WO2024037090A1 - 等离子体发热结构及等离子体雾化装置 - Google Patents

等离子体发热结构及等离子体雾化装置 Download PDF

Info

Publication number
WO2024037090A1
WO2024037090A1 PCT/CN2023/095974 CN2023095974W WO2024037090A1 WO 2024037090 A1 WO2024037090 A1 WO 2024037090A1 CN 2023095974 W CN2023095974 W CN 2023095974W WO 2024037090 A1 WO2024037090 A1 WO 2024037090A1
Authority
WO
WIPO (PCT)
Prior art keywords
arc starting
arc
electrode pair
heating structure
electrodes
Prior art date
Application number
PCT/CN2023/095974
Other languages
English (en)
French (fr)
Inventor
李欢喜
鲜于斌
周宏明
Original Assignee
海南摩尔兄弟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南摩尔兄弟科技有限公司 filed Critical 海南摩尔兄弟科技有限公司
Publication of WO2024037090A1 publication Critical patent/WO2024037090A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles

Definitions

  • the present application relates to the field of electronic atomization technology, and in particular to a plasma heating structure and a plasma atomization device.
  • Plasma heating atomization devices usually use ionization of working gas to form plasma.
  • the free electrons and ions in the plasma convert the electric field energy into their own kinetic energy under the action of the electric field, and finally convert it into atomization that can be electrically heated in the plasma. device.
  • the present application provides a plasma heating structure, including at least one electrode pair and an arc starting member.
  • the arc starting member is configured to include an arc starting state with an orthographic projection between two electrodes of the electrode pair, so that There is a breakdown conduction distance and a working conduction distance between the two electrodes of the corresponding electrode pair, and the breakdown conduction distance is smaller than the working conduction distance.
  • an arc starting gap is formed between at least one of the two electrodes of the electrode pair and the arc starting component in the arc starting state.
  • the arc starting member and the electrode pair can be close to or far away from each other to have an arc starting state.
  • the arc starting member and the electrode pair can be relatively translated to have an arc starting state.
  • the arc starting member and the electrode pair can rotate relative to each other to have an arc starting state.
  • the electrode pair is fixed, and the arc-starting parts can move relative to each other to move closer to or farther away from each other.
  • the arc starting member is located on one side of the electrode pair along the first direction, and the distance between it and the electrode pair along the first direction is not greater than 4 mm; and/or
  • the arc starting member faces the orthographic projection of the electrode pair, and the distance from at least one of the two electrodes of the electrode pair is not less than 0.5 mm and not more than 3 mm.
  • the center line of the arc starting member in the arc striking state coincides with the center point of the connection line between the two electrodes of the electrode pair.
  • the arc starting member is a conductor arc starting member or a semiconductor arc starting member.
  • the arc starting piece is one of a tungsten alloy arc starting piece, a carbon fiber arc starting piece, a copper alloy arc starting piece, a zirconium alloy arc starting piece, and a graphite arc starting piece.
  • the arc starting component includes a first arc starting part and a second arc starting part, the extending direction of the first arc starting part is parallel to the first direction, and one end of the second arc starting part is parallel to the first arc starting part. parts are connected, and there is an included angle between the second arc striking part and the first arc striking part;
  • the first direction is parallel to the connecting direction between two electrodes of the electrode pair.
  • the plasma heating structure further includes a heating element, and the electrode pair is disposed close to the heating element to heat the heating element when there is a working conduction distance.
  • the plasma heating structure further includes a heat insulator.
  • the heat insulator is disposed on the heat insulator.
  • the heat insulator has a guide portion. The guide portion cooperates with the arc starting member to guide the arc starting member relative to the electrode. To sports.
  • At least one of the arc starting member and the two electrodes of the electrode pair can move under the action of one of a mechanical switch, an electromagnetic member, or an electric driving member.
  • this application also provides a plasma atomization device, including the plasma heating structure in any of the above embodiments.
  • the above-mentioned plasma heating structure and plasma atomization device due to the arrangement of the arc starting component, make the breakdown conduction distance between the two electrodes of the electrode pair smaller than the working conduction distance, and can maintain a small arc starting distance.
  • the breakdown conduction distance can significantly reduce the initial breakdown voltage, thereby reducing the power supply volume and energy consumption, thereby improving the heating efficiency of the plasma heating structure.
  • the initial breakdown voltage is significantly reduced, the discharge insulation requirements of the plasma heating structure can be reduced, and the insulation structure can be simplified or miniaturized.
  • Figure 1 shows a schematic structural diagram of a plasma heating structure in an embodiment of the present application
  • Figure 2 shows a schematic cross-sectional structural diagram of the paired electrodes in the plasma heating structure shown in Figure 1 when they have a breakdown conduction distance;
  • Figure 3 shows the cross-sectional structure of the paired electrodes in the plasma heating structure shown in Figure 1 when they have an operating conduction distance. structural diagram
  • FIG. 4 shows a schematic cross-sectional structural diagram of the paired electrodes in the plasma heating structure shown in FIG. 1 when they have a working conduction distance.
  • Plasma heating structure 100 Plasma heating structure 100; Electrode pair 10; electrode 11; Arc starter 20; The first arc starting part 21 and the second arc starting part 22; Heating element 30; Heating cavity 31; Insulation 40; Guidance part 41; center line OO1; Center point O1; Connect AA.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying relative importance or The latter implicitly indicates the quantity of the technical characteristics indicated. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of this application, “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Figure 1 shows a schematic structural diagram of the plasma heating structure in an embodiment of the present application.
  • Figure 2 shows the cross-sectional structure of the paired electrodes in the plasma heating structure shown in Figure 1 when they have a breakdown conduction distance.
  • Figure 3 shows a schematic cross-sectional structural diagram of the paired electrodes in the plasma heating structure shown in Figure 1 when they have a working conduction distance.
  • the drawings only show structures related to the embodiments of the present application.
  • one embodiment of the present application provides a plasma heating structure 100, which includes at least one electrode pair 10 and an arc starting member 20.
  • the arc starting member 20 is configured to include two electrodes 11 with orthographic projections located on the electrode pair 10. The arc striking state between them is such that there is a breakdown conduction distance and a working conduction distance between the two electrodes of the electrode pair 10, and the breakdown conduction distance is smaller than the working conduction distance.
  • the two electrodes 11 of the electrode pair 10 are respectively a positive electrode and a negative electrode.
  • the arc starting component 20 refers to a component that cooperates with the electrode pair 10 to achieve the function of igniting the arc.
  • the arc starting component 20 can be a conductor or a semiconductor.
  • the arc starting part 20 is one of a tungsten alloy arc starting part, a carbon fiber arc starting part, a copper alloy arc starting part, a zirconium alloy arc starting part and a graphite arc starting part.
  • the orthographic projection of the arc starting member 20 refers to the projection of the arc starting member 20 toward the electrode pairs 10 in a direction perpendicular to them. Specifically, when the two electrodes 11 of the electrode pair 10 are located in the same plane, the arc starting member 20 can form an orthographic projection toward the projection of the corresponding electrode pair 10 in a direction perpendicular to the plane, or the direction of the electrode pair 10 can also be changed. The ends of each other are connected to form a connection line, and the arc starting member 20 can form an orthographic projection toward the projection of the electrode pair 10 in a direction perpendicular to the connection line.
  • the electrode pair 10 is configured to have a breakdown conduction distance, which may refer to the breakdown conduction distance formed only by the configuration of the electrode pair 10 itself, or at least one of the two electrodes 11 of the electrode pair 10 and the arc starting member 20
  • the breakdown conduction distance formed by the common configuration is not limited here.
  • the electrode pair 10 is configured to have a working conduction distance, which may refer to the working conduction distance configured only by the electrode pair 10 itself, or it may be the working conduction distance configured by the electrode pair 10 and the arc starting member 20 together. This is not a limitation. However, it should be noted that at least one of the breakdown conduction distance and the working conduction distance is formed by a configuration including the arc starting member 20 .
  • a breakdown voltage should first be applied to the electrode pair 10 to generate an initial arc (arcing), that is, a strong electric field is added to the discharge gap to achieve breakdown conduction.
  • the distance refers to the distance where discharge occurs when the arc is struck. After the arc is started successfully, that is, after the plasma is generated, the arc can reach the predetermined arc heating length to continue to maintain the discharge heating. Therefore, the working conduction distance is It refers to the distance that the arc can continue to maintain discharge heating after arc initiation.
  • breakdown is caused by applying a breakdown voltage to the electrode pair 10 , so one end of the electrode pair 10 should be connected to the power supply, and the power supply is used to provide the breakdown voltage to the electrode pair 10 . Moreover, after the breakdown is completed, the power supply should continue to provide working voltage to the electrode pair 10 to realize the heating function of the arc.
  • the breakdown conduction distance between the two electrodes 11 of the electrode pair 10 is smaller than the working conduction distance, and the breakdown conduction distance can be kept small during arcing, so that a large amount of energy can be achieved.
  • the initial breakdown voltage is reduced, thereby reducing the volume of the power supply and reducing energy consumption, thereby improving the heating efficiency of the plasma heating structure 100 .
  • the initial breakdown voltage is significantly reduced, the discharge insulation requirements of the plasma heating structure 100 can be reduced, and the insulation structure can be simplified or miniaturized.
  • the initial arc breaks down at the end of each electrode 11 and the arc ignition member 20 with the arc ignition gap between the electrode 11 .
  • the arc gap can be increased so that the arc can be elongated to achieve the heating function.
  • an arc starting gap is formed between each electrode 11 in the electrode pair 10 and the arc starting component 20 in the arc starting state.
  • the initial arc breaks down at both ends of the arc starting gap between the electrode pair 10 and the arc starting member 20 and the electrode pair 10 .
  • the arc starting member 20 and the electrode pair 10 can be close to or far away from each other to have an arc starting state.
  • the arc starting member 20 and the electrode pair 10 when they are close to each other, they can have a breakdown conduction distance, and when the arc starting member 20 and the electrode pair 10 are far away from each other, they can have a working conduction distance.
  • the breakdown conduction distance and working distance can be achieved.
  • the conduction distance method is simple and easy to control.
  • a breakdown voltage is applied to the electrode pair 10 to generate an initial arc through breakdown between the arc starting member 20 and the electrode pair 10.
  • the arc starting member 20 and the electrode pair 10 are moved away from each other, and the distance between the arc starting member 20 and the electrode pair 10 is increased to a predetermined length, thereby elongating the arc and achieving arc heating in a larger area.
  • the arc starting member 20 is fixed to one of the two electrodes 11 of the electrode pair 10 , and the other can move relatively to move closer to or farther away from each other.
  • One of the two electrodes 11 of the arc starting member 20 and the electrode pair 10 is fixed and the other can move relative to each other, which can simplify the structure of the driving movement.
  • the electrode pair 10 is fixed, and the arc starting member 20 can move relatively to move closer to or farther away from each other.
  • the arc starting member 20 moves relatively.
  • the volume of the arc starting member 20 can be made larger, which is conducive to the stability of the movement.
  • the working conduction distance is also due to the movement of the electrode pair 10. Fixed and relatively fixed, improving work stability.
  • both the arc starting member 20 and the electrode pair 10 can move relative to each other to move closer to or farther away from each other.
  • At least one of the arc starting member 20 and the two electrodes 11 of the electrode pair 10 can move under the action of a mechanical switch, an electromagnetic component or an electric driving component.
  • the mechanical switch can be a toggle switch or a button
  • the electromagnetic component can be an electromagnet, etc.
  • the electric driving component can be a motor, etc., which are not limited here.
  • the structure of the mechanical switch, electromagnetic component or electric driving component is simple, and the force provided to the arc starting component 20 and the electrode pair 10 is reliable.
  • the arc starting member 20 can also have an arc starting state in a fixed position relative to the electrode pair 10 status, there is no restriction here.
  • the arc starting member 20 may be a semiconductor structure disposed between the electrode pairs 10 .
  • the arc starting member 20 and the electrode pair 10 can be relatively translated to have an arc starting state.
  • the translation method is simple, so the driving movement method is also simple and the movement is smooth, which improves the reliability of arc ignition.
  • the arc starting member 20 can move in a direction away from the electrode pair 10. Since a large number of free electrons have been generated in the discharge space and the temperature of the discharge space has increased, the arc will be easier. Being stretched and maintained, the arc spot on the arc starting member 20 drifts toward the center at the same time. After the arc starting member moves away to a certain distance, a long arc can be continuously heated between the arc starting member 20 and the electrode pair 10 .
  • the electric field intensity between the two electrodes 11 of the electrode pair 10 may It will also be greater than the electric field intensity from one electrode 11 to the arc starting member 20 and then to the other electrode 11.
  • the arcs at both ends of the two electrodes 11 of the electrode pair 10 will directly connect to the discharge and separate from the arc starting member 20, so that in the electrode pair 10 Long arc continuous heating is achieved between the two electrodes 11 of 10 .
  • the arc starting member 20 is located on one side of the electrode pair 10 along the first direction.
  • the arc starting member 20 and the electrode pair 10 can relatively translate along the first direction or in a second direction perpendicular to the first direction. Relative translation.
  • the arc starting member 20 and the electrode pair 10 can rotate relative to each other to have an arc starting state.
  • the method of rotation is also simple, so the method of driving and moving is also simple and the movement is smooth, which improves the reliability of arc ignition.
  • the arc starting member 20 and the electrode pair 10 can rotate relative to each other to guide the arc to elongate and make the arc spot drift toward the middle until arcs occur at both ends of the electrode pair 10 connection to achieve long arc heating.
  • the arc starting member 20 when the arc starting member 20 is in an arc starting state that enables a breakdown conduction distance between the two electrodes 11 of the electrode pair 10 , the arc starting member 20 is located along the edge of the electrode pair 10 .
  • One side in the first direction, and the distance along the first direction from the electrode pair 10 is no more than 4 mm.
  • the arc starting member 20 when the arc starting member 20 is in an arc starting state that enables the electrode pair 10 to have a breakdown conduction distance, the arc starting member 20 faces the orthographic projection of the electrode pair 10 and is in contact with the two electrodes 11 of the electrode pair 10 The distance between at least one of them is not less than 0.5 mm and not more than 3 mm.
  • the center line OO1 of the arc starting member 20 in the arc striking state coincides with the center point O1 of the connection line AA between the two electrodes 11 of the electrode pair 10 .
  • the arc starting part 20 includes a first arc starting part 21 and a second arc starting part 22.
  • the extending direction of the first arc starting part 21 is parallel to the first direction, and one end of the second arc starting part 22 is parallel to the first arc starting part 22.
  • the first arc starting parts 21 are connected, and there is an included angle between the second arc starting part 22 and the first arc starting part 21 .
  • the first direction is parallel to the direction of the connection line AA between the two electrodes 11 of the electrode pair 10 .
  • the extension direction of the first arc starting portion 22 is parallel to the direction of the connecting line AA between the two electrodes 11 of the electrode pair 10, when the connection between the two electrodes 11 of the electrode pair 10 and the arc starting member 20 in the arc striking state When there are arc striking gaps in both locations, the arc striking gaps at the two locations can be made equal. And the second arc starting part 22 can conveniently drive the first arc starting part 22 to move.
  • the plasma heating structure 100 further includes a heating element 30 , and the electrode pair 10 is disposed close to the heating element 30 to heat the heating element 30 when there is a working conduction distance.
  • the aerosol-generating matrix in contact with the heating element 30 is indirectly heated, and then the aerosol-generating matrix is atomized to generate an aerosol.
  • the heating element 30 can have a heating cavity 31 that accommodates the aerosol-generating substrate.
  • the heating element 30 can also extend into the storage chamber that accommodates the aerosol-generating substrate, and then indirectly through the heating element 30 Heating the aerosol-generating matrix.
  • the heating element 30 may be made of insulating materials such as quartz and ceramics.
  • the plasma heating structure 100 also includes a heat insulating member 40.
  • the heat generating member 30 is provided on the heat insulating member 40.
  • the heat insulating member 40 has a guide portion 41. The guide portion 41 cooperates with the arc starting member 20 to guide the arc starting member 20.
  • the arc member 20 moves relative to the electrode pair 10 .
  • the movement stability of the arc starting member 20 can be improved and the arc starting effect can be improved.
  • the guide part 41 includes a guide hole opened on the heat insulator 40.
  • it may also be a guide rib, a guide groove, etc., which is not limited here.
  • the arc starting member 20 and the electrode pair 10 can move away from each other. , to increase the distance between the two until there is a working conduction distance.
  • the arc starting member 20 and the electrode pair 10 can move closer to each other, so that the two electrodes 11 of the electrode pair 10 return to a breakdown conduction distance. , waiting for the next arc to ignite.
  • this application also provides a plasma atomization device, including the plasma heating structure 100 in any of the above embodiments.
  • the plasma atomization device also includes a suction nozzle and a power supply.
  • the power supply includes a battery, a control circuit and a booster.
  • the battery and the booster are both communicatively connected to the control circuit, and the battery is electrically connected to the booster.
  • the control circuit modulates the power supply to the booster, and the booster boosts the voltage to the operating voltage required by the arc and supplies the power to the electrode pair 10 .
  • the plasma heating structure 100 and the plasma atomization device provided by the embodiments of the present application have the following beneficial effects:
  • the breakdown conduction distance between the two electrodes 11 of the electrode pair 10 is smaller than the working conduction distance, and the breakdown conduction distance can be kept small during arcing, so that a large amount of energy can be achieved.
  • the initial breakdown voltage is reduced, thereby reducing the power supply volume and energy consumption, thereby improving the heating efficiency of the plasma heating structure 100 .
  • the initial breakdown voltage is significantly reduced, the discharge insulation requirements of the plasma heating structure 100 can be reduced, and the insulation structure can be simplified or miniaturized.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

本申请涉及一种等离子体发热结构及等离子体雾化装置,等离子体发热结构包括至少一电极对及引弧件,引弧件被配置为包括具有正投影位于电极对的两个电极之间的引弧状态,以使对应电极对的两个电极之间具有击穿导通距离及工作导通距离,击穿导通距离小于工作导通距离。由于引弧件的设置,使得电极对的两个电极之间具有的击穿导通距离小于工作导通距离,可以在起弧时保持较小的击穿导通距离,故能够大幅降低起始击穿电压,从而减小电源体积,并降低能耗,进而提高等离子体发热结构的发热效率。

Description

等离子体发热结构及等离子体雾化装置 技术领域
本申请涉及电子雾化技术领域,特别是涉及一种等离子体发热结构及等离子体雾化装置。
背景技术
等离子体发热雾化装置通常是利用工作气体电离形成等离子体,等离子体中的自由电子与离子在电场的作用下将电场能转化为自身动能,并最终转化为等离子体内能进行电发热的雾化装置。
根据气体放电伏安特性,在放电间隙内的气体被电离形成等离子体之前,需要在放电间隙上加上强电场以使中性气体转变为等离子体。而一旦产生了等离子体,维持加热所需要的电场强度则会显著下降。前者需要电源输出端必须提供高的开路电压,而后者需要电源维持加热的时候的输出电压显著低于开路电压(相差可达10倍以上)。这两种差异很大的工况会导致电源体积较大,发热效率较低。
发明内容
基于此,有必要针对现有等离子体发热雾化装置,提供一种能减小电源体积,以提升发热效率的等离子体发热结构及等离子体雾化装置。
第一方面,本申请提供一种等离子体发热结构,包括至少一电极对及引弧件,引弧件被配置为包括具有正投影位于电极对的两个电极之间的引弧状态,以使对应电极对的两个电极之间具有击穿导通距离及工作导通距离,击穿导通距离小于工作导通距离。
在其中一个实施例中,电极对的所述两个电极中的至少一者与处于引弧状态的引弧件之间形成引弧间隙。
在其中一个实施例中,引弧件与电极对能够彼此靠近或者远离,以具有引弧状态。
在其中一个实施例中,引弧件与电极对之间能够相对平移,以具有引弧状态。
在其中一个实施例中,引弧件与电极对之间能够相对转动,以具有引弧状态。
在其中一个实施例中,电极对固定,引弧件能够相对运动,以使彼此靠近或者远离。
在其中一个实施例中,当引弧件处于能够使电极对的两个电极之间具有击穿导通距离的引弧状态时;
引弧件位于电极对沿第一方向的一侧,且与电极对之间沿第一方向的间距不大于4毫米;和/或
引弧件朝向电极对的正投影,与电极对的两个电极中的至少一者的间距不小于0.5毫米且不大于3毫米。
在其中一个实施例中,处于引弧状态的引弧件的中心线与电极对的两个电极之间的连线的中心点重合。
在其中一个实施例中,引弧件为导体引弧件或者半导体引弧件。
在其中一个实施例中,引弧件为钨合金引弧件、碳纤维引弧件、铜合金引弧件、锆合金引弧件及石墨引弧件中的一者。
在其中一个实施例中,引弧件包括第一引弧部和第二引弧部,第一引弧部的延伸方向与第一方向相平行,第二引弧部的一端与第一引弧部相连,且第二引弧部与第一引弧部之间具有夹角;
其中,第一方向与电极对的两个电极之间的连线方向相平行。
在其中一个实施例中,等离子体发热结构还包括发热件,电极对靠近发热件设置,以在具有工作导通距离时加热发热件。
在其中一个实施例中,等离子体发热结构还包括隔热件,发热件设于隔热件上,隔热件上具有引导部,引导部与引弧件相配合,以引导引弧件相对电极对运动。
在其中一个实施例中,引弧件与电极对的两个电极中的至少一者能够在机械开关、电磁件或者电驱动件中的一者的作用下运动。
第二方面,本申请还提供一种等离子体雾化装置,包括以上任意实施例中的等离子体发热结构。
上述等离子体发热结构及等离子体雾化装置,由于引弧件的设置,使得电极对的两个电极之间具有的击穿导通距离小于工作导通距离,可以在起弧时保持较小的击穿导通距离,故能够大幅降低起始击穿电压,从而减小电源体积,并降低能耗,进而提高等离子体发热结构的发热效率。
且由于大幅降低起始击穿电压,故能够降低等离子体发热结构的放电绝缘要求,可简化或小型化绝缘结构。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1示出了本申请一实施例中的等离子体发热结构的结构示意图;
图2示出了图1所示的等离子体发热结构中的成对的电极具有击穿导通距离下的剖面结构示意图;
图3示出了图1所示的等离子体发热结构中的成对的电极具有工作导通距离下的剖面结 构示意图;
图4示出了图1所示的等离子体发热结构中的成对的电极具有工作导通距离下的剖面结构示意图。
附图标记说明:
等离子体发热结构100;
电极对10;
电极11;
引弧体20;
第一引弧部21、第二引弧部22;
发热件30;
发热腔体31;
隔热件40;
引导部41;
中心线OO1;
中心点O1;
连线AA。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或 者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
附图并不是1:1的比例绘制,并且各元件的相对尺寸在附图中仅以示例地绘制,而不一定按照真实比例绘制。
图1示出了本申请一实施例中的等离子体发热结构的结构示意图,图2示出了图1所示的等离子体发热结构中的成对的电极具有击穿导通距离下的剖面结构示意图;图3示出了图1所示的等离子体发热结构中的成对的电极具有工作导通距离下的剖面结构示意图。为便于描述,附图仅示出了与本申请实施例相关的结构。
参阅附图,本申请一实施例提供一种等离子体发热结构100,包括至少一电极对10及引弧件20,引弧件20被配置为包括具有正投影位于电极对10的两个电极11之间的引弧状态,以使电极对10的两个电极之间具有击穿导通距离及工作导通距离,击穿导通距离小于工作导通距离。
可以理解,电极对10两个电极11,分别为一个正极和一个负极。
引弧件20是指具有与电极对10配合,以实现引燃电弧功能的部件,具体地,引弧件20可以为导体,也可以为半导体。
优选地,引弧件20为钨合金引弧件、碳纤维引弧件、铜合金引弧件、锆合金引弧件及石墨引弧件中的一者。
引弧件20的正投影是指,引弧件20沿垂直于电极对10的方向朝向它们的投影。具体地,当电极对10的两个电极11位于同一平面内时,引弧件20可沿垂直于该平面的方向朝向对应的电极对10的投影形成正投影,也可以将电极对10的朝向彼此的端部相连形成一连线,引弧件20可沿垂直于该连线的方向朝向电极对10的投影形成正投影。
电极对10被配置为具有击穿导通距离,可以指仅由电极对10本身配置形成的击穿导通距离,也可以电极对10的两个电极11中的至少一者与引弧件20共同配置形成的击穿导通距离,在此不作限制。同样的,电极对10被配置为具有工作导通距离,可以指仅由电极对10本身配置的工作导通距离,也可以是电极对10与引弧件20共同配置的工作导通距离,在此不作限制。但需要指出的是,击穿导通距离和工作导通距离中的至少一者是由包括引弧件20的配置形成的。
具体地,在等离子体发热结构100的发热过程中,首先应当向电极对10加载了击穿电压以产生起始电弧(起弧),也即在放电间隙上加上强电场,击穿导通距离则是指在起弧时击穿产生放电的距离,起弧成功后,也即产生了等离子体后,可使得电弧达到预定电弧加热长度后,以持续维持放电加热,故工作导通距离则是指起弧后电弧能够持续维持放电加热的距离。
可以理解的是,击穿的产生是由于向电极对10加载了击穿电压实现的,故电极对10的一端应当与电源相连,电源用于向电极对10提供击穿电压。并且,在击穿完成后,电源还应当为电极对10继续提供工作电压,以实现电弧的加热功能。
由于引弧件20的设置,使得电极对10的两个电极11之间具有的击穿导通距离小于工作导通距离,可以在起弧时保持较小的击穿导通距离,故能够大幅降低起始击穿电压,从而减小电源体积,并降低能耗,进而提高等离子体发热结构100的发热效率。
且由于大幅降低起始击穿电压,故能够降低等离子体发热结构100的放电绝缘要求,可简化或小型化绝缘结构。
在本申请的实施例中,电极对10的两个电极11中的至少一者与处于引弧状态的引弧件20之间具有引弧间隙。
由于引弧间隙的存在,当电极对10加载起始击穿电压时,起始电弧在每一电极11和引弧件20与该电极11之间具有引弧间隙的一端击穿产生。在起弧后,引弧间隙可以增加,进而使得电弧能够被拉长,以达到加热功能。
优选地,电极对10中的每一电极11均与处于引弧状态的引弧件20之间形成引弧间隙。如此,起始电弧在电极对10和引弧件20与电极对10之间具有引弧间隙的两端击穿产生。
在一些实施例中,引弧件20与电极对10能够彼此靠近或者远离,以具有引弧状态。
具体地,当引弧件20与电极对10彼此靠近时,能够具有击穿导通距离,当引弧件20与电极对10彼此远离时,能够具有工作导通距离。
通过设置引弧件20与电极对10作彼此靠近和远离的动作,来达到击穿导通距离及工作 导通距离的方式简单,且便于控制。
在实际应用中,当引弧件20与电极对10彼此靠近时,向电极对10加载击穿电压,以在引弧件20与电极对10之间击穿产生起始电弧,起弧成功后再使引弧件20与电极对10彼此远离,并增大引弧件20与电极对10的距离至预定长度,从而拉长电弧,实现更大区域电弧加热。
更进一步地,引弧件20与电极对10的两个电极11中的一者固定,另一者能够相对运动,以使彼此靠近或者远离。
设置引弧件20与电极对10的两个电极11中的一者固定,另一者能够相对运动,能够简化驱动运动的结构。
优选地,电极对10固定,引弧件20能够相对运动,以使彼此靠近或者远离。
相较于电极对10运动,引弧件20作相对运动,一方面,引弧件20的体积能够做的更大,有利于运动的平稳性,另外,工作导通距离也由于电极对10的固定而相对固定,提高了工作稳定性。
在其他实施方式中,引弧件20与电极对10中的两者均能够相对彼此运动,以使彼此靠近或者远离。
具体地,引弧件20与电极对10的两个电极11中的至少一者能够在机械开关、电磁件或者电驱动件中的作用下运动。
机械开关可以为拨动开关或者按钮等,电磁件可以为电磁体等,电驱动件可以为电机等,在此不作限制。
机械开关、电磁件或者电驱动件的结构简单,且提供给引弧件20与电极对10的作用力可靠。
除了引弧件20与电极对10能够彼此靠近或者远离,以具有引弧状态的情况,在另一些实施例中,引弧件20也能在相对电极对10的位置固定的状态下具有引弧状态,在此不作限制。在该方案中,引弧件20可以为设置在电极对10之间的半导体结构。
如图2和图3所示,在本申请的一实施例中,引弧件20与电极对10之间能够相对平移,以具有引弧状态。
平移的方式简单,故使得驱动移动的方式也简单,并且移动也平稳,提高了引弧的可靠性。
在实际应用中,随着电弧击穿发生,此时引弧件20可朝远离电极对10的方向运动,因放电空间已产生了大量的自由电子,并提高了放电空间温度,电弧会较容易被拉长并维持,引弧件20上弧斑同时往中间漂移,在引弧件远离达到一定距离后,可在引弧件20与电极对10之间实现长电弧持续加热。
当然,在引弧件远离达到一定距离后,电极对10的两个电极11之间的电场强度有可能 也会大于一电极11到引弧件20再到另一电极11之间的电场强度,电极对10的两个电极11的两端电弧会直接连接放电并脱离引弧件20,从而在电极对10的两个电极11之间实现长电弧持续加热。
具体地,引弧件20沿第一方向位于电极对10的一侧,引弧件20与电极对10之间能够沿第一方向相对平移,也可以在与第一方向相垂直的第二方向相对平移。
如图2和图4所示,在本申请的另一些实施例中,引弧件20与电极对10之间能够相对转动,以具有引弧状态。
旋转的方式也简单,故使得驱动移动的方式也简单,并且移动也平稳,提高了引弧的可靠性。
在实际应用中,随着电弧击穿发生,此时引弧件20可与电极对10之间能够相对转动,以引导电弧拉长并使弧斑往中间漂移,直至电极对10的两端电弧连接,从而实现长电弧加热。
请参阅图2,在一些实施例中,当引弧件20处于能够使电极对10的两个电极11之间具有击穿导通距离的引弧状态时,引弧件20位于电极对10沿第一方向的一侧,且与电极对10之间沿第一方向的间距不大于4毫米。
在一些实施例中,当引弧件20处于能够使电极对10具有击穿导通距离的引弧状态时,引弧件20朝向电极对10的正投影,与电极对10的两个电极11中的至少一者的间距不小于0.5毫米且不大于3毫米。
请参阅图3,在一些实施例中,处于引弧状态的引弧件20的中心线OO1与电极对10的两个电极11之间的连线AA的中心点O1重合。
如此,通过设置引弧件20的中心线OO1与电极对10的两个电极11之间的连线AA的中心点O1重合,当电极对10的两个电极11与处于引弧状态的引弧件20之间均具有引弧间隙时,能够使两处的引弧间隙的电弧击穿发生一致,进而使起始击穿电压平稳。
在一些实施例中,引弧件20包括第一引弧部21和第二引弧部22,第一引弧部21的延伸方向与第一方向相平行,第二引弧部22的一端与第一引弧部21相连,且第二引弧部22与第一引弧部21之间具有夹角。其中,第一方向与电极对10的两个电极11之间的连线AA的方向相平行。
由于第一引弧部22的延伸方向与电极对10的两个电极11之间的连线AA的方向相平行,当电极对10的两个电极11与处于引弧状态的引弧件20之间均具有引弧间隙时,能够使两处的引弧间隙能够相等。且通过第二引弧部22能够方便带动第一引弧部22运动。
请参阅图1和图2,在一些实施例中,等离子体发热结构100还包括发热件30,电极对10靠近发热件30设置,以在具有工作导通距离时加热发热件30。
通过加热发热件30,以间接地加热与发热件30接触的气溶胶生成基质,进而雾化气溶胶生成基质,以产生气溶胶。
具体地,发热件30可以具有容纳气溶胶生成基质的发热腔体31,在其他实施方式中,发热件30也可以伸入容纳气溶胶生成基质的容置仓内,进而通过发热件30间接地加热气溶胶生成基质。
具体地,发热件30可以由石英、陶瓷等绝缘材料制成。
进一步地,等离子体发热结构100还包括隔热件40,发热件30设于隔热件40上,隔热件40上具有引导部41,引导部41与引弧件20相配合,以引导引弧件20相对电极对10运动。
通过在隔热件40上设置引导部41引导引弧件20运动,能够提高引弧件20的运动平稳性,提升引弧效果。
具体地,引导部41包括开设于隔热件40上的引导孔,在其他实施方式中,也可以是引导筋条、引导槽等,在此不作限制。
在本申请的实施例中,在电极对10的两个电极11之间具有击穿导通距离后,并起弧成功后,引弧件20与电极对10之间才能够作彼此远离的运动,以增大两者之间的距离,直至具有工作导通距离。
在本申请的实施例中,待电弧熄灭后,引弧件20与电极对10之间能够作彼此靠近的运动,以使电极对10的两个电极11之间恢复到具有击穿导通距离,等待下一次起弧点燃。
基于同样的发明构思,本申请还提供一种等离子体雾化装置,包括上述任意实施例中的等离子体发热结构100。
具体地,等离子体雾化装置还包括吸嘴以及电源。
在一些实施例中,电源包括电池、控制电路以及升压器,电池和升压器均与控制电路通讯相连,电池与升压器电连接。通过控制电路调制供电到升压器,升压器将电压升高到电弧要求的工作电压供电给电极对10。
本申请实施例提供的等离子体发热结构100以及等离子体雾化装置具有以下有益效果:
由于引弧件20的设置,使得电极对10的两个电极11之间具有的击穿导通距离小于工作导通距离,可以在起弧时保持较小的击穿导通距离,故能够大幅降低起始击穿电压,从而减小电源体积,并降低能耗,进而提高等离子体发热结构100的发热效率。
且由于大幅降低起始击穿电压,故能够降低等离子体发热结构100的放电绝缘要求,可简化或小型化绝缘结构。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离 本发明构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种等离子体发热结构,包括至少一电极对及引弧件,所述引弧件被配置为包括具有正投影位于所述电极对的两个电极之间的引弧状态,以使所述电极对的两个所述电极之间具有击穿导通距离及工作导通距离,所述击穿导通距离小于所述工作导通距离。
  2. 根据权利要求1所述的等离子体发热结构,所述电极对的两个所述电极中的至少一者与处于所述引弧状态的所述引弧件之间形成引弧间隙。
  3. 根据权利要求1或2所述的等离子体发热结构,所述引弧件与所述电极对能够彼此靠近或者远离,以具有所述引弧状态。
  4. 根据权利要求3所述的等离子体发热结构,所述引弧件与所述电极对之间能够相对平移,以具有所述引弧状态。
  5. 根据权利要求3所述的等离子体发热结构,所述引弧件与所述电极对之间能够相对转动,以具有所述引弧状态。
  6. 根据权利要求4或5所述的等离子体发热结构,所述电极对固定,所述引弧件能够相对运动,以使彼此靠近或者远离。
  7. 根据权利要求3所述的等离子体发热结构,当所述引弧件处于能够使所述电极对的两个所述电极之间具有击穿导通距离的所述引弧状态时;
    所述引弧件位于所述电极对沿第一方向的一侧,且与所述电极对之间沿所述第一方向的间距不大于4毫米;和/或
    所述引弧件朝向所述电极对的正投影,与所述电极对的所述两个电极中的至少一者的间距不小于0.5毫米且不大于3毫米。
  8. 根据权利要求3所述的等离子体发热结构,所述等离子体发热结构还包括发热件,所述电极对靠近所述发热件设置,以在具有所述工作导通距离时加热所述发热件。
  9. 根据权利要8所述的等离子体发热结构,所述等离子体发热结构还包括隔热件,所述发热件设于所述隔热件上,所述隔热件上具有引导部,所述引导部与所述引弧件相配合,以引导所述引弧件相对所述电极对运动。
  10. 根据权利要求3所述的等离子体发热结构,所述引弧件与所述电极对的两个所述电极中的至少一者能够在机械开关、电磁件或者电驱动件中的一者的作用下运动。
  11. 根据权利要求1或2所述的等离子体发热结构,处于所述引弧状态的所述引弧件的中心线与所述电极对的两个所述电极之间的连线的中心点重合。
  12. 根据权利要求1或2所述的等离子体发热结构,所述引弧件为导体引弧件或者半导体引弧件。
  13. 根据权利要求1或2所述的等离子体发热结构,所述引弧件为钨合金引弧件、碳纤维引弧件、铜合金引弧件、锆合金引弧件及石墨引弧件中的一者。
  14. 根据权利要求1或2所述的等离子体发热结构,所述引弧件包括第一引弧部和第二引弧部,所述第一引弧部的延伸方向与第一方向相平行,所述第二引弧部的一端与所述第一引弧部相连,且所述第二引弧部与所述第一引弧部之间具有夹角;
    其中,所述第一方向与所述电极对的两个所述电极之间的连线方向相平行。
  15. 一种等离子体雾化装置,包括如权利要求1~14任一项所述的等离子体发热结构。
PCT/CN2023/095974 2022-08-16 2023-05-24 等离子体发热结构及等离子体雾化装置 WO2024037090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210979004.3 2022-08-16
CN202210979004.3A CN115297601A (zh) 2022-08-16 2022-08-16 等离子体发热结构及等离子体雾化装置

Publications (1)

Publication Number Publication Date
WO2024037090A1 true WO2024037090A1 (zh) 2024-02-22

Family

ID=83830040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095974 WO2024037090A1 (zh) 2022-08-16 2023-05-24 等离子体发热结构及等离子体雾化装置

Country Status (2)

Country Link
CN (1) CN115297601A (zh)
WO (1) WO2024037090A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297601A (zh) * 2022-08-16 2022-11-04 海南摩尔兄弟科技有限公司 等离子体发热结构及等离子体雾化装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014223A (zh) * 2007-02-07 2007-08-08 北京理研社技术有限公司 一种等离子发生器
CN105491782A (zh) * 2016-02-16 2016-04-13 衢州迪升工业设计有限公司 一种等离子体装置的电极
CN206438178U (zh) * 2016-12-26 2017-08-25 北京沅瀚环境科技有限公司 一种长距离直流伸展电弧等离子体放电的新型结构
US10045432B1 (en) * 2017-10-20 2018-08-07 DM ECO Plasma, Inc. System and method of low-power plasma generation based on high-voltage plasmatron
CN207720493U (zh) * 2017-12-06 2018-08-10 神雾科技集团股份有限公司 非转移弧等离子枪
CN112203391A (zh) * 2020-10-27 2021-01-08 四川众创智信科技发展有限公司 三针式交流等离子体发生装置及其使用方法
CN113115505A (zh) * 2021-04-07 2021-07-13 南通三信塑胶装备科技股份有限公司 自引弧降压热等离子束发生装置
CN115297601A (zh) * 2022-08-16 2022-11-04 海南摩尔兄弟科技有限公司 等离子体发热结构及等离子体雾化装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014223A (zh) * 2007-02-07 2007-08-08 北京理研社技术有限公司 一种等离子发生器
CN105491782A (zh) * 2016-02-16 2016-04-13 衢州迪升工业设计有限公司 一种等离子体装置的电极
CN206438178U (zh) * 2016-12-26 2017-08-25 北京沅瀚环境科技有限公司 一种长距离直流伸展电弧等离子体放电的新型结构
US10045432B1 (en) * 2017-10-20 2018-08-07 DM ECO Plasma, Inc. System and method of low-power plasma generation based on high-voltage plasmatron
CN207720493U (zh) * 2017-12-06 2018-08-10 神雾科技集团股份有限公司 非转移弧等离子枪
CN112203391A (zh) * 2020-10-27 2021-01-08 四川众创智信科技发展有限公司 三针式交流等离子体发生装置及其使用方法
CN113115505A (zh) * 2021-04-07 2021-07-13 南通三信塑胶装备科技股份有限公司 自引弧降压热等离子束发生装置
CN115297601A (zh) * 2022-08-16 2022-11-04 海南摩尔兄弟科技有限公司 等离子体发热结构及等离子体雾化装置

Also Published As

Publication number Publication date
CN115297601A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024037090A1 (zh) 等离子体发热结构及等离子体雾化装置
WO2024037089A1 (zh) 等离子体发热结构及等离子体雾化装置
CN203368892U (zh) 一种用于等离子体发生器的接触式起弧装置
WO2011130929A1 (zh) 激光触发真空开关
CN218499332U (zh) 等离子体发热结构及等离子体雾化装置
CN103726972B (zh) 具有气密高频插塞连接器的电晕点火装置
CN218499333U (zh) 等离子体发热结构及等离子体雾化装置
KR100394994B1 (ko) 전자파를 이용한 플라즈마토치
CN201813606U (zh) 一种等离子体发生器
RU2516011C1 (ru) Эрозионный импульсный плазменный ускоритель
CN213305836U (zh) 一种等离子炬
JP2021530839A (ja) サイクロトロンのための低エロージョン内部イオン源
CN218570530U (zh) 等离子体发热结构及等离子体雾化装置
JPS5853460B2 (ja) ホロ−カソ−ド放電装置
US20200314992A1 (en) Plasma torch having multi-electrode front electrode and button-type rear electrode
CN203340397U (zh) 一种等离子体发生器引弧装置
EP1194018A2 (en) Inter-torch plasma transfer device
Kovarik et al. Initiation of hot cathode arc discharges by electron confinement in Penning and magnetron configurations
US3480821A (en) Stabilized vacuum gap device with elementary electrode structure
CN220914103U (zh) 一种用于真空灭弧室的燃弧机构及包括其的真空灭弧室
CN114025463B (zh) 一种电弧等离子体炬引弧装置及引弧方法
JP7430429B1 (ja) 同軸型マイクロ波プラズマトーチ
CN206524521U (zh) 一种带有延时电子管的火花塞
CN220068140U (zh) 一种新型散热式医用回旋加速器离子源阴极支架
CN112795874B (zh) 一种沿面击穿触发式引弧结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853997

Country of ref document: EP

Kind code of ref document: A1