WO2024037374A1 - 一种低频抑制的信号输出方法及限幅器 - Google Patents

一种低频抑制的信号输出方法及限幅器 Download PDF

Info

Publication number
WO2024037374A1
WO2024037374A1 PCT/CN2023/111593 CN2023111593W WO2024037374A1 WO 2024037374 A1 WO2024037374 A1 WO 2024037374A1 CN 2023111593 W CN2023111593 W CN 2023111593W WO 2024037374 A1 WO2024037374 A1 WO 2024037374A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filter
filters
parameter value
target
Prior art date
Application number
PCT/CN2023/111593
Other languages
English (en)
French (fr)
Inventor
熊伟
帕霍约尼
常青
张景
袁中行
仇存收
田立生
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024037374A1 publication Critical patent/WO2024037374A1/zh

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase

Definitions

  • the present application relates to the field of signal processing technology, and in particular to a low-frequency suppression signal output method and a limiter.
  • ANC Active Noise Cancellation
  • the basic principle of active noise reduction is to pick up sound through the feedforward microphone and feedback microphone on the electronic device, then filter the collected signal through a filter to obtain an inverted digital signal, and then use the speaker on the electronic device to The phase noise is played out, so that it superimposes and offsets the noise already existing in the ear in the acoustic domain, thereby achieving the effect of noise reduction.
  • this application provides a low-frequency suppression signal output method and a limiter, so as to balance the noise reduction function of electronic equipment and the problem of abnormal plosive sounds.
  • this application provides a limiter, including: a signal selector, a first filter, a signal processor, a gain controller, and a second filter; wherein the signal selector is connected to the first filter respectively.
  • the filter and the second filter are connected; the second filter is connected to the gain controller and the signal processor; the signal processor is connected to the first filter; the first filter
  • the signal selector is used to select a target signal from the input signal or the output signal.
  • the gain controller is used to receive an external first audio signal, perform gain adjustment on the first audio signal to obtain a second audio signal, and The second audio signal is sent to the second filter;
  • the second filter is used to filter the superimposed signal of the received target signal and the second audio signal to obtain the first signal; and sending the first signal to the signal processor;
  • the signal processor is used to obtain the filter parameter value of the first filter according to the first signal, and send the filter parameter value to sent to the first filter.
  • this application uses a gain controller to gain adjust the external first audio signal, and then continues to use the second filter to perform low-frequency filtering on the signal. It can be obtained More accurate filter parameter values, and then the first filter accurately adjusts the input signal according to the filter parameter value to obtain a low-frequency output signal. According to the low-frequency output signal, the noise reduction function of the electronic device and the problem of abnormal blasting sound can be balanced.
  • the signal selector is specifically configured to: after receiving the first signal request, send the input signal as the target signal to the second filter; upon receiving the second signal request Finally, the output signal is sent to the second filter as the target signal.
  • This application sends different signals to the second filter through different signal requests, so that the filter parameter values can be adjusted more accurately.
  • both the first filter and the second filter are biquad filters.
  • the first filter is a low-shelf filter
  • the second filter is a low pass filter.
  • the number of the second filters is one or more.
  • the connection method between the multiple second filters is as follows: Any of the ways: each second filter is connected in series, each second filter is connected in parallel, a specified number of second filters are connected in series and then connected with the remaining number. The second filters are connected in parallel, a specified number of the second filters are connected in parallel, and then the remaining number of the second filters are connected in series.
  • this application can more accurately remove high-frequency components in the signal and obtain a low-frequency output signal.
  • the first signal obtained by the second filter is the target signal.
  • This application sets the first audio signal to 0 so that the electronic device can be in the independent noise reduction mode, and filters the target signal through the second filter to obtain a low-frequency output signal in the independent noise reduction mode.
  • the present application provides a low-frequency suppression signal output method.
  • the method includes: a first filter receives an input signal, and filters the input signal according to the current filter parameter value to obtain an output signal; wherein , the filter parameter value is determined in the following manner: the signal selector selects the target signal from the input signal or the output signal, and sends the target signal to the second filter; the gain controller receives the external first audio signal, perform gain adjustment on the first audio signal to obtain a second audio signal, and send the second audio signal to the second filter; the second filter performs gain adjustment on the received target The superimposed signal of the signal and the second audio signal is filtered to obtain a first signal; and the first signal is sent to a signal processor; the signal processor obtains the first filtered signal according to the first signal filter parameter values.
  • the method further includes: after the signal selector receives the first signal request, the input signal is sent to the second filter; the signal selector receives the second signal After requesting, the output signal is sent to the second filter.
  • the method further includes: when the first audio signal is 0, the first signal obtained by the second filter is the target signal.
  • both the first filter and the second filter are biquad filters.
  • the present application provides a computer-readable storage medium that stores computer instructions.
  • the limiter can be caused to The first filter in the amplifier performs the method designed in any of the above second aspects.
  • the present application provides a computer program product.
  • the computer program product includes computer instructions.
  • the third filter in the limiter can be caused to A filter performs the method designed in any of the above second aspects.
  • Figure 1 is a schematic diagram of the principle structure of active noise reduction in electronic equipment
  • Figure 2 is a schematic structural diagram of a limiter provided by an embodiment of the present application.
  • Figure 3 is a schematic flowchart of the signal processor 205 according to the first signal obtaining the filtering parameter value of the first filter 201 according to the embodiment of the present application;
  • Figure 4 is a schematic structural diagram of active noise reduction combined with a limiter provided by an embodiment of the present application
  • Figure 5 is a schematic diagram of the input signal, output signal and gain control signal of the limiter in the prior art
  • Figure 6 is a schematic diagram of the input signal, the output signal of the limiter, the input signal of the second filter and the input signal of the gain controller provided by the embodiment of the present application;
  • FIG. 7 is a schematic flowchart of a low-frequency suppression signal output method provided by an embodiment of the present application.
  • the basic principle of active noise reduction is: first, the feedforward (FF) microphone 101 and the feedback (Feedback, FB) microphone 102 on the electronic device are used to pick up the sound respectively; the collected sound is collected through a filter. The signal is filtered to obtain an inverted digital signal.
  • the filter is the Secondary Path Estimation Filter (SPh) 103 shown in Figure 1, and the collected signals can be music signals played in the downlink (DL), prompt tone signals, and call signals. any of them.
  • the electronic device uses the signal difference between the sound signal collected by the feedback microphone 102 and the filtered inverted digital signal as the input signal of the feedback filter 104, and performs noise reduction filtering on the input signal in the feedback filter 104 to obtain the feedback filter.
  • the output signal of the filter 104; the sound signal collected by the feedforward microphone 101 is used as the input signal of the feedforward filter 105, and the input signal is subjected to noise reduction filtering processing in the feedforward filter 105 to obtain the output of the feedforward filter 105.
  • Signal
  • the superposed signal of the output signal of the feedback filter 104 and the output signal of the feedforward filter 105 is defined as the inverse noise reduction signal anc_anti.
  • the inverse noise reduction signal is used as the input signal of the limiter (Limiter) 106.
  • the downlink signal and the limiter are The superimposed signal of the output signal of the amplifier 106 serves as the driving digital signal tospk of the speaker 107.
  • the speaker 107 on the electronic device is used to play out the reverse-phase noise, so that the noise in the acoustic domain and the noise already existing in the ear are superimposed and offset, thereby achieving a noise reduction effect.
  • FIG. 2 shows a schematic structural diagram of a limiter provided by an embodiment of the present application.
  • the limiter 200 of low frequency suppression includes: a first filter 201, a signal selector (Multiplexer, MUX) 202, a second filter 203, a gain controller 204 and a signal processor 205.
  • the signal selector 202 is connected to the first filter 201 and the second filter 203 respectively;
  • the second filter 203 is connected to the gain controller 204 and the signal processor 205;
  • the signal processor 205 is connected to the first filter 201.
  • the first filter 201 receives the input signal in, and performs filtering processing on the input signal in according to the current filter parameter value to obtain an output signal out.
  • the input signal in is the above-mentioned inverted noise reduction signal anc_anti.
  • the first filter 201 may be a low shelf filter (Low Shelf, LS) in a biquad filter.
  • the signal selector 202 selects a target signal from the input signal in or the output signal out, and sends the target signal to the second filter 203 .
  • the signal selector 202 sends the input signal in as the target signal to the second filter 203 .
  • the signal selector 202 sends the output signal out as the target signal to the second filter 203 .
  • the limiter 200 works in the feedforward mode state, and when the signal selector 202 sends the output signal out as the target signal to the second filter At time 203, the limiter 200 works in the feedback mode. This application sends different signals to the second filter 203 through different signal requests, so that the filter parameter values can be adjusted more accurately.
  • the gain controller 204 After receiving the external first audio signal, the gain controller 204 performs gain adjustment on the first audio signal to obtain a second audio signal, and sends the second audio signal to the second filter 203 .
  • the first audio signal may be any one of the above-described music signal, prompt signal, and call signal, which is represented by DL.
  • the second filter 203 performs filtering processing on the superposed signal of the received target signal and the second audio signal to obtain a first signal, and sends the first signal to the signal processor 205 .
  • the signals can be superimposed in the time domain in the second filter 203, or as shown in Figure 2, the signals can be superimposed in the time domain first, and then the superimposed signal can be sent to the second filter as an input signal.
  • the filter 203 is only used as an example here, and this application does not limit the specific implementation of signal superposition.
  • the second filter 203 may be a low-pass filter in a biquad filter, or may be a cascade of multiple overhead filters. This is only an example of the filter type of the second filter 203, and this application does not limit the specific filter type of the second filter 203.
  • the filter types of the first filter 201 and the second filter 203 By defining the filter types of the first filter 201 and the second filter 203, the high-frequency components in the signal can be more accurately removed and a low-frequency output signal can be obtained.
  • the external first audio signal first passes through the gain processing of the gain controller 204, and then passes through the second Compared with the prior art of directly performing gain processing on the input signal, the filtering and noise reduction processing of the filter 203 can better balance the impact of low-frequency suppression and noise reduction effects.
  • both the second filter 203 and the first filter 201 use a gradual smoothing Ramp mechanism to smooth the signal, thereby solving the problem of prone to plosive sounds in the prior art.
  • the number of the second filters 203 is one or more.
  • the connection mode between the multiple second filters 203 is any one of the following modes: each The second filters 203 are connected in series and each second filter 203 is connected in parallel. A specified number of second filters 203 are connected in series and then connected in parallel with the remaining number of second filters 203. A specified number of second filters 203 are connected in parallel. The filters 203 are connected in parallel and then connected in series with the remaining number of second filters 203 . This is only an example of a possible connection method between the plurality of second filters 203 , and does not limit the specific connection method between the plurality of second filters 203 . By setting the number of second filters 203 and the connection method between the plurality of second filters 203, the high-frequency components in the signal can be removed more accurately and a low-frequency output signal can be obtained.
  • the signal processor 205 obtains the filter parameter value of the first filter 201 according to the first signal, and sends the filter parameter value to the first filter 201, so that the first filter 201 accurately adjusts the input signal in according to the filter parameter value to obtain the low frequency Output signal out.
  • the filtering parameter value includes the gain value Gain.
  • the noise reduction function of electronic equipment and the problem of abnormal plosive sound can be balanced based on the low-frequency output signal.
  • FIG. 3 shows a schematic flow chart of the signal processor 205 obtaining the filter parameter value of the first filter 201 according to the first signal, which includes the following steps:
  • RMS Rate Monotonic Scheduling
  • S306 Use the difference between the gain value of the first signal and the step gain value as the filter parameter value sent to the first filter;
  • step S307 determine whether the gain value of the first signal is the maximum gain value; if yes, continue to return to step S302; if not, execute step S308;
  • S308 Use the superposition result of the gain value of the first signal and the step gain value as the filter parameter value sent to the first filter.
  • the first signal obtained by the second filter 203 is the target signal.
  • This application sets the first audio signal to 0 so that the electronic device can be in the independent noise reduction mode, and filters the target signal through the second filter 203 to obtain a low-frequency output signal in the independent noise reduction mode.
  • the first audio signal is not 0, for example, the first audio signal is a signal for music playback, and the music playback signal is strong, through the above signal processing process, the speaker can be made to work in the linear region, thereby better Protect your speakers and extend their use time.
  • the feedforward microphone 101 picks up the environmental sound signal, inputs the environmental sound signal to the feedforward filter 105, and performs noise reduction on the environmental sound signal in the feedforward filter 105. Filtering processing is performed to obtain the output signal of the feedforward filter 105.
  • Feedback microphone 102 picks up residual noise signals in the ear. When the DL signal is 0, the output signal after the DL signal is filtered by the secondary path estimation filter 103 is also 0, and then the residual noise signal in the ear is input to the feedback filter 104 .
  • the output signal after the DL signal is filtered by the secondary path estimation filter 103 is an inverted digital signal, then the residual noise signal in the ear and the filtered inverted digital signal are The difference is input to feedback filter 104.
  • the input signal is subjected to noise reduction filtering processing in the feedback filter 104 to obtain an output signal of the feedback filter 104 .
  • the superposed signal of the output signal of the feedback filter 104 and the output signal of the feedforward filter 105 is defined as the inverse noise reduction signal anc_anti.
  • the inverted noise reduction signal is used as the input signal in of the limiter 200.
  • the signal selector 202 selects the input signal in as the target signal.
  • the filter 203 performs filtering processing.
  • the second filter 203 can filter out high-frequency signal components in the input signal in, and obtain low-frequency signals within 100 Hz after filtering processing.
  • the filtered input signal in is transmitted to the signal processor 205, where short-term energy statistics are calculated.
  • the filter parameter value is adjusted according to the preset upper limit threshold, lower limit threshold and adjustment compensation to obtain the adjusted filter parameter value.
  • the first filter 201 can be a low-shelf filter, and can adjust the filter parameter value within a preset 100 Hz to achieve low-frequency suppression of signals and reduce Impact on mid- and high-frequency bands.
  • the superposed signal of the downlink signal and the output signal out of the limiter 200 serves as the driving digital signal tospk of the speaker 107 .
  • the speaker 107 on the electronic device is used to play out the reverse-phase noise, so that the noise in the acoustic domain and the noise already existing in the ear are superimposed and offset, thereby achieving a noise reduction effect.
  • Figure 5 shows a schematic diagram of a signal for noise reduction using a limiter in the prior art, where Input represents the input signal of the limiter, outPut represents the output signal of the limiter, and Gain represents the gain control signal in the limiter. .
  • FIG. 6 shows a signal diagram in which the limiter provided by the embodiment of the present application is used for noise reduction, and the signal selector selects the input signal as the target signal. Among them, Input represents the input signal of the limiter, outPut represents the output signal of the limiter, limBQInput represents the input signal of the second filter, and BoostGain represents the input signal of the gain controller.
  • the input signal of the gain controller is 1, the input signal of the limiter and the output signal of the limiter are the same, that is, the input signal of the limiter and the output signal of the limiter shown in Figure 6 coincide with each other.
  • the input signal of the gain controller is not 1, as shown in Figure 6, the input signal of the limiter is signal adjusted through the input signal of the gain controller and the input signal of the second filter to obtain the output of the limiter.
  • the abscissa represents time, and for the ordinate, the gain value is normalized so that it is within the range of (-1,1).
  • this application uses hardware to reduce signal noise, which can save the transmission time of data signals and ensure low latency during the noise reduction process.
  • the signal processing method of the limiter 200 can be used to achieve the mutual balance between low frequency detection (Low Frequency Detection, LFD) and noise reduction.
  • LFD Low Frequency Detection
  • the signal can be controlled according to the required frequency band, and precise control of the signal can be achieved.
  • the limiter provided by the embodiment of this application can be applied to true wireless stereo (TWS) in-ear or semi-in-ear headphones, headsets, smart glasses, smart augmented reality (Augmented Reality, AR) equipment, and smart virtual reality (Virtual Reality, VR) device and all devices where speakers are present.
  • TWS true wireless stereo
  • AR Augmented Reality
  • VR Virtual Reality
  • the embodiment of the present application also provides a low-frequency suppression signal output method, which is applied to the limiter.
  • This method can be executed by the limiter 200 in FIG. 2 .
  • the method provided by this application includes the following steps:
  • the first filter receives the input signal, and filters the input signal according to the current filter parameter value to obtain an output signal; where the filter parameter value is determined in the following way:
  • the signal selector selects the target signal from the input signal or the output signal, and sends the target signal to the second filter;
  • the gain controller receives the external first audio signal, performs gain adjustment on the first audio signal, obtains the second audio signal, and sends the second audio signal to the second filter;
  • the second filter performs filtering processing on the superimposed signal of the received target signal and the second audio signal to obtain the first signal; and sends the first signal to the signal processor;
  • the signal processor obtains the filter parameter value of the first filter according to the first signal.
  • the method further includes: after the signal selector receives the first signal request, it sends the input signal to the second filter; after the signal selector receives the second signal request, it sends the output signal to the second filter. filter.
  • the method further includes: when the first audio signal is 0, the first signal obtained by the second filter is the target signal.
  • both the first filter and the second filter are biquad filters.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions. When the computer instructions are executed by the first filter 201, the low-frequency suppression signal output method shown in FIG. 7 can be implement.
  • An embodiment of the present application also provides a computer program product, which includes computer instructions.
  • the computer instructions are executed by the first filter 201, the low-frequency suppression signal output method shown in FIG. 7 can be executed.
  • various aspects of the low-frequency suppressed signal output method provided by this application can also be implemented in the form of a program product, which includes program code.
  • the program code When the program code is run on a computer device or a circuit product, the program code is To cause the computer device to perform the steps in the low-frequency suppression signal output method described above in this specification.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Amplifiers (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

一种低频抑制的信号输出方法及限幅器,其中第一滤波器根据当前的滤波参数值对输入信号进行滤波处理,得到输出信号(S701);信号选择器在输入信号或者输出信号中选择目标信号,将目标信号发送给第二滤波器(S702);增益控制器对接收到的外部的第一音频信号进行增益调节,将得到的第二音频信号发送给第二滤波器(S703);第二滤波器对接收到的目标信号和第二音频信号的叠加信号进行滤波处理,将得到的第一信号发送给信号处理器(S704);信号处理器根据第一信号得到第一滤波器的滤波参数值(S705),将滤波参数值发送给第一滤波器,以便于第一滤波器根据滤波参数值准确调节输入信号得到低频输出信号,进而根据低频输出信号可以均衡电子设备的降噪功能和异常爆破音问题。

Description

一种低频抑制的信号输出方法及限幅器
相关申请的交叉引用
本申请要求在2022年08月19日提交中国专利局、申请号为202211001312.5、申请名称为“一种低频抑制的信号输出方法及限幅器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信号处理技术领域,尤其涉及一种低频抑制的信号输出方法及限幅器。
背景技术
目前,电子设备中的主动降噪(Active Noise Cancellation,ANC)功能越来越受到用户的喜爱和依赖。主动降噪的基本原理是:通过电子设备上的前馈麦克风和反馈麦克风进行拾音,然后通过滤波器对采集到的信号进行滤波处理得到反相数字信号,再利用电子设备上的扬声器将反相噪声播放出去,使得在声学域上和耳内已经存在的噪声形成叠加抵消,进而达到降噪的效果。
通常外部环境噪声越大,需要电子设备发出的噪声就越高,这样降噪的效果才会越好。但实际情况中并不是多大的噪声均能够发出以抵消外部环境的噪声。
例如,处在颠簸路段的大巴车、飞机起飞时刻、飞机降落时刻等场景中的电子设备更加需要主动降噪的功能,但是上述场景中的电子设备上的扬声器容易出现工作在非线性区域的情况,这样不仅使得扬声器容易损坏,缩短使用时间,还会使得电子设备产生爆破音(POP-noise,POP)等异响。环境和电子设备中的系统耦合产生的低频信号是造成这种现象的主要原因。因此,需要一种可以输出低频信号的限幅器,均衡电子设备的降噪功能和异常爆破音。
发明内容
有鉴于此,本申请提供一种低频抑制的信号输出方法及限幅器,以便于可以均衡电子设备的降噪功能和异常爆破音的问题。
第一方面,本申请提供一种限幅器,包括:信号选择器、第一滤波器、信号处理器、增益控制器和第二滤波器;其中,所述信号选择器分别与所述第一滤波器、所述第二滤波器连接;所述第二滤波器与所述增益控制器、所述信号处理器连接;所述信号处理器与所述第一滤波器连接;所述第一滤波器,用于接收输入信号,并根据当前的滤波参数值对所述输入信号进行滤波处理,得到输出信号;所述信号选择器,用于在所述输入信号或者所述输出信号中选择目标信号,并将所述目标信号发送给所述第二滤波器;所述增益控制器,用于接收外部的第一音频信号,对所述第一音频信号进行增益调节,得到第二音频信号,并将所述第二音频信号发送给所述第二滤波器;所述第二滤波器,用于对接收到的所述目标信号和所述第二音频信号的叠加信号进行滤波处理,得到第一信号;并将所述第一信号发送给所述信号处理器;所述信号处理器,用于根据所述第一信号得到所述第一滤波器的滤波参数值,并将所述滤波参数值发送给所述第一滤波器。
相对于现有技术采用的对信号进行增益调节的方法来说,本申请通过增益控制器对外部的第一音频信号进行增益调节,然后继续利用第二滤波器对信号进行低频滤波处理,可以得到更准确的滤波参数值,进而第一滤波器根据滤波参数值准确调节输入信号得到低频输出信号,根据低频输出信号可以均衡电子设备的降噪功能和异常爆破音问题。
一种可能的设计中,所述信号选择器,具体用于:接收到第一信号请求后,将所述输入信号作为所述目标信号发送给所述第二滤波器;接收到第二信号请求后,将所述输出信号作为所述目标信号发送给所述第二滤波器。
本申请通过不同信号请求向第二滤波器发送不同的信号,进而可以更准确的对滤波参数值进行调节。
一种可能的设计中,所述第一滤波器和所述第二滤波器均为双二阶滤波器,可选的,所述第一滤波器为低架滤波器,所述第二滤波器为低通滤波器。通过对第一滤波器和第二滤波器进行滤波器类型的定义,可以更准确的去除信号中的高频成分,得到低频输出信号。
一种可能的设计中,所述第二滤波器的数量为一个或者多个,当所述第二滤波器的数量为多个时,多个所述第二滤波器之间的连接方式为以下方式中的任一种:每个所述第二滤波器之间串联、每个所述第二滤波器之间并联、指定数量的所述第二滤波器之间串联后继续与剩余数量的所述第二滤波器并联、指定数量的所述第二滤波器之间并联后继续与剩余数量的所述第二滤波器串联。
本申请通过设置第二滤波器的数量以及多个第二滤波器之间的连接方式,可以更准确的去除信号中的高频成分,得到低频输出信号。
一种可能的设计中,当所述第一音频信号为0时,所述第二滤波器得到的所述第一信号为所述目标信号。本申请通过将第一音频信号设置为0,使得电子设备可以处于单独降噪模式的情况,通过第二滤波器对目标信号的滤波处理,得到单独降噪模式下的低频输出信号。
第二方面,本申请提供一种低频抑制的信号输出方法,所述方法包括:第一滤波器接收输入信号,并根据当前的滤波参数值对所述输入信号进行滤波处理,得到输出信号;其中,所述滤波参数值通过以下方式确定:信号选择器在所述输入信号或者所述输出信号中选择目标信号,并将所述目标信号发送给第二滤波器;增益控制器接收外部的第一音频信号,对所述第一音频信号进行增益调节,得到第二音频信号,并将所述第二音频信号发送给所述第二滤波器;所述第二滤波器对接收到的所述目标信号和所述第二音频信号的叠加信号进行滤波处理,得到第一信号;并对所述第一信号发送给信号处理器;所述信号处理器根据所述第一信号得到所述第一滤波器的滤波参数值。
一种可能的设计中,所述方法还包括:所述信号选择器接收到第一信号请求后,将所述输入信号发送给所述第二滤波器;所述信号选择器接收到第二信号请求后,将所述输出信号发送给所述第二滤波器。
一种可能的设计中,所述方法还包括:当所述第一音频信号为0时,所述第二滤波器得到的所述第一信号为所述目标信号。
一种可能的设计中,所述第一滤波器和所述第二滤波器均为双二阶滤波器。
第三方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令,当所述计算机指令被限幅器中的第一滤波器执行时,可以使得所述限幅器中的第一滤波器执行上述第二方面中任一设计的方法。
第四方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机指令,当所述计算机指令被限幅器中的第一滤波器执行时,可以使得所述限幅器中的第一滤波器执行上述第二方面中任一设计的方法。
上述第二方面至第四方面中任一方面中的任一可能设计可以达到的技术效果,请参照上述第一方面中的任一可能设计可以达到的技术效果描述,这里不再重复赘述。
附图说明
图1为电子设备中的主动降噪的原理结构示意图;
图2为本申请实施例提供的一种限幅器的结构示意图;
图3为本申请实施例提供的信号处理器205根据第一信号得到第一滤波器201的滤波参数值的流程示意图;
图4为本申请实施例提供的结合限幅器的主动降噪的结构示意图;
图5为现有技术中限幅器的输入信号、输出信号和增益控制信号的示意图;
图6为本申请实施例提供的限幅器的输入信号、输出信号、第二滤波器的输入信号以及增益控制器的输入信号的示意图;
图7为本申请实施例提供的一种低频抑制的信号输出方法的流程示意图。
具体实施方式
为了使本领域普通人员更好地理解本申请的技术方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应所述理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要 求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
目前,电子设备中的主动降噪功能越来越受到用户的喜爱和依赖。如图1所示,主动降噪的基本原理是:首先通过电子设备上的前馈(Feedforward,FF)麦克风101和反馈(Feedback,FB)麦克风102分别进行拾音;通过滤波器对采集到的信号进行滤波处理得到反相数字信号。例如,滤波器为图1中示出的次级路径估计滤波器(Secondary Path Estimation Filter,SPh)103,采集到的信号可以是下行(Downlink,DL)播放的音乐信号、提示音信号、通话信号中的任一种。电子设备将反馈麦克风102采集到的声音信号和滤波处理后的反相数字信号的信号差作为反馈滤波器104的输入信号,在反馈滤波器104中对输入信号进行降噪滤波处理,得到反馈滤波器104的输出信号;将前馈麦克风101采集到的声音信号作为前馈滤波器105的输入信号,在前馈滤波器105中对输入信号进行降噪滤波处理,得到前馈滤波器105的输出信号。
将反馈滤波器104的输出信号和前馈滤波器105的输出信号的叠加信号定义为反相降噪信号anc_anti,反相降噪信号作为限幅器(Limiter)106的输入信号,下行信号和限幅器106的输出信号的叠加信号作为扬声器107的驱动数字信号tospk。利用电子设备上的扬声器107将反相噪声播放出去,使得在声学域上和耳内已经存在的噪声形成叠加抵消,进而达到降噪的效果。
通常外部环境噪声越大,需要电子设备发出的噪声就越高,这样降噪的效果才会越好。但实际情况中并不是多大的噪声均能够发出以抵消外部环境的噪声。
例如,处在颠簸路段的大巴车、飞机起飞时刻、飞机降落时刻等场景中的电子设备更加需要主动降噪的功能,但是假设电子设备的系统为线性时不变系统(Linear Time Invariant System,LTIS),上述场景中的电子设备上的扬声器容易出现工作在非线性区域的情况,这样不仅使得扬声器容易损坏,缩短使用时间,还会使得电子设备产生爆破音等异响。环境和电子设备中的系统耦合产生的低频信号是造成这种现象的主要原因。
有鉴于此,本申请实施例提供一种低频抑制的信号输出方法及限幅器。为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
图2示出了本申请实施例提供的一种限幅器的结构示意图。低频抑制(Low Frequency Suppression,LFS)的限幅器200包括:第一滤波器201、信号选择器(Multiplexer,MUX)202、第二滤波器203、增益控制器204和信号处理器205。其中,信号选择器202分别与第一滤波器201、第二滤波器203连接;第二滤波器203与增益控制器204、信号处理器205连接;信号处理器205与第一滤波器201连接。
第一滤波器201接收输入信号in,并根据当前的滤波参数值对输入信号in进行滤波处理,得到输出信号out。这里,输入信号in即为上述反相降噪信号anc_anti。并且第一滤波器201可以是双二阶滤波器中的低架滤波器(Low Shelf,LS)。
信号选择器202在输入信号in或者输出信号out中选择目标信号,并将目标信号发送给第二滤波器203。可选的,信号选择器202接收到第一信号请求后,将输入信号in作为目标信号发送给第二滤波器203。信号选择器202接收到第二信号请求后,将输出信号out作为目标信号发送给第二滤波器203。当信号选择器202将输入信号in作为目标信号发送给第二滤波器203时,限幅器200工作在前馈模式状态,当信号选择器202将输出信号out作为目标信号发送给第二滤波器203时,限幅器200工作在反馈模式状态。本申请通过不同信号请求向第二滤波器203发送不同的信号,进而可以更准确的对滤波参数值进行调节。
增益控制器204在接收外部的第一音频信号后,对第一音频信号进行增益调节,得到第二音频信号,并将第二音频信号发送给第二滤波器203。这里,第一音频信号可以是上述描述的音乐信号、提示音信号、通话信号中的任一种,用DL表示。
第二滤波器203对接收到的目标信号和第二音频信号的叠加信号进行滤波处理,得到第一信号,并将第一信号发送给信号处理器205。这里,即可以在第二滤波器203中对信号在时域上进行叠加,也可以如图2所示,在时域上先进行信号叠加,再将叠加后的信号作为输入信号发送给第二滤波器203,在此仅是举例说明,本申请并不限定信号叠加的具体实施方式。这里,第二滤波器203可以是双二阶滤波器中的低通滤波器,也可以是多个高架滤波器级联。在此仅是举例说明第二滤波器203的滤波器类型,本申请并不限定第二滤波器203的具体滤波器类型。
通过对第一滤波器201和第二滤波器203进行滤波器类型的定义,可以更准确的去除信号中的高频成分,得到低频输出信号。同时,外部的第一音频信号先经过增益控制器204的增益处理,再经过第二 滤波器203的滤波降噪处理,相对于现有技术将输入信号直接进行增益处理来说,本申请可以更好的平衡低频抑制和降噪效果的影响。第二滤波器203和第一滤波器201在滤波处理过程中,均采用逐步平滑Ramp机制对信号进行平滑处理,进而解决现有技术中容易出现爆破音的问题。
其中,第二滤波器203的数量为一个或者多个,当第二滤波器203的数量为多个时,多个第二滤波器203之间的连接方式为以下方式中的任一种:每个第二滤波器203之间串联、每个第二滤波器203之间并联、指定数量的第二滤波器203之间串联后继续与剩余数量的第二滤波器203并联、指定数量的第二滤波器203之间并联后继续与剩余数量的第二滤波器203串联。在此仅是举例说明多个第二滤波器203之间可能的连接方式,并不限定多个第二滤波器203之间具体的连接方式。通过设置第二滤波器203的数量以及多个第二滤波器203之间的连接方式,可以更准确的去除信号中的高频成分,得到低频输出信号。
信号处理器205根据第一信号得到第一滤波器201的滤波参数值,并将滤波参数值发送给第一滤波器201,以使第一滤波器201根据滤波参数值准确调节输入信号in得到低频输出信号out。示例性的,滤波参数值包括增益值Gain。根据低频输出信号可以均衡电子设备的降噪功能和异常爆破音问题。
例如,图3示出了信号处理器205根据第一信号得到第一滤波器201的滤波参数值的流程示意图,包括以下步骤:
S301,设置最大增益值、最小增益值、以及步进增益值;
S302,根据第一信号,确定第一信号的速率单调调度(Rate Monotonic Scheduling,RMS)有效值或者第一信号的波峰值Peak;
S303,判断第一信号的RMS有效值是否大于第一预设阈值,或者第一信号的波峰值是否大于第二预设阈值;若是,执行步骤S304,若否,执行步骤S307;
S304,判断第一信号的增益值是否为最小增益值;若是,执行步骤S305,若否,执行步骤S306;
S305,将最小增益值作为发送给第一滤波器的滤波参数值;
S306,将第一信号的增益值与步进增益值的差值作为发送给第一滤波器的滤波参数值;
S307,判断第一信号的增益值是否为最大增益值;若是,继续返回执行步骤S302,若否,执行步骤S308;
S308,将第一信号的增益值与步进增益值的叠加结果作为发送给第一滤波器的滤波参数值。
应知,在此仅是举例说明信号处理器205根据第一信号得到第一滤波器201的滤波参数值的处理过程,本申请并不限定信号处理器205根据第一信号得到第一滤波器201的滤波参数值的具体处理过程。
当第一音频信号为0时,第二滤波器203得到的第一信号为目标信号。本申请通过将第一音频信号设置为0,使得电子设备可以处于单独降噪模式的情况,通过第二滤波器203对目标信号的滤波处理,得到单独降噪模式下的低频输出信号。
当第一音频信号不为0时,例如第一音频信号为音乐播放的信号,且音乐播放的信号较强情况下,通过上述信号处理过程,可以使得扬声器在线性区域内工作,进而更好的保护扬声器,延长使用时间。
如图4所示,假设电子设备为降噪耳机时,前馈麦克风101拾取环境声音信号,将环境声音信号输入给前馈滤波器105,在前馈滤波器105中对环境声音信号进行降噪滤波处理,得到前馈滤波器105的输出信号。反馈麦克风102拾取耳内的残留噪声信号。当DL信号为0时,DL信号经过次级路径估计滤波器103进行滤波处理后的输出信号也是0,那么将耳内的残留噪声信号输入给反馈滤波器104。当DL信号不为0时,DL信号经过次级路径估计滤波器103进行滤波处理后的输出信号为反相数字信号,那么将耳内的残留噪声信号和滤波处理后的反相数字信号的信号差输入给反馈滤波器104。在反馈滤波器104中对输入信号进行降噪滤波处理,得到反馈滤波器104的输出信号。
将反馈滤波器104的输出信号和前馈滤波器105的输出信号的叠加信号定义为反相降噪信号anc_anti。反相降噪信号作为限幅器200的输入信号in,假设信号选择器202选择输入信号in作为目标信号,如图4所示,当DL信号为0时,将输入信号in发送给第二滤波器203进行滤波处理。例如,第二滤波器203可以滤除输入信号in中的高频信号成分,滤波处理之后得到100Hz内的低频信号。滤波处理后的输入信号in传输至信号处理器205,在信号处理器205中进行短时能量统计的计算。根据预先设置的上限阈值和下限阈值、调节补偿对滤波参数值进行调节,得到调节后的滤波参数值。示例性的,主动降噪情况下为了对低频进行压制,第一滤波器201可以为低架滤波器,并可以在预先设置的100Hz内进行滤波参数值的调节,实现对信号的低频压制,减少对中高频段的影响。
下行信号和限幅器200的输出信号out的叠加信号作为扬声器107的驱动数字信号tospk。利用电子设备上的扬声器107将反相噪声播放出去,使得在声学域上和耳内已经存在的噪声形成叠加抵消,进而达到降噪的效果。图5示出了采用现有技术中的限幅器降噪的信号示意图,其中,Input表示限幅器的输入信号,outPut表示限幅器的输出信号,Gain表示限幅器中的增益控制信号。当增益控制信号为1时,限幅器的输入信号和限幅器的输出信号相同,也即图5中示出的限幅器的输入信号和限幅器的输出信号重合。当增益控制信号不为1时,如图5所示,通过增益控制信号对限幅器的输入信号进行信号调节,得到限幅器的输出信号。图6示出了采用本申请实施例提供的限幅器降噪,且信号选择器选择输入信号作为目标信号的信号示意图。其中,Input表示限幅器的输入信号,outPut表示限幅器的输出信号,limBQInput表示第二滤波器的输入信号,BoostGain表示增益控制器的输入信号。当增益控制器的输入信号为1时,限幅器的输入信号和限幅器的输出信号相同,也即图6中示出的限幅器的输入信号和限幅器的输出信号重合。当增益控制器的输入信号不为1时,如图6所示,通过增益控制器的输入信号和第二滤波器的输入信号对限幅器的输入信号进行信号调节,得到限幅器的输出信号。这里,横坐标表示时间,针对纵坐标来说,将增益值进行标准化处理,使得在(-1,1)范围内。
由图4可知,本申请采用硬件进行信号降噪的方式可以节省数据信号的传输时间,保证降噪过程中低延时问题。同时采用限幅器200的信号处理方式可以实现低频检测(Low Frequency Detection,LFD)和降噪之间相互平衡的问题。通过对第二滤波器203的数量以及连接方式的设计,使得可以根据需求频段对信号进行控制,能够实现信号的精准控制。
本申请实施例提供的限幅器可以应用在真无线立体声(True Wireless Stereo,TWS)入耳或者半入耳式耳机、头戴耳机、智能眼镜、智能增强现实(Augmented Reality,AR)设备、智能虚拟现实(Virtual Reality,VR)设备以及存在扬声器的所有设备的场景。
基于上述限幅器实施例,本申请实施例还提供一种低频抑制的信号输出方法,应用于限幅器中,该方法可以由图2中的限幅器200执行。如图7所示,本申请提供的方法包括如下步骤:
S701:第一滤波器接收输入信号,并根据当前的滤波参数值对输入信号进行滤波处理,得到输出信号;其中,滤波参数值通过以下方式确定:
S702:信号选择器在输入信号或者输出信号中选择目标信号,并将目标信号发送给第二滤波器;
S703:增益控制器接收外部的第一音频信号,对第一音频信号进行增益调节,得到第二音频信号,并将第二音频信号发送给第二滤波器;
S704:第二滤波器对接收到的目标信号和第二音频信号的叠加信号进行滤波处理,得到第一信号;并对第一信号发送给信号处理器;
S705:信号处理器根据第一信号得到第一滤波器的滤波参数值。
一种可能的设计中,方法还包括:信号选择器接收到第一信号请求后,将输入信号发送给第二滤波器;信号选择器接收到第二信号请求后,将输出信号发送给第二滤波器。
一种可能的设计中,方法还包括:当第一音频信号为0时,第二滤波器得到的第一信号为目标信号。
一种可能的设计中,第一滤波器和第二滤波器均为双二阶滤波器。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,当计算机指令被第一滤波器201执行时,可以使得图7所示的低频抑制的信号输出方法被执行。
本申请实施例还提供一种计算机程序产品,包括计算机指令,当计算机指令被第一滤波器201执行时,可以使得图7所示的低频抑制的信号输出方法被执行。
也就是说,本申请提供的低频抑制的信号输出方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当程序代码在计算机设备上或电路产品上运行时,程序代码用于使计算机设备执行本说明书上述描述的低频抑制的信号输出方法中的步骤。
此外,尽管在附图中以特定顺序描述了本申请方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (10)

  1. 一种限幅器,其特征在于,包括:信号选择器、第一滤波器、信号处理器、增益控制器和第二滤波器;
    其中,所述信号选择器分别与所述第一滤波器、所述第二滤波器连接;所述第二滤波器与所述增益控制器、所述信号处理器连接;所述信号处理器与所述第一滤波器连接;
    所述第一滤波器,用于接收输入信号,并根据当前的滤波参数值对所述输入信号进行滤波处理,得到输出信号;
    所述信号选择器,用于在所述输入信号或者所述输出信号中选择目标信号,并将所述目标信号发送给所述第二滤波器;
    所述增益控制器,用于接收外部的第一音频信号,对所述第一音频信号进行增益调节得到第二音频信号,并将所述第二音频信号发送给所述第二滤波器;
    所述第二滤波器,用于对接收到的所述目标信号和所述第二音频信号的叠加信号进行滤波处理,得到第一信号;并将所述第一信号发送给所述信号处理器;
    所述信号处理器,用于根据所述第一信号得到所述第一滤波器的滤波参数值,并将所述滤波参数值发送给所述第一滤波器。
  2. 如权利要求1所述的限幅器,其特征在于,所述信号选择器,具体用于:
    接收到第一信号请求后,将所述输入信号作为所述目标信号发送给所述第二滤波器;接收到第二信号请求后,将所述输出信号作为所述目标信号发送给所述第二滤波器。
  3. 如权利要求1或2所述的限幅器,其特征在于,所述第一滤波器和所述第二滤波器均为双二阶滤波器。
  4. 如权利要求1-3任一项所述的限幅器,其特征在于,所述第一滤波器为低架滤波器,所述第二滤波器为低通滤波器。
  5. 如权利要求1-4任一项所述的限幅器,其特征在于,所述第二滤波器的数量为一个或多个,当所述第二滤波器的数量为多个时,多个所述第二滤波器之间的连接方式为以下方式中的任一种:
    每个所述第二滤波器之间串联、每个所述第二滤波器之间并联、指定数量的所述第二滤波器之间串联后继续与剩余数量的所述第二滤波器并联、指定数量的所述第二滤波器之间并联后继续与剩余数量的所述第二滤波器串联。
  6. 如权利要求1-5任一项所述的限幅器,其特征在于,当所述第一音频信号为0时,所述第二滤波器得到的所述第一信号为所述目标信号。
  7. 一种低频抑制的信号输出方法,其特征在于,所述方法包括:
    第一滤波器接收输入信号,并根据当前的滤波参数值对所述输入信号进行滤波处理,得到输出信号;其中,所述滤波参数值通过以下方式确定:
    信号选择器在所述输入信号或者所述输出信号中选择目标信号,并将所述目标信号发送给第二滤波器;
    增益控制器接收外部的第一音频信号,对所述第一音频信号进行增益调节,得到第二音频信号,并将所述第二音频信号发送给所述第二滤波器;
    所述第二滤波器对接收到的所述目标信号和所述第二音频信号的叠加信号进行滤波处理,得到第一信号;并将所述第一信号发送给信号处理器;
    所述信号处理器根据所述第一信号得到所述第一滤波器的滤波参数值。
  8. 如权利要求7所述的信号输出方法,其特征在于,所述方法还包括:
    所述信号选择器接收到第一信号请求后,将所述输入信号发送给所述第二滤波器;所述信号选择器接收到第二信号请求后,将所述输出信号发送给所述第二滤波器。
  9. 如权利要求7或8所述的信号输出方法,其特征在于,所述方法还包括:
    当所述第一音频信号为0时,所述第二滤波器得到的所述第一信号为所述目标信号。
  10. 如权利要求7-9任一项所述的信号输出方法,其特征在于,所述第一滤波器和所述第二滤波器均为双二阶滤波器。
PCT/CN2023/111593 2022-08-19 2023-08-07 一种低频抑制的信号输出方法及限幅器 WO2024037374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211001312.5 2022-08-19
CN202211001312.5A CN117636833A (zh) 2022-08-19 2022-08-19 一种低频抑制的信号输出方法及限幅器

Publications (1)

Publication Number Publication Date
WO2024037374A1 true WO2024037374A1 (zh) 2024-02-22

Family

ID=89940636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111593 WO2024037374A1 (zh) 2022-08-19 2023-08-07 一种低频抑制的信号输出方法及限幅器

Country Status (2)

Country Link
CN (1) CN117636833A (zh)
WO (1) WO2024037374A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317801B1 (en) * 1997-08-14 2008-01-08 Silentium Ltd Active acoustic noise reduction system
CN102460566A (zh) * 2009-04-28 2012-05-16 伯斯有限公司 Anr信号处理增强
CN110225429A (zh) * 2019-06-12 2019-09-10 会听声学科技(北京)有限公司 主动降噪方法、装置及耳机
CN110402463A (zh) * 2017-03-16 2019-11-01 松下知识产权经营株式会社 主动型噪声降低装置和主动型噪声降低方法
CN112788466A (zh) * 2021-02-07 2021-05-11 恒玄科技(上海)股份有限公司 一种主动降噪耳机的滤波器参数配置方法及主动降噪耳机
CN113473294A (zh) * 2021-06-30 2021-10-01 展讯通信(上海)有限公司 系数确定方法及装置
CN113676803A (zh) * 2020-05-14 2021-11-19 华为技术有限公司 一种主动降噪方法及装置
CN114422901A (zh) * 2022-01-27 2022-04-29 恒玄科技(上海)股份有限公司 用于耳机的主动降噪方法、主动降噪系统及降噪耳机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317801B1 (en) * 1997-08-14 2008-01-08 Silentium Ltd Active acoustic noise reduction system
CN102460566A (zh) * 2009-04-28 2012-05-16 伯斯有限公司 Anr信号处理增强
CN110402463A (zh) * 2017-03-16 2019-11-01 松下知识产权经营株式会社 主动型噪声降低装置和主动型噪声降低方法
CN110225429A (zh) * 2019-06-12 2019-09-10 会听声学科技(北京)有限公司 主动降噪方法、装置及耳机
CN113676803A (zh) * 2020-05-14 2021-11-19 华为技术有限公司 一种主动降噪方法及装置
CN112788466A (zh) * 2021-02-07 2021-05-11 恒玄科技(上海)股份有限公司 一种主动降噪耳机的滤波器参数配置方法及主动降噪耳机
CN113473294A (zh) * 2021-06-30 2021-10-01 展讯通信(上海)有限公司 系数确定方法及装置
CN114422901A (zh) * 2022-01-27 2022-04-29 恒玄科技(上海)股份有限公司 用于耳机的主动降噪方法、主动降噪系统及降噪耳机

Also Published As

Publication number Publication date
CN117636833A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
US9553554B2 (en) Signal processing device
EP2695394B1 (en) Integrated psychoacoustic bass enhancement (pbe) for improved audio
WO2015057317A1 (en) Limiting active noise cancellation output
CN108632714B (zh) 扬声器的声音处理方法、装置及移动终端
JP2013029834A (ja) ノイズ除去音声再生
US9552826B2 (en) Frequency characteristic modification device
WO2021189309A1 (zh) 主动降噪的方法、系统、电子设备和芯片
JP2016504868A (ja) マイクロスピーカモジュール、その周波数応答を増強する方法及び電子装置
JP7467422B2 (ja) メディア補償パススルーデバイスにおける動的環境オーバレイ不安定性の検出と抑制
CN113728378A (zh) 用于有源噪声消除系统的风噪声抑制和方法
US11716065B2 (en) Systems and methods of volume limiting
WO2023098401A1 (zh) 具有主动降噪功能的耳机及主动降噪方法
WO2022227982A1 (zh) Tws耳机和tws耳机的播放方法及装置
WO2009081184A1 (en) Noise cancellation system and method with adjustment of high pass filter cut-off frequency
KR100952400B1 (ko) 원하지 않는 라우드 스피커 신호들을 제거하는 방법
CN113409754A (zh) 主动降噪方法、主动降噪装置及半入耳式主动降噪耳机
US20210076132A1 (en) Method and system for optimizing the low-frequency sound rendition of an audio signal
WO2024037374A1 (zh) 一种低频抑制的信号输出方法及限幅器
CN111656436B (zh) 噪声消除滤波器结构、噪声消除系统及信号处理方法
TWI501657B (zh) 電子音訊裝置
TWI715208B (zh) 權重式混合型態主動抗噪系統及控制器
CN113382345B (zh) 音频处理装置及方法
WO2021175267A1 (zh) 一种实现主动噪声消除的方法、装置和电子设备
JP2017076949A (ja) 音の空気吸収を考慮した残響音の生成方法。
KR20240024638A (ko) 전자 장치 및 그 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854277

Country of ref document: EP

Kind code of ref document: A1