WO2024040849A1 - 一种基于直流伺服驱动的卷材纠偏系统 - Google Patents

一种基于直流伺服驱动的卷材纠偏系统 Download PDF

Info

Publication number
WO2024040849A1
WO2024040849A1 PCT/CN2022/144174 CN2022144174W WO2024040849A1 WO 2024040849 A1 WO2024040849 A1 WO 2024040849A1 CN 2022144174 W CN2022144174 W CN 2022144174W WO 2024040849 A1 WO2024040849 A1 WO 2024040849A1
Authority
WO
WIPO (PCT)
Prior art keywords
web
offset
ccd sensor
signal
servo
Prior art date
Application number
PCT/CN2022/144174
Other languages
English (en)
French (fr)
Inventor
游云
罗人轩
刘祖泽
Original Assignee
重庆编福科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆编福科技有限公司 filed Critical 重庆编福科技有限公司
Publication of WO2024040849A1 publication Critical patent/WO2024040849A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/02Registering, tensioning, smoothing or guiding webs transversely
    • B65H23/032Controlling transverse register of web
    • B65H23/038Controlling transverse register of web by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/80Arangement of the sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/20Calculating means; Controlling methods
    • B65H2557/264Calculating means; Controlling methods with key characteristics based on closed loop control
    • B65H2557/2644Calculating means; Controlling methods with key characteristics based on closed loop control characterised by PID control

Definitions

  • the invention relates to the technical field of web correction, and in particular to a web correction system based on DC servo drive.
  • AC synchronous motors At present, most drive motors in the web guide industry use AC synchronous motors, stepper motors and DC brushless motors. These motors are simple to drive, but their performance is difficult to improve.
  • the AC synchronous motor has a fixed speed and cannot be adjusted and the speed is relatively slow. It is mainly used in low-speed bag making machines and other equipment that do not have high requirements for deviation correction speed.
  • the stepper motor can adjust the speed but has the problems of low torque and low speed. It is also affected by The limit is obvious; brushless DC motors have low-speed jitter problems.
  • both AC synchronous motors and stepper motors will face the problem of slow and unsolvable correction speed; when the load track is not uniform, load changes have a great impact on the brushless DC motor. Large, there is no way to guarantee the final correction accuracy.
  • the present invention aims to at least solve the technical problems existing in the prior art. It particularly innovatively proposes a web correction system based on DC servo drive, which makes the motor output torque more stable and non-squirming at low speeds, and the motor responds at high speeds. It is faster and can effectively improve the correction accuracy of the system.
  • the present invention provides a web correction system based on DC servo drive, including an offset detection module, a servo correction control system and a correction actuator, wherein,
  • the offset detection module is used to detect the position offset signal of the web at the web output end of the target conveying roller, and send the position offset signal to the servo correction control system, wherein the position offset signal
  • the signal includes offset distance and offset direction;
  • the servo correction control system includes a correction control module, a servo drive module, a DC servo motor, a rotary encoder and a current detection circuit.
  • the signal output end of the offset detection module, the signal output end of the rotary encoder and the current detection circuit The signal output terminals are respectively connected to the signal input terminals of the correction control module, the signal output terminals of the correction control module are connected to the signal input terminals of the servo drive module, and the signal output terminals of the servo drive modules are connected to the signal input terminals of the servo drive module.
  • the signal input end of the DC servo motor is connected, and the output shaft of the DC servo motor is drivingly connected with the correction actuator, wherein,
  • the rotary encoder is installed on the output shaft of the DC servo motor, and is used to detect the rotation angle information of the output shaft of the DC servo motor, and convert the rotation angle information into a corresponding position signal and feed it back to the Describe the correction control module,
  • the input end of the current detection circuit is connected to the servo drive module, which is used to detect the drive current signal output by the servo drive module to the DC servo motor, and feed back the detected drive current signal to the correction control module,
  • the correction control module is configured to generate a PWM drive control signal for controlling the operation of the servo drive module according to the position offset signal detected by the offset detection module, wherein the PWM drive control signal includes a correction speed command and Correction position instruction, the correction control module also adjusts the correction speed instruction and correction position instruction of the PWM drive control signal according to the feedback position signal and drive current signal,
  • the servo drive module is used to control the rotation direction, speed and torque of the DC servo motor according to the PWM drive control signal, so as to drive the deviation correction actuator through the DC servo motor to control the deviation of the web.
  • the offset detection module includes a sensor detection unit, a display calibration unit and an offset calculation unit, wherein,
  • the sensor detection unit includes a first CCD sensor group and a second CCD sensor group; the first CCD sensor group includes a first linear array spaced on the first side of the web at the web output end of the target conveying roller. CCD sensor and a second linear array CCD sensor. The first linear array CCD sensor and the second linear array CCD sensor are respectively used to detect the first position deviation signal and the second position deviation signal of the edge of the first side of the web.
  • the second CCD sensor group includes a third linear array CCD sensor and a fourth linear array CCD sensor that are spaced apart from the second side of the web opposite to the first side of the web output end of the target conveying roller, The third linear array CCD sensor and the fourth linear array CCD sensor are respectively used to detect the third position offset signal and the fourth position offset signal of the edge of the second side of the web;
  • the display calibration unit is used to display the volume captured by the first linear array CCD sensor, the second linear array CCD sensor of the first CCD sensor group, and the third linear array CCD sensor and the fourth linear array CCD sensor of the second CCD sensor group.
  • the web edge image at the corresponding position when the web is not shifted, and based on human-computer interaction operation, the web edge point at the corresponding position is marked on the corresponding web edge image captured by each linear array CCD sensor, and each web is recorded.
  • the offset calculation unit is used to calculate the first linear array CCD sensor of the first CCD sensor group, the second linear array CCD sensor of the first CCD sensor group, and the third linear array CCD sensor of the second CCD sensor group during the web conveying process.
  • the first position deviation signal, the second position deviation signal, the third position deviation signal, the fourth position deviation signal detected by the fourth linear array CCD sensor and the corresponding web edge points recorded by the display calibration unit The position offset signal of the web at the web output end of the target conveyor roller is obtained through fitting calculation based on the corresponding coordinates in the rectangular plane coordinate system.
  • the offset calculation unit is specifically used to:
  • the first position deviation signal detected by the first linear array CCD sensor and the web photographed by the first linear array CCD sensor recorded by the display calibration unit correspond to the non-deviated state.
  • the first coordinate of the first web edge point in the rectangular plane coordinate system in the first web edge image of the position is used to calculate the first offset corresponding to the first web edge point;
  • the position of the web in the non-deviated state is measured. Calculate the second offset corresponding to the second web edge point in the rectangular plane coordinate system from the second coordinate of the second web edge point in the second web edge image;
  • the position of the web in the non-deviated state is measured. Calculate the third offset corresponding to the third web edge point in the rectangular plane coordinate system from the third coordinate of the third web edge point in the third web edge image;
  • the fourth position deviation signal detected by the fourth linear array CCD sensor and the web photographed by the fourth linear array CCD sensor recorded by the display calibration unit correspond to the non-deviated state. Calculate the fourth offset corresponding to the fourth web edge point of the fourth web edge point in the rectangular plane coordinate system in the fourth web edge image of the position;
  • the fitting offset of the first side and the fitting offset of the second side are fitted according to the preset fitting coefficient to generate a position offset signal of the web at the web output end of the target conveying roller. .
  • the DC servo motor adopts 3-loop control
  • the deviation correction control module includes a first adder, a second adder, a third adder, a position PID regulator, a speed PID regulator and a differentiator, wherein,
  • the servo drive module, DC servo motor and current detection circuit are connected in sequence, and the output of the current detection circuit is input to the servo drive module through the first adder to form a current loop located in the inner loop,
  • the speed PID regulator, DC servo motor, rotary encoder and differentiator are connected in sequence, and the output of the differentiator is input into the speed PID regulator through the second adder to form a speed loop located in the middle ring,
  • the position PID regulator, DC servo motor and rotary encoder are connected in sequence, and the output of the rotary encoder is input into the position PID regulator through the third adder to form a position ring located in the outer ring.
  • the servo drive module includes a MOSFET drive circuit, a MOSFET switch circuit and a motor brake control circuit.
  • the input end of the MOSFET drive circuit is connected to the output end of the correction control module, and the output end of the MOSFET drive circuit is connected to The input end of the MOSFET switch circuit is connected, the first output end of the MOSFET switch circuit is connected to the input end of the DC servo motor, and the second output end of the MOSFET switch circuit is connected to the input end of the current detection circuit.
  • the input end of the motor brake control circuit is connected to the output end of the correction control module, and the output end of the motor brake control circuit is connected to the DC servo motor, wherein,
  • the MOSFET drive circuit is used to perform level conversion on the PWM drive control signal output by the correction control module, and the converted PWM drive control signal controls the opening and closing of the MOSFET switch circuit to adjust the DC servo The driving current of the motor, thereby controlling the rotation direction, speed and torque of the DC servo motor;
  • the motor brake control circuit is used to control the DC servo motor to stop rotating according to the brake signal output by the deviation correction control module.
  • the deviation correction actuator includes a base, a moving platform, a driving gear, a driven gear, a screw pair and the target conveying roller.
  • the moving platform, a DC servo motor, a driving gear, a driven gear and a screw pair Both are installed on the base.
  • the output shaft of the DC servo motor is fixedly connected to the driving gear.
  • the driving gear meshes with the driven gear.
  • the driven gear is connected to the lead screw of the screw pair.
  • the driving end is fixedly connected, the nut of the screw pair is fixedly connected to the mobile platform, the mobile platform is slidingly connected to the top surface of the base through a slide rail, and the target conveying roller is rotated and installed on the mobile platform superior.
  • generating a PWM drive control signal for controlling the operation of the servo drive module based on the position offset signal detected by the offset detection module includes:
  • the PWM drive control signal is generated based on the calculated number of Hall pulses required to drive the DC servo motor and the rotation direction of the DC servo motor.
  • the rotary encoder adopts a 1000-line magnetic encoder or a 2500-line magnetic encoder.
  • the web correction system based on DC servo drive of the present invention combines a DC servo motor with a rotary encoder, detects the position offset signal of the web at the output end of the target conveyor roller through the offset detection module, and detects it in real time through the rotary encoder.
  • the position signal of the output shaft of the DC servo motor is fed back to the correction control module, and the driving current signal of the DC servo motor is detected in real time through the current detection circuit and fed back to the correction control module, so that during the correction process, the position is combined with the correction control module
  • the offset signal and the feedback position signal and drive current signal dynamically adjust the rotation direction, speed and torque of the DC servo motor, so that the DC servo motor of the web guide system can respond quickly at low speed without causing jitter problems.
  • the response is more timely at high speed, thus enabling fast and high-precision correction of various coil materials, effectively meeting the high-precision requirements of correction applications, and being more accurate in certain coil fields (such as lithium battery manufacturing, capacitor manufacturing, etc.) Control the left and right positions of the coil to control the quality of the final product and reduce waste.
  • Figure 1 is a schematic structural diagram of a web correction system based on DC servo drive in a preferred embodiment provided by the present invention
  • Figure 2 is a schematic diagram of the arrangement of each linear array CCD sensor of the sensor detection unit of the offset detection module in a preferred embodiment of the present invention
  • Figure 3 is a control principle block diagram of the 3-change control adopted by the correction control module in a preferred embodiment of the present invention
  • Figure 4 is a schematic circuit diagram of the main control chip of the correction control module in a specific example provided by the present invention.
  • Figure 5 is a circuit principle diagram of a MOSFET drive circuit in a specific example provided by the present invention.
  • Figure 6 is a circuit schematic diagram of a MOSFET switching circuit in a specific example provided by the present invention.
  • Figure 7 is a circuit principle diagram of a motor brake control circuit in a specific example provided by the present invention.
  • Figure 8 is a circuit principle diagram of a current detection circuit in a specific example provided by the present invention.
  • Figure 9 is a circuit schematic diagram of an external input and output control circuit in a specific example provided by the present invention.
  • connection should be understood in a broad sense.
  • it can be a mechanical connection or an electrical connection, or both.
  • the internal connection between components may be directly connected or indirectly connected through an intermediate medium.
  • the invention provides a web correction system based on DC servo drive, as shown in Figures 1-9.
  • the system includes an offset detection module 1, a servo correction control system 2 and a correction actuator 3, wherein,
  • the offset detection module 1 is used to detect the position offset signal of the web at the web output end of the target conveying roller 36, and send the position offset signal to the servo correction control system 2, where the position offset signal includes the offset distance. and offset direction;
  • Servo correction control system 2 includes a correction control module 21, a servo drive module 22, a DC servo motor 23, a rotary encoder 24 and a current detection circuit 25.
  • the signal output end of the current detection circuit 25 is connected to the signal input end of the correction control module 21 respectively.
  • the signal output end of the correction control module 21 is connected to the signal input end of the servo drive module 22.
  • the signal output end of the servo drive module 22 is connected to the DC
  • the output shaft of the DC servo motor 23 is transmission connected with the deviation correction actuator 3, where,
  • the rotary encoder 24 is installed on the output shaft of the DC servo motor 23. It is used to detect the rotation angle information of the output shaft of the DC servo motor 23, and convert the rotation angle information into a corresponding position signal and feed it back to the correction control module 21.
  • the input end of the current detection circuit 25 is connected to the servo drive module 22, and is used to detect the drive current signal output by the servo drive module 22 to the DC servo motor 23, and feed back the detected drive current signal to the correction control module 21.
  • the correction control module 21 is used to generate a PWM drive control signal for controlling the operation of the servo drive module 22 according to the position offset signal detected by the offset detection module 1, wherein the PWM drive control signal includes a correction speed instruction and a correction position instruction.
  • the control module 21 also adjusts the correction speed command and the correction position command of the PWM drive control signal according to the feedback position signal and drive current signal.
  • the servo drive module 22 is used to control the rotation direction, speed and torque of the DC servo motor 23 according to the PWM drive control signal, so as to drive the deviation correction actuator 3 through the DC servo motor 23 to control the deviation of the web.
  • the web correction system based on DC servo drive in this embodiment combines the DC servo motor 23 with the rotary encoder 24 and detects the position deviation signal of the web at the output end of the target conveying roller 36 through the offset detection module 1.
  • the rotary encoder 24 detects the position signal of the output shaft of the DC servo motor 23 in real time and feeds it back to the correction control module 21, and detects the driving current signal of the DC servo motor 23 in real time through the current detection circuit 25 and feeds it back to the correction control module 21, so that in During the correction process, the correction control module 21 combines the position offset signal and the feedback position signal and drive current signal to dynamically adjust the rotation direction, speed and torque of the DC servo motor 23.
  • the servo motor Since the servo motor has strong rigidity and responsiveness, Many advantages, such as high speed and controlled torque, enable the DC servo motor 23 of the web guiding system to respond quickly at low speeds without causing jitter problems, and respond more promptly at high speeds, thereby enabling fast and high-speed control of various web materials. Precision correction effectively meets the high-precision requirements of correction applications. In certain coil fields (such as lithium battery manufacturing, capacitor manufacturing, etc.), the left and right positions of the coil can be more accurately controlled to control the quality of the final product and reduce waste.
  • the correction actuator 3 includes a base 31, a moving platform 32, a driving gear 33, a driven gear 34, a screw pair 35 and a target conveying roller 36.
  • the driving gear 33, the driven gear 34 and the screw pair 35 are all installed on the bottom 31.
  • the output shaft of the DC servo motor 23 is fixedly connected to the driving gear 33.
  • the driving gear 33 meshes with the driven gear 34, and the driven gear 34 It is fixedly connected to the driving end of the screw of the screw pair 35.
  • the nut of the screw pair 35 is fixedly connected to the moving platform 32.
  • the moving platform 32 and the top surface of the bottom 31 are slidingly connected through the slide rail.
  • the target conveying roller 36 is rotated and set on the mobile platform.
  • platform 32 On platform 32.
  • the DC servo motor 23 drives the driving gear 33, the driving gear 33 drives the driven gear 34 to rotate, and the rotation of the driven gear 34 drives the screw of the screw pair 35 to rotate, thereby causing the movement of the nut fixedly connected to the screw pair 35.
  • the platform 32 moves linearly along the width direction of the coil to correct the deviation of the coil.
  • generating a PWM drive control signal for controlling the operation of the servo drive module 22 based on the position offset signal detected by the offset detection module 1 includes:
  • the PWM drive control signal is generated based on the calculated number of Hall pulses required to drive the DC servo motor 23 and the rotation direction of the DC servo motor 23 .
  • the correction accuracy can be more accurately controlled.
  • the offset detection module 1 includes a sensor detection unit 11, a display calibration unit 12 and an offset calculation unit 13, where,
  • the sensor detection unit 11 includes a first CCD sensor group 111 and a second CCD sensor group 112 ;
  • the first CCD sensor group 111 includes a first linear array CCD spaced on the first side of the web at the web output end of the target conveying roller 36
  • the sensor 1111 and the second linear array CCD sensor 1112, the first linear array CCD sensor 1111 and the second linear array CCD sensor 1112 are respectively used to detect the first position deviation signal and the second position deviation signal of the edge of the first side of the web;
  • the second CCD sensor group 112 includes a third linear array CCD sensor 1121 and a fourth linear array CCD sensor 1122 that are spaced apart from the second side of the web opposite the first side of the web output end of the target conveying roller 36 .
  • the CCD sensor 1121 and the fourth linear array CCD sensor 1122 are respectively used to detect the third position deviation signal and the fourth position deviation signal of the edge of the second side of the web;
  • the display calibration unit 12 is used to display the first linear array CCD sensor 1111, the second linear array CCD sensor 1112 of the first CCD sensor group 111, and the third linear array CCD sensor 1121 and the fourth linear array CCD sensor 1122 of the second CCD sensor group 112.
  • the web edge image of the corresponding position is captured when the web is not offset, and based on human-computer interaction, the web edge point at the corresponding position is marked on the corresponding web edge image captured by each linear array CCD sensor, and recorded.
  • the offset calculation unit 13 is used to calculate the first linear array CCD sensor 1111 of the first CCD sensor group 111 , the second linear array CCD sensor 1112 and the third linear array CCD sensor of the second CCD sensor group 112 during the web conveying process. 1121 and the first position deviation signal, the second position deviation signal, the third position deviation signal, the fourth position deviation signal detected by the fourth linear array CCD sensor 1122 and the corresponding web material recorded by the display calibration unit 12 The corresponding coordinates of the edge points in the rectangular plane coordinate system are calculated through fitting to obtain the position offset signal of the web at the web output end of the target conveying roller 36.
  • the offset calculation unit 13 is specifically used to:
  • the first coordinate of the first web edge point in the first web edge image in the rectangular plane coordinate system is used to calculate the first offset corresponding to the first web edge point;
  • the web is conveyed in a non-deviated state.
  • the third offset corresponding to the third web edge point in the rectangular plane coordinate system from the third coordinate of the third web edge point in the three web edge images;
  • the fitting offset on the first side and the fitting offset on the second side are fitted according to a preset fitting coefficient to generate a position offset signal of the web at the web output end of the target conveying roller 36 .
  • the above fitting coefficient may be obtained by processing multiple offsets corresponding to multiple measurements.
  • the correspondence of the web is detected by the first CCD sensor group 111 disposed on one side of the web at the web output end and the second CCD sensor group 112 disposed on the other side of the web at the web output end.
  • the position offset signals detected by the two CCD sensor groups are fitted according to the preset fitting coefficients to determine the actual offset of the web, and each CCD sensor group is set
  • Two spaced linear array CCD sensors are used to detect the position offset signals at different positions on the same side, and the position offset signals at two different positions detected by the two linear array CCD sensors in each group are calculated according to the preset pattern.
  • the fitting coefficient is used to determine the offset of the web on that side.
  • This setting can effectively avoid the detection of web offset caused by a single sensor and detecting the offset of one side of the web to determine the actual offset of the web.
  • the problem of inaccuracy can effectively improve the accuracy of the position offset signal of the web detected by the offset detection module, thereby improving the correction accuracy of the correction system from the source.
  • a single photoelectric sensor or an ultrasonic sensor is usually used to detect the offset of the web, which can easily lead to detection errors and limited detection accuracy.
  • the use of photoelectric sensors to detect the offset of the web is not suitable for transparent webs.
  • the use of ultrasonic sensors to detect web offset is not suitable for breathable webs.
  • the high-resolution characteristics of linear array CCD sensors in the linear direction are used, and four linear array CCD sensors are used to form two CCD sensor groups.
  • the offset detection module 1 is composed of two sets of CCD sensors to detect the offset on both sides of the roll. Compared with the existing technology that uses a single photoelectric sensor or ultrasonic sensor to detect the offset of the roll, the roll The detection accuracy of material offset is higher, breaking the transparency and material restrictions of the web, and has a wider scope of application.
  • the DC servo motor 23 adopts 3-loop control
  • the deviation correction control module 21 includes a first adder 211, a second adder 212, a third adder 213, a position PID regulator 214, Speed PID regulator 215 and differentiator 216.
  • the servo drive module 22, the DC servo motor 23 and the current detection circuit 25 are connected in sequence.
  • the output of the current detection circuit 25 is input to the servo drive module 22 through the first adder 211 to form a current loop located in the inner loop.
  • the speed PID regulator 215, the DC servo motor 23, the rotary encoder 24 and the differentiator 216 are connected in sequence, and the output of the differentiator 216 is input to the speed PID regulator 215 through the second adder 212 to form a speed loop located in the middle loop.
  • the speed loop detects the angular position of the rotating shaft of the DC servo motor 23 through the rotating encoder 24, and then calculates the rotation speed of the DC servo motor 23 through the differentiator 216, so as to correct the deviation of the DC servo motor 23 according to the rotation speed obtained by the differential calculation.
  • the speed is controlled by PID closed loop to improve the accuracy of speed control.
  • the position PID regulator 214, the DC servo motor 23 and the rotary encoder 24 are connected in sequence.
  • the output of the rotary encoder 24 is input to the position PID regulator 214 through the third adder 213 to form a position ring located in the outer ring.
  • the position ring rotates
  • the encoder 24 is used to detect the angular position of the rotation axis of the DC servo motor 23, so as to perform PID closed-loop control on the correction position of the DC servo motor 23 during the correction process according to the detected actual rotation angular position of the DC servo motor 23, thereby improving the correction position control accuracy. .
  • the working process of the DC servo motor 23 for deviation correction adopts a three-loop PID closed-loop control composed of a current loop, a speed loop and a position loop, because there is a relationship between the motor drive current, the motor speed and the motor rotation angle position.
  • the current loop will quickly and accurately control the motor according to the instructions of the speed loop
  • the speed loop will quickly and accurately control the motor according to the instruction speed of the position loop, so that it is not affected by the load and quickly tracks changes in the instruction speed.
  • the position loop It compares the detection signal with the given value, and outputs the command speed of the speed loop to make the position of the actuator consistent with the command position.
  • the servo drive module 22 includes a MOSFET drive circuit 221, a MOSFET switch circuit 222 and a motor brake control circuit 223.
  • the input end of the MOSFET drive circuit 221 is connected to the output end of the correction control module 21.
  • the output terminal of the MOSFET driving circuit 221 is connected to the input terminal of the MOSFET switching circuit 222 , the first output terminal of the MOSFET switching circuit 222 is connected to the input terminal of the DC servo motor 23 , and the second output terminal of the MOSFET switching circuit 222 is connected to the current detection circuit 25
  • the input end of the motor brake control circuit 223 is connected to the output end of the correction control module 21 , and the output end of the motor brake control circuit 223 is connected to the DC servo motor 23 .
  • the MOSFET drive circuit 221 is used to perform level conversion on the PWM drive control signal output by the correction control module 21 , and the converted PWM drive control signal controls the opening and closing of the MOSFET switch circuit 222 to adjust the DC servo motor 23
  • the driving current is used to control the rotation direction, speed and torque of the DC servo motor 23.
  • the circuit schematic diagram of the MOSFET drive circuit 221 is shown in Figure 5, and the circuit schematic diagram of the MOSFET switch circuit 222 is shown in Figure 6.
  • the MOSFET drive circuit 221 uses three-way drive circuits to drive three channels of the MOSFET switch circuit 222 respectively.
  • the MOSFET switch tube of a half-bridge switch circuit is turned on and off to control the U, V, and W three-phase currents of the DC servo motor.
  • the motor brake control circuit 223 is used to control the DC servo motor 23 to stop rotating according to the brake signal output by the deviation correction control module 21 .
  • the circuit principle diagram of the motor brake control circuit 223 is shown in Figure 7.
  • the DC servo motor 23 can be quickly stopped after the deviation correction actuator 3 moves to the target position, so that Ensure correction accuracy.
  • the circuit principle diagram of the current detection circuit 25 is shown in Figure 8.
  • the current detection circuit 25 uses three current sampling amplification circuits to measure the IU, IV, and The IW three-phase driving current is detected and amplified, and the amplified driving current signal is fed back to the correction control module 21, thereby realizing closed-loop control of the driving current.
  • the main control chip of the deviation correction control module 21 adopts an STM32 series microcontroller, and its circuit schematic diagram is shown in Figure 4.
  • the rotary encoder 24 uses a 1000-line magnetic encoder or a 2500-line magnetic encoder.
  • 1000-line magnetic encoders and 2500-line magnetic encoders have high resolution and high cost performance, which can greatly save costs while ensuring correction accuracy.
  • the STM32 series of microcontrollers use the ARM Cortex-M core, which can meet the design of embedded applications and has the advantages of high performance, low cost, and low power consumption.
  • the servo correction control system also includes an external input and output control circuit 26.
  • the external input and output control circuit 26 is communicatively connected to the correction control module 21.
  • the correction control module 21 communicates with the correction control module 21 through the external input and output.
  • the control circuit 26 establishes a communication connection with an external monitoring system or remote control system to realize the interaction of data and instructions between the correction system and the external monitoring system or remote control system, thereby facilitating remote monitoring of the correction system.
  • the circuit schematic diagram of the external input and output control circuit 26 is shown in Figure 9.
  • Each signal channel uses a photoelectric coupler to achieve photoelectric isolation between the correction system and the external system signal, reducing the impact of the external system signal on the signal of the correction system. interference to ensure the accuracy of correction control.
  • the integrated modules/units of the DC servo drive-based web correction system are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and the computer program can be stored in a computer-readable storage medium. When the program is executed by the processor, the steps of each of the above method embodiments can be implemented.
  • the computer program includes computer program code, which may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording media, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signals telecommunications signals
  • software distribution media etc.
  • the content contained in the computer-readable medium can be appropriately added or deleted according to the requirements of legislation and patent practice in the jurisdiction.
  • the computer-readable medium Excludes electrical carrier signals and telecommunications signals.

Landscapes

  • Control Of Position Or Direction (AREA)

Abstract

一种基于直流伺服驱动的卷材纠偏系统,包括偏移检测模块(1)、伺服纠偏控制系统(2)和纠偏执行机构(3),伺服纠偏控制系统包括纠偏控制模块(21)、伺服驱动模块(22)、直流伺服电机(23)、旋转编码器(24)和电流检测电路(25);偏移检测模块用于检测目标输送辊的卷材输出端的卷材的位置偏移信号,并将位置偏移信号发送至伺服纠偏控制系统,伺服驱动模块用于根据纠偏控制模块输出的PWM驱动控制信号控制直流伺服电机的转动方向、转速和转矩,以通过直流伺服电机驱动纠偏执行机构对卷材进行纠偏控制。本发明能够使直流伺服电机在低速时输出力矩更稳定不蠕动,并且电机在高速时响应更快,并能有效提高系统的纠偏精度,从而有效满足纠偏应用的高精度要求。

Description

一种基于直流伺服驱动的卷材纠偏系统 技术领域
本发明涉及卷材纠偏技术领域,尤其涉及一种基于直流伺服驱动的卷材纠偏系统。
背景技术
目前,卷材纠偏行业的驱动电机大多数使用交流同步电机、步进电机以及直流无刷电机,这几种电机驱动简单,但性能难以提高。交流同步电机速度固定不能调速及速度较慢主要应用于对纠偏速度没有太大要求的低速制袋机等设备;步进电机能够调速却存在扭矩不大、速度不高的问题,同样受限明显;直流无刷电机则有低速抖动问题。在纠偏速度有较高要求的情况下,交流同步电机和步进电机均会面临问题纠偏速度慢且无法解决的问题;在负载轨道不太均匀的情况下,负载变化对直流无刷电机影响很大,没办法保证最终纠偏精度。
因此,如何实现卷材的快速、高精度纠偏,是目前本领域亟待解决的问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题,特别创新地提出了一种基于直流伺服驱动的卷材纠偏系统,使得电机在低速时输出力矩更稳定不蠕动,并且电机在高速时响应更快,并能有效提高系统的纠偏精度。
为了实现本发明的上述目的,本发明提供了一种基于直流伺服驱动的卷材纠偏系统,包括偏移检测模块、伺服纠偏控制系统和纠偏执行机构,其中,
所述偏移检测模块,用于检测目标输送辊的卷材输出端的卷材的位置偏移信号,并将所述位置偏移信号发送至所述伺服纠偏控制系统,其中,所述位置偏移信号包括偏移距离和偏移方向;
所述伺服纠偏控制系统,包括纠偏控制模块、伺服驱动模块、直流伺服电机、旋转编码器和电流检测电路,所述偏移检测模块的信号输出端、旋转编码器的信号输出端和电流检测电路的信号输出端分别与所述纠偏控制模块的信号输入端连接,所述纠偏控制模块的信号输出端与所述伺服驱动模块的信号输入端连接,所述伺服驱动模块的信号输出端与所述直流伺服电机的信号输入端连接,所述直流伺服电机的输出轴与所述纠偏执行机构传动连接,其中,
所述旋转编码器安装于所述直流伺服电机的输出轴上,其用于检测所述直流伺服电机的输出轴的旋转角度信息,并将所述旋转角度信息转化成对应的位置信号反馈至所述纠偏控制模块,
所述电流检测电路的输入端与所述伺服驱动模块连接,其用于检测所述伺服驱动模块输出至所述直流伺服电机的驱动电流信号,并将检测到的驱动电流信号反馈至所述纠偏控制模块,
所述纠偏控制模块用于根据所述偏移检测模块检测到的位置偏移信号生成用于控制所述伺服驱动模块工作的PWM驱动控制信号,其中,所述PWM驱动控制信号包括纠偏速度指令和纠偏位置指令,所述纠偏控制模块还根据反馈回来的位置信号和驱动电流信号对所述PWM驱动控制信号的纠偏速度指令和纠偏位置指令进行调节,
所述伺服驱动模块用于根据所述PWM驱动控制信号控制所述直流伺服电机的转动方向、转速和转矩,以通过所述直流伺服电机驱动所述纠偏执行机构对 卷材进行纠偏控制。
优选地,所述偏移检测模块包括传感器检测单元、显示标定单元和偏移量计算单元,其中,
所述传感器检测单元包括第一CCD传感器组和第二CCD传感器组;所述第一CCD传感器组包括间隔设置于所述目标输送辊的卷材输出端的卷材的第一侧的第一线阵CCD传感器和第二线阵CCD传感器,所述第一线阵CCD传感器和第二线阵CCD传感器分别用于检测所述卷材第一侧的边沿的第一位置偏移信号和第二位置偏移信号;所述第二CCD传感器组包括间隔设置于所述目标输送辊的卷材输出端的卷材的与所述第一侧相对的第二侧的第三线阵CCD传感器和第四线阵CCD传感器,所述第三线阵CCD传感器和第四线阵CCD传感器分别用于检测所述卷材第二侧的边沿的第三位置偏移信号和第四位置偏移信号;
所述显示标定单元用于显示所述第一CCD传感器组的第一线阵CCD传感器、第二线阵CCD传感器和第二CCD传感器组的第三线阵CCD传感器和第四线阵CCD传感器拍摄的卷材未偏移状态下对应位置的卷材边沿图像,并基于人机交互操在各线阵CCD传感器拍摄的对应的卷材边沿图像上标定出对应位置的卷材边线点,并记录各卷材边线点在直角平面坐标系内的对应坐标;
所述偏移量计算单元用于在卷材输送过程中,根据所述第一CCD传感器组的第一线阵CCD传感器、第二线阵CCD传感器和第二CCD传感器组的第三线阵CCD传感器和第四线阵CCD传感器检测到的第一位置偏移信号、第二位置偏移信号、第三位置偏移信号、第四位置偏移信号以及所述显示标定单元记录的对应的卷材边线点在直角平面坐标系内的对应坐标,通过拟合计算得到所述目标输送辊的卷材输出端的卷材的位置偏移信号。
优选地,所述偏移量计算单元具体用于:
在卷材输送过程中,根据所述第一线阵CCD传感器检测到的第一位置偏移信号和所述显示标定单元记录的该第一线阵CCD传感器拍摄的卷材未偏移状态下对应位置的第一卷材边沿图像中第一卷材边线点在直角平面坐标系内的第一坐标计算该第一卷材边线点对应的第一偏移量;
在卷材输送过程中,根据所述第二线阵CCD传感器检测到的第二位置偏移信号和所述显示标定单元记录的该第二线阵CCD传感器拍摄的卷材未偏移状态下对应位置的第二卷材边沿图像中第二卷材边线点在直角平面坐标系内的第二坐标计算该第二卷材边线点对应的第二偏移量;
在卷材输送过程中,根据所述第三线阵CCD传感器检测到的第三位置偏移信号和所述显示标定单元记录的该第三线阵CCD传感器拍摄的卷材未偏移状态下对应位置的第三卷材边沿图像中第三卷材边线点在直角平面坐标系内的第三坐标计算该第三卷材边线点对应的第三偏移量;
在卷材输送过程中,根据所述第四线阵CCD传感器检测到的第四位置偏移信号和所述显示标定单元记录的该第四线阵CCD传感器拍摄的卷材未偏移状态下对应位置的第四卷材边沿图像中第四卷材边线点在直角平面坐标系内的第四坐标计算该第四卷材边线点对应的第四偏移量;
将所述第一偏移量与第二偏移量按照预设的拟合系数进行拟合生成所述卷材的第一侧的拟合偏移量;
将所述第三偏移量与第四偏移量按照预设的拟合系数进行拟合生成所述卷材的第二侧的拟合偏移量;
将所述第一侧的拟合偏移量和第二侧的拟合偏移量按照预设的拟合系数进 行拟合生成所述目标输送辊的卷材输出端的卷材的位置偏移信号。
优选地,所述直流伺服电机采用3环控制,所述纠偏控制模块包括第一加法器、第二加法器、第三加法器、位置PID调节器、速度PID调节器和微分器,其中,
所述伺服驱动模块、直流伺服电机和电流检测电路依次连接,所述电流检测电路的输出再经所述第一加法器输入所述伺服驱动模块,形成位于内环的电流环,
所述速度PID调节器、直流伺服电机、旋转编码器和微分器依次连接,所述微分器的输出再经所述第二加法器输入所述速度PID调节器,形成位于中环的速度环,
所述位置PID调节器、直流伺服电机和旋转编码器依次连接,所述旋转编码器的输出再经所述第三加法器输入所述位置PID调节器,形成位于外环的位置环。
优选地,所述伺服驱动模块包括MOSFET驱动电路、MOSFET开关电路和电机刹车控制电路,所述MOSFET驱动电路的输入端与所述纠偏控制模块的输出端连接,所述MOSFET驱动电路的输出端与所述MOSFET开关电路的输入端连接,所述MOSFET开关电路的第一输出端与所述直流伺服电机的输入端连接,所述MOSFET开关电路的第二输出端与所述电流检测电路的输入端连接,所述电机刹车控制电路的输入端与所述纠偏控制模块的输出端连接,所述电机刹车控制电路的输出端与所述直流伺服电机连接,其中,
所述MOSFET驱动电路用于对所述纠偏控制模块输出的PWM驱动控制信号进行电平转换,由转换后的PWM驱动控制信号控制所述MOSFET开关电路 的开启与关闭,从以调节所述直流伺服电机的驱动电流,从而控制所述直流伺服电机的转转动方向、转速和转矩;
所述电机刹车控制电路用于根据所述纠偏控制模块输出的刹车信号控制所述直流伺服电机停止转动。
优选地,所述纠偏执行机构包括底座、移动平台、主动齿轮、从动齿轮、丝杠副和所述目标输送辊,所述移动平台、直流伺服电机、主动齿轮、从动齿轮和丝杠副均安装在所述底座上,所述直流伺服电机的输出轴与所述主动齿轮固定连接,所述主动齿轮与所述从动齿轮啮合,所述从动齿轮与所述丝杠副的丝杆的驱动端固定连接,所述丝杠副的螺母与所述移动平台固定连接,所述移动平台与所述底座的顶面通过滑轨滑动连接,所述目标输送辊转动设置于所述移动平台上。
优选地,所述根据所述偏移检测模块检测到的位置偏移信号生成用于控制所述伺服驱动模块工作的PWM驱动控制信号包括:
根据所述偏移检测模块检测到的位置偏移信号和所述主动齿轮与传动齿轮之间的传动比计算所述直流伺服电机的转动方向和需要转动的圈数;
基于计算得到的所述直流伺服电机需要转动的圈数和直流伺服电机旋转一圈所需的霍尔脉冲数计算驱动所述直流伺服电机所需的霍尔脉冲数;
基于计算得到的驱动所述直流伺服电机所需的霍尔脉冲数和所述直流伺服电机的转动方向生成所述PWM驱动控制信号。
优选地,所述旋转编码器采用1000线磁编码器或2500线磁编码器。
本发明的基于直流伺服驱动的卷材纠偏系统,通过将直流伺服电机与旋转编码器结合,通过偏移检测模块检测目标输送辊的输出端的卷材的位置偏移信号,通过旋转编码器实时检测直流伺服电机的输出轴的位置信号并反馈至纠偏控制 模块,并通过电流检测电路实时检测直流伺服电机的驱动电流信号并反馈至纠偏控制模块,从而在纠偏的过程中,通过纠偏控制模块结合位置偏移信号以及反馈回来的位置信号和驱动电流信号对直流伺服电机的转动方向、转速和转矩进行动态调节,使得卷材纠偏系统的直流伺服电机在低速下能够快速响应且不会产生抖动问题,高速下响应也更及时,从而能够实现各种卷材的快速、高精度纠偏,有效满足纠偏应用的高精度要求,在某些卷材领域(如锂电池制造,电容制造等)可以更加精确的控制卷材左右位置,以控制最终产品质量,减少浪费。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明提供的一种优选实施方式中基于直流伺服驱动的卷材纠偏系统的结构示意图;
图2是本发明提供的一种优选实施方式中偏移检测模块的传感器检测单元的各线阵CCD传感器布置方式示意图;
图3是本发明提供的一种优选实施方式中纠偏控制模块采用的3换控制的控制原理框图;
图4是本发明提供的一个具体实例中纠偏控制模块的主控芯片的电路原理图;
图5是本发明提供的一个具体实例中MOSFET驱动电路的电路原理图;
图6是本发明提供的一个具体实例中MOSFET开关电路的电路原理图;
图7是本发明提供的一个具体实例中电机刹车控制电路的电路原理图;
图8是本发明提供的一个具体实例中电流检测电路的电路原理图;
图9是本发明提供的一个具体实例中外接输入输出控制电路的电路原理图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非被特定定义,否则不会用理想化或过于正式的含义来解释。
在本发明的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是 两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本发明提供了一种基于直流伺服驱动的卷材纠偏系统,如图1-9所示,该系统包括偏移检测模块1、伺服纠偏控制系统2和纠偏执行机构3,其中,
偏移检测模块1,用于检测目标输送辊36的卷材输出端的卷材的位置偏移信号,并将位置偏移信号发送至伺服纠偏控制系统2,其中,位置偏移信号包括偏移距离和偏移方向;
伺服纠偏控制系统2,包括纠偏控制模块21、伺服驱动模块22、直流伺服电机23、旋转编码器24和电流检测电路25,偏移检测模块1的信号输出端、旋转编码器24的信号输出端和电流检测电路25的信号输出端分别与纠偏控制模块21的信号输入端连接,纠偏控制模块21的信号输出端与伺服驱动模块22的信号输入端连接,伺服驱动模块22的信号输出端与直流伺服电机23的信号输入端连接,直流伺服电机23的输出轴与纠偏执行机构3传动连接,其中,
旋转编码器24安装于直流伺服电机23的输出轴上,其用于检测直流伺服电机23的输出轴的旋转角度信息,并将旋转角度信息转化成对应的位置信号反馈至纠偏控制模块21,
电流检测电路25的输入端与伺服驱动模块22连接,其用于检测伺服驱动模块22输出至直流伺服电机23的驱动电流信号,并将检测到的驱动电流信号反馈至纠偏控制模块21,
纠偏控制模块21用于根据偏移检测模块1检测到的位置偏移信号生成用于控制伺服驱动模块22工作的PWM驱动控制信号,其中,PWM驱动控制信号包括纠偏速度指令和纠偏位置指令,纠偏控制模块21还根据反馈回来的位置信 号和驱动电流信号对PWM驱动控制信号的纠偏速度指令和纠偏位置指令进行调节,
伺服驱动模块22用于根据PWM驱动控制信号控制直流伺服电机23的转动方向、转速和转矩,以通过直流伺服电机23驱动纠偏执行机构3对卷材进行纠偏控制。
本实施例的基于直流伺服驱动的卷材纠偏系统,通过将直流伺服电机23与旋转编码器24结合,通过偏移检测模块1检测目标输送辊36的输出端的卷材的位置偏移信号,通过旋转编码器24实时检测直流伺服电机23的输出轴的位置信号并反馈至纠偏控制模块21,并通过电流检测电路25实时检测直流伺服电机23的驱动电流信号并反馈至纠偏控制模块21,从而在纠偏的过程中,通过纠偏控制模块21结合位置偏移信号以及反馈回来的位置信号和驱动电流信号对直流伺服电机23的转动方向、转速和转矩进行动态调节,由于伺服电机具有刚性强、响应快、力矩受控等诸多优点,使得卷材纠偏系统的直流伺服电机23在低速下能够快速响应且不会产生抖动问题,高速下响应也更及时,从而能够实现各种卷材的快速、高精度纠偏,有效满足纠偏应用的高精度要求,在某些卷材领域(如锂电池制造,电容制造等)可以更加精确的控制卷材左右位置,以控制最终产品质量,减少浪费。
在本实施例中,如图2所示,纠偏执行机构3包括底31、移动平台32、主动齿轮33、从动齿轮34、丝杠副35和目标输送辊36,移动平台32、直流伺服电机23、主动齿轮33、从动齿轮34和丝杠副35均安装在底31上,直流伺服电机23的输出轴与主动齿轮33固定连接,主动齿轮33与从动齿轮34啮合,从动齿轮34与丝杠副35的丝杆的驱动端固定连接,丝杠副35的螺母与移动平台32 固定连接,移动平台32与底31的顶面通过滑轨滑动连接,目标输送辊36转动设置于移动平台32上。通过直流伺服电机23驱动主动齿轮33,主动齿轮33带动从动齿轮34转动,而从动齿轮34的转动带动丝杠副35的丝杠旋转,从而使与丝杠副35的螺母固定连接的移动平台32沿卷材的宽度方向做直线运动,实现卷材的纠偏。
具体地,在本实施例中,根据偏移检测模块1检测到的位置偏移信号生成用于控制伺服驱动模块22工作的PWM驱动控制信号包括:
根据偏移检测模块1检测到的位置偏移信号和主动齿轮33与传动齿轮之间的传动比计算直流伺服电机23的转动方向和需要转动的圈数;
基于计算得到的直流伺服电机23需要转动的圈数和直流伺服电机23旋转一圈所需的霍尔脉冲数计算驱动直流伺服电机23所需的霍尔脉冲数;
基于计算得到的驱动直流伺服电机23所需的霍尔脉冲数和直流伺服电机23的转动方向生成PWM驱动控制信号。
通过计算驱动直流伺服电机23所需的霍尔脉冲数和直流伺服电机23的转动方向生成的PWM驱动控制信号能够更加准确的控制纠偏精度。
在一个实施例中,如图1、2所示,偏移检测模块1包括传感器检测单元11、显示标定单元12和偏移量计算单元13,其中,
传感器检测单元11包括第一CCD传感器组111和第二CCD传感器组112;第一CCD传感器组111包括间隔设置于目标输送辊36的卷材输出端的卷材的第一侧的第一线阵CCD传感器1111和第二线阵CCD传感器1112,第一线阵CCD传感器1111和第二线阵CCD传感器1112分别用于检测卷材第一侧的边沿的第一位置偏移信号和第二位置偏移信号;第二CCD传感器组112包括间隔设置于 目标输送辊36的卷材输出端的卷材的与第一侧相对的第二侧的第三线阵CCD传感器1121和第四线阵CCD传感器1122,第三线阵CCD传感器1121和第四线阵CCD传感器1122分别用于检测卷材第二侧的边沿的第三位置偏移信号和第四位置偏移信号;
显示标定单元12用于显示第一CCD传感器组111的第一线阵CCD传感器1111、第二线阵CCD传感器1112和第二CCD传感器组112的第三线阵CCD传感器1121和第四线阵CCD传感器1122拍摄的卷材未偏移状态下对应位置的卷材边沿图像,并基于人机交互操在各线阵CCD传感器拍摄的对应的卷材边沿图像上标定出对应位置的卷材边线点,并记录各卷材边线点在直角平面坐标系内的对应坐标;
偏移量计算单元13用于在卷材输送过程中,根据第一CCD传感器组111的第一线阵CCD传感器1111、第二线阵CCD传感器1112和第二CCD传感器组112的第三线阵CCD传感器1121和第四线阵CCD传感器1122检测到的第一位置偏移信号、第二位置偏移信号、第三位置偏移信号、第四位置偏移信号以及显示标定单元12记录的对应的卷材边线点在直角平面坐标系内的对应坐标,通过拟合计算得到目标输送辊36的卷材输出端的卷材的位置偏移信号。
在本实施例中,偏移量计算单元13具体用于:
在卷材输送过程中,根据第一线阵CCD传感器1111检测到的第一位置偏移信号和显示标定单元12记录的该第一线阵CCD传感器1111拍摄的卷材未偏移状态下对应位置的第一卷材边沿图像中第一卷材边线点在直角平面坐标系内的第一坐标计算该第一卷材边线点对应的第一偏移量;
在卷材输送过程中,根据第二线阵CCD传感器1112检测到的第二位置偏移 信号和显示标定单元12记录的该第二线阵CCD传感器1112拍摄的卷材未偏移状态下对应位置的第二卷材边沿图像中第二卷材边线点在直角平面坐标系内的第二坐标计算该第二卷材边线点对应的第二偏移量;
在卷材输送过程中,根据第三线阵CCD传感器1121检测到的第三位置偏移信号和显示标定单元12记录的该第三线阵CCD传感器1121拍摄的卷材未偏移状态下对应位置的第三卷材边沿图像中第三卷材边线点在直角平面坐标系内的第三坐标计算该第三卷材边线点对应的第三偏移量;
在卷材输送过程中,根据第四线阵CCD传感器1122检测到的第四位置偏移信号和显示标定单元12记录的该第四线阵CCD传感器1122拍摄的卷材未偏移状态下对应位置的第四卷材边沿图像中第四卷材边线点在直角平面坐标系内的第四坐标计算该第四卷材边线点对应的第四偏移量;
将第一偏移量与第二偏移量按照预设的拟合系数进行拟合生成卷材的第一侧的拟合偏移量;
将第三偏移量与第四偏移量按照预设的拟合系数进行拟合生成卷材的第二侧的拟合偏移量;
将第一侧的拟合偏移量和第二侧的拟合偏移量按照预设的拟合系数进行拟合生成目标输送辊36的卷材输出端的卷材的位置偏移信号。
具体地,上述拟合系数可以是将多次测量的对应的多个偏移量进行处理得到。
本实施例中,通过设置在卷材输出端的卷材的一侧的第一CCD传感器组111和设置在卷材输出端的卷材的另一侧的第二CCD传感器组112来检测卷材的对应侧的位置偏移信号,并对两组CCD传感器组的检测的位置偏移信号按照预设 的拟合系数进行拟合来确定卷材的实际偏移量,且每一组CCD传感器组均设置两个间隔的线阵CCD传感器来检测同一侧的不同位置的位置偏移信号,并将每一组的两个线阵CCD传感器检测到的两个不同位置的位置偏移信号按照预设的拟合系数进行拟合来确定该侧的卷材偏移量,这样设置,可以有效避免单个传感器和检测卷材单侧偏移量来确定卷材的实际偏移量导致的卷材偏移量检测不准确的问题,能够有效提高偏移量检测模块检测到的卷材的位置偏移信号的准确性,从而从源头上提高纠偏系统的纠偏精度。现有技术中通常单独采用单个光电传感器或超声波传感器来检测卷材的偏移量,容易导致检测误差,检测精度受限,且采用光电传感器检测卷材偏移量不适用于透明卷材,而采用超声波传感器来检测卷材偏移量不适用于透气卷材,本实施例中,利用线阵CCD传感器在线性方向的高分辨率特性,并采用4个线阵CCD传感器构成两组CCD传感器组,再由两组CCD传感器组构成偏移检测模块1检测卷材两侧的偏移量,相对于现有技术中单独采用单个光电传感器或超声波传感器来检测卷材的偏移量的方案,卷材偏移量的检测精度更高,打破了卷材透明度和材质限制,适用范围更广。
在一个实施例中,如图3所示,直流伺服电机23采用3环控制,纠偏控制模块21包括第一加法器211、第二加法器212、第三加法器213、位置PID调节器214、速度PID调节器215和微分器216。
具体地,伺服驱动模块22、直流伺服电机23和电流检测电路25依次连接,电流检测电路25的输出再经第一加法器211输入伺服驱动模块22,形成位于内环的电流环,通过电流环控制直流伺服电机23的转矩,根据电流检测电路25检测得到的直流伺服电机23的驱动电流来对直流伺服电机23纠偏过程中的转矩进行PID闭环控制,有效提高纠偏系统的直流伺服电机23在转矩模式下的响应 速度。
具体地,速度PID调节器215、直流伺服电机23、旋转编码器24和微分器216依次连接,微分器216的输出再经第二加法器212输入速度PID调节器215,形成位于中环的速度环,速度环通过旋转编码器24来检测直流伺服电机23的转轴角度位置,然后通过微分器216计算得到直流伺服电机23的转速,从而根据微分计算得到的转速来对直流伺服电机23纠偏过程中的转速进行PID闭环控制,提高转速控制精度。
位置PID调节器214、直流伺服电机23和旋转编码器24依次连接,旋转编码器24的输出再经第三加法器213输入位置PID调节器214,形成位于外环的位置环,位置环通过旋转编码器24来检测直流伺服电机23的转轴角度位置,从而根据检测到的直流伺服电机23的实际旋转角度位置来对直流伺服电机23纠偏过程中的纠偏位置进行PID闭环控制,提高纠偏位置控制精度。
本实施例中,对于纠偏用的直流伺服电机23的工作过程采用电流环、速度环和位置环构成的3环PID闭环控制,是因为电机驱动电流、电机转速和电机旋转角度位置三者之间相互关联,电流环会根据速度环的指令快速而准确控制电机,速度环则会根据位置环的指令速度快速而准确控制电机,使得其不受负载影响,并快速跟踪指令速度的变化,位置环则是比较检测信号与给定值,输出速度环的指令速度,使执行件位置与指令位置一致。
在一个实施例中,如图1所示,伺服驱动模块22包括MOSFET驱动电路221、MOSFET开关电路222和电机刹车控制电路223,MOSFET驱动电路221的输入端与纠偏控制模块21的输出端连接,MOSFET驱动电路221的输出端与MOSFET开关电路222的输入端连接,MOSFET开关电路222的第一输出端与 直流伺服电机23的输入端连接,MOSFET开关电路222的第二输出端与电流检测电路25的输入端连接,电机刹车控制电路223的输入端与纠偏控制模块21的输出端连接,电机刹车控制电路223的输出端与直流伺服电机23连接。
具体地,MOSFET驱动电路221用于对纠偏控制模块21输出的PWM驱动控制信号进行电平转换,由转换后的PWM驱动控制信号控制MOSFET开关电路222的开启与关闭,从以调节直流伺服电机23的驱动电流,从而控制直流伺服电机23的转转动方向、转速和转矩。本实施例中,MOSFET驱动电路221的电路原理图如图5所示,MOSFET开关电路222的电路原理图如图6所示,MOSFET驱动电路221采用三路驱动电路分别驱动MOSFET开关电路222的三个半桥开关电路的MOSFET开关管的开通与关闭,从而对直流伺服电机的U、V、W三相的电流进行控制。
具体地,电机刹车控制电路223用于根据纠偏控制模块21输出的刹车信号控制直流伺服电机23停止转动。本实施例中,电机刹车控制电路223的电路原理图如图7所示,通过该电机刹车控制电路223可以在纠偏执行机构3移动到目标位置后快速实现对直流伺服电机23的止动,从而保证纠偏精度。
具体地,本实施例中,电流检测电路25的电路原理图如图8所示,电流检测电路25通过三路电流采样放大电路对伺服驱动模块22的MOSFET开关电路222的输出的IU、IV、IW三相驱动电流进行检测和放大,并将放大后的驱动电流信号反馈至纠偏控制模块21,从而实现对驱动电流的闭环控制。
具体地,本实施例中,纠偏控制模块21的主控芯片采用STM32系列单片机,其电路原理图如图4所示。
具体地,在一个实施例中,旋转编码器24采用1000线磁编码器或2500线 磁编码器。1000线磁编码器和2500线磁编码器分辨率高,性价比高,在保证纠偏精度的同时可以较大地节约成本。STM32系列单片机采用ARM Cortex-M内核,能够满足嵌入式应用设计,具有高性能、低成本、低功耗等优点。
具体地,如图1所示,在一个实施例中,伺服纠偏控制系统还包括外接输入输出控制电路26,外接输入输出控制电路26与纠偏控制模块21通信连接,纠偏控制模块21通过外接输入输出控制电路26与外部监控系统或远程控制系统建立通信连接,实现本纠偏系统与外部监控系统或远程控制系统之间的数据和指令的交互,从而便于实现对本纠偏系统的远程监控。具体地,外接输入输出控制电路26的电路原理图如图9所示,各个信号通道采用光电耦合器实现纠偏系统与外部系统信号之间的光电隔离,降低外部系统的信号对本纠偏系统的信号的干扰,从而保证纠偏控制的精度。
本实施例中,所述基于直流伺服驱动的卷材纠偏系统集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含 的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种基于直流伺服驱动的卷材纠偏系统,其特征在于,包括偏移检测模块、伺服纠偏控制系统和纠偏执行机构,其中,
    所述偏移检测模块,用于检测目标输送辊的卷材输出端的卷材的位置偏移信号,并将所述位置偏移信号发送至所述伺服纠偏控制系统,其中,所述位置偏移信号包括偏移距离和偏移方向;
    所述伺服纠偏控制系统,包括纠偏控制模块、伺服驱动模块、直流伺服电机、旋转编码器和电流检测电路,所述偏移检测模块的信号输出端、旋转编码器的信号输出端和电流检测电路的信号输出端分别与所述纠偏控制模块的信号输入端连接,所述纠偏控制模块的信号输出端与所述伺服驱动模块的信号输入端连接,所述伺服驱动模块的信号输出端与所述直流伺服电机的信号输入端连接,所述直流伺服电机的输出轴与所述纠偏执行机构传动连接,其中,
    所述旋转编码器安装于所述直流伺服电机的输出轴上,其用于检测所述直流伺服电机的输出轴的旋转角度信息,并将所述旋转角度信息转化成对应的位置信号反馈至所述纠偏控制模块,
    所述电流检测电路的输入端与所述伺服驱动模块连接,其用于检测所述伺服驱动模块输出至所述直流伺服电机的驱动电流信号,并将检测到的驱动电流信号反馈至所述纠偏控制模块,
    所述纠偏控制模块用于根据所述偏移检测模块检测到的位置偏移信号生成用于控制所述伺服驱动模块工作的PWM驱动控制信号,其中,所述PWM驱动控制信号包括纠偏速度指令和纠偏位置指令,所述纠偏控制模块还根据反馈回来的位置信号和驱动电流信号对所述PWM驱动控制信号的纠偏速度指令和纠偏位置指令进行调节,
    所述伺服驱动模块用于根据所述PWM驱动控制信号控制所述直流伺服电机的转动方向、转速和转矩,以通过所述直流伺服电机驱动所述纠偏执行机构对卷材进行纠偏控制。
  2. 根据权利要求1所述的基于直流伺服驱动的卷材纠偏系统,其特征在于,所述偏移检测模块包括传感器检测单元、显示标定单元和偏移量计算单元,其中,
    所述传感器检测单元包括第一CCD传感器组和第二CCD传感器组;所述第一CCD传感器组包括间隔设置于所述目标输送辊的卷材输出端的卷材的第一侧的第一线阵CCD传感器和第二线阵CCD传感器,所述第一线阵CCD传感器和第二线阵CCD传感器分别用于检测所述卷材第一侧的边沿的第一位置偏移信号和第二位置偏移信号;所述第二CCD传感器组包括间隔设置于所述目标输送辊的卷材输出端的卷材的与所述第一侧相对的第二侧的第三线阵CCD传感器和第四线阵CCD传感器,所述第三线阵CCD传感器和第四线阵CCD传感器分别用于检测所述卷材第二侧的边沿的第三位置偏移信号和第四位置偏移信号;
    所述显示标定单元用于显示所述第一CCD传感器组的第一线阵CCD传感器、第二线阵CCD传感器和第二CCD传感器组的第三线阵CCD传感器和第四线阵CCD传感器拍摄的卷材未偏移状态下对应位置的卷材边沿图像,并基于人机交互操在各线阵CCD传感器拍摄的对应的卷材边沿图像上标定出对应位置的卷材边线点,并记录各卷材边线点在直角平面坐标系内的对应坐标;
    所述偏移量计算单元用于在卷材输送过程中,根据所述第一CCD传感器组的第一线阵CCD传感器、第二线阵CCD传感器和第二CCD传感器组的第三线阵CCD传感器和第四线阵CCD传感器检测到的第一位置偏移信号、第二位置偏移信号、第三位置偏移信号、第四位置偏移信号以及所述显示标定单元记录的 对应的卷材边线点在直角平面坐标系内的对应坐标,通过拟合计算得到所述目标输送辊的卷材输出端的卷材的位置偏移信号。
  3. 根据权利要求2所述的基于直流伺服驱动的卷材纠偏系统,其特征在于,所述偏移量计算单元具体用于:
    在卷材输送过程中,根据所述第一线阵CCD传感器检测到的第一位置偏移信号和所述显示标定单元记录的该第一线阵CCD传感器拍摄的卷材未偏移状态下对应位置的第一卷材边沿图像中第一卷材边线点在直角平面坐标系内的第一坐标计算该第一卷材边线点对应的第一偏移量;
    在卷材输送过程中,根据所述第二线阵CCD传感器检测到的第二位置偏移信号和所述显示标定单元记录的该第二线阵CCD传感器拍摄的卷材未偏移状态下对应位置的第二卷材边沿图像中第二卷材边线点在直角平面坐标系内的第二坐标计算该第二卷材边线点对应的第二偏移量;
    在卷材输送过程中,根据所述第三线阵CCD传感器检测到的第三位置偏移信号和所述显示标定单元记录的该第三线阵CCD传感器拍摄的卷材未偏移状态下对应位置的第三卷材边沿图像中第三卷材边线点在直角平面坐标系内的第三坐标计算该第三卷材边线点对应的第三偏移量;
    在卷材输送过程中,根据所述第四线阵CCD传感器检测到的第四位置偏移信号和所述显示标定单元记录的该第四线阵CCD传感器拍摄的卷材未偏移状态下对应位置的第四卷材边沿图像中第四卷材边线点在直角平面坐标系内的第四坐标计算该第四卷材边线点对应的第四偏移量;
    将所述第一偏移量与第二偏移量按照预设的拟合系数进行拟合生成所述卷材的第一侧的拟合偏移量;
    将所述第三偏移量与第四偏移量按照预设的拟合系数进行拟合生成所述卷材的第二侧的拟合偏移量;
    将所述第一侧的拟合偏移量和第二侧的拟合偏移量按照预设的拟合系数进行拟合生成所述目标输送辊的卷材输出端的卷材的位置偏移信号。
  4. 根据权利要求1所述的基于直流伺服驱动的卷材纠偏系统,其特征在于,所述直流伺服电机采用3环控制,所述纠偏控制模块包括第一加法器、第二加法器、第三加法器、位置PID调节器、速度PID调节器和微分器,其中,
    所述伺服驱动模块、直流伺服电机和电流检测电路依次连接,所述电流检测电路的输出再经所述第一加法器输入所述伺服驱动模块,形成位于内环的电流环,
    所述速度PID调节器、直流伺服电机、旋转编码器和微分器依次连接,所述微分器的输出再经所述第二加法器输入所述速度PID调节器,形成位于中环的速度环,
    所述位置PID调节器、直流伺服电机和旋转编码器依次连接,所述旋转编码器的输出再经所述第三加法器输入所述位置PID调节器,形成位于外环的位置环。
  5. 根据权利要求1所述的基于直流伺服驱动的卷材纠偏系统,其特征在于,所述伺服驱动模块包括MOSFET驱动电路、MOSFET开关电路和电机刹车控制电路,所述MOSFET驱动电路的输入端与所述纠偏控制模块的输出端连接,所述MOSFET驱动电路的输出端与所述MOSFET开关电路的输入端连接,所述MOSFET开关电路的第一输出端与所述直流伺服电机的输入端连接,所述MOSFET开关电路的第二输出端与所述电流检测电路的输入端连接,所述电机 刹车控制电路的输入端与所述纠偏控制模块的输出端连接,所述电机刹车控制电路的输出端与所述直流伺服电机连接,其中,
    所述MOSFET驱动电路用于对所述纠偏控制模块输出的PWM驱动控制信号进行电平转换,由转换后的PWM驱动控制信号控制所述MOSFET开关电路的开启与关闭,从以调节所述直流伺服电机的驱动电流,从而控制所述直流伺服电机的转转动方向、转速和转矩;
    所述电机刹车控制电路用于根据所述纠偏控制模块输出的刹车信号控制所述直流伺服电机停止转动。
  6. 根据权利要求1所述的基于直流伺服驱动的卷材纠偏系统,其特征在于,所述纠偏执行机构包括底座、移动平台、主动齿轮、从动齿轮、丝杠副和所述目标输送辊,所述移动平台、直流伺服电机、主动齿轮、从动齿轮和丝杠副均安装在所述底座上,所述直流伺服电机的输出轴与所述主动齿轮固定连接,所述主动齿轮与所述从动齿轮啮合,所述从动齿轮与所述丝杠副的丝杆的驱动端固定连接,所述丝杠副的螺母与所述移动平台固定连接,所述移动平台与所述底座的顶面通过滑轨滑动连接,所述目标输送辊转动设置于所述移动平台上。
  7. 根据权利要求6所示的基于直流伺服驱动的卷材纠偏系统,其特征在于,所述根据所述偏移检测模块检测到的位置偏移信号生成用于控制所述伺服驱动模块工作的PWM驱动控制信号包括:
    根据所述偏移检测模块检测到的位置偏移信号和所述主动齿轮与传动齿轮之间的传动比计算所述直流伺服电机的转动方向和需要转动的圈数;
    基于计算得到的所述直流伺服电机需要转动的圈数和直流伺服电机旋转一圈所需的霍尔脉冲数计算驱动所述直流伺服电机所需的霍尔脉冲数;
    基于计算得到的驱动所述直流伺服电机所需的霍尔脉冲数和所述直流伺服电机的转动方向生成所述PWM驱动控制信号。
  8. 根据权利要求1-7任一项所述的基于直流伺服驱动的卷材纠偏系统,其特征在于,所述旋转编码器采用1000线磁编码器或2500线磁编码器。
PCT/CN2022/144174 2022-08-23 2022-12-30 一种基于直流伺服驱动的卷材纠偏系统 WO2024040849A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211012962.XA CN115159217A (zh) 2022-08-23 2022-08-23 一种基于直流伺服驱动的卷材纠偏系统
CN202211012962.X 2022-08-23

Publications (1)

Publication Number Publication Date
WO2024040849A1 true WO2024040849A1 (zh) 2024-02-29

Family

ID=83481842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144174 WO2024040849A1 (zh) 2022-08-23 2022-12-30 一种基于直流伺服驱动的卷材纠偏系统

Country Status (2)

Country Link
CN (1) CN115159217A (zh)
WO (1) WO2024040849A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115159217A (zh) * 2022-08-23 2022-10-11 重庆编福科技有限公司 一种基于直流伺服驱动的卷材纠偏系统
CN116873631A (zh) * 2023-08-22 2023-10-13 湖南隆深氢能科技有限公司 一种基于gdl卷材涂布生产线的自动纠偏系统及方法
CN117215252B (zh) * 2023-11-07 2024-02-02 钛玛科(北京)工业科技有限公司 一种纠偏控制系统
CN117706966B (zh) * 2024-02-05 2024-05-14 钛玛科(北京)工业科技有限公司 一种智能化自动对中控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143699A (ja) * 2006-12-13 2008-06-26 Kao Corp 搬送ウエブの位置制御方法
CN102053630A (zh) * 2011-01-18 2011-05-11 深圳市爱博科技有限公司 直流无刷电机纠偏控制装置及系统
CN104773573A (zh) * 2015-02-12 2015-07-15 华中科技大学 一种用于柔性膜输送的纠偏控制系统
CN105680737A (zh) * 2014-11-21 2016-06-15 陕西亚泰电器科技有限公司 一种无刷直流电机的纠偏控制系统
CN205375075U (zh) * 2015-12-23 2016-07-06 志圣科技(广州)有限公司 一种触摸屏卷材的自动纠偏控制系统
CN209922546U (zh) * 2018-12-25 2020-01-10 苏州采奕动力科技有限公司 一种纠偏控制系统
CN115159217A (zh) * 2022-08-23 2022-10-11 重庆编福科技有限公司 一种基于直流伺服驱动的卷材纠偏系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143699A (ja) * 2006-12-13 2008-06-26 Kao Corp 搬送ウエブの位置制御方法
CN102053630A (zh) * 2011-01-18 2011-05-11 深圳市爱博科技有限公司 直流无刷电机纠偏控制装置及系统
CN105680737A (zh) * 2014-11-21 2016-06-15 陕西亚泰电器科技有限公司 一种无刷直流电机的纠偏控制系统
CN104773573A (zh) * 2015-02-12 2015-07-15 华中科技大学 一种用于柔性膜输送的纠偏控制系统
CN205375075U (zh) * 2015-12-23 2016-07-06 志圣科技(广州)有限公司 一种触摸屏卷材的自动纠偏控制系统
CN209922546U (zh) * 2018-12-25 2020-01-10 苏州采奕动力科技有限公司 一种纠偏控制系统
CN115159217A (zh) * 2022-08-23 2022-10-11 重庆编福科技有限公司 一种基于直流伺服驱动的卷材纠偏系统

Also Published As

Publication number Publication date
CN115159217A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2024040849A1 (zh) 一种基于直流伺服驱动的卷材纠偏系统
CN109827505B (zh) 一种高精度激光扫描振镜位置传感器标定系统
CN106292664A (zh) 一种变电站巡检机器人导航控制系统及方法
CN102553968B (zh) 水箱拉丝机排线机构的位置误差消除方法及装置
CN105058388A (zh) 用于获取机器人关节位置反馈信息的传感器数据融合方法
KR101144958B1 (ko) 갠트리 구조형 스테이지의 직각도 오차 측정 방법 및 오차 보상 원점복귀 방법
CN103676653A (zh) 应用于龙门机构的伺服同步控制方法及系统
CN202592957U (zh) 一种高速无轴传动印刷送纸控制系统
CN201190051Y (zh) 基于伺服电机的排线控制系统
CN202139537U (zh) 小车左右直线同步行走控制电路及检测装置
CN207994965U (zh) 一种双pg控制的旋转定位装置
CN105856244B (zh) 一种重载无线传输五核高速关节机器人控制系统
CN111951990A (zh) 一种基于转速控制的大车同步系统及方法
CN209641754U (zh) 叠片电芯极片调整装置
CN107992109A (zh) 全闭环定位控制系统及方法
CN114753072B (zh) 一种刺绣机绣框断电保护控制方法、系统及装置
CN111847240A (zh) 一种起重机同步误差测量装置及其纠偏方法
CN109129427B (zh) 一种双五杆机构驱动的平面并联机构装置与控制方法
CN114136669A (zh) 一种车轮旋转装置及其定位检测补偿方法
CN115268373A (zh) 双轴同步控制方法、控制装置及同步运动装置
CN113120822B (zh) 一种多臂同步叠合联动控制系统
CN111702304B (zh) 埋弧焊用导电嘴自动定位的控制系统及其方法
CN105922270B (zh) 一种教学用无线传输三核快速关节机器人控制系统
CN106003029A (zh) 一种教学用三核快速关节机器人控制系统
CN205906715U (zh) 一种用于气浮条高度监测的玻璃基板浮起装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956380

Country of ref document: EP

Kind code of ref document: A1