WO2024040781A1 - 一种微电网自适应虚拟同步控制方法、装置、介质、设备 - Google Patents

一种微电网自适应虚拟同步控制方法、装置、介质、设备 Download PDF

Info

Publication number
WO2024040781A1
WO2024040781A1 PCT/CN2022/135832 CN2022135832W WO2024040781A1 WO 2024040781 A1 WO2024040781 A1 WO 2024040781A1 CN 2022135832 W CN2022135832 W CN 2022135832W WO 2024040781 A1 WO2024040781 A1 WO 2024040781A1
Authority
WO
WIPO (PCT)
Prior art keywords
inertia
frequency
microgrid
virtual
power
Prior art date
Application number
PCT/CN2022/135832
Other languages
English (en)
French (fr)
Inventor
孙树敏
于芃
邢家维
程艳
王士柏
王楠
王玥娇
张兴友
关逸飞
刘奕元
周光奇
杨颂
王成龙
Original Assignee
国网山东省电力公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网山东省电力公司电力科学研究院 filed Critical 国网山东省电力公司电力科学研究院
Publication of WO2024040781A1 publication Critical patent/WO2024040781A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]

Definitions

  • the invention relates to the technical fields of energy storage and new energy, and in particular to an adaptive virtual synchronization control method, device, medium and equipment for a microgrid based on energy storage links.
  • Microgrids can provide power and/or heat. Depending on whether they are connected to a large grid, microgrids can be divided into grid-connected operation mode and isolated grid operation mode. In grid-connected mode, microgrid voltage/frequency and supply and demand power balance are mainly controlled by the public utility. Grid Maintenance; In island mode, the inverter based DG (distributed generation unit) should be responsible for maintaining voltage/frequency stability and maintaining proper power sharing as per their respective ratings.
  • VSG Virtual Synchronous Generator
  • the inverter-based DG is not limited by the physical limitations of the SG, the inertia and damping parameters can be flexibly designed in real time. Jaber and Toshifumi used changing inertia instead of fixed inertia, and determined the value of the moment of inertia by interpreting the state of angular velocity and its rate of change. The performance is faster and more stable than systems with fixed inertia. However, because the influence of the frequency derivative term is ignored and there are only two inertial values, this control method is relatively susceptible to interference.
  • the droop gain is regarded as the function derivative term of frequency, and its essence is actually a variable inertia. In this case, the frequency deviation is reduced by the interference, but only when the frequency derivative term is fully considered can the influence of interference be eliminated.
  • Some scholars have proposed a virtual inertia control scheme of a secondary controller based on fuzzy theory to improve the dynamic response of microgrid voltage/frequency. However, the article does not provide an analysis of fuzzy decision-making.
  • Some literature has fully discussed the characteristics of large inertia and small inertia in microgrid systems, and proposed the concept of virtual inertia of grid-connected inverters. Virtual inertia can effectively achieve rapid response of the microgrid system, but the above control methods require active frequency derivatives to control the virtual inertia, and this parameter is very sensitive to measurement noise and can easily cause a certain degree of interference.
  • Embodiments of the present invention provide a microgrid adaptive virtual synchronization control method, device, medium, and equipment to solve the problem in the prior art that the virtual inertia of the grid-connected inverter is easily affected by high-frequency noise and cannot effectively realize the microgrid system. Quick response to questions.
  • a simplified summary is provided below. This summary is not intended to be an extensive review, nor is it intended to identify key/important elements or to delineate the scope of these embodiments. Its sole purpose is to present a few concepts in a simplified form as a prelude to the more detailed explanation that follows.
  • a microgrid adaptive virtual synchronization control method including the following steps:
  • the virtual inertia of the grid-connected inverter is used to adjust the angular frequency of the virtual synchronous generator.
  • the method includes: the step of obtaining the reference angular frequency of the virtual synchronous generator based on the output active power and rated power of the microgrid, including:
  • the virtual synchronous generator motion equation is constructed through the adaptive virtual inertia mathematical equation and the virtual synchronous generator control equation;
  • the steps to construct an adaptive virtual inertia mathematical equation include:
  • J 0 is the rated inertia
  • J is the adaptive compensation inertia
  • k is the inertia compensation coefficient
  • is the reference angular frequency
  • ⁇ * is the reference value of ⁇ under nominal conditions
  • t is the time variable
  • the steps to construct the virtual synchronous generator control equation include:
  • is the time constant of the low-pass filter
  • P is the output active power
  • P * is the rated power reference value
  • m is the P- ⁇ droop coefficient
  • is the reference angular frequency
  • ⁇ * is the value of ⁇ under nominal conditions.
  • Reference value, t is the time variable;
  • J is the adaptive compensation inertia
  • is the reference angular frequency
  • P is the output active power
  • P * is the rated power reference
  • D m is the droop damping coefficient
  • t is the time variable.
  • the method includes: the step of obtaining the reference angular frequency of the virtual synchronous generator based on the output active power and rated power of the microgrid, and further includes:
  • Prsrv P * -P (6)
  • P rsrv is the power deviation
  • P * is the rated power reference value
  • ⁇ s represents the slip frequency
  • J 0 is the rated inertia
  • k is the inertia compensation coefficient
  • D m is the droop damping coefficient, is the derivative of ⁇ s ;
  • Equation (4) the active power and frequency control equations based on the adaptive virtual inertia algorithm are obtained:
  • is the reference angular frequency
  • ⁇ s represents the slip frequency
  • ⁇ * is the reference value of ⁇ under nominal conditions
  • P rsrv is the power deviation
  • the method includes: the step of obtaining the reference angular frequency of the virtual synchronous generator based on the output active power and rated power of the microgrid, and further includes:
  • the parameters droop damping coefficient D m , rated inertia J 0 and inertia compensation coefficient k are determined based on the following selection principles, where:
  • the droop damping coefficient D m is used to control the power distribution between multiple grid-connected inverters
  • the inertia compensation coefficient k selects an upper limit value
  • the rated inertia J 0 is set according to the droop damping coefficient D m and the inertia compensation coefficient k.
  • the method includes: the step of determining the frequency deviation of the microgrid using the reference angular frequency of the virtual synchronous generator, including:
  • is the reference angular frequency deviation
  • ⁇ vsg is the angular velocity
  • t is the time variable
  • the method includes: the step of determining the virtual inertia of the grid-connected inverter based on the frequency deviation of the microgrid, including:
  • D m is the droop damping coefficient
  • X 1 is the line impedance
  • V * is the bus voltage amplitude
  • V is the converter output voltage amplitude
  • J 0 is the rated inertia
  • is the damping ratio
  • ⁇ 0 is the voltage phase angle Reference;
  • the virtual inertia includes large inertia and small inertia.
  • the large inertia is the maximum value of J 0 in equation (8)
  • the small inertia is the minimum value of J 0 in equation (8).
  • the method includes: the step of using the virtual inertia of the grid-connected inverter to adjust the angular frequency of the virtual synchronous generator, including:
  • the return of the system frequency to the nominal frequency value is defined as the deceleration section, in which small inertia is used to accelerate microgrid dynamics.
  • the method includes: the droop damping coefficient D m is obtained through the following steps:
  • the angular frequency is within the set allowable range
  • ⁇ max and ⁇ min are the maximum and minimum values of the allowable angular frequency
  • P max and P min are the maximum and minimum values of the output active power, P is the output active power, and ⁇ is the reference angular frequency;
  • the method includes: the inertia compensation coefficient k is obtained through the following steps:
  • J 0 is the rated inertia
  • ⁇ s is the slip frequency
  • D m is the droop damping coefficient
  • P rsrv is the power deviation
  • the inertia compensation coefficient needs to satisfy:
  • the method includes: the adaptive compensation inertia J is obtained through the following steps:
  • J is the adaptive compensation inertia
  • J 0 is the rated inertia
  • k is the inertia compensation coefficient
  • ⁇ s is the slip frequency
  • J max is the maximum value of the adaptive inertia.
  • a microgrid adaptive virtual synchronization control device is provided.
  • the device includes:
  • the active power and frequency control module is used to obtain the reference angular frequency of the virtual synchronous generator based on the output active power and rated power of the microgrid;
  • a frequency deviation module used to determine the frequency deviation of the microgrid based on the reference angular frequency of the virtual synchronous generator
  • the virtual inertia module determines the virtual inertia of the grid-connected inverter based on the frequency deviation of the microgrid;
  • the frequency parameter optimization module is used to adjust the angular frequency of the virtual synchronous generator using the virtual inertia of the grid-connected inverter.
  • the device includes:
  • the active power and frequency control module is used to obtain the reference angular frequency of the virtual synchronous generator based on the output active power and rated power of the microgrid.
  • the specific steps include:
  • the virtual synchronous generator motion equation is constructed through the adaptive virtual inertia mathematical equation and the virtual synchronous generator control equation;
  • the steps to construct an adaptive virtual inertia mathematical equation include:
  • J 0 is the rated inertia
  • J is the adaptive compensation inertia
  • k is the inertia compensation coefficient
  • is the reference angular frequency
  • ⁇ * is the reference value of ⁇ under nominal conditions
  • t is the time variable
  • the steps to construct the virtual synchronous generator control equation include:
  • is the time constant of the low-pass filter
  • P is the output active power
  • P * is the rated power reference value
  • m P- ⁇ is the droop coefficient
  • is the reference angular frequency
  • ⁇ * is ⁇ under nominal conditions
  • the reference value of , t is the time variable
  • J is the adaptive compensation inertia
  • is the reference angular frequency
  • P is the output active power
  • P * is the rated power reference
  • D m is the droop damping coefficient
  • t is the time variable
  • is the reference angular frequency deviation
  • Prsrv P * -P (6)
  • P rsrv is the power deviation
  • P * is the rated power reference value
  • ⁇ s represents the slip frequency
  • J 0 is the rated inertia
  • k is the inertia compensation coefficient
  • D m is the droop damping coefficient, is the derivative of ⁇ s ;
  • Equation (4) the active power and frequency control equations based on the adaptive virtual inertia algorithm are obtained:
  • is the reference angular frequency
  • ⁇ s represents the slip frequency
  • ⁇ * is the reference value of ⁇ under nominal conditions
  • P rsrv is the power deviation
  • the device includes:
  • the frequency deviation module is used to determine the frequency deviation of the microgrid based on the reference angular frequency of the virtual synchronous generator, specifically including:
  • is the reference angular frequency deviation
  • ⁇ vsg is the angular velocity
  • t is the time variable
  • the device includes:
  • the virtual inertia module is used to determine the virtual inertia of the grid-connected inverter based on the frequency deviation of the microgrid.
  • the specific steps include:
  • D m is the droop damping coefficient
  • X 1 is the line impedance
  • V * is the bus voltage amplitude
  • V is the converter output voltage amplitude
  • J 0 is the rated inertia
  • is the damping ratio
  • ⁇ 0 is the voltage phase angle Reference;
  • the virtual inertia includes large inertia and small inertia.
  • the large inertia is the maximum value of J 0 in equation (8)
  • the small inertia is the minimum value of J 0 in equation (8).
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium includes a computer program for storing a computer program, wherein the steps of implementing the microgrid adaptive virtual synchronization control method when the computer program is executed by a processor.
  • a computer device is provided.
  • the computer device includes a memory and a processor
  • the memory stores a computer program
  • the processor executes the computer program, the steps of the above microgrid adaptive virtual synchronization control method are implemented.
  • the active power and frequency control equations of the present invention based on the adaptive virtual inertia algorithm do not include frequency differential terms, which solves the impact of high-frequency noise and overcomes the problem in the prior art that the moment of inertia is based on sampling and frequency derivatives. Given, problems that may be affected by high-frequency noise;
  • the present invention proposes an adaptive virtual inertia method to support frequency stability.
  • a large inertia is used, and when the system frequency returns to the nominal frequency, a small inertia is used to accelerate the system power.
  • Figure 1 is a flow chart of a microgrid adaptive virtual synchronization control method according to an exemplary embodiment
  • Figure 2 is a schematic diagram of conventional droop control characteristics according to an exemplary embodiment
  • Figure 3 is a control flow chart based on an adaptive virtual inertia algorithm according to an exemplary embodiment
  • Figure 4 is a schematic diagram of a typical power angle curve of a power system according to an exemplary embodiment
  • Figure 5 is a schematic structural diagram of a microgrid adaptive virtual synchronization control device according to an exemplary embodiment
  • Figure 6 is a network topology diagram of a power system according to an exemplary embodiment
  • FIG. 7 is a schematic structural diagram of a computer device according to an exemplary embodiment.
  • it can be a mechanical connection or an electrical connection, or it can be an internal connection between two components. It can be directly connected or indirectly connected through an intermediate medium.
  • an intermediate medium For those of ordinary skill in the art, the specific meaning of the above terms can be understood according to the specific situation.
  • the term “plurality” means two or more.
  • A/B means: A or B.
  • a and/or B means: A or B, or A and B.
  • the embodiment of the present invention discloses a microgrid adaptive virtual synchronization control method, which includes the following steps:
  • the virtual inertia of the grid-connected inverter is used to adjust the angular frequency of the virtual synchronous generator.
  • Figure 1 shows an embodiment of the microgrid adaptive virtual synchronization control method of the present invention.
  • the method disclosed in the present invention includes the following steps:
  • Step S1 obtain the reference angular frequency of the virtual synchronous generator based on the output active power and rated power of the microgrid;
  • the traditional droop control method is more common in parallel inverter systems, as shown in Figure 2.
  • the frequency and amplitude of the output voltage reference depend on the output active and reactive power respectively.
  • ⁇ * and V * represent the reference values of ⁇ and V under nominal conditions
  • P * and Q * represent the rated power reference
  • is the time constant of the low-pass filter (LPF)
  • P and Q are the output active power and Output reactive power
  • m and n are P- ⁇ and QV droop coefficients, selected as follows:
  • ⁇ max and ⁇ min are the maximum and minimum values of the allowable angular frequency
  • V max and V min are the maximum and minimum values of the allowable voltage amplitude
  • P max and P min are the maximum and minimum values of active power
  • Q max and Q min are the maximum and minimum values of reactive power.
  • is the time constant of the low-pass filter
  • P is the output active power
  • P * is the rated power reference value
  • m P- ⁇ is the droop coefficient
  • is the reference angular frequency
  • ⁇ * is ⁇ under nominal conditions
  • the reference value of , t is the time variable
  • J is the adaptive compensation inertia
  • is the reference angular frequency
  • P is the output active power
  • P * is the rated power reference
  • D m is the droop damping coefficient
  • t is the time variable.
  • Droop control is functionally equivalent to a VSG with small inertia. At the same time, the moment of inertia depends on the time constant of the LPF.
  • Typical VSG control schemes include power control loops and double closed voltage and current loops.
  • the external power control loop includes active power control and reactive power droop control of VSG.
  • a fixed virtual impedance is used to decouple P/Q and reduce the impact of line impedance mismatch. It is achieved by using a high-pass filter rather than a pure differential operation.
  • virtual impedance also has an impact on system stability, transient response and power flow performance.
  • this interval is defined as the acceleration section.
  • a large inertia can be used to reduce the acceleration; otherwise, a small J should be used.
  • the steps to construct an adaptive virtual inertia mathematical equation include:
  • inertia of the structure there are two items of inertia of the structure.
  • the first term J 0 is the rated inertia
  • the second term is the adaptive compensation inertia.
  • k is the inertia compensation coefficient, which can adjust the frequency dynamic response speed.
  • the total inertia changes in real time according to changes in angular velocity and its rate of change.
  • the second term of the adaptive compensation inertia is 0, and the total inertia is J 0 .
  • the adaptive compensation inertia includes the derivative term of angular velocity.
  • the frequency derivative is easily affected by measurement noise, so this problem needs to be solved.
  • Prsrv P * -P (6)
  • Equation (4) the improved active power-frequency control equation based on adaptive virtual inertia algorithm is obtained:
  • the reference angular frequency is a function of the output active power.
  • the control block diagram with adaptive virtual inertia algorithm is shown in Figure 3.
  • the control input is the real-time active power and the control output is the reference angular frequency.
  • the control block diagram 3 only the active power is fed back, effectively avoiding the derivative term.
  • the step of obtaining the reference angular frequency of the virtual synchronous generator using the output active power and rated power of the microgrid includes:
  • the parameters droop damping coefficient D m , rated inertia J 0 and inertia compensation coefficient k are determined based on the following selection principles, where:
  • the droop damping coefficient D m is used to control the power distribution between multiple grid-connected inverters
  • the inertia compensation coefficient k selects an upper limit value
  • the rated inertia J 0 is set according to the droop damping coefficient D m and the inertia compensation coefficient k.
  • Step S2 Determine the frequency deviation of the microgrid based on the reference angular frequency of the virtual synchronous generator
  • is the reference angular frequency deviation
  • ⁇ vsg is the angular velocity
  • t is the time variable
  • Step S3 Determine the virtual inertia of the grid-connected inverter based on the frequency deviation of the microgrid
  • the steps to determine the virtual inertia of the grid-connected inverter based on the frequency deviation of the microgrid include: virtual inertia is directly related to system power oscillation, and the inertia and damping functions should be considered simultaneously when selecting.
  • ⁇ *
  • the adaptive compensation inertia term k ( ⁇ - ⁇ * ) d ⁇ /dt is zero, and the total inertia J is equal to J 0 . Ignoring the positive damping effect of adaptive compensation inertia, we can get from equation (4):
  • is the difference between the phase angle reference value and the actual value, is the derivative of the difference between the phase angle reference value and the actual value, is the second-order derivative of the difference between the phase angle reference value and the actual value, X 1 is the line impedance, V * is the bus voltage amplitude, and V is the converter output voltage amplitude;
  • D m is the droop damping coefficient
  • X 1 is the line impedance
  • is the damping ratio
  • V * is the bus voltage amplitude
  • V is the converter output voltage amplitude
  • J 0 is the rated inertia
  • is the damping ratio
  • ⁇ 0 is the voltage phase angle reference value
  • the virtual inertia includes large inertia and small inertia.
  • the large inertia is the maximum value of J 0 in equation (8)
  • the small inertia is the minimum value of J 0 in equation (8).
  • Step S4 Use the virtual inertia of the grid-connected inverter to adjust the angular frequency of the virtual synchronous generator
  • the step of using the virtual inertia of the grid-connected inverter to adjust the angular frequency of the virtual synchronous generator includes: defining the deviation of the system frequency from the nominal frequency value as an acceleration section, and using large inertia to accelerate the microgrid power in the acceleration section. ;
  • the system frequency returns to the nominal frequency value as the deceleration section, in which small inertia is used to accelerate the power of the microgrid.
  • the droop damping coefficient D m is obtained through the following steps:
  • the angular frequency is within the set allowable range
  • ⁇ max and ⁇ min are the maximum and minimum values of the allowable angular frequency
  • P max and P min are the maximum and minimum values of the output active power, P is the output active power, and ⁇ is the reference angular frequency;
  • the compensation coefficient k is obtained through the following steps:
  • the angular velocity must be a real number and therefore, the following conditions must be met.
  • the upper limit in equation (18) is selected as the value of the inertia compensation coefficient.
  • the adaptive compensation inertia J is obtained through the following steps:
  • the appropriate inertia size is related to the power supply capacity and the available capacity of the inverter. Therefore, the system adaptive inertia has a range limit, and the maximum value of the adaptive inertia can be expressed by the available power capacity:
  • the minimum adaptive inertia value can be expressed as the minimum value in equation (17).
  • Scenario 1 simulates the system's transition from grid-connected to off-grid.
  • the circuit breaker at the grid-connected point is initially closed.
  • the active power of G1 is maintained at 0.73pu, and the active power of G2 is maintained at 0.5pu.
  • the photovoltaic system follows the changes in light and temperature and the power reaches 0.1MW.
  • the system frequency fluctuation range is smaller than that using constant inertia, and it can return to a stable state faster.
  • the microgrid load mutation and off-grid switching are analyzed, the adaptive virtual inertia control method is adopted, and the parameters of the droop damping system D m , rated inertia J 0 and inertia compensation coefficient k are designed to ensure that the microgrid is
  • the power supply quality of the power grid was verified by building a model in Matlab/Simulink.
  • Figure 5 shows an embodiment of the microgrid adaptive virtual synchronization control device of the present invention.
  • the microgrid adaptive virtual synchronization control device includes:
  • the active power and frequency control module 11 is used to obtain the reference angular frequency of the virtual synchronous generator based on the output active power and rated power of the microgrid;
  • the frequency deviation module 12 is used to determine the frequency deviation of the microgrid based on the reference angular frequency of the virtual synchronous generator;
  • the virtual inertia module 13 determines the virtual inertia of the grid-connected inverter according to the frequency deviation of the microgrid;
  • the frequency parameter optimization module 14 is used to adjust the angular frequency of the virtual synchronous generator using the virtual inertia of the grid-connected inverter.
  • the microgrid adaptive virtual synchronization control device includes:
  • the active power and frequency control module 11 is used to obtain the reference angular frequency of the virtual synchronous generator based on the output active power and rated power of the microgrid.
  • the specific steps include:
  • the virtual synchronous generator motion equation is constructed through the adaptive virtual inertia mathematical equation and the virtual synchronous generator control equation;
  • the steps to construct an adaptive virtual inertia mathematical equation include:
  • J 0 is the rated inertia
  • J is the adaptive compensation inertia
  • k is the inertia compensation coefficient
  • is the reference angular frequency
  • ⁇ * is the reference value of ⁇ under nominal conditions
  • t is the time variable
  • the steps to construct the virtual synchronous generator control equation include:
  • is the time constant of the low-pass filter
  • P is the output active power
  • P * is the rated power reference value
  • m P- ⁇ is the droop coefficient
  • is the reference angular frequency
  • ⁇ * is ⁇ under nominal conditions
  • the reference value of , t is the time variable
  • J is the adaptive compensation inertia
  • is the reference angular frequency
  • P is the output active power
  • P * is the rated power reference
  • D m is the droop damping coefficient
  • t is the time variable
  • Prsrv P * -P (6)
  • P rsrv is the power deviation
  • P * is the rated power reference value
  • ⁇ s represents the slip frequency
  • J 0 is the rated inertia
  • k is the inertia compensation coefficient
  • D m is the droop damping coefficient
  • Equation (4) the active power and frequency control equations based on the adaptive virtual inertia algorithm are obtained:
  • is the reference angular frequency
  • ⁇ s represents the slip frequency
  • ⁇ * is the reference value of ⁇ under nominal conditions
  • P rsrv is the power deviation
  • the frequency deviation module 12 is used to determine the frequency deviation of the microgrid based on the reference angular frequency of the virtual synchronous generator, specifically including:
  • is the reference angular frequency deviation
  • ⁇ vsg is the angular velocity
  • t is the time variable
  • the virtual inertia module 13 is used to determine the virtual inertia of the grid-connected inverter according to the frequency deviation of the microgrid.
  • the specific steps include:
  • D m is the droop damping coefficient
  • X 1 is the line impedance
  • V * is the bus voltage amplitude
  • V is the converter output voltage amplitude
  • J 0 is the rated inertia
  • is the damping ratio
  • ⁇ 0 is the voltage phase angle Reference;
  • the virtual inertia includes large inertia and small inertia.
  • the large inertia is the maximum value of J 0 in equation (8)
  • the small inertia is the minimum value of J 0 in equation (8).
  • the frequency parameter optimization module 14 is used to adjust the angular frequency of the virtual synchronous generator using the virtual inertia of the grid-connected inverter, specifically including:
  • the deviation of the system frequency from the nominal frequency value is defined as an acceleration section, in which large inertia is used to accelerate the power of the microgrid;
  • the system frequency returns to the nominal frequency value as the deceleration section, in which small inertia is used to accelerate the power of the microgrid.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be as shown in Figure 7 .
  • the computer device includes a processor, memory, and network interfaces connected through a system bus. Wherein, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems, computer programs and databases. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the computer device's database is used to store static information and dynamic information data.
  • the network interface of the computer device is used to communicate with external terminals through a network connection.
  • the computer program is executed by the processor to implement the steps in the above method embodiments.
  • Figure 7 is only a block diagram of a partial structure related to the solution of the present invention, and does not constitute a limitation on the computer equipment to which the solution of the present invention is applied.
  • Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • a computer device including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the steps in the above method embodiment.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in the above method embodiment are implemented.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, etc.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM can be in many forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Operations Research (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Algebra (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明属于储能和新能源技术领域,公开一种微电网自适应虚拟同步控制方法、装置、介质、设备,所述方法包括以下步骤:基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率;基于虚拟同步发电机的参考角频率确定微电网的频率偏差;根据微电网的频率偏差确定并网逆变器的虚拟惯量;利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率。本发明提出了一种自适应虚拟同步控制方法来支持角频率稳定性,当频率偏离标称值时采用大惯量,而当频率返回标称频率时采用小惯量来加速系统动力,获得了改进的频率调节性能。

Description

一种微电网自适应虚拟同步控制方法、装置、介质、设备 技术领域
本发明涉及储能和新能源技术领域,特别涉及一种基于储能环节的微电网自适应虚拟同步控制方法、装置、介质、设备。
背景技术
由于化石燃料的短缺和环境污染的日益加重,可再生能源越来越受到重视。大多数分布式发电、光伏、风能、燃料电池和储能单元通过电力电子借口连接,形成自主微电网系统。微电网可以提供电力和/或热量,根据是否与大电网连接,微电网可以分为并网运行模式和孤网运行模式,在并网模式下,微电网电压/频率和供需功率平衡主要由公用电网保持;在孤岛模式下,基于逆变器的DG(分布式发电装置)应负责保持电压/频率稳定性并根据其相应的额定值维持适当的功率共享。
过去几年里,基于下垂概念的控制已成为基于逆变器的微电网的重要解决方案,因为其具有免通信和即插即用能力的显着特征。传统上,有功功率-频率(P-ω)下垂和无功功率-电压下垂(Q-V)用于根据输出功率命令为基于逆变器的DG生成频率和电压参考。因此,每个DG都有助于调节系统电压和频率。然而,由于缺乏像同步发电机(SG)那样的旋转动能,下垂控制的基于逆变器的微电网惯性小,不利于动态频率稳定性。特别是当静态DG机组的渗透率逐渐增加时,会导致电压/频率响应变差,甚至在大扰动时容易出现不稳定。
为了解决这个问题,虚拟同步发电机(VSG)提供了一个合适的解决方案。通过在DG旁边添加储能,虚拟惯性仿真技术被应用于光伏系统和全变流器风力机组。2007年,Beck和Hesse进行了VSG的首次实施。后来,一些改进的虚拟惯性控制方法被提出来实现阻尼功率振荡、频率鲁棒性、频率响应和功率解耦。特别是,一些学者构建了分布式电源同步逆变器,并分析了并网模式和孤岛模式下同步器的稳定性和参数设计。为了获得更好的同步器稳定性能,再次基础上,进行了虚拟电抗、虚拟电容以及抗饱和的一些研究。
为了进一步探索VSG的好处,近年来对可调惯性和阻尼技术进行了一些研究。由于基于逆变器的DG不受限于SG的物理限制,惯性和阻尼参数可以灵活地实时设计。Jaber和Toshifumi采用变化的惯性代替固定惯性,通过判读角速度及其变化率的状态确定惯性矩的取值。相比固定惯性的系统,该性能更快、更稳定。但是因为频率导数项的影响被忽略,并且只有两个惯性值,因此该控制方式比较容易受到干扰。部分文献中,下垂增益作为频率的函数导数项,其本质实际上是一个可变惯性,这种情况下,频率偏差受到干扰影响减少,但只有频率导数项被充分考虑才可能消除干扰的影响。有些学者提出了基于模糊理论的二次控制器的虚拟惯量控制方案,提高了微电网电压/频率的动态响应,然而文章并没有关于模糊决策的分析。有文献充分讨论了微电网系统中大惯量和小惯量的特点,并提出了并网逆变器虚拟惯量的概念。虚拟惯量可以有效实现微电网系统的快速响应,但是上述的控制方法均需活的频率导数实现对虚拟惯量的控制,而该参数对测量噪声非常敏感,容易造成一定程度的干扰。
发明内容
本发明实施例提供了一种微电网自适应虚拟同步控制方法、装置、介质、设备,以解决现有技术中并网逆变器虚拟惯量易受高频噪声影响,无法有效实现微电网系统的快速响应的问题。为了对披露的实施例的一些方面有一个基本的理解,下面给出了简单的概括。该概括部分不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围。其唯一目的是用简单的形式呈现一些概念,以此作为后面的详细说明的序言。
根据本发明实施例的第一方面,提供了一种微电网自适应虚拟同步控制方法;包括以下步骤:
基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率;
基于虚拟同步发电机的参考角频率确定微电网的频率偏差;
根据微电网的频率偏差确定并网逆变器的虚拟惯量;
利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率。
在一个实施例中,所述方法,包括:所述基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率的步骤,包括:
通过自适应虚拟惯性数学方程和虚拟同步发电机控制方程构建虚拟同步发电机运动方程;其中,
构建自适应虚拟惯性数学方程的步骤,包括:
Figure PCTCN2022135832-appb-000001
式中,J 0为额定惯量,J为自适应补偿惯量,k为惯量补偿系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
构建虚拟同步发电机控制方程的步骤,包括:
Figure PCTCN2022135832-appb-000002
式中,τ是低通滤波器的时间常数,P为输出有功功率,P *为额定功率参考值,m是P-ω下垂系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
设定
Figure PCTCN2022135832-appb-000003
得到虚拟同步发电机运动方程:
Figure PCTCN2022135832-appb-000004
式中,J为自适应补偿惯量,ω为参考角频率,P为输出有功功率,P *为额定功率参考,D m为下垂阻尼系数,t为时间变量。
在一个实施例中,所述方法,包括:所述基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率的步骤,还包括:
根据自适应虚拟惯性数学方程和虚拟同步发电机运动方程,得到如下计算公式(4):
Figure PCTCN2022135832-appb-000005
式中,P *为额定功率参考值,ω s为转差频率;令ω s=ω-ω *,得到如下计算公式(5):
Figure PCTCN2022135832-appb-000006
P rsrv=P *-P          (6)
式中,P rsrv为功率偏差,P *是额定功率参考值,ω s表示转差频率,J 0为额定惯量,k为惯量补偿系数,D m为下垂阻尼系数,
Figure PCTCN2022135832-appb-000007
为ω s的导数;
结合式(4)到式(6),得到基于自适应虚拟惯性算法的有功功率和频率控制方程:
ω=ω *s=ω *+∫f(ω s,P rsrv)dt       (7)
式中,ω为参考角频率,ω s表示转差频率,ω *为标称条件下ω的参考值,P rsrv为功率偏差。
在一个实施例中,所述方法,包括:所述基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率的步骤,还包括:
基于如下选择原则确定参数下垂阻尼系数D m、额定惯量J 0和惯性补偿系数k,其中:
所述下垂阻尼系数D m用于控制多个并网逆变器之间的功率分配;
所述惯性补偿系数k选择上限值;
所述额定惯量J 0根据下垂阻尼系数D m和惯性补偿系数k设定。
在一个实施例中,所述方法,包括:所述利用虚拟同步发电机的参考角频率确定微电网的频率偏差的步骤,包括:
当Δω>0,
Figure PCTCN2022135832-appb-000008
时,系统频率偏离标称频率值;
当Δω<0,
Figure PCTCN2022135832-appb-000009
时,系统频率偏离标称频率值;
当Δω>0,
Figure PCTCN2022135832-appb-000010
时,系统频率返回标称频率值;
当Δω<0,
Figure PCTCN2022135832-appb-000011
时,系统频率返回标称频率值;
其中,Δω为参考角频率偏差,ω vsg为角速度,t为时间变量。
在一个实施例中,所述方法,包括:所述根据微电网的频率偏差确定并网逆变器的虚拟惯量的步骤,包括:
构建微电网的额定惯量方程:
Figure PCTCN2022135832-appb-000012
其中,D m为下垂阻尼系数,X 1为线路阻抗,V *为母线电压幅值,V为变流器输出电压幅值,J 0为额定惯量,ζ为阻尼比,δ 0为电压相角参考值;
所述虚拟惯量包括大惯量和小惯量,所述大惯量为式(8)中J 0的最大值,所述小惯量为式(8)中J 0的最小值。
在一个实施例中,所述方法包括:所述利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率的步骤,包括:
将系统频率偏离标称频率值定义为加速段,在所述加速段采用大惯量加速微电网动力学;
将系统频率返回标称频率值定义为减速段,在所述减速段采用小惯量加速微电网动力学。
在一个实施例中,所述方法包括:所述下垂阻尼系数D m通过如下步骤获得:
根据下垂特性,角频率在设定允许范围内,ω max和ω min是允许角频率的最大值和最小值,下垂系数m=P-ω应满足:
Figure PCTCN2022135832-appb-000013
Figure PCTCN2022135832-appb-000014
式中,P max和P min为输出有功功率的最大值和最小值,P为输出有功功率,ω为参考角频率;
Figure PCTCN2022135832-appb-000015
式中,
Figure PCTCN2022135832-appb-000016
代表第i个分布式电源的额定容量。
在一个实施例中,所述方法包括:所述惯性补偿系数k通过如下步骤获得:
当角速度为实数时,需满足:
Figure PCTCN2022135832-appb-000017
式中,J 0为额定惯量,ω s为转差频率,D m为下垂阻尼系数,P rsrv为功率偏差;
在两种极端情况时:
当ω s=ω *max,P rsrv=P *-P min时,
Figure PCTCN2022135832-appb-000018
当ω s=ω *min,P rsrv=P *-P max时,
Figure PCTCN2022135832-appb-000019
稳态条件下可以得到:
P *-P min=-D m*max)          (15)
P *-P max=-D m*max)          (16)
由式(13)~式(16)可得:
Figure PCTCN2022135832-appb-000020
其中,
Figure PCTCN2022135832-appb-000021
是允许的最大功率误差。
Figure PCTCN2022135832-appb-000022
因此,惯性补偿系数需要满足:
Figure PCTCN2022135832-appb-000023
在一个实施例中,所述方法包括:所述自适应补偿惯量J通过如下步骤获得:
采用功率容量表示自适应惯量最大值;
Figure PCTCN2022135832-appb-000024
式中,J为自适应补偿惯量,J 0为额定惯量,k为惯量补偿系数,ω s为转差频率,J max为自适应惯量最大值。
根据本发明实施例的第二方面,提供了一种微电网自适应虚拟同步控制装置。
在一个实施例中,所述装置包括:
有功功率和频率控制模块,用于基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率;
频率偏差模块,用于基于虚拟同步发电机的参考角频率确定微电网的频率偏差;
虚拟惯量模块,根据微电网的频率偏差确定并网逆变器的虚拟惯量;
频率参数优化模块,用于利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率。
在一个实施例中,所述装置包括:
所述有功功率和频率控制模块,用于基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率,具体步骤包括:
通过自适应虚拟惯性数学方程和虚拟同步发电机控制方程构建虚拟同步发电机运动方程;其中,
构建自适应虚拟惯性数学方程的步骤,包括:
Figure PCTCN2022135832-appb-000025
式中,J 0为额定惯量,J为自适应补偿惯量,k为惯量补偿系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
构建虚拟同步发电机控制方程的步骤,包括:
Figure PCTCN2022135832-appb-000026
式中,τ是低通滤波器的时间常数,P为输出有功功率,P *为额定功率参考值,m=P-ω是下垂系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
设定
Figure PCTCN2022135832-appb-000027
根据公式(1)和(2)得到虚拟同步发电机运动方程:
Figure PCTCN2022135832-appb-000028
式中,J为自适应补偿惯量,ω为参考角频率,P为输出有功功率,P *为额定功率参考,D m为 下垂阻尼系数,t为时间变量,Δω为参考角频率偏差;
根据自适应虚拟惯性数学方程和虚拟同步发电机运动方程,得到如下计算公式(4):
Figure PCTCN2022135832-appb-000029
式中,P *为额定功率参考值,ω s为转差频率;令ω s=ω-ω *,得到如下计算公式(5):
Figure PCTCN2022135832-appb-000030
P rsrv=P *-P            (6)
式中,P rsrv为功率偏差,P *是额定功率参考值,ω s表示转差频率,J 0为额定惯量,k为惯量补偿系数,D m为下垂阻尼系数,
Figure PCTCN2022135832-appb-000031
为ω s的导数;
结合式(4)到式(6),得到基于自适应虚拟惯性算法的有功功率和频率控制方程:
ω=ω *s=ω *+∫f(ω s,P rsrv)dt         (7)
式中,ω为参考角频率,ω s表示转差频率,ω *为标称条件下ω的参考值,P rsrv为功率偏差。
在一个实施例中,所述装置包括:
所述频率偏差模块,用于基于虚拟同步发电机的参考角频率确定微电网的频率偏差,具体包括:
当Δω>0,
Figure PCTCN2022135832-appb-000032
时,系统频率偏离标称频率值;
当Δω<0,
Figure PCTCN2022135832-appb-000033
时,系统频率偏离标称频率值;
当Δω>0,
Figure PCTCN2022135832-appb-000034
时,系统频率返回标称频率值;
当Δω<0,
Figure PCTCN2022135832-appb-000035
时,系统频率返回标称频率值;
其中,Δω为参考角频率偏差,ω vsg为角速度,t为时间变量。
在一个实施例中,所述装置包括:
所述虚拟惯量模块,用于根据微电网的频率偏差确定并网逆变器的虚拟惯量,具体步骤包括:
构建微电网的额定惯量方程:
Figure PCTCN2022135832-appb-000036
其中,D m为下垂阻尼系数,X 1为线路阻抗,V *为母线电压幅值,V为变流器输出电压幅值,J 0为额定惯量,ζ为阻尼比,δ 0为电压相角参考值;
所述虚拟惯量包括大惯量和小惯量,所述大惯量为式(8)中J 0的最大值,所述小惯量为式(8)中J 0的最小值。
根据本发明实施例的第三方面,提供了一种计算机可读存储介质。
在一些实施例中,所述计算机可读存储介质包括用于保存计算机程序,其中,所述计算机程序被处理器执行时实现所述的微电网自适应虚拟同步控制方法的步骤。
根据本发明实施例的第四方面,提供了一种计算机设备。
在一些实施例中,所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述微电网自适应虚拟同步控制方法的步骤。
本发明实施例提供的技术方案可以包括以下有益效果:
(1)本发明基于自适应虚拟惯性算法的有功功率和频率控制方程,不包含频率微分项,解决了高频噪声的影响,克服了现有技术中惯性矩是通过采样和频率导数
Figure PCTCN2022135832-appb-000037
给出的,可能会受到高 频噪声影响的问题;
(2)本发明提出一种自适应虚拟惯性方法来支持频率稳定性,当系统频率偏离标称值时采用大惯量,而当系统频率返回标称频率时采用小惯量来加速系统动力,结合了大惯量和小惯量的优点,从而获得了改进的频率调节性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种微电网自适应虚拟同步控制方法的流程图;
图2是根据一示例性实施例示出的传统下垂控制特性示意图;
图3是根据一示例性实施例示出的基于自适应虚拟惯性算法的控制流程图;
图4是根据一示例性实施例示出的电力系统的典型功角曲线示意图;
图5是根据一示例性实施例示出的微电网自适应虚拟同步控制装置的结构示意图;
图6是根据一示例性实施例示出的电力系统的网络拓扑图;
图7是根据一示例性实施例示出的计算机设备的结构示意图。
具体实施方式
以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。本文中,术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来,而不要求或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二元素,反之亦然。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、装置或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结构、装置或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的结构、装置或者设备中还存在另外的相同要素。本文中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中的术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本文的描述中,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
本文中,除非另有说明,术语“多个”表示两个或两个以上。
本文中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
本文中,术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
本发明实施例公开了一种微电网自适应虚拟同步控制方法,包括以下步骤:
基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率;
基于虚拟同步发电机的参考角频率确定微电网的频率偏差;
根据微电网的频率偏差确定并网逆变器的虚拟惯量;
利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率。
图1示出了本发明的微电网自适应虚拟同步控制方法的一个实施例。
在该实施例中,本发明公开的方法包括以下步骤:
步骤S1,基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率;
具体地,为了促进负载共享和提高系统可靠性,传统的下垂控制方法在并联逆变器系统中较为常见,如图2所示。输出电压参考的频率和幅度分别取决于输出有功功率和无功功率。
Figure PCTCN2022135832-appb-000038
Figure PCTCN2022135832-appb-000039
其中ω *和V *表示标称条件下ω和V的参考值;P *和Q *代表额定功率参考;τ是低通滤波器(LPF)的时间常数;P和Q分别为输出有功功率和输出无功功率;m和n是P-ω和Q-V下垂系数,选择如下:
Figure PCTCN2022135832-appb-000040
其中ω max和ω min是允许角频率的最大值和最小值;V max和V min是允许电压幅值的最大值和最小值;P max和P min为有功功率的最大和最小值;Q max和Q min是无功功率的最大和最小值。
将式(c)带入式(a)得,构建虚拟同步发电机控制方程的步骤,包括:
Figure PCTCN2022135832-appb-000041
式中,τ是低通滤波器的时间常数,P为输出有功功率,P *为额定功率参考值,m=P-ω是下垂系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
设定
Figure PCTCN2022135832-appb-000042
得到虚拟同步发电机运动方程:
Figure PCTCN2022135832-appb-000043
式中,J为自适应补偿惯量,ω为参考角频率,P为输出有功功率,P *为额定功率参考,D m为下垂阻尼系数,t为时间变量。
下垂控制在功能上等效于具有小惯性的VSG。同时,惯性矩取决于LPF的时间常数。典型VSG控制方案包括功率控制回路和双闭合电压电流回路。外部功率控制回路包括VSG的有功功率控制和无功功率下垂控制。采用固定的虚拟阻抗来解耦P/Q并减少线路阻抗失配的影响。它是通过使用高通滤波器而不是纯微分运算来实现的。此外,虚拟阻抗对系统稳定性、瞬态响应和潮流性能也有影响。
电力系统的典型功角曲线如图4所示:
假设系统最初在A点运行,并且它是稳定的。某一时刻,如果输入功率增加到B点,工作点将遵循从A到B的曲线。在此期间,Δω>0,且
Figure PCTCN2022135832-appb-000044
因此将此区间定义为加速段。为了减少负载或者发电量变化时频率的震荡,这种情况下可以用一个大惯量来减少加速度;否则应使用小J。
针对以上情况,构建自适应虚拟惯性数学方程的步骤,包括:
Figure PCTCN2022135832-appb-000045
式(1)中,构造的惯性有两项。第一项J 0为额定惯量,第二项为自适应补偿惯量。k为惯量补偿系数,可调节频率动态响应速度。实际上,总惯量是根据角速度及其变化率的变化实时变化的。在稳态情况下,自适应补偿惯量的第二项为0,总惯量为J 0
式(1)中,自适应补偿惯量包含角速度的导数项,频率导数很容易受到测量噪声的影响,因此需要解决这个问题。
将式(1)带入典型VSG控制方程式(2)和式(3),可以得到公式(4):
Figure PCTCN2022135832-appb-000046
其中P *是额定功率参考值,ω s表示转差频率,令ω s=ω-ω *,可以得到:
Figure PCTCN2022135832-appb-000047
P rsrv=P *-P          (6)
其中P *是额定功率参考值,ω s表示转差频率,
Figure PCTCN2022135832-appb-000048
为ω s的导数。
结合式(4)到式(6),得到改进的基于自适应虚拟惯性算法的有功功率-频率控制方程:
ω=ω *s=ω *+∫f(ω s,P rsrv)dt          (7)
根据式(7),参考角频率是输出有功功率的函数。具有自适应虚拟惯性算法的控制框图如图3所示。控制输入是实时有功功率,控制输出是参考角频率。控制框图3中仅反馈输出有功功率,有效避免了导数项。
可选地,所述利用微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率的步骤,包括:
基于如下选择原则确定参数下垂阻尼系数D m、额定惯量J 0和惯性补偿系数k,其中:
所述下垂阻尼系数D m用于控制多个并网逆变器之间的功率分配;
所述惯性补偿系数k选择上限值;
所述额定惯量J 0根据下垂阻尼系数D m和惯性补偿系数k设定。
步骤S2:基于虚拟同步发电机的参考角频率确定微电网的频率偏差;
具体地,当Δω>0,
Figure PCTCN2022135832-appb-000049
时,系统频率偏离标称频率值;
当Δω<0,
Figure PCTCN2022135832-appb-000050
时,系统频率偏离标称频率值;
当Δω>0,
Figure PCTCN2022135832-appb-000051
时,系统频率返回标称频率值;
当Δω<0,
Figure PCTCN2022135832-appb-000052
时,系统频率返回标称频率值;
其中,Δω为参考角频率偏差,ω vsg为角速度,t为时间变量。
步骤S3:根据微电网的频率偏差确定并网逆变器的虚拟惯量;
具体地,根据微电网的频率偏差确定并网逆变器的虚拟惯量的步骤,包括:虚拟惯性和系统功率震荡直接相关,选择时应同事考虑惯性和阻尼函数。在稳定状态下,ω=ω *,自适应补偿惯性项k(ω-ω *)dω/dt为零,总惯性J等于J 0。忽略自适应补偿惯性的正阻尼效应,由式(4)可以得到:
Figure PCTCN2022135832-appb-000053
式中,Δδ为相角参考值和实际值的差值,
Figure PCTCN2022135832-appb-000054
为相角参考值和实际值的差值的导数,
Figure PCTCN2022135832-appb-000055
为相角参考值和实际值的差值的二阶导数,X 1为线路阻抗,V *为母线电压幅值,V为变流器输出电压幅值;
对于式(d),其固有频率ω n和阻尼比ζ分别为:
Figure PCTCN2022135832-appb-000056
由式(e)可知,系统的阻尼比取决于系统运行点、惯性项和阻尼项的值。由于ζ∈[0.1,1.414]可以得到较好的瞬态响应,因此额定惯量J 0应选择如下:
构建微电网的额定惯量方程:
Figure PCTCN2022135832-appb-000057
其中,D m为下垂阻尼系数,X 1为线路阻抗,ζ为阻尼比,V *为母线电压幅值,V为变流器输出电压幅值,J 0为额定惯量,ζ为阻尼比,δ 0为电压相角参考值;
所述虚拟惯量包括大惯量和小惯量,所述大惯量为式(8)中J 0的最大值,所述小惯量为式(8)中J 0的最小值。
步骤S4:利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率;
具体地,利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率的步骤,包括:将系统频率偏离标称频率值定义为加速段,在所述加速段采用大惯量加速微电网动力;
将系统频率返回标称频率值定义为减速段,在所述减速段采用小惯量加速微电网动力。
基于上述实施例及优选实施方式,提供了一种优选实施例,所述下垂阻尼系数D m通过如下步骤获得:
根据下垂特性,角频率在设定允许范围内,ω max和ω min是允许角频率的最大值和最小值,下垂系数m=P-ω应满足:
Figure PCTCN2022135832-appb-000058
Figure PCTCN2022135832-appb-000059
式中,P max和P min为输出有功功率的最大值和最小值,P为输出有功功率,ω为参考角频率;
选择D m时,另外一个重要的原则是保证通用性,确保多个逆变器之间的功率合理分配。
Figure PCTCN2022135832-appb-000060
式中,
Figure PCTCN2022135832-appb-000061
代表第i个分布式电源的额定容量。
基于上述实施例及优选实施方式,提供了一种优选实施例,所述补偿系数k通过如下步骤获得:
为确保提出的控制方法的有效性,角速度必须是实数,因此,必须满足以下条件。
Figure PCTCN2022135832-appb-000062
特别是下面两种极端情况时:
当ω s=ω *max,P rsrv=P *-P min时,
Figure PCTCN2022135832-appb-000063
当ω s=ω *min,P rsrv=P *-P max时,
Figure PCTCN2022135832-appb-000064
图2中,稳态条件下可以得到:
P *-P min=-D m*max)          (15)
P *-P max=-D m*max)           (16)
由式(13)~式(16)可得:
Figure PCTCN2022135832-appb-000065
其中,
Figure PCTCN2022135832-appb-000066
是允许的最大功率误差。
Figure PCTCN2022135832-appb-000067
由式(17)可得,惯性补偿系数需要满足:
Figure PCTCN2022135832-appb-000068
可以看出,惯性补偿系数越大,自适应惯性控制效果越好,因此,选择式(18)中上限作为惯性补偿系数的值。
基于上述实施例及优选实施方式,提供了一种优选实施例,所述自适应补偿惯量J通过如下步骤获得:
合适的惯性大小与电源容量和逆变器可用容量有关,因此系统自适应惯性是有范围限值的,其中自适应惯量最大值可用功率容量来表示:
Figure PCTCN2022135832-appb-000069
自适应惯量最小值可以表示为式(17)中的最小值。
基于上述实施例及优选实施方式,提供了一种具体实施例,如下:
1、建立仿真模型:在matlab/Simulink中建立如图6所示模型,系统中包含具有下垂特性的两个传统发电机G1和G2,光伏系统以及储能系统,各部分参数如表所示:
参数
系统电压 380V
系统频率 50Hz
G1视在功率 200kVA
G2视在功率 300kVA
光伏实在功率 100kVA
储能视在功率 100kVA
额定惯量固定值 0.0014kg*m 2
额定惯量最大值 0.0014kg*m 2
额定惯量最小值 5.62e-5kg*m 2
阻尼系统 5e-4N*m/s
2、场景分析
(1)微电网并离网切换
场景1仿真模拟了系统并网转离网的情况,并网点处的断路器初始为闭合状态,t=3s时,断路器断开。
G1的有功功率维持在0.73pu,G2的有功功率维持在0.5pu,0s-2.1S期间,光伏系统跟随光照和温度变化功率达到0.1MW。
系统t=0s-t=3s期间,系统运行在并网模式,其频率稳定在50HZ。t=3s时,系统由离网转并网,每个发电单元的有功功率和频率出现波动,系统频率在t=10s时达到稳态50HZ,说明该控制方法可以在并网或者离网状态下稳定运行。
(2)离网运行模式下,没有储能情况下负荷突变
场景2系统运行在无储能离网模式下,观察负荷突变时频率变化情况,假设t=5s时,负荷增加0.2MW,0.05Mvar;
固定惯性常数虚拟同步控制方式下负荷增加条件下,无储能接入情况下,同步发电机发电量增加,但是增加量没有达到负荷增加量,因此频率下降至49.72HZ,这种情况下,对系统设备造成影响。最后,在同步发电机和负载调整下,系统运行在一个新的平衡点,但是频率依然低于50HZ。
采用定常数虚拟惯量时,J=1.4×10 -3kg*m 2,相同条件下,负荷增加时系统频率最低点为49.85Hz,该值在电力系统运行允许范围之内。最后系统达到新的稳态运行点,频率大约为50.01Hz。
相同场景下,为降低负荷突增时频率波动,采用自适应惯量的控制方式,J max=1.4×10 -3kg*m 2,J min=5.62×10 -5kg*m 2
采用自适应虚拟惯量控制方式后,系统频率波动范围比采用常数惯量较小,且能较快速恢复到 稳定状态。
综上所述,针对微电网负荷突变和并离网切换进行分析,采用自适应虚拟惯量控制方法,并对下垂阻尼系统D m、额定惯量J 0以及惯性补偿系数k的参数进行设计,保证微电网供电质量,并在Matlab/Simulink中搭建模型进行了验证。
图5示出了本发明的微电网自适应虚拟同步控制装置的一个实施例。
在该可选实施例中,所述微电网自适应虚拟同步控制装置,包括:
有功功率和频率控制模块11,用于基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率;
频率偏差模块12,用于基于虚拟同步发电机的参考角频率确定微电网的频率偏差;
虚拟惯量模块13,根据微电网的频率偏差确定并网逆变器的虚拟惯量;
频率参数优化模块14,用于利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率。
在该可选实施例中,所述微电网自适应虚拟同步控制装置,包括:
所述有功功率和频率控制模块11,用于基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率,具体步骤包括:
通过自适应虚拟惯性数学方程和虚拟同步发电机控制方程构建虚拟同步发电机运动方程;其中,
构建自适应虚拟惯性数学方程的步骤,包括:
Figure PCTCN2022135832-appb-000070
式中,J 0为额定惯量,J为自适应补偿惯量,k为惯量补偿系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
构建虚拟同步发电机控制方程的步骤,包括:
Figure PCTCN2022135832-appb-000071
式中,τ是低通滤波器的时间常数,P为输出有功功率,P *为额定功率参考值,m=P-ω是下垂系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
设定
Figure PCTCN2022135832-appb-000072
得到虚拟同步发电机运动方程:
Figure PCTCN2022135832-appb-000073
式中,J为自适应补偿惯量,ω为参考角频率,P为输出有功功率,P *为额定功率参考,D m为下垂阻尼系数,t为时间变量;
根据自适应虚拟惯性数学方程和虚拟同步发电机运动方程,得到如下计算公式(4):
Figure PCTCN2022135832-appb-000074
式中,P *为额定功率参考值,ω s为转差频率;令ω s=ω-ω *,得到如下计算公式(5):
Figure PCTCN2022135832-appb-000075
P rsrv=P *-P             (6)
式中,P rsrv为功率偏差,P *是额定功率参考值,ω s表示转差频率,J 0为额定惯量,k为惯量补偿系数,D m为下垂阻尼系数;
结合式(4)到式(6),得到基于自适应虚拟惯性算法的有功功率和频率控制方程:
ω=ω *s=ω *+∫f(ω s,P rsrv)dt          (7)
式中,ω为参考角频率,ω s表示转差频率,ω *为标称条件下ω的参考值,P rsrv为功率偏差。
所述频率偏差模块12,用于基于虚拟同步发电机的参考角频率确定微电网的频率偏差,具体 包括:
当Δω>0,
Figure PCTCN2022135832-appb-000076
时,系统频率偏离标称频率值;
当Δω<0,
Figure PCTCN2022135832-appb-000077
时,系统频率偏离标称频率值;
当Δω>0,
Figure PCTCN2022135832-appb-000078
时,系统频率返回标称频率值;
当Δω<0,
Figure PCTCN2022135832-appb-000079
时,系统频率返回标称频率值;
其中,Δω为参考角频率偏差,ω vsg为角速度,t为时间变量。
所述虚拟惯量模块13,用于根据微电网的频率偏差确定并网逆变器的虚拟惯量,具体步骤包括:
构建微电网的额定惯量方程:
Figure PCTCN2022135832-appb-000080
其中,D m为下垂阻尼系数,X 1为线路阻抗,V *为母线电压幅值,V为变流器输出电压幅值,J 0为额定惯量,ζ为阻尼比,δ 0为电压相角参考值;
所述虚拟惯量包括大惯量和小惯量,所述大惯量为式(8)中J 0的最大值,所述小惯量为式(8)中J 0的最小值。
所述频率参数优化模块14,用于利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率,具体包括:
将系统频率偏离标称频率值定义为加速段,在所述加速段采用大惯量加速微电网动力;
将系统频率返回标称频率值定义为减速段,在所述减速段采用小惯量加速微电网动力。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图7所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储静态信息和动态信息数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现上述方法实施例中的步骤。
本领域技术人员可以理解,图7中示出的结构,仅仅是与本发明方案相关的部分结构的框图,并不构成对本发明方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本发明所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access  Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
本发明并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种微电网自适应虚拟同步控制方法,其特征在于,包括以下步骤:
    基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率;
    基于虚拟同步发电机的参考角频率确定微电网的频率偏差;
    根据微电网的频率偏差确定并网逆变器的虚拟惯量;
    利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率。
  2. 根据权利要求1所述的微电网自适应虚拟同步控制方法,其特征在于,所述基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率的步骤,包括:
    通过自适应虚拟惯性数学方程和虚拟同步发电机控制方程构建虚拟同步发电机运动方程;其中,
    构建自适应虚拟惯性数学方程的步骤,包括:
    Figure PCTCN2022135832-appb-100001
    式中,J 0为额定惯量,J为自适应补偿惯量,k为惯量补偿系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
    构建虚拟同步发电机控制方程的步骤,包括:
    Figure PCTCN2022135832-appb-100002
    式中,τ是低通滤波器的时间常数,P为输出有功功率,P *为额定功率参考值,m=P-ω是下垂系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
    设定
    Figure PCTCN2022135832-appb-100003
    根据公式(1)和(2)得到虚拟同步发电机运动方程:
    Figure PCTCN2022135832-appb-100004
    式中,J为自适应补偿惯量,ω为参考角频率,P为输出有功功率,P *为额定功率参考,D m为下垂阻尼系数,t为时间变量,Δω为参考角频率偏差。
  3. 根据权利要求2所述的微电网自适应虚拟同步控制方法,其特征在于,所述基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率的步骤,还包括:
    根据自适应虚拟惯性数学方程和虚拟同步发电机运动方程,得到如下计算公式(4):
    Figure PCTCN2022135832-appb-100005
    式中,P *为额定功率参考值,ω s为转差频率;
    令ω s=ω-ω *,得到如下计算公式(5):
    Figure PCTCN2022135832-appb-100006
    P rsrv=P *-P    (6)
    式中,P rsrvP rsrv为功率偏差,P *P *是额定功率参考值,ω s表示转差频率,J 0为额定惯量,kk为惯量补偿系数,D m为下垂阻尼系数,
    Figure PCTCN2022135832-appb-100007
    为ω s的导数;
    结合式(4)至式(6),得到基于自适应虚拟惯性算法的有功功率和频率控制方程:
    ω=ω *s=ω *+∫f(ω s,P rsrv)dt    (7)
    式中,ωω为参考角频率,ω s表示转差频率,ω *ω *为标称条件下ωω的参考值,P rsrvP rsrv为功率偏差。
  4. 根据权利要求3所述的微电网自适应虚拟同步控制方法,其特征在于,所述基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率的步骤,还包括:
    基于如下选择原则确定参数下垂阻尼系数D m、额定惯量J 0和惯性补偿系数k,其中:
    所述下垂阻尼系数D m用于控制多个并网逆变器之间的功率分配;
    所述惯性补偿系数k选择上限值;
    所述额定惯量J 0根据下垂阻尼系数D m和惯性补偿系数k设定。
  5. 根据权利要求3所述的微电网自适应虚拟同步控制方法,其特征在于,所述基于虚拟同步发电机的参考角频率确定微电网的频率偏差的步骤,包括:
    当ΔωΔω>0,
    Figure PCTCN2022135832-appb-100008
    时,系统频率偏离标称频率值;
    当ΔωΔω<0,
    Figure PCTCN2022135832-appb-100009
    时,系统频率偏离标称频率值;
    当ΔωΔω>0,
    Figure PCTCN2022135832-appb-100010
    时,系统频率返回标称频率值;
    当ΔωΔω<0,
    Figure PCTCN2022135832-appb-100011
    时,系统频率返回标称频率值;
    其中,Δω为参考角频率偏差,ω vsgω vsg为角速度,tt为时间变量。
  6. 根据权利要求5所述的微电网自适应虚拟同步控制方法,其特征在于,所述根据微电网的频率偏差确定并网逆变器的虚拟惯量的步骤,包括:
    构建微电网的额定惯量方程:
    Figure PCTCN2022135832-appb-100012
    其中,D m为下垂阻尼系数,X 1为线路阻抗,V *为母线电压幅值,V为变流器输出电压幅值,J 0为额定惯量,ζ为阻尼比,δ 0为电压相角参考值;
    所述虚拟惯量包括大惯量和小惯量,所述大惯量为式(8)中J 0的最大值,所述小惯量为式(8)中J 0的最小值。
  7. 根据权利要求6所述的微电网自适应虚拟同步控制方法,其特征在于,所述利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率的步骤,包括:
    将系统频率偏离标称频率值定义为加速段,在所述加速段采用大惯量加速微电网动力;
    将系统频率返回标称频率值定义为减速段,在所述减速段采用小惯量加速微电网动力。
  8. 根据权利要求4所述的微电网自适应虚拟同步控制方法,其特征在于,所述下垂阻尼系数D m通过如下步骤获得:
    根据下垂特性,角频率在设定允许范围内,ω max和ω min是允许角频率的最大值和最小值,P-ω下垂系数m=P-ω应满足:
    Figure PCTCN2022135832-appb-100013
    Figure PCTCN2022135832-appb-100014
    式中,P max和P min为输出有功功率的最大值和最小值,P为输出有功功率,ω为参考角频率;
    Figure PCTCN2022135832-appb-100015
    式中,
    Figure PCTCN2022135832-appb-100016
    代表第i个分布式电源的额定容量。
  9. 根据权利要求4所述的微电网自适应虚拟同步控制方法,其特征在于,所述惯性补偿系数k通过如下步骤获得:
    当角速度为实数时,需满足:
    Figure PCTCN2022135832-appb-100017
    式中,J 0为额定惯量,ω s为转差频率,D m为下垂阻尼系数,P rsrvP rsrv为功率偏差;
    在两种极端情况时:
    当ω s=ω *max,P rsrv=P *-P min时,
    Figure PCTCN2022135832-appb-100018
    当ω s=ω *min,P rsrv=P *-P max时,
    Figure PCTCN2022135832-appb-100019
    稳态条件下可以得到:
    P *-P min=-D m*max)    (15)
    P *-P max=-D m*max)    (16)
    由式(13)~式(16)可得:
    Figure PCTCN2022135832-appb-100020
    其中,
    Figure PCTCN2022135832-appb-100021
    是允许的最大功率误差;
    Figure PCTCN2022135832-appb-100022
    因此,惯性补偿系数k的取值条件为:
    Figure PCTCN2022135832-appb-100023
  10. 根据权利要求2所述的微电网自适应虚拟同步控制方法,其特征在于,所述自适应补偿惯量J通过如下步骤获得:
    采用功率容量表示自适应惯量最大值;
    Figure PCTCN2022135832-appb-100024
    式中,J为自适应补偿惯量,J 0为额定惯量,k为惯量补偿系数,ω s为转差频率,J max为自适应惯量最大值,
    Figure PCTCN2022135832-appb-100025
    为ω s的导数。
  11. 一种微电网自适应虚拟同步控制装置,其特征在于,包括:
    有功功率和频率控制模块,用于基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率;
    频率偏差模块,用于基于虚拟同步发电机的参考角频率确定微电网的频率偏差;
    虚拟惯量模块,用于根据微电网的频率偏差确定并网逆变器的虚拟惯量;
    频率参数优化模块,用于利用并网逆变器的虚拟惯量调整虚拟同步发电机的角频率。
  12. 如权利要求11所述的一种微电网自适应虚拟同步控制装置,其特征在于,
    所述有功功率和频率控制模块,用于基于微电网的输出有功功率和额定功率获取虚拟同步发电机的参考角频率,具体步骤包括:
    通过自适应虚拟惯性数学方程和虚拟同步发电机控制方程构建虚拟同步发电机运动方程;其中,
    构建自适应虚拟惯性数学方程的步骤,包括:
    Figure PCTCN2022135832-appb-100026
    式中,J 0为额定惯量,J为自适应补偿惯量,k为惯量补偿系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
    构建虚拟同步发电机控制方程的步骤,包括:
    Figure PCTCN2022135832-appb-100027
    式中,τ是低通滤波器的时间常数,P为输出有功功率,P *为额定功率参考值,m=P-ω是下垂 系数,ω为参考角频率,ω *为标称条件下ω的参考值,t为时间变量;
    设定
    Figure PCTCN2022135832-appb-100028
    根据公式(1)和(2)得到虚拟同步发电机运动方程:
    Figure PCTCN2022135832-appb-100029
    式中,J为自适应补偿惯量,ω为参考角频率,P为输出有功功率,P *为额定功率参考,D m为下垂阻尼系数,t为时间变量,Δω为参考角频率偏差;
    根据自适应虚拟惯性数学方程和虚拟同步发电机运动方程,得到如下计算公式(4):
    Figure PCTCN2022135832-appb-100030
    式中,P *为额定功率参考值,ω s为转差频率;令ω s=ω-ω *,得到如下计算公式(5):
    Figure PCTCN2022135832-appb-100031
    P rsrv=P *-P    (6)
    式中,P rsrvP rsrv为功率偏差,P *是额定功率参考值,ω s表示转差频率,J 0为额定惯量,k为惯量补偿系数,D m为下垂阻尼系数,
    Figure PCTCN2022135832-appb-100032
    为ω s的导数;
    结合式(4)至式(6),得到基于自适应虚拟惯性算法的有功功率和频率控制方程:
    ω=ω *s=ω *+∫f(ω s,P rsrv)dt    (7)
    式中,ω为参考角频率,ω s表示转差频率,ω *为标称条件下ω的参考值,P rsrvP rsrv为功率偏差。
  13. 如权利要求11所述的一种微电网自适应虚拟同步控制装置,其特征在于,
    所述频率偏差模块,用于基于虚拟同步发电机的参考角频率确定微电网的频率偏差,具体包括:
    当ΔωΔω>0,
    Figure PCTCN2022135832-appb-100033
    时,系统频率偏离标称频率值;
    当ΔωΔω<0,
    Figure PCTCN2022135832-appb-100034
    时,系统频率偏离标称频率值;
    当Δω>0,
    Figure PCTCN2022135832-appb-100035
    系统频率返回标称频率值;
    当Δω<0,
    Figure PCTCN2022135832-appb-100036
    时,系统频率返回标称频率值;
    其中,Δω为参考角频率偏差,ω vsg为角速度,t为时间变量。
  14. 如权利要求11所述的一种微电网自适应虚拟同步控制装置,其特征在于,
    所述虚拟惯量模块,用于根据微电网的频率偏差确定并网逆变器的虚拟惯量,具体步骤包括:
    构建微电网的额定惯量方程:
    Figure PCTCN2022135832-appb-100037
    其中,D m为下垂阻尼系数,X 1为线路阻抗,V *为母线电压幅值,V为变流器输出电压幅值,J 0为额定惯量,ζ为阻尼比,δ 0为电压相角参考值;
    所述虚拟惯量包括大惯量和小惯量,所述大惯量为式(8)中J 0的最大值,所述小惯量为式(8)中J 0的最小值。
  15. 一种计算机可读存储介质,其特征在于,用于保存计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-10任一项所述的微电网自适应虚拟同步控制方法的步骤。
  16. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至10中任一项所述的微电网自适应虚拟同步控制方法的步骤。
PCT/CN2022/135832 2022-08-22 2022-12-01 一种微电网自适应虚拟同步控制方法、装置、介质、设备 WO2024040781A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211007570.4 2022-08-22
CN202211007570.4A CN115441470A (zh) 2022-08-22 2022-08-22 一种微电网自适应虚拟同步控制方法、装置、介质、设备

Publications (1)

Publication Number Publication Date
WO2024040781A1 true WO2024040781A1 (zh) 2024-02-29

Family

ID=84245539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135832 WO2024040781A1 (zh) 2022-08-22 2022-12-01 一种微电网自适应虚拟同步控制方法、装置、介质、设备

Country Status (2)

Country Link
CN (1) CN115441470A (zh)
WO (1) WO2024040781A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116505578B (zh) * 2023-05-16 2023-11-21 茅台学院 一种串联型虚拟同步机的分散式自适应虚拟惯性和阻尼控制方法及装置
CN117559507B (zh) * 2024-01-04 2024-05-24 武汉理工大学 一种构网型储能电站定容选址优化配置方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482939A (zh) * 2017-09-08 2017-12-15 中南大学 一种逆变器控制方法
CN109861279A (zh) * 2019-01-24 2019-06-07 太原理工大学 一种适用于虚拟同步发电机的转动惯量自适应控制方法
US20200144946A1 (en) * 2018-07-03 2020-05-07 Shanghai Jiaotong University Adaptive Inertia Control Method of IIDG Based on VSG
CN112398166A (zh) * 2020-11-09 2021-02-23 西安热工研究院有限公司 储能一次调频虚拟同步机参数分析方法
CN113659611A (zh) * 2021-06-30 2021-11-16 国网江苏省电力有限公司电力科学研究院 一种并网模式下虚拟同步发电机虚拟惯量的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482939A (zh) * 2017-09-08 2017-12-15 中南大学 一种逆变器控制方法
US20200144946A1 (en) * 2018-07-03 2020-05-07 Shanghai Jiaotong University Adaptive Inertia Control Method of IIDG Based on VSG
CN109861279A (zh) * 2019-01-24 2019-06-07 太原理工大学 一种适用于虚拟同步发电机的转动惯量自适应控制方法
CN112398166A (zh) * 2020-11-09 2021-02-23 西安热工研究院有限公司 储能一次调频虚拟同步机参数分析方法
CN113659611A (zh) * 2021-06-30 2021-11-16 国网江苏省电力有限公司电力科学研究院 一种并网模式下虚拟同步发电机虚拟惯量的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOU XIAOCHAO; SUN YAO; ZHANG XIN; LU JINGHANG; WANG PENG; GUERRERO JOSEP M.: "Improvement of Frequency Regulation in VSG-Based AC Microgrid Via Adaptive Virtual Inertia", IEEE TRANSACTIONS ON POWER ELECTRONICS, INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, USA, vol. 35, no. 2, 1 February 2020 (2020-02-01), USA , pages 1589 - 1602, XP011758079, ISSN: 0885-8993, DOI: 10.1109/TPEL.2019.2923734 *

Also Published As

Publication number Publication date
CN115441470A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2024040781A1 (zh) 一种微电网自适应虚拟同步控制方法、装置、介质、设备
CN109149605B (zh) 一种基于vsg的微电网暂态自适应参数控制策略
Goud et al. Power quality enhancement in grid-connected PV/wind/battery using UPQC: atom search optimization
CN108923460B (zh) 微网虚拟同步机多机并联动态一致响应的参数配置方法
CN108736519B (zh) 一种光伏电站的虚拟同步发电机自适应控制方法及装置
CN113572199B (zh) 一种基于模型预测算法的构网型换流器平滑切换方法
CN108539797A (zh) 一种考虑经济性的孤岛微电网二次频率和电压控制方法
CN110336317B (zh) 一种光伏并网发电系统的控制方法
CN115912405A (zh) 一种用于复杂振荡环境下虚拟同步发电机自适应控制策略
Beus et al. A model predictive control approach to operation optimization of an ultracapacitor bank for frequency control
CN107480837B (zh) 一种基于gps同步定频的孤岛运行微电网协调控制方法
WO2023088124A1 (zh) 基于模型预测虚拟同步机的逆变器频率自适应控制方法
Ndeh et al. Decentralized droop control strategies for parallel-connected distributed generators in an ac islanded microgrid: A review
Behera et al. TID controller in two area multi unit power systems with SMES and HVDC link
Liu et al. A Non-linear Decentralized Secondary Frequency Control of islanded Microgrid via Adaptive $ L_ {2} $ Gain Disturbance Attenuation
Jiang et al. Secondary reactive power balancing and voltage stability in microgrid using prioritized centralized controller
Wang et al. A self-adaptive power balance control strategy for PV inverters in islanded microgrids
Li et al. Virtual inertia control of the virtual synchronous generator: A review
Jakpattanajit et al. A new coordinated control scheme of PSS and FACT devices for improving power system oscillations in multi-machine system
Rodriguez et al. Grid-following and grid-forming PV and wind turbines
Dai et al. RBF Neural Network Adaptive PID Control for Energy Storage System in Grid-Connected Photovoltaic Microgrid
Yan et al. Distributed secondary control of virtual synchronous generator integrated microgrid via extremum seeking
Ali et al. Using a novel method to improve various stages of machines in the power system
Pan et al. DC Voltage Control of Multi-terminal MMC-HVDC Based on Virtual Synchronous Generator
CN116937671B (zh) 一种孤岛交流微电网的恒频分布式控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956316

Country of ref document: EP

Kind code of ref document: A1