WO2024041086A1 - 超级电容混合储能自动控制参数设定方法 - Google Patents

超级电容混合储能自动控制参数设定方法 Download PDF

Info

Publication number
WO2024041086A1
WO2024041086A1 PCT/CN2023/098353 CN2023098353W WO2024041086A1 WO 2024041086 A1 WO2024041086 A1 WO 2024041086A1 CN 2023098353 W CN2023098353 W CN 2023098353W WO 2024041086 A1 WO2024041086 A1 WO 2024041086A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual
frequency
vsg
energy storage
equation
Prior art date
Application number
PCT/CN2023/098353
Other languages
English (en)
French (fr)
Inventor
林松青
薛晓峰
潘喜良
戴海鹏
石敦义
黄秀晶
梁晓斌
王冰礁
张智远
赵庆林
王仪杭
吴可
杨沛豪
兀鹏越
寇水潮
王小辉
燕云飞
郭昊
殷悦
李志鹏
张立松
王劼文
代本谦
李菁华
Original Assignee
华能罗源发电有限责任公司
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能罗源发电有限责任公司, 西安热工研究院有限公司 filed Critical 华能罗源发电有限责任公司
Publication of WO2024041086A1 publication Critical patent/WO2024041086A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices

Definitions

  • This application relates to the technical field of energy storage control, and in particular to a supercapacitor hybrid energy storage automatic control parameter setting method.
  • the distributed hybrid energy storage system is composed of batteries and supercapacitors. It is connected to the power grid through an inverter and has the ability to flow power in both directions. It has the advantages of rapid power adjustment and diverse application modes.
  • batteries have high energy density characteristics but are not suitable for frequent charging and discharging, while supercapacitors have the advantage of high power density.
  • the distributed hybrid energy storage system will affect the frequency stability of the grid side due to its low inertia and low damping characteristics.
  • virtual synchronous machine (Virtual Synchronous Generation, VSG) control technology is currently widely used, so that it can participate in the frequency and voltage of the grid like a synchronous generator. Adjusting.
  • the present application aims to solve, at least to a certain extent, one of the technical problems in the related art.
  • the first embodiment of the present application proposes a supercapacitor hybrid energy storage automatic control parameter setting method, including: establishing a hybrid energy storage virtual synchronous machine VSG rotor mechanical equation; using adaptive virtual damping to replace the hybrid energy storage VSG rotor mechanical equation virtual damping coefficient in; establish the active power-frequency droop formula based on the mechanical equation of the hybrid energy storage VSG rotor, and perform the inverse Laplace transform of the established active power-frequency droop formula to obtain the active power-frequency droop inverse Laplace Si transformation equation; convert the hybrid energy storage VSG rotor mechanical equation into frequency-power form; according to the active power-frequency droop inverse Laplace transform equation and the hybrid energy storage VSG rotor mechanical equation frequency-power form, the VSG virtual inertia, virtual Damping coefficient; when the VSG control system is running in a steady state, the frequency-power form of the hybrid energy storage VSG rotor mechanical equation is converted into a virtual torque deviation expression; according to the virtual torque deviation expression, the
  • the supercapacitor hybrid energy storage automatic control parameter setting method in the embodiment of the present application effectively improves the ability to suppress power oscillation by adopting adaptive virtual damping VSG control in the hybrid energy storage control system. .
  • the mechanical equation of the hybrid energy storage virtual synchronous machine VSG rotor is expressed as:
  • is the virtual angular frequency
  • H is the virtual moment of inertia
  • T m and T e are the VSG mechanical torque and electromagnetic torque respectively
  • D is the virtual damping coefficient
  • ⁇ 0 is the rated angular frequency
  • P ref is the active power reference value.
  • P e is the virtual electromagnetic power
  • is the virtual power angle
  • t represents time.
  • adaptive virtual damping is used to replace the virtual damping coefficient in the mechanical equation of the hybrid energy storage VSG rotor, which is expressed as:
  • D′ is the adaptive virtual damping coefficient
  • D 0 is the rated virtual damping coefficient
  • k D is the virtual damping adaptive coefficient
  • k Dmax is the maximum adjustment multiple of virtual damping
  • M is the virtual angular frequency deviation threshold
  • is the virtual angular frequency Deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency.
  • the active power-frequency droop formula is established based on the hybrid energy storage VSG rotor mechanical equation, which is expressed as:
  • is the virtual angular frequency
  • ⁇ 0 is the rated angular frequency
  • ⁇ s+1 is the first-order filter
  • m is the active droop coefficient
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power.
  • the established active power-frequency droop formula is subjected to inverse Laplace transformation, which is expressed as:
  • is the virtual angular frequency
  • ⁇ 0 is the rated angular frequency
  • is the filter parameter
  • m is the active droop coefficient
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power.
  • the hybrid energy storage VSG rotor mechanical equation is converted into frequency-power form, expressed as:
  • H is the virtual moment of inertia
  • is the virtual angular frequency
  • ⁇ 0 is the rated angular frequency
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power.
  • the VSG virtual inertia and virtual damping coefficient are obtained according to the active power-frequency droop inverse Laplace transform equation and the hybrid energy storage VSG rotor mechanical equation frequency-power form, expressed as:
  • H is the virtual moment of inertia
  • is the filter parameter
  • m is the active droop coefficient
  • D is the virtual damping coefficient
  • is the virtual angular frequency.
  • the hybrid energy storage VSG rotor mechanical equation frequency-power form is converted into a virtual torque deviation expression, expressed as:
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power
  • is the virtual angular frequency
  • ⁇ 0 is the rated angular frequency
  • D 0 is the rated virtual damping coefficient
  • is the virtual angular frequency deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency
  • ⁇ T is the virtual torque deviation.
  • the rated virtual damping coefficient in the adaptive virtual damping equation is expressed as:
  • D 0 is the rated virtual damping coefficient
  • P ref is the active power reference value
  • ⁇ T is the virtual torque deviation
  • is the virtual angular frequency deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency
  • f is the frequency
  • ⁇ f is the frequency variation range.
  • VSG virtual inertia and virtual damping coefficient are substituted into the adaptive virtual damping equation, expressed as:
  • D 0 is the rated virtual damping coefficient
  • H is the virtual moment of inertia
  • is the filter parameter
  • k Dmax is the maximum adjustment multiple of virtual damping
  • is the virtual angular frequency deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency .
  • the second aspect embodiment of this application proposes a supercapacitor hybrid energy storage automatic control parameter setting device, including:
  • the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the method described in the embodiment of the first aspect of the present application. .
  • the third embodiment of the present application provides a non-transitory computer-readable storage medium on which computer instructions are stored.
  • the computer instructions are executed by a computer, the method described in the first embodiment of the present application is implemented.
  • the fourth embodiment of the present application provides a computer program product, which includes a computer program. When executed by a processor, the computer program implements the method described in the first embodiment of the present application.
  • Figure 1 is a schematic flow chart of a supercapacitor hybrid energy storage automatic control parameter setting method provided by an embodiment of the present application
  • Figure 2 is a topological structure diagram of a microgrid containing hybrid energy storage according to an embodiment of the present application
  • Figure 3 is a hybrid energy storage DC/AC converter topology and VSG control flow chart according to the embodiment of the present application.
  • Figure 1 is a schematic flowchart of a supercapacitor hybrid energy storage automatic control parameter setting method provided by an embodiment of the present application.
  • the supercapacitor hybrid energy storage automatic control parameter setting method includes the following steps:
  • Step 101 Establish the hybrid energy storage virtual synchronous machine VSG rotor mechanical equation.
  • Step 102 Use adaptive virtual damping to replace the virtual damping coefficient in the mechanical equation of the hybrid energy storage VSG rotor.
  • Step 103 Establish the active power-frequency droop formula based on the mechanical equation of the hybrid energy storage VSG rotor, and perform the inverse Laplace transform on the established active power-frequency droop formula to obtain the active power-frequency droop inverse Laplace transform equation. .
  • Step 104 Convert the hybrid energy storage VSG rotor mechanical equation into frequency-power form. .
  • Step 105 obtain the VSG virtual inertia and virtual damping coefficient according to the active power-frequency droop inverse Laplace transform equation and the frequency-power form of the hybrid energy storage VSG rotor mechanical equation.
  • Step 106 When the VSG control system is running in a steady state, convert the frequency-power form of the hybrid energy storage VSG rotor mechanical equation into a virtual torque deviation expression.
  • Step 107 Obtain the rated virtual damping coefficient in the adaptive virtual damping equation according to the virtual torque deviation expression.
  • Step 108 Substitute the VSG virtual inertia and virtual damping coefficient into the adaptive virtual damping equation, and obtain the value range of the adaptive virtual damping coefficient according to the virtual inertia and filtering parameters.
  • the supercapacitor hybrid energy storage automatic control parameter setting method in the embodiment of the present application effectively improves the ability to suppress power oscillation by adopting adaptive virtual damping VSG control in the hybrid energy storage control system. .
  • the mechanical equation of the hybrid energy storage virtual synchronous machine VSG rotor is expressed as:
  • is the virtual angular frequency
  • H is the virtual moment of inertia
  • T m and Te are the VSG mechanical torque and electromagnetic torque respectively
  • D is the virtual damping coefficient
  • ⁇ 0 is the rated angular frequency
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power.
  • the virtual moment of inertia H makes the hybrid energy storage converter adjust the power and frequency in the process.
  • the hybrid energy storage DC/AC converter has the ability to suppress the power oscillation of the AC power grid
  • is the virtual power angle
  • t represents time.
  • adaptive virtual damping is used to replace the virtual damping coefficient in the hybrid energy storage virtual synchronous machine VSG rotor mechanical equation, expressed as:
  • D′ is the adaptive virtual damping coefficient
  • D 0 is the rated virtual damping coefficient
  • k D is the virtual damping adaptive coefficient
  • k Dmax is the maximum adjustment multiple of virtual damping
  • M is the virtual angular frequency deviation threshold
  • is the virtual angular frequency Deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency.
  • the active power-frequency droop formula is established based on the hybrid energy storage virtual synchronous machine VSG rotor mechanical equation, which is expressed as:
  • is the virtual angular frequency
  • ⁇ 0 is the rated angular frequency
  • ⁇ s+1 is the first-order filter
  • m is the active droop coefficient
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power.
  • the established active power-frequency droop formula is subjected to inverse Laplace transformation, which is expressed as:
  • is the virtual angular frequency
  • ⁇ 0 is the rated angular frequency
  • is the filter parameter
  • m is the active droop coefficient
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power.
  • the hybrid energy storage virtual synchronous machine VSG rotor mechanical equation is converted into frequency-power form, expressed as:
  • H is the virtual moment of inertia
  • is the virtual angular frequency
  • ⁇ 0 is the rated angular frequency
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power.
  • the VSG virtual inertia and virtual damping coefficient are obtained according to the active power-frequency droop inverse Laplace transform equation and the hybrid energy storage VSG rotor mechanical equation frequency-power form, expressed as:
  • H is the virtual moment of inertia
  • is the filter parameter
  • m is the active droop coefficient
  • D is the virtual damping coefficient
  • is the virtual angular frequency.
  • the hybrid energy storage VSG rotor mechanical equation frequency-power form is converted into a virtual torque deviation expression, expressed as:
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power
  • is the virtual angular frequency
  • ⁇ 0 is the rated angular frequency
  • D 0 is the rated virtual damping coefficient
  • is the virtual angular frequency deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency
  • ⁇ T is the virtual torque deviation.
  • the rated virtual damping coefficient in the adaptive virtual damping equation is expressed as:
  • D 0 is the rated virtual damping coefficient
  • P ref is the active power reference value
  • ⁇ T is the virtual torque deviation
  • is the virtual angular frequency deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency
  • f is the frequency
  • ⁇ f is the frequency variation range.
  • the value of the rated virtual damping coefficient D 0 can be determined.
  • VSG virtual inertia and virtual damping coefficient are substituted into the adaptive virtual damping equation to obtain:
  • D 0 is the rated virtual damping coefficient
  • H is the virtual moment of inertia
  • is the filter parameter
  • k Dmax is the maximum adjustment multiple of virtual damping
  • is the virtual angular frequency deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency .
  • the value range of the adaptive virtual damping coefficient is obtained: 0 ⁇ k D ⁇ k Dmax .
  • the load is connected to the DC bus through a DC/DC converter. Because of the volatility of its active output P DG , it is necessary to configure a hybrid energy storage device composed of batteries and supercapacitors. By adjusting the battery active power P B , The supercapacitor active power P C is used to smooth P DG fluctuations. When a frequency oscillation accident occurs in the AC power grid, the power oscillation signal is transmitted to the DC side through the AC/DC converter, which requires hybrid energy storage to have frequency oscillation suppression capabilities.
  • U dc is the DC bus voltage
  • U abc and i abc are the three-phase voltage and current on the AC side of the hybrid energy storage DC/AC converter
  • e abc is the three-phase voltage of the AC grid
  • R f and L f , L g , R g constitute a filter circuit.
  • is the virtual angular frequency
  • is the virtual power angle
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power, VSG has no stator winding loss, P e is also called VSG control output power
  • P m is Virtual mechanical power
  • u is the virtual internal potential in VSG
  • Q e is the actual output value of reactive power
  • Q ref is the reference value of reactive power.
  • the rotor mechanical equation is:
  • is the virtual angular frequency
  • H is the virtual moment of inertia
  • T m and Te are the VSG mechanical torque and electromagnetic torque respectively
  • D is the virtual damping coefficient
  • ⁇ 0 is the rated angular frequency
  • P ref is the active power reference value
  • P e is the virtual electromagnetic power.
  • VSG control the virtual moment of inertia H makes the hybrid energy storage converter adjust the power and frequency in the process.
  • inertia and damping coefficient D the hybrid energy storage DC/AC converter has restraint The ability of AC grid power to oscillate, t represents time.
  • the adaptive virtual damping coefficient D′ can be expressed as:
  • D′ is the adaptive virtual damping coefficient
  • D 0 is the rated virtual damping coefficient
  • k D is the virtual damping adaptive coefficient
  • k Dmax is the maximum adjustment multiple of virtual damping
  • M is the virtual angular frequency deviation threshold
  • Virtual angular frequency deviation
  • ⁇ - ⁇ 0
  • ⁇ 0 is the rated angular frequency, when
  • VSG rotor mechanical equation in the first formula can be written as:
  • ⁇ T is the virtual torque deviation.
  • D 0 can be expressed as:
  • k Dmax can be determined according to the virtual inertia H and the filter parameter ⁇ .
  • the value range of k D is: 0 ⁇ kD ⁇ kDmax
  • the embodiment of this application also proposes a supercapacitor hybrid energy storage automatic control parameter setting device, including:
  • the memory stores instructions executable by the at least one processor, the instructions being processed by the at least one The processor executes, so that the at least one processor can execute the method described in the embodiment of the first aspect of this application.
  • An embodiment of the present application also provides a non-transitory computer-readable storage medium on which computer instructions are stored, wherein when the computer instructions are executed by a computer, the method described in the first embodiment of the present application is implemented.
  • An embodiment of the present application also proposes a computer program product, which includes a computer program that implements the method described in the first embodiment of the present application when executed by a processor.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
  • various parts of the present application can be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented in hardware, as in another embodiment, it can be implemented by any one of the following technologies known in the art or their combination: discrete logic gate circuits with logic functions for implementing data signals; logic circuit circuits, application-specific integrated circuits with appropriate combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • each functional unit in various embodiments of the present application can be integrated into a processing module, or each unit can exist physically alone, or two or more units can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer-readable storage medium.
  • the storage media mentioned above can be read-only memory, magnetic disks or optical disks, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种超级电容混合储能自动控制参数设定方法包括:建立混合储能虚拟同步机VSG转子机械方程;使用自适应虚拟阻尼代替机械方程中的虚拟阻尼系数;根据机械方程建立有功功率-频率下垂公式并进行反拉普拉斯变换,得到变换方程;将机械方程转换为频率-功率形式;根据变换方程和频率-功率形式得到VSG虚拟惯量、虚拟阻尼系数;当VSG控制系统稳态运行时将机械方程频率-功率形式转化为虚拟转矩偏差表达式;根据转化的表达式得到自适应虚拟阻尼方程中额定虚拟阻尼系数;将VSG虚拟惯量、虚拟阻尼系数代入到自适应虚拟阻尼方程中,根据虚拟惯量和滤波参数得到自适应虚拟阻尼系数取值范围。

Description

超级电容混合储能自动控制参数设定方法
相关申请的交叉引用
本申请基于申请号为202211021432.1、申请日为2022年8月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及储能控制技术领域,尤其涉及超级电容混合储能自动控制参数设定方法。
背景技术
作为我国能源变革关键技术支撑之一的大规模储能技术,因为其可以为电网提供调峰、调频、应急响应等多种辅助服务,近年来受到了业内的广泛关注。分布式混合储能系统由蓄电池与超级电容组成,通过换流器与电网相连,具备功率双向流动能力,,具有功率调节迅速、应用模式多样等优点。在混合储能系统中,蓄电池具有高能量密度特点但不适合频繁充放电,超级电容具有高功率密度优势。
分布式混合储能系统因为其低惯性、低阻尼特性会对网侧的频率稳定性造成影响。为了使储能换流器控制系统具备如同步电机拥有的转动惯量和阻尼,目前广泛采用虚拟同步机(Virtual Synchronous Generation,VSG)控制技术,使其像同步发电机一样参与到电网频率和电压的调节中。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
本申请第一方面实施例提出了一种超级电容混合储能自动控制参数设定方法,包括:建立混合储能虚拟同步机VSG转子机械方程;使用自适应虚拟阻尼代替混合储能VSG转子机械方程中的虚拟阻尼系数;根据混合储能VSG转子机械方程建立有功功率-频率下垂公式,并将建立的有功功率-频率下垂公式进行反拉普拉斯变换,得到有功功率-频率下垂反拉普拉斯变换方程;将混合储能VSG转子机械方程转换为频率-功率形式;根据有功功率-频率下垂反拉普拉斯变换方程和混合储能VSG转子机械方程频率-功率形式得到VSG虚拟惯量、虚拟阻尼系数;当VSG控制系统稳态运行时,将混合储能VSG转子机械方程频率-功率形式转化为虚拟转矩偏差表达式;根据虚拟转矩偏差表达式得到自适应虚拟阻尼方程中额定虚拟阻尼系数;将VSG虚拟惯量、虚拟阻尼系数代入到自适应虚拟阻尼方程中,根据虚拟惯量和滤波参数得到自适应虚拟阻尼系数取值范围。
本申请实施例的超级电容混合储能自动控制参数设定方法,通过在混合储能控制系统中采用自适应虚拟阻尼VSG控制,有效提高对功率振荡的抑制能力。。
在本申请的一个实施例中,混合储能虚拟同步机VSG转子机械方程,表示为:
其中,ω为虚拟角频率,H为虚拟转动惯量,Tm、Te分别为VSG机械转矩、电磁转矩,D为虚拟阻尼系数,ω0为额定角频率,Pref为有功功率参考值,Pe为虚拟电磁功率,δ为虚拟功角,t表示时间。
在本申请的一个实施例中,使用自适应虚拟阻尼代替混合储能VSG转子机械方程中的虚拟阻尼系数,表示为:
其中,D′为自适应虚拟阻尼系数,D0为额定虚拟阻尼系数,kD为虚拟阻尼自适应系数,kDmax为虚拟阻尼最大调节倍数,M为虚拟角频率偏差阈值,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率。
在本申请的一个实施例中,根据混合储能VSG转子机械方程建立有功功率-频率下垂公式,表示为:
其中,ω为虚拟角频率,ω0为额定角频率,τs+1为一阶滤波器,m为有功下垂系数,Pref为有功功率参考值,Pe为虚拟电磁功率。
在本申请的一个实施例中,将建立的有功功率-频率下垂公式进行反拉普拉斯变换,表示为:
其中,ω为虚拟角频率,ω0为额定角频率,τ为滤波参数,m为有功下垂系数,Pref为有功功率参考值,Pe为虚拟电磁功率。
在本申请的一个实施例中,将混合储能VSG转子机械方程转换为频率-功率形式,表示为:
其中,H为虚拟转动惯量,ω为虚拟角频率,ω0为额定角频率,Pref为有功功率参考值,Pe为虚拟电磁功率。
在本申请的一个实施例中,根据有功功率-频率下垂反拉普拉斯变换方程和混合储能VSG转子机械方程频率-功率形式得到VSG虚拟惯量、虚拟阻尼系数,表示为:
其中,H为虚拟转动惯量,τ为滤波参数,m为有功下垂系数,D为虚拟阻尼系数,ω为虚拟角频率。
在本申请的一个实施例中,将混合储能VSG转子机械方程频率-功率形式转化为虚拟转矩偏差表达式,表示为:
其中,Pref为有功功率参考值,Pe为虚拟电磁功率,ω为虚拟角频率,ω0为额定角频率,D0为额定虚拟阻尼系数,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率,ΔT为虚拟转矩偏差。
在本申请的一个实施例中,自适应虚拟阻尼方程中额定虚拟阻尼系数,表示为:
其中,D0为额定虚拟阻尼系数,Pref为有功功率参考值,ΔT为虚拟转矩偏差,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率,f为频率,Δf为频率变化范围。
在本申请的一个实施例中,将VSG虚拟惯量、虚拟阻尼系数代入到自适应虚拟阻尼方程,表示为:
其中,D0为额定虚拟阻尼系数,H为虚拟转动惯量,τ为滤波参数,kDmax为虚拟阻尼最大调节倍数,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率。
本申请第二方面实施例提出了一种超级电容混合储能自动控制参数设定设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行本申请第一方面实施例所述的方法。
本申请第三方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机指令,其中所述计算机指令被计算机执行时实现本申请第一方面实施例所述的方法。
本申请第四方面实施例提出了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现本申请第一方面实施例所述的方法。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例所提供的一种超级电容混合储能自动控制参数设定方法的流程示意图;
图2为本申请实施例的含有混合储能微网拓扑结构图;
图3为本申请实施例的混合储能DC/AC换流器拓扑及VSG控制流程图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的超级电容混合储能自动控制参数设定方法。
图1为本申请实施例所提供的一种超级电容混合储能自动控制参数设定方法的流程示意图。
如图1所示,该超级电容混合储能自动控制参数设定方法包括以下步骤:
步骤101,建立混合储能虚拟同步机VSG转子机械方程。
步骤102,使用自适应虚拟阻尼代替混合储能VSG转子机械方程中的虚拟阻尼系数。
步骤103,根据混合储能VSG转子机械方程建立有功功率-频率下垂公式,并将建立的有功功率-频率下垂公式进行反拉普拉斯变换,得到有功功率-频率下垂反拉普拉斯变换方程。
步骤104,将混合储能VSG转子机械方程转换为频率-功率形式。。
步骤105,根据有功功率-频率下垂反拉普拉斯变换方程和混合储能VSG转子机械方程频率-功率形式得到VSG虚拟惯量、虚拟阻尼系数。
步骤106,当VSG控制系统稳态运行时,将混合储能VSG转子机械方程频率-功率形式转化为虚拟转矩偏差表达式。
步骤107,根据虚拟转矩偏差表达式得到自适应虚拟阻尼方程中额定虚拟阻尼系数。
步骤108,将VSG虚拟惯量、虚拟阻尼系数代入到自适应虚拟阻尼方程中,根据虚拟惯量和滤波参数得到自适应虚拟阻尼系数取值范围。
本申请实施例的超级电容混合储能自动控制参数设定方法,通过在混合储能控制系统中采用自适应虚拟阻尼VSG控制,有效提高对功率振荡的抑制能力。。
在本申请的一个实施例中,混合储能虚拟同步机VSG转子机械方程,表示为:
其中,ω为虚拟角频率,H为虚拟转动惯量,Tm、Te分别为VSG机械转矩、电磁转矩,D为虚拟阻尼系数,ω0为额定角频率,Pref为有功功率参考值,Pe为虚拟电磁功率,在VSG控制中,虚拟转动惯量H使得混合储能换流器在功率和频率调节过程中具有了惯性,阻尼系数D使得混合储能DC/AC换流器具有抑制交流电网功率振荡的能力,δ为虚拟功角,t表示时间。
在本申请的一个实施例中,为了实现混合储能最优功率控制,使用自适应虚拟阻尼代替混合储能虚拟同步机VSG转子机械方程中的虚拟阻尼系数,表示为::
其中,D′为自适应虚拟阻尼系数,D0为额定虚拟阻尼系数,kD为虚拟阻尼自适应系数,kDmax为虚拟阻尼最大调节倍数,M为虚拟角频率偏差阈值,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率,当|Δω|∈[0 M),D自适应减少,快速响应ω增大/减少;当|Δω|≥M,D快速增加限值ω,防止其进入失稳区。
在本申请的一个实施例中,根据混合储能虚拟同步机VSG转子机械方程建立有功功率-频率下垂公式,表示为:
其中,ω为虚拟角频率,ω0为额定角频率,τs+1为一阶滤波器,m为有功下垂系数,Pref为有功功率参考值,Pe为虚拟电磁功率。
在本申请的一个实施例中,将建立的有功功率-频率下垂公式进行反拉普拉斯变换,表示为:
其中,ω为虚拟角频率,ω0为额定角频率,τ为滤波参数,m为有功下垂系数,Pref为有功功率参考值,Pe为虚拟电磁功率。
在本申请的一个实施例中,将混合储能虚拟同步机VSG转子机械方程转换为频率-功率形式,表示为:
其中,H为虚拟转动惯量,ω为虚拟角频率,ω0为额定角频率,Pref为有功功率参考值,Pe为虚拟电磁功率。
在本申请的一个实施例中,根据有功功率-频率下垂反拉普拉斯变换方程和混合储能VSG转子机械方程频率-功率形式得到VSG虚拟惯量、虚拟阻尼系数,表示为:
其中,H为虚拟转动惯量,τ为滤波参数,m为有功下垂系数,D为虚拟阻尼系数,ω为虚拟角频率。
在本申请的一个实施例中,将混合储能VSG转子机械方程频率-功率形式转化为虚拟转矩偏差表达式,表示为:
其中,Pref为有功功率参考值,Pe为虚拟电磁功率,ω为虚拟角频率,ω0为额定角频率,D0为额定虚拟阻尼系数,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率,ΔT为虚拟转矩偏差。
在本申请的一个实施例中,自适应虚拟阻尼方程中额定虚拟阻尼系数,表示为:
其中,D0为额定虚拟阻尼系数,Pref为有功功率参考值,ΔT为虚拟转矩偏差,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率,f为频率,Δf为频率变化范围。
当混合储能输出功率Pref及频率变化范围Δf已知情况,可以确定额定虚拟阻尼系数D0取值。
在本申请的一个实施例中,将VSG虚拟惯量、虚拟阻尼系数代入到自适应虚拟阻尼方程,可得:
其中,D0为额定虚拟阻尼系数,H为虚拟转动惯量,τ为滤波参数,kDmax为虚拟阻尼最大调节倍数,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率。
根据虚拟惯量H和滤波参数τ得到自适应虚拟阻尼系数取值范围:0<kD≤kDmax
下面通过附图2详细描述本申请的另一实施例。
如图2所示,负载通过DC/DC换流器与直流母线相连,因为其有功出力PDG波动性,需要配置由蓄电池和超级电容组成的混合储能设备,通过调节蓄电池有功功率PB、超级电容有功功率PC来平抑PDG波动。当交流大电网发生频率振荡事故,,功率振荡信号通过AC/DC换流器传递至直流侧,需要混合储能具备频率振荡抑制能力。
如图3所示,Udc为直流母线电压;Uabc、iabc为混合储能DC/AC换流器交流侧三相电压、电流;eabc为交流电网三相电压;Rf、Lf、Lg、Rg构成滤波电路。VSG控制流程中,ω为虚拟角频率;δ为虚拟功角;Pref为有功功率参考值;Pe为虚拟电磁功率,VSG无定子绕组损耗,Pe又称VSG控制输出功率;Pm为虚拟机械功率;u为VSG中虚拟内电势;Qe为无功功率实际输出值;Qref为无功功率参考值。转子机械方程为:
其中,ω为虚拟角频率,H为虚拟转动惯量,Tm、Te分别为VSG机械转矩、电磁转矩,D为虚拟阻尼系数,ω0为额定角频率,Pref为有功功率参考值,Pe为虚拟电磁功率,在VSG控制中,虚拟转动惯量H使得混合储能换流器在功率和频率调节过程中具有了惯性,阻尼系数D使得混合储能DC/AC换流器具有抑制 交流电网功率振荡的能力,t表示时间。
为了实现混合储能最优功率控制,本申请采用自适应虚拟阻尼,自适应虚拟阻尼系数D′可表示为:
上式中,D′为自适应虚拟阻尼系数,D0为额定虚拟阻尼系数,,kD为虚拟阻尼自适应系数,kDmax为虚拟阻尼最大调节倍数,M为虚拟角频率偏差阈值,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率,当|Δω|∈[0 M),D自适应减少,快速响应ω增大/减少;当|Δω|≥M,D快速增加限值ω,防止其进入失稳区。
在自适应虚拟阻尼系数表达式中,需要整定额定虚拟阻尼系数D0取值,虚拟阻尼自适应系数kD取值范围。根据上式,并引入有功下垂系数m,可以得到P-f下垂公式:
上式中:τs+1为一阶滤波器。将上式反拉普拉斯变换后可得:
第一个公式中的VSG转子机械方程可写为:
对比上述两个公式可以得到VSG虚拟惯量、虚拟阻尼为:
当VSG控制系统稳态运行时,ω变化量为0,此时虚拟阻尼系数为额定虚拟阻尼系数,第五个公式又可写作:
上式中,ΔT为虚拟转矩偏差。根据上式,D0可表示为:
由上式可知,当混合储能输出功率Pref及频率变化范围Δf已知情况,可以确定额定虚拟阻尼系数D0取值。为了得到虚拟阻尼自适应系数kD取值范围,将第六个公式引入第二个公式自适应虚拟阻尼防失稳表达式中,可得:
当VSG控制系统稳态运行ω为定值,根据虚拟惯量H和滤波参数τ可以确定kDmax,kD取值范围为:
0<kD≤kDmax
本申请取自适应虚拟阻尼系数kD=12,虚拟阻尼最大调节倍数kDmax=60。
本申请实施例还提出了一种超级电容混合储能自动控制参数设定设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理 器执行,以使所述至少一个处理器能够执行本申请第一方面实施例所述的方法。
本申请实施例还提出了一种非临时性计算机可读存储介质,其上存储有计算机指令,其中所述计算机指令被计算机执行时实现本申请第一方面实施例所述的方法。
本申请实施例还提出了一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现本申请第一方面实施例所述的方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电 路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种超级电容混合储能自动控制参数设定方法,包括以下步骤:
    建立混合储能虚拟同步机VSG转子机械方程;
    使用自适应虚拟阻尼代替混合储能VSG转子机械方程中的虚拟阻尼系数;
    根据所述混合储能VSG转子机械方程建立有功功率-频率下垂公式,并将建立的有功功率-频率下垂公式进行反拉普拉斯变换,得到有功功率-频率下垂反拉普拉斯变换方程;
    将所述混合储能VSG转子机械方程转换为频率-功率形式;
    根据所述有功功率-频率下垂反拉普拉斯变换方程和混合储能VSG转子机械方程频率-功率形式得到VSG虚拟惯量、虚拟阻尼系数;
    当VSG控制系统稳态运行时,将所述混合储能VSG转子机械方程频率-功率形式转化为虚拟转矩偏差表达式;
    根据所述虚拟转矩偏差表达式得到自适应虚拟阻尼方程中的额定虚拟阻尼系数;
    将所述VSG虚拟惯量、所述虚拟阻尼系数代入到所述自适应虚拟阻尼方程中,根据虚拟惯量和滤波参数得到自适应虚拟阻尼系数取值范围。
  2. 如权利要求1所述的方法,其中,所述混合储能虚拟同步机VSG转子机械方程,表示为:
    其中,ω为虚拟角频率,H为虚拟转动惯量,Tm、Te分别为VSG机械转矩、电磁转矩,D为虚拟阻尼系数,ω0为额定角频率,Pref为有功功率参考值,Pe为虚拟电磁功率,δ为虚拟功角,t表示时间。
  3. 如权利要求2所述的方法,其中,所述使用自适应虚拟阻尼代替混合储能VSG转子机械方程中的虚拟阻尼系数,表示为:
    其中,D′为自适应虚拟阻尼系数,D0为额定虚拟阻尼系数,kD为虚拟阻尼自适应系数,kDmax为虚拟阻尼最大调节倍数,M为虚拟角频率偏差阈值,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率。
  4. 如权利要求3所述的方法,其中,所述根据所述混合储能VSG转子机械方程建立有功功率-频率下垂公式,表示为:
    其中,ω为虚拟角频率,ω0为额定角频率,τs+1为一阶滤波器,m为有功下垂系数,Pref为有功功率参考值,Pe为虚拟电磁功率。
  5. 如权利要求4所述的方法,其中,所述将建立的有功功率-频率下垂公式进行反拉普拉斯变换,表示为:
    其中,ω为虚拟角频率,ω0为额定角频率,τ为滤波参数,m为有功下垂系数,Pref为有功功率参考值,Pe为虚拟电磁功率。
  6. 如权利要求5所述的方法,其中,所述将所述混合储能VSG转子机械方程转换为频率-功率形式,表示为:
    其中,H为虚拟转动惯量,ω为虚拟角频率,ω0为额定角频率,Pref为有功功率参考值,Pe为虚拟电磁功率。
  7. 如权利要求6所述的方法,其中,所述根据所述有功功率-频率下垂反拉普拉斯变换方程和混合储能VSG转子机械方程频率-功率形式得到VSG虚拟惯量、虚拟阻尼系数,表示为:
    其中,H为虚拟转动惯量,τ为滤波参数,m为有功下垂系数,D为虚拟阻尼系数,ω为虚拟角频率。
  8. 如权利要求7所述的方法,其中,所述将所述混合储能VSG转子机械方程频率-功率形式转化为虚拟转矩偏差表达式,表示为:
    其中,Pref为有功功率参考值,Pe为虚拟电磁功率,ω为虚拟角频率,ω0为额定角频率,D0为额定虚拟阻尼系数,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率,ΔT为虚拟转矩偏差。
  9. 如权利要求8所述的方法,其中,所述自适应虚拟阻尼方程中的额定虚拟阻尼系数,表示为:
    其中,D0为额定虚拟阻尼系数,Pref为有功功率参考值,ΔT为虚拟转矩偏差,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率,f为频率,Δf为频率变化范围。
  10. 如权利要求9所述的方法,其中,所述将所述VSG虚拟惯量、所述虚拟阻尼系数代入到所述自适应虚拟阻尼方程,表示为:
    其中,D0为额定虚拟阻尼系数,H为虚拟转动惯量,τ为滤波参数,kDmax为虚拟阻尼最大调节倍数,Δω为虚拟角频率偏差,Δω=ω-ω0,ω0为额定角频率。
  11. 一种超级电容混合储能自动控制参数设定设备,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-10中任一项所述的方法。
  12. 一种非临时性计算机可读存储介质,其上存储有计算机指令,其中所述计算机指令被计算机执行时实现权利要求1-10中任一项所述的方法。
  13. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现权利要求1-10中任一项所述的方法。
PCT/CN2023/098353 2022-08-24 2023-06-05 超级电容混合储能自动控制参数设定方法 WO2024041086A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211021432.1A CN115085242B (zh) 2022-08-24 2022-08-24 混合储能vsg自适应虚拟阻尼参数整定方法
CN202211021432.1 2022-08-24

Publications (1)

Publication Number Publication Date
WO2024041086A1 true WO2024041086A1 (zh) 2024-02-29

Family

ID=83244074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098353 WO2024041086A1 (zh) 2022-08-24 2023-06-05 超级电容混合储能自动控制参数设定方法

Country Status (2)

Country Link
CN (1) CN115085242B (zh)
WO (1) WO2024041086A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115085242B (zh) * 2022-08-24 2022-11-29 西安热工研究院有限公司 混合储能vsg自适应虚拟阻尼参数整定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861246A (zh) * 2018-12-24 2019-06-07 燕山大学 一种基于vsg的光伏微网动态频率稳定控制方法
US20190386593A1 (en) * 2018-06-14 2019-12-19 Qingchang ZHONG Passive Virtual Synchronous Machine with Bounded Frequency and Virtual Flux
CN112491070A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种储能自适应阻尼vsg控制方法
CN113890059A (zh) * 2021-10-09 2022-01-04 华能洋浦热电有限公司 一种混合储能vsg控制系统稳定性分析方法及系统
CN115085242A (zh) * 2022-08-24 2022-09-20 西安热工研究院有限公司 混合储能vsg自适应虚拟阻尼参数整定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914764B (zh) * 2016-05-18 2018-07-31 华北电力大学 一种匹配储能余量的阻尼在线整定方法
CN108899929B (zh) * 2018-07-03 2021-06-25 上海交通大学 基于虚拟同步电机的iidg的自适应惯性控制方法
CN110112769B (zh) * 2019-04-16 2023-03-31 西安理工大学 虚拟同步机输出反馈自适应控制方法
CN110829461B (zh) * 2019-11-14 2021-05-14 国网四川省电力公司经济技术研究院 一种具有参与系统低频振荡抑制功能的逆变器控制器
CN111900762B (zh) * 2020-08-06 2021-11-23 山东大学 一种自适应vsg微电网逆变器控制方法及系统
CN112003323B (zh) * 2020-08-21 2023-05-02 西安热工研究院有限公司 一种利用自适应虚拟参数提高风电并网一次调频性能的方法
CN112398167B (zh) * 2020-11-09 2023-05-12 西安热工研究院有限公司 一种提高微网储能一次调频性能的方法
CN112467784B (zh) * 2020-11-18 2023-06-27 西安热工研究院有限公司 一种混合微网换流器自适应虚拟同步机控制方法
CN113315179A (zh) * 2021-07-12 2021-08-27 华北电力大学(保定) 一种vsg虚拟惯量和阻尼协同自适应控制系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190386593A1 (en) * 2018-06-14 2019-12-19 Qingchang ZHONG Passive Virtual Synchronous Machine with Bounded Frequency and Virtual Flux
CN109861246A (zh) * 2018-12-24 2019-06-07 燕山大学 一种基于vsg的光伏微网动态频率稳定控制方法
CN112491070A (zh) * 2020-11-20 2021-03-12 西安热工研究院有限公司 一种储能自适应阻尼vsg控制方法
CN113890059A (zh) * 2021-10-09 2022-01-04 华能洋浦热电有限公司 一种混合储能vsg控制系统稳定性分析方法及系统
CN115085242A (zh) * 2022-08-24 2022-09-20 西安热工研究院有限公司 混合储能vsg自适应虚拟阻尼参数整定方法

Also Published As

Publication number Publication date
CN115085242A (zh) 2022-09-20
CN115085242B (zh) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2024041086A1 (zh) 超级电容混合储能自动控制参数设定方法
CN110611331B (zh) 一种并网电力电子设备对电网频率的支撑方法
CN113890059A (zh) 一种混合储能vsg控制系统稳定性分析方法及系统
CN110021959B (zh) 弱电网下基于短路比的并网逆变器双模式控制方法
CN107370181B (zh) 并网控制方法及系统
Du et al. Small-signal stability analysis of power systems integrated with variable speed wind generators
Jeong et al. Stability analysis of a weak-grid-connected voltage-sourced rectifier considering the phase-locked loop dynamics
CN115882762A (zh) 构网型风电并网系统的频率优化控制方法
CN103762618B (zh) 一种具有致稳能力的发电系统及控制方法
Buraimoh et al. Comparative Analysis of the Fault Ride-Through Capabilities of the VSG Methods of Microgrid Inverter Control under Faults
CN115065071B (zh) 混合储能分段虚拟转动惯量分频控制方法和装置
CN112039105A (zh) 高压直流输电线路互联的交流电网频率振荡抑制方法
Wang et al. DFIG-based wind turbines with virtual synchronous control: Inertia support in weak grid
CN112260314B (zh) 一种风电机组故障穿越期间锁相同步稳定控制方法及系统
WO2020158029A1 (ja) 自立運転における複合発電電源システム
CN109861280A (zh) 基于虚拟同步发电机的微网变流器频率控制方法及系统
CN117691624A (zh) 海上风电多端直流输电系统构网型惯量协调控制方法和装置
CN116316742B (zh) 飞轮储能单元的控制方法及飞轮储能单元的控制器和介质
WO2021082481A1 (zh) 一种均流控制方法及逆变器
CN116191504A (zh) 风电机组变流器直流母线并联电池储能的控制方法及系统
CN116418123A (zh) 飞轮储能单元的控制方法、装置及风力发电机组
CN117439124A (zh) 采用储能系统改善电网频率的方法及相关装置
CN117060493A (zh) 一种基于虚拟同步发电机的风储协同控制方法及装置
Wu et al. A position sensorless hybrid control method for electrically excited synchronous motor
CN116505553A (zh) 一种电压源型风电机组控制器控制方法、装置及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856178

Country of ref document: EP

Kind code of ref document: A1