WO2024041068A1 - 发酵系统及控制方法 - Google Patents

发酵系统及控制方法 Download PDF

Info

Publication number
WO2024041068A1
WO2024041068A1 PCT/CN2023/096977 CN2023096977W WO2024041068A1 WO 2024041068 A1 WO2024041068 A1 WO 2024041068A1 CN 2023096977 W CN2023096977 W CN 2023096977W WO 2024041068 A1 WO2024041068 A1 WO 2024041068A1
Authority
WO
WIPO (PCT)
Prior art keywords
control valve
branch
fermentation
tank
heating unit
Prior art date
Application number
PCT/CN2023/096977
Other languages
English (en)
French (fr)
Inventor
张家鑫
张志华
王士玉
邢磊
胡志强
沙宏磊
俞天野
Original Assignee
亿昇(天津)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亿昇(天津)科技有限公司 filed Critical 亿昇(天津)科技有限公司
Publication of WO2024041068A1 publication Critical patent/WO2024041068A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/20Heat exchange systems, e.g. heat jackets or outer envelopes the heat transfer medium being a gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/18Heat exchange systems, e.g. heat jackets or outer envelopes
    • C12M41/22Heat exchange systems, e.g. heat jackets or outer envelopes in contact with the bioreactor walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q3/00Condition responsive control processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present application relates to the field of fermentation technology, for example, to a fermentation system and a control method.
  • the fermentation industry uses air compressors to provide air for fermentation tanks. Because the compressed gas temperature is relatively high, when the ambient temperature is also relatively high, the temperature of the bacterial liquid will gradually rise. At this time, external cooling water needs to be used to cool down the fermentation tanks. Most of the external cooling water is the same as the ambient temperature, and it is impossible to control the temperature of the fermentation tank at a lower state. Since the optimal fermentation temperatures of different bacteria are different, when the ambient temperature is too low, thermally compressed air alone may not be able to maintain the temperature required for fermentation.
  • This application provides a fermentation system that has high adaptability to different fermentation temperatures and different environmental temperatures, and can flexibly adjust the fermentation temperature.
  • An embodiment of the present application provides a fermentation system, including:
  • Heating unit, the heating unit and the refrigeration unit are connected in parallel through pipelines;
  • Heat exchanger the output end of the fan is connected to the high-temperature input end of the heat exchanger, and the high-temperature output end of the heat exchanger is connected to the upstream summary pipeline of the branch where the heating unit and the refrigeration unit are located. ;
  • a fermentation tank the fermentation tank includes a tank body and an aeration plate, the tank body can hold fermentation products, the aeration plate is arranged in the tank body and is located below the liquid level of the fermentation product, the An air outlet is provided above the tank, and the air outlet is connected to the atmosphere; and
  • Heat exchange coil the heat exchange coil is sleeved on the tank, and the input end of the heat exchange coil is connected to the downstream summary pipeline of the branch where the heating unit and the refrigeration unit are located, so The output end of the heat exchange coil is connected to the input end of the aeration disk.
  • An embodiment of the present application also provides a control method, which when applied to the above fermentation system, can The fermentation temperature is adjusted to adapt to different fermentation requirements and environmental temperatures.
  • One embodiment provides a control method applied to the above-mentioned fermentation system.
  • the control method includes the following steps:
  • the real-time temperature of the fermented product is T1
  • the set temperature is T0.
  • the second control valve is closed, the eighth control valve and the fifth control valve are opened, and the opening A of the fifth control valve is controlled to be the initial opening A0.
  • the duration judge whether T1 is greater than T0+k.
  • increase the opening A repeat the judgment and adjust the opening until T1 ⁇ T0+k, and enter the fermentation stage; at the opening When A is the maximum value, determine whether T1 is greater than T0+k after the preset time.
  • close the third control valve, open the sixth control valve, and gradually increase the The operating power of the refrigeration unit reaches the fermentation stage until T1 ⁇ T0+k;
  • k is a positive number.
  • Figure 1 is a schematic structural diagram of a fermentation system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a control method provided by an embodiment of the present application.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection.
  • Disconnection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection can be a fixed connection or a detachable connection.
  • Disconnection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” a first feature on a second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the fermentation system provided in this embodiment includes a fan 1, a refrigeration unit 2, a heating unit 3, a heat exchanger 4, a fermentation tank 5 and a heat exchange coil 6.
  • the heating unit 3 and the refrigeration unit 2 are connected in parallel through pipelines, the output end of the fan 1 is connected to the high-temperature input end of the heat exchanger 4, and the high-temperature output end of the heat exchanger 4 is connected to the branch where the heating unit 3 and the refrigeration unit 2 are located.
  • the upstream summary pipeline of the road That is, the compressed air output by the fan 1 can be cooled once through the heat exchanger 4, then passed through the refrigeration unit 2 for secondary cooling, or passed through the heating unit 3 for temperature rise control.
  • the fermentation tank 5 includes a tank body 51 and an aeration plate 52.
  • the tank body 51 can hold the fermentation product.
  • the aeration plate 52 is arranged in the tank body 51 and is located below the liquid level of the fermentation product.
  • An air outlet is provided above the tank body 51. , the air outlet is connected to the atmosphere.
  • the heat exchange coil 6 is sleeved on the tank 51.
  • the input end of the heat exchange coil 6 is connected to the downstream summary pipeline of the branch where the heating unit 3 and the refrigeration unit 2 are located.
  • the output end of the heat exchange coil 6 is connected to the exposure pipe.
  • the input end of the gas plate 52 is arranged in the tank body 51 and is located below the liquid level of the fermentation product.
  • An air outlet is provided above the tank body 51. , the air outlet is connected to the atmosphere.
  • the heat exchange coil 6 is sleeved on the tank 51.
  • the input end of the heat exchange coil 6 is connected to the downstream summary pipeline of the branch where the heating unit 3
  • the compressed air first passes through the heat exchange coil 6 to cool down or heat up the tank 51, and then is released into the tank 51 through the aeration disk 52, where it directly mixes and contacts with the fermentation materials to participate in the fermentation reaction.
  • the remaining air and the generated gas are finally It is discharged from the air outlet of the tank 51.
  • the fermentation system also includes a first branch 7 and a first control valve 8. Both ends of the first branch 7 are connected to the downstream collective pipeline and the input end of the aeration plate 52 respectively.
  • the first control valve The valve 8 is arranged on the first branch 7 . That is, the compressed air can directly enter the tank 51 without passing through the heat exchange coil 6, directly mix and contact with the fermentation product, and participate in the fermentation reaction.
  • the first control valve 8 can regulate the flow of compressed air directly entering the tank 51 .
  • the fermentation system also includes a second branch 9 and a second control valve 10. Both ends of the second branch 9 are connected to the fan 1 and the upstream collection pipeline respectively.
  • the second control valve 10 is disposed on the first On the second branch road 9. That is, when the temperature of the compressed air is equivalent to the temperature of the air required for fermentation, or the temperature of the compressed air is lower, then the compressed air does not need heat exchange and cooling, and can flow through the second branch 9 without passing through the heat exchanger 4 , enter directly By entering the upstream summary pipeline, the pressure loss caused by the compressed air flowing through the heat exchanger 4 can be reduced, thereby reducing the operating power of the fan 1 and achieving energy saving.
  • the fermentation system also includes a third branch 11 and a third control valve 12. Both ends of the third branch 11 are connected to the upstream collection pipeline and the downstream collection pipeline respectively.
  • the third control valve 12 is provided with On the third branch 11. That is, when the temperature of the compressed air at the upstream summary pipeline is equivalent to the temperature of the air required for fermentation, the compressed air does not need to be heated or cooled and can flow through the third branch 11 without passing through the refrigeration unit 2 or the heating unit. 3. Directly entering the downstream summary pipeline can also reduce the pressure loss caused by the compressed air flowing through the refrigeration unit 2 or heating unit 3, further saving energy.
  • the fermentation system also includes a fourth branch 13 and a fourth control valve 14.
  • the fourth branch 13 is connected to the downstream summary pipeline and the input end of the heat exchange coil 6.
  • the fourth control valve 14 is provided at Take the fourth branch, Route 13.
  • the fourth control valve 14 can control the flow of compressed air entering the heat exchange coil 6 .
  • the fermentation system further includes a fifth branch 15 and a fifth control valve 16.
  • the fifth branch 15 is configured to input cooling liquid to the heat exchanger 4, and the fifth control valve 16 is disposed in the fifth branch. 15 on. That is, the fifth control valve 16 can be adjusted according to the flow rate of the compressed air and the temperature difference between the temperature of the compressed air and the temperature of the air required for fermentation to adjust the flow rate of the coolant.
  • the fermentation system also includes a sixth control valve 17 and a seventh control valve 18.
  • the sixth control valve 17 is provided on the branch between the refrigeration unit 2 and the upstream collection pipeline.
  • the sixth control valve 17 is provided On the branch between refrigeration unit 2 and the upstream summary pipeline. That is, by controlling the third control valve 12, the sixth control valve 17 and the seventh control valve 18, the flow of gas passing through the refrigeration unit 2, the heating unit 3 and the third branch 11 can be controlled to accurately regulate the downstream summary pipeline. the temperature of the gas.
  • the fermentation system further includes a temperature sensor 20, which is configured to measure the temperature of the fermentation material.
  • the fermentation system also includes a controller and an eighth control valve 19.
  • the eighth control valve 19 is provided on the branch between the heat exchanger 4 and the fan 1 to regulate the gas flow entering the heat exchanger 4.
  • Controller and temperature sensor 20, refrigeration unit 2, heating unit 3, first control valve 8, second control valve 10, third control valve 12, fourth control valve 14, fifth control valve 16, sixth control valve 17 , the seventh control valve 18 and the eighth control valve 19 are all connected through communication.
  • the controller can adjust each control valve according to the real-time temperature of the fermented product to adjust the temperature of the tank 51 and the temperature of the gas participating in the fermentation reaction.
  • this embodiment also provides a control method applied to the above-mentioned fermentation system.
  • the control method includes the following steps:
  • Preheating stage Turn on the fan 1, the second control valve 10, the third control valve 12 and the fourth control valve 14.
  • the tank 51 is preheated;
  • Temperature adjustment stage Put the fermentation material into the tank 51. After the preset time, the real-time temperature of the fermentation material is T1, and the set temperature is T0. Judge the relationship between T1 and T0-k and T0+k respectively. When T1>T0 +k, that is, the real-time temperature is too high, and it enters the cooling mode. When T1 ⁇ T0-k, that is, the real-time temperature is too low, and it enters the heating mode. When T0-k ⁇ T1 ⁇ T0+k, that is, the real-time temperature is suitable, and it enters the heating mode. Fermentation stage, where k is a positive number.
  • the cooling mode includes: the controller controls the second control valve 10 to close, opens the eighth control valve 19 and the fifth control valve 16, and controls the opening A of the fifth control valve 16 to be the initial opening A0, and the compressed air enters the exchanger.
  • Heater 4 performs one-stage cooling. After the preset time period, it is judged whether T1 is greater than T0+k.
  • T1 is greater than T0+k
  • the opening A of the fifth control valve 16 is controlled to increase A1, and after the preset time period is stabilized, it is judged again whether T1 is greater than T0+ k, if T1 is greater than T0+k, then control the opening A of the fifth control valve 16 to increase A1, and repeat the judgment and opening adjustment until T1 ⁇ T0 + k; if A is the maximum value, T1 after the preset time is still greater than T0+k, close the third control valve 12, open the sixth control valve 17, and turn on the refrigeration unit 2 to allow the compressed air to enter the secondary cooling, and control the operating power B of the refrigeration unit 2 to the minimum operating power B0. After the preset time period, determine whether T1 is greater than T0+k.
  • T1 is greater than T0+k
  • the heating mode includes: closing the third control valve 12, opening the seventh control valve 18, and turning on the heating unit 3, and controlling the operating power C of the heating unit 3 to be the minimum operating power C0. That is, at this time, the compressed air flows through the second branch 9 and enters the heating unit 3 for heating.
  • the preset time it is judged whether T1 is less than T0-k, and T1 is less than T0-k, then the operating power C of the refrigeration unit 2 is controlled to increase by C1.
  • control the operating power C of refrigeration unit 2 to increase C1 again, and gradually increase the operating power of heating unit 3 until T1 ⁇ T0- k, entering the fermentation stage.
  • the fermentation stage includes: opening the first control valve 8 and adjusting the openings of the first control valve 8 and the fourth control valve 14 according to the difference between T1 and T0, that is, by adjusting the gas directly entering the tank 51 and the gas entering the heat exchange plate first.
  • the flow rate of the gas entering the tank 51 from the pipe 6 is used to adjust the real-time temperature T1 of the fermented product to ensure that the fermented product is fermented within a suitable temperature range.
  • the above-mentioned fermentation system can realize preheating, heating, cooling and other adjustment functions of the fermentation temperature, and can adapt to different environmental temperatures to ensure that the fermentation temperature meets the requirements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)

Abstract

一种发酵系统,其包括风机、制冷机组、加热机组、换热器、发酵罐和换热盘管。其中,加热机组与制冷机组通过管路并联连接,风机的输出端连通于换热器的高温输入端,换热器的高温输出端连通于加热机组与制冷机组所在支路的上游汇总管路。发酵罐包括罐体和曝气盘,罐体能够承装发酵物,曝气盘设置在罐体内,且位于发酵物的液面以下,罐体上方开设有出气口,出气口连通于大气。换热盘管套设在罐体上,换热盘管的输入端连通于加热机组与制冷机组所在支路的下游汇总管路,换热盘管的输出端连通于曝气盘的输入端。

Description

发酵系统及控制方法
本申请要求申请日为2022年8月22日、申请号为202211003391.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及发酵技术领域,例如涉及一种发酵系统及控制方法。
背景技术
发酵行业使用空压机为发酵罐提供空气,因为压缩的气体温度较高,当环境温度也比较高时,菌液温度也会逐渐上升,这时需要使用外接冷却水为发酵罐降温。而外接冷却水大多与环境温度相同,无法控制发酵罐温度在较低状态。由于不同细菌的最佳发酵温度不同,当环境温度过低时,单独依靠热压缩的空气也可能无法保持发酵所需温度。
发明内容
本申请提供了一种发酵系统,能够对不同发酵温度和不同环境温度的适应性较高,能够灵活调整发酵温度。
本申请一实施例提供了一种发酵系统,包括:
风机;
制冷机组;
加热机组,所述加热机组与所述制冷机组通过管路并联连接;
换热器,所述风机的输出端连通于所述换热器的高温输入端,所述换热器的高温输出端连通于所述加热机组与所述制冷机组所在支路的上游汇总管路;
发酵罐,所述发酵罐包括罐体和曝气盘,所述罐体能够承装发酵物,所述曝气盘设置在所述罐体内,且位于所述发酵物的液面以下,所述罐体上方开设有出气口,所述出气口连通于大气;及
换热盘管,所述换热盘管套设在所述罐体上,所述换热盘管的输入端连通于所述加热机组与所述制冷机组所在支路的下游汇总管路,所述换热盘管的输出端连通于所述曝气盘的输入端。
本申请一实施例还提供了一种控制方法,应用于上述的发酵系统时,能够 对发酵温度进行调控,以适应不同的发酵要求和环境温度。
一实施例提供了一种控制方法,应用于上述的发酵系统,所述控制方法包括以下步骤:
开启风机、第二控制阀、第三控制阀和第四控制阀,对罐体进行预热;
将发酵物放入所述罐体,预设时长后发酵物的实时温度为T1,设定温度为T0,判断T1分别与T0-k及T0+k的大小关系;
基于T1>T0+k的判断结果,关闭所述第二控制阀,开启第八控制阀和第五控制阀,并控制所述第五控制阀的开度A为初始开度A0,所述预设时长后判断T1是否大于T0+k,基于T1>T0+k的判断结果,增大开度A,重复判断和调节开度,直至T1≤T0+k,进入所述发酵阶段;在开度A为最大值的情况下,所述预设时长后判断T1是否大于T0+k,基于T1>T0+k的判断结果,关闭所述第三控制阀,开启第六控制阀,并逐步增加所述制冷机组的运行功率,直至T1≤T0+k,进入所述发酵阶段;
基于T1<T0-k的判断结果,关闭所述第三控制阀,开启第七控制阀,并逐步增加所述加热机组的运行功率,直至T1≥T0-k,进入所述发酵阶段;及
基于T0-k≤T1≤T0+k的判断结果,打开第一控制阀,根据T1和T0的差值调整所述第一控制阀和所述第四控制阀的开度,进入发酵阶段;
其中,k为正数。
附图说明
图1是本申请一实施例所提供的发酵系统的结构示意图;
图2是本申请一实施例所提供的控制方法的流程示意图。
图中:
1、风机;2、制冷机组;3、加热机组;4、换热器;5、发酵罐;51、罐体;
52、曝气盘;6、换热盘管;7、第一支路;8、第一控制阀;9、第二支路;10、第二控制阀;11、第三支路;12、第三控制阀;13、第四支路;14、第四控制阀;15、第五支路;16、第五控制阀;17、第六控制阀;18、第七控制阀;19、第八控制阀;20、温度传感器。
具体实施方式
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆 卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1所示,本实施例所提供的发酵系统包括风机1、制冷机组2、加热机组3、换热器4、发酵罐5和换热盘管6。其中,加热机组3与制冷机组2通过管路并联连接,风机1的输出端连通于换热器4的高温输入端,换热器4的高温输出端连通于加热机组3与制冷机组2所在支路的上游汇总管路。即风机1输出的压缩空气可经过换热器4进行一次降温,再经过制冷机组2进行二级降温,或经过加热机组3进行升温控制。发酵罐5包括罐体51和曝气盘52,罐体51能够承装发酵物,曝气盘52设置在罐体51内,且位于发酵物的液面以下,罐体51上方开设有出气口,出气口连通于大气。换热盘管6套设在罐体51上,换热盘管6的输入端连通于加热机组3与制冷机组2所在支路的下游汇总管路,换热盘管6的输出端连通于曝气盘52的输入端。即压缩空气先经过换热盘管6以对罐体51进行降温或升温,再经过曝气盘52释放到罐体51内,与发酵物直接混合接触参与发酵反应,剩余空气和生成的气体最终从罐体51的出气口排出。
在一实施例中,该发酵系统还包括第一支路7和第一控制阀8,第一支路7的两端分别连通于下游汇总管路和曝气盘52的输入端,第一控制阀8设置在第一支路7上。即压缩空气可以不经过换热盘管6直接进入罐体51,与发酵物直接混合接触并参与发酵反应。第一控制阀8可对直接进入罐体51的压缩空气的流量进行调控。
在一实施例中,该发酵系统还包括第二支路9和第二控制阀10,第二支路9的两端分别连通于风机1和上游汇总管路,第二控制阀10设置在第二支路9上。即当压缩空气的温度与发酵所需空气的温度相当,或压缩空气的温度更低时,此时压缩空气不需要换热降温,即可流经第二支路9,不经过换热器4,直接进 入上游汇总管路处,即可降低压缩空气流经换热器4造成的压力损失,从而可降低风机1的运行功率,实现节能。
在一实施例中,该发酵系统还包括第三支路11和第三控制阀12,第三支路11的两端分别连通于上游汇总管路和下游汇总管路,第三控制阀12设置在第三支路11上。即当上游汇总管路处的压缩空气的温度与发酵所需空气的温度相当时,此时压缩空气不需要升温或降温,即可流经第三支路11,不经过制冷机组2或加热机组3,直接进入下游汇总管路处,同样可降低压缩空气流经制冷机组2或加热机组3造成的压力损失,进一步节能。
在一实施例中,该发酵系统还包括第四支路13和第四控制阀14,第四支路13连通下游汇总管路和换热盘管6的输入端,第四控制阀14设置在第四支路13上。第四控制阀14可对进入换热盘管6的压缩空气的流量进行控制。
在一实施例中,该发酵系统还包括第五支路15和第五控制阀16,第五支路15设置为向换热器4输入冷却液,第五控制阀16设置在第五支路15上。即可根据压缩空气的流量以及压缩空气的温度与发酵所需空气的温度的温差,调节第五控制阀16,以调整冷却液的流量。
在一实施例中,该发酵系统还包括第六控制阀17和第七控制阀18,第六控制阀17设置在制冷机组2与上游汇总管路之间的支路上,第六控制阀17设置在制冷机组2与上游汇总管路之间的支路上。即可通过控制第三控制阀12、第六控制阀17和第七控制阀18,以控制经过制冷机组2、加热机组3和第三支路11的气体的流量,以精准调控下游汇总管路处气体的温度。
在一实施例中,该发酵系统还包括温度传感器20,温度传感器20设置为测量发酵物的温度。
在一实施例中,该发酵系统还包括控制器和第八控制阀19,第八控制阀19设置在换热器4与风机1之间的支路上,以便调控进入换热器4的气体流量。控制器与温度传感器20、制冷机组2、加热机组3、第一控制阀8、第二控制阀10、第三控制阀12、第四控制阀14、第五控制阀16、第六控制阀17、第七控制阀18、第八控制阀19均通讯连接。控制器可根据发酵物的实时温度,通过调整每个控制阀,以调节罐体51的温度以及参与发酵反应的气体温度。
如图2所示,本实施例还提供了应用于上述的发酵系统的控制方法,该控制方法包括以下步骤:
预热阶段:开启风机1、第二控制阀10、第三控制阀12和第四控制阀14,对 罐体51进行预热;
调温阶段:将发酵物放入罐体51,预设时长后发酵物的实时温度为T1,设定温度为T0,判断T1分别与T0-k和T0+k的大小关系,当T1>T0+k时,即实时温度过高,进入降温模式,当T1<T0-k时,即实时温度过低,进入升温模式,当T0-k≤T1≤T0+k时,即实时温度适宜,进入发酵阶段,其中,k为正数。
其中,降温模式包括:控制器控制第二控制阀10关闭,开启第八控制阀19和第五控制阀16,并控制第五控制阀16的开度A为初始开度A0,压缩空气进入换热器4进行一级降温。预设时长后,判断T1是否大于T0+k,若T1大于T0+k,则控制第五控制阀16的开度A增大A1,并再稳定预设时长后,再次判断T1是否大于T0+k,若T1大于T0+k,则再控制第五控制阀16的开度A增大A1,重复判断和开度调节,直至T1≤T0+k;若A为最大值,预设时长后T1仍大于T0+k,则关闭第三控制阀12,开启第六控制阀17,并开启制冷机组2,使压缩空气进入二级降温,控制制冷机组2的运行功率B为最低运行功率B0。预设时长后,判断T1是否大于T0+k,若T1大于T0+k,则控制制冷机组2的运行功率B增加B1,并再稳定预设时长后,再次判断T1是否大于T0+k,若T1大于T0+k,则再次控制制冷机组2的运行功率B增加B1,逐步增加制冷机组2的运行功率,直至T1≤T0+k,进入发酵阶段。
升温模式包括:关闭第三控制阀12,开启第七控制阀18,并开启加热机组3,控制加热机组3的运行功率C为最低运行功率C0。即此时压缩空气流经第二支路9进入加热机组3进行加热,预设时长后,判断T1是否小于T0-k,T1小于T0-k,则控制制冷机组2的运行功率C增加C1,并再稳定预设时长后,再次判断T1是否小于T0-k,T1小于T0-k,则再次控制制冷机组2的运行功率C增加C1,逐步增加加热机组3的运行功率,直至T1≥T0-k,进入发酵阶段。
发酵阶段包括:打开第一控制阀8,根据T1和T0的差值调整第一控制阀8和第四控制阀14的开度,即通过调整直接进入罐体51的气体和先进入换热盘管6再进入罐体51的气体的流量,以调整发酵物的实时温度T1,以保证发酵物在合宜的温度范围内进行发酵。
上述发酵系统应用上述控制方法,即可实现预热、以及对发酵温度的升温、降温等调节功能,可适应不同的环境温度,保证发酵温度达到要求。

Claims (10)

  1. 一种发酵系统,包括:
    风机(1);
    制冷机组(2);
    加热机组(3),所述加热机组(3)与所述制冷机组(2)通过管路并联连接;
    换热器(4),所述风机(1)的输出端连通于所述换热器(4)的高温输入端,所述换热器(4)的高温输出端连通于所述加热机组(3)与所述制冷机组(2)所在支路的上游汇总管路;
    发酵罐(5),所述发酵罐(5)包括罐体(51)和曝气盘(52),所述罐体(51)能够承装发酵物,所述曝气盘(52)设置在所述罐体(51)内,且位于所述发酵物的液面以下,所述罐体(51)上方开设有出气口,所述出气口连通于大气;及
    换热盘管(6),所述换热盘管(6)套设在所述罐体(51)上,所述换热盘管(6)的输入端连通于所述加热机组(3)与所述制冷机组(2)所在支路的下游汇总管路,所述换热盘管(6)的输出端连通于所述曝气盘(52)的输入端。
  2. 根据权利要求1所述的发酵系统,还包括第一支路(7)和第一控制阀(8),所述第一支路(7)的两端分别连通于所述下游汇总管路和所述曝气盘(52)的输入端,所述第一控制阀(8)设置在所述第一支路(7)上。
  3. 根据权利要求2所述的发酵系统,还包括第二支路(9)和第二控制阀(10),所述第二支路(9)的两端分别连通于所述风机(1)和所述上游汇总管路,所述第二控制阀(10)设置在所述第二支路(9)上。
  4. 根据权利要求3所述的发酵系统,还包括第三支路(11)和第三控制阀(12),所述第三支路(11)的两端分别连通于所述上游汇总管路和所述下游汇总管路,所述第三控制阀(12)设置在所述第三支路(11)上。
  5. 根据权利要求4所述的发酵系统,还包括第四支路(13)和第四控制阀(14),所述第四支路(13)设置为连通所述下游汇总管路和所述换热盘管(6)的输入端,所述第四控制阀(14)设置在所述第四支路(13)上。
  6. 根据权利要求5所述的发酵系统,还包括第五支路(15)和第五控制阀(16),所述第五支路(15)设置为向所述换热器(4)输入冷却液,所述第五控制阀(16)设置在所述第五支路(15)上。
  7. 根据权利要求6所述的发酵系统,还包括第六控制阀(17)和第七控制阀(18),所述第六控制阀(17)设置在所述制冷机组(2)与所述上游汇总管路之间的支路上,所述第七控制阀(18)设置在所述加热机组(3)与所述上游汇总管路之间 的支路上。
  8. 根据权利要求7所述的发酵系统,还包括温度传感器(20),所述温度传感器(20)设置为测量所述发酵物的温度。
  9. 根据权利要求8所述的发酵系统,还包括控制器和第八控制阀(19),所述第八控制阀(19)设置在所述换热器(4)与所述风机(1)之间的支路上,所述控制器与所述温度传感器(20)、所述制冷机组(2)、所述加热机组(3)、所述第一控制阀(8)、所述第二控制阀(10)、所述第三控制阀(12)、所述第四控制阀(14)、所述第五控制阀(16)、所述第六控制阀(17)、所述第七控制阀(18)、所述第八控制阀(19)通讯连接。
  10. 一种控制方法,应用于如权利要求9所述的发酵系统,包括:
    开启风机(1)、第二控制阀(10)、第三控制阀(12)和第四控制阀(14),对罐体(51)进行预热;
    将发酵物放入所述罐体(51),预设时长后发酵物的实时温度为T1,设定温度为T0,判断T1分别与T0-k及T0+k的大小关系;
    基于T1>T0+k的判断结果,关闭所述第二控制阀(10),开启第八控制阀(19)和第五控制阀(16),并控制所述第五控制阀(16)的开度A为初始开度A0,所述预设时长后判断T1是否大于T0+k,基于T1>T0+k的判断结果,增大开度A,重复判断和调节开度,直至T1≤T0+k,进入发酵阶段;在开度A为最大值的情况下,所述预设时长后判断T1是否大于T0+k,基于T1>T0+k的判断结果,关闭所述第三控制阀(12),开启第六控制阀(17),并逐步增加所述制冷机组(2)的运行功率,直至T1≤T0+k,进入所述发酵阶段;
    基于T1<T0-k的判断结果,关闭所述第三控制阀(12),开启第七控制阀(18),并逐步增加所述加热机组(3)的运行功率,直至T1≥T0-k,进入所述发酵阶段;及
    基于T0-k≤T1≤T0+k的判断结果,打开第一控制阀(8),根据T1和T0的差值调整所述第一控制阀(8)和所述第四控制阀(14)的开度,进入发酵阶段;
    其中,k为正数。
PCT/CN2023/096977 2022-08-22 2023-05-30 发酵系统及控制方法 WO2024041068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211003391.3 2022-08-22
CN202211003391.3A CN115074239B (zh) 2022-08-22 2022-08-22 一种发酵系统

Publications (1)

Publication Number Publication Date
WO2024041068A1 true WO2024041068A1 (zh) 2024-02-29

Family

ID=83245375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096977 WO2024041068A1 (zh) 2022-08-22 2023-05-30 发酵系统及控制方法

Country Status (2)

Country Link
CN (1) CN115074239B (zh)
WO (1) WO2024041068A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074239B (zh) * 2022-08-22 2022-12-02 亿昇(天津)科技有限公司 一种发酵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108928991A (zh) * 2017-05-27 2018-12-04 广东合即得能源科技有限公司 热电联供的城市社区污水处理站
CN108949544A (zh) * 2018-08-15 2018-12-07 广西益康达生物技术有限公司 节能自动控温微生物好氧发酵设备
CN209193954U (zh) * 2018-10-24 2019-08-02 内蒙古佰惠生生物科技有限公司 发酵罐风能降温系统
CN215327790U (zh) * 2021-04-26 2021-12-28 上海交通大学 一种太阳能驱动的pv/t热泵耦合好氧发酵罐的堆肥系统
CN115074239A (zh) * 2022-08-22 2022-09-20 亿昇(天津)科技有限公司 一种发酵系统及控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB634574A (en) * 1945-10-25 1950-03-22 Harold Selby Craddock Improvements relating to refrigeration and heating apparatus
ES2301429B1 (es) * 2007-06-22 2009-08-03 Inoxidables Alimentarias S.L. Sistema de vinificacion y almacenaje.
CN208076157U (zh) * 2018-05-02 2018-11-09 北京汽车动力总成有限公司 一种冷热冲击试验系统
CN109401954A (zh) * 2018-12-07 2019-03-01 黑龙江省能源环境研究院 沼气发酵反应器外部增温换热系统及工作方法
CN111518678A (zh) * 2020-03-18 2020-08-11 青岛智库生物技术有限公司 一种水溶性发酵液节能灭菌换热系统及方法
CN113775488B (zh) * 2020-06-09 2024-04-19 金风科技股份有限公司 冷却系统及风力发电机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108928991A (zh) * 2017-05-27 2018-12-04 广东合即得能源科技有限公司 热电联供的城市社区污水处理站
CN108949544A (zh) * 2018-08-15 2018-12-07 广西益康达生物技术有限公司 节能自动控温微生物好氧发酵设备
CN209193954U (zh) * 2018-10-24 2019-08-02 内蒙古佰惠生生物科技有限公司 发酵罐风能降温系统
CN215327790U (zh) * 2021-04-26 2021-12-28 上海交通大学 一种太阳能驱动的pv/t热泵耦合好氧发酵罐的堆肥系统
CN115074239A (zh) * 2022-08-22 2022-09-20 亿昇(天津)科技有限公司 一种发酵系统及控制方法

Also Published As

Publication number Publication date
CN115074239A (zh) 2022-09-20
CN115074239B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024041068A1 (zh) 发酵系统及控制方法
US10072850B2 (en) Heat exchanger and method for regulating a heat exchanger
CN207077971U (zh) 一种用于混动汽车的整车热管理装置
CN101178275A (zh) 利用电子膨胀阀控制温度的制冷机组
CN109094330B (zh) 一种汽车空调暖风系统及控制方法
CN108954626A (zh) 一种楼宇供冷供暖系统及其控制方法
CN108730549B (zh) 一种可调节流量的燃气阀
CN114030390A (zh) 混动车辆的热管理系统及其控制方法、车辆
WO2024036860A1 (zh) 一种燃料电池水热管理系统的控制方法
CN112373354B (zh) 一种氢能燃料电池汽车的热管理系统及控制方法
JP2002021653A (ja) ディーゼル機関の給気温度制御装置
CN208452766U (zh) 一种电动车温度控制系统
CN213085806U (zh) 玻璃熔窑稀释风温控制系统
CN110160249A (zh) 换热组件和空调机组
CN211425153U (zh) 一种智能控温型高效节能换热器
CN210425290U (zh) 具有调温除湿功能的空调系统
TW202208865A (zh) 控制半導體晶圓及/或混合體(semiconductor wafers and/or hybrids)的探針台之溫度的溫度控制裝置、系統,以及方法
CN220524251U (zh) 一种空调及其调温系统
JP2003207190A (ja) 空調システム
CN220524250U (zh) 一种空调及其双向调温节能系统
CN220338600U (zh) 一种温控系统和空调
CN217818310U (zh) 一种加热换热装置及应用该装置的净水器
CN215491249U (zh) 一种熔体冷却系统与乙二醇加热系统间换热温控结构
CN209371423U (zh) 水蓄冷调节系统
CN209623412U (zh) 一种气流温度调节装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856160

Country of ref document: EP

Kind code of ref document: A1