WO2024041127A1 - 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器 - Google Patents

气溶胶产生装置及其气溶胶产生制品、发热组件和感受器 Download PDF

Info

Publication number
WO2024041127A1
WO2024041127A1 PCT/CN2023/100875 CN2023100875W WO2024041127A1 WO 2024041127 A1 WO2024041127 A1 WO 2024041127A1 CN 2023100875 W CN2023100875 W CN 2023100875W WO 2024041127 A1 WO2024041127 A1 WO 2024041127A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
layer
sensor
heat
heating
Prior art date
Application number
PCT/CN2023/100875
Other languages
English (en)
French (fr)
Inventor
黄祖富
梁峰
李瑜
胡国勤
Original Assignee
深圳麦时科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦时科技有限公司 filed Critical 深圳麦时科技有限公司
Publication of WO2024041127A1 publication Critical patent/WO2024041127A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications

Definitions

  • the present invention relates to the field of atomization, and in particular, to an aerosol generating device and its aerosol generating products, heating components and sensors.
  • the heating methods of heat-not-burn devices on the market are mainly resistance heating and electromagnetic heating.
  • the arrangement of the heating element of electromagnetic heating appliances is more flexible than the resistance type. Whether it is pin type, chip type, or circumferential type, you need to carry a temperature measurement Lines are used for temperature feedback in order to accurately control the temperature change range of the heating element, but this will reduce the application flexibility of the heating element.
  • a temperature measuring film is printed on the outer surface and then connected to the PCB through leads, so that the temperature of the heating element is reflected through the feedback of the temperature measuring film.
  • this method essentially uses the characteristics of other substances to indirectly reflect the temperature parameters of the heating element, which is mixed with a variety of uncertainties.
  • the heat conduction between the temperature measuring film and the heating element delays the heat exchange, and the temperature measuring film itself There is heat capacity, and part of the energy will naturally be consumed during the transfer process.
  • the molding method and protection method of the temperature measuring film itself will limit the manufacturing shape of the heating element. When these factors are added to the heating element, the fixation of the heating element will change. It is more complicated, increases the structural cost, and the fixed structure also absorbs more energy from the heating element, reducing the efficiency of the heating element.
  • the technical problem to be solved by the present invention is to provide an aerosol generating device with a simple structure and high heating efficiency and its aerosol generating products, heating components and sensors in view of the shortcomings of the existing technology.
  • the technical solution adopted by the present invention to solve the technical problem is to construct a sensor for an aerosol generating device, which includes a heating layer, a thermal conductive layer and a temperature sensing layer.
  • the heating layer is used to generate heat under the action of a changing magnetic field.
  • the thermal conductive layer is disposed between the heating layer and the temperature sensing layer, the thermal conducting layer is used to conduct the heat generated by the heating layer to the temperature sensing layer, and the temperature sensing layer is used to conduct the heat generated by the heating layer to the temperature sensing layer based on the The temperature of the susceptor changes the magnetic permeability.
  • the magnetic permeability of the temperature-sensitive layer changes with changes in temperature.
  • the preset temperature range is greater than or equal to the first temperature value and less than or equal to the second temperature value, and the second temperature value is lower than the Curie point temperature of the material of the temperature-sensitive layer.
  • the magnetic permeability of the temperature-sensitive layer gradually increases as the temperature gradually increases.
  • the magnetic permeability of the temperature-sensitive layer gradually decreases as the temperature gradually increases.
  • the material of the temperature-sensitive layer includes soft magnetic material.
  • the material of the temperature sensing layer includes 1j85 material.
  • the Curie point temperature of the material of the temperature-sensitive layer is lower than 800°C.
  • the material of the heat-generating layer includes a ferromagnetic material, and the Curie point temperature of the material of the heat-generating layer is higher than the Curie point temperature of the material of the temperature-sensitive layer.
  • the material of the heat-generating layer includes non-magnetic material.
  • the material of the thermally conductive layer includes diamagnetic material.
  • the material of the thermal conductive layer includes any one or more of gold, silver, copper and graphene.
  • the shape of the susceptor is a sheet, and the susceptor includes a sheet-shaped first main body part and a first pointed part connected to the top of the first main body part.
  • the heat-generating layer, the heat-conducting layer and the temperature-sensing layer are parallel to each other, and the three are stacked on each other.
  • the thickness ratio of the heat-generating layer, the heat-conducting layer and the temperature-sensing layer is 5:1:4.
  • the receptor is tubular in shape.
  • the shape of the susceptor is cylindrical, and the susceptor includes a cylindrical second main body part and a second pointed part connected to the top of the second main body part.
  • the heat conductive layer and the temperature sensitive layer are at least partially embedded in the heat generating layer, and the heat conductive layer separates the temperature sensitive layer from the heat generating layer.
  • the thickness ratio of the heat-generating layer, the heat-conducting layer and the temperature-sensing layer is 6:1:3.
  • the number of the thermal conductive layers is two or more.
  • the number of the temperature-sensitive layers is two or more.
  • the present invention also constructs a heating component, which includes the above-mentioned sensor and a coil surrounding the sensor for generating a magnetic field.
  • the present invention also constructs an aerosol-generating product, which includes an aerosol-generating substrate and the above-mentioned susceptor, and the susceptor is used to heat the aerosol-generating substrate.
  • the present invention also constructs an aerosol generating device, which includes a power supply component and the above-mentioned heating component or the above-mentioned aerosol-generating product; the power supply component is used to drive the sensor to generate heat.
  • the temperature-sensing layer of the invention changes the magnetic permeability based on the temperature of the sensor, and a layer of high thermal conductivity thermal conductive layer is added between the temperature-sensing layer and the heating layer, and different materials are used to composite the multiple layers.
  • the layer-structured sensor has a simple structure, which simplifies the temperature measurement of the sensor; it has strong corrosion resistance, which is conducive to precise temperature control of the sensor and improves heating efficiency.
  • Figure 1 is a cross-sectional view of an embodiment of the sensor of the present invention.
  • Figure 2 is a cross-sectional view of another embodiment of the sensor of the present invention.
  • Figure 3 is a cross-sectional view of other embodiments of the sensor of the present invention.
  • Figure 4 is a schematic diagram of changes in magnetic permeability and temperature of the material of the sensor of the present invention.
  • Figure 5 is a schematic structural diagram of the first embodiment of the sensor of the present invention.
  • Figure 6 is an exploded view of the structure of the receptor of Figure 5;
  • Figure 7 is a schematic structural diagram of a second embodiment of the sensor of the present invention.
  • Figure 8 is a schematic structural diagram of another embodiment of Figure 7;
  • Figure 9 is a schematic structural diagram of a third embodiment of the sensor of the present invention.
  • FIG. 10 is a schematic structural diagram of another embodiment of FIG. 9 .
  • the basic principle of electromagnetic heating is: changing current passes through the electromagnetic coil to form a changing magnetic field.
  • the changing magnetic field acts on the sensor, and the sensor body generates eddy currents, which are converted into heat.
  • the actual electromagnetic coil body has certain attribute parameters, such as inductance, AC resistance, linear resistance, quality factor and other parameters. When the sensor is placed within the influence range of the electromagnetic coil, these parameters, in addition to the linear resistance, will also follow the sensor when it is placed. It varies with the location, size and material of the sensor, the volume in the affected zone, and the temperature of the affected zone.
  • the magnetic properties of the electromagnetic heating sensor material directly affect the heating temperature rise rate and efficiency of the sensor.
  • the sensor material in the present invention belongs to soft magnetic materials.
  • An important characteristic parameter for describing soft magnetic materials is magnetic permeability. rate, the study found that the characteristic parameter changes of the electromagnetic coil are directly related to the magnetic permeability of the sensor.
  • the magnetic permeability changes with the temperature of the body, so that the temperature change conversion can be established. is the change in magnetic permeability, and then the change in magnetic permeability is converted into a change in the electrical parameters of the coil itself. It is further established that the temperature change is converted into a change in the electrical parameters of the coil itself. It only needs to measure the changes in the electrical parameters of the coil. Through measurement The value of the heating temperature can be calculated, thus forming a complete temperature feedback link, through which the temperature of the sensor can be controlled.
  • stainless steel such as 430 not only has higher heating efficiency, but also has strong corrosion resistance and simple surface protection. Based on the advantages of these two materials that can achieve different goals, consider combining the two materials. For sensors used for temperature measurement, since the two materials are combined together, their thermal conductivity is lower than that of precious metals such as copper and silver.
  • the soft magnetic material used as a temperature sensor does not heat up as fast as 430/410 stainless steel. If it is necessary to characterize the composite After the overall temperature of the sensor is determined, the temperature-sensing material needs to absorb the heat of the heating material. At the same time, the temperature-sensing material needs to be evenly heated so that the temperature-sensing material can better feedback the temperature changes. Based on this, a high layer is added between the temperature-sensing material and the heating material. Thermal conductivity material, the present invention can realize simplified temperature measurement.
  • FIG. 1 shows a sensor 1 of the present invention, which is used in an aerosol generating device.
  • the sensor 1 includes three layers, namely a heating layer 2, a thermal conductive layer 3 and a temperature sensing layer 4.
  • the heating layer 2 is used in a changing magnetic field. Heat is generated under the action of the heat-conducting layer 3.
  • the heat-conducting layer 3 is arranged between the heat-generating layer 2 and the temperature-sensing layer 4, and the heat-generating layer 2 is in contact with the heat-conducting layer 3.
  • the heat-conducting layer 3 is used to conduct the heat generated by the heat-generating layer 2 to the temperature-sensing layer 4.
  • the thermolayer 4 serves to change the magnetic permeability based on the temperature of the susceptor 1 .
  • the sensor 1 has a three-layer superimposed structure. Specifically, the heat-generating layer 2, the heat-conducting layer 3 and the temperature-sensing layer 4 are parallel to each other, and the three are stacked on each other, wherein the heat-generating layer 2
  • the dimensions of layer 2, thermal conductive layer 3 and temperature sensitive layer 4 can be approximately the same to facilitate stacking on each other.
  • the sensor 1 has a three-layer nested structure. The heating layer 2, the thermal conductive layer 3 and the temperature sensing layer 4 are nested in each other.
  • the heating layer 2 is used as the base material and the thermal conductive layer is Layer 3 is embedded in part of the heating layer 2, and the temperature-sensitive layer 4 is embedded in the thermal conductive layer 3.
  • the thermal conductive layer 3 completely separates the temperature-sensitive layer 4 from the heating layer 2. That is equivalent to having a first slot on the heat-generating layer 2, and the heat-conducting layer 3 is embedded in the first slot of the heat-generating layer 2.
  • a second slot is opened on the temperature-sensitive layer 4.
  • the thermal conductive layer 3 separates the temperature sensing layer 4 and the heat generating layer 2.
  • other forms of composite structures may be used between the heat-generating layer 2, the heat-conducting layer 3, and the temperature-sensing layer 4.
  • the temperature-sensing layer 4 can be placed in the middle, and the heat-conducting layer 3 is arranged outside the temperature-sensing layer 4.
  • the temperature-sensing layer 4 can be completely wrapped by the heat-conducting layer 3; and the heat-generating layer 2 is arranged outside the heat-conducting layer 3, and the heat-conducting layer 3 can Completely wrapped by heating layer 2.
  • the size of the thermal conductive layer 3 may be different from the size of the temperature sensitive layer 4 , that is, the thermal conductive layer 3 may only partially cover the surface on one side that is in contact with the temperature sensitive layer 4 .
  • the number of the temperature-sensing layers 4 of the sensor can be two or more, and the number of the heat-conducting layers 3 of the sensor can also be two or more, which are not limited here.
  • the sensor includes two temperature-sensing layers 4, two heat-conducting layers 3 and a heat-generating layer 2.
  • One temperature-sensing layer 4 is wrapped by a heat-conducting layer 3 and is arranged on one side of the heat-generating layer 2.
  • another temperature-sensing layer 4 is wrapped by another heat-conducting layer 3 and is arranged on the other side of the heating layer 2.
  • a certain distance can be separated between two adjacent temperature-sensing layers 4.
  • the magnetic permeability of the temperature-sensitive layer 4 changes as the temperature changes.
  • the preset temperature range may be greater than or equal to the first temperature value and less than or equal to the second temperature value, and the second temperature value is lower than the Curie point temperature of the material of the temperature-sensitive layer 4 .
  • the magnetic permeability of the temperature-sensitive layer 4 changes with the change of temperature. Each magnetic permeability can have a corresponding temperature value. Therefore, the temperature change can be obtained based on the change of magnetic permeability. .
  • the magnetic permeability of the temperature sensing layer 4 may gradually decrease as the temperature gradually increases; in other embodiments, within the preset temperature range, the temperature sensing layer 4 The magnetic permeability of layer 4 can gradually increase as the temperature gradually increases.
  • the material of the temperature-sensitive layer 4 can be functional soft magnetic materials.
  • Soft magnetic materials have a Curie point temperature, and the use range of the aerosol-generating matrix is within 500°C. Different soft magnetic materials can be used. Research has found that for some materials below the Curie temperature point, the magnetic permeability does not change significantly with temperature. It is only when it is close to the Curie point that the change with temperature is obvious; but for some materials below the Curie point temperature, the magnetic permeability changes with temperature. The conductivity gradually decreases as the temperature increases, and this change in parameter characteristics is exactly what is needed for the practical application of the present invention. Generally, the Curie point 100 temperature of the material of the temperature-sensitive layer 4 is lower than 800°C.
  • the Curie point 100 temperature of the material used for the temperature-sensitive layer 4 is around 400°C.
  • the material magnetic permeability of the temperature-sensitive layer 4 has a first temperature change point 101 and a second temperature change point 102, wherein the temperature of the first temperature change point 101 and the second temperature change point The temperatures of 102 are all lower than the Curie point 100 temperature of the material of the temperature sensing layer 4 .
  • the temperature corresponding to the first temperature change point 101 can be selected as the first temperature value, and the temperature corresponding to the second temperature change point 102 can be selected as the second temperature value; when the temperature of the soft magnetic material of the temperature sensitive layer 4 is not Before reaching the first temperature change point 101, the magnetic permeability of the soft magnetic material of the temperature sensitive layer 4 is basically unchanged.
  • the magnetic permeability of the soft magnetic material of the temperature-sensitive layer 4 begins to gradually and regularly decrease as the temperature increases, until the temperature rises to the second temperature change point 102, the magnetic permeability of the soft magnetic material of the temperature-sensitive layer 4 The rate of change begins to decrease until the temperature reaches the Curie point 100 of the soft magnetic material of the temperature-sensitive layer 4 and the magnetic permeability decreases to zero. At this time, the material of the temperature-sensitive layer 4 completely loses its magnetism.
  • the material of the heating layer 2 includes ferromagnetic materials, such as iron or iron alloys.
  • the iron alloy can be grade 410 stainless steel, grade 420 stainless steel or grade 430 stainless steel; wherein grade 430 stainless steel has a Curie temperature exceeding 400°C. temperature of ferromagnetic materials.
  • the Curie point temperature of the material of the heat-generating layer 2 needs to be higher than the Curie point temperature of the material of the temperature-sensitive layer 4 .
  • the material of the heating layer 2 can also be non-magnetic material, such as aluminum.
  • the thermal conductive layer 3 can be made of metal materials with high thermal conductivity, such as gold, silver, copper and other common metals; it can also be made of non-metallic materials with higher thermal conductivity, such as graphene; therefore, the thermal conductive layer 3 Materials include any one or more of gold, silver, copper and graphene.
  • the material of the thermally conductive layer 3 includes diamagnetic materials, so that the thermally conductive layer 3 generates less heat in a changing magnetic field, and the heat received by the temperature-sensitive layer 4 basically comes from the heat-generating layer conducted from the thermally conductive layer 3 2 heat generated.
  • the material of the temperature-sensitive layer 4 may include 1j85 material in some embodiments.
  • 1j85 material also known as 1j85 permalloy, is a nickel-iron magnetic alloy with the characteristics of high magnetic permeability and low coercivity.
  • the shape of the sensor 1 can be sheet-shaped, tubular, columnar, etc., and is not limited here.
  • the present invention also constructs a heating component, which includes the above-mentioned sensor 1 and a coil surrounding the sensor 1 for generating a magnetic field.
  • the heating component may also include a fixed base 5 disposed on the lower part of the sensor 1 , and the fixed base 5 is used to fix the sensor 1 .
  • the present invention also constructs an aerosol-generating product, which includes an aerosol-generating substrate and the above-mentioned susceptor 1. The susceptor 1 is used to heat the aerosol-generating substrate.
  • the present invention also constructs an aerosol-generating device, which includes the above-mentioned heating component or the above-mentioned aerosol-generating product.
  • the power component is used to drive the sensor to generate heat.
  • the power component may include a battery.
  • the aerosol generating device may include a casing, a heating component disposed in the casing, and a battery disposed in the casing and electrically connected to two electrode leads of the heating component.
  • the aerosol generating matrix may be inserted into the casing from the top of the casing. .
  • the upper end of the heating component is inserted into the aerosol-generating matrix, and after being powered on and heated, the aerosol-generating matrix is baked and heated to form an aerosol that can be inhaled by the user.
  • Figure 5 shows the sensor 1 according to the first embodiment of the present invention.
  • the sensor 1 is in the shape of a sheet.
  • the sensor 1 includes a sheet-shaped first main body part 11 and a top end connected to the first main body part 11.
  • the first pointed portion 12 has a rectangular sheet-like structure and the first pointed portion 12 has a triangular sheet-like structure.
  • the length of the base of the first pointed portion 12 is equal to that of the first main portion 11 .
  • the narrow sides have the same length, and the first main body part 11 and the first pointed part 12 can be integrally formed.
  • the sensor 1 is composed of a three-layer superimposed structure.
  • the heating layer 2, the thermal conductive layer 3 and the temperature sensing layer 4 are parallel to each other, and the three are stacked on each other.
  • the thickness ratio between the heat-generating layer 2, the heat-conducting layer 3 and the temperature-sensing layer 4 may be 5:1:4.
  • the total thickness of the sensor 1 is 0.5mm, of which the heating layer 2 accounts for 50%, the temperature sensing layer 4 accounts for 40%, and the thermal conductive layer 3 accounts for 10%.
  • the three layers are parallel to each other. ; Specifically, the heating layer 2 is made of 430 grade stainless steel, the temperature sensing layer 4 is made of 1j85 material, and the thermal conductive layer 3 is made of copper.
  • the senor 1 can be made of a three-layer parallel composite material pressed according to the above dimensions into a sheet-like component with an appearance of 12 mm ⁇ 4 mm, with one end fixed in the aerosol generating device.
  • the other end of the base 5 is symmetrically chamfered to facilitate insertion and guidance of the aerosol-generating matrix.
  • the Curie point of the temperature-sensitive layer 4 material is around 400°C.
  • the sensor 1 is placed in the induction center of the electromagnetic coil.
  • the coil After inserting the aerosol-generating matrix, the coil is connected to a high-frequency current; when the temperature of the sensor 1 reaches the first temperature change point The temperature of 101, the temperature of the first temperature change point 101 is 150 degrees Celsius, the magnetic permeability of the temperature-sensitive layer 4 begins to gradually and regularly decrease, causing the electrical parameters of the coil to change; the electrical parameters are captured and carried out through the circuit
  • the current temperature value of sensor 1 can be inferred.
  • the alternating current has certain characteristics, and the temperature value of the sensor 1 can be detected in real time based on this characteristic.
  • the target temperature of the sensor 1 is around 300°C, because this target temperature is smaller than the second temperature of the material.
  • the temperature of the temperature change point 102 for example, the temperature of the second temperature change point 102 is 380°C. Therefore, it can be ensured that when the sensor 1 is heated from the first temperature change point 101 to the target temperature of 300°C, the temperature and magnetic permeability of the sensor 1 The relationship between them changes regularly, and there is a one-to-one correspondence between temperature and magnetic permeability. Therefore, the magnetic permeability of the material of the temperature sensing layer 4 changes regularly with the temperature, and the temperature value corresponding to each magnetic permeability within this temperature range can be achieved, and the temperature control accuracy can be achieved within 1°C.
  • FIG 7 shows a sensor 1 according to a second embodiment of the present invention.
  • the sensor 1 may be in the shape of a hollow tube.
  • the sensor 1 is composed of a three-layer nested structure, that is, the heat-generating layer 2, the heat-conducting layer 3 and the temperature-sensitive layer 4 are nested in each other, and the heat-conducting layer 3 and the temperature-sensitive layer 4 are at least partially embedded in the heat-generating layer 2.
  • the thermal conductive layer 3 separates the temperature sensing layer 4 and the heat generating layer 2 .
  • the number of the temperature-sensing layers of the sensor can be two or more, and the number of the heat-conducting layers can also be two or more, which are not limited here.
  • the sensor is rolled from the three-layer nested composite material shown in Figure 3, which includes two temperature-sensing layers 4, two thermal conductive layers 3 and a heating layer 2.
  • the thickness ratio between the heat-generating layer 2, the thermal conductive layer 3 and the temperature-sensing layer 4 may be 6:1:3.
  • the total thickness of the sensor 1 is 0.5mm, of which the heating layer 2 accounts for 60%, the temperature-sensitive layer 4 accounts for 30%, and the thermal conductive layer 3 accounts for 10%; specifically, the heating layer 2 is made of 430 grade stainless steel , The temperature sensing layer 4 is made of 1j85 material, and the thermal conductive layer 3 is made of copper.
  • the sensor 1 can be rolled into a tubular component with a diameter of 7mm and a length of 12mm using a three-layer nested composite material pressed in the above manner, with one end fixed to the guide. , to facilitate the insertion and guidance of the aerosol-generating matrix.
  • the Curie point of the temperature-sensing layer 4 material is around 400°C.
  • the sensor 1 is placed in the induction center of the electromagnetic coil. After inserting the aerosol-generating matrix, the coil is connected to a high-frequency current; when the sensor The temperature of 1 reaches the temperature of the first temperature change point 101, and the temperature of the first temperature change point 101 is 150 degrees Celsius.
  • the magnetic permeability of the temperature sensing layer 4 begins to gradually decrease regularly, causing the electrical parameters of the coil to change.
  • the current temperature value of sensor 1 can be inferred.
  • the alternating current has certain characteristics, and the temperature value of the sensor 1 can be detected in real time based on this characteristic.
  • the target temperature of the sensor 1 is around 300°C, because this target temperature is smaller than the second temperature of the material.
  • the temperature of the temperature change point 102 for example, the temperature of the second temperature change point 102 is 380°C.
  • the temperature and magnetic permeability of the sensor 1 changes regularly, and there is a one-to-one correspondence between temperature and magnetic permeability. Therefore, the magnetic permeability of the temperature-sensitive layer 4 material changes regularly with temperature, and the temperature control accuracy is within 1°C.
  • Figure 9 shows a sensor 1 according to the third embodiment of the present invention.
  • the shape of the sensor 1 can be a columnar shape with a hollow interior, roughly like a needle sensor 1.
  • the sensor 1 includes a columnar second main body part 13 and a second main body part 13 connected to the second body part.
  • the second main body part 13 has a cylindrical structure
  • the second pointed part 14 has a conical structure.
  • the bottom surface area of the second pointed part 14 is the same as the top area of the second main body part 13, and the second main body part 13 and the second pointed portion 14 may be integrally formed.
  • the shape of the sensor 1 can also be rectangular, rod-shaped or other shapes, which are not limited here.
  • the sensor 1 can be composed of a three-layer nested structure.
  • the heat-generating layer 2, the heat-conducting layer 3 and the temperature-sensing layer 4 are nested in each other.
  • the heat-conducting layer 3 and the temperature-sensing layer 4 are at least partially embedded in the heat-generating layer.
  • Layer 2, the thermal conductive layer 3 separates the temperature sensing layer 4 and the heat generating layer 2.
  • the number of the temperature-sensing layers of the sensor can be two or more, and the number of the heat-conducting layers can also be two or more, which are not limited here.
  • the sensor is rolled from the three-layer nested composite material shown in Figure 3 including two temperature-sensing layers 4, two thermal conductive layers 3 and a heating layer 2.
  • the ratio of the thicknesses of the heat-generating layer 2, the heat-conducting layer 3 and the temperature-sensing layer 4 may be 6:1:3.
  • the total thickness of the sensor 1 is 0.5mm, of which the heating layer 2 accounts for 60%, the temperature-sensitive layer 4 accounts for 30%, and the thermal conductive layer 3 accounts for 10%; specifically, the heating layer 2 is made of 430 grade stainless steel , The temperature sensing layer 4 is made of 1j85 material, and the thermal conductive layer 3 is made of copper.
  • the senor 1 can be rolled into a needle component with a diameter of 2mm and a length of 12mm using a three-layer nested composite material pressed in the above manner, with one end fixed on the fixed base of the aerosol generating device. 5. The other end is chamfered to facilitate the insertion and guidance of the aerosol-generated matrix.
  • the Curie point of this material is around 400°C.
  • the sensor 1 is placed in the induction center of the electromagnetic coil. After inserting the aerosol-generating matrix, the coil is connected to a high-frequency current.
  • the temperature of the first temperature change point 101 is 150 degrees Celsius, and the magnetic permeability of the temperature-sensitive layer 4 begins to gradually and regularly decrease, causing the electrical parameters of the coil to change, and the electrical parameters are captured and data processed through the circuit. If matched, the current temperature value of sensor 1 can be inferred.
  • the alternating current has certain characteristics, and the temperature value of the sensor 1 can be detected in real time based on this characteristic.
  • the target temperature of the sensor 1 is around 300°C, because this target temperature is smaller than the second temperature of the material.
  • the temperature of the temperature change point 102 for example, the temperature of the second temperature change point 102 is 380°C.
  • the temperature and magnetic permeability of the sensor 1 changes regularly, and there is a one-to-one correspondence between temperature and magnetic permeability. Therefore, the magnetic permeability of the temperature-sensitive layer 4 material changes regularly with temperature, and the temperature control accuracy is within 1°C.
  • the sensor of the present invention adds a layer of high thermal conductivity thermal conductivity layer between the temperature sensing layer and the heating layer, and uses different materials to form a sensor with a multi-layer structure.
  • the soft magnetic material and the ferromagnetic material are combined together, and the structure is simple. , simplifying the temperature measurement of the sensor; and compared with single-material soft magnetic functional material sensors, manufacturing costs are saved.
  • 430 and other stainless steels compared with soft magnetic materials within the temperature control range, 430 and other stainless steels not only have higher heating efficiency, but also are corrosion-resistant. It has strong capabilities and simple surface protection, which is conducive to precise temperature control of the sensor and improves heating efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Resistance Heating (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及一种气溶胶产生装置及其气溶胶产生制品、发热组件和感受器,该感受器包括发热层、导热层和感温层,发热层用于在变化的磁场作用下产生热量,导热层设置在发热层与感温层之间,导热层用于向感温层传导发热层产生的热量,感温层用于基于感受器的温度改变磁导率。该发热组件包括感受器及围绕于感受器外的线圈。该气溶胶产生制品包括气溶胶产生基质及感受器。该气溶胶产生装置包括电源组件及发热组件或气溶胶产生制品。本发明的感温层基于感受器的温度改变磁导率,且在感温层与发热层之间增加导热层,分别采用不同材料复合成多层结构的感受器,其结构简单,简化感受器的测温;耐腐蚀能力强,有利于实现感受器的精准控温,提高发热效率。

Description

气溶胶产生装置及其气溶胶产生制品、发热组件和感受器 技术领域
本发明涉及雾化领域,尤其涉及一种气溶胶产生装置及其气溶胶产生制品、发热组件和感受器。
背景技术
目前市场上加热不燃烧装置的加热方式主要是电阻式加热和电磁式加热,其中电磁加热器具发热体布置方式较电阻式更加灵活,不管是针式、片式、周圈,都需要携带测温线来进行温度的反馈,以便于精准控制发热体的温度变化范围,但这样就会降低了发热体应用灵活性。
对于电磁加热,采用针式或片式及周圈式发热体的方式,常规都是采取在外表面印测温膜,再通过引线连接到PCB,从而通过测温膜的反馈来反映发热体的温度,这种方式本质上是借用其他物质的特性来间接反映发热体的温度参数,其中就夹杂着多种不可确定性,比如测温膜与发热体之间的热传导延迟热量交换,本身测温膜存在热容,传递过程中自然会消耗一部分能量,同时测温膜本身的工艺成型方式和保护方式都会局限发热体的制造形状,针对这些因素增加在发热体上,对发热体的固定就会变得更加复杂,增加了结构成本的同时固定结构也吸收发热体较多的能量,降低了发热体的效率。
发明内容
本发明要解决的技术问题在于,针对现有技术的缺陷,提供一种结构简单,发热效率高的气溶胶产生装置及其气溶胶产生制品、发热组件和感受器。
本发明解决其技术问题所采用的技术方案是:构造一种感受器,用于气溶胶产生装置,包括发热层、导热层和感温层,所述发热层用于在变化的磁场作用下产生热量,所述导热层设置在所述发热层与所述感温层之间,所述导热层用于向所述感温层传导所述发热层产生的热量,所述感温层用于基于所述感受器的温度改变磁导率。
优选地,在预设温度范围内,所述感温层的磁导率随着温度的变化而变化。
优选地,所述预设温度范围为大于或等于第一温度值且小于或等于第二温度值,且所述第二温度值低于所述感温层的材料的居里点温度。
优选地,在所述预设温度范围内,所述感温层的磁导率随着温度的逐渐升高而逐渐增大。
优选地,在所述预设温度范围内,所述感温层的磁导率随着温度的逐渐升高而逐渐减小。
优选地,所述感温层的材料包括软磁性材料。
优选地,所述感温层的材料包括1j85材料。
优选地,所述感温层的材料的居里点温度低于800℃。
优选地,所述发热层的材料包括铁磁性材料,所述发热层的材料的居里点温度高于所述感温层的材料的居里点温度。
优选地,所述发热层的材料包括非磁性材料。
优选地,所述导热层的材料包括抗磁性材料。
优选地,所述导热层的材料包括金、银、铜和石墨烯中的任意一种或多种。
优选地,所述感受器的形状为片状,所述感受器包括片状的第一主体部以及连接于所述第一主体部顶端的第一尖头部。
优选地,所述发热层、所述导热层和所述感温层之间相互平行,且三者相互层叠。
优选地,所述发热层、所述导热层和所述感温层三者的厚度占比为5:1:4。
优选地,所述感受器的形状为管状。
优选地,所述感受器的形状为柱状,所述感受器包括圆柱状的第二主体部以及连接于所述第二主体部顶端的第二尖头部。
优选地,所述导热层和所述感温层至少部分嵌入所述发热层,所述导热层将所述感温层与所述发热层间隔开。
优选地,所述发热层、所述导热层和所述感温层三者的厚度占比为6:1:3。
优选地,所述导热层的设置数量为两个或两个以上。
优选地,所述感温层的设置数量为两个或两个以上。
本发明还构造了一种发热组件,包括上述的感受器及围绕于所述感受器外用于产生磁场的线圈。
本发明还构造了一种气溶胶产生制品,包括气溶胶产生基质及上述的感受器,所述感受器用于加热所述气溶胶产生基质。
本发明还构造了一种气溶胶产生装置,包括电源组件及上述的发热组件或上述的气溶胶产生制品;所述电源组件用于驱动所述感受器产生热量。
实施本发明具有以下有益效果:本发明的感温层基于感受器的温度改变磁导率,且在感温层与发热层之间增加一层高导热率的导热层,分别采用不同材料复合成多层结构的感受器,其结构简单,简化感受器的测温;耐腐蚀能力强,有利于实现感受器的精准控温,提高发热效率。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明的感受器一种实施例的截面图;
图2是本发明的感受器另一种实施例的截面图;
图3是本发明的感受器另一些实施例的截面图;
图4是本发明的感受器的材料的磁导率与温度的变化示意图;
图5是本发明的感受器第一实施例的结构示意图;
图6是图5的感受器的结构爆炸图;
图7是本发明的感受器第二实施例的结构示意图;
图8是图7另一种实施例的结构示意图;
图9是本发明的感受器第三实施例的结构示意图;
图10是图9另一种实施例的结构示意图。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。以下描述中,需要理解的是,“前”、“后”、“上”、“下”、“左”、“右”、“纵”、“横”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“头”、“尾”等指示的方位或位置关系为基于附图所示的方位或位置关系、以特定的方位构造和操作,仅是为了便于描述本技术方案,而不是指示所指的装置或元件必须具有特定的方位,因此不能理解为对本发明的限制。
还需要说明的是,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”、“设置”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。当一个元件被称为在另一元件“上”或“下”时,该元件能够“直接地”或“间接地”位于另一元件之上,或者也可能存在一个或更多个居间元件。术语“第一”、“第二”、“第三”等仅是为了便于描述本技术方案,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此,限定有“第一”、“第二”、“第三”等的特征可以明示或者隐含地包括一个或者更多个该特征。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
需要说明的是,本发明针对电磁加热存在的问题症结,主要还是在感受器本身。
电磁加热的基本原理是:变化的电流通过电磁线圈形成变化的磁场,变化的磁场作用在感受器,感受器本体产生涡电流,涡电流转化为热量。实际电磁线圈本体是具备一定的属性参数的,比如电感量,交流电阻,直线电阻,品质因数等参数,在感受器置于电磁线圈影响范围内,这些参数除了直线电阻外,都会随着感受器置于的位置、感受器的尺寸、材料、处于影响区的体积、影响区的温度而变化。
电磁加热感受器材料的磁性能直接影响到感受器的发热温升速率及效率,而对于磁性能较好的金属,本发明中的感受器材料属于软磁材料,对于描述软磁材料重要特性参数就是磁导率,研究发现对于电磁线圈的特性参数变化与感受器磁导率有直接关系。
对于一般感受器,制约其灵活运用及配置的重要因素就是需要借助外部测温来辅助,而对于有些软磁材料的磁导率随着本体的温度变化而变化,这样就可以建立起来温度的变化转化为磁导率的变化,再通过磁导率的变化转化为线圈本身电参数的变化,进一步从而建立起来温度变化转化为线圈本身电参数的变化,只需要对线圈电参数变化的测量,通过测量值就可以推算出发热的温度值,从而形成一个完整的温度反馈链路,通过这个链路就可以对感受器进行控温。
对于在控温范围内的软磁材料,430等不锈钢不仅发热效率更高,而且耐腐蚀能力强,表面防护简单,基于这两种可以实现不同目标的优点,考虑把该两种材料进行复合形成用于测温的感受器,鉴于两种材料复合在一起,他们的导热系数相对铜、银等贵金属偏低,作为感温的那部分软磁材料升温速度没有430/410不锈钢快,如果需要表征复合后的感受器整体温度,感温材料需要吸收发热材料的热量,同时需要整体均热后,感温材料才能更好的反馈温度变化,基于此,在感温材料与发热材料之间增加一层高导热率材料,本发明可实现简化测温。
图1示出本发明的一种感受器1,用于气溶胶产生装置,该感受器1包括三层,分别为发热层2、导热层3和感温层4,发热层2用于在变化的磁场作用下产生热量,导热层3设置在发热层2和感温层4之间,且发热层2与导热层3接触,导热层3用于向感温层4传导发热层2产生的热量,感温层4用于基于感受器1的温度改变磁导率。
如图1所示,在一些实施例中,该感受器1为三层叠加结构,具体地,发热层2、导热层3和感温层4之间相互平行,且三者相互层叠,其中,发热层2、导热层3和感温层4三者的尺寸可以大致相同,以方便相互层叠。如图2所示,在另一些实施例中,该感受器1为三层嵌套结构,发热层2、导热层3和感温层4三者相互嵌套,以发热层2为基材,导热层3内嵌在发热层2的局部,同时感温层4内嵌入导热层3,导热层3把感温层4与发热层2完全隔开。即相当于在发热层2上开设有第一开槽,导热层3内嵌在发热层2的第一开槽中,同时,感温层4上开设有第二开槽,感温层4内嵌入导热层3的第二开槽中,第一开槽直径大于第二开槽直径,最终导热层3将感温层4与发热层2间隔开。
在一些实施例中,发热层2、导热层3和感温层4之间还可以为其它形式的复合结构。可以将感温层4设于最中间,感温层4外设有导热层3,感温层4可以完全被导热层3包裹住;而导热层3外设有发热层2,导热层3可以完全被发热层2包裹住。在另一些实施例中,导热层3的尺寸可以不同于感温层4的尺寸,即导热层3可以仅部分覆盖于与感温层4接触一侧表面。
在一些实施例中,该感受器的感温层4的布置数量可以为两个或两个以上,其导热层3的布置数量也可以为两个或两个以上,在此不作限制。如图3所示,该感受器包括有两个感温层4、两个导热层3和一个发热层2,其中一个感温层4被一个导热层3包裹后设置在发热层2的一侧上,另一个感温层4被另一个导热层3包裹后设置在发热层2的另一侧上,相邻两个感温层4之间可以间隔一定距离。
在预设温度范围内,该感温层4的磁导率随着温度的变化而变化,通过建立同一种材料温度变化特性与磁导率变化的关系,两者之间的关系可以是线性的,也可以是非线性的。其中,预设温度范围可以为大于或等于第一温度值且小于或等于第二温度值,且第二温度值低于感温层4的材料的居里点温度。在该预设温度范围内,感温层4的磁导率随温度的变化而变化,每个磁导率可以有与其对应的一个温度值,因此可根据磁导率的变化得出温度的变化。
在一些实施例中,在预设温度范围内,感温层4的磁导率可以随着温度的逐渐升高而逐渐减小;在另一些实施例中,在预设温度范围内,感温层4的磁导率可以随着温度的逐渐升高而逐渐增大。
感温层4的材料在一些实施例中可以采用功能软磁性材料,对于软磁材料都有一个居里点温度,而对于气溶胶产生基质的使用范围在500℃以内,通过不同的软磁材料研究发现,一些材料在居里温度点以下,磁导率随着温度变化并不明显,只有在接近居里点,随着温度变化才明显;但有一些材料在居里点温度以下,其磁导率随着温度的上升逐步下降,而这种参数特性变化正好是本发明实际应用需要的。一般情况下,该感温层4的材料的居里点100温度低于800℃,优选地,最好所采用的感温层4材料的居里点100温度在400℃左右。如图4所示,具体地,该感温层4的材料磁导率具备第一温变点101和第二温变点102,其中,第一温变点101的温度和第二温变点102的温度均低于感温层4的材料的居里点100温度。可选取第一温变点101的所对应的温度作为第一温度值,可选取第二温变点102的所对应的温度作为第二温度值;在该感温层4的软磁材料温度未达到第一温变点101之前,感温层4的软磁材料的磁导率基本不变,当感温层4的软磁材料温度达到第一温变点101且温度在不断上升的过程中,感温层4的软磁材料的磁导率开始随着温度升高逐步有规律的减小,直到温度升高到第二温变点102,感温层4的软磁材料的磁导率开始减小了变化率,直到温度达到该感温层4的软磁材料的居里点100,磁导率减小到零,此时该感温层4材料彻底失去磁性。
在一些实施例中,发热层2的材料包括铁磁性材料,例如铁或铁合金,该铁合金可以为410级不锈钢、420级不锈钢或430级不锈钢;其中,430级不锈钢是具有超过400℃的居里温度的铁磁材料。当发热层2的材料为铁磁性材料时,发热层2的材料的居里点温度需要高于感温层4的材料的居里点温度。具体地,发热层2的材料也可以采用非磁性材料,例如铝。
导热层3在一些实施例中可采用导热系数高的金属材料,例如金、银、铜等常见金属;也可以采用导热系数更高的非金属材料,例如石墨烯等;因此,导热层3的材料包括金、银、铜和石墨烯中的任意一种或多种。在一些实施例中,导热层3的材料包括抗磁性材料,以使得导热层3在变化的磁场中产生的热量较少,感温层4接受的热量基本来源于从导热层3传导的发热层2产生的热量。
感温层4的材料在一些实施例中可包括1j85材料。1j85材料又称1j85坡莫合金,是一种镍铁磁性合金,具备高磁导率和低矫顽力的特点。
该感受器1的形状可以为片状、管状、柱状等,在此不作限制。
本发明还构造了一种发热组件,包括上述感受器1及围绕于感受器1外用于产生磁场的线圈。在一些实施例中,发热组件还可以包括设置感受器1下部的固定基座5,固定基座5用于固定感受器1。本发明还构造了一种气溶胶产生制品,包括气溶胶产生基质及上述的感受器1,感受器1用于加热气溶胶产生基质。
本发明还构造了一种气溶胶产生装置,包括上述的发热组件或上述的气溶胶产生制品,电源组件用于驱动感受器产生热量,电源组件可包括电池。该气溶胶产生装置可包括壳体、设置于壳体内的发热组件以及设置于壳体内并与发热组件两电极引线电性连接的电池,气溶胶产生基质可从壳体的顶部插入到壳体中。发热组件的上端插入到气溶胶产生基质中,在通电升温后对气溶胶产生基质进行烘烤加热,形成可供用户抽吸的气雾。
图5示出本发明第一实施例的感受器1,在该实施例中,感受器1的形状为片状,感受器1包括片状的第一主体部11以及连接于该第一主体部11顶端的第一尖头部12,其中,第一主体部11呈长方形片状结构,第一尖头部12呈三角形片状结构,该第一尖头部12的底边长度与第一主体部11的窄边长度一样,且第一主体部11和第一尖头部12可以为一体成型。如图6所示,在该实施例中,感受器1由三层叠加结构组成,发热层2、导热层3和感温层4之间相互平行,且三者相互层叠。
在该实施例中,发热层2、导热层3和感温层4三者之间的厚度占比可以为5: 1: 4。在一个实施例中,感受器1总厚度为0.5mm,其中发热层2占比50%,感温层4占比40%,导热层3占比10%,成型之后三层之间是相互平行的;具体地,发热层2采用430级不锈钢,感温层4采用1j85材料,导热层3采用铜。
根据电磁环境对感受器1趋肤效应的要求,感受器1可采用按上述尺寸压制而成的三层平行复合材料制作成外形12mm×4mm的薄片式部件,其一端固定在气溶胶产生装置中的固定基座5,另一端对称倒角,便于气溶胶产生基质插入导向。感温层4材料的居里点在400℃左右,该感受器1置于电磁线圈感应中心,插入气溶胶产生基质之后,给线圈接通高频电流;当感受器1的温度达到第一温变点101的温度,第一温变点101的温度为150摄氏度,感温层4的磁导率开始逐步有规律减小,从而引起线圈的电参数随着变化;通过电路对电参数的捕捉以及进行数据处理匹配,就可以推测出当前感受器1的温度值。利用交变电流具备一定的特性,可以依据这一特性实时探测感受器1的温度值,通常在加热气溶胶基质时,感受器1的目标温度在300℃左右,由于这个目标温度小于该材料的第二温变点102的温度,例如第二温变点102的温度为380℃,因此可以确保感受器1从第一温变点101加热到目标温度300℃的过程中,感受器1的温度与磁导率之间的关系有规律地变化,且温度与磁导率一一对应。因此感温层4材料的磁导率是随温度有规律的变化的,就能够实现在这个温度范围内每个磁导率对应的温度值,且控温精度实现1℃以内。
图7示出本发明第二实施例的感受器1,感受器1的形状可以为中空的管状。在该实施例中,感受器1由三层嵌套结构组成,即发热层2、导热层3和感温层4三者相互嵌套,导热层3和感温层4至少部分嵌入发热层2,导热层3将感温层4与发热层2间隔开。在一些实施例中,该感受器的感温层的布置数量可以为两个或两个以上,其导热层的布置数量也可以为两个或两个以上,在此不作限制。如图8所示,该感受器由图3所示的包括有两个感温层4、两个导热层3和一个发热层2的三层嵌套复合材料卷制而成。
在该实施例中,发热层2、导热层3和感温层4三者之间的厚度占比可以为6:1:3。在一个实施例中,感受器1总厚度为0.5mm,其中发热层2占比60%,感温层4占比30%,导热层3占比10%;具体地,发热层2采用430级不锈钢,感温层4采用1j85材料,导热层3采用铜。
根据电磁环境对感受器1趋肤效应的要求,感受器1可采用按上述方式压制而成的三层嵌套复合材料卷制成直径为7mm,长为12mm的管式部件,其一端固定在导向件,便于气溶胶产生基质插入导向,感温层4材料的居里点在400℃左右,该感受器1置于电磁线圈感应中心,插入气溶胶产生基质之后,给线圈接通高频电流;当感受器1的温度达到第一温变点101的温度,第一温变点101的温度为150摄氏度,感温层4的磁导率开始逐步有规律减小,从而引起线圈的电参数随着变化,通过电路对电参数的捕捉以及进行数据处理匹配,就可以推测出当前感受器1的温度值。利用交变电流具备一定的特性,可以依据这一特性实时探测感受器1的温度值,通常在加热气溶胶基质时,感受器1的目标温度在300℃左右,由于这个目标温度小于该材料的第二温变点102的温度,例如第二温变点102的温度为380℃,因此可以确保感受器1从第一温变点101加热到目标温度300℃的过程中,感受器1的温度与磁导率之间的关系有规律地变化,且温度与磁导率一一对应。因此感温层4材料的磁导率是随温度有规律的变化的,且控温精度实现1℃以内。
图9示出本发明第三实施例的感受器1,感受器1的形状可以是内部空心的柱状,大致呈针式感受器1,感受器1包括柱状的第二主体部13以及连接于第二主体部13顶端的第二尖头部14。其中,第二主体部13呈圆柱状结构,第二尖头部14呈圆锥状结构,该第二尖头部14的底面面积与第二主体部13的顶部面积一样,且第二主体部13和第二尖头部14可以为一体成型。可理解地,感受器1的形状也可以为长方体状、杆状等其他形状,在此不作限制。具体地,在该实施例中,感受器1可以由三层嵌套结构组成,发热层2、导热层3和感温层4三者相互嵌套,导热层3和感温层4至少部分嵌入发热层2,导热层3将感温层4与发热层2间隔开。在一些实施例中,该感受器的感温层的布置数量可以为两个或两个以上,其导热层的布置数量也可以为两个或两个以上,在此不作限制。如图10所示,该感受器由图3所示的包括有两个感温层4、两个导热层3和一个发热层2的三层嵌套复合材料卷制而成。
在该实施例中,发热层2、导热层3和感温层4三者之间厚度的占比可以为6: 1: 3。在一个实施例中,感受器1总厚度为0.5mm,其中发热层2占比60%,感温层4占比30%,导热层3占比10%;具体地,发热层2采用430级不锈钢,感温层4采用1j85材料,导热层3采用铜。
根据针式感受器设计要求,感受器1可采用按上述方式压制而成的三层嵌套复合材料卷制成直径为2mm,长为12mm的针式部件,其一端固定在气溶胶产生装置固定基座5,另一端倒斜角,便于气溶胶产生基质插入导向。这种材料的居里点在400℃左右,该感受器1置于电磁线圈感应中心,插入气溶胶产生基质之后,给线圈接通高频电流,当感受器1的温度达到第一温变点101的温度,第一温变点101的温度为150摄氏度,感温层4的磁导率开始逐步有规律减小,从而引起线圈的电参数随着变化,通过电路对电参数的捕捉以及进行数据处理匹配,就可以推测出当前感受器1的温度值。利用交变电流具备一定的特性,可以依据这一特性实时探测感受器1的温度值,通常在加热气溶胶基质时,感受器1的目标温度在300℃左右,由于这个目标温度小于该材料的第二温变点102的温度,例如第二温变点102的温度为380℃,因此可以确保感受器1从第一温变点101加热到目标温度300℃的过程中,感受器1的温度与磁导率之间的关系有规律地变化,且温度与磁导率一一对应。因此感温层4材料的磁导率是随温度有规律的变化的,且控温精度实现1℃以内。
本发明的感受器在感温层与发热层之间增加一层高导热率的导热层,并分别采用不同材料复合成多层结构的感受器,将软磁性材料和铁磁性材料复合一起,其结构简单,简化感受器的测温;而且相对于单材料软磁功能性材料的感受器,节省了制造成本,同时相对于在控温范围内的软磁材料,430等不锈钢不仅发热效率更高,而且耐腐蚀能力强,表面防护简单,有利于实现感受器的精准控温,提高发热效率。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。

Claims (24)

  1. 一种感受器,用于气溶胶产生装置,其特征在于,包括发热层(2)、导热层(3)和感温层(4),所述发热层(2)用于在变化的磁场作用下产生热量,所述导热层(3)设置在所述发热层(2)与所述感温层(4)之间,所述导热层(3)用于向所述感温层(4)传导所述发热层(2)产生的热量,所述感温层(4)用于基于所述感受器的温度改变磁导率。
  2. 根据权利要求1所述的感受器,其特征在于,在预设温度范围内,所述感温层(4)的磁导率随着温度的变化而变化。
  3. 根据权利要求2所述的感受器,其特征在于,所述预设温度范围为大于或等于第一温度值且小于或等于第二温度值,且所述第二温度值低于所述感温层(4)的材料的居里点温度。
  4. 根据权利要求3所述的感受器,其特征在于,在所述预设温度范围内,所述感温层(4)的磁导率随着温度的逐渐升高而逐渐增大。
  5. 根据权利要求3所述的感受器,其特征在于,在所述预设温度范围内,所述感温层(4)的磁导率随着温度的逐渐升高而逐渐减小。
  6. 根据权利要求2所述的感受器,其特征在于,所述感温层(4)的材料包括软磁性材料。
  7. 根据权利要求6所述的感受器,其特征在于,所述感温层(4)的材料包括1j85材料。
  8. 根据权利要求1所述的感受器,其特征在于,所述感温层(4)的材料的居里点温度低于800℃。
  9. 根据权利要求1所述的感受器,其特征在于,所述发热层(2)的材料包括铁磁性材料,所述发热层(2)的材料的居里点温度高于所述感温层(4)的材料的居里点温度。
  10. 根据权利要求1所述的感受器,其特征在于,所述发热层(2)的材料包括非磁性材料。
  11. 根据权利要求1所述的感受器,其特征在于,所述导热层(3)的材料包括抗磁性材料。
  12. 根据权利要求11所述的感受器,其特征在于,所述导热层(3)的材料包括金、银、铜和石墨烯中的任意一种或多种。
  13. 根据权利要求1所述的感受器,其特征在于,所述感受器(1)的形状为片状,所述感受器(1)包括片状的第一主体部(11)以及连接于所述第一主体部(11)顶端的第一尖头部(12)。
  14. 根据权利要求13所述的感受器,其特征在于,所述发热层(2)、所述导热层(3)和所述感温层(4)之间相互平行,且三者相互层叠。
  15. 根据权利要求14所述的感受器,其特征在于,所述发热层(2)、所述导热层(3)和所述感温层(4)三者的厚度占比为5:1:4。
  16. 根据权利要求1所述的感受器,其特征在于,所述感受器(1)的形状为管状。
  17. 根据权利要求1所述的感受器,其特征在于,所述感受器(1)的形状为柱状,所述感受器(1)包括圆柱状的第二主体部(13)以及连接于所述第二主体部(13)顶端的第二尖头部(14)。
  18. 根据权利要求16或17所述的感受器,其特征在于,所述导热层(3)和所述感温层(4)至少部分嵌入所述发热层(2),所述导热层(3)将所述感温层(4)与所述发热层(2)间隔开。
  19. 根据权利要求18所述的感受器,其特征在于,所述发热层(2)、所述导热层(3)和所述感温层(4)三者的厚度占比为6:1:3。
  20. 根据权利要求18所述的感受器,其特征在于,所述导热层(3)的设置数量为两个或两个以上。
  21. 根据权利要求18所述的感受器,其特征在于,所述感温层(4)的设置数量为两个或两个以上。
  22. 一种发热组件,其特征在于,包括权利要求1至21任一项所述的感受器(1)及围绕于所述感受器(1)外用于产生磁场的线圈。
  23. 一种气溶胶产生制品,其特征在于,包括气溶胶产生基质,及权利要求1至21任意一项所述的感受器(1),所述感受器(1)用于加热所述气溶胶产生基质。
  24. 一种气溶胶产生装置,其特征在于,包括电源组件;及权利要求22所述的发热组件或权利要求23所述的气溶胶产生制品;所述电源组件用于驱动所述感受器(1)产生热量。
PCT/CN2023/100875 2022-08-26 2023-06-16 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器 WO2024041127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211035361.0 2022-08-26
CN202211035361.0A CN117652725A (zh) 2022-08-26 2022-08-26 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器

Publications (1)

Publication Number Publication Date
WO2024041127A1 true WO2024041127A1 (zh) 2024-02-29

Family

ID=90012351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100875 WO2024041127A1 (zh) 2022-08-26 2023-06-16 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器

Country Status (2)

Country Link
CN (1) CN117652725A (zh)
WO (1) WO2024041127A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105407750A (zh) * 2014-05-21 2016-03-16 菲利普莫里斯生产公司 具有多材料感受器的成烟制品
WO2018178217A1 (en) * 2017-03-31 2018-10-04 Philip Morris Products S.A. Susceptor assembly for inductively heating an aerosol-forming substrate
CN111109658A (zh) * 2014-05-21 2020-05-08 菲利普莫里斯生产公司 电加热气溶胶生成系统
CN112806618A (zh) * 2019-10-31 2021-05-18 深圳市合元科技有限公司 气雾生成装置及控制方法
CN216568393U (zh) * 2021-11-10 2022-05-24 深圳市卓力能技术有限公司 发热元件、发热组件及气溶胶发生装置
CN218551343U (zh) * 2022-08-26 2023-03-03 深圳麦时科技有限公司 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105407750A (zh) * 2014-05-21 2016-03-16 菲利普莫里斯生产公司 具有多材料感受器的成烟制品
CN111109658A (zh) * 2014-05-21 2020-05-08 菲利普莫里斯生产公司 电加热气溶胶生成系统
WO2018178217A1 (en) * 2017-03-31 2018-10-04 Philip Morris Products S.A. Susceptor assembly for inductively heating an aerosol-forming substrate
CN112806618A (zh) * 2019-10-31 2021-05-18 深圳市合元科技有限公司 气雾生成装置及控制方法
CN216568393U (zh) * 2021-11-10 2022-05-24 深圳市卓力能技术有限公司 发热元件、发热组件及气溶胶发生装置
CN218551343U (zh) * 2022-08-26 2023-03-03 深圳麦时科技有限公司 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器

Also Published As

Publication number Publication date
CN117652725A (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
Connord et al. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications
JP2020516014A (ja) 温度の決定
JP2020511984A (ja) エアロゾル形成基体を誘導加熱するための多層サセプタ組立品
US20130315281A1 (en) Eddy current thermometer
CN113453571A (zh) 卷烟型电子烟装置用加热器及包括其的卷烟型电子烟装置
CN111465131A (zh) 一种基于厚膜技术的测温反馈电磁感应发热体
KR102508888B1 (ko) 이중 가열 방식의 전자 담배용 발열 장치와 방법 및 전자 담배
CN218551343U (zh) 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器
CN209014162U (zh) 电磁装置及带有该电磁装置的感应测量装置和烹饪装置
WO2024041127A1 (zh) 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器
CN108414110A (zh) 感应测温装置及测温方法、烹饪装置和电磁装置
CN208850091U (zh) 一种内部感应加热的吸烟装置
CN112826151A (zh) 一种涡流发热体和气溶胶发生装置
CN211982174U (zh) 一种基于厚膜技术的测温反馈电磁感应发热体
WO2024041128A1 (zh) 气溶胶产生装置及其气溶胶产生制品、发热组件和感受器
WO2023208053A1 (zh) 加热模组及气雾生成装置
Tonthat et al. Position adjustment method and distance estimation method of magnetic field supply and detection unit for magnetic hyperthermia
CN109060163A (zh) 一种用于电磁加热设备的磁纳米粒子电感测温方法及装置
CN115119977A (zh) 电子雾化装置及其加热组件
CN214483280U (zh) 加热组件及气溶胶产生装置
US20230363460A1 (en) Electronic vaporization device and heating component thereof
CN216961529U (zh) 加热体、加热组件及电子烟
CN220441935U (zh) 一种感应气溶胶生成装置
JPWO2020035586A5 (zh)
CN218483787U (zh) 电子雾化装置及其加热组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856219

Country of ref document: EP

Kind code of ref document: A1