WO2024040657A1 - 一种双回路闭式布雷顿循环发电装置及其运行方法 - Google Patents
一种双回路闭式布雷顿循环发电装置及其运行方法 Download PDFInfo
- Publication number
- WO2024040657A1 WO2024040657A1 PCT/CN2022/119811 CN2022119811W WO2024040657A1 WO 2024040657 A1 WO2024040657 A1 WO 2024040657A1 CN 2022119811 W CN2022119811 W CN 2022119811W WO 2024040657 A1 WO2024040657 A1 WO 2024040657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brayton
- outlet
- thermoelectric conversion
- conversion unit
- inlet
- Prior art date
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 74
- 239000000498 cooling water Substances 0.000 claims abstract description 70
- 239000012530 fluid Substances 0.000 claims description 43
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 238000013461 design Methods 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 230000001276 controlling effect Effects 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 230000009977 dual effect Effects 0.000 claims description 4
- 208000006673 asthma Diseases 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 230000001088 anti-asthma Effects 0.000 claims description 2
- 239000000924 antiasthmatic agent Substances 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 1
- 239000007789 gas Substances 0.000 description 18
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000000306 component Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- AFAUWLCCQOEICZ-UHFFFAOYSA-N helium xenon Chemical compound [He].[Xe] AFAUWLCCQOEICZ-UHFFFAOYSA-N 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/32—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/006—Auxiliaries or details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/103—Carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Definitions
- the invention relates to a double-circuit closed Brayton cycle power generation device, belonging to the technical field of closed Brayton cycle power generation.
- closed Brayton cycle power generation systems using inert gases such as supercritical carbon dioxide, nitrogen, helium, and helium-xenon mixtures as circulating working fluids have attracted widespread attention at home and abroad.
- the closed Brayton cycle power generation system has the characteristics of high efficiency, safety and compactness. This system makes full use of the heat from nuclear reactors and clean energy such as solar energy and industrial waste heat to achieve power generation in power plants or electric propulsion for ships. It is a Clean and efficient power generation technology in the future is a new technology that will bring about changes in power generation.
- the purpose of the research and development of the present invention is to solve the problems of low thermoelectric conversion efficiency, large size and weight, and expensive operating fluid and high cost of the existing closed Brayton cycle power generation system. Details about the present invention are given below. A brief summary is provided in order to provide a basic understanding of certain aspects of the invention. It should be understood that this summary is not an exhaustive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention.
- Scheme 1 a double-loop closed Brayton cycle power generation device, including a left Brayton thermoelectric conversion unit, a right Brayton thermoelectric conversion unit, a vacuum subsystem, a charging and exhausting subsystem, a first cooling water system, and a third 2. Cooling water system, heater and regenerator;
- the outlet of the first cooling water system is connected to the first inlet on the right side of the right Brayton thermoelectric conversion unit, and the first outlet on the right side of the right Brayton thermoelectric conversion unit is connected to the first inlet of the regenerator of the regenerator.
- Establish a connection The outlet of the second cooling water system is connected to the first inlet on the left side of the left Brayton thermoelectric conversion unit.
- the first outlet on the left side of the left Brayton thermoelectric conversion unit is connected to the first regenerator of the regenerator.
- the inlet is connected, and the second outlet of the regenerator of the regenerator is connected to the inlet of the heater.
- the outlet of the heater is respectively connected with the second inlet on the left of the left Brayton thermoelectric conversion unit and the right Brayton thermoelectric conversion unit.
- the second entrance on the right establishes a connection;
- the left second outlet of the left Brayton thermoelectric conversion unit and the right second outlet of the right Brayton thermoelectric conversion unit are connected to the second inlet of the regenerator.
- the second outlet is connected to the inlets of the inflation and exhaust subsystem, the first cooling water system and the second cooling water system respectively.
- the inlet of the vacuum subsystem is connected to the outlet of the second cooling water system.
- the inflation and exhaust subsystem The outlet is connected to the inlet of both the first cooling water system and the second cooling water system.
- the left Brayton thermoelectric conversion unit includes a second motor, a second single-stage centrifugal compressor and a second single-stage radial turbine.
- the second motor is connected to the second single-stage centrifugal compressor and the second single-stage radial turbine respectively.
- the two-stage radial turbines are connected, the second single-stage centrifugal compressor has a first inlet on the left and a first outlet on the left, and the second single-stage radial turbine has a second inlet on the left and a second outlet on the left;
- the right Brayton thermoelectric conversion unit includes a first motor, a first single-stage centrifugal compressor and a first single-stage radial turbine.
- the first motor is connected to the first single-stage centrifugal compressor and the first single-stage radial turbine respectively.
- the two-stage radial turbines are connected.
- the first single-stage centrifugal compressor has a first inlet on the right side and a first outlet on the right side.
- the first single-stage radial turbine has a second inlet on the right side and a second outlet on the right side.
- a first bypass valve is provided between the first outlet on the right side and the second outlet on the right side, and a second bypass valve is provided between the first outlet on the left side and the second inlet on the left side;
- a regulating valve is provided between the heater and the second inlet on the left, a first stop valve is provided at the inlet of the second cooling water system, a second stop valve is provided at the first outlet on the left, and the second outlet on the left;
- the vacuum subsystem is a vacuum pump, and an exhaust stop valve and an exhaust check valve are installed at the inlet of the vacuum subsystem.
- the heat source of the heater is clean energy.
- the second motor, the second single-stage centrifugal compressor and the second single-stage radial turbine adopt an integrated structural design, and the second motor is an inspired integrated motor;
- the first motor, the first single-stage centrifugal compressor and the first single-stage radial turbine adopt an integrated structural design, and the first motor is an inspired integrated motor.
- the rotor support bearings of the first motor and the second motor are magnetic suspension bearings or rolling bearings.
- the sealing structure at the transition position between the shaft ends of the rotor of the second motor and the second single-stage centrifugal compressor and the second single-stage radial turbine adopts a labyrinth seal form or a dry gas seal form;
- the sealing structure at the transition position between the shaft ends of the rotor of the second motor and the second single-stage centrifugal compressor and the second single-stage radial turbine adopts a labyrinth seal or a dry gas seal.
- the inflation and exhaust subsystem includes an exhaust compressor and a high-pressure gas storage tank connected in series.
- One end of the exhaust compressor is the inlet of the inflation and exhaust subsystem, and one end of the high-pressure gas storage tank is the outlet of the inflation and exhaust subsystem.
- an inflation stop valve is provided at the inlet of the inflation and exhaust subsystem, and an exhaust stop valve and an exhaust check valve are provided at the outlet of the inflation and exhaust subsystem.
- Scheme 2 a method of operating a double-loop closed Brayton cycle power generation device, is implemented based on the double-loop closed Brayton cycle power generation device described in Scheme 1, and includes:
- Step 1.1 open the air extraction stop valve, start the vacuum pump, and after draining the air in the closed circulation loop, close the vacuum pump and the air extraction stop valve;
- Step 2.1 open the regulating valve, the first stop valve, the second stop valve and the third stop valve;
- Step 2.2 open the charging stop valve, inject the working fluid to be operated into the closed circulation loop through the first cooling water system and the second cooling water system, and close the charging stop valve after reaching the operating pressure;
- Step 2.3 start the second motor and the first motor according to the set operating speed. After the working fluid in the left Brayton thermoelectric conversion unit and the right Brayton thermoelectric conversion unit begins to establish a cycle, start the heater, regenerator, and third motor. a cooling water system and a second cooling water system;
- Step 2.4 when the closed loop is running, control the system loop working state point or change the motor shaft speed by adjusting the power set by the heater or controlling the inlet temperature of the second single-stage radial turbine and the first single-stage radial turbine;
- Step 3.1 close the regulating valve, the first stop valve, the second stop valve and the third stop valve;
- Step 3.2 open the charging stop valve, inject the working fluid to be operated into the right Brayton thermoelectric conversion unit through the first cooling water system and the second cooling water system, and close the charging stop valve when the operating pressure is reached;
- Step 3.3 Start the first motor according to the set operating speed. After the working medium in the right Brayton thermoelectric conversion unit begins to establish circulation, start the heater, regenerator and first cooling water system;
- Step 3.4 when the right Brayton thermoelectric conversion unit is running, control the system loop working state point or change the motor shaft speed by adjusting the power set by the heater or controlling the inlet temperature of the first single-stage radial turbine;
- the present invention proposes a cycle power generation device including two sets of closed Brayton thermoelectric conversion units on the left and right, in which the regenerator and heat source are shared equipment, which greatly reduces the volume and weight of the equipment while ensuring the power demand of the system;
- the present invention can control the left Brayton thermoelectric conversion unit and the right Brayton thermoelectric conversion unit to operate simultaneously in dual cycles, or control the right Brayton thermoelectric conversion unit to operate independently to meet the operation requirements of each power level of the system;
- the present invention sets up an inflation and exhaust subsystem to realize the recycling of the operating working fluid.
- Figure 1 is a schematic structural diagram of a double-circuit closed Brayton cycle power generation device
- Figure 2 is a system diagram of a double-circuit closed Brayton cycle power generation device
- connection mentioned in the present invention is divided into fixed connection and detachable connection.
- the fixed connection is a non-detachable connection, including but not limited to conventional fixed connection methods such as flange connection, rivet connection, adhesive connection and welding connection.
- Detachable connections include but are not limited to conventional disassembly methods such as threaded connections, snap connections, pin connections, and hinge connections.
- the specific connection method is not clearly defined, the default is that at least one connection method can always be found among the existing connection methods to achieve it.
- Those skilled in the art can choose this function according to their needs. For example: choose welding connection for fixed connection and hinge connection for detachable connection.
- a double-loop closed Brayton cycle power generation device in this embodiment includes a left Brayton thermoelectric conversion unit 1 and a right Brayton thermoelectric conversion unit 2. , vacuum subsystem 3, inflation and exhaust subsystem 4, first cooling water system 5, second cooling water system 6, heater 7 and regenerator 8; the first cooling water system 5 and the second cooling water System 6 is used to cool the cold-side working fluid leaving the regenerator 8; the heater 7 is used to heat the hot-side working fluid leaving the regenerator 8;
- the heater 7 is a heat source, and the heat source can be a nuclear reactor, solar energy or other clean energy sources. If used as a test system, the heater is a conventional heating device.
- the left Brayton thermoelectric conversion unit 1 includes a second motor 1-1, a second single-stage centrifugal compressor 1-2 and a second single-stage radial turbine 1-3.
- the second motor 1-1 is connected to the second motor 1-1 respectively.
- the two single-stage centrifugal compressors 1-2 and the second single-stage radial turbine 1-3 are connected.
- the right Brayton thermoelectric conversion unit 2 includes a first motor 2-1 and a first single-stage centrifugal compressor 2 -2 and the first single-stage radial turbine 2-3, the first motor 2-1 is connected to the first single-stage centrifugal compressor 2-2 and the first single-stage radial turbine 2-3 respectively;
- the regenerator 8 is used to preheat the cold-side working fluid from the second single-stage centrifugal compressor 1-2 and the first single-stage centrifugal compressor 2-2, and at the same time, precool the cold-side working fluid from the second single-stage radial turbine. 1-3 and the hot side working fluid of the first single-stage radial turbine 2-3.
- the outlet of the first cooling water system 5 is connected to the first inlet 21 on the right side of the first single-stage centrifugal compressor 2-2, and the first outlet 22 on the right side of the first single-stage centrifugal compressor 2-2 is connected to the return outlet.
- the first inlet 81 of the regenerator of the heater 8 is connected;
- the outlet of the second cooling water system 6 is connected to the first left inlet 11 of the second single-stage centrifugal compressor 1-2, and the first left outlet 12 of the second single-stage centrifugal compressor 1-2 is connected to the return
- the first inlet 81 of the regenerator of the heater 8 is connected;
- the second regenerator outlet 82 of the regenerator 8 is connected to the inlet of the heater 7.
- the outlet of the heater 7 is respectively connected to the left second inlet 13 and the second inlet 13 of the second single-stage radial turbine 1-3.
- a connection is established with the second inlet 23 on the right side of a single-stage radial turbine 2-3;
- the second outlet 14 on the left side of the second single-stage radial turbine 1-3 and the second outlet 24 on the right side of the first single-stage radial turbine 2-3 are connected with the second outlet 24 of the regenerator 8.
- the inlet 83 is connected, and the second regenerator outlet 84 of the regenerator 8 is connected to the inlets of the charging and exhausting subsystem 4, the first cooling water system 5, and the second cooling water system 6 respectively.
- the vacuum subsystem The inlet of 3 is connected to the outlet of the second cooling water system 6
- the outlet of the charging and exhausting subsystem 4 is connected to the inlets of the first cooling water system 5 and the second cooling water system 6 .
- a first bypass valve 2-4 is provided between the first right outlet 22 and the second right outlet 24, and a second bypass valve is provided between the first left outlet 12 and the second left inlet 13. 1-4;
- a regulating valve 71 is provided between the heater 7 and the second inlet 13 on the left, a first stop valve 61 is provided at the inlet of the second cooling water system 6, and a second stop valve is provided on the first outlet 12 on the left. 1-5, the second outlet 14 on the left is provided with a third stop valve 1-6;
- the charging and exhausting subsystem 4 includes a series-connected exhaust compressor 41 and a high-pressure gas storage tank 42.
- One end of the exhaust compressor 41 is the inlet of the charging and exhausting subsystem 4, and one end of the high-pressure gas storage tank 42 is the charging and exhausting subsystem.
- the outlet of the system 4 and the inlet of the charging and exhausting subsystem 4 are provided with a charging stop valve 43 .
- the outlet of the charging and exhausting subsystem 4 is provided with an exhausting stop valve 44 and an exhausting check valve 45 .
- the vacuum subsystem 3 is a vacuum pump 31, and an exhaust stop valve 32 and an exhaust check valve 33 are installed at the inlet of the vacuum subsystem 3.
- the first single-stage centrifugal compressor 2-2, the first motor 2-1, the first single-stage radial turbine 2-3, the first cooling water system 5, the regenerator 8 and the heater 7 together form the right Side closed circulation loop
- the heaters 7 together form a left closed circulation loop, and the right closed circulation loop and the left closed circulation loop share the same set of regenerator 8 and heater 7;
- the working fluid is compressed and boosted by the first single-stage centrifugal compressor 2-2 and then preheated by the regenerator 8.
- the preheated working fluid is discharged from the regenerator 8 and enters the heater 7 for heating, leaving the high temperature of the heater 7
- the high-pressure working fluid enters the first single-stage radial turbine 2-3 to perform work.
- the working fluid is pre-cooled by the regenerator 8 and then flows into the first cooling water system 5 for cooling, and finally returns to the first single-stage centrifugal compressor 2.
- -2 entrance completes the closed Brayton cycle process of the right loop;
- the working fluid may be supercritical carbon dioxide, nitrogen, helium, argon and other gases or an inert mixed gas.
- the working fluid is compressed and boosted by the second single-stage centrifugal compressor 1-2 and then preheated by the regenerator 8.
- the preheated working fluid is discharged from the regenerator 8 and enters the heater 7 for heating, leaving the high temperature of the heater 7
- the high-pressure working fluid enters the second single-stage radial turbine 1-3 to perform work.
- the working fluid is pre-cooled by the regenerator 8 and then flows into the second cooling water system 6 for cooling, and finally returns to the second single-stage centrifugal compressor 1 -2 entrance, completes the closed Brayton cycle process of the left loop;
- the second motor 1-1, the second single-stage centrifugal compressor 1-2 and the second single-stage radial turbine 1-3 adopt an integrated structural design, and the second motor 1-1 is an integrated structure. motor;
- the first motor 2-1, the first single-stage centrifugal compressor 2-2 and the first single-stage radial turbine 2-3 adopt an integrated structural design, and the first motor 2-1 is an integrated structure. motor.
- the rotor support bearings of the first motor 2-1 and the second motor 1-1 are magnetic suspension bearings or rolling bearings.
- the sealing structure at the transition position between the shaft ends of the rotor of the second motor 1-1 and the second single-stage centrifugal compressor 1-2 and the second single-stage centripetal turbine 1-3 adopts a labyrinth seal form or a dry gas seal. form;
- the sealing structure at the transition position between the shaft ends of the rotor of the second motor 1-1 and the second single-stage centrifugal compressor 1-2 and the second single-stage centripetal turbine 1-3 adopts a labyrinth seal form or a dry gas seal. form.
- the sealing structure at the shaft end transition position between the rotors of the first motor 2-1 and the second motor 1-1 and the single-stage centrifugal compressor and single-stage centripetal turbine can be in the form of a labyrinth seal or dry gas. Sealed form.
- the operating method of a double-loop closed Brayton cycle power generation device in this embodiment includes:
- Step 1.1 open the air extraction stop valve 32, start the vacuum pump 31, and after draining the air in the closed circulation loop, close the vacuum pump 31 and the air extraction stop valve 32;
- Step 2.1 open the regulating valve 71, the first stop valve 61, the second stop valve 1-5 and the third stop valve 1-6;
- Step 2.2 open the charging stop valve 43, inject the working fluid to be operated into the closed circulation loop through the first cooling water system 5 and the second cooling water system 6, and close the charging stop valve 43 after reaching the operating pressure;
- Step 2.3 start the second motor 1-1 and the first motor 2-1 according to the set operating speed. After the working fluid in the left Brayton thermoelectric conversion unit 1 and the right Brayton thermoelectric conversion unit 2 begins to establish a cycle, start Heater 7, regenerator 8, first cooling water system 5 and second cooling water system 6;
- Step 2.4 when the closed loop is running, control the system loop operation by adjusting the power set by the heater 7 or controlling the inlet temperature of the second single-stage radial turbine 1-3 and the first single-stage radial turbine 2-3. status point or change the motor shaft speed;
- the working fluid compressed and supercharged by the first single-stage centrifugal compressor 2-2 and the second single-stage centrifugal compressor 1-2 is synthesized into a gas flow before entering the regenerator 8, and then enters the heating chamber after being preheated by the regenerator 8.
- the high-temperature and high-pressure working fluid leaving the heater 7 is divided into two airflows, which enter the first single-stage centripetal turbine 2-3 and the second single-stage centripetal turbine 1-3 respectively; after passing through the first single-stage centripetal turbine
- the working fluid generated by turbine 2-3 and the second single-stage centripetal turbine 1-3 combines into one airflow before entering the regenerator 8.
- the working fluid leaving the regenerator 8 after precooling is divided into two airflows, respectively. Enter the first cooling water system 5 and the second cooling water system 6 for cooling.
- Step 3.1 close the regulating valve 71, the first stop valve 61, the second stop valve 1-5 and the third stop valve 1-6;
- Step 3.2 open the charging stop valve 43, inject the working fluid to be operated into the right Brayton thermoelectric conversion unit 2 through the first cooling water system 5 and the second cooling water system 6, and close the charging stop valve 43 after reaching the operating pressure;
- Step 3.3 start the first motor 2-1 according to the set operating speed. After the working fluid in the right Brayton thermoelectric conversion unit 2 begins to establish circulation, start the heater 7, regenerator 8 and first cooling water system 5;
- Step 3.4 when the right Brayton thermoelectric conversion unit 2 is running, control the system loop working state point or change the motor shaft speed by adjusting the power set by the heater 7 or controlling the inlet temperature of the first single-stage radial turbine 2-3;
- the exhaust stop valve 44 When the closed cycle needs to be exhausted, the exhaust stop valve 44 is opened and the exhaust compressor 41 is started. The working fluid in the closed cycle is discharged into the high-pressure gas storage tank 42. After the exhaust is completed, the exhaust stop valve 44 is closed.
- This embodiment proposes a double-circuit closed Brayton cycle power generation device and its operation mode, including two sets of closed Brayton thermoelectric conversion units on the left and right.
- the core components are a single-stage centrifugal compressor, a motor, and a single-stage centripetal diaphragm.
- the operating fluid is supercritical carbon dioxide, helium and other gases or other inert mixed gases.
- a gas and exhaust subsystem is set up to realize the recycling of operating fluids.
- spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
- the exemplary term “over” may include both orientations “above” and “below.”
- the device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
一种双回路闭式布雷顿循环发电装置,属于闭式布雷顿循环发电技术领域,其包括左侧布雷顿热电转换单元(1)、右侧布雷顿热电转换单元(2)、抽真空子系统(3)、充气排气子系统(4)、第一冷却水系统(5)、第二冷却水系统(6)、加热器和(7)回热器(8);右侧布雷顿热电转换单元(2)与回热器(8)和第一冷却水系统(5)连接,左侧布雷顿热电转换单元(1)与第二冷却水系统(6)和回热器(8)连接,加热器(7)与回热器(8)、左侧布雷顿热电转换单元(1)和右侧布雷顿热电转换单元(2)连接,该循环发电装置在保持热电转化效率效率高的同时极大地缩小设备的体积和重量。还公开了一种运行方法。
Description
本发明涉及一种双回路闭式布雷顿循环发电装置,属于闭式布雷顿循环发电技术领域。
在能源市场变化的背景下,以超临界二氧化碳、氮气、氦气、氦氙混合气等惰性气体作为循环工质的闭式布雷顿循环发电系统在国内外都引起了广泛的关注。相比传统的蒸汽朗肯循环,闭式布雷顿循环发电系统具有高效、安全、紧凑等特点,该系统充分利用核反应堆和太阳能、工业余热等清洁能的热量,实现电厂发电或船用电力推进,是未来清洁高效发电技术,是一项将带来发电变革的新技术。各国高度重视并大力研发闭式布雷顿循环发电技术,从小功率系统着手,逐步进行部件测试,解决设计、工艺、材料以及系统泄漏等问题。迄今为止,已有科研院所初步完成实验室小型样机测试,但系统的热电转化效率尚未达到预期的效果。
因此,亟需提出一种新型的双回路闭式布雷顿循环发电装置,以解决上述技术问题。
本发明研发目的是为了解决现有的闭式布雷顿循环发电系统的热电转化效率效率低,且体型和重量大,同时运行工质价格昂贵、成本高的问题,在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。
方案一、一种双回路闭式布雷顿循环发电装置,包括左侧布雷顿热电转换单元、右侧布雷顿热电转换单元、抽真空子系统、充气排气子系统、第一冷却水系统、第二冷却水系统、加热器和回热器;
所述第一冷却水系统的出口与右侧布雷顿热电转换单元的右侧第一入口建立连接,右侧布雷顿热电转换单元的右侧第一出口与回热器的回热器第一入口建立连接,第二冷却水系统的出口与左侧布雷顿热电转换单元的左侧第一入口建立连接,左侧布雷顿热电转换单元的左侧第一出口与回热器的回热器第一入口建立连接,回热器的回热器第二出口与加热器的入口建立连接,加热器的出口分别与左侧布雷顿热电转换单元的左侧第二入口和右侧布雷顿热电转换单元的右侧第二入口建立连接;
所述左侧布雷顿热电转换单元的左侧第二出口和右侧布雷顿热电转换单元的右侧第二出口与回热器的回热器第二入口建立连接,回热器的回热器第二出口分别与充气排气子系统、第一冷却水系统和第二冷却水系统三者的入口建立连接,抽真空子系统的入口与第二冷却水系统出口建立连接,充气排气子系统的出口与第一冷却水系统和第二冷却水系统二者的入口建立连接。
优选的:所述左侧布雷顿热电转换单元包括第二电机、第二单级离心压缩机和第二单级向心透平,第二电机分别与第二单级离心压缩机和第二单级向心透平建立连接,第二单级离心压缩机上具有左侧第一入口和左侧第一出口,第二单级向心透平上具有左侧第二入口和左侧第二出口;
优选的:所述右侧布雷顿热电转换单元包括第一电机、第一单级离心压缩机和第一单级向心透平,第一电机分别与第一单级离心压缩机和第一单级向心透平建立连接,第一单级离心压缩机上具有右侧第一入口和右侧第一出口,第一单级向心透平上具有右侧第二入口和右侧第二出口。
优选的:所述右侧第一出口和右侧第二出口之间设置有第一旁通阀,左侧第一出口和左侧第二入口之间设置有第二旁通阀;
所述加热器与左侧第二入口之间设置有调节阀,第二冷却水系统的入口处设置有第一截止阀,左侧第一出口上设置有第二截止阀,左侧第二出口上设置有第三截止阀;
所述抽真空子系统为真空泵,抽真空子系统的入口处安装有抽气截止阀和抽气止回阀。
优选的:所述加热器的热源为清洁能源。
优选的:所述第二电机、第二单级离心压缩机和第二单级向心透平,采用一体式结构设计,所述第二电机为启发一体式电机;
所述第一电机、第一单级离心压缩机和第一单级向心透平,采用一体式结构设计,所述第一电机为启发一体式电机。
优选的:所述第一电机和第二电机的转子支撑轴承形式为磁悬浮轴承或滚动轴承。
优选的:所述第二电机的转子与第二单级离心压缩机和第二单级向心透平二者轴端过渡位置的密封结构采用迷宫密封形式或干气密封形式;
所述第二电机的转子与第二单级离心压缩机和第二单级向心透平二者轴端过渡位置的密封结构采用迷宫密封形式或干气密封形式。
优选的:所述充气排气子系统包括串联的排气压缩机和高压储气罐,排气压缩机一端为充气排气子系统的入口,高压储气罐一端为充气排气子系统的出口,充气排气子系统的入口处设置有充气截止阀,充气排气子系统的出口处排气截止阀和排气止回阀。
方案二、一种双回路闭式布雷顿循环发电装置的运行方法,是基于方案一所述的一种双回路闭式布雷顿循环发电装置实现的,包括:
一、排气状态,所述左侧布雷顿热电转换单元、右侧布雷顿热电转换单元、第一冷却水系统、第二冷却水系统、加热器和回热器共同构成闭式循环回路,具体运行方法如下:
步骤1.1,打开抽气截止阀,启动真空泵,排清闭式循环回路中的空气后,关闭真空泵及抽气截止阀抽气截止阀;
二、双运行状态,左侧布雷顿热电转换单元和右侧布雷顿热电转换单元进行双循环同时运行,具体运行方法如下:
步骤2.1,打开调节阀、第一截止阀、第二截止阀和第三截止阀;
步骤2.2,打开充气截止阀,通过第一冷却水系统和第二冷却水系统向闭式循环回路中注入待运行工质,达到运行压力后关闭充气截止阀;
步骤2.3,按照设定运行转速启动第二电机和第一电机,左侧布雷顿热电转换单元和右侧布雷顿热电转换单元内的工质开始建立循环后,启动加热器、回热器、第一冷却水系统和第二冷却水系统;
步骤2.4,闭式循环回路运行时,通过调节加热器设置的功率或控制第二单级向心透平和第一单级向心透平入口温度来控制系统回路工作状态点或改变电机轴转速;
三、单运行状态,右侧布雷顿热电转换单元独立运行,具体运行方法如下:
步骤3.1,关闭调节阀、第一截止阀、第二截止阀和第三截止阀;
步骤3.2,打开充气截止阀,通过第一冷却水系统和第二冷却水系统向右侧布雷顿热电转换单元中注入待运行工质,达到运行压力后关闭充气截止阀;
步骤3.3,按照设定运行转速启动第一电机,右侧布雷顿热电转换单元内的工质开始建立循环后,启动加热器、回热器和第一冷却水系统;
步骤3.4,右侧布雷顿热电转换单元运行时,通过调节加热器设置的功率或控制第一单级向心透平入口温度来控制系统回路工作状态点或改变电机轴转速;
四、退喘状态,具体运行方法如下:
闭式循环回路运行时,当第一单级离心压缩机和第二单级离心压缩机进入喘振点,打开第一旁通阀和第二旁通阀,使第一单级离心压缩机和第二单级离心压缩机出口工质与第一单级向心透平和第二单级向心透平出口工质汇合,实现退喘功能;
五、排气状态,具体运行方法如下:
当闭式循环回路需要排气时,打开排气截止阀,启动排气压缩机,闭式循环回路中工质排入高压储气罐,排气完成后关闭排气截止阀。
1.本发明提出了一种包括左右两套闭式布雷顿热电转换单元的循环发电装置,其中回热器和热源为共用设备,保证系统功率需求的同时极大地缩小了设备的体积和重量;
2.本发明可控制左侧布雷顿热电转换单元和右侧布雷顿热电转换单元进行双循环同时运行,或控制右侧布雷顿热电转换单元独立运行,满足系统各功率等级运行需求;
3.本发明为避免运行工质价格昂贵、成本高的问题,设置了充气排气子系统,实现运行工质的循环利用。
图1是一种双回路闭式布雷顿循环发电装置的结构示意图;
图2是一种双回路闭式布雷顿循环发电装置的系统图;
图中1-左侧布雷顿热电转换单元,2-右侧布雷顿热电转换单元,3-抽真空子系统,4-充气排气子系统,5-第一冷却水系统,6-第二冷却水系统,7-加热器,8-回热器,11-左侧第一入口,12-左侧第一出口,13-左侧第二入口,14-左侧第二出口,21-右侧第一入口,22-右侧第一出口,23-右侧第二入口,24-右侧第二出口,31-真空泵,32-抽气截止阀,33-抽气止回阀,41-排气压缩机,42-高压储气罐,43-充气截止阀,44-排气截止阀,45-排气止回阀,61-第一截止阀,71-调节阀,81-回热器第一入口,82-回热器第二出口,83-回热器第二入口,84-回热器第二出口,1-1-第二电机,1-2-第二单级离心压缩机,1-3-第二单级向心透平,1-4-第二旁通阀,1-5-第二截止阀,1-6-第三截止阀,2-1-第一电机,2-2-第一单级离心压缩机,2-3-第一单级向心透平,2-4-第一旁通阀。
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
本发明所提到的连接分为固定连接和可拆卸连接,所述固定连接即为不可拆卸连接包括但不限于折边连接、铆钉连接、粘结连接和焊接连接等常规固定连接方式,所述可拆卸连接包括但不限于螺纹连接、卡扣连接、销钉连接和铰链连接等常规拆卸方式,未明确限定具体连接方式时,默认为总能在现有连接方式中找到至少一种连接方式能够实现该功能,本领域技术人员可根据需要自行选择。例如:固定连接选择焊接连接,可拆卸连接选择铰链连接。
具体实施方式一:结合图1-图2说明本实施方式,本实施方式的一种双回路闭式布雷顿循环发电装置,包括左侧布雷顿热电转换单元1、右侧布雷顿热电转换单元2、抽真空子系统3、充气排气子系统4、第一冷却水系统5、第二冷却水系统6、加热器7和回热器8;所述第一冷却水系统5和第二冷却水系统6用于冷却离开回热器8的冷侧工质;所述加热器7用于加热离开回热器8的热侧工质;
所述加热器7为热源,热源可以是核反应堆、太阳能等清洁能源,若作为试验系统应用,所述加热器为常规的加热器械。
所述左侧布雷顿热电转换单元1包括第二电机1-1、第二单级离心压缩机1-2和第二单级向心透平1-3,第二电机1-1分别与第二单级离心压缩机1-2和第二单级向心透平1-3建立连接,所述右侧布雷顿热电转换单元2包括第一电机2-1、第一单级离心压缩机2-2和第一单级向心透平2-3,第一电机2-1分别与第一单级离心压缩机2-2和第一单级向心透平2-3建立连接;所述回热器8用于预热来自于第二单级离心压缩机1-2和第一单级离心压缩机2-2的冷侧工质,同时预冷来自于第二单级向心透平1-3和第一单级向心透平2-3的热侧工质。
所述第一冷却水系统5的出口与第一单级离心压缩机2-2的右侧第一入口21建立连接,第一单级离心压缩机2-2的右侧第一出口22与回热器8的回热器第一入口81建立连接;
所述第二冷却水系统6的出口与第二单级离心压缩机1-2的左侧第一入口11建立连接,第二单级离心压缩机1-2的左侧第一出口12与回热器8的回热器第一入口81建立连接;
所述回热器8的回热器第二出口82与加热器7的入口建立连接,加热器7的出口分别与第二单级向心透平1-3的左侧第二入口13和第一单级向心透平2-3的右侧第二入口23建立连接;
所述第二单级向心透平1-3的左侧第二出口14和第一单级向心透平2-3的右侧第二出口24与回热器8的回热器第二入口83建立连接,回热器8的回热器第二出口84分别与充气排气子系统4、第一冷却水系统5和第二冷却水系统6三者的入口建立连接,抽真空子系统3的入口与第二冷却水系统6出口建立连接,充气排气子系统4的出口与第一冷却水系统5和第二冷却水系统6二者的入口建立连接。
所述右侧第一出口22和右侧第二出口24之间设置有第一旁通阀2-4,左侧第一出口12和左侧第二入口13之间设置有第二旁通阀1-4;
所述加热器7与左侧第二入口13之间设置有调节阀71,第二冷却水系统6的入口处设置有第一截止阀61,左侧第一出口12上设置有第二截止阀1-5,左侧第二出口14上设置有第三截止阀1-6;
所述充气排气子系统4包括串联的排气压缩机41和高压储气罐42,排气压缩机41一端为充气排气子系统4的入口,高压储气罐42一端为充气排气子系统4的出口,充气排气子系统4的入口处设置有充气截止阀43,充气排气子系统4的出口处排气截止阀44和排气止回阀45。
所述抽真空子系统3为真空泵31,抽真空子系统3的入口处安装有抽气截止阀32和抽气止回阀33。
所述第一单级离心压缩机2-2、第一电机2-1、第一单级向心透平2-3、第一冷却水系统5、回热器8和加热器7共同组成右侧闭式循环回路,所述第二单级离心压缩机1-2、第二电机1-1、第二单级向心透平1-3、第二冷却水系统6、回热器8和加热器7共同组成左侧闭式循环回路,右侧闭式循环回路和左侧闭式循环回路共用同一套回热器8和加热器7;
工质经过第一单级离心压缩机2-2压缩升压后经过回热器8预热,预热后的工质从回热器8排出后进入加热器7加热,离开加热器7的高温高压工质进入第一单级向心透平2-3做功,做功后的工质经过回热器8预冷后流入第一冷却水系统5冷却,最终重回第一单级离心压气机2-2入口,完成右侧回路闭式布雷顿循环流程;
所述工质可以是超临界二氧化碳、氮气、氦气、氩气等气体或惰性混合气体。
工质经过第二单级离心压缩机1-2压缩升压后经过回热器8预热,预热后的工质从回热器8排出后进入加热器7加热,离开加热器7的高温高压工质进入第二单级向心透平1-3做功,做功后的工质经过回热器8预冷后流入第二冷却水系统6冷却,最终重回第二单级离心压缩机1-2入口,完成左侧回路闭式布雷顿循环流程;
所述第二电机1-1、第二单级离心压缩机1-2和第二单级向心透平1-3,采用一体式结构设计,所述第二电机1-1为启发一体式电机;
所述第一电机2-1、第一单级离心压缩机2-2和第一单级向心透平2-3,采用一体式结构设计,所述第一电机2-1为启发一体式电机。
所述第一电机2-1和第二电机1-1的转子支撑轴承形式为磁悬浮轴承或滚动轴承。
所述第二电机1-1的转子与第二单级离心压缩机1-2和第二单级向心透平1-3二者轴端过渡位置的密封结构采用迷宫密封形式或干气密封形式;
所述第二电机1-1的转子与第二单级离心压缩机1-2和第二单级向心透平1-3二者轴端过渡位置的密封结构采用迷宫密封形式或干气密封形式。
所述第一电机2-1和第二电机1-1的转子与单级离心压缩机、单级向心透平的轴端过渡位置的密封结构,可以采用迷宫密封形式,也可以采用干气密封形式。
具体实施方式二:结合图1-图2说明本实施方式,基于具体实施方式一,本实施方式的一种双回路闭式布雷顿循环发电装置的运行方法,包括:
一、排气状态,所述左侧布雷顿热电转换单元1、右侧布雷顿热电转换单元2、第一冷却水系统5、第二冷却水系统6、加热器7和回热器8共同构成闭式循环回路,具体运行方法如下:
步骤1.1,打开抽气截止阀32,启动真空泵31,排清闭式循环回路中的空气后,关闭真空泵31及抽气截止阀抽气截止阀32;
二、双运行状态,左侧布雷顿热电转换单元1和右侧布雷顿热电转换单元2进行双循环同时运行,具体运行方法如下:
步骤2.1,打开调节阀71、第一截止阀61、第二截止阀1-5和第三截止阀1-6;
步骤2.2,打开充气截止阀43,通过第一冷却水系统5和第二冷却水系统6向闭式循环回路中注入待运行工质,达到运行压力后关闭充气截止阀43;
步骤2.3,按照设定运行转速启动第二电机1-1和第一电机2-1,左侧布雷顿热电转换单元1和右侧布雷顿热电转换单元2内的工质开始建立循环后,启动加热器7、回热器8、第一冷却水系统5和第二冷却水系统6;
步骤2.4,闭式循环回路运行时,通过调节加热器7设置的功率或控制第二单级向心透平1-3和第一单级向心透平2-3入口温度来控制系统回路工作状态点或改变电机轴转速;
经过第一单级离心压缩机2-2和第二单级离心压缩机1-2压缩增压的工质在进入回热器8前合成一股气流,经回热器8预热后进入加热器7,离开加热器7的高温高压工质分成两股气流,分别进入第一单级向心透平2-3和第二单级向心透平1-3;经过第一单级向心透平2-3和第二单级向心透平1-3做功后的工质进入回热器8前合成一股气流,预冷后离开回热器8的工质分成两股气流,分别进入第一冷却水系统5和第二冷却水系统6进行冷却。
三、单运行状态,右侧布雷顿热电转换单元2独立运行,具体运行方法如下:
步骤3.1,关闭调节阀71、第一截止阀61、第二截止阀1-5和第三截止阀1-6;
步骤3.2,打开充气截止阀43,通过第一冷却水系统5和第二冷却水系统6向右侧布雷顿热电转换单元2中注入待运行工质,达到运行压力后关闭充气截止阀43;
步骤3.3,按照设定运行转速启动第一电机2-1,右侧布雷顿热电转换单元2内的工质开始建立循环后,启动加热器7、回热器8和第一冷却水系统5;
步骤3.4,右侧布雷顿热电转换单元2运行时,通过调节加热器7设置的功率或控制第一单级向心透平2-3入口温度来控制系统回路工作状态点或改变电机轴转速;
四、退喘状态,具体运行方法如下:
闭式循环回路运行时,当第一单级离心压缩机2-2和第二单级离心压缩机1-2进入喘振点,打开第一旁通阀2-4和第二旁通阀1-4,使第一单级离心压缩机2-2和第二单级离心压缩机1-2出口工质与第一单级向心透平2-3和第二单级向心透平1-3出口工质汇合,实现退喘功能;
五、排气状态,具体运行方法如下:
当闭式循环回路需要排气时,打开排气截止阀44,启动排气压缩机41,闭式循环回路中工质排入高压储气罐42,排气完成后关闭排气截止阀44。
本实施方式提出了一种双回路闭式布雷顿循环发电装置及其运行方式,包括左右两套闭式布雷顿热电转换单元,其核心部件采用单级离心压缩机、电机、单级向心透平一体机设计,运行工质为超临界二氧化碳、氦气等气体或其他惰性混合气体。为避免运行工质价格昂贵、成本高等问题,设置了充气排气子系统,实现运行工质的循环利用。通过控制左侧闭式布雷顿循环回路的调节阀、截止阀可以实现右侧闭式布雷顿循环回路的独立运行,或左右两侧闭式布雷顿循环回路同时运行,满足系统各功率等级运行需求。该系统具有灵活性好、能量利用率高等优势。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
需要说明的是,在以上实施例中,只要不矛盾的技术方案都能够进行排列组合,本领域技术人员能够根据排列组合的数学知识穷尽所有可能,因此本发明不再对排列组合后的技术方案进行一一说明,但应该理解为排列组合后的技术方案已经被本发明所公开。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种双回路闭式布雷顿循环发电装置,其特征在于:包括左侧布雷顿热电转换单元(1)、右侧布雷顿热电转换单元(2)、抽真空子系统(3)、充气排气子系统(4)、第一冷却水系统(5)、第二冷却水系统(6)、加热器(7)和回热器(8);所述第一冷却水系统(5)的出口与右侧布雷顿热电转换单元(2)的右侧第一入口(21)建立连接,右侧布雷顿热电转换单元(2)的右侧第一出口(22)与回热器(8)的回热器第一入口(81)建立连接,第二冷却水系统(6)的出口与左侧布雷顿热电转换单元(1)的左侧第一入口(11)建立连接,左侧布雷顿热电转换单元(1)的左侧第一出口(12)与回热器(8)的回热器第一入口(81)建立连接,回热器(8)的回热器第二出口(82)与加热器(7)的入口建立连接,加热器(7)的出口分别与左侧布雷顿热电转换单元(1)的左侧第二入口(13)和右侧布雷顿热电转换单元(2)的右侧第二入口(23)建立连接;所述左侧布雷顿热电转换单元(1)的左侧第二出口(14)和右侧布雷顿热电转换单元(2)的右侧第二出口(24)与回热器(8)的回热器第二入口(83)建立连接,回热器(8)的回热器第二出口(84)分别与充气排气子系统(4)、第一冷却水系统(5)和第二冷却水系统(6)三者的入口建立连接,抽真空子系统(3)的入口与第二冷却水系统(6)出口建立连接,充气排气子系统(4)的出口与第一冷却水系统(5)和第二冷却水系统(6)二者的入口建立连接。
- 根据权利要求1所述的一种双回路闭式布雷顿循环发电装置,其特征在于:所述左侧布雷顿热电转换单元(1)包括第二电机(1-1)、第二单级离心压缩机(1-2)和第二单级向心透平(1-3),第二电机(1-1)分别与第二单级离心压缩机(1-2)和第二单级向心透平(1-3)建立连接,第二单级离心压缩机(1-2)上具有左侧第一入口(11)和左侧第一出口(12),第二单级向心透平(1-3)上具有左侧第二入口(13)和左侧第二出口(14)。
- 根据权利要求2所述的一种双回路闭式布雷顿循环发电装置,其特征在于:所述右侧布雷顿热电转换单元(2)包括第一电机(2-1)、第一单级离心压缩机(2-2)和第一单级向心透平(2-3),第一电机(2-1)分别与第一单级离心压缩机(2-2)和第一单级向心透平(2-3)建立连接,第一单级离心压缩机(2-2)上具有右侧第一入口(21)和右侧第一出口(22),第一单级向心透平(2-3)上具有右侧第二入口(23)和右侧第二出口(24)。
- 根据权利要求3任意一项所述的一种双回路闭式布雷顿循环发电装置,其特征在于:所述右侧第一出口(22)和右侧第二出口(24)之间设置有第一旁通阀(2-4),左侧第一出口(12)和左侧第二入口(13)之间设置有第二旁通阀(1-4);所述加热器(7)与左侧第二入口(13)之间设置有调节阀(71),第二冷却水系统(6)的入口处设置有第一截止阀(61),左侧第一出口(12)上设置有第二截止阀(1-5),左侧第二出口(14)上设置有第三截止阀(1-6);所述抽真空子系统(3)为真空泵(31),抽真空子系统(3)的入口处安装有抽气截止阀(32)和抽气止回阀(33)。
- 根据权利要求1-4所述的一种双回路闭式布雷顿循环发电装置,其特征在于:所述加热器的热源为清洁能源。
- 根据权利要求4所述的一种双回路闭式布雷顿循环发电装置,其特征在于:所述第二电机(1-1)、第二单级离心压缩机(1-2)和第二单级向心透平(1-3),采用一体式结构设计,所述第二电机(1-1)为启发一体式电机;所述第一电机(2-1)、第一单级离心压缩机(2-2)和第一单级向心透平(2-3),采用一体式结构设计,所述第一电机(2-1)为启发一体式电机。
- 根据权利要求6所述的一种双回路闭式布雷顿循环发电装置,其特征在于:所述第一电机(2-1)和第二电机(1-1)的转子支撑轴承形式为磁悬浮轴承或滚动轴承。
- 根据权利要求7所述的一种双回路闭式布雷顿循环发电装置,其特征在于:所述第二电机(1-1)的转子与第二单级离心压缩机(1-2)和第二单级向心透平(1-3)二者轴端过渡位置的密封结构采用迷宫密封形式或干气密封形式;所述第二电机(1-1)的转子与第二单级离心压缩机(1-2)和第二单级向心透平(1-3)二者轴端过渡位置的密封结构采用迷宫密封形式或干气密封形式。
- 根据权利要求8所述的一种双回路闭式布雷顿循环发电装置,其特征在于:所述充气排气子系统(4)包括串联的排气压缩机(41)和高压储气罐(42),排气压缩机(41)一端为充气排气子系统(4)的入口,高压储气罐(42)一端为充气排气子系统(4)的出口,充气排气子系统(4)的入口处设置有充气截止阀(43),充气排气子系统(4)的出口处排气截止阀(44)和排气止回阀(45)。
- 一种双回路闭式布雷顿循环发电装置的运行方法,是基于权利要求9所述的一种双回路闭式布雷顿循环发电装置实现的,其特征在于,包括:一、排气状态,所述左侧布雷顿热电转换单元(1)、右侧布雷顿热电转换单元(2)、第一冷却水系统(5)、第二冷却水系统(6)、加热器(7)和回热器(8)共同构成闭式循环回路,具体运行方法如下:步骤1.1,打开抽气截止阀(32),启动真空泵(31),排清闭式循环回路中的空气后,关闭真空泵(31)及抽气截止阀抽气截止阀(32);二、双运行状态,左侧布雷顿热电转换单元(1)和右侧布雷顿热电转换单元(2)进行双循环同时运行,具体运行方法如下:步骤2.1,打开调节阀(71)、第一截止阀(61)、第二截止阀(1-5)和第三截止阀(1-6);步骤2.2,打开充气截止阀(43),通过第一冷却水系统(5)和第二冷却水系统(6)向闭式循环回路中注入待运行工质,达到运行压力后关闭充气截止阀(43);步骤2.3,按照设定运行转速启动第二电机(1-1)和第一电机(2-1),左侧布雷顿热电转换单元(1)和右侧布雷顿热电转换单元(2)内的工质开始建立循环后,启动加热器(7)、回热器(8)、第一冷却水系统(5)和第二冷却水系统(6);步骤2.4,闭式循环回路运行时,通过调节加热器(7)设置的功率或控制第二单级向心透平(1-3)和第一单级向心透平(2-3)入口温度来控制系统回路工作状态点或改变电机轴转速;三、单运行状态,右侧布雷顿热电转换单元(2)独立运行,具体运行方法如下:步骤3.1,关闭调节阀(71)、第一截止阀(61)、第二截止阀(1-5)和第三截止阀(1-6);步骤3.2,打开充气截止阀(43),通过第一冷却水系统(5)和第二冷却水系统(6)向右侧布雷顿热电转换单元(2)中注入待运行工质,达到运行压力后关闭充气截止阀(43);步骤3.3,按照设定运行转速启动第一电机(2-1),右侧布雷顿热电转换单元(2)内的工质开始建立循环后,启动加热器(7)、回热器(8)和第一冷却水系统(5);步骤3.4,右侧布雷顿热电转换单元(2)运行时,通过调节加热器(7)设置的功率或控制第一单级向心透平(2-3)入口温度来控制系统回路工作状态点或改变电机轴转速;四、退喘状态,具体运行方法如下:闭式循环回路运行时,当第一单级离心压缩机(2-2)和第二单级离心压缩机(1-2)进入喘振点,打开第一旁通阀(2-4)和第二旁通阀(1-4),使第一单级离心压缩机(2-2)和第二单级离心压缩机(1-2)出口工质与第一单级向心透平(2-3)和第二单级向心透平(1-3)出口工质汇合,实现退喘功能;五、排气状态,具体运行方法如下:当闭式循环回路需要排气时,打开排气截止阀(44),启动排气压缩机(41),闭式循环回路中工质排入高压储气罐(42),排气完成后关闭排气截止阀(44)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211018167.1 | 2022-08-24 | ||
CN202211018167.1A CN115288813A (zh) | 2022-08-24 | 2022-08-24 | 一种双回路闭式布雷顿循环发电装置及其运行方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024040657A1 true WO2024040657A1 (zh) | 2024-02-29 |
Family
ID=83831612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/119811 WO2024040657A1 (zh) | 2022-08-24 | 2022-09-20 | 一种双回路闭式布雷顿循环发电装置及其运行方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115288813A (zh) |
WO (1) | WO2024040657A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070256424A1 (en) * | 2006-05-05 | 2007-11-08 | Siemens Power Generation, Inc. | Heat recovery gas turbine in combined brayton cycle power generation |
US20130180259A1 (en) * | 2012-01-17 | 2013-07-18 | David S. Stapp | System and method for generating power using a supercritical fluid |
US20150240665A1 (en) * | 2014-02-26 | 2015-08-27 | Peregrine Turbine Technologies, Llc | Power generation system and method with partially recuperated flow path |
US20200095899A1 (en) * | 2016-12-13 | 2020-03-26 | Blue Box Technology Inc. | Apparatus for extracting energy from waste heat |
CN112682120A (zh) * | 2020-12-25 | 2021-04-20 | 北京动力机械研究所 | 闭式布雷顿循环发电系统双机并联试验方法 |
CN217783580U (zh) * | 2022-08-24 | 2022-11-11 | 哈电发电设备国家工程研究中心有限公司 | 一种双回路闭式布雷顿循环发电装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109752611A (zh) * | 2018-12-25 | 2019-05-14 | 北京动力机械研究所 | 一种闭式布雷顿循环发电系统模拟试验台 |
CN112049692B (zh) * | 2020-08-12 | 2022-12-13 | 北京控制工程研究所 | 一种10kW级空间核能闭式布雷顿循环热电转换系统 |
CN112610519B (zh) * | 2020-12-14 | 2022-07-05 | 北京动力机械研究所 | 一种惰性气体闭式循环径流式叶轮机械性能试验装置 |
CN112834922B (zh) * | 2020-12-25 | 2023-09-08 | 北京动力机械研究所 | 闭式布雷顿循环发电系统双机并联试验台 |
-
2022
- 2022-08-24 CN CN202211018167.1A patent/CN115288813A/zh active Pending
- 2022-09-20 WO PCT/CN2022/119811 patent/WO2024040657A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070256424A1 (en) * | 2006-05-05 | 2007-11-08 | Siemens Power Generation, Inc. | Heat recovery gas turbine in combined brayton cycle power generation |
US20130180259A1 (en) * | 2012-01-17 | 2013-07-18 | David S. Stapp | System and method for generating power using a supercritical fluid |
US20150240665A1 (en) * | 2014-02-26 | 2015-08-27 | Peregrine Turbine Technologies, Llc | Power generation system and method with partially recuperated flow path |
US20200095899A1 (en) * | 2016-12-13 | 2020-03-26 | Blue Box Technology Inc. | Apparatus for extracting energy from waste heat |
CN112682120A (zh) * | 2020-12-25 | 2021-04-20 | 北京动力机械研究所 | 闭式布雷顿循环发电系统双机并联试验方法 |
CN217783580U (zh) * | 2022-08-24 | 2022-11-11 | 哈电发电设备国家工程研究中心有限公司 | 一种双回路闭式布雷顿循环发电装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115288813A (zh) | 2022-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211474436U (zh) | 一种变压比等温压缩空气储能系统 | |
CN109752611A (zh) | 一种闭式布雷顿循环发电系统模拟试验台 | |
CN109677639A (zh) | 基于闭式布雷顿循环的空间大功率核动力系统 | |
CN101988443A (zh) | 非共轭零距高低温热源热气机 | |
WO2023116654A1 (zh) | 一种节能高效智能多级气体压缩系统 | |
CN109653822A (zh) | 一种金属储氢材料氢能做功装置 | |
CN217783580U (zh) | 一种双回路闭式布雷顿循环发电装置 | |
CN102788493A (zh) | 一种燃气机驱动的热泵干燥装置 | |
CN107082123B (zh) | 基于闭式空气循环的紧凑型高空环境模拟系统及控制方法 | |
CN101883958A (zh) | 用于借助于机械能将低温的热能转换为较高温的热能以及进行反向转换的方法 | |
WO2024040657A1 (zh) | 一种双回路闭式布雷顿循环发电装置及其运行方法 | |
CN110043322A (zh) | 一种活塞氢能做功系统 | |
CN112049692B (zh) | 一种10kW级空间核能闭式布雷顿循环热电转换系统 | |
CN203488391U (zh) | 多级离心压缩机及空调机组 | |
CN115750016B (zh) | 一种超临界二氧化碳再压缩循环系统的停机系统及方法 | |
CN117145601A (zh) | 超临界二氧化碳发电的系统和方法 | |
CN105972737A (zh) | 一种空气压力舱换气增压及调温系统 | |
CN112834922B (zh) | 闭式布雷顿循环发电系统双机并联试验台 | |
CN112682120B (zh) | 闭式布雷顿循环发电系统双机并联试验方法 | |
CN214741488U (zh) | 一种采用磁流体发电装置的闭式高温气冷堆系统 | |
CN201621767U (zh) | 风冷空压机废热利用装置 | |
CN210829422U (zh) | 一种透平驱动气体压缩系统 | |
CN103808054B (zh) | 间冷热力循环系统 | |
CN208380645U (zh) | 一种带制冷冷却的超临界布雷顿循环发电系统 | |
WO2024040666A1 (zh) | 一种闭式循环压缩储能发电系统及其运行方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22956201 Country of ref document: EP Kind code of ref document: A1 |