch may be a circle, a triangle, a rectangle, or an irregular polygon.
  • Figure 2 is a structural block diagram of a frequency selective surface unit according to an embodiment of the present disclosure.
  • the frequency selective surface unit 20 in addition to each component in Figure 1, also includes: The second bandpass branch 210 , wherein the second bandpass branch 210 and the first bandpass branch 110 may be connected through metal wires, and the second bandpass branch 210 includes two second metal patches and a second metal wire.
  • two second metal patches can be distributed on the front and back sides of the dielectric substrate 120 to form a second capacitor
  • the second metal lines can be distributed on the front and back sides of the dielectric substrate 120 and pass through the metallized via holes. connected to form a second inductor, wherein the second inductor and the second capacitor are connected in parallel.
  • the second metal line may include multiple sections of metal lines fixed on the front and back sides of the dielectric substrate, and the multiple sections of metal lines are connected through a plurality of metallized via holes.
  • the shape of the second metal patch may be a circle, a triangle, a rectangle, or an irregular polygon.
  • FIG. 3 is a structural block diagram of a frequency selection surface unit according to an embodiment of the present disclosure.
  • the frequency selection surface unit 30 also includes: There is at least one first band-resistance branch 310, wherein the first band-resistance branch 310 and the first band-pass branch 110 are connected through metal wires.
  • the first band-resistance branch 310 includes two third metal patches and a third metal wire.
  • Two third metal patches may be distributed on the front and back sides of the dielectric substrate 120 to form a third capacitor, and a third metal line is used to connect the second bandpass branch 210 and the first bandpass branch 110 to form a third inductor.
  • the shape of the third metal patch may be a circle, a triangle, a rectangle, or an irregular polygon.
  • a frequency selective surface including a plurality of the above frequency selective surface units.
  • two adjacent frequency selection surface units share two third metal patches, so that two adjacent frequency selection surface units share a third capacitor.
  • the third capacitance of the first band-resistance branch is shared between adjacent frequency selection surface units at diagonally diagonal positions of the frequency selection surface.
  • the FSS unit disclosed in this disclosure has the characteristics of multi-frequency, low-cost, miniaturized single layer with stable 60-degree wide-angle performance, and can solve the problem of the existing technology in which single-layer FSS can support less passband, poor wide-angle filtering performance, and multi-layer The problem of high cost of FSS.
  • FIG 4 is a structural block diagram of an FSS unit according to an embodiment of the present disclosure.
  • the FSS unit structure includes a first bandpass branch 100, a second bandpass branch 200, a first bandpass branch 300, and three branches. It consists of metal structures and some metal vias located on the front and back sides of the dielectric substrate. The three branches are connected by metal lines. Each branch corresponds to a different passband/stopband.
  • the electromagnetic waves in the passband frequency band can pass through the FSS. structure to achieve transmission; electromagnetic waves in the stopband frequency band cannot pass through the FSS structure and achieve reflection.
  • FIG. 5 is a schematic structural diagram of a first band-pass branch according to an embodiment of the present disclosure.
  • the first band-pass branch 100 includes a first metal structure 101, a second metal structure 102, and a third metal structure 103 , where there is a certain distance between the first metal structure 101 and the second metal structure 102 to form a capacitor, and the physical width of the capacitor is L; the third metal structure 103 is a metal line to form an inductor. The narrower the metal line, the higher the inductance value.
  • connection positions between the inductor and the capacitor are the first connection position 104 and the second connection position 105 respectively, where the movable range of the first connection position 104 and the second connection position 105 is (L/4, 3L/4), When 104 and 105 are located at the center L/2 position in the width direction, better resonance characteristics can be obtained.
  • the first bandpass branch improves the resonance characteristics of the bandpass branch when incident at a 60-degree wide angle, thereby achieving stable wide-angle performance of the FSS unit.
  • the first metal structure 101 and the second metal structure of the first band link 102 is the first metal patch in the previous embodiment.
  • the first metal structure 101 and the second metal structure 102 can be on the same layer or on different layers of the dielectric substrate. They can be rectangular, triangular, or circular. etc. various shapes.
  • the third metal structure 103 is the first metal line in the aforementioned embodiment.
  • the third metal structure 103 can be on one layer, or can be multiple sections of metal lines distributed on the front and back of the dielectric substrate, connected through metallized vias.
  • the first connection position 104 and the second connection position 105 of the inductor and capacitor connection structure may be directly connected to the metal structure or may be connected through metallized via holes; the connection position range is also (L/4, 3L/4).
  • the first bandpass branch adopts a wide-angle design, that is, the position where the inductor and the capacitor are connected in parallel. At the center of the capacitor width L, its position can be adjusted from L/4 to 3L/4. By improving the parallel connection position of the inductor and capacitor, the filtering performance of the FSS is stable at a 60-degree wide angle incidence.
  • FIG. 6 is a schematic structural diagram of a second band-pass branch according to an embodiment of the present disclosure.
  • the second band-pass branch 200 includes a fourth metal structure 201 and a fifth metal structure 202 on the front side of the dielectric substrate.
  • the sixth metal structure 203 and the seventh metal structure 204 on the back side of the substrate are connected to the metal via holes 205 on the front and back sides of the dielectric substrate.
  • the fourth metal structure 201 and the sixth metal structure 203 are respectively located on the front and back sides of the dielectric substrate to form a flat capacitor. In the direction perpendicular to the dielectric substrate, the more overlapped projections of the fourth metal structure 201 and the sixth metal structure 203, the greater the capacitance.
  • the fifth metal structure 202 and the seventh metal structure 204 are connected through the metal via 205 to form an inductor.
  • the fifth metal structure 202 and the seventh metal structure 204 can be metal lines, and the narrower the metal lines , the higher the inductance value; there is a parallel relationship between capacitor and inductor.
  • the second band-pass branch forms a capacitor by distributing metal structures on both sides of the substrate. Compared with the capacitor structure on the same side, the gap between the metal structures on the same side is replaced by the distance of the thickness of the substrate, thereby reducing the distance between the branches on the same plane. length to achieve miniaturization.
  • the fourth metal structure 201 and the sixth metal structure 203 in the second band link are the second metal patch in the previous embodiment.
  • the fourth metal structure 201 and the sixth metal structure The structure 203 may be a rectangle, a circle, a triangle, a polygon or other irregular shapes.
  • the fifth metal structure 202 and the seventh metal structure 204 are the second metal lines in the previous embodiment.
  • the fifth metal structure 202 and the seventh metal structure 204 can be two sections of metal lines, or can be multiple sections of metal lines. metallized via connections.
  • the second passband adopts a miniaturized design.
  • the metal structures located on the front and back of the board form capacitors.
  • the metal lines extending from the metal structures on the front and back are connected through metalized vias to form an inductor.
  • the capacitors and inductors are connected in parallel to form the second passband. .
  • Figure 7 is a schematic structural diagram of a first resistive branch according to an embodiment of the present disclosure.
  • the first resistive branch 300 includes an eighth metal structure 301 and a ninth metal structure 302 on the front side of the dielectric substrate. Twelve metal structures 305, tenth metal structure 303, eleventh metal structure 304, and thirteenth metal structure 306 on the back side of the dielectric substrate.
  • the eighth metal structure 301, the eleventh metal structure 304, the twelfth metal structure 305, and the thirteenth metal structure 306 are metal connecting lines between branches, forming inductors together with other branches.
  • the ninth metal structure 302 and the Ten metal structures 303 are respectively located on the front and back sides of the substrate to form capacitors.
  • the first resistive branch forms a capacitor through the ninth metal structure 302 and the tenth metal structure 303 respectively belonging to two adjacent FSS units, so that the two adjacent FSS units share one capacitor, that is, the series equivalent capacitance C;
  • the capacitance is halved to C/2 after being connected in series, achieving the effect of doubling the capacitance.
  • the capacitance of the optimized first resistive branch structure is halved, that is, the metal area of the capacitor is halved, thereby achieving miniaturization of the resistive branch.
  • the ninth metal structure 302 and the tenth metal structure 303 on the front and back sides of the dielectric substrate of the first resistive branch are the third metal patch in the aforementioned embodiment, and the ninth metal structure 302 and The tenth metal structure 303 may be a circle, a triangle, a rectangle or other polygons or other irregular shapes.
  • the first resistive branch adopts a miniaturized design.
  • the capacitor is formed by metal structures located on the front and back sides of the plate.
  • the metal structures on the front and back belong to two adjacent units in the positive and negative 45 directions respectively. Since the capacitance of a single unit is 2C, the two capacitances of adjacent units are connected in series, causing the actual capacitance to be halved to C. By sharing the capacitance between adjacent units, the equivalent capacitance of the unit capacitance C can be realized to be C. Compared with 2C The unit capacitance required is reduced, that is, the metal area of the capacitor is reduced, thereby miniaturizing the resistive branches.
  • the metal structure mentioned in the embodiment of this scenario can be a metal patch, a metal strip, a metal strip, etc., and is not limited here.
  • the FSS provided in this scenario embodiment is the smallest repeatable sub-array of FSS, and the sub-array contains four basic units with consistent functions.
  • Each basic unit includes a first band-pass branch, a second band-pass branch, and a first band-blocking branch.
  • Adjacent basic units at diagonal positions share the capacitance of the first resistive branch 300, so the same functional branches of adjacent basic units are respectively located on the front and back of the dielectric substrate, that is, assuming the first resistive branch of a basic unit Located on the front side of the dielectric substrate, the first band-pass branch of the diagonally adjacent basic unit is located on the back side of the dielectric substrate.
  • the size of the miniaturized FSS unit is 20mm, which is equivalent to 0.17 ⁇ @2.6GHz and 0.23 ⁇ @3.5GHz.
  • the first band-stop branch During operation, electromagnetic waves in the band-stop frequency band are incident on the surface of the FSS, and the first band-stop branch generates LC series resonance, which is equivalent to a metal transmission line.
  • the FSS is equivalent to a metal grid, which blocks the propagation of electromagnetic waves and causes them to reflect.
  • the first or second bandpass branches When electromagnetic waves in the bandpass frequency band are incident on the surface of the FSS, the first or second bandpass branches generate LC parallel resonance, forming a high-impedance metal transmission line.
  • the FSS cannot form a metal grid, and electromagnetic waves pass through the FSS to form transmission.
  • FIG 8 is a transmission transmission coefficient curve diagram of the FSS according to the scenario embodiment of the present disclosure.
  • the FSS proposed in scenario embodiment 2 achieves a band stop function with a transmission coefficient of less than -15dB in the 0.6GHz-0.96GHz frequency band.
  • the transmission coefficient in the two frequency bands of 2.5GHz-2.7GHz and 3.4GHz-3.8GHz is greater than -0.5dB, realizing the dual-band bandpass function; when incident at a 60-degree wide angle, the conventional structure is within the first bandpass frequency band , the transmission loss increases sharply, and by using the miniaturized wide-angle unit of the present disclosure, the loss is greatly improved.
  • the structure of the first ribbon branch may be located on the front and back sides of the dielectric substrate.
  • Figure 9 is a structural block diagram of the first band-pass branch according to an embodiment of the present disclosure. As shown in Figure 9, it includes a fourteenth metal structure 111 and a fifteenth metal structure 112, which are respectively located on the front and back sides of the dielectric substrate to form capacitors.
  • the overall width of the capacitor is L; the first metal line 113 and the second metal line 115 are respectively located on the front and back sides of the dielectric substrate, and are connected through metallized vias 114 to form an inductor; the first inductor loading position 116 and the second inductor loading position 117 are connected through Metallized vias connect to the capacitor, loading position range (L/4, 3L/4).
  • FIG. 10 is a structural block diagram of the first bandpass branch according to the embodiment of the present disclosure scenario. As shown in Figure 10, it includes the sixteenth The metal structure 121 and the seventeenth metal structure 122 are respectively located on the front and back sides of the dielectric substrate to form a capacitor, and the overall width of the capacitor is L; the third metal line 123 forms an inductor; the third inductor loading position 124 and the fourth inductor loading position 125, where The third inductor loading position 124 is connected to the capacitor through a metalized via hole, and the fourth inductor loading position 125 is directly connected to the capacitor.
  • the range of the loading positions is (L/4, 3L/4).
  • Figure 11 is a structural block diagram of an FSS according to an embodiment of the disclosed scenario. As shown in Figure 11, it includes a second bandpass branch 100, a first bandpass branch 200, and a first band-stop branch 300. Among them, the positional relationship between the first band-pass branch, the second band-pass branch and the first band-blocking branch is the common position relationship between the three branches in the embodiment of this scenario. Due to the difference in the specific structural form of the first band-pass branch, There may be slight changes in the structural form between the three branches, but the positional relationship is basically similar.
  • the structure of the FSS provided in this scenario embodiment includes three bandpass branches and one bandstop branch, that is, the first bandpass branch, the second bandpass branch, the third bandpass branch and the first bandstop branch.
  • Figure 12 is a graph of the transmission coefficient of FSS according to an embodiment of the disclosed scenario.
  • this scenario embodiment uses the first band-stop branch to achieve a band-stop function with a transmission coefficient of less than -15dB in the 0.6GHz-0.96GHz frequency band.
  • the transmission coefficient of the FSS structure in the three frequency bands of 2.5GHz-2.7GHz, 3.4GHz-3.8GHz and 4.8GHz-5GHz is greater than -0.7dB, realizing the three-band bandpass function.
  • the size of the miniaturized FSS unit in Embodiment 4 is 20mm, which is equivalent to 0.17 ⁇ @2.6GHz, 0.23 ⁇ @3.5GHz, and 0.33 ⁇ @4.9GHz.
  • the 60-degree wide-angle filtering performance is stable in the three bandpass frequency bands.
  • the appropriate bandpass/bandstop branches and their number can be selected according to needs.
  • it is necessary to include at least one first band-stop branch; to realize the FSS single-band band-pass function, a second band-pass branch or a first band-pass branch is needed; to realize the FSS multi-band band-pass function, It requires a second bandpass branch + multiple first bandpass branches in series, or multiple first bandpass branches directly in series, that is, when multi-frequency bandpass is used, the number of second bandpass branches is 0 or 1, and the number of other bandpass branches is They are all the first links.
  • the present disclosure provides an FSS structure, which includes a dielectric substrate and resonant branches to realize the passband/stopband characteristics of the FSS structure.
  • the resonant branch includes two parts: inductance and capacitance.
  • Different branches adopt different optimized structures. Through the combination of band-stop/band-stop branches, the effect of band-stop in one band and band-pass in multiple bands can be achieved. All band-stop/band-pass frequency bands are individually adjustable, and the filtering performance is stable under a 60-degree wide-angle incident situation.
  • the FSS unit of the present disclosure optimizes the stability of FSS filtering performance under 60-degree wide-angle incidence by improving the inductance loading position of the band-pass branches; through miniaturized band-pass branches and band-stop branches that share the capacitance of adjacent units, it is achieved
  • the miniaturized design of the FSS unit enables the FSS structure to integrate more frequency bands under the same unit size, and all bandstop/bandpass frequency bands are individually adjustable; based on a single-layer dielectric substrate design, the process is simple and low-cost.
  • This disclosure belongs to the field of frequency selective surface technology, is applied to multi-band equipment integration in the communication field, belongs to 5G A+P integrated products, and is a potential 6G key technology. Specifically, it can be applied to the field of network communications, such as A+P type integrated communication equipment, as well as higher-integrated equipment in the future.

Landscapes

  • Filters And Equalizers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本公开实施例提供了一种频率选择表面单元,包括:第一带通枝节和用于固定第一带通枝节的介质基板,其中,第一带通枝节包括第一金属线和两个第一金属贴片,其中,两个第一金属贴片设置间距以形成物理宽度为L的第一电容,L为正数,第一金属线与两个第一金属贴片连接,形成第一电感,其中,第一金属线与两个第一金属贴片的连接位置位于第一电容的物理宽度L的L/4至3L/4处。

Description

频率选择表面
相关申请的交叉引用
本公开基于2022年08月24日提交的发明名称为“频率选择表面”的中国专利申请CN202211021655.8,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种频率选择表面。
背景技术
频率选择表面(Frequency selective surface,FSS)是一种具有特殊滤波功能的人工电磁材料,广泛应用于雷达,航空,通信等领域。在集成度越来越高的通信系统中,多频集成是一个重要方向,而具有电磁开放特性的天线,在多频集成中各频段间互相干扰的问题日渐突出,而多频FSS的研究成为重中之重。
在之前的研究中,多频FSS往往采用多层FSS级联技术,或多谐振枝节技术。多层FSS级联增加了设计加工难度以及成本,在民用领域受限较大。而多谐振枝节技术,指在一个FSS单元中,集成多个枝节,通过多个枝节的谐振产生多个频段的通带。该技术的问题在于,当第二通带波长相比于第一通带较小时,该FSS结构在第二通带的滤波性能难以保证,因FSS单元的尺寸往往由第一通带决定,当FSS单元的尺寸相对于第二通带的波长太大时,第二通带的滤波性能急剧恶化,包括电磁波透射后其方向特性产生畸变一级电磁波60度宽角度入射情况下,透射损耗极大的问题。
发明内容
本公开实施例提供了一种频率选择表面,以至少解决相关技术中单层FSS可支持通带少,宽角滤波性能差的问题。
根据本公开的一个实施例,提供了一种频率选择表面单元,包括:至少一个第一带通枝节,其中,第一带通枝节包括第一金属线和两个第一金属贴片,其中,两个第一金属贴片设置间距以形成物理宽度为L的第一电容,L为正数,第一金属线与两个第一金属贴片连接,形成第一电感,其中,第一金属线与两个第一金属贴片的连接位置均位于第一电容的物理宽度L的L/4至3L/4处;介质基板,用于固定第一带通枝节。
根据本公开的又一实施例,还提供了一种频率选择表面,包括多个上述的频率选择表面单元。
附图说明
图1为根据本公开实施例的频率选择表面单元的结构框图;
图2为根据本公开实施例的频率选择表面单元的结构框图;
图3为根据本公开实施例的频率选择表面单元的结构框图;
图4是根据本公开场景实施例的FSS单元的结构框图;
图5是根据本公开场景实施例的第一帯通枝节的结构示意图;
图6是根据本公开场景实施例的第二帯通枝节的结构示意图;
图7是根据本公开场景实施例的第一帯阻枝节的结构示意图;
图8为根据本公开场景实施例的FSS的透射传输系数曲线图;
图9是根据本公开场景实施例的第一帯通枝节的结构框图;
图10是根据本公开场景实施例的第一帯通枝节的结构框图;
图11是根据本公开场景实施例的FSS的结构框图;
图12为根据本公开场景实施例的FSS的透射传输系数曲线图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
根据本公开的一个实施例,提供了一种频率选择表面单元,图1为根据本公开实施例的频率选择表面单元的结构框图,如图1所示,该频率选择表面单元10包括:至少一个第一带通枝节110,其中,第一带通枝节110包括两个第一金属贴片和第一金属线,其中,两个第一金属贴片设置间距以形成物理宽度为L的第一电容,L为正数,第一金属线与两个第一金属贴片连接,形成第一电感,其中,第一金属线与两个第一金属贴片的连接位置位于第一电容的物理宽度L的L/4至3L/4处;
介质基板120,用于固定第一带通枝节110。
上述实施例,通过提供一种频率选择表面单元,包括:第一带通枝节110和用于固定第一带通枝节110的介质基板120,其中,第一带通枝节110包括两个第一金属贴片和第一金属线,其中,两个第一金属贴片设置间距以形成物理宽度为L的第一电容,L为正数,第一金属线与两个第一金属贴片连接,形成第一电感,其中,第一金属线与两个第一金属贴片的连接位置位于第一电容的物理宽度L的L/4至3L/4处,解决了相关技术中单层FSS可支持通带少,宽角滤波性能差的问题,达到了提升FSS滤波性能的效果。
在一个示例性实施例中,介质基板120固定第一带通枝节110的方式包括:两个第一金属贴片固定在介质基板的同一面;或两个第一金属贴片分别固定在介质基板的正反面,第一金属线固定在介质基板的正反面并通过金属化过孔连接。
在本公开的实施例中,第一金属线可以包括固定在介质基板的正反面的多段金属线,多段金属线通过多个金属化过孔连接。第一金属贴片的形状可以为圆形或三角形或矩形或不规则多边形。
在一个示例性实施例中,图2为根据本公开实施例的频率选择表面单元的结构框图,如图2所示,该频率选择表面单元20除了包括图1中的各个部件外,还包括:第二带通枝节210,其中,第二带通枝节210与第一带通枝节110可以通过金属线连接,第二带通枝节210包括两个第二金属贴片和第二金属线。
其中,在本公开的实施例中,两个第二金属贴片可以分布于介质基板120的正反面形成第二电容,第二金属线可以分布于介质基板120的正反面并通过金属化过孔连接,形成第二电感,其中,第二电感与第二电容并联。
在本公开的实施例中,第二金属线可以包括固定在介质基板的正反面的多段金属线,多段金属线通过多个金属化过孔连接。第二金属贴片的形状可以为圆形或三角形或矩形或不规则多边形。
在一个示例性实施例中,图3为根据本公开实施例的频率选择表面单元的结构框图,如图3所示,该频率选择表面单元30除了包括图2中的各个部件外,还包括:至少一个第一带阻枝节310,其中,第一带阻枝节310与第一带通枝节110通过金属线连接,第一带阻枝节310包括两个第三金属贴片和第三金属线。
其中,两个第三金属贴片可以分布于介质基板120的正反面形成第三电容,第三金属线用于连接第二带通枝节210和第一带通枝节110形成第三电感。
在本公开的实施例中,第三金属贴片的形状可以为圆形或三角形或矩形或不规则多边形。
根据本公开的另一个实施例,提供了一种频率选择表面,包括多个上述的频率选择表面单元。
在一个示例性实施例中,两个相邻的频率选择表面单元共用两个第三金属贴片,以实现相邻的两个频率选择表面单元共用第三电容。
在一个示例性实施例中,频率选择表面的斜对角位置上的相邻频率选择表面单元之间共用第一带阻枝节的第三电容。
为了使得本领域的技术人员更好地理解本公开的技术方案,下面将结合具体的场景实施顺利进行阐述。
场景实施例一
本公开公开FSS单元,具有多频,60度宽角性能稳定的低成本、小型化单层的特点,能够解决现有技术中单层FSS可支持通带少,宽角滤波性能差,多层FSS成本高的问题。
图4是根据本公开场景实施例的FSS单元的结构框图,如图4所示,FSS单元结构包括第一帯通枝节100,第二帯通枝节200,第一帯阻枝节300,三个枝节由位于介质基板的正反面的金属结构以及部分金属过孔构成,三个枝节之间通过金属线连接,每个枝节分别对应不同的通带/阻带,通带频段的电磁波能够穿过该FSS结构,实现透射;阻带频段的电磁波不能够穿过该FSS结构,实现反射。
图5是根据本公开场景实施例的第一帯通枝节的结构示意图,如图5所示,第一帯通枝节100,包含第一金属结构101,第二金属结构102,第三金属结构103,其中第一金属结构101和第二金属结构102之间有一定距离,形成电容,电容物理宽度为L;第三金属结构103为金属线,以形成电感,金属线越窄,电感值越高;电感与电容之间连接的位置分别为第一连接位置104和第二连接位置105,其中,第一连接位置104和第二连接位置105可移动范围为(L/4,3L/4),当104和105的位于宽度方向的中心L/2位置时,可以获得较好的谐振特性。第一帯通枝节通过优化电感与电容连接的位置,改善60度宽角入射时,帯通枝节的谐振特性,从而实现了FSS单元的宽角性能稳定。
其中,本领域的技术人员应该知道,第一帯通枝节的第一金属结构101和第二金属结构 102即为前述实施例中的第一金属贴片,第一金属结构101和第二金属结构102可以在同一层,也可以在介质基板的不同层,可以是矩形,也可以是三角形,圆形等各种形状。第三金属结构103即为前述实施例中的第一金属线,第三金属结构103可以在一层,也可以是分布于介质基板正反面的多段金属线,通过金属化过孔连接。电感与电容连接结构第一连接位置104和第二连接位置105,可以是金属结构直接连接,也可以是金属化过孔连接;连接位置范围同样为(L/4,3L/4)。
第一帯通枝节采用宽角设计,即电感与电容并联的位置,在电容宽度L的中心,其位置可调范围从L/4到3L/4。通过改进电感与电容并联的位置,实现了60度宽角入射时FSS的滤波性能稳定。
图6是根据本公开场景实施例的第二帯通枝节的结构示意图,如图6所示,第二帯通枝节200,包含介质基板正面的第四金属结构201,第五金属结构202,介质基板反面的第六金属结构203,第七金属结构204,连通介质基板正反面的金属过孔205。其中第四金属结构201和第六203分别位于介质基板的正反面,形成平板电容,在垂直于介质基板方向上,第四金属结构201和第六金属结构203的投影重叠部分越多,电容越大;第五金属结构202和第七金属结构204通过金属过孔205连接,形成电感,在具体实施例中,第五金属结构202和第七金属结构204可以是金属线,且金属线越窄,电感值越高;电容与电感之间是并联关系。第二帯通枝节通过分布与基板两面的金属结构形成电容,与位于同一面的电容结构相比,以基板厚度的距离替代了同一面金属结构之间的缝隙,从而减小该枝节在同一平面上的长度,实现小型化。
其中,本领域的技术人员应该知道,第二帯通枝节中的第四金属结构201和第六金属结构203即为前述实施例中的第二金属贴片,第四金属结构201和第六金属结构203可以为矩形,也可以为圆形,三角形,多边形或其他不规格形状。第五金属结构202和第七金属结构204即为前述实施例中的第二金属线,第五金属结构202和第七金属结构204可以为两段金属线,也可以为多段金属线,通过多个金属化过孔连接。
第二帯通枝节采用小型化设计,分别位于板材正反面的金属结构形成电容,正反面的金属结构上延伸出来的金属线通过金属化过孔连接,形成电感,电容电感并联形成第二通带。
图7是根据本公开场景实施例的第一帯阻枝节的结构示意图,如图7所示,第一帯阻枝节300,包含介质基板正面的第八金属结构301,第九金属结构302,第十二金属结构305,介质基板背面的第十金属结构303,第十一金属结构304,第十三金属结构306。其中第八金属结构301,第十一金属结构304,第十二金属结构305,第十三金属结构306为枝节之间的金属连接线,与其他枝节共同形成电感,第九金属结构302和第十金属结构303分别位于基板正反面形成电容。第一帯阻枝节通过分别属于相邻两个FSS单元的第九金属结构302和第十金属结构303形成电容,使得相邻两个FSS单元共用1个电容,即串联等效容值C;相较于不共用的单元结构串联后容值减半为C/2,实现了容值翻倍的效果。同样的,在所需容值确定的情况下,优化后的第一帯阻枝节结构容值减半,即电容金属面积减半,从而实现帯阻枝节小型化。
其中,本领域的技术人员应该知道,第一帯阻枝节的介质基板正反面第九金属结构302和第十金属结构303即为前述实施例中的第三金属贴片,第九金属结构302和第十金属结构303可以是圆形,也可以是三角形,矩形等多边形或其他不规则形状。
第一帯阻枝节采用小型化设计,电容由位于板材正反面的金属结构形成,正反面的金属结构分别属于正负45方向上的两个相邻单元。由于单个单元电容为2C时,相邻单元的2个电容是串联关系导致实际容值减半为C,通过相邻单元共用电容,可实现单元电容C等效容值为C,相较于2C的单元电容,所需容值减小,即电容金属面积减小,从而实现帯阻枝节小型化。
其中,本领域的技术人员应该知道,本场景实施例中提到的金属结构可以是金属贴片,金属条带,金属条线等,这里不做限制。
场景实施例二
本场景实施例提供的FSS是FSS最小可重复子阵,子阵中包含4个功能一致的基本单元。每个基本单元包括一个第一帯通枝节,一个第二帯通枝节,一个第一带阻枝节。斜对角位置上的相邻基本单元,共用第一帯阻枝节300的电容,所以相邻基本单元的同功能枝节,分别位于介质基板的正反面,即假设一个基本单元的第一帯通枝节位于介质基板的正面,则其斜对角相邻基本单元的第一帯通枝节,位于介质基板的反面。小型化FSS单元尺寸为20mm,相当于0.17λ@2.6GHz,0.23λ@3.5GHz。
工作时,带阻频段的电磁波入射到FSS表面,第一带阻枝节产生LC串联谐振,等效为金属传输线,FSS等效为金属网格,阻断电磁波传播,使其反射。帯通频段的电磁波入射到FSS表面时,第一或第二帯通枝节产生LC并联谐振,形成高阻抗金属传输线,FSS不能形成金属网格,电磁波穿过FSS形成透射。
图8为根据本公开场景实施例的FSS的透射传输系数曲线图,如图8所示,可知场景实施例二提出的FSS实现了在0.6GHz-0.96GHz频段透射系数小于-15dB的带阻功能,另外,在2.5GHz-2.7GHz以及3.4GHz-3.8GHz两个频段透射系数大于-0.5dB,实现了双频帯通功能;在60度宽角入射时,常规结构在第一帯通频段内,出现了透射损耗急剧增大的情况,而采用本公开的小型化宽角单元,损耗大为改善。
在具体实施过程中,相关枝节(包括第一帯通枝节,第二帯通枝节,第一带阻枝节)的结构形式不做具体限制,可以根据实际情况进行调整。
例如,第一帯通枝节的结构可以位于介质基板的正反面。图9是根据本公开场景实施例的第一帯通枝节的结构框图,如图9所示,包含第十四金属结构111,第十五金属结构112,分别位于介质基板的正反面形成电容,电容整体宽度为L;第一金属线113和第二金属线115分别位于介质基板的正反面,通过金属化过孔114连接形成电感;第一电感加载位置116和第二电感加载位置117,通过金属化过孔连接到电容上,加载位置范围(L/4,3L/4)。
本公开实施例中,还提供了另外一种结构形式的第一带通枝节,图10是根据本公开场景实施例的第一帯通枝节的结构框图,如图10所示,包含第十六金属结构121,第十七金属结构122,分别位于介质基板的正反面形成电容,电容整体宽度为L;第三金属线123形成电感;第三电感加载位置124和第四电感加载位置125,其中第三电感加载位置124通过金属化过孔连接到电容上,第四电感加载位置125直接连接到电容上,加载位置范围均为(L/4,3L/4)。
图11是根据本公开场景实施例的FSS的结构框图,如图11所示,包括第二帯通枝节100,第一帯通枝节200,第一带阻枝节300。其中,第一帯通枝节,第二帯通枝节,第一带阻枝节的位置关系为本场景实施例中三个枝节之间通用的位置关系,由于第一帯通枝节具体结构形式的不同,三个枝节之间的结构形态可以有细微变化,但位置关系基本类似。
场景实施例三
本场景实施例中提供的FSS的结构包括三个带通枝节和一个带阻枝节,即第一帯通枝节,第二帯通枝节,第三帯通枝节和第一带阻枝节。
图12为根据本公开场景实施例的FSS的透射传输系数曲线图,如图12所示,本场景实施例通过第一带阻枝节实现0.6GHz-0.96GHz频段透射系数小于-15dB的带阻功能;通过增加第三帯通枝节400,使得FSS结构在2.5GHz-2.7GHz,3.4GHz-3.8GHz以及4.8GHz-5GHz三个频段透射系数大于-0.7dB,实现了三频帯通功能。实施例4小型化FSS单元尺寸为20mm,相当于0.17λ@2.6GHz,0.23λ@3.5GHz,0.33λ@4.9GHz,在三个帯通频段均保持了60度宽角滤波性能稳定。
综上可知,设计过程中,可根据需求,选择合适的帯通/带阻枝节及其数量。为实现FSS带阻功能,需要包含至少一个第一带阻枝节;为实现FSS单频段帯通功能,需要一个第二帯通枝节或者一个第一帯通枝节;为实现FSS多频段帯通功能,需要一个第二帯通枝节+多个第一帯通枝节串联,或者直接多个第一帯通枝节串联,即多频帯通时,第二帯通枝节数量为0或1,其他帯通枝节均为第一帯通枝节。
本领域的技术人员应该知道,以上是本公开的具体场景实施例,不构成对本公开的任何限制,对本领域专业人员来说,在了解本公开的内容和原理后,都可以在不背离本公开原理的情况下,进行实现形式的改变,但是这些基于本公开原理的改变仍在本公开的权利要求和保护范围内。
本公开提供了一种FSS结构,包含介质基板和谐振枝节,实现FSS结构的通带/阻带特性。谐振枝节包含电感和电容两部分,不同的枝节采用不同的优化结构。通过帯通/带阻枝节的组合,可实现一频段带阻,多频段帯通的效果,所有带阻/帯通频段均单独可调,且在60度宽角入射情况下滤波性能稳定。
本公开的FSS单元通过改进帯通枝节电感加载位置,优化了60度宽角入射情况下FSS滤波性能稳定性;通过小型化的帯通枝节,及共用相邻单元电容的带阻枝节,实现了FSS单元的小型化设计,使得同等单元尺寸下,FSS结构可集成更多频段,所有带阻/帯通频段均单独可调;基于单层介质基板设计,工艺简单成本低。
本公开属于频率选择表面技术领域,应用于通信领域的多频段设备集成,属于5G A+P集成产品,以及潜在的6G关键技术。具体可以应用于网络通信领域,比如A+P类型的集成通信设备,以及未来更高集成度的设备。
以上所述仅为本公开的示例性实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种频率选择表面单元,包括:
    至少一个第一带通枝节,其中,所述第一带通枝节包括第一金属线和两个第一金属贴片,其中,两个所述第一金属贴片设置间距以形成物理宽度为L的第一电容,L为正数,所述第一金属线与两个所述第一金属贴片连接,形成第一电感,其中,所述第一金属线与两个所述第一金属贴片的连接位置均位于所述第一电容的物理宽度L的L/4至3L/4处;
    介质基板,用于固定所述第一带通枝节。
  2. 根据权利要求1所述的频率选择表面单元,其中,两个所述第一金属贴片固定在所述介质基板的同一面;或两个所述第一金属贴片分别固定在所述介质基板的正反面,所述第一金属线固定在所述介质基板的正反面并通过金属化过孔连接。
  3. 根据权利要求2所述的频率选择表面单元,其中,所述第一金属线包括固定在所述介质基板的正反面的多段金属线,所述多段金属线通过多个金属化过孔连接。
  4. 根据权利要求1所述的频率选择表面单元,其中,所述第一金属贴片的形状为圆形或三角形或矩形或不规则多边形。
  5. 根据权利要求1所述的频率选择表面单元,其中,还包括:
    第二带通枝节,其中,所述第二带通枝节与所述第一带通枝节通过金属线连接,所述第二带通枝节包括两个第二金属贴片和第二金属线,其中,两个所述第二金属贴片分布于介质基板的正反面形成第二电容,所述第二金属线分布于所述介质基板的正反面并通过金属化过孔连接,形成第二电感,其中,所述第二电感与所述第二电容并联。
  6. 根据权利要求5所述的频率选择表面单元,其中,所述第二金属线包括固定在所述介质基板的正反面的多段金属线,所述多段金属线通过多个金属化过孔连接。
  7. 根据权利要求5所述的频率选择表面单元,其中,所述第二金属贴片的形状为圆形或三角形或矩形或不规则多边形。
  8. 根据权利要求1所述的频率选择表面单元,其中,还包括:
    至少一个第一带阻枝节,其中,所述第一带阻枝节与所述第一带通枝节通过金属线连接,所述第一带阻枝节包括两个第三金属贴片和第三金属线,其中,两个所述第三金属贴片分布于介质基板的正反面形成第三电容,所述第三金属线用于连接所述第二带通枝节和所述第一带通枝节形成第三电感。
  9. 根据权利要求8所述的频率选择表面单元,其中,所述第三金属贴片的形状为圆形或三角形或矩形或不规则多边形。
  10. 一种频率选择表面,包括多个如权利要求1-9任一所述的频率选择表面单元。
  11. 根据权利要求10所述的频率选择表面,其中,两个相邻的所述频率选择表面单元共用两个第三金属贴片,以实现相邻的两个所述频率选择表面单元共用第三电容。
  12. 根据权利要求11所述的频率选择表面,其中,所述频率选择表面的斜对角位置上的相邻所述频率选择表面单元之间共用第一带阻枝节的第三电容。
PCT/CN2023/107304 2022-08-24 2023-07-13 频率选择表面 WO2024041260A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211021655.8A CN117673763A (zh) 2022-08-24 2022-08-24 频率选择表面
CN202211021655.8 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024041260A1 true WO2024041260A1 (zh) 2024-02-29

Family

ID=90012417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107304 WO2024041260A1 (zh) 2022-08-24 2023-07-13 频率选择表面

Country Status (2)

Country Link
CN (1) CN117673763A (zh)
WO (1) WO2024041260A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013933A1 (en) * 2002-08-06 2004-02-12 E-Tenna Corporation Low frequency enhanced frequency selective surface technology and applications
CN108832303A (zh) * 2018-06-07 2018-11-16 西安电子科技大学 一种高角度稳定的频率选择表面
CN110718765A (zh) * 2019-10-22 2020-01-21 武汉灵动时代智能技术股份有限公司 一种频率选择表面
CN114824812A (zh) * 2022-04-26 2022-07-29 中国人民解放军国防科技大学 一种基于多层结构的超宽带能量选择表面
CN114843725A (zh) * 2022-05-16 2022-08-02 江苏电子信息职业学院 一种超宽带大角度带阻型频率选择表面

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013933A1 (en) * 2002-08-06 2004-02-12 E-Tenna Corporation Low frequency enhanced frequency selective surface technology and applications
CN108832303A (zh) * 2018-06-07 2018-11-16 西安电子科技大学 一种高角度稳定的频率选择表面
CN110718765A (zh) * 2019-10-22 2020-01-21 武汉灵动时代智能技术股份有限公司 一种频率选择表面
CN114824812A (zh) * 2022-04-26 2022-07-29 中国人民解放军国防科技大学 一种基于多层结构的超宽带能量选择表面
CN114843725A (zh) * 2022-05-16 2022-08-02 江苏电子信息职业学院 一种超宽带大角度带阻型频率选择表面

Also Published As

Publication number Publication date
CN117673763A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN108615976B (zh) 基于雷达罩的双通带/宽阻带可重构频率选择表面
US20210305722A1 (en) Broadband Dual-Polarization Filtering Base Station Antenna Unit, Base Station Antenna Array and Communication Device
US10910721B2 (en) Simple and compact filtering dielectric resonator antenna
US11417950B2 (en) Integrated wave-absorbing and wave-transparent apparatus and radome
JP4918594B2 (ja) メタマテリアル構造に基づくアンテナ
CN108493602A (zh) 一种双极化双工天线及其构成的双频基站天线阵列
CN114421152B (zh) 一种具有高选择特性的小型化可重构频率选择表面及应用
US11183745B2 (en) Tubular in-line filters that are suitable for cellular applications and related methods
CN108183318A (zh) 一种紧凑型双圆极化波导阵列天线及其馈电方法
CN113224518B (zh) 一种结构紧凑的高增益带通双极化滤波贴片天线
CN113410638B (zh) 基于超表面的双极化宽带毫米波滤波天线及通信设备
WO2020135140A1 (zh) 多频天线结构
CN107171042B (zh) 一种频率选择表面结构
WO2024041260A1 (zh) 频率选择表面
CN113346250B (zh) 一种基于多层耦合结构的毫米波三频频率选择表面
CN110880632B (zh) 一种基于基片集成波导腔的宽带宽角频率选择表面
KR102100630B1 (ko) 밀리미터파 안테나 어레이 시스템
Liang et al. Novel wideband frequency selective surface filters with fractal elements
CN108183295B (zh) 基于公度传输线网络的双通带滤波器
CN112701489B (zh) 基于天线-滤波器-天线的带通频率选择表面结构
Xu et al. An ultra wideband FSS operating at Ka band
Lee et al. V-band integrated filter and antenna for LTCC front-end modules
US20230071974A1 (en) Antenna and manufacturing method thereof
CN112768889B (zh) 滤波天线、天线阵列以及无线设备
WO2023159637A1 (zh) 频率选择表面单元、频率选择表面结构、电子设备及天线罩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856350

Country of ref document: EP

Kind code of ref document: A1