WO2024037181A1 - 一种激光点阵手具及激光点阵治疗设备 - Google Patents

一种激光点阵手具及激光点阵治疗设备 Download PDF

Info

Publication number
WO2024037181A1
WO2024037181A1 PCT/CN2023/101953 CN2023101953W WO2024037181A1 WO 2024037181 A1 WO2024037181 A1 WO 2024037181A1 CN 2023101953 W CN2023101953 W CN 2023101953W WO 2024037181 A1 WO2024037181 A1 WO 2024037181A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens
microlens sheet
dot matrix
lens barrel
microlenses
Prior art date
Application number
PCT/CN2023/101953
Other languages
English (en)
French (fr)
Inventor
李军
顾萦伊
黄君
Original Assignee
上海瑞柯恩激光技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海瑞柯恩激光技术有限公司 filed Critical 上海瑞柯恩激光技术有限公司
Publication of WO2024037181A1 publication Critical patent/WO2024037181A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus

Definitions

  • the invention relates to the field of laser medical technology, and in particular to a laser lattice handpiece and laser lattice therapy equipment.
  • laser In terms of medical cosmetology, laser mainly uses light wave bands that are beneficial to the human body, have strong penetrating ability, and have high absorption rates by human tissues.
  • the laser uses selective photothermal effects and focal photothermal effects on biological tissues to eliminate aging.
  • Atrophic epithelial cells enhance the vitality of skin collagen, thereby increasing skin elasticity, delaying skin aging, and achieving beauty effects.
  • New collagen tissue appears in the dermal tissue after being stimulated to a certain extent.
  • the stimulation of the skin can be a gasification treatment with trauma, or a non-gasification treatment without obvious trauma.
  • the gasification treatment method with trauma has obvious trauma, requires a long time to recover, and the treatment risk is relatively high.
  • the non-gasification treatment method has low risk, the single treatment effect is not very satisfactory.
  • the invention of fractional laser technology, which used focal photothermal treatment a certain degree of satisfactory efficacy was achieved, but the safety was greatly improved, and the operation time and postoperative recovery time were shortened.
  • Fractional laser technology is a fractional laser treatment system that emits tiny laser beams arranged in a lattice pattern to irradiate the treatment area, making tiny holes in the skin and scars, thereby forming a three-dimensional lattice-like vaporization area in the skin and scar layer. , and then cause a series of skin and scar reactions, stimulating the skin and scars to repair themselves, achieving the effects of skin tightening, skin rejuvenation, stain removal and scar improvement. It is a minimally invasive treatment between invasive and non-invasive. Its clinical advantages are clear effects, minimal damage, and short downtime, making it popular among doctors and patients.
  • the existing handpieces either have unadjustable lattice density and distance between dots, requiring different handpieces to be adjusted; or the adjustment structure is complex, and most use stepper motors to change the spacing between the lens light paths to change the lattice distance. Due to the optical The lens has high requirements for spacing, which requires high control accuracy of the motor. At the same time, due to the addition of the motor, on the one hand, the cost is high, and on the other hand, the reliability is reduced.
  • Embodiments of the present invention provide a laser lattice handpiece and laser lattice treatment equipment, so as to provide a laser lattice handpiece that is simple to operate, has a stable structure, and can accurately adjust the treatment area, lattice density and distance between dots. .
  • an embodiment of the present invention provides a laser dot matrix handpiece, including:
  • a displacement structure located at the first end of the lens barrel, moves in the plane where the first end of the lens barrel is located;
  • At least two microlens sheets are fixed in the slot of the displacement structure, including a first microlens sheet and a second microlens sheet;
  • the microlens sheet includes a plurality of microlenses, and the number of microlenses in the first microlens sheet is different from the number of microlenses in the second microlens sheet.
  • the displacement structure includes a variable microlens rotating disk, and the card slot is located on the variable microlens On the lens rotating disk, the variable microlens rotating disk is rotationally connected to the first end of the lens barrel.
  • variable microlens rotating disk is provided with straight knurling.
  • the displacement structure includes a translation bar, the slot is located on the translation bar, and the translation bar is slidingly connected to the first end of the lens barrel.
  • At least one end of the translation bar extending along the sliding direction is provided with a groove.
  • the outer side of the displacement structure is provided with a concave ball groove corresponding to the clamping groove;
  • the first end of the lens barrel is provided with a threaded hole, and a ball plunger threadedly connected to the threaded hole, and the ball plunger is engaged with the concave ball groove to limit the position.
  • the lens barrel includes a lens barrel boss
  • the displacement structure includes a limiting hole
  • the limiting hole is sleeved on the lens barrel boss.
  • the at least two microlens sheets further include a third microlens sheet, the second microlens sheet being located between the first microlens sheet and the third microlens sheet;
  • the number of microlenses in the second microlens sheet is greater than the number of microlenses in the first microlens sheet, and the number of microlenses in the third microlens sheet is greater than the number of microlenses in the second microlens sheet. quantity.
  • the first microlens sheet includes microlenses arranged in a matrix of two rows and two columns
  • the second microlens sheet includes microlenses arranged in a matrix of three rows and three columns
  • the third microlens sheet includes Microlenses arranged in a matrix of four rows and four columns.
  • embodiments of the present invention provide a laser fractional therapy device, which includes the laser fractional handpiece described in the first aspect, and a first lens group, an X-direction scanning galvanometer, and a Y-direction scanning galvanometer arranged sequentially along the optical axis. Scan galvanometer and second lens group.
  • An embodiment of the present invention provides a laser dot matrix handpiece.
  • a shift structure is provided at the first end of the lens barrel.
  • the shift structure includes at least two card slots.
  • the at least two card slots are respectively used to install a third lens with a different number of microlenses.
  • the movement of the displacement structure drives the first microlens sheet to move into the optical path of the lens barrel (for example, to the axis of the lens barrel); when it is necessary to use the second microlens sheet
  • the second microlens sheet is driven to move into the optical path of the lens barrel (for example, to the axis of the lens barrel).
  • Embodiments of the present invention switch different microlens sheets by moving the displacement structure, thereby realizing a laser dot matrix handpiece that is simple to operate, has a stable structure, and can accurately adjust the treatment area, dot matrix density, and distance between dots.
  • Figure 1 is a schematic three-dimensional structural diagram of a laser dot matrix handpiece provided by an embodiment of the present invention
  • FIG 2 is an explosion diagram of the laser dot matrix handpiece shown in Figure 1;
  • Figure 3 is a schematic diagram of the displacement structure in the laser dot matrix handpiece shown in Figure 1;
  • Figure 4 is a schematic cross-sectional structural diagram along AA in Figure 3;
  • Figure 5 is a schematic three-dimensional structural diagram of another laser dot matrix handpiece provided by an embodiment of the present invention.
  • Figure 6 is an explosion diagram of the laser dot matrix handpiece shown in Figure 5;
  • Figure 7 is a schematic diagram of the displacement structure in the laser dot matrix handpiece shown in Figure 5;
  • Figure 8 is a schematic cross-sectional structural diagram along AA in Figure 7;
  • Figure 9 is a schematic cross-sectional structural diagram along BB in Figure 7;
  • Figure 10 is a schematic three-dimensional structural diagram of the first microlens sheet provided by an embodiment of the present invention.
  • Figure 11 is a schematic top structural view of the first microlens sheet shown in Figure 10;
  • Figure 12 is a schematic three-dimensional structural diagram of the second microlens sheet provided by an embodiment of the present invention.
  • Figure 13 is a schematic top structural view of the second microlens sheet shown in Figure 12;
  • Figure 14 is a schematic three-dimensional structural diagram of the third microlens sheet provided by an embodiment of the present invention.
  • Figure 15 is a schematic top structural view of the third microlens sheet shown in Figure 14;
  • Figure 16 is a schematic diagram of a laser fractional therapy device provided by an embodiment of the present invention.
  • Figure 1 is a schematic three-dimensional structural diagram of a laser dot matrix handpiece provided by an embodiment of the present invention.
  • Figure 2 is an exploded schematic diagram of the laser dot matrix handpiece shown in Figure 1.
  • Figure 3 is a schematic diagram of the laser dot matrix handpiece shown in Figure 1.
  • Figure 4 is a schematic diagram of the cross-sectional structure along AA in Figure 3.
  • the laser dot matrix handpiece includes a displacement structure 02, a lens barrel 03 and at least two microlens sheets 08.
  • the displacement structure 02 is located at the first end of the lens barrel 03 .
  • the displacement structure 02 can move in the plane where the first end of the lens barrel 03 is located.
  • the second end of the lens barrel 03 is opposite to the first end of the lens barrel 03 .
  • the displacement structure 02 includes at least two slots 13 . At least two microlens sheets 08 are fixed in the slots 13 of the displacement structure 02 . One microlens sheet 08 is located in one slot 13 of the shift structure 02 , and two microlens sheets 08 are respectively located in two slots 13 of the shift structure 02 .
  • the number of card slots 13 is equal to the number of microlens sheets 08 , and each card slot 13 is correspondingly installed with one microlens sheet 08 .
  • the number of the card slots 13 is greater than the number of the microlens sheets 08 .
  • the plurality of microlens sheets 08 are respectively installed in the plurality of card slots 13 , and some of the card slots 13 do not have the microlens sheets 08 installed therein.
  • the at least two microlens sheets 08 include a first microlens sheet 04 and a second microlens sheet 05 .
  • microlens lens 08 includes a plurality of microlenses, that is, both the first microlens sheet 04 and the second microlens sheet 05 include a plurality of microlenses.
  • the number of microlenses in the first microlens sheet 04 is different from the number of microlenses in the second microlens sheet 05 .
  • the embodiment of the present invention provides a laser dot matrix handpiece.
  • a shift structure 02 is provided at the first end of the lens barrel 03.
  • the shift structure 02 includes at least two card slots 13.
  • the at least two card slots 13 are respectively used to install micro-
  • the first microlens sheet 04 and the second microlens sheet 05 have different numbers of lenses.
  • the movement of the displacement structure 02 drives the first microlens sheet 04 to move into the optical path of the lens barrel 03 (for example, to the axis of the lens barrel 03);
  • the movement of the displacement structure 02 drives the second microlens sheet 05 to move into the optical path of the lens barrel 03 (for example, to the axis of the lens barrel 03).
  • the embodiment of the present invention switches different microlens sheets 08 by moving the displacement structure 02, thereby realizing a laser lattice handpiece that is simple to operate, has a stable structure, and can accurately adjust the treatment area, lattice density, and distance between dots.
  • Embodiments of the present invention provide a laser lattice handpiece that adopts the concept of replacing the microlens array without changing the subsequent optical path design, thereby changing the number of lattice on the treatment surface.
  • An embodiment of the present invention provides a laser lattice handpiece, which can be an erbium laser product lattice scanning product and used for skin beauty and treatment.
  • the shift structure 02 includes a variable microlens rotating disk, the slot 13 is located on the variable microlens rotating disk, and the variable microlens rotating disk is rotationally connected to the first part of the lens barrel 03 end.
  • the shift structure 02 includes a variable microlens rotating disk, and different microlens sheets 08 are switched by rotating the variable microlens rotating disk.
  • the first microlens sheet 04 is driven to move into the optical path of the lens barrel 03 by rotating the variable microlens rotating disk (for example, shift to the axis of the lens barrel 03); in a scene where the second microlens sheet 05 needs to be used, by rotating the variable microlens rotating disk, the second microlens sheet 05 is driven to move into the optical path of the lens barrel 03 (for example, moving to the axis of lens barrel 03).
  • the outer surface of the variable microlens rotating disk is provided with straight knurling 14.
  • the shape of the variable microlens rotating disk is cylindrical.
  • the side of the variable microlens rotating disk is a cylindrical surface.
  • the side of the variable microlens rotating disk is provided with straight knurling 14 for increasing the number of fingers and the variable microlens rotating disk. The friction force is convenient for finger operation.
  • Figure 5 is a schematic three-dimensional structural diagram of another laser dot matrix handpiece provided by an embodiment of the present invention.
  • Figure 6 is an exploded schematic diagram of the laser dot matrix handpiece shown in Figure 5.
  • Figure 7 is a schematic view of the laser dot matrix handpiece shown in Figure 5.
  • Figure 8 is a schematic cross-sectional structural diagram along AA in Figure 7.
  • Figure 9 is a cross-sectional structural diagram along BB in Figure 7.
  • the shift structure 02 includes translation bars and slots. 13 is located on the translation bar, which is slidingly connected to the first end of the lens barrel 03.
  • the shift structure 02 includes a translation bar, and different microlens sheets 08 are switched by pushing and pulling the translation bar.
  • the first microlens sheet 04 is driven to move into the optical path of the lens barrel 03 (for example, to the lens barrel 03 ) by pushing and pulling the translation bar. on the axis of the barrel 03); in a scene where the second microlens sheet 05 needs to be used, push and pull the translation bar to drive the second microlens sheet 05 to move into the optical path of the lens barrel 03 (for example, move to the axis of the lens barrel 03 superior).
  • At least one end of the translation bar extending along the sliding direction is provided with a groove 16.
  • the shape of the translation bar is a long strip, and the translation bar extends along its sliding direction.
  • At least one end of the translation bar is provided with a groove 16 for increasing the contact force between the fingers and the translation bar to facilitate finger operation.
  • a groove 16 is provided at both ends of the translation bar to facilitate finger movement. Push and pull the pan bar.
  • the outer side of the displacement structure 02 is provided with a concave ball groove 15 corresponding to the clamping groove 13 .
  • Each retaining groove 13 is provided with a concave ball groove 15 correspondingly.
  • the first end of the lens barrel 03 is provided with a threaded hole 11 and a ball plunger 01 threadedly connected to the threaded hole 11 .
  • the ball head plunger 01 and the concave ball groove 15 are engaged and limited.
  • the ball plunger 01 includes a body part, a spring and a pressing part. One end of the spring is in contact with the body part, and the other end of the spring is in contact with the pressing part. As the ball plunger 01 is screwed into the threaded hole 11 to a deeper and deeper depth, the spring of the ball plunger 01 is compressed, pressing the pressing portion of the ball plunger 01 into contact with the concave ball groove 15 .
  • the shift structure 02 includes a variable microlens rotating disk, a slot 13 is located on the variable microlens rotating disk, and a concave ball groove 15 corresponding to the slot 13 is located on the variable microlens. on the outside of the rotating disk.
  • the variable microlens rotating disk is rotated, different microlens sheets 08 are switched, and correspondingly, the concave ball grooves 15 corresponding to the different microlens sheets 08 are switched.
  • the straight line where the one-to-one corresponding card groove 13 and the concave ball groove 15 are located passes through the center of the variable microlens rotating disk.
  • the displacement structure 02 includes a translation bar, the locking groove 13 is located on the translation bar, and the concave ball groove 15 corresponding to the locking groove 13 is located on the outer surface of the translation bar.
  • the translation bar is pushed and pulled in translation, different microlens sheets 08 are switched, and correspondingly, the concave ball grooves 15 corresponding to different microlens sheets 08 are switched.
  • the lens barrel 03 includes a lens barrel boss 07
  • the displacement structure 02 includes a limiting hole
  • the limiting hole 12 is sleeved on the lens barrel boss 07 .
  • the lens barrel boss 07 limits the movement range of the shift structure 02 and plays a role in limiting the position of the shift structure 02 to prevent the operator from directly moving the microlens sheet 08 outside the lens barrel 03 due to misoperation, thereby contaminating the microlens sheet. 08 surface affects the overall accuracy of use.
  • At least two microlens sheets 08 further include a third microlens sheet 06 .
  • the second microlens sheet 05 is located between the first microlens sheet 04 and the third microlens sheet 06 .
  • the number of microlenses in the second microlens sheet 05 is greater than the number of microlenses in the first microlens sheet 04
  • the number of microlenses in the third microlens sheet 06 is greater than the number of microlenses in the second microlens sheet 05 .
  • the first microlens sheet 04 , the second microlens sheet 05 and the third microlens sheet 06 are arranged in sequence, and the microlenses in the first microlens sheet 04 , the second microlens sheet 05 and the third microlens sheet 06 are arranged in sequence.
  • the number of lenses increases sequentially to facilitate gradual switching of different lattice densities or lattice spacing.
  • Figure 10 is a schematic three-dimensional structural view of the first microlens sheet provided by an embodiment of the present invention.
  • Figure 11 is a schematic top structural view of the first microlens sheet shown in Figure 10.
  • Figure 12 is a second microlens sheet provided by an embodiment of the present invention.
  • Figure 13 is a schematic top view of the structure of the second microlens sheet shown in Figure 12.
  • Figure 14 is a schematic three-dimensional structure of the third microlens sheet provided by the embodiment of the present invention.
  • Figure 15 is a schematic view of the third microlens sheet shown in Figure 14. Schematic top view of the structure of the microlens sheet, refer to Figures 10 to 15.
  • the first microlens sheet 04 includes microlenses arranged in a matrix of two rows and two columns
  • the second microlens sheet 05 includes microlenses arranged in a matrix of three rows and three columns.
  • the third microlens sheet 06 includes microlenses arranged in a matrix of four rows and four columns.
  • the plurality of microlenses in the microlens sheet 08 can also be arranged in an annular array or other irregular arrays.
  • the laser dot matrix handpiece may include more than three microlens sheets 08, where: There are at least two microlens sheets 08 with different numbers of microlenses.
  • the displacement structure 02 in the laser lattice handpiece can be moved manually (rotation or translation push and pull).
  • the laser lattice handpiece includes a driving motor, and the driving electrodes are used to drive the displacement structure 02 to move (rotate or translate and push and pull).
  • FIG. 16 is a schematic diagram of a laser fractional therapy device provided by an embodiment of the present invention.
  • the laser fractional therapy device includes those in the above embodiments.
  • the laser dot matrix handpiece 21 (the microlens sheet in the laser dot matrix handpiece 21 is shown in Figure 16, and the lens barrel is not shown), as well as the first lens group 22 and the X-direction scanning galvanometer 23 arranged sequentially along the optical axis. , Y-direction scanning galvanometer 24 and second lens group 25 .
  • the first lens group 22 is located between the laser dot matrix handpiece 21 and the X-direction scanning galvanometer 23, and the second lens group 25 is located between the Y-direction scanning galvanometer 24 and the treatment surface.
  • the treatment surface is used to receive the laser lattice, and the treatment surface can be human skin, for example.
  • the microlens sheet 08 disperses the incident light into multiple tiny laser beams arranged in a dot matrix. After the multiple tiny laser beams are arranged in a dot matrix, they pass through the first lens group 22 and are projected to the X-direction scanning galvanometer 23 and the Y-direction.
  • the scanning galvanometer 24 realizes scanning in the X direction by the vibration of the X-direction scanning galvanometer 23 in the X direction, and the scanning in the Y direction by the vibration of the Y-direction scanning galvanometer 24 in the Y direction.
  • the light emitted from the Y-direction scanning galvanometer 24 is projected to the second lens group 25, passes through the second lens group 25, and is projected to the treatment surface. Since the laser fractional therapy equipment in the embodiment of the present invention includes the laser fractional handpiece 21 in the above embodiment, the number of fractional arrays that finally reach the treatment surface can change the spacing and the number of points to achieve scanning within a certain range, so that achieve the purpose of laser treatment.
  • the first lens group 22 is fixed in the slot 13 provided at the second end of the lens barrel 03 , and is displaced along the extension direction of the lens barrel 03 (ie, the axis direction of the lens barrel 03 ). Structure 02 and No. The distance between a lens group 22 remains unchanged.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Laser Beam Processing (AREA)
  • Laser Surgery Devices (AREA)

Abstract

一种激光点阵手具及激光点阵治疗设备,激光点阵手具包括:镜筒(03);移位结构(02);至少两个微透镜片(08)。移位结构(02)位于镜筒(03)的第一端,并在第一端的平面内移动;至少两个微透镜片(08),固定于移位结构(02)的卡槽(13)内,包括第一微透镜片(04)和第二微透镜片(05);微透镜片(08)包括多个微透镜,第一微透镜片(04)中微透镜的数量与第二微透镜片(05)中微透镜的数量不同。激光点阵手具及激光点阵治疗设备,其治疗面积、点阵密度和点间距离都可精确调节。

Description

一种激光点阵手具及激光点阵治疗设备 技术领域
本发明涉及激光医疗技术领域,尤其涉及一种激光点阵手具及激光点阵治疗设备。
背景技术
激光在医疗美容方面,主要是采用了对人体有益、透过能力较强、人体组织吸收率高的光波波段,利用激光对生物组织选择性光热作用和局灶性光热作用,通过去除衰老萎缩的上皮细胞,增强皮肤胶原蛋白活力,从而增加皮肤弹性,延缓皮肤的衰老,起到养颜美容的效果。
真皮组织在受到一定的刺激后出现新的胶原蛋白组织,对皮肤的刺激可以是带有创伤的气化性治疗方法,也可以是没有明显创伤的非气化型的治疗。带有创伤的气化性治疗方法具有明显的创伤,需要有较长的时间恢复,而且治疗风险较大,非气化性治疗方法虽然风险小,单治疗效果不是很理想。直到点阵激光技术发明,利用局灶性光热作用治疗,从而达到了一定程度满意的疗效,但是安全性却大大提高,缩短了手术时间和术后恢复时间。
点阵激光技术是由点阵激光治疗系统发出的点阵状排列的微小激光光束照射治疗区域,在皮肤和瘢痕上打上微细的小孔,从而在皮肤和瘢痕层形成立体点阵状气化区,继而引起一连串的皮肤和瘢痕反应,刺激皮肤和瘢痕进行自我修复,达到紧肤、嫩肤、去除色斑及改善瘢痕的效果,是介于有创和无创之间的一种微创治疗。其临床优势是效果明确、损伤小、停工期短,深受医患欢迎。
在激光医美行业,激光治疗设备的应用手具,有很多是以使用治疗手柄来实现对患者病患组织的治疗目的,如蜂巢点阵手柄、DOE衍射手柄等。此类手具是将激光器输入的大光斑平行光束,分散并聚焦为多个成点阵状的更细小的微光束。以此来实现更微小的治疗创伤面及更集中的激光能量。临床应用上,需要针对患者具体情况选择不同密度、间距的激光点阵,从而达到最好的资料效果。现有的手具要么点阵密度和点间距离不可调,需要更换不同手具进行调节;要么调节结构复杂,多数通过步进电机改变透镜光路之间的间隔,以改变点阵距离,由于光学镜片对间隔要求较高,从而对电机的控制精度要求较高,同时由于电机的加入,一方面成本较高,另外造成可靠性降低。
发明内容
本发明实施例提供一种激光点阵手具及激光点阵治疗设备,以实现提供一种操作简单,结构稳定,治疗面积、点阵密度和点间距离都可精确调节的激光点阵手具。
第一方面,本发明实施例提供一种激光点阵手具,包括:
镜筒;
移位结构,位于所述镜筒的第一端,在所述镜筒的第一端所在平面内移动;
至少两个微透镜片,固定于所述移位结构的卡槽内,包括第一微透镜片和第二微透镜片;
所述微透镜片包括多个微透镜,所述第一微透镜片中微透镜的数量与所述第二微透镜片中微透镜的数量不同。
可选地,所述移位结构包括可变微透镜旋转盘,所述卡槽位于所述可变微 透镜旋转盘上,所述可变微透镜旋转盘转动连接于所述镜筒的第一端。
可选地,所述可变微透镜旋转盘的外侧面设置有直纹滚花。
可选地,所述移位结构包括平移条,所述卡槽位于所述平移条上,所述平移条滑动连接于所述镜筒的第一端。
可选地,所述平移条沿滑动方向延伸的至少一个端部设置有凹槽。
可选地,所述移位结构的外侧面设置有与所述卡槽对应的凹球槽;
所述镜筒的第一端设置有螺纹孔,以及与所述螺纹孔螺纹连接的球头柱塞,所述球头柱塞与所述凹球槽卡接限位。
可选地,所述镜筒包括镜筒凸台,所述移位结构包括限位孔,所述限位孔套接于所述镜筒凸台上。
可选地,所述至少两个微透镜片还包括第三微透镜片,所述第二微透镜片位于所述第一微透镜片与所述第三微透镜片之间;
所述第二微透镜片中微透镜的数量大于所述第一微透镜片中微透镜的数量,所述第三微透镜片中微透镜的数量大于所述第二微透镜片中微透镜的数量。
可选地,所述第一微透镜片包括两行两列矩阵排布的微透镜,所述第二微透镜片包括三行三列矩阵排布的微透镜,所述第三微透镜片包括四行四列矩阵排布的微透镜。
第二方面,本发明实施例提供一种激光点阵治疗设备,包括第一方面所述的激光点阵手具,以及沿光轴依次设置的第一透镜组、X方向扫描振镜、Y方向扫描振镜和第二透镜组。
本发明实施例提供一种激光点阵手具,在镜筒的第一端设置移位结构,移位结构包括至少两个卡槽,至少两个卡槽分别用于安装微透镜数量不同的第一 微透镜片和第二微透镜片。从而,在需要采用第一微透镜片的场景中,通过移位结构的移动,带动第一微透镜片移动至镜筒的光路中(例如移动至镜筒的轴线上);在需要采用第二微透镜片的场景中,通过移位结构的移动,带动第二微透镜片移动至镜筒的光路中(例如移动至镜筒的轴线上)。本发明实施例通过移动移位结构,来切换不同的微透镜片,实现了操作简单,结构稳定,治疗面积、点阵密度和点间距离都可精确调节的激光点阵手具。
附图说明
图1为本发明实施例提供的一种激光点阵手具的立体结构示意图;
图2为图1所示激光点阵手具的爆炸示意图;
图3为图1所示激光点阵手具中移位结构的示意图;
图4为沿图3中AA的剖面结构示意图;
图5为本发明实施例提供的另一种激光点阵手具的立体结构示意图;
图6为图5所示激光点阵手具的爆炸示意图;
图7为图5所示激光点阵手具中移位结构的示意图;
图8为沿图7中AA的剖面结构示意图;
图9为沿图7中BB的剖面结构示意图;
图10为本发明实施例提供的第一微透镜片的立体结构示意图;
图11为图10所示第一微透镜片的俯视结构示意图;
图12为本发明实施例提供的第二微透镜片的立体结构示意图;
图13为图12所示第二微透镜片的俯视结构示意图;
图14为本发明实施例提供的第三微透镜片的立体结构示意图;
图15为图14所示第三微透镜片的俯视结构示意图;
图16为本发明实施例提供的一种激光点阵治疗设备的示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
图1为本发明实施例提供的一种激光点阵手具的立体结构示意图,图2为图1所示激光点阵手具的爆炸示意图,图3为图1所示激光点阵手具中移位结构的示意图,图4为沿图3中AA的剖面结构示意图,参考图1-图4,激光点阵手具包括移位结构02、镜筒03和至少两个微透镜片08。移位结构02位于镜筒03的第一端。移位结构02可以在镜筒03的第一端所在平面内移动。沿镜筒03的延伸方向(即镜筒03的轴线方向),移位结构02与镜筒03的第二端之间的距离保持不变。其中,镜筒03的第二端与镜筒03的第一端相对。
移位结构02包括至少两个卡槽13。至少两个微透镜片08固定于移位结构02的卡槽13内。一个微透镜片08位于移位结构02的一个卡槽13内,两个微透镜片08分别位于移位结构02的两个卡槽13内。在一实施方式中,卡槽13的数量等于微透镜片08的数量,每一个卡槽13对应安装一个微透镜片08。在另一实施方式中,卡槽13的数量大于微透镜片08的数量,多个微透镜片08分别对应安装于多个卡槽13内,且存在部分卡槽13未安装微透镜片08。
至少两个微透镜片08包括第一微透镜片04和第二微透镜片05。微透镜片 08包括多个微透镜,即,第一微透镜片04和第二微透镜片05均包括多个微透镜。第一微透镜片04中微透镜的数量与第二微透镜片05中微透镜的数量不同。
本发明实施例提供一种激光点阵手具,在镜筒03的第一端设置移位结构02,移位结构02包括至少两个卡槽13,至少两个卡槽13分别用于安装微透镜数量不同的第一微透镜片04和第二微透镜片05。从而,在需要采用第一微透镜片04的场景中,通过移位结构02的移动,带动第一微透镜片04移动至镜筒03的光路中(例如移动至镜筒03的轴线上);在需要采用第二微透镜片05的场景中,通过移位结构02的移动,带动第二微透镜片05移动至镜筒03的光路中(例如移动至镜筒03的轴线上)。本发明实施例通过移动移位结构02,来切换不同的微透镜片08,实现了操作简单,结构稳定,治疗面积、点阵密度和点间距离都可精确调节的激光点阵手具。
需要说明的是,在已知技术中,采用电机改变成像透镜之间的距离,进而实现点阵数目的变换,成本较高,而且结构复杂。本发明实施例提供一种激光点阵手具,采用微透镜阵列更换的构思,不改变后面的光路设计,从而改变治疗面的点阵数目。本发明实施例提供一种激光点阵手具,可以为铒激光产品点阵扫描产品,用于皮肤美容和治疗。
可选地,参考图1-图4,移位结构02包括可变微透镜旋转盘,卡槽13位于可变微透镜旋转盘上,可变微透镜旋转盘转动连接于镜筒03的第一端。本发明实施例中,移位结构02包括可变微透镜旋转盘,通过转动可变微透镜旋转盘,来切换不同的微透镜片08。
示例性地,参考图1-图4,在需要采用第一微透镜片04的场景中,通过转动可变微透镜旋转盘,带动第一微透镜片04移动至镜筒03的光路中(例如移 动至镜筒03的轴线上);在需要采用第二微透镜片05的场景中,通过转动可变微透镜旋转盘,带动第二微透镜片05移动至镜筒03的光路中(例如移动至镜筒03的轴线上)。
可选地,参考图1-图4,可变微透镜旋转盘的外侧面设置有直纹滚花14。可变微透镜旋转盘的形状呈圆柱形,可变微透镜旋转盘的侧面为圆柱面,可变微透镜旋转盘的侧面设置有直纹滚花14,用于增加手指与变微透镜旋转盘的摩擦力,方便手指操作。
图5为本发明实施例提供的另一种激光点阵手具的立体结构示意图,图6为图5所示激光点阵手具的爆炸示意图,图7为图5所示激光点阵手具中移位结构的示意图,图8为沿图7中AA的剖面结构示意图,图9为沿图7中BB的剖面结构示意图,参考图5-图9,移位结构02包括平移条,卡槽13位于平移条上,平移条滑动连接于镜筒03的第一端。本发明实施例中,移位结构02包括平移条,通过平移推拉平移条,来切换不同的微透镜片08。
示例性地,参考图5-图9,在需要采用第一微透镜片04的场景中,通过平移推拉平移条,带动第一微透镜片04移动至镜筒03的光路中(例如移动至镜筒03的轴线上);在需要采用第二微透镜片05的场景中,通过平移推拉平移条,带动第二微透镜片05移动至镜筒03的光路中(例如移动至镜筒03的轴线上)。
可选地,参考图5-图9,平移条沿滑动方向延伸的至少一个端部设置有凹槽16。平移条的形状呈长条状,平移条沿其滑动方向延伸。平移条的至少一个端部设置有凹槽16,用于增加手指与平移条的接触力,方便手指操作。
示例性地,参考图5-图9,平移条的两端分别设置有一个凹槽16,便手指 推拉平移条。
可选地,参考图1-图9,移位结构02的外侧面设置有与卡槽13对应的凹球槽15。每一个卡槽13对应地设置一个凹球槽15。镜筒03的第一端设置有螺纹孔11,以及与螺纹孔11螺纹连接的球头柱塞01。球头柱塞01与凹球槽15卡接限位。在选定所需要的微透镜片08后,将所需要的微透镜片08移动至镜筒03的光路中,与该微透镜片08所在卡槽13对应的凹球槽15与螺纹孔11对接,将球头柱塞01拧入到镜筒03上的螺纹孔11,直至球头柱塞01进入到凹球槽15,实现对凹球槽15的限位,从而实现对所需要的微透镜片08的限位。
示例性地,参考图2和图4,球头柱塞01包括本体部、弹簧和按压部,弹簧的一端与本体部接触,弹簧的另一端与按压部接触。随着球头柱塞01拧入螺纹孔11的深度越来越深,球头柱塞01的弹簧被压缩,将球头柱塞01的按压部与凹球槽15压紧抵接。
示例性地,参考图1-图4,移位结构02包括可变微透镜旋转盘,卡槽13位于可变微透镜旋转盘上,与卡槽13对应的凹球槽15位于可变微透镜旋转盘的外侧面上。转动可变微透镜旋转盘时,切换不同的微透镜片08,对应地,切换与不同的微透镜片08对应的凹球槽15。
示例性地,参考图1-图4,一一对应的卡槽13和凹球槽15所在的直线,穿过可变微透镜旋转盘的中心。
示例性地,参考图5-图9,移位结构02包括平移条,卡槽13位于平移条上,与卡槽13对应的凹球槽15位于平移条的外侧面上。平移推拉平移条时,切换不同的微透镜片08,对应地,切换与不同的微透镜片08对应的凹球槽15。
示例性地,参考图5-图9,一一对应的卡槽13和凹球槽15所在的直线, 与平移条的滑动方向垂直。
可选地,参考图1-图9,镜筒03包括镜筒凸台07,移位结构02包括限位孔,限位孔12套接于镜筒凸台07上。镜筒凸台07限制移位结构02的移动范围,对移位结构02起到限位作用,防止由于操作者误操作,直接将微透镜片08移动到镜筒03外,从而污染微透镜片08的表面,影响整体使用精度。
可选地,参考图1-图9,至少两个微透镜片08还包括第三微透镜片06。第二微透镜片05位于第一微透镜片04与第三微透镜片06之间。第二微透镜片05中微透镜的数量大于第一微透镜片04中微透镜的数量,第三微透镜片06中微透镜的数量大于第二微透镜片05中微透镜的数量。由此,第一微透镜片04、第二微透镜片05和第三微透镜片06依次排列,且第一微透镜片04、第二微透镜片05和第三微透镜片06中的微透镜的数量依次增加,便于实现不同点阵密度或者点阵间距的逐步切换。
图10为本发明实施例提供的第一微透镜片的立体结构示意图,图11为图10所示第一微透镜片的俯视结构示意图,图12为本发明实施例提供的第二微透镜片的立体结构示意图,图13为图12所示第二微透镜片的俯视结构示意图,图14为本发明实施例提供的第三微透镜片的立体结构示意图,图15为图14所示第三微透镜片的俯视结构示意图,参考图10-图15,第一微透镜片04包括两行两列矩阵排布的微透镜,第二微透镜片05包括三行三列矩阵排布的微透镜,第三微透镜片06包括四行四列矩阵排布的微透镜。
在其他实施方式中,微透镜片08中的多个微透镜还可以呈环形阵列,或者其他不规则的阵列排布。
在其他实施方式中,激光点阵手具可以包括多于三个的微透镜片08,其中, 存在至少两个微透镜片08的微透镜的数量不同。
示例性地,在一实施方式中,激光点阵手具中的移位结构02可以通过手动的方式移动(旋转或者平移推拉)。
示例性地,在另一实施方式中,激光点阵手具包括驱动电机,驱动电极用于驱动移位结构02移动(旋转或者平移推拉)。
本发明实施例还提供一种激光点阵治疗设备,图16为本发明实施例提供的一种激光点阵治疗设备的示意图,参考图1-图16,激光点阵治疗设备包括上述实施例中的激光点阵手具21(图16中示意出激光点阵手具21中的微透镜片,未示意出镜筒),以及沿光轴依次设置的第一透镜组22、X方向扫描振镜23、Y方向扫描振镜24和第二透镜组25。第一透镜组22位于激光点阵手具21与X方向扫描振镜23之间,第二透镜组25位于Y方向扫描振镜24和治疗面之间。其中,治疗面用于接收激光点阵,治疗面例如可以为人体皮肤。微透镜片08将入射光分散为多束点阵状排列的微小激光光束,多束点阵状排列的微小激光光束穿过第一透镜组22后,投射至X方向扫描振镜23和Y方向扫描振镜24,由X方向扫描振镜23沿X方向的振动实现X方向的扫描,由Y方向扫描振镜24沿Y方向的振动实现Y方向的扫描。由Y方向扫描振镜24出射的光线投射至第二透镜组25,穿过第二透镜组25后,投射至治疗面。由于本发明实施例中的激光点阵治疗设备包括上述实施例中的激光点阵手具21,因此,最终到达治疗面的点阵数目可以变换间距,变换点数,在一定范围内实现扫描,从而达到激光治疗的目的。
示例性地,参考图1-图16,第一透镜组22固定于镜筒03第二端设置的卡槽13内,沿镜筒03的延伸方向(即镜筒03的轴线方向),移位结构02与第 一透镜组22之间的距离保持不变。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整、相互结合和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种激光点阵手具,其特征在于,包括:
    镜筒;
    移位结构,位于所述镜筒的第一端,在所述镜筒的第一端所在平面内移动;
    至少两个微透镜片,固定于所述移位结构的卡槽内,包括第一微透镜片和第二微透镜片;
    所述微透镜片包括多个微透镜,所述第一微透镜片中微透镜的数量与所述第二微透镜片中微透镜的数量不同。
  2. 根据权利要求1所述的激光点阵手具,其特征在于,所述移位结构包括可变微透镜旋转盘,所述卡槽位于所述可变微透镜旋转盘上,所述可变微透镜旋转盘转动连接于所述镜筒的第一端。
  3. 根据权利要求2所述的激光点阵手具,其特征在于,所述可变微透镜旋转盘的外侧面设置有直纹滚花。
  4. 根据权利要求1所述的激光点阵手具,其特征在于,所述移位结构包括平移条,所述卡槽位于所述平移条上,所述平移条滑动连接于所述镜筒的第一端。
  5. 根据权利要求4所述的激光点阵手具,其特征在于,所述平移条沿滑动方向延伸的至少一个端部设置有凹槽。
  6. 根据权利要求1所述的激光点阵手具,其特征在于,所述移位结构的外侧面设置有与所述卡槽对应的凹球槽;
    所述镜筒的第一端设置有螺纹孔,以及与所述螺纹孔螺纹连接的球头柱塞,所述球头柱塞与所述凹球槽卡接限位。
  7. 根据权利要求1所述的激光点阵手具,其特征在于,所述镜筒包括镜筒 凸台,所述移位结构包括限位孔,所述限位孔套接于所述镜筒凸台上。
  8. 根据权利要求1所述的激光点阵手具,其特征在于,所述至少两个微透镜片还包括第三微透镜片,所述第二微透镜片位于所述第一微透镜片与所述第三微透镜片之间;
    所述第二微透镜片中微透镜的数量大于所述第一微透镜片中微透镜的数量,所述第三微透镜片中微透镜的数量大于所述第二微透镜片中微透镜的数量。
  9. 根据权利要求8所述的激光点阵手具,其特征在于,所述第一微透镜片包括两行两列矩阵排布的微透镜,所述第二微透镜片包括三行三列矩阵排布的微透镜,所述第三微透镜片包括四行四列矩阵排布的微透镜。
  10. 一种激光点阵治疗设备,其特征在于,包括权利要求1-9任一项所述的激光点阵手具,以及沿光轴依次设置的第一透镜组、X方向扫描振镜、Y方向扫描振镜和第二透镜组。
PCT/CN2023/101953 2022-08-17 2023-06-21 一种激光点阵手具及激光点阵治疗设备 WO2024037181A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210986055.9A CN115282497B (zh) 2022-08-17 2022-08-17 一种激光点阵手具及激光点阵治疗设备
CN202210986055.9 2022-08-17

Publications (1)

Publication Number Publication Date
WO2024037181A1 true WO2024037181A1 (zh) 2024-02-22

Family

ID=83829967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101953 WO2024037181A1 (zh) 2022-08-17 2023-06-21 一种激光点阵手具及激光点阵治疗设备

Country Status (2)

Country Link
CN (1) CN115282497B (zh)
WO (1) WO2024037181A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115282497B (zh) * 2022-08-17 2023-05-23 上海瑞柯恩激光技术有限公司 一种激光点阵手具及激光点阵治疗设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201262658Y (zh) * 2008-08-29 2009-06-24 朴永彬 Co2激光二维点阵镜头
US20100053565A1 (en) * 2007-03-19 2010-03-04 Tetsuro Mizushima Laser illuminating device and image display device
KR101530076B1 (ko) * 2013-12-13 2015-06-18 메디텍 주식회사 레이저 치료장치용 핸드피스 및 이를 이용한 레이저 치료장치
CN107485800A (zh) * 2017-09-13 2017-12-19 吉林省科英激光股份有限公司 一种由滚轮控制出光的激光治疗手具及其出光控制方法
CN208640883U (zh) * 2017-09-13 2019-03-26 吉林省科英激光股份有限公司 一种激光扫描系统手具
CN112534309A (zh) * 2018-07-18 2021-03-19 通快激光有限责任公司 用于产生可变多焦点轮廓的光学装置
US20210109335A1 (en) * 2018-03-28 2021-04-15 Yokogawa Electric Corporation Optical illumination device
CN216595675U (zh) * 2021-10-22 2022-05-24 四川西物激光技术有限公司 激光器专用微透镜匀光阵列结构
CN115282497A (zh) * 2022-08-17 2022-11-04 上海瑞柯恩激光技术有限公司 一种激光点阵手具及激光点阵治疗设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108919454B (zh) * 2018-07-18 2020-07-07 中山新诺科技股份有限公司 调节机构、微透镜阵列系统及曝光机
CN210872021U (zh) * 2019-08-08 2020-06-30 武汉奇致激光技术股份有限公司 一种微透镜阵列激光光斑尺寸识别手具
CN112226763A (zh) * 2020-10-16 2021-01-15 苏州麦尔科唯激光机器人有限公司 棒料外表面高速激光熔覆装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100053565A1 (en) * 2007-03-19 2010-03-04 Tetsuro Mizushima Laser illuminating device and image display device
CN201262658Y (zh) * 2008-08-29 2009-06-24 朴永彬 Co2激光二维点阵镜头
KR101530076B1 (ko) * 2013-12-13 2015-06-18 메디텍 주식회사 레이저 치료장치용 핸드피스 및 이를 이용한 레이저 치료장치
CN107485800A (zh) * 2017-09-13 2017-12-19 吉林省科英激光股份有限公司 一种由滚轮控制出光的激光治疗手具及其出光控制方法
CN208640883U (zh) * 2017-09-13 2019-03-26 吉林省科英激光股份有限公司 一种激光扫描系统手具
US20210109335A1 (en) * 2018-03-28 2021-04-15 Yokogawa Electric Corporation Optical illumination device
CN112534309A (zh) * 2018-07-18 2021-03-19 通快激光有限责任公司 用于产生可变多焦点轮廓的光学装置
CN216595675U (zh) * 2021-10-22 2022-05-24 四川西物激光技术有限公司 激光器专用微透镜匀光阵列结构
CN115282497A (zh) * 2022-08-17 2022-11-04 上海瑞柯恩激光技术有限公司 一种激光点阵手具及激光点阵治疗设备

Also Published As

Publication number Publication date
CN115282497A (zh) 2022-11-04
CN115282497B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2024037181A1 (zh) 一种激光点阵手具及激光点阵治疗设备
US8317780B2 (en) Fractional scanner for dermatological treatments
US5178617A (en) System for controlled distribution of laser dosage
EP1874213B1 (en) Laser microporator
US20080186591A1 (en) Dermatological device having a zoom lens system
CA2857995C (en) Methods of manufacturing devices for generating skin grafts
KR20050065617A (ko) 광학 에너지의 패턴을 이용한 피부의 치료 방법 및 장치
HUE028578T2 (en) Equipment for adjustable fractional optical dermatological treatment
DE60023475T2 (de) Apparat zur gewebebehandlung
CN105342700A (zh) 用于光学组织表面治疗的独立机头和方法
KR102552772B1 (ko) 피부 처리 장치 및 방법
US10914942B2 (en) Electromagnetic radiation beam scanning system and method
EP2523728B1 (en) Scanning mechanism for lllt or other light source therapy
KR20110119017A (ko) 피부 치료용 핸드피스 팁
CN203988374U (zh) 基于侧翼引导的无间歇自动操作式脊柱微创机器手
US20190388149A1 (en) Optical array for tissue treatment
JPH11123229A (ja) レーザ光式治療器
JPS6114784A (ja) 走査式レ−ザ装置
KR101566352B1 (ko) 핸드피스
JPH0448467B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854086

Country of ref document: EP

Kind code of ref document: A1