WO2024037232A1 - 充电终端 - Google Patents

充电终端 Download PDF

Info

Publication number
WO2024037232A1
WO2024037232A1 PCT/CN2023/105212 CN2023105212W WO2024037232A1 WO 2024037232 A1 WO2024037232 A1 WO 2024037232A1 CN 2023105212 W CN2023105212 W CN 2023105212W WO 2024037232 A1 WO2024037232 A1 WO 2024037232A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
gun
terminal
fan
temperature
Prior art date
Application number
PCT/CN2023/105212
Other languages
English (en)
French (fr)
Inventor
林群
夏丽建
黄思传
张宇庭
张海军
袁志雄
Original Assignee
武汉蔚来能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉蔚来能源有限公司 filed Critical 武汉蔚来能源有限公司
Publication of WO2024037232A1 publication Critical patent/WO2024037232A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the embodiments of the present application relate to the field of vehicle charging technology, and in particular, to a charging terminal.
  • New energy electric vehicles are booming at home and abroad.
  • Battery swapping can currently complete energy replenishment in the fastest 3 minutes, which is completely comparable to the speed of a petrol truck entering the station for refueling; but for charging and energy replenishment methods, the current energy replenishment time (10% SOC ⁇ 90% SOC) is generally 30 minutes ⁇
  • the recharge time for battery packs of 100KWh and above may be longer. In comparison, there is still a gap of about 10 times between the charging time and the time of battery replacement and refueling.
  • CN109599693A sets a sealed cavity inside the terminal block, and the sealed cavity contains liquid metal, thereby realizing cooling of the terminal block.
  • Tesla's patent US11084390B2 the manifold assembly surrounds the first electrical socket and the second electrical socket and the first sleeve and the second sleeve, so that the first sleeve and the second sleeve and the manifold assembly are in the first sleeve and the second sleeve.
  • a hollow internal space is formed between the second sleeve and the manifold assembly, and the heat conductive material flows in the internal space to achieve connector cooling.
  • Tesla's patent US9321362B2 adds a cooling conduit to the charging cable.
  • the cooling conduit forms a fluid channel around at least one electrical contact in the connector.
  • the cooling conduit forms a fluid channel around the inside of the handle of the connector.
  • Siemens' patent DE102010007975A1 in order to solve the problem of life attenuation due to excessive temperature of the power battery during charging, a cooling device is installed inside the charging pile and connected to the charging vehicle through an independent cooling cable to cool the power battery in the vehicle.
  • the charging port includes a charging connector and a fluid connector.
  • the charging connector is used to charge the vehicle, and the fluid connector is used to respond to the vehicle's heat exchange request and vehicle cooling.
  • the system performs heat exchange.
  • Ford Global applied for patent US11052776B2 which enhances the cooling of the electric vehicle battery pack during DC fast charging events by placing fans and coolers inside the charging pile to pass cooling airflow through the thermal management components of the electric vehicle.
  • Ford Global applied for patent US10913369B2. A first loop is set up in the charging pile and a second loop is set up in the vehicle. The second loop transfers the heat of the power battery to the first loop, and the first loop converts the obtained heat into electrical energy. Complete Recovery of charging energy.
  • the charging pile has a charging plug and a medium plug connected to the vehicle.
  • the medium plug is used to connect the charging pile and the vehicle to realize the export and input of cooling/heating medium, so that the charging pile can be an electric vehicle.
  • the car is heated/cooled.
  • Telaidian described a simple independent cooling system for liquid-cooled terminals in CN107878240A. It uses 1 to 4 pipes for isolated heat dissipation and fixed-speed heat dissipation of fans and water pumps to achieve 400A current charging.
  • Xiaopeng's CN209845579U patent describes a control method for fans and water pumps, which also achieves 400A high-current charging.
  • the current main bottleneck lies in the heat dissipation design of components, such as the heat dissipation design of charging gun cables and plug terminals.
  • components such as the heat dissipation design of charging gun cables and plug terminals.
  • Charging heat dissipation cannot achieve greater continuous charging current heat dissipation.
  • pile-vehicle integrated liquid cooling technology is ideal, but actual car companies generally do not agree to leave the heat dissipation design of the battery pack in the car to the charging pile for control.
  • the quality of control is high, and the interfaces and standards are not unified. , the compatibility of different models is poor and it is difficult to be widely used in the market.
  • the independent cooling technology of the terminal system is a better solution.
  • the cooling of the battery pack is controlled inside the car, and the cooling of the charging cable is placed at the charging pile end.
  • Different models and different charging terminals are more compatible.
  • the current thermal design of the system can only achieve continuous heat dissipation of 400A high current, and cannot achieve continuous heat dissipation of higher currents.
  • the present application provides a charging terminal to overcome the above problems or at least partially solve the above problems.
  • An embodiment of the present application provides a charging terminal for charging a target vehicle.
  • the charging terminal includes: a charging gun, which is provided with a liquid inlet pipe and a liquid return pipe; a heat dissipation device, which is provided with an inlet and an outlet, and the inlet is connected to The liquid return pipe is connected through a pipeline; a fan is electrically connected to the heat dissipation device; a storage device is connected to the outlet of the heat dissipation device through a pipeline for storing cooling medium; a conveying device is connected to the storage device through a pipe line connection for transporting the cooling medium in the storage device to the liquid inlet pipe; at least 5 temperature sensors, which are respectively located at the DC+ terminal of the charging gun, the DC- terminal of the charging gun, the liquid outlet of the heat sink, and the inlet of the heat sink.
  • Liquid port fan air inlet
  • control device which is used to receive data from the temperature sensor, control the operation of the conveying device and the fan, so that the cooling medium cools the charging gun, and causes the charging terminal to charge the target vehicle
  • the continuous charging current is above 600 amps.
  • the maximum current that the charging terminal can charge to the target vehicle is above 650 amps.
  • the temperature sensor is used to measure the charging gun DC+ terminal temperature T1 and the charging gun respectively.
  • DC-terminal temperature T2 gun line oil inlet temperature T3, gun line oil outlet temperature T4 and fan air inlet temperature T5.
  • the conveying device when the charging terminal starts charging, the conveying device is controlled to start; when the charging terminal stops charging and ⁇ T ⁇ 1°C, the conveying device is controlled to close.
  • the delivery device is a pump, and the speed of the pump is divided into three gears from low to high.
  • the pump speed is in the first gear and ⁇ T ⁇ 7°C
  • the pump speed is increased to the second gear; when ⁇ T
  • the temperature is ⁇ 12°C, increase the speed of the pump to the third gear, and vice versa, downshift in sequence.
  • the operation of the fan is controlled according to the charging gun DC+ terminal temperature T1, the charging gun DC- terminal temperature T2, the fan air inlet temperature T5, ⁇ T, and the current status of the charging terminal.
  • the temperature T2 regulates the speed of the fan; the fan is controlled to turn off based on ⁇ T, the fan air inlet temperature T5 and the current status of the charging terminal.
  • the fan when the charging terminal starts charging, max (T1, T2) ⁇ 40°C and T5 ⁇ 20°C, the fan is turned on; the fan speed is linearly adjusted according to max (T1, T2); when the charging When the terminal stops charging, ⁇ T ⁇ 1°C and T5 ⁇ 35°C, the fan will turn off.
  • the fan when T1 ⁇ 50°C, the fan operates at full speed.
  • the charging gun includes a gun head, a cable and a gun tail.
  • the cable is provided with two liquid inlet pipes and one liquid return pipe.
  • the two liquid inlet pipes are soaked and coated with DC+ wires and DC- wires respectively.
  • the end of the liquid inlet pipe merges with the gun head and is connected with the liquid return pipe.
  • the liquid return pipe is independent of the two liquid inlet pipes.
  • the gun head is provided with two PIN pins and the ends of the DC+ wire and the DC- wire.
  • the ends of the DC+ wire and the DC- wire are each provided with a crimping area.
  • the two PIN pins are used for electrical connection with the target vehicle.
  • the ends of the two liquid inlet pipes pass through the two PIN needles and the two crimping areas and then merge into the liquid return pipe;
  • the gun tail is provided with a gun tail terminal and an adapter joint, and the end of the liquid inlet pipe passes through The gun tail terminal and the adapter connector, and connect to the liquid inlet pipe of the cable through the adapter connector.
  • the charging gun includes a gun head, a cable and a gun tail.
  • the cable is provided with a liquid inlet pipe and a secondary liquid return pipe.
  • the two liquid return pipes are soaked and coated with DC+ conductors and DC- conductors respectively.
  • the liquid inlet pipe is The ends of the pipes are respectively connected to the secondary liquid return pipes at the lance head, and the liquid inlet pipe is independent of the secondary liquid return pipes.
  • a liquid level sensor is provided in the storage device to monitor whether the coolant in the pipeline leaks;
  • a pressure sensor is provided in the pipeline to monitor whether a high-pressure oil event occurs in the pipeline.
  • the relationship between T1 to T5 follows the formula T1 ⁇ T2 ⁇ T4 ⁇ T3 ⁇ T5.
  • an abnormality alarm is issued.
  • the charging terminal further includes a cabinet, the heat dissipation device, the fan, the storage device, the conveying device and the control device are located inside the cabinet, and the charging gun is located outside the cabinet.
  • liquid inlet pipe or the liquid return pipe is respectively connected to the pipeline inside the cabinet through a bidirectionally cutoff plug-in assembly at the end of the gun.
  • the heat dissipation solution of the embodiment of the present application can enable the continuous charging current of the charging terminal to the target vehicle to be more than 600 amps, thereby improving the charging efficiency, saving charging time, and meeting the needs of new energy vehicle users for quick charging and energy replenishment. .
  • Figure 1 is a schematic diagram of an embodiment of a charging terminal of the present application
  • FIG. 2 is a schematic diagram of an embodiment of the charging gun of the present application.
  • Figure 3 is a cross-sectional view of an embodiment of the gun head of the charging gun of the present application.
  • Figure 4 is a cross-sectional view of the cable of the present application along the B-B direction of Figure 2;
  • Figures 5A-5B are respectively cross-sectional views of the liquid inlet pipe and the liquid return pipe of the present application distributed according to one inlet and two outlet and two inlet and one outlet;
  • Figure 6 is a cross-sectional view of an embodiment of the gun tail of the present application.
  • 7A-7B are respectively a perspective view and a cross-sectional view of the bidirectionally cutoff plug assembly of the present application.
  • Component number 50 Crimping area; 60: Riveting area; 1: Charging gun; 11: Charging gun DC+ terminal temperature sensor; 12: Charging gun DC- terminal temperature sensor; 13: Gun head liquid cooling module; 131: Gun head shell; 132 : DC+ pin; 133: DC-pin; 134: Intermediate card plate; 14: Cable; 141: Cable jacket; 142: Liquid return pipe; 143: Charging gun signal line; 144: DC-wire; 145: Liquid inlet pipe; 146: DC+ wire; 15: Terminal head; 16: DC+ gun tail liquid cooling module; 161: Adapter joint; 162: Gun tail terminal; 17: DC-gun tail liquid cooling module; 18: PE cable ;19: Signal wire plug-in terminal block; 2: Heat dissipation device; 21: Gun wire oil outlet temperature sensor; 22: Gun wire oil inlet temperature sensor; 3: Fan; 31: Fan air inlet temperature sensor; 4: Storage Device; 41: liquid level sensor; 5: valve; 6: conveying device; 7:
  • the “continuous current” refers to the maximum current when the entire system reaches a state of heat dissipation balance under the requirements of national standards.
  • the “maximum current” refers to the Although the entire system has not reached a heat dissipation equilibrium state, it can meet the maximum current for stable charging within one charging cycle or a long time (more than 20 minutes).
  • a charging terminal for charging a target vehicle includes: a charging gun 1, which is provided with a liquid inlet pipe 145 and a liquid return pipe 142 inside;
  • the heat dissipation device 2 is provided with an inlet and an outlet, and the inlet is connected to the liquid return pipe 142 through a pipeline;
  • the fan 3 is electrically connected to the heat dissipation device 2;
  • the storage device 4 is connected to the outlet of the heat dissipation device 2 through a pipe.
  • a conveying device 6 which is connected to the storage device 4 through a pipeline, used to transport the cooling medium in the storage device 4 to the liquid inlet pipe 145; at least 5 temperature sensors, They are respectively located at the DC+ terminal of the charging gun, the DC- terminal of the charging gun, the liquid outlet of the heat sink, the liquid inlet of the heat sink, and the air inlet of the fan to collect the corresponding temperatures everywhere; the control device is used to receive the data of the temperature sensor , control the operation of the conveying device and the fan so that the cooling medium cools the charging gun, so that the continuous charging current of the charging terminal to the target vehicle is above 600 amps, thereby improving the charging efficiency and saving charging time. Meet the needs of new energy vehicle users for quick charging and energy replenishment.
  • the cooling medium includes oily liquid, ethylene glycol aqueous solution, fluorinated liquid, air, etc.
  • the cooling medium is oily liquid.
  • the conveying device 6 conveys the cooling medium in the storage device 4 and enters the charging gun 1 through the liquid inlet pipe 145.
  • the cooling medium dissipates heat to the charging gun 1 and then heats up. It flows out from the liquid return pipe 142 and enters the heat dissipation device 2, fan 3 and
  • the heat dissipation device 2 jointly completes heat dissipation and cooling of the cooling medium, and then the cooling medium enters the storage device 4 .
  • the maximum current of the charging terminal to the target vehicle is above 650 amps.
  • the heat dissipation device 2 can be a fin heat exchanger, a plate heat exchanger, a shell and tube heat exchanger, etc.
  • the heat dissipation device 2 is an aluminum plate fin radiator, which has a compact structure, light weight, and It is small in size and has high heat transfer efficiency. It cooperates with the fan 3 to have stronger heat dissipation capacity.
  • the conveying device 6 may be a pump or other device capable of conveying media.
  • the charging terminal also includes a cabinet, the heat dissipation device 2, the fan 3, the storage device 4, the conveying device 6 and the control device are located inside the cabinet, and the charging gun 1 is located outside the cabinet.
  • One or more of the heat dissipation device 2, fan 3, storage device 4, conveyor device 6 and control device can also be located outside the cabinet to realize heat dissipation of the gun line and terminal cabinet system through liquid-liquid heat exchange.
  • a valve 5 can be provided between the conveying device 6 and the storage device 4 .
  • the control device includes a main control board 7, and the charging terminal includes five temperature sensors.
  • the main control board 7 receives the data of the five temperature sensors, and compares the data or the data with the current temperature of the charging terminal. status to control the operation of the conveying device 6 and the fan 3.
  • the main control board 7 can be an SCT main control board, which is electrically connected to the conveying device 6 and the fan 3 respectively.
  • the DC power supply 8 can supply power to the main control board 7, the fan 3, the conveying device 6, the temperature sensor, etc. respectively.
  • the charging terminal also includes 5 temperature sensors (charging gun DC+ terminal temperature sensor 11, charging gun DC-terminal temperature sensor 12, gun line oil inlet temperature sensor 22, gun line oil outlet temperature sensor 21.
  • the fan 3 air inlet temperature sensor 31) is respectively located at the DC+ terminal and DC- terminal of the charging gun, the liquid outlet of the heat sink 2, the liquid inlet of the heat sink 2, and the air inlet of the fan 3 to measure the DC+ of the charging gun.
  • Terminal temperature T1 charging gun DC-terminal temperature T2, gun line oil inlet temperature T3, gun line oil outlet temperature T4 and fan 3 air inlet temperature T5.
  • the current operating status of the charging terminal includes starting charging, stopping charging, etc.
  • the control pump when the charging terminal starts charging, the control pump is started; when the charging terminal stops charging and ⁇ T ⁇ 1°C, the control pump is turned off.
  • the pump speed can be divided into three gears from low to high. The first gear is 2000rpm, which is 17% duty cycle; the second gear is 2500rpm, which is 22% duty cycle; and the third gear is 3000rpm, which is 27% duty cycle.
  • the charging gun DC+ terminal temperature T1 the charging gun DC- terminal temperature T2
  • the air inlet temperature T5 and ⁇ T of the fan 3 and the current status of the charging terminal control the operation of the fan 3.
  • the turning on of the fan 3 is controlled based on the charging gun DC+ terminal temperature T1, the charging gun DC- terminal temperature T2, the air inlet temperature T5 of the fan 3 and the current status of the charging terminal. For example, when the charging terminal starts charging, When the maximum value max(T1, T2) of T1 and T2 ⁇ 40°C and T5 ⁇ 20°C, the fan 3 is turned on. The speed of the fan 3 is adjusted according to the charging gun DC+ terminal temperature T1 and the charging gun DC- terminal temperature T2.
  • the speed of the fan 3 is linearly adjusted according to max (T1, T2), that is, the value of max (T1, T2) changes. If the value of max(T1, T2) becomes smaller, the speed of fan 3 will be lowered.
  • T1 ⁇ 50°C fan 3 runs at full speed, that is, fan 3 runs at the highest gear.
  • the fan 3 is turned off according to ⁇ T, the air inlet temperature T5 of the fan 3 and the current status of the charging terminal. For example, when the charging terminal stops charging, ⁇ T ⁇ 1°C and T5 ⁇ 35°C, the fan 3 is turned off.
  • This application sets temperature sensors at 5 temperature collection points, and under the control of the SCT main control board 7 logic algorithm, accurately sets the output speed of key liquid cooling components such as the fan 3 and the water pump to achieve accurate real-time dynamics of the liquid cooling system. Adjust to achieve a balance between liquid cooling and noise.
  • the storage device 4 is provided with a liquid level sensor 41 for monitoring whether the coolant in the pipeline leaks; a pressure sensor 9 is provided in the pipeline for monitoring whether an oil leak occurs in the pipeline. High-stress events.
  • the logic control of the liquid level sensor 41 and the pressure sensor 9 and the SCT main control board 7 ensures the safety performance of the charging terminal under various failure scenarios such as coolant leakage, cooling pipeline stuck, excessive bending, damage, etc.
  • the charging gun 1 includes a gun head, a cable 14 and a gun tail.
  • the cables 14 are respectively connected to the gun head and the gun tail.
  • the gun head and the gun tail are respectively provided with gun head liquids.
  • the cable 14 is provided with two liquid inlet pipes 145 and one liquid return pipe 142 (referred to as "two inlets and one out").
  • the two liquid inlet pipes 145 are soaked and coated with DC+ wires respectively. 146 and DC-conductor 144.
  • the end of the two liquid inlet pipes 145 merges with the gun head and is connected with the liquid return pipe 142.
  • the liquid return pipe 142 is independent of the two liquid inlet pipes 145, and the liquid return pipe 142 is connected to the heat dissipation pipe 146.
  • Pack Set 2 is connected to input the heated cooling medium into the heat dissipation device 2.
  • the cable 14 also includes a cable sheath 141, a charging gun signal line 143, a DC+ wire 146, a DC- wire 144, and a PE cable 18.
  • the DC+ conductor 146 and the DC- conductor 144 may both be bare copper wires without multiple strands.
  • the cable 14 may also be provided with one liquid inlet pipe 145 and two liquid return pipes 142 (referred to as "one in and two out"), wherein the two liquid return pipes 142 are soaked and coated with DC+ wires 146 and DC respectively.
  • - Wire 144, the end of the liquid inlet pipe 145 is connected to the secondary liquid return pipe 142 at the gun head, and the liquid inlet pipe 145 is independent of the secondary liquid return pipe 142.
  • the cooling medium in one in and two out brings out more heat, and the cable outer sheath 141 dissipates less heat.
  • the cable outer sheath 141 dissipates less heat. From the perspective of user experience (gun head temperature, gun wire skin temperature), one In and out is more conducive to the heat dissipation of the charging gun 1, because the temperature of the parts that may come into contact with people is lower, and the experience effect is better.
  • the cable 14 itself maintains a lower temperature, which is more conducive to the long-term use of the gun wire and has better durability.
  • the gun head liquid cooling module 13 is provided with a gun head shell 131, two PIN pins (DC+ pin 132 and DC- pin 133), an intermediate card 134, etc., and the ends of the DC+ wire 146 and the DC- wire 144 are provided with crimping connections. Area 50, the two PIN pins are used to electrically connect to the target vehicle. Taking the two-in-one-out pipeline arrangement as an example, the ends of the two liquid inlet pipes 145 pass through the crimping area 50, the two PIN pins, and the middle card plate respectively. 134 and then merge into the liquid return pipe 142.
  • Each liquid inlet pipe 145 takes away the heat generated by the crimping resistor in the crimping area 50 and the heat generated by some pins, thereby ensuring that the temperature rise here will not be too high.
  • the crimping area 50 can also adopt riveting, welding, screw connection, etc.
  • the gun tail liquid cooling module includes a DC+ gun tail liquid cooling module 16 and a DC- gun tail liquid cooling module 17.
  • the DC+ gun tail liquid cooling module 16 is provided with a gun tail terminal 162 and a liquid inlet pipe. 145 and the adapter joint 161, the gun tail terminal 162 can be a copper bar terminal, one end of the liquid inlet pipe 145 is connected to the conveying device 6, and the other end passes through the gun tail terminal 162 and the adapter joint 161, and The adapter joint 161 is connected to the liquid inlet pipe 145 of the cable 14 .
  • the gun tail terminal 162 is provided with a riveted joint 60. The cooling medium takes away the heat from the riveted joint 60 of the gun tail terminal 162.
  • the liquid takes away part of the heat from the gun tail terminal 162 itself to achieve heat dissipation at the gun tail, thereby ensuring the heat dissipation at the gun tail terminal 162.
  • the temperature rise won't be too high.
  • additional temperature sensor to achieve monitoring and thermal management of potentially high temperature areas.
  • the riveting point 60 can also adopt welding, screw connection, etc.
  • the tail of the gun can also be provided with a signal line plug terminal row 19, which can be a 16Pin terminal for outputting various signals, and the PE cable 18 is grounded.
  • the relationship between T1 to T5 follows the formula T1 ⁇ T2 ⁇ T4 ⁇ T3 ⁇ T5.
  • T1 ⁇ T2 can be considered.
  • the main control board 7 receives that the temperature value measured by at least one temperature sensor violates the formula, it indicates that the temperature sensor is abnormal and an abnormality alarm is issued.
  • T1 ⁇ T4 then one of the temperature sensor at the DC+ terminal of the charging gun or the temperature sensor at the oil outlet of the charging gun must be damaged and malfunctioned.
  • the liquid inlet pipe 145 or the liquid return pipe 142 is respectively connected to the pipeline inside the cabinet through a bidirectionally cutoff plug-in assembly at the end of the gun.
  • the two-way cut-off plug-in assembly includes a male head 151 and a female head 152.
  • One end of the male head 151 and the female head 152 is connected to the liquid inlet pipe 145 or the liquid return pipe 142 or the pipeline inside the cabinet. The other end is plugged into each other.
  • the male head 151 and the female head 152 are plugged into each other, the male head 151 and the female head 152 are connected to each other to pass the cooling medium; when the male head 151 and the female head 152 are released from each other, the male head 151 and the female head 152 are both connected. cut off to prevent the cooling medium from flowing out.
  • the liquid return pipe 142 is connected at the end of the gun through the terminal head 15 (male or female) with the terminal head (female or male) provided on the pipeline inside the cabinet to form a bidirectional cutoff plug-in connection. components.
  • the embodiment of the present application uses a two-way cut-off plug-in component to replace the clamp commonly used in the industry, which can realize quick plug-in and pull-out matching between the liquid cooling pipe of the charging gun 1 and the liquid cooling pipe inside the cabinet.
  • a one-way stop valve can also be used in conjunction with other measures to quickly connect the gun tail and the pipeline inside the cabinet.
  • the charging terminal of an embodiment of the present application has a continuous charging current of 600 amperes and a charging time of 30 minutes for performance testing.
  • the test conditions are that the coolant uses dimethyl silicone oil, the temperature T3 of the gun line oil inlet is 25°C in the initial state, and the temperature in the pipeline The liquid flow rate is 4L/min, and the pipeline layout is one in and two out.
  • the following table shows the test results. Among them, the highest temperature point of the gun wire reaches thermal equilibrium after 25 minutes. The maximum temperature rise and temperature meet the standard requirements.
  • the four points of the cable outer skin are within 60°C, and the temperature rise of the gun wire terminal is within 50°C, that is, the charging performance test meets The national standard means that the charging terminal meets the temperature rise requirement for continuous charging of 600 amps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种充电终端,其包括:充电枪(1),其内部设有进液管道(145)和回液管道(142);散热装置(2),其设有入口和出口,入口与回液管道(142)通过管路连接;风机(3),其与散热装置(2)电连接;储存装置(4),其与散热装置(2)的出口通过管路连接,用于储存冷却介质;输送装置(6),其与储存装置(4)通过管路连接,用于将储存装置(4)中的冷却介质输送至进液管道(145);控制装置,控制装置用于控制风机(3)和输送装置(6),以使冷却介质对充电枪(1)进行散热,而使充电终端向目标车辆的充电持续电流在600安培以上。

Description

充电终端
相关申请的交叉引用
本申请要求2022年08月16日提交的、发明名称为“充电终端”的中国专利申请CN202210980073.6的优先权,上述中国专利申请的全部内容通过引用并入本申请中。
技术领域
本申请实施例涉及车辆充电技术领域,尤其涉及一种充电终端。
背景技术
新能源电动汽车在国内外蓬勃发展,当前新能源车的补能有换电和充电两大类。换电目前能做到最快3min完成补能,完全能与油车进站加油的速度媲美;但对于充电补能方式,当前的补能时间(10%SOC~90%SOC)一般在30min~10h之间,对100KWh及以上的电池包的补能时间可能更长。如此相比,充电补能时间跟换电、加油两种补能方式的时间仍有约10倍的差距。
随着新能源电池的不断改进和优化,3C及以上充电电池的不断普及,通过提高电池包的充电电流来缩短新能源电动车的充电时间,已经成为业内发展的主流技术方向,超充终端、一体桩的功率和充电电流进一步提升的主要难点之一在于充电系统的散热设计。GB/T 20134.3规定了没有主动冷却装置的充电产品最大允许充电电流不超过250A,如需继续加大电流则必须采用主动冷却装置来给充电系统散热。比亚迪申请的6项专利CN109599693A、CN109600961A、CN110014953A、CN207416579U、CN110014952A、CN110014955A 均涉及接线端子冷却,其中,CN109599693A是在接线端子内部设置密封腔,密封腔内容纳液态金属,从而实现接线端子降温。Tesla的专利US11084390B2,歧管组件包围第一电插座和第二电插座以及第一套筒和第二套筒,以使第一套筒和第二套筒以及歧管组件在第一套筒和第二套筒与歧管组件之间形成中空的内部空间,热传导材料在所述内部空间流动从而实现连接器冷却。Tesla的专利US9321362B2在充电线缆中增设冷却导管,冷却导管形成围绕连接器中的至少一个电接触件的流体通道,冷却导管形成围绕连接器的把手内部的流体通道。
Siemens的专利DE102010007975A1,为了因动力电池因充电时温度过高而出现寿命衰减的问题,在充电桩内部设置一冷却装置,通过独立的冷却线缆连接带充电车辆从而为车辆中的动力电池进行冷却。Tesla于2014年申请专利US9527403B2,其采用地面式充电桩,充电口包括充电连接器与流体连接器,充电连接器用于对车辆进行充电,而流体连接器用于响应于车辆的热交换请求与车辆冷却系统进行热交换。2105年,Ford Global申请专利US11052776B2,通过在充电桩内部设置风扇和冷却器,将冷却气流穿过电动车辆的热管理部件,从而在直流快速充电事件期间增强电动车辆电池组的冷却。2017年,Ford Global申请专利US10913369B2,充电桩内设置第一回路、车辆设置第二回路,第二回路将动力电池的热量传递给第一回路,第一回路将获得的热量再转换为电能,完成充电能量的回收。2018年,AUDI申请专利US10770815B2,充电桩具有与车辆连接的充电插头和介质插头,所述介质插头用于连接充电桩与车辆从而实现冷却/加热介质的导出与输入,从而使得充电桩可以为电动车进行加热/降温。终端系统单独冷却技术方向,特来电在CN107878240A阐述了一种简单的液冷终端单独散热的系统,采用1~4管道的隔离散热,和风机水泵的定速散热,实现了400A电流的充电。小鹏在CN209845579U专利中阐述了一种风机和水泵的控制方法,同样实现了400A大电流的充电。
综上所述,对于大功率的充电技术,当前主要的瓶颈在于:在部件的散热设计方面,例如充电枪线缆和插接端子的散热设计,当前均只能实现持续400A,最大600A的电流充电散热,无法实现更大的持续充电电流散热。在系统散热设计方面,桩-车一体式液冷技术很理想,但是实际车企一般不会同意将车内电池包的散热设计交给充电桩来管控,管控质量风险大,接口和标准不统一,不同车型兼容性差,很难广泛应用于市场。终端系统单独冷却技术是一个比较好的方案,电池包的冷却放在车内部管控,充电线缆的冷却放在充电桩端,不同车型和不同充电终端兼容性更强。但是当前的系统的热设计也仅能实现400A大电流的持续散热,无法实现更高电流的持续散热。
因此,亟需一种散热效果更优、能实现更高持续充电电流的充电终端。
发明内容
鉴于上述问题,本申请提供一种充电终端,以克服上述问题或者至少部分地解决上述问题。
本申请实施例提供一种用于向目标车辆充电的充电终端,该充电终端包括:充电枪,其内部设有进液管道和回液管道;散热装置,其设有入口和出口,该入口与该回液管道通过管路连接;风机,其与该散热装置电连接;储存装置,其与该散热装置的出口通过管路连接,用于储存冷却介质;输送装置,其与该储存装置通过管路连接,用于将该储存装置中的冷却介质输送至该进液管道;至少5个温度传感器,其分别设于充电枪DC+端子、充电枪DC-端子、散热装置出液口、散热装置进液口、风机进风口;控制装置,其用于接收该温度传感器的数据,控制该输送装置和该风机的运行,以使冷却介质对该充电枪进行冷却,而使该充电终端向该目标车辆的充电持续电流在600安培以上。
可选地,该充电终端向该目标车辆充电的最大电流在650安培以上。
可选地,该温度传感器分别用于测量充电枪DC+端子温度T1、充电枪 DC-端子温度T2、枪线进油口温度T3、枪线出油口温度T4和风机进风口温度T5。
可选地,根据ΔT和/或该充电终端当前的运行状态,控制该输送装置的运行,其中ΔT=T4-T3。
可选地,当该充电终端开始充电时,控制该输送装置启动;当该充电终端停止充电且ΔT≤1℃时,控制该输送装置关闭。
可选地,该输送装置为泵,该泵的转速由低到高分为三档,当泵的转速为一档,且ΔT≥7℃时,将该泵的转速提升为二挡;当ΔT≥12℃时将该泵的转速提升为三挡,反之,依次降档。
可选地,根据充电枪DC+端子温度T1、充电枪DC-端子温度T2、风机进风口温度T5、ΔT和该充电终端当前的状态控制风机的运行。
可选地,根据充电枪DC+端子温度T1、充电枪DC-端子温度T2、风机进风口温度T5和该充电终端当前的状态控制风机的开启;根据充电枪DC+端子温度T1和充电枪DC-端子温度T2对风机进行调速;根据ΔT、风机进风口温度T5和该充电终端当前的状态控制风机的关闭。
可选地,当该充电终端开始充电、max(T1,T2)≥40℃且T5≥20℃时,该风机开启;根据max(T1,T2)对该风机的转速做线性调节;当该充电终端停止充电、ΔT≤1℃且T5≤35℃时,该风机关闭。
可选地,当T1≥50℃时,该风机满转运行。
可选地,该充电枪包括枪头、线缆和枪尾,该线缆设有二进液管道和一回液管道,该二进液管道分别浸泡包覆DC+导线和DC-导线,该二进液管道的端部于该枪头汇合并与该回液管道连通,该回液管道独立于该二进液管道。
可选地,该枪头设有二PIN针和DC+导线和DC-导线的端部,DC+导线和DC-导线的端部各设有压接区域,该二PIN针用于与目标车辆电连接,该二进液管道的端部穿过该二PIN针和该二压接区域后汇流进入回液管道;该枪尾设有枪尾端子和转接接头,该进液管道的端部穿过该枪尾端子和该转接 接头,并通过该转接接头与该线缆的进液管道连接。
可选地,该充电枪包括枪头、线缆和枪尾,该线缆设有一进液管道和二回液管道,该二回液管道分别浸泡包覆DC+导线和DC-导线,该进液管道的端部于该枪头分别与该二回液管道连通,该进液管道独立于该二回液管道。
可选地,该储存装置内设有液位传感器,用于监测该管路内的冷却液是否泄露;该管路中设有压力传感器,用于监测该管路中是否发生油路高压事件。
可选地,T1~T5之间的关系遵循公式T1≈T2≥T4≥T3≥T5,当该控制装置接收到至少一个温度传感器所测量的温度值违反该公式时,发出异常警报。
可选地,该充电终端还包括机柜,该散热装置、该风机、该储存装置、该输送装置和该控制装置设于该机柜的内部,该充电枪设于该机柜的外部。
可选地,该进液管道或该回液管道在枪尾处通过可双向截止的插接组件分别与位于该机柜内部的管路连接。
由以上技术方案可见,本申请实施例的散热方案能使充电终端向目标车辆的充电持续电流在600安培以上,从而提高了充电效率,节省充电时间,满足新能源车用户快速充电补能的需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是本申请一种充电终端的一实施例的示意图;
图2是本申请的充电枪的一实施例的示意图;
图3是本申请的充电枪的枪头的一实施例的剖视图;
图4是本申请的线缆沿图2的B-B方向的剖视图;
图5A-5B分别是本申请的进液管道和回液管道按照一进二出和二进一出分布的剖视图;
图6是本申请的枪尾的一实施例的剖视图;
图7A-7B分别是本申请的可双向截止的插接组件的立体图和剖视图。
元件标号
50:压接区域;60:铆接处;1:充电枪;11:充电枪DC+端子温度传
感器;12:充电枪DC-端子温度传感器;13:枪头液冷模块;131:枪头外壳;132:DC+插针;133:DC-插针;134:中间卡板;14:线缆;141:线缆外皮;142:回液管道;143:充电枪信号线;144:DC-导线;145:进液管道;146:DC+导线;15:端子头;16:DC+枪尾液冷模块;161:转接接头;162:枪尾端子;17:DC-枪尾液冷模块;18:PE线缆;19:信号线对插端子排;2:散热装置;21:枪线出油口温度传感器;22:枪线进油口温度传感器;3:风机;31:风机进风口温度传感器;4:储存装置;41:液位传感器;5:阀门;6:输送装置;7:主控板;8:直流电源;9:压力传感器;151:公头;152:母头。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
所述的“持续电流”是指在满足国标规范要求下,整个系统达到散热平衡的状态时的最大电流。所述的“最大电流”是指在满足国标规范要求下, 整个系统虽未达到散热平衡状态,但能满足一个充电周期或者较长时间(超过20min)内稳定充电的最大电流。
下面结合本申请实施例附图进一步说明本申请实施例具体实现。
参见图1-7B,在本申请一具体实现中,提供一种用于向目标车辆充电的充电终端,该充电终端包括:充电枪1,其内部设有进液管道145和回液管道142;散热装置2,其设有入口和出口,该入口与该回液管道142通过管路连接;风机3,其与该散热装置2电连接;储存装置4,其与该散热装置2的出口通过管路连接,用于储存冷却介质;输送装置6,其与该储存装置4通过管路连接,用于将该储存装置4中的冷却介质输送至该进液管道145;至少5个温度传感器,其分别设于充电枪DC+端子、充电枪DC-端子、散热装置出液口、散热装置进液口、风机进风口,以采集各处相应的温度;控制装置,其用于接收该温度传感器的数据,控制该输送装置和该风机的运行,以使冷却介质对该充电枪进行冷却,而使该充电终端向该目标车辆的充电持续电流在600安培以上,从而提高了充电效率,节省充电时间,满足新能源车用户快速充电补能的需求。
冷却介质包括油性液体、乙二醇水溶液、氟化液、空气等,在本申请一实施例中,冷却介质为油性液体。输送装置6将储存装置4中的冷却介质进行输送,经进液管道145进入充电枪1,冷却介质对充电枪1进行散热后升温,从回液管道142流出,进入散热装置2,风机3和散热装置2共同对冷却介质完成散热和降温,之后冷却介质进入储存装置4中。
在本申请一实施例中,该充电终端向该目标车辆的最大电流在650安培以上。
散热装置2可以为翅片式换热器、板式换热器、管壳式换热器等,在本申请一实施例中,散热装置2为铝板翅片式散热器,结构紧凑、重量轻、体积小、传热效率高,与风机3配合,散热能力更强。
输送装置6可以为泵或其他能够输送介质的装置。在本申请一实施例 中,充电终端还包括机柜,散热装置2、风机3、储存装置4、输送装置6和控制装置设于机柜的内部,该充电枪1设于该机柜的外部。散热装置2、风机3、储存装置4、输送装置6和控制装置中的其中一个或多个也可设于机柜的外部,通过液-液热交换,实现给枪线和终端机柜系统的散热。输送装置6与储存装置4之间可以设有阀门5。
在本申请一实施例中,控制装置包括主控板7,充电终端包括5个温度传感器,该主控板7接收该5个温度传感器的数据,并根据该数据或该数据与充电终端当前的状态,控制该输送装置6和该风机3的运行。主控板7可以为SCT主控板,分别与输送装置6和风机3电气连接,可以由直流电源8分别给主控板7、风机3、输送装置6、温度传感器等供电。
在本申请一实施例中,充电终端还包括5个温度传感器(充电枪DC+端子温度传感器11、充电枪DC-端子温度传感器12、枪线进油口温度传感器22、枪线出油口温度传感器21、风机3进风口温度传感器31),分别设于充电枪DC+端子和DC-端子、散热装置2出液口、散热装置2进液口、风机3进风口,以分别用于测量充电枪DC+端子温度T1、充电枪DC-端子温度T2、枪线进油口温度T3、枪线出油口温度T4和风机3进风口温度T5。在一可选实施例中,输送装置6为泵,根据ΔT和/或该充电终端当前的运行状态,控制泵的运行,其中ΔT=T4-T3。充电终端当前的运行状态包括开始充电、停止充电等。在一实施例中,当该充电终端开始充电时,控制泵启动;当该充电终端停止充电且ΔT≤1℃时,控制泵关闭。泵的转速可以由低到高分为三档,一档为2000rpm,即17%占空比;二档为2500rpm,即22%占空比;三档为3000rpm,即27%占空比。当泵的转速为一档且ΔT≥7℃时,将该泵的转速提升为二挡;当ΔT≥12℃时将该泵的转速提升为三挡。反之,当泵的转速为三档且ΔT<12℃时,将该泵的转速降为二挡;当泵的转速为二档且ΔT<7℃时,将该泵的转速降为一挡。
在一实施例中,根据充电枪DC+端子温度T1、充电枪DC-端子温度T2、 风机3进风口温度T5、ΔT和该充电终端当前的状态控制风机3的运行。作为一可选实施例,根据充电枪DC+端子温度T1、充电枪DC-端子温度T2、风机3进风口温度T5和该充电终端当前的状态控制风机3的开启,例如当该充电终端开始充电、T1与T2的最大值max(T1,T2)≥40℃且T5≥20℃时,该风机3开启。根据充电枪DC+端子温度T1和充电枪DC-端子温度T2对风机3进行调速,例如根据max(T1,T2)对该风机3的转速做线性调节,即max(T1,T2)的数值变大,则调高风机3的转速;max(T1,T2)的数值变小,则调低风机3的转速。又例如当T1≥50℃时,风机3满转运行,即风机3以最高档位运行。根据ΔT、风机3进风口温度T5和该充电终端当前的状态控制风机3的关闭,例如当该充电终端停止充电、ΔT≤1℃且T5≤35℃时,该风机3关闭。
本申请通过在5个温度采集点设置温度传感器,在SCT主控板7逻辑算法的控制下,精确设定风机3、水泵等关键液冷部件的输出转速,实现液冷散热系统精确的实时动态调节,达到液冷散热和噪音之间的均衡。
在一实施例中,储存装置4内设有液位传感器41,用于监测该管路内的冷却液是否泄露;管路中设有压力传感器9,用于监测该管路中是否发生油路高压事件。液位传感器41和压力传感器9与SCT主控板7的逻辑控制,保证了冷却液泄露,冷却管路卡滞、过渡弯曲、损伤等各种失效情景下充电终端的安全性能。
参见图2-3,在一实施例中,充电枪1包括枪头、线缆14和枪尾,其中,线缆14分别连接枪头和枪尾,枪头和枪尾分别设有枪头液冷模块13和枪尾液冷模块。
参见图4-5B,在一实施例中,线缆14设有二进液管道145和一回液管道142(简称“二进一出”),该二进液管道145分别浸泡包覆DC+导线146和DC-导线144,该二进液管道145的端部于该枪头汇合并与该回液管道142连通,该回液管道142独立于二进液管道145,回液管道142又与散热装 置2连通,以将升温后的冷却介质输入散热装置2中,线缆14还包括线缆外皮141、充电枪信号线143、DC+导线146、DC-导线144、PE线缆18。DC+导线146和DC-导线144可均为裸铜线,且未多股线束。在另一实施例中,线缆14也可以设有一进液管道145和二回液管道142(简称“一进二出”),其中,二回液管道142分别浸泡包覆DC+导线146和DC-导线144,该进液管道145的端部于该枪头分别与该二回液管道142连通,进液管道145独立于该二回液管道142。相对二进一出,一进二出的冷却介质带出的热量更多,线缆外皮141散出的热量更少,从用户体验(枪头温度、枪线表皮温度)的角度来看,一进二出更有利于充电枪1的散热,因其与人可能接触的部位温度更低,体验效果更佳。且线缆14本身保持更低的温度,更有利于枪线的长久使用,耐久性能更优。
枪头液冷模块13设有枪头外壳131、二PIN针(DC+插针132和DC-插针133)、中间卡板134等,DC+导线146和DC-导线144的端部设有压接区域50,该二PIN针用于与目标车辆电连接,以二进一出的管道布置方式为例,二进液管道145的端部分别穿过压接区域50、二PIN针、中间卡板134后汇流进入回液管道142,各进液管道145将压接区域50的压接电阻产生的热和和部分Pin针产生的热量带走,从而保证此处的温升不至于太高。压接区域50除了采用压接工艺,还可以采用铆接、焊接、螺钉连接等。
参见图6,在一实施例中,枪尾液冷模块包括DC+枪尾液冷模块16和DC-枪尾液冷模块17,DC+枪尾液冷模块16设有枪尾端子162、进液管道145的端部和转接接头161,枪尾端子162可以为铜排端子,进液管道145的端部一端连通输送装置6,另一端穿过该枪尾端子162和该转接接头161,并通过该转接接头161与该线缆14的进液管道145连通。枪尾端子162设有铆接处60,冷却介质带走了枪尾端子162铆接处60的热量,同时液带走了部分枪尾端子162本身的热量,实现枪尾的散热,从而保证此处的温升不至于太高。同时,为避免在枪尾可能存在的温度过高的风险,可在机柜内布置额外 的温度传感器,实现潜在高温区域的监控和热管理。铆接处60除了采用铆接工艺,还可以采用焊接、螺钉连接等。
枪尾还可以设有信号线对插端子排19,可以为用于输出多种信号的16Pin端子,PE线缆18接地。
在一实施例中,T1~T5之间的关系遵循公式T1≈T2≥T4≥T3≥T5,当T1与T2之间的温度差≤5℃时,可以认为T1≈T2。当该主控板7接收到至少一个温度传感器所测量的温度值违反该公式时,则说明温度传感器异常,发出异常警报。例如T1<T4,则充电枪DC+端子处的温度传感器或者枪线出油口处的温度传感器中必有一个损坏失灵。
在一实施例中,进液管道145或回液管道142在枪尾处通过可双向截止的插接组件分别与位于机柜内部的管路连接。如图7A-7B所述,双向截止的插接组件包括公头151和母头152,公头151和母头152一端与进液管道145或回液管道142或机柜内部的管路套接,另一端相互插接,公头151和母头152相互插接时公头151和母头152相互连通,以通过冷却介质;公头151和母头152相互释放时公头151和母头152均截止,以阻止冷却介质流出。如图2所示,回液管道142在枪尾处通过端子头15(公头或母头)与机柜内部的管路上设置的端子头(母头或公头)对接形成可双向截止的插接组件。本申请实施例以双向截止的插接组件替代业内常用的的卡箍,可以实现充电枪1液冷管道与机柜内部液冷管道的快速插拔配合。在另一实施例中,也可使用单向截止阀配合其他措施实现枪尾和机柜内部的管路的快速连接。
将本申请一实施例的充电终端充电持续电流在600安培,充电时间30min进行性能测试,测试条件是冷却液采用二甲基硅油,初始状态时枪线进油口温度T3为25℃,管道内液体流量为4L/min,管道布置方式为一进二出。下表示出了测试结果,其中,枪线温度最高点在25min后达到热平衡,最高温升及温度符合标准要求,线缆外皮四个点位(枪线长度均分后平均取4个点位)都在60℃以内,枪线端子温升在50℃以内,即充电性能测试符合 国家标准,即充电终端满足600安培持续充电温升要求。
最后应说明的是:以上实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (16)

  1. 一种用于向目标车辆充电的充电终端,其特征在于,该充电终端包括:
    充电枪,其内部设有进液管道和回液管道;
    散热装置,其设有入口和出口,该入口与该回液管道通过管路连接;
    风机,其与该散热装置电连接;
    储存装置,其与该散热装置的出口通过管路连接,用于储存冷却介质;
    输送装置,其与该储存装置通过管路连接,用于将该储存装置中的冷却介质输送至该进液管道;
    至少5个温度传感器,其分别设于充电枪DC+端子、充电枪DC-端子、散热装置出液口、散热装置进液口、风机进风口;
    控制装置,其用于接收该温度传感器的数据,控制该输送装置和该风机的运行,以使冷却介质对该充电枪进行冷却,而使该充电终端向该目标车辆的充电持续电流在600安培以上。
  2. 根据权利要求1所述的充电终端,其特征在于,该充电终端向该目标车辆充电的最大电流在650安培以上。
  3. 根据权利要求1所述的充电终端,其特征在于,该温度传感器分别用于测量充电枪DC+端子温度T1、充电枪DC-端子温度T2、枪线进油口温度T3、枪线出油口温度T4和风机进风口温度T5,根据ΔT和/或该充电终端当前的运行状态,控制该输送装置的运行,其中ΔT=T4-T3。
  4. 根据权利要求3所述的充电终端,其特征在于,当该充电终端开始充电时,控制该输送装置启动;当该充电终端停止充电且ΔT≤1℃时,控制该输送装置关闭。
  5. 根据权利要求4所述的充电终端,其特征在于,该输送装置为泵,该泵的转速由低到高分为三档,当泵的转速为一档,且ΔT≥7℃时,将该泵的转速提升为二挡;当ΔT≥12℃时将该泵的转速提升为三挡,反之,依次降档。
  6. 根据权利要求3所述的充电终端,其特征在于,根据充电枪DC+端子温度T1、充电枪DC-端子温度T2、风机进风口温度T5、ΔT和该充电终端当前的状态控制风机的运行。
  7. 根据权利要求6所述的充电终端,其特征在于,根据充电枪DC+端子温度T1、充电枪DC-端子温度T2、风机进风口温度T5和该充电终端当前的状态控制风机的开启;根据充电枪DC+端子温度T1和充电枪DC-端子温度T2对风机进行调速;根据ΔT、风机进风口温度T5和该充电终端当前的状态控制风机的关闭。
  8. 根据权利要求7所述的充电终端,其特征在于,当该充电终端开始充电、max(T1,T2)≥40℃且T5≥20℃时,该风机开启;根据max(T1,T2)对该风机的转速做线性调节;当该充电终端停止充电、ΔT≤1℃且T5≤35℃时,该风机关闭。
  9. 根据权利要求8所述的充电终端,其特征在于,当T1≥50℃时,该风机满转运行。
  10. 根据权利要求1所述的充电终端,其特征在于,该充电枪包括枪头、线缆和枪尾,该线缆设有二进液管道和一回液管道,该二进液管道分别浸泡包覆DC+导线和DC-导线,该二进液管道的端部于该枪头汇合并与该回液管道连通,该回液管道独立于该二进液管道。
  11. 根据权利要求10所述的充电终端,其特征在于,该枪头设有二PIN针和DC+导线和DC-导线的端部,DC+导线和DC-导线的端部各设有压接区域,该二PIN针用于与目标车辆电连接,该二进液管道的端部穿过该二PIN针和该二压接区域后汇流进入回液管道;该枪尾设有枪尾端子和转接接头,该进液管道的端部穿过该枪尾端子和该转接接头,并通过该转接接头与该线缆的进液管道连接。
  12. 根据权利要求1所述的充电终端,其特征在于,该充电枪包括枪头、线缆和枪尾,该线缆设有一进液管道和二回液管道,该二回液管道分别浸泡 包覆DC+导线和DC-导线,该进液管道的端部于该枪头分别与该二回液管道连通,该进液管道独立于该二回液管道。
  13. 根据权利要求3所述的充电终端,其特征在于,该储存装置内设有液位传感器,用于监测该管路内的冷却液是否泄露;该管路中设有压力传感器,用于监测该管路中是否发生油路高压事件。
  14. 根据权利要求3所述的充电终端,其特征在于,T1~T5之间的关系遵循公式T1≈T2≥T4≥T3≥T5,当该控制装置接收到至少一个温度传感器所测量的温度值违反该公式时,发出异常警报。
  15. 根据权利要求10或12所述的充电终端,其特征在于,该充电终端还包括机柜,该散热装置、该风机、该储存装置、该输送装置和该控制装置设于该机柜的内部,该充电枪设于该机柜的外部。
  16. 根据权利要求15所述的充电终端,其特征在于,该进液管道或该回液管道在枪尾处通过可双向截止的插接组件分别与位于该机柜内部的管路连接。
PCT/CN2023/105212 2022-08-16 2023-06-30 充电终端 WO2024037232A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210980073.6 2022-08-16
CN202210980073.6A CN115352295A (zh) 2022-08-16 2022-08-16 充电终端

Publications (1)

Publication Number Publication Date
WO2024037232A1 true WO2024037232A1 (zh) 2024-02-22

Family

ID=84001644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105212 WO2024037232A1 (zh) 2022-08-16 2023-06-30 充电终端

Country Status (2)

Country Link
CN (1) CN115352295A (zh)
WO (1) WO2024037232A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115352295A (zh) * 2022-08-16 2022-11-18 武汉蔚来能源有限公司 充电终端

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040017664A (ko) * 2002-08-23 2004-02-27 현대자동차주식회사 전기 차량의 냉각 팬 제어장치 및 방법
CN111016707A (zh) * 2020-01-06 2020-04-17 四川永贵科技有限公司 一种电动汽车的液冷大电流充电系统及其控制方法
CN213024106U (zh) * 2020-09-17 2021-04-20 深圳市深国充充电设备有限公司 应用于专业充电站的中央液冷节能控制系统
CN113370814A (zh) * 2021-07-28 2021-09-10 陕西绿能电子科技有限公司 一种液冷充电枪系统及基于其的充电控制方法
CN214164755U (zh) * 2021-01-18 2021-09-10 江阴市中鼎节能流体科技有限公司 一种充电枪液冷系统
CN215154005U (zh) * 2021-05-28 2021-12-14 浙江富士精工科技有限公司 一种充电冷却装置
CN113799632A (zh) * 2021-10-29 2021-12-17 广州锐速智能科技股份有限公司 冷却系统和大功率液冷超级快充设备
CN115352295A (zh) * 2022-08-16 2022-11-18 武汉蔚来能源有限公司 充电终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040017664A (ko) * 2002-08-23 2004-02-27 현대자동차주식회사 전기 차량의 냉각 팬 제어장치 및 방법
CN111016707A (zh) * 2020-01-06 2020-04-17 四川永贵科技有限公司 一种电动汽车的液冷大电流充电系统及其控制方法
CN213024106U (zh) * 2020-09-17 2021-04-20 深圳市深国充充电设备有限公司 应用于专业充电站的中央液冷节能控制系统
CN214164755U (zh) * 2021-01-18 2021-09-10 江阴市中鼎节能流体科技有限公司 一种充电枪液冷系统
CN215154005U (zh) * 2021-05-28 2021-12-14 浙江富士精工科技有限公司 一种充电冷却装置
CN113370814A (zh) * 2021-07-28 2021-09-10 陕西绿能电子科技有限公司 一种液冷充电枪系统及基于其的充电控制方法
CN113799632A (zh) * 2021-10-29 2021-12-17 广州锐速智能科技股份有限公司 冷却系统和大功率液冷超级快充设备
CN115352295A (zh) * 2022-08-16 2022-11-18 武汉蔚来能源有限公司 充电终端

Also Published As

Publication number Publication date
CN115352295A (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
US11590855B2 (en) Electric vehicle fast charging and battery cooling system using a charger cooled fluid-to-battery cooled fluid heat exchange device
US11180044B2 (en) Electric vehicle cooling system
US9761976B2 (en) Actively cooled electrical connection
US20220144115A1 (en) Electrical Vehicle Charging System for Charging an Electrical Vehicle
US20190385765A1 (en) Charging system with cooling tube
US20220337006A1 (en) Vehicle Charging System for Charging an Electrical Vehicle
US10449871B1 (en) Electrical power terminal for a charging system
WO2024037232A1 (zh) 充电终端
CN111016707B (zh) 一种电动汽车的液冷大电流充电系统及其控制方法
CN107425318B (zh) 充电枪
CN218640688U (zh) 一种用于向目标车辆充电的充电终端
CN211592278U (zh) 一种电动汽车的液冷大电流充电系统
CN207416579U (zh) 充电装置以及车辆和充电桩
WO2019126996A1 (zh) 一种浸没式的动力电池散热装置
CN109600960A (zh) 车辆的充电装置以及车辆
WO2020177759A1 (zh) 电连接器及其冷媒插接件、插入端和接收端
US20230051961A1 (en) Electric Vehicle Charging System
CN218257763U (zh) 一种大功率液冷超级充电的直流接插装置
CN217956075U (zh) 一种导电介质及导电介质液冷控制系统
US20220219555A1 (en) Liquid-cooled charging equipment with multiple charging connector assemblies and method of operating the same
CN113192667A (zh) 电能传输装置及电动汽车充电系统
CN215705725U (zh) 车载电池充电系统及车辆
TWI707494B (zh) 對載具電池預先控溫再快速充電的充電設備及系統
EP4210175A1 (en) Charging cable, charging interface and method for charging electric cars
CN215730907U (zh) 电能传输装置及电动汽车充电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854137

Country of ref document: EP

Kind code of ref document: A1