WO2024040359A1 - Un sistema y método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor - Google Patents

Un sistema y método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor Download PDF

Info

Publication number
WO2024040359A1
WO2024040359A1 PCT/CL2022/050083 CL2022050083W WO2024040359A1 WO 2024040359 A1 WO2024040359 A1 WO 2024040359A1 CL 2022050083 W CL2022050083 W CL 2022050083W WO 2024040359 A1 WO2024040359 A1 WO 2024040359A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
control valve
information processing
flow
processing means
Prior art date
Application number
PCT/CL2022/050083
Other languages
English (en)
French (fr)
Inventor
Gabriel Eliceo Madariaga Elgueta
Original Assignee
Gabriel Eliceo Madariaga Elgueta
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gabriel Eliceo Madariaga Elgueta filed Critical Gabriel Eliceo Madariaga Elgueta
Priority to PCT/CL2022/050083 priority Critical patent/WO2024040359A1/es
Publication of WO2024040359A1 publication Critical patent/WO2024040359A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters

Definitions

  • the present invention refers to a system and method for measuring the flow of fluids in pressurized and/or atmospheric systems, which uses at least one valve as a sensor element, where the measurement of the pressure differential, necessary to obtain the flow or flow rate, is carried out through pressure sensors, arranged within a control valve that regulates the passage of the fluid.
  • Said arrangement allows obtaining a volumetric flow measurement, either under normal operating conditions, such as in a pressurized piping circuit, or when the design of one or more pipes in a plant configuration makes it physically impossible, or even in applications in where the valves are arranged in open tanks without being connected to pipes, such as ponds, distribution boxes, flotation cells, accumulator pools, or similar.
  • the system and method of the invention provides a solution that can be used, both in industrial applications, such as mining processes or that require controlling and measuring the flow rate of the circulating fluid, as well as in processes of a lower level of complexity and operation, such as home plumbing circuits.
  • the system of the invention essentially comprises at least one control valve; at least one first pressure sensor, arranged within the at least one control valve in a first position with respect to the direction of the fluid, to measure at least a first pressure Pl; at least one second pressure sensor, arranged within the at least one control valve in a second position with respect to the direction of the fluid, to measure at least a second pressure P2; at least one position sensor, to determine at least one position of at least one plug of the at least one control valve; and at least one information processing means, which receives and processes data about the at least one first pressure Pl, the at least one second pressure P2 and the at least one position of the at least one shutter, from the at least one first pressure sensor, the at least one second pressure sensor and the at least one position sensor; wherein the at least one information processing means determines at least one pressure differential DP, according to the information received about the at least one first pressure Pl and the at least one second pressure P2 to determine, in conjunction with the data about the at least one position of the plug,
  • the method of the invention essentially comprises the steps of: measuring at least a first pressure P1 by means of at least one first pressure sensor arranged within at least one control valve; measuring at least a second pressure P2 by means of at least one second pressure sensor disposed within the at least one control valve; determining at least one position of at least one plug of the at least one control valve by means of at least one position sensor; sending the data about the at least one first pressure Pl, the at least one second pressure P2 and the at least one position of the at least one shutter to at least one information processing means; determining at least one pressure differential between the at least one first pressure Pl and the at least one second pressure P2, by means of the at least one information processing means; and determining at least one flow that circulates through the at least one control valve, by means of at least one processing algorithm incorporated in the at least one information processing means.
  • Korean patent KR100755297B 1 describes a differential pressure flowmeter that measures the flow rate of a fluid, such as a liquid or a gas. More specifically, said document refers to a differential pressure flowmeter capable of measuring a minimum flow rate, in which a flow control means, which controls the transfer volume of fluid flowing in a pipe, is integrated with a main structure of the flowmeter.
  • document KR100755297B although it describes a device capable of performing flow measurements in pressurized circuit configurations, it does not describe or suggest its use in systems that discharge into the atmosphere. Furthermore, said document measures the pressure differential through sensors arranged outside the valve, which requires that the valve body be integrated into a housing that includes said sensors, in order to provide the flowmeter as a single element. , which makes its maneuverability and installation difficult in applications where it is only possible to have one valve.
  • the pressure sensors are arranged inside the valve, often subjected to constant high fluid pressures, as well as abrasion and wear. corrosion in some cases, which has caused difficulty in finding solutions that address this problem in the state of the art.
  • the system of the invention is capable of performing flow measurements in laminar or turbulent flow conditions, unlike multiple solutions for flow measurement, which require operating in flow conditions. laminar, as occurs in orifice plates, pitot tubes, magnetic flowmeters or other similar solutions.
  • the invention refers to a system for measuring the flow of fluids in pressurized and/or atmospheric systems, which uses at least one valve as a sensing element, and which allows its use under laminar and/or turbulent flow conditions, facilitating its installation, operation and maintenance.
  • the system for measuring fluid flow comprises:
  • At least one first pressure sensor arranged within the at least one control valve in a first position with respect to the direction of the fluid, to measure at least a first pressure Pl;
  • At least one second pressure sensor arranged within the at least one control valve in a second position with respect to the direction of the fluid, to measure at least a second pressure P2;
  • At least one information processing means which receives and processes data about the at least one first pressure Pl, the at least one second pressure P2 and the at least one position of the at least one shutter, from the at least one first pressure sensor, the at least one second pressure sensor and the at least one position sensor; wherein the at least one information processing means determines at least one pressure differential DP, according to the information received about the at least one first pressure Pl and the at least one second pressure P2 to determine, in conjunction with the data on the at least one position of the shutter, at least one flow that circulates through the at least one control valve by means of at least one processing algorithm incorporated in the at least one information processing means.
  • the system of the invention can operate with different types of control valves, according to the user's needs, for example, it can operate with ball valves, dart valves, globe valves, butterfly valves or similar. This allows the system of the invention to use any type of control valve as a sensing element, whether in pressurized systems or with discharge to the atmosphere, given that its pressure sensors will always remain inside, regardless of its specific design. .
  • the at least one information processing means can be arranged in the valve itself or remotely, for example, in the operations center of the plant where the valve or valves are installed.
  • the periodicity in data collection in the at least one first pressure sensor, the at least one second pressure sensor and the at least one position sensor can be configured according to the particular needs of the application where the system of the invention is operating, and can range from milliseconds to hours or days for each of these system components.
  • the at least one position sensor is arranged on at least one actuator of the at least one control valve.
  • the at least one first pressure sensor, the at least one second pressure sensor and the at least one position sensor communicate with the at least one information processing means. wirelessly.
  • wireless communication is carried out through Bluetooth, infrared, LoRa, WiFi, 3G, 4G, 5G, or any other similar technology.
  • the at least one first pressure sensor, the at least one second pressure sensor and the at least one position sensor communicate with the at least one information processing means through through at least one cable.
  • the at least one information processing means contains information related to the characterization of the responses of the at least one control valve based on at least one of the following variables: changes flow rate, changes in the at least one first pressure Pl, changes in the at least one second pressure P2, changes in the at least one pressure differential DP, changes in the at least one position of the at least one shutter, changes in the specific gravity of the fluid and/or changes in the opening percentage of the at least one control valve, which is used by the at least one processing algorithm to determine the at least one flow that circulates through the at least a control valve.
  • the position determined by the at least one position sensor for the at least one shutter allows the at least one information processing means to associate the flow coefficient of the at least one control valve with the data of the at least one first pressure Pl, the at least one second pressure P2 and the specific gravity of the fluid circulating through the at least one control valve.
  • the system further comprises at least one density meter, for measuring at least one density of the fluid flowing through the at least one control valve.
  • the density meter can be arranged inside the at least one control valve or outside it, in case the facility where the system operates makes it physically feasible.
  • the at least one information processing means receives and processes the data on the at least one density of the fluid to incorporate them into the at least one processing algorithm for determining the at least a flow that circulates through the at least one control valve.
  • the system also comprises at least one display interface, which allows the information received and processed by the at least one information processing means to be displayed.
  • the at least one display interface corresponds to at least one of: a monitor, television, tablet, notebook, smartphone and/or any medium that is capable of displaying data.
  • the user or operator of the system will be able to view all the data stored and processed by the at least one information processing means, such as the characterization of the responses of the at least one control valve, the flow or flow rate that circulates through the at least one control valve, the at least one first pressure Pl, the at least one second pressure P2, the at least one pressure differential DP, the at least one position of the at least one shutter, the density of the fluid, the specific gravity of the fluid and/or the opening percentage of the at least one control valve, among other variables that may be useful.
  • the at least one information processing means such as the characterization of the responses of the at least one control valve, the flow or flow rate that circulates through the at least one control valve, the at least one first pressure Pl, the at least one second pressure P2, the at least one pressure differential DP, the at least one position of the at least one shutter, the density of the fluid, the specific gravity of the fluid and/or the opening percentage of the at least one control valve, among other variables that may be useful.
  • the at least one information processing means is capable of receiving information from multiple control valves about their respective values for the at least one first pressure Pl, the at least one second pressure P2 and the at least one position of the at least one plug, to determine the at least one flow that circulates through each of the control valves.
  • the same information processing means receive information about the value of the pressures Pl and P2 and the position of the plug from multiple valves operating simultaneously within a plant, calculating for each one of them, their respective pressure differential DP and the flow rate that circulates through them.
  • the at least one information processing means can store the characterization of multiple models of valves of the invention (as mentioned above, the valve of the invention can be designed as various types of valve, depending on the user's needs), thus being able to calculate the flows for valves of different types that operate in the same plant.
  • the first position of the at least one first pressure sensor and the second position of the at least one second pressure sensor are based on the stability of the value of the at least one pressure differential DP .
  • the position of the sensors, whether upstream or downstream, is totally specific and not random with respect to any location within the valve, since, otherwise, the measurement of the pressure differential DP would not be stable and traceable .
  • the definition of these locations is achieved thanks to at least one processing algorithm of the at least one information processing means, which provides one or more locations within the valve where the pressure P1 is most stable, and one or more locations inside the valve where the pressure P2 produces the greatest pressure differential DP.
  • the first position for the at least one first pressure sensor is located upstream of the seat of the at least one control valve.
  • the second position for the at least one second pressure sensor is located downstream of the seat of the at least one control valve.
  • the first position for the at least one first pressure sensor is located upstream of the center of the body of the at least one control valve.
  • the second position for the at least one second pressure sensor is located downstream of the center of the body of the at least one control valve.
  • the at least one first pressure sensor and the at least one second pressure sensor are chosen from the group consisting of analogue, digital sensors or a combination of these.
  • a method is also described for measuring the flow of fluids in pressurized and/or atmospheric systems, which uses at least one valve as a sensing element, according to the system described above, comprising: a) measuring at least a first pressure P1 by means of at least one first pressure sensor arranged within at least one control valve; b) measuring at least a second pressure P2 by means of at least one second pressure sensor arranged within the at least one control valve; c) determining at least one position of at least one plug of the at least one control valve by means of at least one position sensor; d) sending data about the at least one first pressure Pl, the at least one second pressure P2 and the at least one position of the at least one shutter to at least one information processing means; e) determining at least one
  • the method further comprises storing in the at least one information processing means, information related to the characterization of the responses of the at least one control valve based on at least one of the following variables: flow changes, changes in the at least one first pressure Pl, changes in the at least one second pressure P2, changes in the at least one pressure differential DP, changes in the at least one position of the at least a shutter, changes in the specific gravity of the fluid and/or changes in the opening percentage of the at least one control valve, which is used by the at least one processing algorithm for determining the at least one circulating flow through the at least one control valve.
  • the method further comprises measuring at least one density of the fluid flowing through the at least one control valve, by means of at least one density meter.
  • the method further comprises receiving and processing data on the at least one density of the fluid by means of the at least one information processing means, to incorporate them into the at least one processing algorithm. for determining the at least one flow that circulates through the at least one control valve.
  • the method further comprises displaying, through at least one communication interface, the information received and processed by the at least one information processing means.
  • the method further comprises, by means of the at least one information processing means, receiving information from multiple control valves about their respective values for the at least one first pressure Pl, the at least a second pressure P2 and the at least one position of the at least one plug, to determine the at least one flow that circulates through each of the control valves.
  • a computer-readable storage medium which comprises instructions that, when executed by at least one information processing means, cause the at least an information processing means performs the method for measuring fluid flow described above.
  • Figure 1 shows a general scheme of the system for measuring fluid flow, according to a first preferred configuration of the invention.
  • Figure 2 shows a general scheme of the system for measuring fluid flow, according to a second preferred configuration of the invention.
  • Figure 3 shows a general scheme of the system for measuring fluid flow, according to a third preferred configuration of the invention.
  • Figure 4 shows a general scheme of the system for measuring fluid flow, according to a fourth preferred configuration of the invention.
  • Figure 5 shows a graph that shows the characterization of a control valve as a function of flow, pressure differential DP and percentage of opening of the control valve, for different specific gravities of the fluid, according to a preferred configuration of the invention.
  • Figure 6 shows a graph that shows the characterization of a control valve as a function of flow, pressure differential DP and opening percentage of the control valve, for different specific gravities of the fluid, according to a preferred configuration of the invention.
  • Figure 7 shows a graph that shows the characterization of a control valve as a function of the pressure differential DP, percentage of opening of the control valve and flow, for different specific gravities of the fluid, according to a preferred configuration of the invention. .
  • Figures 1 to 4 show different possible configurations for the system to measure the flow of fluids in pressurized and/or atmospheric systems of the invention, where Figure 1 shows a system ( 1), which comprises a globe-type control valve (10), which in turn comprises a first pressure sensor (11), arranged upstream of the seat (13), and a second pressure sensor (12), arranged downstream. under the seat (13). Said pressure sensors (11, 12) obtain pressure data Pl and P2 respectively, which are subsequently sent to an information processing means (not shown in the figures), which stores and processes the pressures Pl and P2 to obtain a pressure differential (DP).
  • a system 1
  • a system ( 1) which comprises a globe-type control valve (10), which in turn comprises a first pressure sensor (11), arranged upstream of the seat (13), and a second pressure sensor (12), arranged downstream. under the seat (13).
  • Said pressure sensors (11, 12) obtain pressure data Pl and P2 respectively, which are subsequently sent to an information processing means (not shown in the figures), which stores and processes
  • control valve (10) comprises a position sensor (not shown in the figures), which determines the position of the plug of the control valve (10), in order to relate the coefficient of flow from the control valve (10) to the pressure data Pl, P2, the pressure differential DP and the specific gravity of the circulating fluid.
  • the information processing means uses the pressure differential (DP) and the position of the plug, in combination with stored information regarding the characterization of the control valve (10) where the valves are located. pressure sensors (11, 12), in order to obtain the flow or circulating flow rate through a processing algorithm that combines all these variables.
  • FIG. 2 shows that the system (1) comprises a control valve (10 ) ball type, which in turn comprises a first pressure sensor (11), arranged upstream of the seat (13), and a second pressure sensor (12), arranged downstream of the seat (13), which operate in the same way as indicated for Figure 1, in conjunction with a position sensor and an information processing means, which obtains the measurement of the flow or flow rate inside the control valve ( 10).
  • a control valve (10 ) ball type which in turn comprises a first pressure sensor (11), arranged upstream of the seat (13), and a second pressure sensor (12), arranged downstream of the seat (13), which operate in the same way as indicated for Figure 1, in conjunction with a position sensor and an information processing means, which obtains the measurement of the flow or flow rate inside the control valve ( 10).
  • Figures 3 and 4 show other possible configurations for the system (1) of the invention, which operate using a dart-type control valve (10) for pressurized systems and a dart-type control valve (10) for systems atmospheric, respectively.
  • said control valve (10) is generally used in industrial processes, such as those carried out in the mining industry, where the modulation of the flow of abrasive fluids is necessary, which often operate at high pressures.
  • the same main elements highlighted in Figures 1 and 2 can be seen in this Figure, such as the first and second pressure sensors (11, 12), arranged upstream and downstream with respect to the fluid flow that crosses the body (14) of the control valve (10).
  • control valve (10) can be used in atmospheric systems that discharge into the environment, which are present in several industries, for example, in processes mining, in which abrasive fluids must be controlled, such as: copper tailings, pulps and concentrates in transfer boxes, feeding to mills, Rougher and Scavenger cells, among others.
  • first and second pressure sensors (11, 12) arranged upstream and downstream with respect to the fluid flow that passes through the body (14) of the control valve ( 10).
  • FIGS 5, 6 and 7 show different graphs that show the characterization of a control valve, depending on the variation of various variables, such as the pressure differential (DP), the flow circulating within the control valve and the percentage of opening of the control valve, for different specific gravities of the fluid (illustrated in Figures as GS1, GS2, GS3, GS4, GS5, GS6, GS7 and GS8).
  • DP pressure differential
  • GS1, GS2, GS3, GS4, GS5, GS6, GS7 and GS8 show different graphs that show the characterization of a control valve, depending on the variation of various variables, such as the pressure differential (DP), the flow circulating within the control valve and the percentage of opening of the control valve, for different specific gravities of the fluid (illustrated in Figures as GS1, GS2, GS3, GS4, GS5, GS6, GS7 and GS8).
  • All this information is stored in the information processing medium, which, through the specially designed processing algorithm, is capable of cross-referencing information between the pressure differential (DP), obtained through the pressures Pl and P2 sent by the pressure sensors (11, 12), the position of the control valve plug, obtained and sent by the position sensor, and the percentage of opening and specific gravity data that characterize the control valve .
  • DP pressure differential
  • the system (1) of the invention to operate with fluids of variable density, since, thanks to the density meter, the processing medium
  • the information system is capable of generating, for each fluid density value, each of the characterization curves of the control valve(s) in which the flow measurement must be performed.
  • the system (1) of the invention also has a display interface (not shown in the figures), which allows the operator or user of the system (1) to view all the information stored in the information processing medium. , specifically relating to the characterization of the responses of the at least one control valve, the flow or flow rate that circulates through the at least one control valve, the at least one first pressure Pl, the at least one second pressure P2, the at least one pressure differential DP, the at least one position of the at least one plug, the density of the fluid, the specific gravity of the fluid and/or the opening percentage of the at least one control valve, among others variables that may be useful.
  • the operator can change one or more operating conditions of the system, such as time intervals for the measurement of each of the pressure sensors, as well as upload information related to the characterization of the valve or valves. control that operate with the system (1).

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Un sistema para medir el flujo de fluidos en sistemas presurizados y /o atmosféricos, que utiliza al menos una válvula como elemento sensor, que comprende: al menos una válvula, de control, al menos un primer sensor de presión, dispuesto dentro de la al menos una válvula de control en una primera posición respecto al sentido del fluido, para medir al menos una primera presión P1; al menos un segundo sensor de presión, dispuesto dentro de la al menos una válvula, de control en una segunda posición respecto al sentido del fluido, para medir al menos una segunda presión P2; al menos un sensor de posición, para, determinar al menos una posición de al menos un obturador de la al menos una válvula de control, y al menos un medio de procesamiento de información. Método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos; y medio de almacenamiento legible por ordenador.

Description

UN SISTEMA Y MÉTODO PARA MEDIR EL FLUJO DE FLUIDOS EN SISTEMAS PRESURIZADOS Y/O ATMOSFÉRICOS, QUE UTILIZA AL MENOS UNA VÁLVULA COMO
ELEMENTO SENSOR
MEMORIA DESCRIPTIVA
[0001] La presente invención se refiere a un sistema y método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor, en donde la medición del diferencial de presión, necesario para obtener el flujo o caudal, se realiza a través de sensores de presión, dispuestos dentro de una válvula de control que regula el paso del fluido. Dicha disposición permite obtener una medición de flujo volumétrico, ya sea en condiciones normales de operación, como en un circuito de cañerías presurizado, o cuando el diseño de una o más cañerías en la configuración de una planta lo imposibilita físicamente, o incluso en aplicaciones en donde las válvulas se disponen en depósitos abiertos sin ser conectadas a cañerías, tales como estanques, cajones de distribución, celdas de flotación, piscinas acumuladoras, o similares.
[0002] Específicamente, el sistema y método de la invención proporciona una solución que puede ser utilizada, tanto en aplicaciones industriales, como procesos mineros o que requieran controlar y medir el caudal del fluido circulante, así como también en procesos de un nivel menor de complejidad y operación, tales como circuitos de cañerías domiciliarios.
[0003] En este sentido, el sistema de la invención comprende esencialmente al menos una válvula de control; al menos un primer sensor de presión, dispuesto dentro de la al menos una válvula de control en una primera posición respecto al sentido del fluido, para medir al menos una primera presión Pl; al menos un segundo sensor de presión, dispuesto dentro de la al menos una válvula de control en una segunda posición respecto al sentido del fluido, para medir al menos una segunda presión P2; al menos un sensor de posición, para determinar al menos una posición de al menos un obturador de la al menos una válvula de control; y al menos un medio de procesamiento de información, que recibe y procesa los datos sobre la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador, desde el al menos un primer sensor de presión, el al menos un segundo sensor de presión y el al menos un sensor de posición; en donde el al menos un medio de procesamiento de información determina al menos un diferencial de presión DP, de acuerdo con la información recibida acerca de la al menos una primera presión Pl y la al menos una segunda presión P2 para determinar, en conjunto con los datos sobre la al menos una posición del obturador, al menos un flujo que circula a través de la al menos una válvula de control mediante al menos un algoritmo de procesamiento incorporado en el al menos un medio de procesamiento de información.
[0004] Por otra parte, el método de la invención comprende esencialmente las etapas de: medir al menos una primera presión P1 mediante al menos un primer sensor de presión dispuesto dentro de al menos una válvula de control; medir al menos una segunda presión P2 mediante al menos un segundo sensor de presión dispuesto dentro de la al menos una válvula de control; determinar al menos una posición de al menos un obturador de la al menos una válvula de control mediante al menos un sensor de posición; enviar los datos acerca de la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador hacia al menos un medio de procesamiento de información; determinar al menos un diferencial de presión entre la al menos una primera presión Pl y la al menos una segunda presión P2, mediante el al menos un medio de procesamiento de información; y determinar al menos un flujo que circula a través de la al menos una válvula de control, mediante al menos un algoritmo de procesamiento incorporado en el al menos un medio de procesamiento de información.
[0005] A partir del sistema y método de la invención, es posible realizar mediciones de flujo en aplicaciones en las cuales no es posible a través de las soluciones conocidas, entregando al usuario u operador información valiosa para el proceso, de manera de identificar posibles puntos de interés, ya sea para la detección de problemas, como para la planificación de mantenimientos preventivos.
ANTECEDENTES
[0006] En la actualidad, existen múltiples sistemas y dispositivos destinados a obtener mediciones de caudal, en donde un conjunto de dos o más sensores de presión obtiene valores de presión en distintas ubicaciones en la trayectoria del fluido, generalmente en puntos cercanos a la ubicación de una válvula, a partir de lo cual se obtiene un diferencial de presión, útil en el cálculo del flujo volumétrico, si se tienen, por ejemplo, los datos que caracterizan la respuesta de dicha válvula respecto a variaciones en el coeficiente de flujo, la gravedad específica del fluido u otras variables que permitan su cálculo.
[0007] En la industria, si bien existen soluciones que abordan esta problemática, la mayor parte de ellas apunta a sistemas en donde los sensores de presión se disponen fuera de la válvula que controla el flujo a través de las cañerías, generalmente a la entrada y salida de la válvula.
[0008] En este sentido, si bien este tipo de sistemas soluciona la problemática relacionada con la medición del caudal, ellos no son capaces de operar en cualquier tipo de configuración de cañerías o aplicaciones industriales, por ejemplo, en sistemas atmosféricos, en donde las válvulas se disponen en depósitos abiertos sin ser conectadas a cañerías, imposibilitando la colocación de un sensor de presión a la salida de la válvula para obtener el diferencial de presión necesario para la medición del caudal. Además, los usuarios de estos sistemas se ven en la obligación de adquirir, por una parte, la válvula a conectar en el circuito de cañerías y, de forma separada, los sensores de presión y equipos adicionales necesarios para la medición del caudal, debiendo realizar una instalación adicional, la cual debe ser considerada por los proyectistas antes de llevar a cabo un proceso industrial.
[0009] Por lo tanto, existe la necesidad de contar con un sistema y método que sea capaz de realizar mediciones de caudal para un fluido no sólo en configuraciones de cañerías presurizadas, sino que también en sistemas atmosféricos, como por ejemplo, aplicaciones en donde la descarga de fluido se realice a la atmósfera, y que además proporcione una alternativa en donde el usuario sólo deba preocuparse por la instalación de la o las válvulas a utilizar, sin la necesidad de instalaciones adicionales, permitiendo su disposición y operación en aplicaciones en las cuales se imposibilita el uso de las válvulas de la técnica, utilizando la misma válvula como un elemento sensor.
[0010] En el ámbito de las patentes existen soluciones que apuntan a sistemas para la medición de caudales en fluidos que circulan a través de cañerías. Por ejemplo, la patente coreana KR100755297B 1 describe un flujómetro de presión diferencial que mide el caudal de un fluido, tal como un líquido o un gas. Más específicamente, dicho documento se refiere a un flujómetro de presión diferencial capaz de medir un caudal mínimo, en el que un medio de control de caudal, que controla el volumen de transferencia de fluido que fluye en una tubería, está integrado con una estructura principal del flujómetro.
[0011] En este sentido, el documento KR100755297B 1, si bien describe un dispositivo capaz de realizar mediciones de caudal en configuraciones de circuitos presurizados, este no describe ni sugiere su utilización en sistemas que descarguen hacia la atmósfera. Además, dicho documento realiza la medición del diferencial de presión a través de sensores dispuestos fuera de la válvula, lo cual requiere que el cuerpo de la válvula esté integrado a una carcasa que comprende dichos sensores, para así poder proporcionar el flujómetro como un solo elemento, lo cual dificulta su maniobrabilidad e instalación en aplicaciones en donde sólo es posible disponer una válvula.
[0012] Otro ejemplo es el divulgado en la patente japonesa JP5357478B2, que describe un aparato de medición de flujo de presión diferencial que es capaz de medir una pluralidad de flujos de fluidos con diferentes rangos de medición, incluso con un solo aparato, sin afectar la limpieza de un fluido u objeto bajo medición.
[0013] Al comparar la descripción del documento JP5357478B2 con la presente solicitud, es posible observar que dicho aparato realiza la medición de flujo a través de una placa de orificio de área variable, en donde la válvula puede estar en distintas posiciones de apertura. Sin embargo, dicho documento no describe ni sugiere la utilización del aparato en sistemas atmosféricos, que descarguen el fluido hacia el ambiente, a diferencia del sistema de la presente solicitud, el cual tiene la capacidad de realizar mediciones de alta precisión en aplicaciones que descarguen su contenido a la atmósfera, por ejemplo. Además, al igual que en el caso del documento KR100755297B 1, en la patente JP5357478B2 la medición del diferencial de presión se realiza a través de sensores dispuestos fuera de la válvula, conformando, en conjunto con dicha válvula, un sistema de dimensiones considerable, lo cual dificulta su instalación y mantenimiento. Por lo tanto, el documento JP5357478B2 tampoco describe o sugiere un sistema que sea capaz de realizar la medición de flujo a través de sensores de presión dispuestos en el interior de la misma válvula, la cual puede operar en aplicaciones presurizadas o que descarguen hacia la atmósfera, operando como un elemento sensor.
[0014] En este sentido, es importante destacar el hecho de que, en la presente invención, los sensores de presión están dispuestos en el interior de la válvula, sometidos muchas veces a constantes altas presiones del fluido, así como a la abrasión y la corrosión en algunos casos, lo cual ha provocado una dificultad para encontrar soluciones que aborden esta problemática en el estado de la técnica. Adicionalmente, otro punto a destacar tiene relación con que el sistema de la invención es capaz de realizar las mediciones de flujo en condiciones de flujo laminar o turbulento, a diferencia de múltiples soluciones para la medición de caudal, las cuales requieren operar en condiciones de flujo laminar, como ocurre en placas de orificio, tubos pitot, flujómetros magnéticos u otras soluciones similares.
[0015] Por lo tanto, resulta necesario contar con un sistema y método para medir el flujo de fluidos, que permita su utilización no sólo en aplicaciones presurizadas, como circuitos de cañerías, sino que también sea capaz de ser utilizada en aplicaciones en donde el diseño de la planta dificulte la instalación de soluciones tradicionales, y en aplicaciones en donde las válvulas se disponen en configuraciones atmosféricas, tales como las que descargan directamente el fluido directamente al ambiente. Además, existe la necesidad de contar con un sistema y método en donde la medición del diferencial de presión se realice dentro de la misma válvula, sin incluir elementos adicionales a ella, tales como placas de orificio, gracias a lo cual no son necesarias instalaciones adicionales a las conocidas para la instalación de la propia válvula, facilitando la instalación, operación y mantenimiento de ésta, en comparación con otras soluciones existentes, en donde la válvula no tiene la capacidad de actuar como elemento sensor para el cálculo del flujo circulante. Esta y otras ventajas asociadas con otros aspectos de la tecnología son descritas en mayor detalle a continuación.
DESCRIPCIÓN DE LA INVENCIÓN
[0016] La invención se refiere a un sistema para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor, y que permite su utilización bajo condiciones de flujo laminar y/o turbulento, facilitando su instalación, operación y mantenimiento.
[0017] De acuerdo con una primera modalidad preferente de la invención, el sistema para medir el flujo de fluidos comprende:
- al menos una válvula de control;
- al menos un primer sensor de presión, dispuesto dentro de la al menos una válvula de control en una primera posición respecto al sentido del fluido, para medir al menos una primera presión Pl;
- al menos un segundo sensor de presión, dispuesto dentro de la al menos una válvula de control en una segunda posición respecto al sentido del fluido, para medir al menos una segunda presión P2;
- al menos un sensor de posición, para determinar al menos una posición de al menos un obturador de la al menos una válvula de control; y
- al menos un medio de procesamiento de información, que recibe y procesa los datos sobre la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador, desde el al menos un primer sensor de presión, el al menos un segundo sensor de presión y el al menos un sensor de posición; en donde el al menos un medio de procesamiento de información determina al menos un diferencial de presión DP, de acuerdo con la información recibida acerca de la al menos una primera presión Pl y la al menos una segunda presión P2 para determinar, en conjunto con los datos sobre la al menos una posición del obturador, al menos un flujo que circula a través de la al menos una válvula de control mediante al menos un algoritmo de procesamiento incorporado en el al menos un medio de procesamiento de información.
[0018] El sistema de la invención puede operar con distintos tipos de válvulas de control, de acuerdo con las necesidades del usuario, por ejemplo, puede operar con válvulas de bola, válvulas de dardo, válvulas de globo, válvulas de mariposa o similares. Esto permite al sistema de la invención utilizar cualquier tipo de válvula de control como elemento sensor, ya sea en sistemas presurizados o con descarga a la atmósfera, en vista de que sus sensores de presión siempre se mantendrán en su interior, independiente de su diseño específico.
[0019] Por otra parte, el al menos un medio de procesamiento de información puede estar dispuesto en la misma válvula o de forma remota, por ejemplo, en el centro de operaciones de la planta en donde se encuentra instalada la o las válvulas. [0020] De manera preferente, la periodicidad en la toma de datos en el al menos un primer sensor de presión, el al menos un segundo sensor de presión y el al menos un sensor de posición puede ser configurada de acuerdo con las necesidades particulares de la aplicación en donde esté operando el sistema de la invención, pudiendo ir desde milisegundos a horas o días para cada uno de estos componentes del sistema.
[0021] De acuerdo con otra modalidad de la invención, el al menos un sensor de posición se dispone sobre al menos un actuador de la al menos una válvula de control.
[0022] De acuerdo con otra modalidad de la invención, el al menos un primer sensor de presión, el al menos un segundo sensor de presión y el al menos un sensor de posición se comunican con el al menos un medio de procesamiento de información de manera inalámbrica.
[0023] De manera preferente, la comunicación inalámbrica se realiza a través de tecnología Bluetooth, infrarroja, LoRa, WiFi, 3G, 4G, 5G, o cualquier otra tecnología similar.
[0024] De acuerdo con otra modalidad de la invención, el al menos un primer sensor de presión, el al menos un segundo sensor de presión y el al menos un sensor de posición se comunican con el al menos un medio de procesamiento de información a través de al menos un cable.
[0025] De acuerdo con otra modalidad de la invención, el al menos un medio de procesamiento de información contiene información relacionada con la caracterización de las respuestas de la al menos una válvula de control en función de al menos una de las siguientes variables: cambios de flujo, cambios en la al menos una primera presión Pl, cambios en la al menos una segunda presión P2, cambios en el al menos un diferencial de presión DP, cambios en la al menos una posición del al menos un obturador, cambios en la gravedad específica del fluido y/o cambios en el porcentaje de apertura de la al menos una válvula de control, la cual es utilizada por el al menos un algoritmo de procesamiento para la determinación del al menos un flujo que circula a través de la al menos una válvula de control.
[0026] Gracias a la información almacenada por el al menos un medio de procesamiento de información acerca de la caracterización de la válvula de control, es posible obtener el flujo o caudal que circula a través de dicha válvula, utilizando el al menos un algoritmo de procesamiento, el cual vincula todas estas variables.
[0027] Por otra parte, la posición determinada por el al menos un sensor de posición para el al menos un obturador permite al al menos un medio de procesamiento de información asociar el coeficiente de flujo de la al menos una válvula de control con los datos de la al menos una primera presión Pl, la al menos una segunda presión P2 y la gravedad específica del fluido que circula a través de la al menos una válvula de control. [0028] De acuerdo con otra modalidad de la invención, el sistema además comprende al menos un medidor de densidad, para medir al menos una densidad del fluido que fluye a través de la al menos una válvula de control.
[0029] Esto permite al sistema de la invención operar en procesos en donde la densidad del fluido varía, y en procesos en donde la al menos una válvula de control sea unitaria, es decir, que no esté dentro de un cajón con otras válvulas compartiendo el mismo fluido con la misma densidad o gravedad específica.
[0030] De manera preferente, el medidor de densidad puede estar dispuesto dentro de la al menos una válvula de control o fuera de esta, en caso de que la instalación en donde opera el sistema lo haga físicamente viable.
[0031] De acuerdo con otra modalidad de la invención, el al menos un medio de procesamiento de información recibe y procesa los datos sobre la al menos una densidad del fluido para incorporarlos dentro del al menos un algoritmo de procesamiento para la determinación del al menos un flujo que circula a través de la al menos una válvula de control.
[0032] De acuerdo con otra modalidad de la invención, el sistema además comprende al menos una interfaz de visualización, que permite visualizar la información recibida y procesada por el al menos un medio de procesamiento de información.
[0033] De manera preferente, la al menos una interfaz de visualización corresponde a al menos uno de: un monitor, televisión, tableta, notebook, teléfono inteligente y/o cualquier medio que sea capaz de visualizar datos.
[0034] De esta forma, el usuario u operador del sistema podrá visualizar todos los datos almacenados y procesados por el al menos un medio de procesamiento de información, como lo son la caracterización de las respuestas de la al menos una válvula de control, el flujo o caudal que circula a través de la al menos una válvula de control, la al menos una primera presión Pl, la al menos una segunda presión P2, el al menos un diferencial de presión DP, la al menos una posición del al menos un obturador, la densidad del fluido, la gravedad específica del fluido y/o el porcentaje de apertura de la al menos una válvula de control, entre otras variables que puedan ser de utilidad.
[0035] De acuerdo con otra modalidad de la invención, el al menos un medio de procesamiento de información es capaz de recibir información desde múltiples válvulas de control acerca de sus respectivos valores para la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador, para determinar el al menos un flujo que circula por cada una de las válvulas de control. [0036] De esta forma, es posible que un mismo medio de procesamiento de información reciba la información acerca del valor de las presiones Pl y P2 y de la posición del obturador desde múltiples válvulas operando en simultáneo dentro de una planta, calculando para cada una de ellas su diferencial de presión DP respectivo y el caudal que su circula a través de ellas.
[0037] De manera preferente, el al menos un medio de procesamiento de información puede almacenar la caracterización de múltiples modelos de válvulas de la invención (como se menciona anteriormente, la válvula de la invención puede ser diseñada como diversos tipos de válvula, dependiendo de la necesidad del usuario), pudiendo así calcular los flujos para válvulas de distintos tipos que operan en una misma planta.
[0038] De acuerdo con otra modalidad de la invención, la primera posición del al menos un primer sensor de presión y la segunda posición del al menos un segundo sensor de presión se basan en la estabilidad del valor del al menos un diferencial de presión DP.
[0039] La posición de los sensores ya sea aguas arriba o aguas abajo, es totalmente específica y no aleatoria respecto a alguna ubicación dentro de la válvula, ya que, de otro modo, la medición del diferencial de presión DP no sería estable y trazable. La definición de estas ubicaciones se logra gracias al al menos un algoritmo de procesamiento del al menos un medio de procesamiento de información, el cual entrega una o más ubicaciones dentro de la válvula en donde la presión P1 es más estable, y una o más ubicaciones dentro de la válvula en donde la presión P2 produce el mayor diferencial de presión DP.
[0040] De acuerdo con otra modalidad de la invención, la primera posición para el al menos un primer sensor de presión se localiza aguas arriba del asiento de la al menos una válvula de control.
[0041] De acuerdo con otra modalidad de la invención, la segunda posición para el al menos un segundo sensor de presión se localiza aguas abajo del asiento de la al menos una válvula de control.
[0042] De acuerdo con otra modalidad de la invención, la primera posición para el al menos un primer sensor de presión se localiza aguas arriba del centro del cuerpo de la al menos una válvula de control.
[0043] De acuerdo con otra modalidad de la invención, la segunda posición para el al menos un segundo sensor de presión se localiza aguas abajo del centro del cuerpo de la al menos una válvula de control.
[0044] De acuerdo con otra modalidad de la invención, el al menos un primer sensor de presión y el al menos un segundo sensor de presión se eligen del grupo compuesto por sensores análogos, digitales o una combinación de estos. [0045] Por otra parte, de acuerdo con una segunda modalidad preferente de la invención, también se describe un método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor, de acuerdo con el sistema descrito anteriormente, que comprende: a) medir al menos una primera presión P1 mediante al menos un primer sensor de presión dispuesto dentro de al menos una válvula de control; b) medir al menos una segunda presión P2 mediante al menos un segundo sensor de presión dispuesto dentro de la al menos una válvula de control; c) determinar al menos una posición de al menos un obturador de la al menos una válvula de control mediante al menos un sensor de posición; d) enviar los datos acerca de la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador hacia al menos un medio de procesamiento de información; e) determinar al menos un diferencial de presión entre la al menos una primera presión Pl y la al menos una segunda presión P2, mediante el al menos un medio de procesamiento de información; y f) determinar al menos un flujo que circula a través de la al menos una válvula de control, mediante al menos un algoritmo de procesamiento incorporado en el al menos un medio de procesamiento de información.
[0046] De acuerdo con otra modalidad de la invención, el método además comprende almacenar en el al menos un medio de procesamiento de información, información relacionada con la caracterización de las respuestas de la al menos una válvula de control en función de al menos una de las siguientes variables: cambios de flujo, cambios en la al menos una primera presión Pl, cambios en la al menos una segunda presión P2, cambios en el al menos un diferencial de presión DP, cambios en la al menos una posición del al menos un obturador, cambios en la gravedad específica del fluido y/o cambios en el porcentaje de apertura de la al menos una válvula de control, la cual es utilizada por el al menos un algoritmo de procesamiento para la determinación del al menos un flujo que circula a través de la al menos una válvula de control.
[0047] De acuerdo con otra modalidad de la invención, el método además comprende medir al menos una densidad del fluido que fluye a través de la al menos una válvula de control, mediante al menos un medidor de densidad. [0048] De acuerdo con otra modalidad de la invención, el método además comprende recibir y procesar los datos sobre la al menos una densidad del fluido mediante el al menos un medio de procesamiento de información, para incorporarlos dentro del al menos un algoritmo de procesamiento para la determinación del al menos un flujo que circula a través de la al menos una válvula de control.
[0049] De acuerdo con otra modalidad de la invención, el método además comprende visualizar, mediante al menos una interfaz de comunicación, la información recibida y procesada por el al menos un medio de procesamiento de información.
[0050] De acuerdo con otra modalidad de la invención, el método además comprende, mediante el al menos un medio de procesamiento de información, recibir información desde múltiples válvulas de control acerca de sus respectivos valores para la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador, para determinar el al menos un flujo que circula por cada una de las válvulas de control.
[0051] Finalmente, de acuerdo con una tercera modalidad preferente de la invención, también se describe un medio de almacenamiento legible por ordenador, que comprende instrucciones que, cuando se ejecutan por al menos un medio de procesamiento de información, hacen que el al menos un medio de procesamiento de información realice el método para medir el flujo de fluidos descrito anteriormente.
BREVE DESCRIPCIÓN DE LAS FIGURAS
[0052] Como parte de la presente invención se presentan las siguientes figuras representativas de la misma, las que enseñan una configuración preferente de la invención y, por lo tanto, no deben considerarse como limitantes a la definición de la materia reivindicada.
La Figura 1 enseña un esquema general del sistema para medir el flujo de fluidos, de acuerdo con una primera configuración preferente de la invención.
La Figura 2 enseña un esquema general del sistema para medir el flujo de fluidos, de acuerdo con una segunda configuración preferente de la invención.
La Figura 3 enseña un esquema general del sistema para medir el flujo de fluidos, de acuerdo con una tercera configuración preferente de la invención.
La Figura 4 enseña un esquema general del sistema para medir el flujo de fluidos, de acuerdo con una cuarta configuración preferente de la invención.
La Figura 5 enseña un gráfico que muestra la caracterización de una válvula de control en función del flujo, diferencial de presión DP y porcentaje de apertura de la válvula de control, para diferentes gravedades específicas del fluido, de acuerdo con una configuración preferente de la invención.
La Figura 6 enseña un gráfico que muestra la caracterización de una válvula de control en función del flujo, diferencial de presión DP y porcentaje de apertura de la válvula de control, para diferentes gravedades específicas del fluido, de acuerdo con una configuración preferente de la invención.
La Figura 7 enseña un gráfico que muestra la caracterización de una válvula de control en función del diferencial de presión DP, porcentaje de apertura de la válvula de control y flujo, para diferentes gravedades específicas del fluido, de acuerdo con una configuración preferente de la invención.
DESCRIPCIÓN DETALLADA DE LAS FIGURAS
[0053] Con mención a las figuras que se acompañan, las Figuras 1 a 4 muestran distintas configuraciones posibles para el sistema para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos de la invención, en donde la Figura 1 muestra un sistema (1), que comprende una válvula de control (10) tipo globo, que a su vez comprende un primer sensor de presión (11), dispuesto aguas arriba del asiento (13), y un segundo sensor de presión (12), dispuesto aguas abajo del asiento (13). Dichos sensores de presión (11, 12) obtienen datos de presión Pl y P2 respectivamente, los cuales son enviados posteriormente a un medio de procesamiento de información (no mostrado en las figuras), el cual almacena y procesa las presiones Pl y P2 para obtener un diferencial de presión (DP).
[0054] Del mismo modo, la válvula de control (10) comprende un sensor de posición (no mostrado en las figuras), el cual determina la posición del obturador de la válvula de control (10), para así poder relacionar el coeficiente de flujo de la válvula de control (10) a los datos de presión Pl, P2, el diferencial de presión DP y la gravedad específica del fluido circulante.
[0055] En este sentido, el medio de procesamiento de información utiliza el diferencial de presión (DP) y la posición del obturador, en combinación con información almacenada respecto a la caracterización de la válvula de control (10) en donde se encuentran ubicados los sensores de presión (11, 12), para así obtener el flujo o caudal circulante por medio de un algoritmo de procesamiento que combina todas estas variables.
[0056] En relación con las Figuras 2, 3 y 4, en ellas se observan otras configuraciones posibles para el sistema (1) de la invención, en donde la Figura 2 muestra que el sistema (1) comprende una válvula de control (10) tipo bola, que a su vez comprende un primer sensor de presión (11), dispuesto aguas arriba del asiento (13), y un segundo sensor de presión (12), dispuesto aguas abajo del asiento (13), los cuales operan de la misma forma señalada para la Figura 1, en conjunto con un sensor de posición y un medio de procesamiento de información, el cual obtiene la medición del flujo o caudal en el interior de la válvula de control (10).
[0057] Las Figuras 3 y 4 muestran otras configuraciones posibles para el sistema (1) de la invención, las cuales operan utilizando una válvula de control (10) tipo dardo para sistemas presurizados y una válvula de control (10) tipo dardo para sistemas atmosféricos, respectivamente. En el caso de la Figura 3, dicha válvula de control (10) se utiliza generalmente en procesos industriales, tales como los realizados en la industria minera, en donde es necesaria la modulación de flujo de fluidos abrasivos, que muchas veces operan a altas presiones. Además, se pueden observar en esta Figura los mismos elementos principales destacados en las Figuras 1 y 2, como lo son el primer y segundo sensor de presión (11, 12), dispuestos aguas arriba y aguas abajo respecto del flujo de fluido que atraviesa el cuerpo (14) de la válvula de control (10).
[0058] Por otra parte, en el sistema (1) de la Figura 4, la válvula de control (10) puede ser utilizada en sistemas atmosféricos que descarguen al ambiente, los cuales se encuentran presenten en varias industrias, por ejemplo, en procesos mineros, en los que se debe controlar fluidos abrasivos, tales como: relaves de cobres, pulpas y concentrados en cajones de traspaso, alimentación a molinos, celdas Rougher y Scavenger, entre otros. En dicha Figura se observan los mismos componentes mostrados en la Figura 3: primer y segundo sensor de presión (11, 12), dispuestos aguas arriba y aguas abajo respecto del flujo de fluido que atraviesa el cuerpo (14) de la válvula de control (10).
[0059] En el caso de los sistemas ejemplares mostrados en las Figuras 3 y 4, éstos también operan en conjunto con un sensor de posición y un medio de procesamiento de información, el cual obtiene la medición del flujo o caudal en el interior de la válvula de control (10).
[0060] Respecto a las Figuras 5, 6 y 7, en ellas se observan diferentes gráficas que muestran la caracterización de una válvula de control, en función de la variación de diversas variables, tales como el diferencial de presión (DP), el flujo circulante dentro de la válvula de control y el porcentaje de apertura de la válvula de control, para diferentes gravedades específicas del fluido (ilustradas en las Figuras como GS1, GS2, GS3, GS4, GS5, GS6, GS7 y GS8).
[0061] Toda esta información es almacenada en el medio de procesamiento de información, el cual, mediante el algoritmo de procesamiento especialmente diseñado, es capaz de realizar el cruce de información entre el diferencial de presión (DP), obtenido a través de las presiones Pl y P2 enviadas por los sensores de presión (11, 12), la posición del obturador de la válvula de control, obtenida y enviada por el sensor de posición, y los datos de porcentaje de apertura y gravedad específica que caracterizan la válvula de control. Esto permite al sistema (1) de la invención operar con fluidos de densidad variable, ya que, gracias al medidor de densidad, el medio de procesamiento de información es capaz de generar, para cada valor de densidad del fluido, cada una de las curvas de caracterización de la o las válvulas de control en las que se debe realizar la medición de flujo.
[0062] El sistema (1) de la invención también posee una interfaz de visualización (no mostrada en las figuras), la cual permite visualizar al operario o usuario del sistema (1), toda la información almacenada en el medio de procesamiento de información, específicamente lo relativo a la caracterización de las respuestas de la al menos una válvula de control, el flujo o caudal que circula a través de la al menos una válvula de control, la al menos una primera presión Pl, la al menos una segunda presión P2, el al menos un diferencial de presión DP, la al menos una posición del al menos un obturador, la densidad del fluido, la gravedad específica del fluido y/o el porcentaje de apertura de la al menos una válvula de control, entre otras variables que puedan ser de utilidad. Además, es posible que el operario pueda cambiar una o más condiciones de operación del sistema, tales como intervalos de tiempo para la medición de cada uno de los sensores de presión, así como también cargar información relacionada con la caracterización de la o las válvulas de control que operan con el sistema (1).
[0063] En este sentido, es importante destacar que el medio de procesamiento de información puede operar en conjunto con varias válvulas de control (10), dispuestas dentro de una planta, en donde sólo basta que dicho medio de procesamiento de información contenga la información relativa a la caracterización de cada válvula de control (10), las cuales pueden tener distintos diseños, tal como se observa en las Figuras 1 a 4.
REFERENCIAS NUMÉRICAS Y LETRAS
I Sistema para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos
10 Válvula de control
I I Primer sensor de presión
12 Segundo sensor de presión
13 Asiento
F Fluido
DP Diferencial de presión
GS 1 Gravedad específica de fluido 1
GS2 Gravedad específica de fluido 2
GS3 Gravedad específica de fluido 3
GS4 Gravedad específica de fluido 4
GS5 Gravedad específica de fluido 5
GS6 Gravedad específica de fluido 6 GS7 Gravedad específica de fluido 7
GS8 Gravedad específica de fluido 8

Claims

REIVINDICACIONES
1. Un sistema para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor, CARACTERIZADO porque comprende:
- al menos una válvula de control;
- al menos un primer sensor de presión, dispuesto dentro de la al menos una válvula de control en una primera posición respecto al sentido del fluido, para medir al menos una primera presión Pl;
- al menos un segundo sensor de presión, dispuesto dentro de la al menos una válvula de control en una segunda posición respecto al sentido del fluido, para medir al menos una segunda presión P2;
- al menos un sensor de posición, para determinar al menos una posición de al menos un obturador de la al menos una válvula de control; y
- al menos un medio de procesamiento de información, que recibe y procesa los datos sobre la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador, desde el al menos un primer sensor de presión, el al menos un segundo sensor de presión y el al menos un sensor de posición; en donde el al menos un medio de procesamiento de información determina al menos un diferencial de presión DP, de acuerdo con la información recibida acerca de la al menos una primera presión Pl y la al menos una segunda presión P2 para determinar, en conjunto con los datos sobre la al menos una posición del obturador, al menos un flujo que circula a través de la al menos una válvula de control mediante al menos un algoritmo de procesamiento incorporado en el al menos un medio de procesamiento de información.
2. El sistema de acuerdo con la reivindicación 1, CARACTERIZADO porque el al menos un sensor de posición se dispone sobre al menos un actuador de la al menos una válvula de control.
3. El sistema de acuerdo con cualquiera de las reivindicaciones 1-2, CARACTERIZADO porque el al menos un primer sensor de presión, el al menos un segundo sensor de presión y el al menos un sensor de posición se comunican con el al menos un medio de procesamiento de información de manera inalámbrica.
4. El sistema de acuerdo con cualquiera de las reivindicaciones 1-3, CARACTERIZADO porque el al menos un primer sensor de presión, el al menos un segundo sensor de presión y el al menos un sensor de posición se comunican con el al menos un medio de procesamiento de información a través de al menos un cable.
5. El sistema de acuerdo con cualquiera de las reivindicaciones 1-4, CARACTERIZADO porque el al menos un medio de procesamiento de información contiene información relacionada con la caracterización de las respuestas de la al menos una válvula de control en función de al menos una de las siguientes variables: cambios de flujo, cambios en la al menos una primera presión Pl, cambios en la al menos una segunda presión P2, cambios en el al menos un diferencial de presión DP, cambios en la al menos una posición del al menos un obturador, cambios en la gravedad específica del fluido y/o cambios en el porcentaje de apertura de la al menos una válvula de control, la cual es utilizada por el al menos un algoritmo de procesamiento para la determinación del al menos un flujo que circula a través de la al menos una válvula de control.
6. El sistema de acuerdo con cualquiera de las reivindicaciones 1-5, CARACTERIZADO porque además comprende al menos un medidor de densidad, para medir al menos una densidad del fluido que fluye a través de la al menos una válvula de control.
7. El sistema de acuerdo con la reivindicación 6, CARACTERIZADO porque el al menos un medio de procesamiento de información recibe y procesa los datos sobre la al menos una densidad del fluido para incorporarlos dentro del al menos un algoritmo de procesamiento para la determinación del al menos un flujo que circula a través de la al menos una válvula de control.
8. El sistema de acuerdo con cualquiera de las reivindicaciones 1-7, CARACTERIZADO porque además comprende al menos una interfaz de visualización, que permite visualizar la información recibida y procesada por el al menos un medio de procesamiento de información.
9. El sistema de acuerdo con cualquiera de las reivindicaciones 1-8, CARACTERIZADO porque el al menos un medio de procesamiento de información es capaz de recibir información desde múltiples válvulas de control acerca de sus respectivos valores para la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador, para determinar el al menos un flujo que circula por cada una de las válvulas de control.
10. El sistema de acuerdo con cualquiera de las reivindicaciones 1-9, CARACTERIZADO porque la primera posición del al menos un primer sensor de presión y la segunda posición del al menos un segundo sensor de presión se basan en la estabilidad del valor del al menos un diferencial de presión DP.
11. El sistema de acuerdo con cualquiera de las reivindicaciones 1-10, CARACTERIZADO porque la primera posición para el al menos un primer sensor de presión se localiza aguas arriba del asiento de la al menos una válvula de control.
12. El sistema de acuerdo con cualquiera de las reivindicaciones 1-11, CARACTERIZADO porque la segunda posición para el al menos un segundo sensor de presión se localiza aguas abajo del asiento de la al menos una válvula de control.
13. El sistema de acuerdo con cualquiera de las reivindicaciones 1-8, CARACTERIZADO porque la primera posición para el al menos un primer sensor de presión se localiza aguas arriba del centro del cuerpo de la al menos una válvula de control.
14. El sistema de acuerdo con cualquiera de las reivindicaciones 1-10 y 13, CARACTERIZADO porque la segunda posición para el al menos un segundo sensor de presión se localiza aguas abajo del centro del cuerpo de la al menos una válvula de control.
15. El sistema de acuerdo con cualquiera de las reivindicaciones 1-14, CARACTERIZADO porque el al menos un primer sensor de presión y el al menos un segundo sensor de presión se eligen del grupo compuesto por sensores análogos, digitales o una combinación de estos.
16. Un método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor, de acuerdo con el sistema de las reivindicaciones 1-15, CARACTERIZADO porque comprende las etapas de: a) medir al menos una primera presión P1 mediante al menos un primer sensor de presión dispuesto dentro de al menos una válvula de control; b) medir al menos una segunda presión P2 mediante al menos un segundo sensor de presión dispuesto dentro de la al menos una válvula de control; c) determinar al menos una posición de al menos un obturador de la al menos una válvula de control mediante al menos un sensor de posición; d) enviar los datos acerca de la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador hacia al menos un medio de procesamiento de información; e) determinar al menos un diferencial de presión entre la al menos una primera presión Pl y la al menos una segunda presión P2, mediante el al menos un medio de procesamiento de información; y f) determinar al menos un flujo que circula a través de la al menos una válvula de control, mediante al menos un algoritmo de procesamiento incorporado en el al menos un medio de procesamiento de información.
17. El método de acuerdo con la reivindicación 16, CARACTERIZADO porque además comprende almacenar en el al menos un medio de procesamiento de información, información relacionada con la caracterización de las respuestas de la al menos una válvula de control en función de al menos una de las siguientes variables: cambios de flujo, cambios en la al menos una primera presión Pl, cambios en la al menos una segunda presión P2, cambios en el al menos un diferencial de presión DP, cambios en la al menos una posición del al menos un obturador, cambios en la gravedad específica del fluido y/o cambios en el porcentaje de apertura de la al menos una válvula de control, la cual es utilizada por el al menos un algoritmo de procesamiento para la determinación del al menos un flujo que circula a través de la al menos una válvula de control.
18. El método de acuerdo con cualquiera de las reivindicaciones 16-17, CARACTERIZADO porque además comprende medir al menos una densidad del fluido que fluye a través de la al menos una válvula de control, mediante al menos un medidor de densidad.
19. El método de acuerdo con la reivindicación 18, CARACTERIZADO porque además comprende recibir y procesar los datos sobre la al menos una densidad del fluido mediante el al menos un medio de procesamiento de información, para incorporarlos dentro del al menos un algoritmo de procesamiento para la determinación del al menos un flujo que circula a través de la al menos una válvula de control.
20. El método de acuerdo con cualquiera de las reivindicaciones 16-19, CARACTERIZADO porque además comprende visualizar, mediante al menos una interfaz de comunicación, la información recibida y procesada por el al menos un medio de procesamiento de información.
21. El método de acuerdo con cualquiera de las reivindicaciones 16-20, CARACTERIZADO porque además comprende, mediante el al menos un medio de procesamiento de información, recibir información desde múltiples válvulas de control acerca de sus respectivos valores para la al menos una primera presión Pl, la al menos una segunda presión P2 y la al menos una posición del al menos un obturador, para determinar el al menos un flujo que circula por cada una de las válvulas de control.
22. Un medio de almacenamiento legible por ordenador, CARACTERIZADO porque comprende instrucciones que, cuando se ejecutan por al menos un medio de procesamiento de información, hacen que el al menos un medio de procesamiento de información realice el método de las reivindicaciones 16-21.
PCT/CL2022/050083 2022-08-23 2022-08-23 Un sistema y método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor WO2024040359A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050083 WO2024040359A1 (es) 2022-08-23 2022-08-23 Un sistema y método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2022/050083 WO2024040359A1 (es) 2022-08-23 2022-08-23 Un sistema y método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor

Publications (1)

Publication Number Publication Date
WO2024040359A1 true WO2024040359A1 (es) 2024-02-29

Family

ID=90012033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050083 WO2024040359A1 (es) 2022-08-23 2022-08-23 Un sistema y método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor

Country Status (1)

Country Link
WO (1) WO2024040359A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251148A (en) * 1990-06-01 1993-10-05 Valtek, Inc. Integrated process control valve
US9016140B2 (en) * 2012-11-20 2015-04-28 Fluid Handling Llc Valve having rotatable valve ball with calibrated orifice and coaxial upstream/downstream ports and angled taps to measure upstream/downstream pressures for flow measurement
US10503181B2 (en) * 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US11408451B2 (en) * 2018-10-12 2022-08-09 Bray International, Inc. Smart valve with integrated electronics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251148A (en) * 1990-06-01 1993-10-05 Valtek, Inc. Integrated process control valve
US9016140B2 (en) * 2012-11-20 2015-04-28 Fluid Handling Llc Valve having rotatable valve ball with calibrated orifice and coaxial upstream/downstream ports and angled taps to measure upstream/downstream pressures for flow measurement
EP2923180B1 (en) * 2012-11-20 2022-03-30 Fluid Handling LLC. Valve ball for direct flow measurement
US10503181B2 (en) * 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US11408451B2 (en) * 2018-10-12 2022-08-09 Bray International, Inc. Smart valve with integrated electronics

Similar Documents

Publication Publication Date Title
US9170137B2 (en) Rotatable orifice plate for direct flow measurement
KR102515913B1 (ko) 가스 공급계의 검사 방법, 유량 제어기의 교정 방법, 및 2차 기준기의 교정 방법
TWI633283B (zh) 能夠測定流量的氣體供給裝置、流量計、以及流量測定方法
CN114746682A (zh) 用于调节流体流量的阀和用于与这种阀结合使用的方法
JP5113722B2 (ja) 流量計測装置
US8387657B2 (en) Methods and apparatus to determine a position of a valve
CN104061973A (zh) 流量计
CN110595558A (zh) 一种自适应环境温度的天然气流量测量系统
WO2024040359A1 (es) Un sistema y método para medir el flujo de fluidos en sistemas presurizados y/o atmosféricos, que utiliza al menos una válvula como elemento sensor
US20220146293A1 (en) Measuring system for measuring a mass flow rate, a density, a temperature and/or a flow velocity
Hardie Developing measurement facilities for carbon capture and storage
CN103868558A (zh) 一种粉体流量在线检测系统及方法
KR20170117251A (ko) 이동식 수도미터 성능 검사장치
JPS6329209Y2 (es)
US10222252B2 (en) Portable verification system and method for use in verifying a gas pipeline flow meter when in field
CN210464580U (zh) 一种自适应环境温度的天然气流量测量系统
CN208780273U (zh) 一种一体化全保温夹套型金属管浮子流量装置
US11280655B2 (en) Use of multiple flow metering devices in parallel to monitor and control fluids through a pipe
CN108516073A (zh) 一种保持柔性容器内外压差恒定装置
JP6859240B2 (ja) 粉粒体吹込装置、検量線作成装置および検量線作成方法
CN208579783U (zh) 一种环道检定装置
CA2733469A1 (en) Device for measuring rates in individual phases of a multiphase flow
US20220341770A1 (en) Portable verification system and method for use in lower pressure commercial and residential gas flow meters
CN108562329A (zh) 一种储煤仓全方位保护系统
CN204705387U (zh) 吹气式液位测量仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955910

Country of ref document: EP

Kind code of ref document: A1