WO2024040962A1 - 无线感知方法、通信设备及存储介质 - Google Patents

无线感知方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2024040962A1
WO2024040962A1 PCT/CN2023/083516 CN2023083516W WO2024040962A1 WO 2024040962 A1 WO2024040962 A1 WO 2024040962A1 CN 2023083516 W CN2023083516 W CN 2023083516W WO 2024040962 A1 WO2024040962 A1 WO 2024040962A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
state machine
current
temporary
sensing
Prior art date
Application number
PCT/CN2023/083516
Other languages
English (en)
French (fr)
Inventor
陈诗军
李俊强
陈大伟
夏树强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024040962A1 publication Critical patent/WO2024040962A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/14Systems for determining direction or position line using amplitude comparison of signals transmitted simultaneously from antennas or antenna systems having differently oriented overlapping directivity-characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/08Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • the present application relates to the field of sensing technology, and in particular to a modeling-based wireless sensing method, communication equipment and storage medium in the field of integrated terrestrial communication sensing.
  • Ubiquitous intelligent technology mainly includes ubiquitous sensing technology, ubiquitous computing technology, and product research and development.
  • ubiquitous sensing and ubiquitous computing are generally implemented through wireless communication networks.
  • radar equipment In the field of traditional perception, it is currently mainly realized through radar equipment.
  • the current application scenarios of radar equipment mainly include the perception of air aircraft, such as airport radar; and short-range perception, such as vehicle-mounted radar. Both scenarios are simple scenarios.
  • Ubiquitous perception needs to be able to realize perception in various complex scenarios, such as indoor multipath environment, multiple buildings on the ground, multi-vehicle environment, multi-person environment in shopping malls, etc.
  • complex multipath environments especially when the number of antennas is small and the bandwidth is small, traditional sensing technology cannot meet the needs.
  • embodiments of the present application provide a wireless sensing method, communication equipment and storage medium to overcome the multipath effects of complex environments.
  • the number of receiver antennas is small, or the bandwidth is small and wireless sensing cannot be effectively implemented. Improve wireless perception accuracy in complex environments.
  • Embodiments of this application provide a wireless sensing method, including:
  • the environmental state of the sensing object is determined.
  • An embodiment of the present application also proposes a wireless sensing device, including:
  • the perception modeling module is used to establish a real-time state machine model of the perception object
  • a state determination module configured to determine the environmental state of the sensing object based on the real-time state machine model.
  • An embodiment of the present application also proposes a communication device.
  • the communication device includes a memory, a processor, and a wireless sensing program stored on the memory and executable on the processor.
  • the wireless sensing program is processed by the When the device is executed, the wireless sensing method as described above is implemented.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a wireless sensing program is stored on the computer-readable storage medium.
  • the wireless sensing program is executed by a processor, the wireless sensing method as described above is implemented.
  • the wireless sensing method, communication device and storage medium proposed in the embodiment of the present application establish a real-time state machine model for the sensing object; based on the real-time state machine model, determine the environmental state of the sensing object, thereby through complex multipath
  • the wireless sensing method of the environment using real-time modeling state machines overcomes the multipath effects of complex environments such as indoor urban areas, as well as the problem that wireless sensing cannot be effectively implemented when the number of receiver antennas is small or the bandwidth is small, and improves the performance of complex multipath environments. Wireless sensing accuracy under.
  • Figure 1 is a schematic diagram of the hardware structure of a terminal device that implements various embodiments of the present application
  • FIG. 2 is a communication network system architecture diagram provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of the first embodiment of the wireless sensing method of the present application.
  • Figure 4 is a schematic scene diagram of an embodiment of the wireless sensing method of the present application.
  • Figure 5 is a schematic flow chart of the second embodiment of the wireless sensing method of the present application.
  • Figure 6 is a schematic diagram of the state machine deployment involved in the embodiment of this application.
  • Figure 7 is a state machine switching diagram of a room from unmanned to occupied to unmanned in the embodiment of the present application.
  • Figure 8 is a schematic diagram of differential signal processing and changes in the embodiment of the present application.
  • Figure 9 is a schematic diagram of state changes and environmental state changes after differential signal processing in a scenario in an embodiment of the present application.
  • Figure 10 is a schematic diagram of extracting room state changes based on the daily channel model change pattern of the room in one scenario in the embodiment of the present application;
  • Figure 11 is a functional module schematic diagram of the first embodiment of the wireless sensing device of the present application.
  • the terms "comprises,” “comprises,” or any other variation thereof are intended to cover a non-exclusive inclusion such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also includes not expressly Other elements listed may also include elements inherent to such process, method, article or apparatus. Without further limitation, an element defined by the statement “comprises a" does not exclude the presence of other identical elements in the process, method, article or device including the element. In different embodiments of the present application Components, features, and elements with the same name may have the same meaning or may have different meanings, and their specific meanings need to be determined based on their interpretation in the specific embodiment or further combined with the context of the specific embodiment.
  • first, second, third, etc. may be used herein to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context indicates otherwise.
  • A, B, C means “any of the following: A; B; C; A and B; A and C; B and C; A and B and C"; another example is, “ A, B or C” or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A and B and C". Exceptions to this definition occur only when the combination of elements, functions, steps, or operations is inherently mutually exclusive in some manner.
  • the words “if” or “if” as used herein may be interpreted as “when” or “when” or “in response to determination” or “in response to detection.”
  • the phrase “if determined” or “if (stated condition or event) is detected” may be interpreted as “when determined” or “in response to determining” or “when (stated condition or event) is detected )” or “in response to detecting (a stated condition or event)”.
  • step codes such as S10 and S100 are used in this article for the purpose of describing the corresponding content more clearly and concisely, and do not constitute a substantial restriction on the sequence.
  • the communication device may be a terminal device or a base station device, etc., which needs to be determined according to the specific context. If it is a terminal device, the terminal device may be implemented in various forms.
  • the terminal devices described in this application may include mobile phones, tablet computers, notebook computers, PDAs, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Terminal devices such as wearable devices, smart bracelets, and pedometers, as well as fixed terminals such as base stations, digital TVs, and desktop computers.
  • a terminal device will be taken as an example.
  • the structure according to the embodiments of the present application can also be applied to fixed-type terminals.
  • the terminal device 100 may include: an RF (Radio Frequency, radio frequency) unit 101, a WiFi module 102, an audio output unit 103, and a /V (audio/video) input Input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, and power supply 111 and other components.
  • RF Radio Frequency, radio frequency
  • WiFi Wireless Fidelity
  • /V audio/video
  • sensor 105 sensor
  • display unit 106 user input unit 107
  • interface unit 108 user input unit
  • memory 109 memory 109
  • processor 110 and power supply 111 and other components.
  • the radio frequency unit 101 can be used to receive and send information or signals during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 110; in addition, the uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc. In an embodiment, the radio frequency unit 101 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication, Global Mobile Communications System), GPRS (General Packet Radio Service, General Packet Radio Service), CDMA2000 (Code Division Multiple Access 2000 , Code Division Multiple Access 2000), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access), FDD-LTE (Frequency Division) Duplexing-Long Term Evolution, Frequency Division Duplex Long Term Evolution), TDD-LTE (Time Division Duplexing-Long Term Evolution, Time Division Duplex Long Term Evolution) and 5G, etc.
  • GSM Global System of Mobile communication, Global Mobile Communications System
  • GPRS General Packet Radio Service
  • CDMA2000 Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code
  • WiFi is a short-distance wireless transmission technology.
  • the terminal device 100 can help users send and receive emails, browse web pages, access streaming media, etc. through the WiFi module 102. It provides users with wireless broadband Internet access.
  • FIG. 1 shows the WiFi module 102, it can be understood that it is not a necessary component of the terminal device and can be omitted as needed without changing the essence of the invention.
  • the audio output unit 103 can, when the terminal device 100 is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, etc., receive the audio signal received by the radio frequency unit 101 or the WiFi module 102 or store it in the memory 109 The audio data is converted into audio signals and output as sound. Furthermore, the audio output unit 103 may also provide audio output related to a specific function performed by the terminal device 100 (eg, call signal reception sound, message reception sound, etc.). The audio output unit 103 may include a speaker, a buzzer, or the like.
  • the A/V input unit 104 is used to receive audio or video signals.
  • the A/V input unit 104 may include a graphics processor (Graphics Processing Unit, GPU) 1041 and a microphone 1042.
  • the graphics processor 1041 can process still pictures or images obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Video image data is processed.
  • the processed image frames may be displayed on the display unit 106.
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage media) or sent via the radio frequency unit 101 or WiFi module 102.
  • the microphone 1042 can receive sounds (audio data) via the microphone 1042 in operating modes such as a phone call mode, a recording mode, a voice recognition mode, and the like, and can process such sounds into audio data.
  • the processed audio (voice) data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in a phone call mode.
  • Microphone 1042 may implement various types of noise cancellation (or suppression) algorithms to eliminate (or suppress) noise or interference generated in the process of receiving and transmitting audio signals.
  • the terminal device 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 when the terminal device 100 moves to the ear. and/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes). It can detect the magnitude and direction of gravity when stationary.
  • It can be used to identify applications of mobile phone posture (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.; as for the mobile phone, it can also be configured with fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, Other sensors such as thermometers and infrared sensors will not be described in detail here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, which may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive input numeric or character information and generate key signal input related to user settings and function control of the terminal device.
  • the user input unit 107 may include a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also known as a touch screen, can collect the user's touch operations on or near the touch panel 1071 (for example, the user uses a finger, stylus, or any suitable object or accessory on or near the touch panel 1071 operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device and converts it into a touch signal.
  • the point coordinates are then sent to the processor 110, and can receive and execute the commands sent by the processor 110.
  • the touch panel 1071 can be implemented using various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include but are not limited to one or more of a physical keyboard, function keys (such as volume control keys, switch keys, etc.), trackball, mouse, joystick, etc., specifically here No restrictions.
  • the touch panel 1071 can cover the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it is sent to the processor 110 to determine the type of the touch event, and then the processor 110 determines the type of the touch event according to The type of touch event provides corresponding visual output on display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to implement the input and output functions of the terminal device, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated. The implementation of the input and output functions of the terminal device is not limited here.
  • the interface unit 108 serves as an interface through which at least one external device can be connected to the terminal device 100 .
  • external devices may include a wired or wireless headphone port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 may be used to receive input from an external device (eg, data information, power, etc.) and transmit the received input to one or more elements within the terminal device 100 or may be used to connect the terminal device 100 and the external device 100 . Transfer data between devices.
  • Memory 109 may be used to store software programs as well as various data.
  • the memory 109 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; a storage data area.
  • the area can store data created based on the use of the mobile phone (such as audio data, phone book, etc.), etc.
  • the memory 109 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the processor 110 is the control center of the terminal device 100, using various interfaces and lines to connect various parts of the entire terminal device 100, by running or executing software programs and/or modules stored in the memory 109, and calling the software programs and/or modules stored in the memory 109. data, perform various functions of the terminal device 100 and process data, thereby overall monitoring the terminal device 100.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor.
  • the application processor mainly processes operating systems, user interfaces, application programs, etc., and the modem processor Mainly deals with wireless communications. It can be understood that the above modem processor may not be integrated into the processor 110 .
  • the terminal device 100 may also include a power supply 111 (such as a battery) that supplies power to various components.
  • a power supply 111 such as a battery
  • the power supply 111 may be logically connected to the processor 110 through a power management system, thereby achieving management of charging, discharging, and power consumption management through the power management system. and other functions.
  • the terminal device 100 may also include a Bluetooth module, etc., which will not be described again here.
  • FIG. 2 is an architecture diagram of a communication network system provided by an embodiment of the present application.
  • the communication network system is an LTE system of universal mobile communication technology.
  • the LTE system includes UEs (User Equipment, User Equipment) connected in sequence. )201, E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core Network) 203 and the operator's IP business 204.
  • UEs User Equipment, User Equipment
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core Network
  • UE 201 may be the above-mentioned terminal device 100, which will not be described again here.
  • E-UTRAN202 includes eNodeB2021 and other eNodeB2022, etc.
  • eNodeB2021 can be connected to other eNodeB2022 through backhaul (for example, X2 interface), eNodeB2021 is connected to EPC203, and eNodeB2021 can provide access from UE201 to EPC203.
  • backhaul for example, X2 interface
  • EPC 203 may include MME (Mobility Management Entity, mobility management entity) 2031, HSS (Home Subscriber Server, home user server) 2032, other MME 2033, SGW (Serving Gate Way, service gateway) 2034, PGW (PDN Gate Way, packet data Network Gateway) 2035 and PCRF (Policy and Charging Rules Function, policy and charging functional entity) 2036, etc.
  • MME 2031 is a control node that handles signaling between UE 201 and EPC 203, providing bearer and connection management.
  • HSS2032 is used to provide some registers to manage functions such as the home location register (not shown in the figure), and to save some user-specific information about service characteristics, data rates, etc. All user data can be sent through SGW2034.
  • PGW2035 can provide IP address allocation and other functions for UE 201.
  • PCRF2036 is the policy and charging control policy decision point for business data flows and IP bearer resources. It is the policy and charging execution function. The unit (not shown) selects and provides available policy and charging control decisions.
  • IP services 204 may include the Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) or other IP services.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • the main solution of the embodiment of the present application is to: establish a real-time state machine model for the sensing object; determine the environmental state of the sensing object based on the real-time state machine model, thereby using the real-time modeling state machine for the complex multipath environment
  • the wireless sensing method overcomes the multipath effects of complex environments such as indoor urban areas, as well as the problems of realizing wireless sensing when the number of receiver antennas is small or the bandwidth is small, and improves the accuracy of wireless sensing in complex multipath environments.
  • the embodiments of this application take into account that in the existing related solutions, the actual wireless system equipment has various forms, including large-scale antennas, some with only 4 antennas; some with good synchronization performance, some with poor synchronization performance; and some with limited bandwidth. Large, some have small bandwidth, etc.
  • the number of antennas is relatively small, it is difficult to improve the angle measurement accuracy; when the bandwidth is small, it is difficult to improve the ranging accuracy. Therefore, for complex multipath environments, especially when the number of antennas is small and the bandwidth is small, the traditional TOA (Time of Arrival, Time of Arrival) and AOA (Angle of Arrival, Angle of Arrival) measurement have been used for sensing. Unable to meet demand.
  • the embodiments of this application propose a wireless sensing method that utilizes real-time modeling state machines in complex multipath environments, which can overcome the multipath effects of complex environments such as indoor urban areas.
  • the number of receiver antennas is small or the bandwidth is small to achieve wireless sensing. problem and improve the accuracy of wireless sensing in complex environments.
  • FIG. 3 is a schematic flowchart of the first embodiment of the wireless sensing method of the present application.
  • the wireless sensing method includes:
  • the system architecture involved in the solution of this embodiment includes: a sensing signal transmitting base station and a sensing signal receiving base station.
  • the sensing signal is sent by the sensing signal transmitting base station and received by the sensing signal receiving base station.
  • the sensing signal transmitting base station transmits the sensing signal S at the set time T n and wireless resources, and the sensing signal receiving base station (Br) receives the sensing signal.
  • the sensing signal emitted by the sensing signal transmitting base station can be reflected by various environmental objects P n (P 1 , P 2 ..., P n ,) in the scene and then projected to the sensing signal receiving base station.
  • the channel impulse response of the receiving antenna at different times is obtained, the sensing object is modeled in real time through the state machine, the switching mode of the state machine is obtained, and the real-time State machine model.
  • S20 Determine the environmental state of the sensing object based on the real-time state machine model.
  • real-time modeling information of the state machine is extracted from the real-time state machine model
  • the environmental state of the sensing object is determined.
  • the state type of the sensing object may include at least one of the following:
  • the perceived object is in an unstable state in its current state
  • the perceived object is stable in its current state and has changed compared to the last stable state
  • the perceived object is stable in its current state and has no change from the last stable state.
  • the environmental state of the sensing object may be determined based on different state types of the sensing object.
  • sensing the environmental status of an object may include: sensing whether there are moving objects in the object, and changes in the moving objects relative to the environment, such as whether there are patterns, etc.
  • perception modeling of the sensing object can be performed based on a state machine, and based on a real-time state machine model, real-time modeling information of the state machine is extracted from the real-time state machine model; based on the state machine The real-time modeling information is used to determine the state type of the sensing object.
  • the differential information between the channel impulse response of the receiving antenna at different times and the current state of the state machine can be calculated; based on the differential information, the environment of the sensing object is determined State change rules.
  • the sensing object is modeled based on the state machine, and the real-time modeling information of the state machine is extracted from the real-time state machine model based on the real-time state machine model; based on the state machine Real-time modeling information to determine the state type of the sensing object; based on the state type, determine the environmental state of the sensing object, overcoming the multipath effects of complex environments such as indoor urban areas, as well as the small number of receiver antennas or small bandwidth It solves the problem of being unable to effectively implement wireless sensing and improves the accuracy of wireless sensing in complex multipath environments.
  • the second embodiment of the present application proposes a wireless sensing method.
  • the above step S10 establishing a real-time state machine model for the sensing object includes: :
  • Step S101 perform real-time perception modeling on the sensing object through a state machine, obtain the switching mode of the state machine, and update the real-time state machine model;
  • the sensing signal of the antenna is collected
  • the switching mode of the state machine is obtained, and the real-time state machine model is updated.
  • the current information of the state machine may include the current state, temporary state, timer information, etc. of the state machine.
  • step S20 based on the real-time state machine model, determining the environmental state of the sensing object includes:
  • the real-time modeling information of the state machine includes at least one of the following:
  • the state type of the sensing object includes at least one of the following:
  • the perceived object is in an unstable state in its current state
  • the perceived object is stable in its current state and has changed compared to the last stable state
  • the perceived object is stable in its current state and has no change from the last stable state.
  • S203 Determine the environmental state of the sensing object based on the state type of the sensing object.
  • the environmental state change pattern of the sensing object is determined.
  • FIG. 4 the specific scenario of this embodiment can be referred to as shown in FIG. 4 .
  • the sensing signal transmitting base station transmits the sensing signal S at the set time T n and wireless resources, and the sensing signal receiving base station (Br) receives the sensing signal.
  • the sensing signal emitted by the sensing signal transmitting base station can be reflected by various environmental objects P n (P 1 , P 2 ..., P n ,) in the scene and then projected to the sensing signal receiving base station.
  • the channel impulse response of the receiving antenna at different times is obtained, and the sensing object is modeled based on the state machine to determine the state type of the sensing object.
  • the state machine can be deployed on the base station or on the server, which is not specifically limited in this embodiment.
  • the sensing object refers to a specific environment, such as a room, a parking lot, or a forest area (such as a certain mountain).
  • the state machine has the function of perceptual computing and expresses the switching relationship between various stable states, involving state and maintenance state jump relationships. Its input is the perceptual signal, and the output is the state switching situation.
  • a timer is set on the state machine, and the information of the state machine includes: state machine switching information (or historical switching record), current state, temporary state, timer information, etc. Switching information of the state machine, including but not limited to: time, number, and status before and after switching.
  • One receiving base station can correspond to one or more state machines, and one receiving antenna can correspond to one state machine or multiple state machines. This embodiment is not limited to this. .
  • the sensing signal receiving base station receives the sensing signal, samples the sensing signal of each receiving antenna, and obtains the channel impulse response vector of each receiving antenna at the corresponding time based on the sampling signal as R mn (t), where, m, n is the number of the oscillator in the antenna array, m ⁇ [0,M-1], n ⁇ [0,N-1], M and N are both integers greater than 1, and t is time.
  • K is the total number of states
  • K is an integer
  • S' is the temporary state of the state machine
  • K' is the current state number
  • K' is an integer
  • the initial state S(0) is the current state
  • the initial value of K is 0,
  • the switching information of the state machine at the current moment is recorded, that is, the state machine Whether there is a switch, and if so, which state it switches from to which state.
  • the switching information of the state machine includes but is not limited to: time, number, and the states before and after the switch.
  • the state of the state machine corresponds to a stable wireless propagation environment, and the value of each state stores the channel impulse response value of a stable receiving antenna.
  • the temporary state of the state machine is introduced to discover another stable state after the current stable state.
  • the value of the temporary state changes to the new channel impulse response value of the receiving antenna.
  • timer C is set to 0 and starts timing.
  • the status types of sensing objects can include the following:
  • the first type the sensing object is in an unstable state in the current state.
  • the state of the sensing object is judged by the recorded information of the state machine to be constantly changing. It is unstable in the current state, such as a landslide or people talking constantly in the conference room. Or walking around, cars coming and going in the parking lot, etc.;
  • Figure 7 is a state machine switching diagram for the room from unoccupied to occupied to unoccupied.
  • the conference room changes from an unmanned scene (S0) when no one is having a meeting to an occupied scene (S1) during the meeting, and then from an occupied scene (S1) during the meeting to an unmanned scene after the meeting ends (S2), where S ' is the temporary state of the state machine.
  • the state machine compared with the two states S2 and S1 of the state machine, they are both in a stable state.
  • the tables and chairs in the conference room may change before and after the meeting, so the two states S2 and S1 of the state machine are different.
  • the conference room is stable in the current state S2, and has changed relative to the last stable state S1; thus, all state machines and their switching moments can be tracked, and the state information of the state machines can be extracted.
  • the third type the perceived object is stable in the current state and has no change from the last stable state, that is, the environment has always been in a stable state and has not changed.
  • real-time perception modeling of the sensing object can be performed through a state machine, and real-time modeling information of the state machine is extracted from the real-time state machine model; based on the real-time modeling information of the state machine, it is determined The state type of the sensing object is determined, and based on the state type of the sensing object, the environmental state of the sensing object is determined.
  • the real-time modeling information of the state machine may include at least one of the following:
  • the current state of the state machine such as the stable state before people enter the conference room;
  • the temporary state of the state machine can be used to discover the stable state
  • the determination can be made after S1 and S1:
  • Scenario 1 If the timer C is less than the preset time threshold 1, it is judged that someone has entered the room and is active;
  • Scenario 2 Determine the landslide status of the mountain scene. According to the pre-landslide status, if the state machine timer C is less than the preset time threshold 1, it is judged to be risky; if the state machine switches to another stable state, it is judged Finished for Landslide.
  • the differential information between the channel impulse response of the antenna at different times and the current state of the state machine is calculated; based on the differential information, the environmental state change pattern of the sensing object is determined.
  • This embodiment mainly perceives and determines the environmental state change rules of the sensing object in an unstable state.
  • the channel impulse response of the receiving antenna at different times and the current state corresponding to the state machine are obtained; the channel impulse response of the receiving antenna at different times is calculated and Difference information between the current states corresponding to the state machine.
  • ⁇ m,n (t) is the differential information between the channel impulse response R mn (t) of the receiving antenna at the current time t and the current state S(K') corresponding to the state machine.
  • the differential information is analyzed and differential signal characteristics in the differential information are extracted.
  • the differential signal characteristics include but are not limited to phase, amplitude, time period, etc.;
  • the environmental state change rule of the sensing object is determined according to the state change curve.
  • Examples of scenarios are as follows: For example, the breathing signals of people in the room are sensed and analyzed based on the perceived breathing signals of the people to obtain the breathing patterns of the people in the room, and then the state change patterns when there are people in the room.
  • the environmental state change rules after differential signal processing can be referred to as shown in Figure 9.
  • a real-time state machine model is established for the sensing object, and the environmental state of the sensing object is determined based on the real-time state machine model, specifically by collecting the sensing signal of the antenna; based on the sensing signal of the antenna, the antenna is obtained
  • the channel impulse response based on the channel impulse response of the antenna and the current information of the state machine (current state, temporary state, timer information), obtain the switching mode of the state machine, and update the real-time state machine model, from Extract real-time modeling information of the state machine from the real-time state machine model; determine the state type of the sensing object based on the real-time modeling information of the state machine; based on the state type of the sensing object, Determine the environmental state of the sensing object; wherein, for the sensing object in an unstable state, calculate the differential information between the channel impulse response of the receiving antenna at different times and the current state corresponding to the state machine; according to the differential information, The environmental state change rules of the sensing objects are analyzed and obtained.
  • the wireless sensing method of using real-time modeling state machines in complex multipath environments the influence of multipath in complex environments such as indoor urban areas, as well as the small number of receiver antennas, or It solves the problem of wireless sensing when the bandwidth is small, and improves the accuracy of wireless sensing in complex multipath environments.
  • the following describes in detail the real-time perception modeling of the sensing object through a state machine, extracting the real-time modeling information of the state machine from the real-time state machine model; real-time modeling based on the state machine Information, a specific solution for determining the state type of the sensing object:
  • the sensing signal transmitting base station transmits the sensing signal S at the set time T n and wireless resources, and the sensing signal receiving base station (Br) receives the sensing signal.
  • the sensing signal emitted by the sensing signal transmitting base station can be reflected by various environmental objects P n (P 1 , P 2 ..., P n ,) in the scene and then projected to the sensing signal receiving base station.
  • the sensing object is modeled based on the state machine (referred to as the state machine in the following specific embodiments), and the sensing object is determined. Status type.
  • the sensing signal receiving base station receives the sensing signal, samples the sensing signal of each receiving antenna, and obtains the channel impulse response vector of each receiving antenna at the corresponding time based on the sampling signal as R mn (t), where, m, n is the number of the oscillator in the antenna array, m ⁇ [0,M-1], n ⁇ [0,N-1], M and N are both integers greater than 1, and t is time.
  • K is the total number of states
  • K is an integer
  • S' is the temporary state of the state machine
  • K' is the current state number
  • K' is an integer
  • the initial state S(0) is the current state
  • the initial value of K is 0,
  • the switching information of the state machine at the current moment is recorded, that is, the state machine Whether there is a switch, and if so, which state it switches from to which state.
  • the switching information of the state machine includes but is not limited to: time, number, and the states before and after the switch.
  • the state of the state machine corresponds to a stable wireless propagation environment, and the value of each state stores the channel impulse response value of a stable receiving antenna.
  • the temporary state of the state machine is introduced to discover another stable state after the current stable state.
  • the value of the temporary state changes to the new channel impulse response value of the receiving antenna.
  • timer C In the initial state, timer C is set to 0 and starts timing. Timer C is set with a certain timeout. When the timeout reaches and the switching condition is met, the state machine performs a switching operation. In addition, regardless of whether the timer timeout is reached and the clearing condition is met, the timer will be cleared. The specific actions of the timer will differ according to different scenarios. The different switching types of the state machine will be described in detail later on the timer.
  • performing real-time perception modeling on the sensing object through a state machine, obtaining the switching mode of the state machine, and updating the real-time state machine model includes:
  • the switching mode of the state machine is obtained, and the real-time state machine model is updated
  • obtaining the switching mode of the state machine based on the channel impulse response of the antenna and the current information of the state machine includes:
  • the switching mode of the state machine is obtained.
  • the sensing signal is received by the sensing signal receiving base station, the sensing signal of each receiving antenna is sampled, and the channel impulse response R mn (t) of the receiving antenna at the current moment is obtained based on the sensing signal of the receiving antenna.
  • the state of the state machine is updated in real time based on the switching mode of the state machine at the current moment.
  • the switching method of the sensing state machine is determined based on the channel impulse response R mn (t) of the receiving antenna at the current moment, the current state (S(K'), the temporary state (S'(K'))), and the timer C. , and perform corresponding operations (for example, do not switch, switch to a new state, or switch to a previous existing state) to complete the current moment, real-time modeling of the update of the perceptual state machine, where the process of real-time update of the state machine, It is the process of real-time modeling.
  • the state type of the sensing object can be determined based on the state update changes of the state machine and the current count of the timer.
  • determining the state type of the sensing object based on the real-time modeling information of the state machine may include:
  • the state type of the sensing object is determined based on the historical switching records, current state, temporary state, and timer information of the state machine.
  • the step of updating the real-time state machine model includes:
  • the real-time state machine model is updated.
  • the switching method based on the state machine to operate the real-time state machine model includes at least one of the following:
  • the temporary state of the state machine is updated to the temporary state of the state machine at the current moment.
  • the channel impulse response of the antenna clears the timer
  • the switching operation of the state machine is performed, and the temporary state and current state number of the state machine are changed to the corresponding state with the greatest similarity among the existing state machines. and number, clear the timer, and record the switching information of the state machine;
  • the state machine is executed to generate a new state operation and a switching operation, the timer is not cleared, and the switching information of the state machine is recorded.
  • the method further includes: saving the current state of the state machine.
  • the state type of the sensing object includes at least one of the following:
  • the perceived object is in an unstable state in its current state
  • the perceived object is stable in its current state and has changed compared to the last stable state
  • the perceived object is stable in its current state and has no change from the last stable state.
  • the state types of perceived objects include:
  • the first type the sensing object is in an unstable state in the current state.
  • the state of the sensing object is judged by the recorded information of the state machine to be constantly changing. It is unstable in the current state, such as a landslide or people talking constantly in the conference room. Or walking around, cars coming and going in the parking lot, etc.;
  • the second type the sensing object is stable in the current state and has changed relative to the last stable state.
  • the conference room changes from an unmanned scene with no one having a meeting to a occupied scene during the meeting (S1), and then from an occupied scene during the meeting (S1). S1) to the unmanned scene (S2) after the meeting.
  • S1 the unmanned scene
  • S2 the unmanned scene
  • the tables and chairs in the conference room before and after the meeting may There are changes, so that the two states of S2 and S1 of the state machine are different, and the conference room is stable in the current state S2, and has changed relative to the last stable state S1; thus, all state machines and their switching moments can be tracked, and the states can be extracted machine status information.
  • the third type the perceived object is stable in the current state and has no change from the last stable state, that is, the environment has always been in a stable state and has not changed.
  • the sensing object is modeled based on the state machine to determine the state type of the sensing object.
  • the switching method of the state machine includes at least one of the following:
  • the method before obtaining the switching mode of the state machine, the method further includes:
  • determining that the state machine maintains the current state includes at least one of the following:
  • the count value of the timer does not exceed the set time threshold
  • the channel impulse response of the antenna at the current moment is not similar to the temporary state of the state machine at the current moment, and the timer is cleared;
  • the channel impulse response of the antenna at the current moment is similar to the temporary state of the state machine at the current moment, and the timer continues to count.
  • the method for determining that the state machine switches to a historical existing state includes at least one of the following:
  • the count value of the timer exceeds the set time threshold
  • the channel impulse response of the antenna at the current moment is similar to the temporary state of the state machine at the current moment, and the temporary state is not similar to the current state;
  • the temporary state and current state number are changed to the corresponding state and number with the greatest similarity in the existing state machine
  • the timer does not clear.
  • the method for determining that the state machine switches to a new state includes at least one of the following:
  • the count value of the timer exceeds the set time threshold
  • the channel impulse response of the receiving antenna at the current moment is similar to the temporary state of the state machine at the current moment, and the temporary state is not similar to all states in the saved state machine.
  • the state machine generates a new state, and switch to a new state;
  • the timer does not clear.
  • the first switching method keep the current state without switching
  • the following method determines the switching mode of the state machine at the current moment to maintain the current state without switching:
  • the timer C continues to count, and the state machine at the current moment maintains the current state without switching.
  • the second switching method switching to an existing historical state or switching to a similar state
  • the switching mode of the state machine at the current moment is determined by the following method: switching to a historical existing state or switching to a similar state:
  • the saved state machine Traverse all current states S(K) and compare the similarity between the temporary state S' and each current state S(i), i ⁇ K;
  • the timer is not cleared and the switching information of the state machine is recorded.
  • the third switching method switching to a new state
  • the switching mode of the state machine at the current moment is determined to switch to a new state in the following way:
  • the timer is not cleared and the switching information of the state machine is recorded.
  • the step of determining whether the channel impulse response of the receiving antenna at the current moment is similar to the temporary state of the state machine at the current moment may include:
  • the similarity does not exceed the preset similarity threshold, it is determined that the channel impulse response of the receiving antenna at the current moment is not similar to the temporary state of the state machine at the current moment;
  • the channel impulse response of the receiving antenna at the current moment is similar to the temporary state of the state machine at the current moment.
  • the calculation of the similarity between the channel impulse response of the receiving antenna at the current moment and the temporary state of the state machine at the current moment includes but is not limited to the following solutions:
  • Judging whether the states are similar includes: setting the similarity threshold 2. If the similarity exceeds the preset similarity threshold 2, it is judged to be similar, otherwise it is judged to be dissimilar.
  • the state with small change within the time threshold can be extracted as the unmanned state.
  • Figure 10 is a diagram of the channel model changes in the room for one day.
  • the synchronized sensing signal transmitting base station transmits the sensing signal at a set time and wireless resource, and the sensing signal receiving base station receives the sensing signal.
  • the synchronized sensing signal transmitting base station transmits the sensing signal at a set time and wireless resource, and the sensing signal receiving base station receives the sensing signal.
  • the processed status signal can be obtained, and the human breathing change process can be analyzed from the processed sensory signal.
  • the room state changes are extracted based on the daily channel model change rules of the room, as shown in Figure 10.
  • the specific implementation process is as follows:
  • R mn (t) at this time is similar to the temporary state of S', and the temporary state S' is not similar to the current state S, then the saved state machine Traverse all states S(K) in it, that is, compare the similarity between S' and S(0), S(1), S(2) and S(3).
  • this embodiment establishes a real-time state machine model for the sensing object; based on the real-time state machine model, the environmental state of the sensing object is determined, thereby solving the state perception and sensing signal analysis of complex environments. , can identify different steady-state characteristics of the environment, and can identify real-time changes in the environment, and associate the state machine with the actual scene state type. It can use the wireless perception of the real-time modeling state machine for complex multipath environments to overcome the complex problems such as indoor urban areas. The influence of environmental multipath, as well as the problem that wireless sensing cannot be effectively implemented when the number of receiver antennas is small or the bandwidth is small, improves the accuracy of wireless sensing in complex multipath environments.
  • an embodiment of the present application also proposes a wireless sensing device.
  • the wireless sensing device includes: a type determination module, configured to determine the state type of the sensing object based on sensing modeling;
  • An environment state determination module configured to determine the environment state of the sensing object based on the state type.
  • the embodiment of this application also proposes a wireless sensing device, including:
  • the perception modeling module is used to establish a real-time state machine model of the perception object
  • a state determination module configured to determine the environmental state of the sensing object based on the real-time state machine model.
  • an embodiment of the present application also proposes a communication device.
  • the communication device includes a memory, a processor, and a wireless sensing program stored on the memory and executable on the processor.
  • the wireless sensing program is When the processor is executed, the wireless sensing method as described in the above embodiments is implemented.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a wireless sensing program.
  • the wireless sensing program is executed by the processor, the wireless sensing program as described in the above embodiments is implemented. Perception method.
  • the wireless sensing method, device, communication device and storage medium proposed in the embodiments of this application establish a real-time state machine model for the sensing object; based on the real-time state machine model, determine the environmental state of the sensing object, Therefore, the wireless sensing method using real-time modeling state machines in complex multipath environments overcomes the multipath effects of complex environments such as indoor urban areas, as well as the problems of realizing wireless sensing when the number of receiver antennas is small or the bandwidth is small, and improves the efficiency of wireless sensing. Wireless sensing accuracy in complex multipath environments.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic disk, optical disk), including several instructions to cause a communication device (which can be a mobile phone, a computer, a server, a controlled terminal, or a network device, etc.) to execute the method of each embodiment of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线感知方法、通信设备及存储介质,该方法包括:对感知对象建立实时状态机模型;基于所述实时状态机模型,确定所述感知对象的环境状态。

Description

无线感知方法、通信设备及存储介质
相关申请
本申请要求于2022年8月26日申请的、申请号为202211035098.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及感知技术领域,尤其涉及一种地面通信感知一体化领域的基于建模的无线感知方法、通信设备及存储介质。
背景技术
随着技术的发展,泛在智能化技术给人们生活带来极大的便利和全新的体验,同时也深入到各行各业,通过智能实现产业升级,提升产业效率。
泛在智能化技术主要包括泛在感知技术、泛在计算技术、以及产品研发等方面。目前在部署的泛在系统中,一般通过无线通信网实现泛在感知和泛在计算。
其中,在传统感知领域,目前主要是通过雷达设备实现,而目前雷达设备的应用场景主要有对空飞机的感知,如机场雷达;以及短距离感知,如车载雷达。这两个场景均属于简单场景。泛在感知需要能够在各种复杂场景下实现感知,比如室内多径环境、地面多建筑物,多车环境,商场多人环境等等。目前针对复杂多径环境,尤其是在天线数少,带宽小的情况,利用传统的感知技术已无法满足需求。
发明内容
针对上述技术问题,本申请实施例提供一种无线感知方法、通信设备及存储介质,以克服复杂环境多径影响,同时接收机天线数少,或者带宽小的情况无法有效实现无线感知的问题,提高复杂环境下的无线感知准确性。
本申请实施例提供一种无线感知方法,包括:
对感知对象建立实时状态机模型;
基于所述实时状态机模型,确定所述感知对象的环境状态。
本申请实施例还提出一种无线感知装置,包括:
感知建模模块,用于对感知对象建立实时状态机模型;
状态确定模块,用于基于所述实时状态机模型,确定所述感知对象的环境状态。
本申请实施例还提出一种通信设备,所述通信设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线感知程序,所述无线感知程序被所述处理器执行时实现如上所述的无线感知方法。
本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有无线感知程序,所述无线感知程序被处理器执行时实现如上所述的无线感知方法。
本申请实施例提出的一种无线感知方法、通信设备及存储介质,对感知对象建立实时状态机模型;基于所述实时状态机模型,确定所述感知对象的环境状态,从而,通过复杂多径环境的利用实时建模状态机的无线感知方法,克服了室内城区等复杂环境多径影响,以及接收机天线数少,或者带宽小的情况无法有效实现无线感知的问题,提高了复杂多径环境下的无线感知准确性。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实现本申请各个实施例的一种终端设备的硬件结构示意图;
图2为本申请实施例提供的一种通信网络系统架构图;
图3为本申请无线感知方法第一实施例的流程示意图;
图4为本申请无线感知方法实施例的场景示意图;
图5为本申请无线感知方法第二实施例的流程示意图;
图6为本申请实施例涉及的状态机部署示意图;
图7为本申请实施例中房间从无人到有人再到无人的状态机切换图;
图8为本申请实施例中差分信号处理及变化原理图;
图9为本申请实施例中一种场景下状态变化及差分信号处理后的环境状态变化规律示意图;
图10为本申请实施例中一种场景下基于房间一天信道模型变化规律提取房间状态变化示意图;
图11为本申请无线感知装置第一实施例的功能模块示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
在一实施例中,在本文中,采用了诸如S10、S100等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。
在本申请中,通信设备可以为终端设备,也可以为基站设备等,需要根据具体上下文来加以确定,若为终端设备,则终端设备可以以各种形式来实施。例如,本申请中描述的终端设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等终端设备,以及诸如基站、数字TV、台式计算机等固定终端。
后续描述中将以终端设备为例进行说明,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。
请参阅图1,其为实现本申请各个实施例的一种终端设备的硬件结构示意图,该终端设备100可以包括:RF(Radio Frequency,射频)单元101、WiFi模块102、音频输出单元103、A/V(音频/视频)输 入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的终端设备结构并不构成对终端设备的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对终端设备的各个部件进行具体的介绍:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。在一实施例中,射频单元101还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(Code Division Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工长期演进)、TDD-LTE(Time Division Duplexing-Long Term Evolution,分时双工长期演进)和5G等。
WiFi属于短距离无线传输技术,终端设备100通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于终端设备的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
音频输出单元103可以在终端设备100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端设备100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。
A/V输入单元104用于接收音频或视频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
终端设备100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。在一实施例中,光传感器包括环境光传感器及接近传感器,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端设备100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端设备的用户设置以及功能控制有关的键信号输入。在一实施例中,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。在一实施例中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。在一实施例中,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。在一实施例中,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。
在一实施例中,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端设备的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端设备的输入和输出功能,具体此处不做限定。
接口单元108用作至少一个外部装置与终端设备100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备100内的一个或多个元件或者可以用于在终端设备100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,在一实施例中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。在一实施例中,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端设备100的控制中心,利用各种接口和线路连接整个终端设备100的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端设备100的各种功能和处理数据,从而对终端设备100进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端设备100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,终端设备100还可以包括蓝牙模块等,在此不再赘述。
为了便于理解本申请实施例,下面对本申请的终端设备所基于的通信网络系统进行描述。
请参阅图2,图2为本申请实施例提供的一种通信网络系统架构图,该通信网络系统为通用移动通信技术的LTE系统,该LTE系统包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。
在一实施例中,UE201可以是上述终端设备100,此处不再赘述。
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。在一实施例中,eNodeB2021可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021连接到EPC203,eNodeB2021可以提供UE201到EPC203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体)2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033,SGW(Serving Gate Way,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy and Charging Rules Function,政策和资费功能实体)2036等。在一实施例中,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035可以提供UE 201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)或其它IP业务等。
虽然上述以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本申请不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如GSM、CDMA2000、WCDMA、TD-SCDMA以及未来新的网络系统(如5G)等,此处不做限定。
基于上述终端设备硬件结构以及通信网络系统,提出本申请各个实施例。
本申请实施例的主要解决方案是:对感知对象建立实时状态机模型;基于所述实时状态机模型,确定所述感知对象的环境状态,从而,通过对复杂多径环境利用实时建模状态机的无线感知方法,克服了室内城区等复杂环境多径影响,以及接收机天线数少,或者带宽小的情况实现无线感知的问题,提高了复杂多径环境下的无线感知准确性
本申请实施例考虑到,在现有相关方案中,实际无线系统设备形态多种多样,有大规模天线,有的只有4天线;有的同步性能好,有的同步性能不好;有的带宽大,有的带宽小等等。在天线数比较少的情况,测角精度就很难提高;在带宽小的时候,测距精度很难提高。因此,针对复杂多径环境,尤其是在天线数少,带宽小的情况下,利用传统的TOA(Time of Arrival,到达时间)和AOA(Angle of Arrival,到达角度)测量进行感知的方法,已无法满足需求。
因此,本申请实施例提出复杂多径环境的利用实时建模状态机的无线感知方法,可以克服室内城区等复杂环境多径影响,同时接收机天线数少,或者带宽小的情况实现无线感知的问题,提高复杂环境下的无线感知准确性。
具体地,参照图3,图3为本申请无线感知方法第一实施例的流程示意图。
如图3所示,本申请第一实施例提出一种无线感知方法,该无线感知方法,包括:
S10,对感知对象建立实时状态机模型;
具体地,本实施例方案涉及的系统架构包括:感知信号发射基站和感知信号接收基站。
其中,感知信号通过感知信号发射基站发出,并通过感知信号接收基站接收。
本实施例的具体场景可以参照图4所示。
如图4所示,感知信号发射基站(RS)在设定的时间Tn和无线资源上发射感知信号S,感知信号接收基站(Br)接收感知信号。感知信号发射基站发出的感知信号可以被场景中的各种环境物体Pn(P1、P2...、Pn,)反射后,投射到感知信号接收基站上。
通过采集感知信号接收基站的各接收天线的感知信号,获取不同时刻接收天线的信道冲击响应,通过状态机对所述感知对象进行实时感知建模,获取所述状态机的切换方式,并更新实时状态机模型。
S20,基于所述实时状态机模型,确定所述感知对象的环境状态。
在一实施例中,从所述实时状态机模型中提取所述状态机的实时建模信息;
基于所述状态机的实时建模信息,确定所述感知对象的状态类型;
基于所述感知对象的状态类型,确定所述感知对象的环境状态。
在一实施例中,感知对象的状态类型可以包括至少以下之一:
感知对象在当前状态下为非稳定状态;
感知对象在当前状态下稳定,且相对上一次稳定状态有变化;
感知对象在当前状态下稳定,且相对上一次稳定状态无变化。
可以基于感知对象的不同状态类型,确定所述感知对象的环境状态。
在一实施例中,感知对象的环境状态可以包括:感知对象是否有活动物体,以及活动物体相对环境的变化情况,比如是否有规律等。
在一实施例中,可以基于状态机对所述感知对象进行感知建模,基于实时状态机模型,从所述实时状态机模型中提取所述状态机的实时建模信息;基于所述状态机的实时建模信息,确定所述感知对象的状态类型。
在一实施例中,对非稳定状态下的感知对象,可以计算不同时刻接收天线的信道冲击响应与状态机的当前状态之间的差分信息;根据所述差分信息,确定所述感知对象的环境状态变化规律。
本实施例通过上述方案,基于状态机对所述感知对象进行感知建模,基于实时状态机模型,从所述实时状态机模型中提取所述状态机的实时建模信息;基于所述状态机的实时建模信息,确定感知对象的状态类型;基于所述状态类型,确定所述感知对象的环境状态,克服了室内城区等复杂环境多径影响,以及接收机天线数少,或者带宽小的情况无法有效实现无线感知的问题,提高了复杂多径环境下的无线感知准确性。
如图5所示,本申请第二实施例提出一种无线感知方法,基于上述图3所示的实施例,该无线感知方法实施例中,上述步骤S10,对感知对象建立实时状态机模型包括:
步骤S101,通过状态机对所述感知对象进行实时感知建模,获取所述状态机的切换方式,并更新实时状态机模型;
具体地,采集天线的感知信号;
基于所述天线的感知信号,获取所述天线的信道冲击响应;
基于所述天线的信道冲击响应以及状态机的当前信息,获取所述状态机的切换方式,并更新所述实时状态机模型。
在一实施例中,状态机的当前信息可以包括状态机的当前状态、临时状态、计时器信息等。
上述步骤S20,基于所述实时状态机模型,确定所述感知对象的环境状态包括:
S201,从所述实时状态机模型中提取所述状态机的实时建模信息;
在一实施例中,所述状态机的实时建模信息包括至少以下之一:
状态机的历史切换记录;
状态机的当前状态;
状态机的临时状态;
状态机的计时器信息。
S202,基于所述状态机的实时建模信息,确定所述感知对象的状态类型;
在一实施例中,所述感知对象的状态类型包括至少以下之一:
感知对象在当前状态下为非稳定状态;
感知对象在当前状态下稳定,且相对上一次稳定状态有变化;
感知对象在当前状态下稳定,且相对上一次稳定状态无变化。
S203,基于所述感知对象的状态类型,确定所述感知对象的环境状态。
对非稳定状态下的感知对象,计算不同时刻天线的信道冲击响应与所述状态机的当前状态之间的差分信息;
根据所述差分信息,确定所述感知对象的环境状态变化规律。
具体地,本实施例的具体场景可以参照图4所示。
如图4所示,感知信号发射基站(RS)在设定的时间Tn和无线资源上发射感知信号S,感知信号接收基站(Br)接收感知信号。感知信号发射基站发出的感知信号可以被场景中的各种环境物体Pn(P1、P2...、Pn,)反射后,投射到感知信号接收基站上。
通过采集感知信号接收基站的各接收天线的感知信号,获取不同时刻接收天线的信道冲击响应,基于状态机对感知对象进行感知建模,确定感知对象的状态类型。
其中,本实施例中状态机可以部署在基站上,也可以部署在服务器上,本实施例对此不作具体限定。
其中,感知对象,是指一个具体的环境,比如房间、停车场、山林区域(比如某个山体)。
状态机,具有感知计算的功能,表现的是各个稳定状态之间的切换关系,涉及状态以及维护的状态跳转关系,其输入为感知信号,输出为状态的切换情况。状态机上设置有计时器,状态机的信息包括:状态机的切换信息(或称历史切换记录)、当前状态、临时状态、计时器信息等。状态机的切换信息,包括但不限于:时间、编号以及切换前后的状态。
其中,状态机可以为一个或多个,其部署示意图可以参照图6所示。状态机实时更新的过程,就是实时建模的过程,一个接收基站可以对应一个或多个状态机,一个接收天线可以对应一个状态机,也可以对应多个状态机,本实施例对此不限定。
具体地,感知信号接收基站接收感知信号,对每个接收天线的感知信号进行采样,并根据采样信号,获得每个接收天线对应时刻的信道冲击响应向量为Rm.n(t),其中,m,n为天线阵列中的振子编号,m∈[0,M-1],n∈[0,N-1],M,N均为大于1的整数,t为时间。
如图6所示,设状态机集合为S(K),设定状态机的初始状态S(0)为当前的信道冲击响应向量,即为Rm.n(t)。K为状态总数编号,K为整数,S’为状态机的临时状态,K’为当前状态编号,K’为整数。
在初始状态下,初始状态S(0)为当前状态,K初始值为0,且临时状态S’=S(0),K’=K,并记录当前时刻状态机的切换信息,即状态机是否有切换,如有切换,是从哪个状态切换到哪个状态,状态机的切换信息包括但不限于:时间、编号以及切换前后的状态。
其中,状态机的状态,对应一个稳定的无线传播环境,每个状态的值对应存储的是一个稳定的接收天线的信道冲击响应值。
引入状态机的临时状态,是为了发现当前稳定状态之后的另一个稳定状态,当检测到环境变化时,临时状态的值就变化为接收天线的新的信道冲击响应值。
在初始状态下,计时器C设为0并开始计时。
其中,感知对象的状态类型可以包括以下几种:
第一种:感知对象在当前状态下为非稳定状态,比如,通过状态机的记录信息判断感知对象的状态一直在变化,在当前状态下不稳定,比如山体滑坡,会议室开会不停有人说话或走动,停车场车来车往等场景;
第二种:感知对象在当前状态下稳定,且相对上一次稳定状态有变化。如图7所示,图7为房间从无人到有人再到无人的状态机切换图。
比如,会议室从无人开会的无人场景(S0)到开会时的有人场景(S1),再从开会时的有人场景(S1)到会议结束后的无人场景(S2),其中,S’为状态机的临时状态。
对状态机而言,状态机的S2与S1两个状态相比,都是处于一种稳定状态,但是,会议前后会议室的桌椅可能有变化,这样状态机的S2与S1两个状态不同,而会议室在当前状态S2下稳定,且相对上一次稳定状态S1有变化;由此,可以跟踪所有状态机及其切换时刻,提取状态机的状态信息。
第三种:感知对象在当前状态下稳定,且相对上一次稳定状态无变化,即环境一直处于稳定状态,没变化。
在一实施例中,可以通过状态机对所述感知对象进行实时感知建模,从实时状态机模型中提取所述状态机的实时建模信息;基于所述状态机的实时建模信息,确定所述感知对象的状态类型,再基于所述感知对象的状态类型,确定所述感知对象的环境状态。
在一实施例中,所述状态机的实时建模信息可以包括至少以下之一:
状态机的切换信息;
状态机的当前状态:比如会议室进人之前的稳定状态;
状态机的临时状态,临时状态可以用来发现稳定状态;
状态机的计时器信息。
上述方案中,根据状态机的实时建模信息,确定感知对象的状态类型的方案中,可以在S1及S1之后进行确定:
场景举例如下:
场景一:如果计时器C小于预设时间门限值1,则判断有人进入房间在活动;
判断场景是否有环境变化,根据房间状态机转换,判断有人进来房间后并离开,且环境发生变化;如图7所示。
场景二:判断山体场景滑坡状态,根据山体滑坡前状态,如果有状态机计时器C小于预设时间门限值1,则判断为有风险;如果状态机切换为另一个稳定的状态,则判断为滑坡完成。
对非稳定状态下的感知对象,计算不同时刻天线的信道冲击响应与所述状态机的当前状态之间的差分信息;根据所述差分信息,确定所述感知对象的环境状态变化规律。
本实施例主要对非稳定状态下的感知对象的环境状态变化规律进行感知确定。
在一实施例中,作为一种实施方式,对非稳定状态下的感知对象,获取不同时刻接收天线的信道冲击响应与所述状态机对应的当前状态;计算不同时刻接收天线的信道冲击响应与所述状态机对应的当前状态之间的差分信息。
具体地,对当前时刻,获取当前时刻接收天线的信道冲击响应与所述状态机对应的当前状态;计算当前时刻接收天线的信道冲击响应与所述状态机对应的当前状态之间的差分信息,如图8所示。
获得处理后的信号信息为:
Δm,n(t)=Rm,n(t)-S(k');
Δm,n(t)为当前时刻t接收天线的信道冲击响应Rm.n(t)与状态机对应的当前状态S(K’)之间的差分信息。
然后,在接收下一时刻的信道冲击响应,重复上述过程,得到不同时刻接收天线的信道冲击响应与所述状态机对应的当前状态之间的差分信息,进而可以对各Δm,n(t)进行分析获得信号特征,如周期信息等,从而分析实时变化信号信息,得到所述感知对象的环境状态变化规律。
在一实施例中,对所述差分信息进行分析,提取所述差分信息中的差分信号特征,所述差分信号特征包括但不限于相位、幅度和时间周期等;
根据所述差分信号特征,绘制状态变化曲线;
根据所述状态变化曲线确定所述感知对象的环境状态变化规律。
场景举例如下:比如,对房间内人的呼吸信号进行感知,并根据感知到的人的呼吸信号进行分析,得到房间内人的呼吸规律,进而得到房间内有人时的状态变化规律。其中,差分信号处理后的环境状态变化规律可以参照图9所示。
再比如:在厂房内机器开机后,对厂房内机器声音信号进行感知分析,判断机器的动作或声音是否有规律,均可以通过上述方法得到判断结果。
由此,通过对感知对象建立实时状态机模型,基于所述实时状态机模型,确定所述感知对象的环境状态,具体通过采集天线的感知信号;基于所述天线的感知信号,获取所述天线的信道冲击响应;基于所述天线的信道冲击响应以及状态机的当前信息(当前状态、临时状态、计时器信息),获取所述状态机的切换方式,并更新所述实时状态机模型,从所述实时状态机模型中提取所述状态机的实时建模信息;基于所述状态机的实时建模信息,确定所述感知对象的状态类型;基于所述感知对象的状态类型, 确定所述感知对象的环境状态;其中,对非稳定状态下的感知对象,计算不同时刻接收天线的信道冲击响应与所述状态机对应的当前状态之间的差分信息;根据所述差分信息,分析得到所述感知对象的环境状态变化规律,从而,通过复杂多径环境的利用实时建模状态机的无线感知方法,克服了室内城区等复杂环境多径影响,以及接收机天线数少,或者带宽小的情况实现无线感知的问题,提高了复杂多径环境下的无线感知准确性。
更为具体地,以下详细阐述通过状态机对所述感知对象进行实时感知建模,从所述实时状态机模型中提取所述状态机的实时建模信息;基于所述状态机的实时建模信息,确定所述感知对象的状态类型的具体方案:
以图4所示的场景为例,感知信号发射基站(RS)在设定的时间Tn和无线资源上发射感知信号S,感知信号接收基站(Br)接收感知信号。感知信号发射基站发出的感知信号可以被场景中的各种环境物体Pn(P1、P2...、Pn,)反射后,投射到感知信号接收基站上。
通过采集感知信号接收基站的各接收天线的感知信号,获取不同时刻接收天线的信道冲击响应,基于状态机(在以下具体实施例中简称状态机)对感知对象进行感知建模,确定感知对象的状态类型。
具体地,感知信号接收基站接收感知信号,对每个接收天线的感知信号进行采样,并根据采样信号,获得每个接收天线对应时刻的信道冲击响应向量为Rm.n(t),其中,m,n为天线阵列中的振子编号,m∈[0,M-1],n∈[0,N-1],M,N均为大于1的整数,t为时间。
如图6所示,设状态机集合为S(K),设定状态机的初始状态S(0)为当前的信道冲击响应向量,即为Rm.n(t)。K为状态总数编号,K为整数,S’为状态机的临时状态,K’为当前状态编号,K’为整数。
在初始状态下,初始状态S(0)为当前状态,K初始值为0,且临时状态S’=S(0),K’=K,并记录当前时刻状态机的切换信息,即状态机是否有切换,如有切换,是从哪个状态切换到哪个状态,状态机的切换信息包括但不限于:时间、编号以及切换前后的状态。
其中,状态机的状态,对应一个稳定的无线传播环境,每个状态的值对应存储的是一个稳定的接收天线的信道冲击响应值。
引入状态机的临时状态,是为了发现当前稳定状态之后的另一个稳定状态,当检测到环境变化时,临时状态的值就变化为接收天线的新的信道冲击响应值。
在初始状态下,计时器C设为0并开始计时。计时器C设置有一定的超时时间,在超时时间到达且达到切换条件时,状态机会进行切换操作;此外,无论计时器超时时间是否到达,满足清零条件,计时器会进行清零操作。计时器的具体动作,根据不同的场景会有不同,后面针对状态机的不同切换类型有关于计时器的详细阐述。
在一实施例中,所述通过状态机对所述感知对象进行实时感知建模,获取所述状态机的切换方式,并更新实时状态机模型,包括:
采集天线的感知信号;
基于所述天线的感知信号,获取所述天线的信道冲击响应;
基于所述天线的信道冲击响应以及状态机的当前信息(当前状态、临时状态、计时器信息),获取所述状态机的切换方式,并更新所述实时状态机模型
在一实施例中,所述基于所述天线的信道冲击响应以及状态机的当前信息,获取所述状态机的切换方式,包括:
记录所述状态机的当前状态、临时状态、计时器信息;
基于所述天线的信道冲击响应及所述状态机的当前状态、临时状态、计时器信息,获取所述状态机的切换方式。
以当前时刻为例,通过感知信号接收基站接收感知信号,对每个接收天线的感知信号进行采样,基于接收天线的感知信号,获取当前时刻所述接收天线的信道冲击响应Rm.n(t)。
然后,记录当前时刻所述状态机的当前状态、临时状态、计时器信息;
基于当前时刻所述接收天线的信道冲击响应以及当前时刻所述状态机的当前状态、临时状态、计时器信息,确定当前时刻所述状态机的切换方式;
在一实施例中,基于当前时刻所述状态机的切换方式,实时进行状态机的状态更新。
也就是说,根据当前时刻接收天线的信道冲击响应Rm.n(t)、当前状态(S(K’)、临时状态(S’(K’))、计时器C来确定感知状态机的切换方式,并进行相应的操作(比如,不切换,切换成新的状态,或者切换到之前已有状态),完成当前时刻,实时建模感知状态机的更新,其中,状态机实时更新的过程, 就是实时建模的过程。
然后,可以根据所述状态机的状态更新变化以及计时器的当前计数,确定所述感知对象的状态类型。
在一实施例中,所述基于所述状态机的实时建模信息,确定所述感知对象的状态类型,可以包括:
基于所述状态机的历史切换记录、当前状态、临时状态、计时器信息,确定所述感知对象的状态类型。
在一实施例中,更新所述实时状态机模型的步骤包括:
基于所述状态机的切换方式,对所述实时状态机模型进行更新操作。
在一实施例中,所述基于所述状态机的切换方式,对所述实时状态机模型进行操作,包括至少以下之一:
与所述状态机保持当前状态相对应,当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态不相似的情况下,将所述状态机的临时状态更新为当前时刻所述天线的信道冲击响应,将计时器清零;
与所述状态机保持当前状态相对应,当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态相似的情况下,继续保持计时器计数;
与所述状态机切换到历史已有状态相对应,执行所述状态机的切换操作,将所述状态机的临时状态以及当前状态编号更改为已有的状态机中对应的相似度最大的状态以及编号,将计时器不清零,并记录状态机的切换信息;
与所述状态机切换到新的状态相对应,执行所述状态机产生新状态操作和切换操作,将计时器不清零,并记录状态机的切换信息。
在一实施例中,所述方法还包括:保存所述状态机的当前状态。
在一实施例中,所述感知对象的状态类型包括至少以下之一:
感知对象在当前状态下为非稳定状态;
感知对象在当前状态下稳定,且相对上一次稳定状态有变化;
感知对象在当前状态下稳定,且相对上一次稳定状态无变化。
具体而言,感知对象的状态类型包括:
第一种:感知对象在当前状态下为非稳定状态,比如,通过状态机的记录信息判断感知对象的状态一直在变化,在当前状态下不稳定,比如山体滑坡,会议室开会不停有人说话或走动,停车场车来车往等场景;
第二种:感知对象在当前状态下稳定,且相对上一次稳定状态有变化,比如会议室从无人开会的无人场景到开会时的有人场景(S1),再从开会时的有人场景(S1)到会议结束后的无人场景(S2),对状态机而言,状态机的S2与S1两个状态相比,都是处于一种稳定状态,但是,会议前后会议室的桌椅可能有变化,这样状态机的S2与S1两个状态不同,而会议室在当前状态S2下稳定,且相对上一次稳定状态S1有变化;由此,可以跟踪所有状态机及其切换时刻,提取状态机的状态信息。
第三种:感知对象在当前状态下稳定,且相对上一次稳定状态无变化,即环境一直处于稳定状态,没变化。
由此,通过采集感知信号接收基站的各接收天线的感知信号,获取不同时刻接收天线的信道冲击响应,并基于状态机对感知对象进行感知建模,确定感知对象的状态类型。
在一实施例中所述状态机的切换方式包括至少以下之一:
保持当前状态;
切换到历史已有状态(切换到相似状态);
切换到新的状态。
在一实施例中,所述获取所述状态机的切换方式之前,还包括:
确定所述状态机的切换方式。
在一实施例中,确定所述状态机保持当前状态的方式包括至少以下之一:
计时器的计数值不超过设定的时间门限值;
当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态不相似,计时器清零;
当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态相似,计时器继续保持计数。
在一实施例中,确定所述状态机切换到历史已有状态的方式包括至少以下之一:
计时器的计数值超过设定的时间门限值;
当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态相似,且临时状态与当前状态不相似;
对已保存的状态机中所有状态进行遍历,对比临时状态与已保存的状态机中每一个当前状态的相似度,已保存的所有状态中存在和临时状态相似的情况;
临时状态以及当前状态编号更改为已有的状态机中对应的相似度最大的状态以及编号;
计时器不清零。
在一实施例中,确定所述状态机切换到新的状态的方式包括至少以下之一:
计时器的计数值超过设定的时间门限值;
当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态相似,且所述临时状态与已保存的状态机中的所有状态都不相似,状态机产生一个新的状态,并且切换到新的状态;
计时器不清零。
以下对状态机的三种切换方式进行详细介绍:
第一种切换方式:保持当前状态不切换
通过以下方式确定当前时刻所述状态机的切换方式为保持当前状态不切换:
若根据计时器信息判定计时器C的计数值不超过设定的时间门限值1,则判断当前时刻所述接收天线的信道冲击响应Rm.n(t)与当前时刻所述状态机的临时状态S’是否相似;
若当前时刻所述接收天线的信道冲击响应Rm.n(t)与当前时刻所述状态机的临时状态S’不相似,则将所述临时状态S’更新为当前时刻所述接收天线的信道冲击响应Rm.n(t),且计时器C清零,当前时刻所述状态机保持当前状态不切换;
若当前时刻所述接收天线的信道冲击响应Rm.n(t)与当前时刻所述状态机的临时状态S’相似,则继续保持计时器C计数,当前时刻所述状态机保持当前状态不切换。
第二种切换方式:切换到历史已有状态或者切换到相似的状态
通过以下方式确定当前时刻所述状态机的切换方式为切换到历史已有状态或者切换到相似的状态:
若根据计时器信息判定计时器C的计数值超过设定的时间门限值1,则判断当前时刻所述接收天线的信道冲击响应Rm.n(t)与当前时刻所述状态机的临时状态S’是否相似,以及临时状态S’与当前状态S是否相似;
若当前时刻所述接收天线的信道冲击响应Rm.n(t)与当前时刻所述状态机的临时状态S’相似,且临时状态S’与当前状态S不相似,则对已保存的状态机中所有当前状态S(K)进行遍历,对比临时状态S’与每一个当前状态S(i)的相似度,i≤K;
如果已保存的所有当前状态S(K)中存在和临时状态S’相似的情况,则确定当前时刻所述状态机的切换方式为切换到历史已有状态,将临时状态以及当前状态编号更改为已有的状态机中对应的相似度最大的状态以及编号imax,即S’(K’)=S(imax),K’=imax
计时器不清零,并记录状态机的切换信息。
第三种切换方式:切换到新的状态
通过以下方式确定当前时刻所述状态机的切换方式为切换到新的状态:
若根据计时器信息判定计时器C的计数值超过设定的时间门限值1,则判断当前时刻所述接收天线的信道冲击响应Rm.n(t)与当前时刻所述状态机的临时状态S’是否相似,以及所述临时状态S’与已保存的状态机中的所有当前状态S(K)是否相似;
如果当前时刻所述接收天线的信道冲击响应Rm.n(t)与当前时刻所述状态机的临时状态S’相似,且所述临时状态S’与已保存的状态机中的所有当前状态S(K)都不相似,则产生新的状态,确定当前时刻所述状态机的切换方式为切换到新的状态,即状态数目编号更新为K=K+1,状态集合中的新状态S(K)更新为S(K)=S’,当前状态和临时状态一致为S’=S(K),K’=K。
计时器不清零,并记录状态机的切换信息。
作为一种实施方式,上述方案中,所述判断当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态是否相似的步骤可以包括:
计算当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态之间的相似度;
若所述相似度不超过预设的相似度门限值,则判定当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态不相似;
否则,判定当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态相似。
其中,计算当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态之间的相似度包括但不限于采用如下方案:
1、计算当前时刻所述接收天线的信道冲击响应Rm.n(t)以及当前时刻所述状态机的临时状态S’之间的相关值,将最大相关峰值作为相似度对比量;
2、计算当前时刻所述接收天线的信道冲击响应Rm.n(t)以及当前时刻所述状态机的临时状态S’之间的夹角,将夹角余弦作为相似度对比量。
状态是否相似判断包括:设置相似度门限2,若相似度超过预设的相似度门限2,判断为相似,反之为不相似。
基于上述方案,可以跟踪所有状态机切换信息,根据需要提取状态信息。包括但不限于:
对于室内场景,可以提取在时间门限内变化小的状态作为无人状态。
对于一般场景,可以提取一天内按时间排列的状态机的切换信息作为一天的场景变化,并分析其中规律,得到不同环境的状态变化规律。如图10所示,图10为房间一天的信道模型变化图。
以下结合不同的场景,对本实施例的具体实施方式进行进一步详细阐述:
场景1
当房间状态为房间从无人到有人再到无人的情况,状态变化如图7所示。具体实现过程如下:
已同步的感知信号发射基站在设定的时间和无线资源上发射感知信号,感知信号接收基站接收感知信号。对每个天线感知信号采样,并根据采样的信号,获得每个接收天线的信道冲击响应向量为Rm,n(t),设定初始状态S(0),临时状态S’=S(0),K’=K,计时器设为0开始计时,此时处于S(0)状态,如图7所示。
如果Rm,n(t)与S’不相似,则C=0,即清零,否则C不清零。
对比计时器C的时间门限值1,如果超过计时器C设定的状态门限1,且临时状态S’与已保存的状态机中的所有状态S(K)状态都不相似,则产生新的状态。即状态数目编号更新为K=0+1,状态集合中的新状态S(K)更新为S(1)=S’,当前状态和临时状态一致为S’=S(1),K’=1,即房间处于S(0)状态,最后再到无人的稳定状态S(1)。
同样的,如图7所示,S(1)状态变化到S(2),状态数目编号更新为K=1+1,状态集合中的新状态S(K)更新为S(2)=S’,当前状态和临时状态一致为S’=S(2),K’=2,即房间处于S(1)稳定状态,然后房间进来人在房间活动,状态为临时状态,S’不断变化,最后再到无人的稳定状态S(2)。
场景2
当房间人员进行呼吸监控时,状态变化如图9所示。具体实现过程如下:
已同步的感知信号发射基站在设定的时间和无线资源上发射感知信号,感知信号接收基站接收感知信号。对每个天线感知信号采样,并根据采样的信号,获得每个天线的信道冲击响应向量为Rm,n(t),设定初始状态S(0),临时状态S’=S(0),K’=K,计时器C从0开始计时,此时处于S(0)状态。
如果Rm,n(t)与S’不相似,C=0,即清零,否则C不清零。
对比计时器C的时间门限值1,当计时器C超过设定的时间门限值1,且临时状态S’与已保存的状态机中的所有状态S(K)状态都不相似,则产生新的状态。即状态数目编号更新为K=0+1,状态集合中的新状态S(K)更新为S(1)=S’,当前状态和临时状态一致为S’=S(1),K’=1,即目标从S(0)状态变化到S(1),得到处理后的信号对应图9中(1)图所示。
在有人进来后,如果Rm,n(t)与S’不相似,C=0,一直维持在S1。
实时收到Rm,n(t),得到差量信号:
Δm,n(t)=Rm,n(t)-S(k');
连续记录差量信号并分析,得到规律性信号如图9中(4)图所示。
不断重复上述过程即可得到处理之后的状态信号,从处理后的感知信号即可分析人的呼吸变化过程。
场景3
基于房间一天信道模型变化规律提取房间状态变化如图10所示。具体实现过程如下:
已同步的感知信号发射基站在设定的时间和无线资源上发射感知信号,感知信号接收基站接收感 知信号。对每个天线感知信号采样,并根据采样的信号,获得每个天线的信道冲击响应向量为Rm,n(t),设定初始状态S(0),临时状态S’=S(0),K’=K,计时器C开始计时,此时房间在早上都处于S(0)的稳定状态,如图10所示。
对比计时器C的门限阈值,此时超过计时器C设定的门限值1,且临时状态S’与已保存的状态机中的所有状态S(K)状态都不相似,则产生新的状态。即状态数目编号更新为K=0+1,状态集合中的新状态S(K)更新为S(1)=S’,当前状态和临时状态一致为S’=S(1),K’=1,即房间在早上的某段时间状态从S(0)稳定状态经过一段时间的活动状态后再变化到稳定状态S(1),其中图10的虚框部分为活动的临时状态S’。
同样的如图10所示,当计时器C计数值超过设定时间门限值1,S(1)状态变化到S(2),则对已保存的状态机中所有状态S(K)进行遍历,即对比S’与S(0)、S(1)的相似度,没有搜索到相似的状态,则状态数目编号更新为K=1+1,状态集合中的新状态S(K)更新为S(2)=S’,当前状态和临时状态一致为S’=S(2),K’=2,即房间在中午的某段时间状态从S(1)稳定状态经过一段时间的活动状态后再变化到S(2)稳定状态。
另外当计时器C计数值超过设定时间门限值1,S(2)状态变化到S(3),则对已保存的状态机中所有状态S(K)进行遍历,即对比S’与S(0)、S(1)、S(2)的相似度,没有搜索到相似的状态,则状态数目编号更新为K=2+1,状态集合中的新状态S(K)更新为S(3)=S’,当前状态和临时状态一致为S’=S(3),K’=3,即房间在中午的某段时间状态从S(2)稳定状态经过一段时间的活动状态后再变化到S(3)稳定状态。
如图10所示,此时临时状态为S’=S(3),K’=3。当计时器C计数值超过设定的时间门限值1,此时的Rm.n(t)与S’临时状态相似,且临时状态S’与当前状态S不相似,则对已保存的状态机中所有状态S(K)进行遍历,即对比S’与S(0)、S(1)、S(2)和S(3)的相似度。没有搜索到相似的状态,则状态数目编号更新为K=3+1,状态集合中的新状态S(K)更新为S(4)=S’,当前状态和临时状态一致为S’=S(4),K’=4,即房间在中午的某段时间状态从S(3)稳定状态经过一段时间的活动状态后再变化到S(4)稳定状态。
相较于现有技术,本实施例方案,对感知对象建立实时状态机模型;基于所述实时状态机模型,确定所述感知对象的环境状态,从而能够解决复杂环境的状态感知和感知信号分析,能够识别环境的不同稳态特征,以及能够识别环境实时变化,并将状态机和实际场景状态类型进行关联,对复杂多径环境利用实时建模状态机的无线感知,克服了室内城区等复杂环境多径影响,以及接收机天线数少,或者带宽小的情况无法有效实现无线感知的问题,提高了复杂多径环境下的无线感知准确性。
如图11所示,本申请实施例还提出一种无线感知装置,所述无线感知装置包括:类型确定模块,用于基于感知建模确定感知对象的状态类型;
环境状态确定模块,用于基于所述状态类型,确定所述感知对象的环境状态。
本实施例实现无线感知的原理及实施过程,请参照上述各实施例,在此不再赘述。
此外,本申请实施例还提出一种无线感知装置,包括:
感知建模模块,用于对感知对象建立实时状态机模型;
状态确定模块,用于基于所述实时状态机模型,确定所述感知对象的环境状态。
本实施例实现感知的原理,请参照上述各实施例,在此不再赘述。
此外,本申请实施例还提出一种通信设备,所述通信设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线感知程序,所述无线感知程序被所述处理器执行时实现如上述各实施例所述的无线感知方法。
由于本无线感知程序被处理器执行时,采用了前述所有实施例的全部技术方案,因此至少具有前述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。
此外,本申请实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有无线感知程序,所述无线感知程序被处理器执行时实现如上述各实施例所述的无线感知方法。
由于本无线感知程序被处理器执行时,采用了前述所有实施例的全部技术方案,因此至少具有前述所有实施例的全部技术方案所带来的所有有益效果,在此不再一一赘述。
相比现有技术,本申请实施例提出的无线感知方法、装置、通信设备及存储介质,对感知对象建立实时状态机模型;基于所述实时状态机模型,确定所述感知对象的环境状态,从而,通过复杂多径环境的利用实时建模状态机的无线感知方法,克服了室内城区等复杂环境多径影响,以及接收机天线数少,或者带宽小的情况实现无线感知的问题,提高了复杂多径环境下的无线感知准确性。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的 其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台通信设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (22)

  1. 一种无线感知方法,包括:
    对感知对象建立实时状态机模型;
    基于所述实时状态机模型,确定所述感知对象的环境状态。
  2. 根据权利要求1所述的方法,其中,所述对感知对象建立实时状态机模型,包括:
    通过状态机对所述感知对象进行实时感知建模,获取所述状态机的切换方式,并更新实时状态机模型。
  3. 根据权利要求2所述的方法,其中,所述通过状态机对所述感知对象进行实时感知建模,获取所述状态机的切换方式,并更新实时状态机模型,包括:
    采集天线的感知信号;
    基于所述天线的感知信号,获取所述天线的信道冲击响应;
    基于所述天线的信道冲击响应以及状态机的当前信息,获取所述状态机的切换方式,并更新所述实时状态机模型。
  4. 根据权利要求3所述的方法,其中,所述基于所述天线的信道冲击响应以及状态机的当前信息,获取所述状态机的切换方式,包括:
    记录所述状态机的当前状态、临时状态、计时器信息;
    基于所述天线的信道冲击响应及所述状态机的当前状态、临时状态、计时器信息,获取所述状态机的切换方式。
  5. 根据权利要求4所述的方法,其中,所述状态机的切换方式包括至少以下之一:
    保持当前状态;
    切换到历史已有状态;
    切换到新的状态。
  6. 根据权利要求5所述的方法,其中,所述获取所述状态机的切换方式之前,还包括:
    确定所述状态机的切换方式。
  7. 根据权利要求6所述的方法,其中,确定所述状态机保持当前状态的方式包括至少以下之一:
    计时器的计数值不超过设定的时间门限值;
    当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态不相似,计时器清零;
    当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态相似,计时器继续保持计数。
  8. 根据权利要求6所述的方法,其中,确定所述状态机切换到历史已有状态的方式包括至少以下之一:
    计时器的计数值超过设定的时间门限值;
    当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态相似,且临时状态与当前状态不相似;
    对已保存的状态机中所有状态进行遍历,对比临时状态与已保存的状态机中每一个状态的相似度,已保存的所有状态中存在和临时状态相似的情况;
    临时状态以及当前状态编号更改为已有的状态机中对应的相似度最大的状态以及编号;
    计时器不清零。
  9. 根据权利要求6所述的方法,其中,确定所述状态机切换到新的状态的方式包括至少以下之一:
    计时器的计数值超过设定的时间门限值;
    当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态相似,且所述临时状态与已保存的状态机中的所有状态都不相似,状态机产生一个新的状态,并且切换到新的状态;
    计时器不清零。
  10. 根据权利要求7、8或9所述的方法,其中,当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态是否相似的判断方式包括:
    计算当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态之间的相似度;
    其中,所述相似度不超过预设的相似度门限值,判定当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态不相似;
    所述相似度超过预设的相似度门限值,判定当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态相似。
  11. 根据权利要求10所述的方法,其中,所述计算当前时刻所述接收天线的信道冲击响应与当前时刻所述状态机的临时状态之间的相似度包括至少以下之一:
    计算当前时刻所述接收天线的信道冲击响应以及当前时刻所述状态机的临时状态之间的相关值,将最大相关峰值作为相似度对比量;
    计算当前时刻所述接收天线的信道冲击响应以及当前时刻所述状态机的临时状态之间的夹角,将夹角余弦作为相似度对比量。
  12. 根据权利要求3所述的方法,其中,所述更新所述实时状态机模型的步骤包括:
    基于所述状态机的切换方式,对所述实时状态机模型进行更新操作。
  13. 根据权利要求12所述的方法,其中,所述基于所述状态机的切换方式,对所述实时状态机模型进行更新操作,包括至少以下之一:
    与所述状态机保持当前状态相对应,当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态不相似的情况下,将所述状态机的临时状态更新为当前时刻所述天线的信道冲击响应,将计时器清零;
    与所述状态机保持当前状态相对应,当前时刻所述天线的信道冲击响应与当前时刻所述状态机的临时状态相似的情况下,继续保持计时器计数;
    与所述状态机切换到历史已有状态相对应,执行所述状态机的切换操作,将所述状态机的临时状态以及当前状态编号更改为已有的状态机中对应的相似度最大的状态以及编号,将计时器不清零,并记录状态机的切换信息;
    与所述状态机切换到新的状态相对应,执行所述状态机产生新状态操作和切换操作,将计时器不清零,并记录状态机的切换信息。
  14. 根据权利要求13所述的方法,所述方法还包括:
    保存所述状态机的当前状态。
  15. 根据权利要求1所述的方法,其中,所述基于所述实时状态机模型,确定所述感知对象的环境状态,包括:
    从所述实时状态机模型中提取所述状态机的实时建模信息;
    基于所述状态机的实时建模信息,确定所述感知对象的状态类型;
    基于所述感知对象的状态类型,确定所述感知对象的环境状态。
  16. 根据权利要求15所述的方法,其中,所述状态机的实时建模信息包括至少以下之一:
    状态机的历史切换记录;
    状态机的当前状态;
    状态机的临时状态;
    状态机的计时器信息。
  17. 根据权利要求15所述的方法,其中,所述感知对象的状态类型包括至少以下之一:
    感知对象在当前状态下为非稳定状态;
    感知对象在当前状态下稳定,且相对上一次稳定状态有变化;
    感知对象在当前状态下稳定,且相对上一次稳定状态无变化。
  18. 根据权利要求17所述的方法,其中,所述基于所述感知对象的状态类型,确定所述感知对象的环境状态,包括:
    对非稳定状态下的感知对象,计算不同时刻天线的信道冲击响应与所述状态机的当前状态之间的差分信息;
    根据所述差分信息,确定所述感知对象的环境状态变化规律。
  19. 根据权利要求18所述的方法,其中,所述根据所述差分信息,确定所述感知对象的环境状态变化规律的步骤包括:
    对所述差分信息进行分析,提取所述差分信息中的差分信号特征;
    根据所述差分信号特征,绘制状态变化曲线;
    根据所述状态变化曲线确定所述感知对象的环境状态变化规律。
  20. 根据权利要求19所述的方法,其中,所述差分信号特征包括至少以下之一:相位、幅度和时间周期。
  21. 一种通信设备,所述通信设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线感知程序,所述无线感知程序被所述处理器执行时实现如权利要求1-20中任一项所述的无线感知方法。
  22. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有无线感知程序,所述无线感知程序被处理器执行时实现如权利要求1-20中任一项所述的无线感知方法。
PCT/CN2023/083516 2022-08-26 2023-03-23 无线感知方法、通信设备及存储介质 WO2024040962A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211035098.5 2022-08-26
CN202211035098.5A CN117641416A (zh) 2022-08-26 2022-08-26 无线感知方法、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024040962A1 true WO2024040962A1 (zh) 2024-02-29

Family

ID=90012307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083516 WO2024040962A1 (zh) 2022-08-26 2023-03-23 无线感知方法、通信设备及存储介质

Country Status (2)

Country Link
CN (1) CN117641416A (zh)
WO (1) WO2024040962A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471503A (zh) * 2012-07-20 2015-03-25 高通股份有限公司 用于使用ue环境状态信息来改进移动性处理和卸载决定的方法、系统和装置
US20160077501A1 (en) * 2014-09-15 2016-03-17 KCF Technologies Incorporated Wireless sensor network
CN105959988A (zh) * 2016-04-15 2016-09-21 北京航空航天大学 一种基于支持向量机的认知无线自组织网络节点稳定性判决方法
CN106198868A (zh) * 2016-07-05 2016-12-07 深圳大学 基于无线感知的湿度检测的方法及系统
CN107994960A (zh) * 2017-11-06 2018-05-04 北京大学(天津滨海)新代信息技术研究院 一种室内活动检测方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104471503A (zh) * 2012-07-20 2015-03-25 高通股份有限公司 用于使用ue环境状态信息来改进移动性处理和卸载决定的方法、系统和装置
US20160077501A1 (en) * 2014-09-15 2016-03-17 KCF Technologies Incorporated Wireless sensor network
CN105959988A (zh) * 2016-04-15 2016-09-21 北京航空航天大学 一种基于支持向量机的认知无线自组织网络节点稳定性判决方法
CN106198868A (zh) * 2016-07-05 2016-12-07 深圳大学 基于无线感知的湿度检测的方法及系统
CN107994960A (zh) * 2017-11-06 2018-05-04 北京大学(天津滨海)新代信息技术研究院 一种室内活动检测方法及系统

Also Published As

Publication number Publication date
CN117641416A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN108572764B (zh) 一种文字输入控制方法、设备及计算机可读存储介质
CN107613128B (zh) 一种音量调节方法、终端及计算机可读存储介质
CN112181233B (zh) 消息处理方法、智能终端及计算机可读存储介质
CN108845711B (zh) 屏幕触控方法、终端及计算机可读存储介质
CN107239567A (zh) 一种目标景物的识别方法、设备及计算机可读存储介质
CN111970404A (zh) 终端的显示调节方法、移动终端及存储介质
CN110069207B (zh) 触控操作响应方法、装置、移动终端及可读存储介质
CN108815847B (zh) 一种虚拟现实交互调控方法、设备及计算机可读存储介质
CN107179830B (zh) 体感应用的信息处理方法、移动终端及存储介质
CN111443818B (zh) 一种屏幕亮度调控方法、设备及计算机可读存储介质
CN113139029A (zh) 处理方法、移动终端及存储介质
CN109062678A (zh) 一种工作模式切换方法、可穿戴设备及计算机存储介质
CN112566197A (zh) 一种网络切换控制方法、设备及计算机可读存储介质
CN109711850B (zh) 一种安全支付方法、设备及计算机可读存储介质
WO2024040962A1 (zh) 无线感知方法、通信设备及存储介质
CN109145227B (zh) 一种地图信息显示方法、终端及计算机可读存储介质
CN111866389B (zh) 一种视频跟踪拍摄方法、设备及计算机可读存储介质
CN111476231B (zh) 一种图像区域识别方法、设备及计算机可读存储介质
CN112015508B (zh) 一种投屏交互控制方法、设备及计算机可读存储介质
CN115278932A (zh) 网络重连方法、装置、终端设备及存储介质
CN112667339B (zh) 屏幕刷新率的设置方法、终端以及计算机可读介质
CN109460988B (zh) 一种扫码支付方法、设备及计算机可读存储介质
CN110069161B (zh) 屏幕识别方法、移动终端和计算机可读存储介质
CN109683799B (zh) 一种滑动控制方法、设备及计算机可读存储介质
CN113419694A (zh) 处理方法、移动终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23856058

Country of ref document: EP

Kind code of ref document: A1