WO2024040667A1 - 一种蜗壳进气的15mw超临界co 2 轴流背压式透平 - Google Patents

一种蜗壳进气的15mw超临界co 2 轴流背压式透平 Download PDF

Info

Publication number
WO2024040667A1
WO2024040667A1 PCT/CN2022/120420 CN2022120420W WO2024040667A1 WO 2024040667 A1 WO2024040667 A1 WO 2024040667A1 CN 2022120420 W CN2022120420 W CN 2022120420W WO 2024040667 A1 WO2024040667 A1 WO 2024040667A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting plate
cylinder
supercritical
bearing box
rotor
Prior art date
Application number
PCT/CN2022/120420
Other languages
English (en)
French (fr)
Inventor
徐殿吉
徐鹏
翁振宇
郭庆丰
杨一鸣
吕天昊
翟彦恺
张健
李佳鹏
景禹淇
Original Assignee
哈电发电设备国家工程研究中心有限公司
哈尔滨汽轮机厂有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈电发电设备国家工程研究中心有限公司, 哈尔滨汽轮机厂有限责任公司 filed Critical 哈电发电设备国家工程研究中心有限公司
Publication of WO2024040667A1 publication Critical patent/WO2024040667A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/003Preventing or minimising internal leakage of working-fluid, e.g. between stages by packing rings; Mechanical seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a 15MW supercritical CO2 axial flow back-pressure turbine and belongs to the technical field of power generation.
  • SCO2 cycle power generation technology According to the market situation, clean energy power generation is an important development direction in the future, and supercritical carbon dioxide (SCO2) cycle power generation technology has been widely recognized for its advantages such as high efficiency, low cost, high cleanliness and compact structure. It has good application prospects in the field of power generation.
  • Supercritical CO2 turbine power generation technology at home and abroad is in the experimental stage, and most axial flow back-pressure turbines have a power of 5MW-10MW. High-power units have not yet been commercially operated. Therefore, they are in the window period for decision-making and layout.
  • a volute-intake 15MW supercritical CO2 axial flow back-pressure turbine includes a front bearing box, a cylinder, a pressure balance tube, a seal, a rear bearing box and a rotor.
  • the two ends of the cylinder are connected to the front bearing box and the rear bearing box respectively.
  • the bearing box is connected, and the rotor is installed in the cylinder. Both ends of the rotor are connected to the front bearing box and the rear bearing box respectively.
  • the rotor and the cylinder are sealed through seals. Both ends of the pressure balance pipe are connected to the cylinder.
  • the rear part of the cylinder is provided with
  • the exhaust chamber is provided with an air inlet chamber at the front of the cylinder, and the air inlet chamber is a volute structure.
  • the exhaust chamber has a truncated conical inner cavity.
  • the blades include moving blades and stationary blades.
  • the moving blades are installed in the middle of the rotor, and the stationary blades are installed inside the cylinder.
  • the moving blades and the stationary blades are arranged in a staggered manner.
  • the blades adopt a pre-twisted assembly structure.
  • the air inlet chamber is provided with a valve
  • the air inlet chamber is located in front of the blade
  • the exhaust chamber is located behind the blade
  • the front end of the pressure balance tube is located in front of the air inlet chamber
  • the rear end of the pressure balance tube is located in behind the blade.
  • the two ends of the cylinder are respectively provided with first connecting plates and second connecting plates
  • the front bearing box is provided with a front connecting plate corresponding to the first connecting plate
  • the rear bearing box is provided with a corresponding position corresponding to the second connecting plate.
  • a rear connecting plate is provided, and the first connecting plate, the second connecting plate, the front connecting plate, and the rear connecting plate are all provided with connecting holes, and bolts pass through the connecting holes to connect the second connecting plate to the rear connecting plate, and the first connecting plate to the rear connecting plate.
  • the front bearing box is provided with a thrust bearing and a front bearing
  • the front end of the rotor is connected to the front bearing
  • the front end protrusion of the rotor is connected to the thrust bearing
  • the rear bearing box is provided with a rear bearing, so The rear end of the rotor is connected with the rear bearing.
  • the seal is a dry gas seal.
  • a volute-intake 15MW supercritical CO2 axial flow back-pressure turbine is suitable for 15MW high-power units.
  • the invention has improved power, ingenious and reasonable structure, and is convenient for commercial operation;
  • the blades of the present invention adopt a pre-twisted assembled structure. Compared with traditional welded partitions, the assembled structure has no welds, which avoids welding deformation and better ensures the flow accuracy;
  • the present invention optimizes the intake and exhaust chamber profiles, has superior aerodynamic performance, and keeps the pressure loss within a reasonable range;
  • the valve of the present invention is directly connected to the cylinder, eliminating the air guide structure.
  • the cylinder uses a tangential volute for air intake, which minimizes the air intake loss;
  • This invention uses high-performance shaft end dry gas sealing technology to control supercritical CO2 turbine shaft end leakage
  • the cylinder of the present invention is connected to the front and rear bearing boxes by a push-pull surface tightening method, which can greatly reduce the axial size while ensuring that it can support the weight of the stator and transmit the axial expansion difference;
  • the present invention has the characteristics of higher density.
  • the present invention is a back-pressure turbine with an exhaust pressure of 3.7Mpa. Under the same parameter conditions, the supercritical CO2 turbine has a smaller volume and lower equipment and factory building costs.
  • Figure 1 is a cross-sectional view of a 15MW supercritical CO2 axial flow back-pressure turbine with volute intake;
  • Figure 2 is a schematic diagram of the air intake chamber structure
  • Figure 3 is a schematic diagram of the cylinder structure
  • Figure 4 is a diagram of the sliding pin system
  • Figure 5 is a schematic structural diagram of the first connecting plate
  • Figure 6 is a schematic structural diagram of the first connecting plate
  • FIG. 7 is a schematic diagram of the blade
  • Figure 8 is a schematic diagram of the direct connection between the valve and the cylinder
  • Figure 9 is a schematic diagram of the seal structure
  • Figure 10 is a schematic cross-sectional view of the air inlet cavity
  • Figure 11 is a schematic diagram of the moving ring structure
  • connection In the present invention, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection connection
  • fixing and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • This embodiment is described with reference to Figures 1-11.
  • This embodiment is a volute-intake 15MW supercritical CO2 axial flow back-pressure turbine, including a front bearing box 1, a cylinder 2, and a pressure balance pipe. 3.
  • Seal 4 rear bearing box 5 and rotor 6.
  • the middle part of rotor 6 is located in cylinder 2. Both ends of rotor 6 and cylinder 2 are connected to front bearing box 1 and rear bearing box 5 respectively.
  • the rotor 6 is installed on There are two seals 4.
  • the seals 4 are arranged at both ends of the cylinder 2.
  • Both ends of the pressure balance pipe 3 are connected with the cylinder 2 to balance the pressure at both ends of the cylinder 2.
  • An exhaust chamber is provided at the rear of the cylinder 2. 21.
  • the front part of the cylinder 2 is provided with an air inlet chamber 22, which is a volute structure; the inner molding line of the air inlet chamber 22 is optimized, the aerodynamic performance is superior, and the pressure loss is controlled within a reasonable range; this device
  • the power is increased, the structure is ingenious and reasonable, and it is convenient for commercial operation;
  • the cross-section of the air inlet cavity 22 is an ellipse, A is the long axis size of the ellipse, B is the short axis size of the ellipse, and R is the radius size of the ellipse vertex.
  • the cross-section data of the air intake cavity 22 are as follows The table shows:
  • the inner cavity of the exhaust chamber 21 is a truncated cone; the inner molding line of the intake and exhaust chamber 21 is optimized to achieve superior aerodynamic performance and control the pressure loss within a reasonable range;
  • the blades include moving blades and stationary blades.
  • the moving blades are installed in the middle of the rotor 6, and the stationary blades are installed inside the cylinder 2.
  • the moving blades and the stationary blades are staggered; the stationary blades and the moving blades adopt a pre-twisted assembly structure, which is separated from the traditional welded blades. Compared with the plate, the assembled structure has no welds, which avoids welding deformation and better ensures the flow accuracy;
  • the flow of the present invention adopts a multi-stage small enthalpy drop reaction design, which fundamentally improves the flow efficiency;
  • the air inlet chamber 22 is provided with a valve, which eliminates the air guide structure commonly used in existing structures.
  • the air inlet chamber 22 realizes the tangential volute air intake of the cylinder 2, minimizing the air intake loss; the air intake
  • the cavity 22 is located in front of the blade, the exhaust cavity 21 is located behind the blade, the front end of the pressure balance pipe 3 is set in front of the air inlet cavity 22, and the rear end of the pressure balance pipe 3 is set in the rear of the blade;
  • the valve is a main gas regulating combination Valve, the through flow of the present invention adopts a reverse arrangement.
  • Supercritical CO2 enters the cylinder 2 through the valve.
  • the pressure balance pipe outside the cylinder 2 3.
  • the balance hub air seal installed in the cylinder can balance the electric terminal pressure and axial thrust in the cylinder respectively;
  • the two ends of the cylinder 2 are respectively provided with a first connecting plate 23 and a second connecting plate 24.
  • the front bearing box 1 is provided with a front connecting plate corresponding to the first connecting plate 23, and the rear bearing box 5 is connected with the second connecting plate.
  • a rear connecting plate is provided at a corresponding position of the plate 24.
  • the first connecting plate 23, the second connecting plate 24, the front connecting plate and the rear connecting plate are all provided with connecting holes. Bolts pass through the connecting holes to connect the second connecting plate 24 with the rear connecting plate.
  • the connection, the first connecting plate 23 is connected to the front connecting plate; the push-pull surface is used for tightening, which can greatly reduce the axial size while ensuring that it can support the weight of the stator and transmit the axial expansion difference;
  • the front bearing box 1 is provided with a thrust bearing 11 and a front bearing 12, the front end of the rotor 6 is connected to the front bearing, the front end protrusion of the rotor 6 is connected to the thrust bearing, and the rear bearing box 5 is provided with a rear bearing.
  • Bearing 51, the rear end of the rotor 6 is connected with the rear bearing 51; as shown in Figure 4, the absolute dead center of the present invention is designed in the rear bearing box 5, which is positioned on the base frame with a transverse key to ensure absolute expansion of the entire unit.
  • the relative dead center of the rotor 6 is designed at the thrust bearing 11.
  • the rear bearing box 5 and the cylinder 2 expand from the absolute dead center to the front bearing box 1 side.
  • the cylinder 2 and the front bearing box and the rear bearing box are pushed and pulled through The surfaces are connected together, and the whole expands toward the adjusting end, and the expansion is absorbed by the flexible plate of the front bearing box; the bottom of the front bearing box 1 is provided with a flexible plate support, which can absorb the axial expansion difference when the unit is running; the rear bearing box 5 is rigid Bracket support serves as the absolute expansion dead center of the unit; the main gas regulating joint valve is directly connected to the cylinder 2 through a flange; by adjusting parameters and structure, the power of the unit is increased to 15MW.
  • This arrangement can realize the startup and shutdown of the present invention. Synchronous axial movement between the bearing box and the cylinder in various operating conditions;
  • Seal 4 is a dry gas seal; both ends of cylinder 2 are designed with dry gas seals, which can better reduce air leakage losses; the pressure balance pipe outside the cylinder and the balance hub air seal set inside the cylinder can respectively balance the power regulation in the cylinder end pressure and axial thrust; the seal 4 is provided with an isolation gas inlet, a leakage detection port, and a primary sealing gas inlet in sequence from the air outlet side to the air inlet side.
  • the seal 4 includes a shaft sleeve 41, a moving ring 42, a static ring 43, Push ring 44, spring 45, spring seat 46, sealing ring 47, outer ring body 48, first air seal tooth 49, inner ring body 410, end air seal ring 411 and second air seal tooth 412, the shaft sleeve 41 It is connected with the inner ring body 410, and the sleeve 41 and the inner ring body 410 are sleeved on the rotor 6. There is a cavity between the upper part of the sleeve 41 and the inner wall of the end of the cylinder 2. A moving ring 42 is installed on the sleeve 41.
  • a push ring 44 is installed on the outside of the inner ring body 410, and a spring seat 46 is installed on the outside of the push ring 44.
  • a spring 45 is provided between the push ring 44 and the spring seat 46.
  • the push ring 44 is connected to the static ring 43, and the push ring 44 is connected to the static ring 43.
  • the static ring 43 presses the moving ring 42 through the spring 45.
  • the outer wall of the spring seat 46 and the end of the cylinder 2 The inner wall is connected.
  • a first channel is processed on the spring seat 46. One end of the first channel is connected to the leakage detection port.
  • An outer ring body 48 is provided on the side of the spring seat 46.
  • the outer wall of the outer ring body 48 is connected to the inner wall of the end of the cylinder 2.
  • a second channel is processed on the outer ring body 48, and the second channel is connected to the isolation gas inlet.
  • First air sealing teeth 49 are provided on both sides of the gap between the outer ring body 48 and the inner ring body 410.
  • the gap between the ring body 48 and the inner ring body 410 and the first channel are connected in sequence to form an isolation seal, the primary sealing gas inlet, the cavity between the sleeve 41 and the cylinder 2, and the connection between the static ring 43 and the moving ring 42 (there is a gap when the spring contracts), the gap between the static ring 43 and the inner ring body 410, the gap between the push ring 44 and the inner ring body 410, and the leakage detection port are connected in sequence to form a main seal, and the inner wall of the cylinder 2 is connected with the inner ring body 410.
  • the end air seal ring 411 is connected, and there is a gap between the end air seal ring 411 and the shaft sleeve 41.
  • the end air seal ring 411 is connected to the rotor 6 through the second air seal tooth 412; the 5 springs fixed on the 6 spring seat can follow the The pressure is tightened or relaxed to push the push ring 44 and the static ring 43, and adjust the gap size of the sealing end face between the static ring 43 and the moving ring 42.
  • the sealing ring 7 can seal the components so that the gas can be adjusted according to the setting.
  • the process gas from the external high-pressure gas source is dried and filtered and becomes clean gas through the primary sealing gas inlet and enters the cavity between the shaft sleeve 41 and the cylinder 2 to control the high pressure
  • the purpose of the pressure in the turbine is to prevent dust, condensed oil and other impurities in the unpurified process gas from entering, so as to prevent adverse effects on the normal operation of the dry gas seal
  • the working surface of the dynamic ring 42 includes a dynamic pressure groove 4201, a seal Weir 4202, sealing dam 4203, when the moving ring 42 rotates with the rotor, the fluid dynamic pressure groove pumps the high-pressure gas on the outer diameter side into the space between the sealing end faces (static ring 43 and moving ring 42), from the outer diameter to the groove diameter
  • the air film pressure gradually increases.
  • the sealing surface breaks away and forms an air film of a certain thickness.
  • the air film formed in the contact state blocks the leakage channel of the relatively low-pressure sealing medium, achieving a sealing effect;
  • Compressed air (or nitrogen) is used as the isolation gas.
  • the isolation gas is turned on, and the pressure is controlled to be slightly higher than the bearing box oil pressure (usually atmospheric pressure) through the pressure regulating valve to form a reliable blocking sealing system.
  • the lubricating oil in the bearing box does not enter the dry gas seal; part of the gas enters the bearing box, and the other part is mixed with a small amount of CO2 leaked from the seal, called leakage gas, which can be safely discharged as an environmentally harmless gas; determine whether the seal is normal
  • the work is mainly carried out by monitoring the leakage gas. If the main seal fails unexpectedly, the pressure or flow indication on the leakage gas pipeline will increase sharply and be remotely transmitted to the control room, issuing an alarm or interlock shutdown signal;
  • a 15MW supercritical CO2 axial flow back-pressure turbine with volute air intake has a power of 15MW; compared with the steam working medium, the invention has the characteristics of higher density.
  • the invention is a back-pressure turbine with an exhaust pressure of 3.7Mpa. Under the same parameter conditions, the device is smaller in size and the cost of equipment and factory buildings is lower.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the exemplary term “over” may include both orientations “above” and “below.”
  • the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种蜗壳进气的15MW超临界CO2轴流背压式透平,包括前轴承箱(1)、气缸(2)、压力平衡管(3)、密封件(4)、后轴承箱(5)和转子(6),气缸(2)的两端分别与前轴承箱(1)、后轴承箱(5)连接,转子(6)安装在气缸(2)内,转子(6)两端分别与前轴承箱(1)、后轴承箱(5)连接,转子(6)与气缸(2)通过密封件(4)实现密封,压力平衡管(3)的两端均与气缸(2)连通,气缸(2)的后部设置有排气腔(21),气缸(2)的前部设置有进气腔(22),进气腔(22)为蜗壳结构。

Description

一种蜗壳进气的15MW超临界CO2轴流背压式透平 技术领域
本发明涉及一种15MW超临界CO2轴流背压式透平,属于发电技术领域。
背景技术
根据市场形势导向判断,清洁能源发电是未来重要发展方向,而超临界二氧化碳(SCO2)循环发电技术,因其效率高、成本低、洁净度高以及结构紧凑等优点而得到广泛认可,在多种发电领域均具有良好的应用前景。国内外超临界CO2透平发电技术处于试验阶段,且大多数的轴流背压式透平功率多为5MW-10MW,大功率机组尚未商业运行,因此,其正处于决策和布局的窗口期。
因此,亟需提出一种蜗壳进气的15MW超临界CO2轴流背压式透平,以解决上述技术问题。
技术问题
本发明研发解决的是超临界CO2透平发电技术尚未商业运行的问题。在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。
技术解决方案
一种蜗壳进气的15MW超临界CO2轴流背压式透平,包括前轴承箱、气缸、压力平衡管、密封件、后轴承箱和转子,气缸的两端分别与前轴承箱、后轴承箱连接,转子安装在气缸内,转子两端分别与前轴承箱、后轴承箱连接,转子与气缸通过密封件实现密封,压力平衡管的两端均与气缸连通,气缸的后部设置有排气腔,气缸的前部设置有进气腔,所述进气腔为蜗壳结构。
优选的:排气腔为内腔为圆台型。
优选的:叶片包括动叶片和静叶片,转子的中部安装有动叶,气缸的内侧安装有静叶,动叶与静叶交错布置。
优选的:叶片采用预扭装配式结构。
优选的:进气腔上设置有阀门,所述进气腔位于叶片的前方,排气腔位于叶片的后方,压力平衡管的前端设置在进气腔的前方,压力平衡管的后端设置在叶片的后方。
优选的:所述气缸的两端分别设置有第一连接板和第二连接板,前轴承箱上与第一连接板对应位置设置有前连接板,后轴承箱上与第二连接板对应位置设置有后连接板,第一连接板、第二连接板、前连接板、后连接板上均设置有连接孔,螺栓通过连接孔使第二连接板与后连接板连接、第一连接板与前连接板连接。
优选的:所述前轴承箱的箱内设置有推力轴承和前轴承,转子的前端与前轴承连接,转子的前端凸起部与推力轴承连接,后轴承箱的箱内设置有后轴承,所述转子的后端与后轴承连接。
优选的:密封件为干气密封。
优选的:一种蜗壳进气的15MW超临界CO2轴流背压式透平适用于15MW大功率机组。
有益效果
本发明具有以下有益效果:
1、本发明功率提高,结构巧妙和合理,便于商业运行;
2、本发明叶片采用预扭装配式结构,与传统焊接隔板相比,装配式结构没有焊缝,避免焊接变形,更好地保证了通流精度;
3、本发明优化进、排气腔室型线,气动性能优越,将压损在合理范围内;
4、本发明阀门与气缸直连,省去导气管结构,气缸为切向蜗壳进气,最大限度减小了进气损失;
5、本发明采用高性能的轴端干气密封技术控制超临界CO2透平轴端泄漏;
6、本发明气缸与前后轴承箱连接采用推拉面把紧的方式,在保证能够支撑静子重量和传递轴向胀差的同时,又可以大大减小轴向尺寸;
7、本发明相比蒸汽工质具有密度大的特点,本发明为背压式透平,排气压力3.7Mpa,相同参数条件下超临界CO2透平体积更小,设备和厂房成本更低。
附图说明
图1是一种蜗壳进气的15MW超临界CO2轴流背压式透平的剖视图;
图2为进气腔结构示意图;
图3为气缸结构示意图;
图4为滑销系统图;
图5为第一连接板结构示意图;
图6为第一连接板结构示意图;
图7为叶片示意图;
图8为阀门与气缸直连示意图;
图9为密封件结构示意图;
图10为进气腔截面示意图;
图11为动环结构示意图;
图中:1-前轴承箱,2-气缸,3-压力平衡管,4-密封件,5-后轴承箱,6-转子,11-推力轴承,12-前轴承,21-排气腔,22-进气腔,23-第一连接板,24-第二连接板,51-后轴承,41-轴套,42-动环,43-静环,44-推环,45-弹簧,46-弹簧座,47-密封圈,48-外环体,49-第一气封齿,410-内环体,411-端气封环,412-第二气封齿,4201-动压槽,4202-密封堰,4203-密封坝。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
具体实施方式一:结合图1-11说明本实施方式,本实施方式的一种蜗壳进气的15MW超临界CO2轴流背压式透平,包括前轴承箱1、气缸2、压力平衡管3、密封件4、后轴承箱5和转子6,转子6中部位于气缸2内,转子6、气缸2的两端均分别与前轴承箱1、后轴承箱5连接,所述转子6上安装有两个密封件4,密封件4设置在气缸2的两端,压力平衡管3的两端均与气缸2连通,可平衡气缸2内两端压力,气缸2的后部设置有排气腔21,气缸2的前部设置有进气腔22,所述进气腔22为蜗壳结构;优化进气腔22腔室内型线,气动性能优越,将压损控制在合理范围内;本装置功率提高,结构巧妙和合理,便于商业运行;进气腔22截面为椭圆,A为椭圆长轴尺寸,B为椭圆短轴尺寸,R为椭圆顶点的半径尺寸,其进气腔22截面数据如下表所示:
进气腔室截面角度 R A B
425 176 110
15° 423 173 108
30° 421 170 106
45° 419 166 104
60° 416 162 101
75° 413 157 98
90° 411 154 96
105° 408 150 93
120° 405 144 90
135° 402 139 87
150° 399 134 84
165° 396 130 81
180° 393 124 78
195° 390 120 75
210° 386 114 71
225° 383 109 68
240° 379 102 64
255° 375 96 60
270° 370 88 55
285° 365 82 50
300° 360 72 45
315° 355 64 40
330° 347 51 32
345° 338 37 23
 
排气腔21为内腔为圆台型;优化进排气腔21腔室内型线,气动性能优越,将压损控制在合理范围内;
叶片包括动叶片和静叶片,转子6的中部安装有动叶,气缸2的内侧安装有静叶,动叶与静叶交错布置;静叶、动叶采用预扭装配式结构,与传统焊接隔板相比,装配式结构没有焊缝,避免焊接变形,更好地保证了通流精度;
本发明通流采用多级小焓降反动式设计,在根本上提高通流效率;
进气腔22上设置有阀门,省去了现有结构中常用的导气管结构,进气腔22实现气缸2的切向蜗壳进气,最大限度减小了进气损失;所述进气腔22位于叶片的前方,排气腔21位于叶片的后方,压力平衡管3的前端设置在进气腔22的前方,压力平衡管3的后端设置在叶片的后方;阀门为主气调节联合阀,本发明的通流采用反向布置,超临界CO2经由阀门进入气缸2,经过通流做功后,由气缸2电端(后端)下部排气腔21排出,气缸2外的压力平衡管3和气缸内设置的平衡毂气封,可以分别平衡气缸内电端压力和轴向推力;
所述气缸2的两端分别设置有第一连接板23和第二连接板24,前轴承箱1上与第一连接板23对应位置设置有前连接板,后轴承箱5上与第二连接板24对应位置设置有后连接板,第一连接板23、第二连接板24、前连接板、后连接板上均设置有连接孔,螺栓通过连接孔使第二连接板24与后连接板连接、第一连接板23与前连接板连接;采用推拉面把紧的方式,在保证能够支撑静子重量和传递轴向胀差的同时,又可以大大减小轴向尺寸;
所述前轴承箱1的箱内设置有推力轴承11和前轴承12,转子6的前端与前轴承连接,转子6的前端凸起部与推力轴承连接,后轴承箱5的箱内设置有后轴承51,所述转子6的后端与后轴承51连接;如图4所示,本发明的绝对死点设计在后轴承箱5,以横键定位于基架上,为整个机组的膨胀绝对死点,转子6相对死点设计在推力轴承11处,运行期间后轴承箱5和气缸2由绝对死点向前轴承箱1侧膨胀,气缸2和前轴承箱、后轴承箱之间通过推拉面连接在一起,整体向调端膨胀,膨胀量通过前轴承箱挠性板吸收;前轴承箱1底部设置挠性板支撑,可以吸收机组运行时的轴向胀差;后轴承箱5为刚性支架支撑,作为机组的绝对膨胀死点;主气调节联合阀与气缸2通过法兰直接连接;通过调节参数与结构,将机组功率提升为15MW,此种布置形式可实现本发明在启、停机等各种运行工况中,轴承箱与气缸间的同步轴向移动;
密封件4为干气密封;气缸2两端设计有干气密封,可以更好地减少漏气损失;气缸外的压力平衡管和气缸内设置的平衡毂气封,可以分别平衡气缸内调电端压力和轴向推力;密封件4从出气侧至进气侧依次设置有隔离气进口、泄露检测口、一级密封气进口,密封件4包括轴套41、动环42、静环43、推环44、弹簧45、弹簧座46、密封圈47、外环体48、第一气封齿49、内环体410、端气封环411和第二气封齿412,所述轴套41与内环体410连接,且轴套41、内环体410套装在转子6上,轴套41的上部与气缸2的端部内壁之间具有空腔,轴套41上安装有动环42,内环体410的外侧套装有推环44,推环44外侧套装有弹簧座46,推环44与弹簧座46之间设置有弹簧45,推环44与静环43连接,推环44与静环43之间设置有密封圈47,静环43通过弹簧45压住动环42,推环44、静环43与内环体410之间具有间隙,弹簧座46的外壁与气缸2的端部内壁连接,弹簧座46上加工有第一通道,第一通道的一端与泄露检测口连接,弹簧座46的侧面设置有外环体48,外环体48的外壁与气缸2的端部内壁连接,外环体48上加工有第二通道,第二通道与隔离气进口连接,外环体48与内环体410之间的间隙两侧设置有第一气封齿49,第二通道、外环体48与内环体410之间的间隙、第一通道顺次连接形成隔离密封,一级密封气进口、轴套41与气缸2之间的空腔、静环43与动环42的连接部(弹簧收缩时具有间隙)、静环43与内环体410之间的间隙、推环44与内环体410之间的间隙、泄露检测口顺次连接形成主密封,气缸2的内壁与端气封环411连接,端气封环411与轴套41之间具有间隙,端气封环411通过第二气封齿412与转子6连接;固定在6弹簧座上的5弹簧可以随着压力大小进行压紧或放松,从而推动推环44、静环43,调节静环43与动环42之间的密封端面的间隙大小,密封圈7则可以对部件进行密封,使气体按设定的路线流动;干气密封工作时,来自外部高压气源的工艺气经干燥、过滤后成为洁净的气体通过一级密封气进口进入轴套41与气缸2之间的空腔,控制其压力高于透平内的压力,其目的是阻挡未净化工艺气中的粉尘、凝缩油等杂质进入,防止对干气密封的正常工作产生不利的影响;动环42工作表面包括动压槽4201、密封堰4202、密封坝4203,当动环42随转子旋转时,流体动压槽把外径侧的高压气体泵入密封端面(静环43与动环42)之间,由外径至槽径处气膜压力逐渐增加,当端面气体产生的开启力与静环43密封面的流体静压力以及弹簧45载荷所形成的闭合力相等时,密封面脱离并形成一定厚度的气膜,这层在非接触状态下所形成的气膜阻塞了相对低压的密封介质泄露通道,实现了密封作用;
压缩空气(或氮气)作为隔离气,在启动润滑油系统之前先开启隔离气,通过压力调节阀控制其压力稍高于轴承箱油压(通常为大气压),形成一个性能可靠的阻塞密封系统,保证轴承箱中的润滑油不进入干气密封;该气体一部分进入轴承箱,另一部分与密封泄漏的少量CO2混合,称为泄漏气,可作为对环境无害的气体安全排放;判断密封是否正常工作主要通过对泄漏气的监测来进行,主密封如出现意外失效时,泄漏气管线上压力或流量指示会急剧增大并远传至控制室,发出报警或联锁停机信号;
一种蜗壳进气的15MW超临界CO2轴流背压式透平功率为15MW;本发明相比蒸汽工质具有密度大的特点,本发明为背压式透平,排气压力3.7Mpa,相同参数条件下本装置体积更小,设备和厂房成本更低。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
需要说明的是,在以上实施例中,只要不矛盾的技术方案都能够进行排列组合,本领域技术人员能够根据排列组合的数学知识穷尽所有可能,因此本发明不再对排列组合后的技术方案进行一一说明,但应该理解为排列组合后的技术方案已经被本发明所公开。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:包括前轴承箱(1)、气缸(2)、压力平衡管(3)、密封件(4)、后轴承箱(5)和转子(6),气缸(2)的两端分别与前轴承箱(1)、后轴承箱(5)连接,转子(6)安装在气缸(2)内,转子(6)两端分别与前轴承箱(1)、后轴承箱(5)连接,转子(6)与气缸(2)通过密封件(4)实现密封,压力平衡管(3)的两端均与气缸(2)连通,气缸(2)的后部设置有排气腔(21),气缸(2)的前部设置有进气腔(22),所述进气腔(22)为蜗壳结构。
  2. 根据权利要求1所述的一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:排气腔(21)为内腔为圆台型。
  3. 根据权利要求2所述的一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:叶片包括动叶片和静叶片,转子(6)的中部安装有动叶,气缸(2)的内侧安装有静叶,动叶与静叶交错布置。
  4. 根据权利要求3所述的一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:叶片采用预扭装配式结构。
  5. 根据权利要求3所述的一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:进气腔(22)上设置有阀门,所述进气腔(22)位于叶片的前方,排气腔(21)位于叶片的后方,压力平衡管(3)的前端设置在进气腔(22)的前方,压力平衡管(3)的后端设置在叶片的后方。
  6. 根据权利要求1所述的一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:所述气缸(2)的两端分别设置有第一连接板(23)和第二连接板(24),前轴承箱(1)上与第一连接板(23)对应位置设置有前连接板,后轴承箱(5)上与第二连接板(24)对应位置设置有后连接板,第一连接板(23)、第二连接板(24)、前连接板、后连接板上均设置有连接孔,螺栓通过连接孔使第二连接板(24)与后连接板连接、第一连接板(23)与前连接板连接。
  7. 根据权利要求1所述的一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:所述前轴承箱(1)的箱内设置有前轴承(11)和推力轴承(12),转子(6)的前端与前轴承连接,转子(6)的前端凸起部与推力轴承连接,后轴承箱(5)的箱内设置有后轴承(51),所述转子(6)的后端与后轴承(51)连接。
  8. 根据权利要求1所述的一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:密封件(4)为干气密封。
  9. 根据权利要求1-8任一项所述的一种蜗壳进气的15MW超临界CO2轴流背压式透平,其特征在于:一种蜗壳进气的15MW超临界CO2轴流背压式透平功率为15MW。
PCT/CN2022/120420 2022-08-26 2022-09-22 一种蜗壳进气的15mw超临界co 2 轴流背压式透平 WO2024040667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211032445.9 2022-08-26
CN202211032445.9A CN115419467A (zh) 2022-08-26 2022-08-26 一种蜗壳进气的15mw超临界co2轴流背压式透平

Publications (1)

Publication Number Publication Date
WO2024040667A1 true WO2024040667A1 (zh) 2024-02-29

Family

ID=84200338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120420 WO2024040667A1 (zh) 2022-08-26 2022-09-22 一种蜗壳进气的15mw超临界co 2 轴流背压式透平

Country Status (2)

Country Link
CN (1) CN115419467A (zh)
WO (1) WO2024040667A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014509A (zh) * 2016-07-28 2016-10-12 中国核动力研究设计院 一种以超临界二氧化碳为工质的透平发电机组
CN112343668A (zh) * 2020-11-03 2021-02-09 上海齐耀动力技术有限公司 超临界二氧化碳tac机组推力平衡系统及控制方法
CN112431640A (zh) * 2020-11-11 2021-03-02 中国船舶重工集团公司第七一一研究所 一种管道式工艺气压力能回收发电装置及工艺气减压管路
CN114215606A (zh) * 2022-01-20 2022-03-22 哈尔滨汽轮机厂有限责任公司 一种10MW轴流sCO2透平
CN218062403U (zh) * 2022-08-26 2022-12-16 哈电发电设备国家工程研究中心有限公司 一种蜗壳进气的15mw超临界co2轴流背压式透平

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106014509A (zh) * 2016-07-28 2016-10-12 中国核动力研究设计院 一种以超临界二氧化碳为工质的透平发电机组
CN112343668A (zh) * 2020-11-03 2021-02-09 上海齐耀动力技术有限公司 超临界二氧化碳tac机组推力平衡系统及控制方法
CN112431640A (zh) * 2020-11-11 2021-03-02 中国船舶重工集团公司第七一一研究所 一种管道式工艺气压力能回收发电装置及工艺气减压管路
CN114215606A (zh) * 2022-01-20 2022-03-22 哈尔滨汽轮机厂有限责任公司 一种10MW轴流sCO2透平
CN218062403U (zh) * 2022-08-26 2022-12-16 哈电发电设备国家工程研究中心有限公司 一种蜗壳进气的15mw超临界co2轴流背压式透平

Also Published As

Publication number Publication date
CN115419467A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
CN209781242U (zh) 一种两级气悬浮离心式电动直驱空压机
US20160177954A1 (en) Multi-stage centrifugal compressor and air conditioning unit
CN211038755U (zh) 一种超临界二氧化碳涡轮机推力平衡系统
CN203547804U (zh) 一种空气密封式汽轮机轴封系统
CN218062403U (zh) 一种蜗壳进气的15mw超临界co2轴流背压式透平
WO2024040667A1 (zh) 一种蜗壳进气的15mw超临界co 2 轴流背压式透平
CN105257345A (zh) 无轴承的透平膨胀机直连发电机能量转化装置
WO2024066423A1 (zh) 一种15mw跨临界二氧化碳离心压缩机
WO2024108958A1 (zh) 一种60mw反动式中间进气一次再热空气透平及运行方法
CN201344554Y (zh) 用于电站锅炉风机的冷却装置
CN213176096U (zh) 一种超临界二氧化碳布雷顿循环压缩机
CN109505773B (zh) 一种氦气低压压气机整体密封结构
CN212296505U (zh) 一种蒸汽透平机械密封结构
CN214836565U (zh) 压缩膨胀同轴机组和布雷顿循环系统
CN213360422U (zh) 高效节能式双级螺杆空压机系统
CN209942885U (zh) 一种螺杆膨胀机轴端密封结构及螺杆膨胀机
CN210003341U (zh) 一种透平压缩机的自平衡冷却系统
CN2322015Y (zh) 水电站压力钢管用波纹膨胀节
WO2020019800A1 (zh) 一种多流量鼓风机
CN204729350U (zh) 节能型卧式直连单级双吸离心泵
CN104948501B (zh) 节能型卧式直连单级双吸离心泵
CN215521385U (zh) 一种扩压器及具有该扩压器的压缩机、空调和汽车
CN218494413U (zh) 一种便于拆装的管道结构
CN216306254U (zh) 离心压缩机和热泵系统
CN221120073U (zh) 一种60mw三次再热轴排空气透平

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956211

Country of ref document: EP

Kind code of ref document: A1