WO2024036868A1 - 电泳显示像素的驱动方法、模块及显示装置 - Google Patents

电泳显示像素的驱动方法、模块及显示装置 Download PDF

Info

Publication number
WO2024036868A1
WO2024036868A1 PCT/CN2022/143414 CN2022143414W WO2024036868A1 WO 2024036868 A1 WO2024036868 A1 WO 2024036868A1 CN 2022143414 W CN2022143414 W CN 2022143414W WO 2024036868 A1 WO2024036868 A1 WO 2024036868A1
Authority
WO
WIPO (PCT)
Prior art keywords
single pulse
pulse
target
data signal
pixel
Prior art date
Application number
PCT/CN2022/143414
Other languages
English (en)
French (fr)
Inventor
周满城
唐豪
李荣荣
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2024036868A1 publication Critical patent/WO2024036868A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/344Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a driving method for electrophoretic display pixels, a driving module for electrophoretic display pixels, and a display device.
  • the purpose of this disclosure is to provide a driving method for electrophoretic display pixels, a driving module for electrophoretic display pixels, and a display device, which can reduce power consumption in the pixel scanning and display process.
  • a first aspect of the present disclosure provides a driving method for electrophoretic display pixels.
  • the method is used to drive electrophoretic display pixels.
  • the electrophoretic display pixel includes a pixel circuit, a pixel electrode, a common electrode, and electrophoretic particles.
  • the output end of the pixel circuit is connected to the pixel electrode, the pixel electrode and the common electrode are arranged oppositely and can generate a driving electric field, and the electrophoretic particles are accommodated between the pixel electrode and the common electrode. Move under the driving electric field.
  • the methods include:
  • the target gray value of the electrophoretic display pixel determine the target pulse width according to the size of the target gray value, and generate a single pulse data signal according to the target pulse width; the single pulse data signal is used in the Driving the electrophoretic particles to move to the target position within the pulse duration of the single pulse data signal, so that the electrophoretic display pixel displays the target gray value;
  • a single pulse scan signal is determined according to the single pulse data signal, and the single pulse scan signal is used to conduct the input end and the output end of the pixel circuit during the pulse duration of the single pulse scan signal;
  • the single-pulse data signal is output to the input terminal of the pixel circuit, and the single-pulse scanning signal is output to the control terminal of the pixel circuit, so that the input terminal and the output terminal of the pixel circuit are connected.
  • a second aspect of the present disclosure provides a driving module for electrophoretic display pixels, where the module is used to drive electrophoretic display pixels.
  • the electrophoretic display pixel includes a pixel circuit, a pixel electrode, a common electrode, and electrophoretic particles.
  • the output end of the pixel circuit is connected to the pixel electrode, the pixel electrode and the common electrode are arranged oppositely and can generate a driving electric field, and the electrophoretic particles are accommodated between the pixel electrode and the common electrode. Move under the driving electric field.
  • the modules include:
  • a single pulse data signal acquisition unit configured to acquire a target gray value of the electrophoretic display pixel, determine a target pulse width according to the size of the target gray value, and generate a single pulse data signal according to the target pulse width;
  • the single pulse data signal is used to drive the electrophoretic particles to move to a target position within the pulse duration of the single pulse data signal, so that the electrophoretic display pixel is displayed as the target gray value;
  • a single pulse scan signal acquisition unit configured to determine a single pulse scan signal according to the single pulse data signal, the single pulse scan signal being used to enable the input of the pixel circuit within the pulse duration of the single pulse scan signal. terminal and output terminal are connected;
  • the signal output unit is configured to output the single pulse data signal to the input end of the pixel circuit, and output the single pulse scanning signal to the control end of the pixel circuit, so that the input end of the pixel circuit is connected to the control end of the pixel circuit.
  • the output terminal is conductive.
  • a third aspect of the present disclosure provides a display device, which includes:
  • the driving module for electrophoretic display pixels as described in any of the above embodiments;
  • a plurality of the electrophoretic display pixels arranged in rows and columns, the electrophoretic display pixels include:
  • Pixel circuit including control terminal, input terminal and output terminal
  • a pixel electrode connected to the output end of the pixel circuit
  • a common electrode arranged opposite the pixel electrode and capable of generating a driving electric field
  • Electrophoretic particles are accommodated between the pixel electrode and the common electrode and move under the driving electric field;
  • each row signal line is connected to the control end of the pixel circuit of each electrophoretic display pixel in the corresponding row in the display panel, and the row signal line is used to receive a single signal output by the driving module. pulse scanning signal, and outputting the single pulse scanning signal to the control end of the pixel circuit;
  • each column signal line is connected to the input end of the pixel circuit of each electrophoretic display pixel in the corresponding column in the display panel, and the column signal line is used to receive the output of the driving module a single pulse data signal, and output the single pulse data signal to the input end of the pixel circuit.
  • the driving method of electrophoretic display pixels, the driving module of electrophoretic display pixels and the display device of the present disclosure determine the target pulse width according to the size of the target gray value, and generate a single pulse data signal according to the target pulse width; and then according to the single pulse data signal Determine the single-pulse scan signal, output the single-pulse data signal to the input end of the pixel circuit, and output the single-pulse scan signal to the control end of the pixel circuit, thereby outputting the single-pulse scan signal to the pixel electrode to detect the pulse of the single-pulse data signal.
  • the electrophoretic particles are driven to move to the target position within the duration, so that the electrophoretic display pixels display the target grayscale value.
  • Display can reduce the signal frequency of scanning signals and data signals, thereby reducing power consumption in the pixel scanning display process.
  • FIG. 1 schematically shows a driving method of electrophoretic display pixels according to Embodiment 1 of the present disclosure.
  • FIG. 2 schematically shows a structural diagram of an electrophoretic display pixel according to Embodiment 1, 2 or 3 of the present disclosure.
  • FIG. 3 schematically shows a pulse timing diagram of a single pulse scanning signal and a single pulse data signal in Embodiment 1, 2 or 3 of the present disclosure.
  • FIG. 4 schematically shows a specific flow chart of determining a single-pulse scanning signal based on a single-pulse data signal in Embodiment 1 of the present disclosure.
  • FIG. 5 schematically shows a pulse timing diagram of a single pulse scanning signal and a single pulse data signal in Embodiment 1, 2 or 3 of the present disclosure.
  • FIG. 6 schematically shows a pulse timing diagram of a single pulse scanning signal and a single pulse data signal in Embodiment 1, 2 or 3 of the present disclosure.
  • Figure 7 schematically shows a specific flow chart of determining a single pulse scanning signal based on a single pulse data signal in Embodiment 1 of the present disclosure.
  • FIG. 8 schematically shows a structural diagram of a display array including multiple electrophoretic display pixels, multiple row signal lines, and multiple column signal lines according to Embodiment 1, 2 or 3 of the present disclosure.
  • FIG. 9 schematically shows a timing diagram of a single pulse scanning signal and a single pulse data signal for controlling pixel scanning and display of a display array according to Embodiment 1, 2 or 3 of the present disclosure.
  • FIG. 10 schematically shows a timing diagram of a single pulse scanning signal and a single pulse data signal used to control pixel scanning and display of a display array according to Embodiment 1, 2 or 3 of the present disclosure.
  • FIG. 11 schematically shows a specific flow chart of determining the target pulse width according to the size of the target gray value in Embodiment 1 of the present disclosure.
  • Figure 12 schematically shows a specific flow chart of determining the target pulse width of a single pulse data signal according to the particle material of the electrophoretic particles of the electrophoretic display pixel and the size of the target gray value in Embodiment 1 of the present disclosure.
  • FIG. 13 schematically shows a structural diagram of a driving module of an electrophoretic display pixel according to Embodiment 2 of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concepts of the example embodiments. To those skilled in the art.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more than two, unless otherwise expressly and specifically limited.
  • Embodiments of the present disclosure provide a driving method for electrophoretic display pixels.
  • the driving method of the present disclosure is used to drive electrophoretic display pixels.
  • Electrophoretic display pixels include pixel circuits, pixel electrodes, common electrodes, and electrophoretic particles.
  • the output end of the pixel circuit is connected to the pixel electrode.
  • the pixel electrode and the common electrode are arranged oppositely and can generate a driving electric field.
  • the electrophoretic particles are accommodated between the pixel electrode and the common electrode and move under the driving electric field.
  • FIG. 1 schematically illustrates a driving method of an electrophoretic display pixel according to an embodiment of the present disclosure. As shown in Figure 1, the driving method of electrophoretic display pixels includes:
  • Step S110 obtain the target grayscale value of the electrophoretic display pixel, determine the target pulse width according to the size of the target grayscale value, and generate a single pulse data signal according to the target pulse width; the single pulse data signal is used during the pulse duration of the single pulse data signal.
  • the electrophoretic particles are driven to move to the target position within a certain period of time, so that the electrophoretic display pixels display as the target grayscale value;
  • Step S120 determine the single pulse scanning signal according to the single pulse data signal, and the single pulse scanning signal is used to conduct the input end and the output end of the pixel circuit during the pulse duration of the single pulse scanning signal;
  • Step S130 Output the single-pulse data signal to the input terminal of the pixel circuit, and output the single-pulse scanning signal to the control terminal of the pixel circuit, so that the input terminal and the output terminal of the pixel circuit are connected.
  • the electrophoretic display pixel driving method of the disclosed solution determines the target pulse width according to the size of the target gray value, and generates a single pulse data signal according to the target pulse width; then determines the single pulse scanning signal based on the single pulse data signal, and outputs the single pulse data signal. to the input end of the pixel circuit, and outputs the single pulse scanning signal to the control end of the pixel circuit, thereby outputting the single pulse scanning signal to the pixel electrode to drive the electrophoretic particles to move to the target position within the pulse duration of the single pulse data signal,
  • the electrophoretic display pixels are displayed as target grayscale values.
  • Display can reduce the signal frequency of scanning signals and data signals, thereby reducing power consumption in the pixel scanning display process.
  • FIG. 2 schematically shows a structural diagram of an electrophoretic display pixel according to an embodiment of the present disclosure.
  • the electrophoretic pixel structure includes a pixel circuit 210, a pixel electrode 220, a common electrode 230, and electrophoretic particles.
  • the output terminal 213 of the pixel circuit 210 is connected to the pixel electrode 220.
  • the pixel electrode 220 and the common electrode 230 are arranged opposite and can generate a driving electric field.
  • the electrophoretic particles are accommodated between the pixel electrode 220 and the common electrode 230 and move under the driving electric field.
  • the electrophoretic display pixel 200 may be an electronic paper pixel or other pixel that uses electrophoretic display technology for pixel display.
  • Electrophoretic particles can be polymer particles, charged particles, etc.
  • electrophoretic display pixels may include electrophoretic capsules, each capsule having liquid charges, that is, electrophoretic particles. Among them, positively charged particles appear white and negatively charged particles appear black. At this time, when positive and negative voltages are applied to the pixel electrode and the common electrode respectively, the charged particles will be attracted and repelled respectively, so that the electrophoretic display pixels display corresponding grayscale values.
  • FIG. 3 schematically shows a pulse timing diagram of a single pulse scan signal and a single pulse data signal according to an embodiment of the present disclosure.
  • the pulse start time of the single pulse scan signal Gj and the single pulse data signal Si are the same, and the pulse end times of the single pulse scan signal Gj and the single pulse data signal Si are also the same.
  • the pixel circuit 210 is turned on during the pulse duration of the single-pulse scanning signal Gj, and the single-pulse data signal Si can be input to the pixel electrode 220 through the pixel circuit 210, and in During the pulse duration of the single pulse data signal Si, the electrophoretic particles are driven to move to the target position, so that the electrophoretic display pixel 200 displays the target grayscale value. Therefore, the display of a certain electrophoretic display pixel in a certain frame of picture can be realized through a single pulse.
  • the movement of electrophoretic particles can be realized.
  • the time is included in the pulse duration of the single-pulse data signal, which can reduce the frequency of the scan signal and the data signal.
  • the pulse of the single-pulse scanning signal Gj may be a positive pulse or a negative pulse, and the present disclosure does not impose any special limitation on this.
  • the pulse of the single-pulse data signal Si may be a positive pulse or a negative pulse, and this disclosure does not impose any special limitation on this.
  • determining the single-pulse scanning signal according to the single-pulse data signal in step S120 may include:
  • Step S410 adjust the first preset duration backward according to the pulse start time of the single pulse data signal to obtain the first time
  • Step S420 use the first time as the pulse start time of the single pulse scanning signal
  • Step S430 adjust the second preset duration forward according to the pulse end time of the single pulse data signal to obtain the second time
  • Step S440 Use the second time as the pulse end time of the single pulse scanning signal.
  • both the first preset duration and the second preset duration are less than the pulse duration of the single pulse data signal.
  • FIG. 5 schematically shows a pulse timing diagram of a single pulse scan signal and a single pulse data signal according to another embodiment of the present disclosure.
  • the pulse start time of the single pulse scan signal Gj is later than the pulse start time of the single pulse data signal Si by a first preset duration.
  • the first preset duration may be much shorter than the pulse duration of the single pulse data signal Si.
  • the pulse end time of the single pulse scan signal Gj is earlier than the pulse end time of the single pulse data signal Si by a second preset duration.
  • the second preset duration may be much shorter than the pulse duration of the single pulse data signal Si. This can prevent the pixel circuit and the pixel electrode from reading erroneous data signals when the single-pulse scanning signal turns on the pixel circuit, thereby avoiding pixel error display.
  • determining the single-pulse scan signal according to the single-pulse data signal in step S120 may include:
  • the third preset duration and the fourth preset duration are both shorter than the pulse duration of the single pulse scanning signal.
  • FIG. 6 schematically shows a pulse timing diagram of a single pulse scan signal and a single pulse data signal according to yet another embodiment of the present disclosure.
  • the pulse start time of the single pulse data signal Si is earlier than the pulse start time of the single pulse scan signal Gj by a third predetermined duration.
  • the third preset duration may be much shorter than the pulse duration of the single pulse scan signal Gj, that is, the third preset duration is of an order of magnitude smaller than the pulse duration of the single pulse scan signal Gj.
  • the pulse end time of the single pulse data signal Si is later than the pulse end time of the single pulse scan signal Gj by a fourth predetermined duration.
  • the fourth preset duration may be much shorter than the pulse duration of the single pulse scan signal Gj, that is, the fourth preset duration is of an order of magnitude smaller than the pulse duration of the single pulse scan signal Gj. This can prevent the pixel circuit and the pixel electrode from reading erroneous data signals when the single-pulse scanning signal turns on the pixel circuit, thereby avoiding pixel erroneous display. Moreover, it can ensure that the pulse duration of the single-pulse scanning signal and the pulse duration of the single-pulse data signal are sufficient, thereby enabling a sufficient amount of electrophoretic particles to move to the target gray value and avoiding display errors in the gray value of the electrophoretic display pixels.
  • step S120 of determining the single pulse scan signal based on the single pulse data signal may include:
  • Step S710 obtain the maximum pulse width of the single pulse data signal corresponding to the target gray value when the target gray value takes the maximum or minimum value;
  • Step S720 use the maximum pulse width as the pulse width of the single pulse scanning signal, and determine the single pulse scanning signal according to the pulse width of the single pulse scanning signal.
  • FIG. 8 schematically shows a structural diagram of a display array including multiple electrophoretic display pixels, multiple row signal lines, and multiple column signal lines according to an embodiment of the present disclosure.
  • the display array includes a plurality of electrophoretic display pixels, a plurality of row signal lines and a plurality of column signal lines.
  • the control terminal of the pixel circuit of the first electrophoretic display pixel 201 is connected to the first row signal line 301
  • the input terminal of the pixel circuit of the first electrophoretic display pixel 201 is connected to the first column signal line 401 .
  • the control terminal of the pixel circuit of the second electrophoretic display pixel 202 is connected to the first row signal line 301 , and the input terminal of the pixel circuit of the second electrophoretic display pixel 202 is connected to the second column signal line 402 .
  • the control terminal of the pixel circuit of the third electrophoretic display pixel 203 is connected to the first row signal line 301 , and the input terminal of the pixel circuit of the third electrophoretic display pixel 203 is connected to the third column signal line 403 .
  • the control terminal of the pixel circuit of the fourth electrophoretic display pixel 204 is connected to the second row signal line 302 , and the input terminal of the pixel circuit of the fourth electrophoretic display pixel 204 is connected to the first column signal line 401 .
  • the control terminal of the pixel circuit of the fifth electrophoretic display pixel 205 is connected to the second row signal line 302 , and the input terminal of the pixel circuit of the fifth electrophoretic display pixel 205 is connected to the second column signal line 402 .
  • the control terminal of the pixel circuit of the sixth electrophoretic display pixel 206 is connected to the second row signal line 302 , and the input terminal of the pixel circuit of the sixth electrophoretic display pixel 206 is connected to the third column signal line 403 .
  • the first row signal line 301 has a corresponding parasitic capacitance C1
  • the second row signal line 302 has a corresponding parasitic capacitance C2
  • the first column signal line 401 has a corresponding parasitic capacitance C3.
  • the second column signal line 402 has a corresponding parasitic capacitance C4
  • the third column signal line 403 has a corresponding parasitic capacitance C5.
  • FIG. 9 schematically shows a timing diagram of a single pulse scanning signal and a single pulse data signal used to control pixel scanning and display of a display array according to an embodiment of the present disclosure.
  • the first single pulse scanning signal G1 shown in Figure 9 can be input to the first row signal line 301 shown in Figure 8; the second single pulse scanning signal G2 shown in Figure 9 can be input to the second row signal line 301 shown in Figure 8. on signal line 302.
  • the first single pulse data signal S1 shown in Figure 9 can be input to the first column signal line 401 shown in Figure 8; the second single pulse data signal S2 shown in Figure 9 can be input to the second column signal line 401 shown in Figure 8.
  • the third single pulse data signal S3 shown in Figure 9 can be input to the third column signal line 403 shown in Figure 8. Therefore, the display driving of the display array can be realized through the single pulse scanning signal and the single pulse data signal.
  • the pulse width of each single-pulse scanning signal can remain the same.
  • the maximum pulse width of the single pulse data signal corresponding to the target gray value is taken as The pulse width of the single pulse scan signal.
  • the pulse duration of the single-pulse scanning signal can be guaranteed to cover the pulse duration of the single-pulse data signal, thereby ensuring correct display of pixels.
  • the pulse width of each single-pulse scanning signal remains the same, the calculation amount of determining the pulse width of the single-pulse scanning signal can be reduced, the pixel display speed can be improved, and computing power and power consumption can be saved.
  • FIG. 10 schematically illustrates a timing diagram of a single pulse scanning signal and a single pulse data signal used to control pixel scanning and display of a display array according to another embodiment of the present disclosure.
  • the first single pulse scanning signal G1 shown in Figure 10 can be input to the first row signal line 301 shown in Figure 8; the second single pulse scanning signal G2 shown in Figure 10 can be input to the second row signal line 301 shown in Figure 8. on signal line 302.
  • the first single pulse data signal S1 shown in Figure 10 can be input to the first column signal line 401 shown in Figure 8; the second single pulse data signal S2 shown in Figure 10 can be input to the second column signal line 401 shown in Figure 8.
  • the third single pulse data signal S3 shown in FIG. 10 can be input to the third column signal line 403 shown in FIG. 8. Therefore, the display driving of the display array can be realized through the single pulse scanning signal and the single pulse data signal.
  • the maximum pulse width of the single-pulse data signal corresponding to each pixel in the same row of pixels can be used as the pulse width of the single-pulse scanning signal of the pixels in the row. That is to say, the pulse width of each single pulse scanning signal can be different. In this way, the pulse duration of the single-pulse scanning signal can be guaranteed to cover the pulse duration of the single-pulse data signal, thereby ensuring correct display of pixels. Furthermore, when the maximum pulse width of the single-pulse data signal corresponding to each pixel in a certain row of pixels is small, the pulse width of the single-pulse scanning signal of the pixels in the row is also small, thereby increasing the screen refresh frequency of the display array.
  • the single-pulse scanning signal and single-pulse data signal mentioned in this disclosure can achieve one-time display of a single pixel through a single pulse.
  • the first single pulse data signal S1, the second single pulse data signal S2, and the third single pulse data signal S3 in Figures 9 and 10 have multiple pulses in form, this is because the single pulses of multiple pixels are combined. Pulse data signals are aggregated onto a signal line. For a single pixel, the display of a pixel is still achieved through a single pulse.
  • determining the target pulse width according to the size of the target gray value in step S110 may include:
  • Step S1110 obtain the size of the current grayscale value of the electrophoretic display pixel
  • Step S1120 determine the grayscale difference value according to the size of the target grayscale value and the size of the current grayscale value
  • Step S1130 Determine the target pulse width based on the grayscale difference value.
  • the pixel can be displayed and driven based on the display of the current grayscale value, that is, the electrophoretic particles can be displayed and driven based on the current state of the electrophoretic particles of the pixel.
  • the grayscale change frequency of the display screen is slow, that is, the grayscale value of a pixel in the previous frame may be similar to the grayscale value of the pixel in the current frame. In this way, electrophoretic particles can be saved.
  • the longer particle movement time caused by resetting and re-driving can improve display responsiveness and screen refresh frequency.
  • determining the target pulse width according to the size of the target gray value in step S110 may include:
  • the target pulse width of the single pulse data signal is determined according to the particle material of the electrophoretic particles of the electrophoretic display pixel and the size of the target gray value.
  • the particle movement speed of the particle material under a driving electric field of a certain preset voltage can be obtained.
  • the pulse voltage of the single pulse data signal can be set to the preset voltage.
  • the target pulse width of the single-pulse data signal is determined based on the movement speed of the particle and the size of the target gray value.
  • the target pulse width of the single-pulse data signal Si has a negative correlation with the particle movement speed of the electrophoretic particles of the particle material under the driving electric field; the target pulse width of the single-pulse data signal Si has a positive relationship with the size of the target gray value. Relevant relationships.
  • FIG. 12 schematically illustrates the determination of a single pulse data signal according to the particle material of the electrophoretic particles of the electrophoretic display pixel and the size of the target gray value in an embodiment of the present disclosure.
  • the specific flow diagram of the target pulse width As shown in Figure 12, determining the target pulse width of the single pulse data signal according to the particle material of the electrophoretic particles of the electrophoretic display pixel and the size of the target gray value in the above steps may include:
  • Step S1210 determine the target number of electrophoretic particles that need to move to the target position according to the size of the target gray value
  • Step S1220 Determine the target pulse width required for the electrophoretic particles of the target molecular weight to move to the target position based on the number of target particles and the particle material of the electrophoretic particles.
  • the target pulse width required for the electrophoretic particles of the target molecular weight to move to the target position can be determined based on the number of target particles and the particle material of the electrophoretic particles, so that within the pulse duration of the single pulse data signal, there is template particle data.
  • the electrophoretic particles move to the target position so that the electrophoretic display pixels display the target grayscale value.
  • Embodiment 2 of the present disclosure also provides a driving module 1300 for electrophoretic display pixels 200.
  • the driving module 1300 is used to drive the electrophoretic display.
  • the electrophoretic display pixel 200 includes a pixel circuit 210, a pixel electrode 220, a common electrode 230, and electrophoretic particles.
  • the output terminal 213 of the pixel circuit 210 is connected to the pixel electrode 220 .
  • the pixel electrode 220 and the common electrode 230 are arranged opposite and can generate a driving electric field.
  • the electrophoretic particles are accommodated between the pixel electrode 220 and the common electrode 230 and move under the driving electric field.
  • the driving module 1300 of the electrophoretic display pixel 200 may include:
  • the single pulse data signal Si acquisition unit 1310 is configured to acquire the target gray value of the electrophoretic display pixel 200, determine the target pulse width according to the size of the target gray value, and generate the single pulse data signal Si according to the target pulse width; single pulse data The signal Si is used to drive the electrophoretic particles to move to the target position within the pulse duration of the single-pulse data signal Si, so that the electrophoretic display pixel 200 displays the target gray value;
  • the single pulse scanning signal Gj acquisition unit 1320 is configured to determine the single pulse scanning signal Gj according to the single pulse data signal Si.
  • the single pulse scanning signal Gj is used to make the input end of the pixel circuit 210 during the pulse duration of the single pulse scanning signal Gj. 212 is connected to the output terminal 213;
  • the signal output unit 1330 is configured to output the single pulse data signal Si to the input terminal 212 of the pixel circuit 210, and to output the single pulse scanning signal Gj to the control terminal 211 of the pixel circuit 210, so that the input terminal 212 of the pixel circuit 210 is connected to the output terminal 212 of the pixel circuit 210. Terminal 213 is turned on.
  • the driving device of the electrophoretic display pixel of the disclosed solution determines the target pulse width according to the size of the target gray value, and generates a single pulse data signal according to the target pulse width; then determines the single pulse scanning signal according to the single pulse data signal, and outputs the single pulse data signal. to the input end of the pixel circuit, and outputs the single pulse scanning signal to the control end of the pixel circuit, thereby outputting the single pulse scanning signal to the pixel electrode to drive the electrophoretic particles to move to the target position within the pulse duration of the single pulse data signal,
  • the electrophoretic display pixels are displayed as target grayscale values.
  • Display can reduce the signal frequency of scanning signals and data signals, thereby reducing power consumption in the pixel scanning display process.
  • Embodiment 3 further provides a display device. As shown in Figure 2, Figure 8, and Figure 13, the display device includes:
  • the driving module 1300 of the electrophoretic display pixel 200 in any of the above embodiments;
  • a plurality of electrophoretic display pixels 200 are arranged in rows and columns.
  • the electrophoretic display pixels 200 include:
  • Pixel circuit 210 includes a control terminal 211, an input terminal 212 and an output terminal 213;
  • the pixel electrode 220 is connected to the output terminal 213 of the pixel circuit 210;
  • the common electrode 230 is arranged opposite to the pixel electrode 220 and can generate a driving electric field
  • the electrophoretic particles are accommodated between the pixel electrode 220 and the common electrode 230 and move under the driving electric field;
  • Each row signal line 300 is connected to the control end 211 of the pixel circuit 210 of each electrophoretic display pixel 200 in the corresponding row in the display panel.
  • the row signal lines 300 are used to receive the output of the driving module 1300.
  • Single pulse scanning signal Gj and outputting the single pulse scanning signal Gj to the control terminal 211 of the pixel circuit 210;
  • Each column signal line 400 is connected to the input end 212 of the pixel circuit 210 of each electrophoretic display pixel 200 in the corresponding column in the display panel.
  • the column signal lines 400 are used to receive the output of the driving module 1300.
  • the single pulse data signal Si is output to the input terminal 212 of the pixel circuit 210 .
  • the display device of the embodiment of the present disclosure may be an electronic paper display device.
  • the display device of the present disclosure does not need to provide a storage capacitor or other structures for maintaining the pulse voltage of the pixel electrode after the pulse duration of the data signal ends, and can complete the electrophoretic display of the electrophoretic molecules of the pixel within the pulse duration of the single-pulse data signal.
  • Positional movement, thereby achieving corresponding gray value display can reduce the signal frequency of scanning signals and data signals, thereby reducing power consumption in the pixel scanning and display process.
  • the pixel circuit 210 is composed of a switch tube.
  • the control terminal of the switch tube is the control terminal 211 of the pixel circuit 210.
  • the first terminal of the switch tube is the input terminal 212 of the pixel circuit 210.
  • the second terminal of the switch tube is the pixel circuit 210.
  • the output terminal 213. Therefore, the pixel circuit 210 is composed of a switching transistor. There is no need to set a storage capacitor at the output end of the pixel circuit or the data receiving end of the pixel electrode, and the position of the electrophoretic molecules of the pixel can be electrophoretically displayed within the pulse duration of the single pulse data signal. Movement to achieve corresponding gray value display, which can simplify the structure of electrophoretic display pixels so as to miniaturize electrophoretic display pixels, and at the same time avoid electrical losses caused by storage capacitors and reduce power consumption.
  • the electrophoretic display pixel driving method, the electrophoretic display pixel driving module and the display device of the present disclosure can include the movement time of the electrophoretic particles in the pulse duration of the single pulse data signal, and only need to perform a single pulse scan.
  • the single-pulse output of the signal and the single-pulse data signal can drive the electrophoretic particles to move to the target position within the pulse duration of the single-pulse data signal, which can reduce the power consumption in the pixel scanning and display process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种电泳显示像素的驱动方法、驱动模块及显示装置。该方法包括:获取电泳显示像素的目标灰度值,根据目标灰度值的大小确定目标脉冲宽度,并根据目标脉冲宽度生成单脉冲数据信号;单脉冲数据信号用于在单脉冲数据信号的脉冲持续时间内驱动电泳粒子运动至目标位置;根据单脉冲数据信号确定单脉冲扫描信号;输出单脉冲数据信号至像素电路的输入端,并输出单脉冲扫描信号至像素电路的控制端。本方案能够降低像素扫描显示过程的电耗。

Description

电泳显示像素的驱动方法、模块及显示装置
本申请要求于2022年8月17日提交中国专利局,申请号为2022109890060,申请名称为“电泳显示像素的驱动方法、模块及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于显示技术领域,具体涉及一种电泳显示像素的驱动方法、电泳显示像素的驱动模块及显示装置。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
目前,在电泳显示面板中,不管是行线还是列线,均会存在一定大小的寄生电容。由于寄生电容的存在,在面板显示的信号扫描过程中,寄生电容会产生相应的电损耗。
发明内容
本公开的目的在于提供一种电泳显示像素的驱动方法、电泳显示像素的驱动模块及显示装置,能够降低像素扫描显示过程的电耗。
本公开第一方面提供了一种电泳显示像素的驱动方法。所述方法用于驱动电泳显示像素。所述电泳显示像素包括像素电路、像素电极、公共电极、电泳粒子。所述像素电路的输出端与所述像素电极连接,所述像素电极和所述公共电极相对设置并能够产生驱动电场,所述电泳粒子容置于所述像素电极与所述公共电极之间并在所述驱动电场下运动。所述方法包括:
获取所述电泳显示像素的目标灰度值,根据所述目标灰度值的大小确定目标脉冲宽度,并根据所述目标脉冲宽度生成单脉冲数据信号;所述单脉冲数据信号用于在所述单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,以使所述电泳显示像素显示为所述目标灰度值;
根据所述单脉冲数据信号确定单脉冲扫描信号,所述单脉冲扫描信号用于在所述单脉冲扫描信号的脉冲持续时间内使所述像素电路的输入端与输出端导通;
输出所述单脉冲数据信号至所述像素电路的输入端,并输出所述单脉冲扫描信号至所 述像素电路的控制端,以使所述像素电路的输入端与输出端导通。
本公开第二方面提供了一种电泳显示像素的驱动模块,所述模块用于驱动电泳显示像素。所述电泳显示像素包括像素电路、像素电极、公共电极、电泳粒子。所述像素电路的输出端与所述像素电极连接,所述像素电极和所述公共电极相对设置并能够产生驱动电场,所述电泳粒子容置于所述像素电极与所述公共电极之间并在所述驱动电场下运动。所述模块包括:
单脉冲数据信号获取单元,被配置为获取所述电泳显示像素的目标灰度值,根据所述目标灰度值的大小确定目标脉冲宽度,并根据所述目标脉冲宽度生成单脉冲数据信号;所述单脉冲数据信号用于在所述单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,以使所述电泳显示像素显示为所述目标灰度值;
单脉冲扫描信号获取单元,被配置为根据所述单脉冲数据信号确定单脉冲扫描信号,所述单脉冲扫描信号用于在所述单脉冲扫描信号的脉冲持续时间内使所述像素电路的输入端与输出端导通;
信号输出单元,被配置为输出所述单脉冲数据信号至所述像素电路的输入端,并输出所述单脉冲扫描信号至所述像素电路的控制端,以使所述像素电路的输入端与输出端导通。
本公开第三方面提供了一种显示装置,所述显示装置包括:
如上任一实施例所述的电泳显示像素的驱动模块;
行列排布的多个所述电泳显示像素,所述电泳显示像素包括:
像素电路,包括控制端、输入端和输出端;
像素电极,与所述像素电路的输出端连接;
公共电极,与所述像素电极相对设置并能够产生驱动电场;
电泳粒子,容置于所述像素电极与所述公共电极之间,并在所述驱动电场下运动;
多根行信号线,各根所述行信号线与显示面板中对应行中的每个电泳显示像素的像素电路的控制端均连接,所述行信号线用于接收所述驱动模块输出的单脉冲扫描信号,并将所述单脉冲扫描信号输出至所述像素电路的控制端;
多根列信号线,各根所述列信号线与所述显示面板中对应列中的每个电泳显示像素的像素电路的输入端均连接,所述列信号线用于接收所述驱动模块输出的单脉冲数据信号,并将所述单脉冲数据信号输出至所述像素电路的输入端。
本公开方案的电泳显示像素的驱动方法、电泳显示像素的驱动模块及显示装置,根据 目标灰度值的大小确定目标脉冲宽度,并根据目标脉冲宽度生成单脉冲数据信号;再根据单脉冲数据信号确定单脉冲扫描信号,输出单脉冲数据信号至像素电路的输入端,并输出单脉冲扫描信号至像素电路的控制端,从而将单脉冲扫描信号输出至像素电极,以在单脉冲数据信号的脉冲持续时间内驱动电泳粒子运动至目标位置,从而使得电泳显示像素显示为目标灰度值。可以理解,只需要进行一次单脉冲扫描信号和单脉冲数据信号的单脉冲输出,即可在单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,从而实现电泳显示像素的驱动显示,能够减少扫描信号和数据信号的信号频率,从而能够降低像素扫描显示过程的电耗。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性地示出了本公开实施例一的电泳显示像素的驱动方法。
图2示意性地示出了本公开实施例一、实施例二或实施例三的电泳显示像素的结构示意图。
图3示意性地示出了本公开实施例一、实施例二或实施例三的单脉冲扫描信号和单脉冲数据信号的脉冲时序示意图。
图4示意性地示出了本公开实施例一中根据单脉冲数据信号确定单脉冲扫描信号的具体流程示意图。
图5示意性地示出了本公开实施例一、实施例二或实施例三的单脉冲扫描信号和单脉冲数据信号的脉冲时序示意图。
图6示意性地示出了本公开实施例一、实施例二或实施例三的单脉冲扫描信号和单脉冲数据信号的脉冲时序示意图。
图7示意性地示出了本公开实施例一中根据单脉冲数据信号确定单脉冲扫描信号 的具体流程示意图。
图8示意性地示出了本公开实施例一、实施例二或实施例三的包括了多个电泳显示像素、多根行信号线和多根列信号线的显示阵列的结构示意图。
图9示意性地示出了本公开实施例一、实施例二或实施例三的用于控制显示阵列的像素扫描和显示的单脉冲扫描信号和单脉冲数据信号的时序示意图。
图10示意性地示出了本公开实施例一、实施例二或实施例三的用于控制显示阵列的像素扫描和显示的单脉冲扫描信号和单脉冲数据信号的时序示意图。
图11示意性地示出了本公开实施例一中根据目标灰度值的大小确定目标脉冲宽度的具体流程示意图。
图12示意性地示出了本公开实施例一中根据电泳显示像素的电泳粒子的粒子材料,以及目标灰度值的大小,确定单脉冲数据信号的目标脉冲宽度的具体流程示意图。
图13示意性地示出了本公开实施例二的电泳显示像素的驱动模块的结构示意图。
本发明的实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。
在本公开中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本公开的各方面。
实施例一
本公开实施例提供了一种电泳显示像素的驱动方法。本公开的驱动方法用于驱动电泳显示像素。电泳显示像素包括像素电路、像素电极、公共电极、电泳粒子。像素 电路的输出端与像素电极连接,像素电极和公共电极相对设置并能够产生驱动电场,电泳粒子容置于像素电极与公共电极之间并在驱动电场下运动。图1示意性地示出了本公开实施例的电泳显示像素的驱动方法。如图1所示,电泳显示像素的驱动方法包括:
步骤S110,获取电泳显示像素的目标灰度值,根据目标灰度值的大小确定目标脉冲宽度,并根据目标脉冲宽度生成单脉冲数据信号;单脉冲数据信号用于在单脉冲数据信号的脉冲持续时间内驱动电泳粒子运动至目标位置,以使电泳显示像素显示为目标灰度值;
步骤S120,根据单脉冲数据信号确定单脉冲扫描信号,单脉冲扫描信号用于在单脉冲扫描信号的脉冲持续时间内使像素电路的输入端与输出端导通;
步骤S130,输出单脉冲数据信号至像素电路的输入端,并输出单脉冲扫描信号至像素电路的控制端,以使像素电路的输入端与输出端导通。
本公开方案的电泳显示像素的驱动方法根据目标灰度值的大小确定目标脉冲宽度,并根据目标脉冲宽度生成单脉冲数据信号;再根据单脉冲数据信号确定单脉冲扫描信号,输出单脉冲数据信号至像素电路的输入端,并输出单脉冲扫描信号至像素电路的控制端,从而将单脉冲扫描信号输出至像素电极,以在单脉冲数据信号的脉冲持续时间内驱动电泳粒子运动至目标位置,从而使得电泳显示像素显示为目标灰度值。可以理解,只需要进行一次单脉冲扫描信号和单脉冲数据信号的单脉冲输出,即可在单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,从而实现电泳显示像素的驱动显示,能够减少扫描信号和数据信号的信号频率,从而能够降低像素扫描显示过程的电耗。
在某些实施方式中,请参阅图2,图2示意性地示出了本公开某实施例的电泳显示像素的结构示意图。电泳像素结构包括像素电路210、像素电极220、公共电极230、电泳粒子。像素电路210的输出端213与像素电极220连接,像素电极220和公共电极230相对设置并能够产生驱动电场,电泳粒子容置于像素电极220与公共电极230之间并在驱动电场下运动。
具体地,电泳显示像素200可以为电子纸像素等采用电泳显示技术进行像素显示的像素。电泳粒子可以为高分子粒子、带电粒子等。示例地,电泳显示像素可以包括电泳胶囊,每一个胶囊中具有液体电荷,也即电泳粒子。其中,正电荷的粒子呈白色,负电荷的粒子呈黑色。此时,分别在像素电极和公共电极给予正负电压,带有电荷的 粒子就会被分别吸引和排斥,从而使得电泳显示像素显示为相应的灰度值。
在某些实施方式中,请参阅图3,图3示意性地示出了本公开某实施例的单脉冲扫描信号和单脉冲数据信号的脉冲时序示意图。如图3所示,单脉冲扫描信号Gj和单脉冲数据信号Si的脉冲开始时间相同,单脉冲扫描信号Gj和单脉冲数据信号Si的脉冲结束时间也相同。由此,当单脉冲扫描信号Gj的脉冲开始时,在单脉冲扫描信号Gj的脉冲持续时间内像素电路210导通,单脉冲数据信号Si可以通过像素电路210输入至像素电极220中,并在单脉冲数据信号Si的脉冲持续时间内驱动电泳粒子运动至目标位置,以使电泳显示像素200显示为目标灰度值。从而,能够通过单次脉冲实现某帧画面中某个电泳显示像素的显示,相比较于通过多脉冲信号才能实现一次某帧画面中某个电泳显示像素的显示的方案,能够将电泳粒子的运动时间囊括在单脉冲数据信号的脉冲持续时间中,能够降低扫描信号和数据信号的频率。而根据寄生电容的功耗W=(1/2)fCV 2的计算公式,其中f为信号频率,V为信号电压,C为寄生电容的电容值,可知,寄生电容带来的电损耗也相应降低,进而能够降低画面显示刷新过程所需的功耗。
需要说明的是,单脉冲扫描信号Gj的脉冲可以是正脉冲,也可以是负脉冲,本公开对此不作特殊限制。单脉冲数据信号Si的脉冲可以是正脉冲,也可以是负脉冲,本公开对此不作特殊限制。
在某些实施方式中,请参阅图4,图4示意性地示出了本公开某实施例中根据单脉冲数据信号确定单脉冲扫描信号的具体流程示意图。如图4所示,步骤S120的根据单脉冲数据信号确定单脉冲扫描信号,可以包括:
步骤S410,根据单脉冲数据信号的脉冲开始时间向后调整第一预设时长得到第一时间;
步骤S420,将第一时间作为单脉冲扫描信号的脉冲开始时间;
步骤S430,根据单脉冲数据信号的脉冲结束时间向前调整第二预设时长得到第二时间;
步骤S440,将第二时间作为单脉冲扫描信号的脉冲结束时间。
其中,第一预设时长和第二预设时长均小于单脉冲数据信号的脉冲持续时长。
在某些实施方式中,请参阅图5,图5示意性地示出了本公开另一实施例的单脉冲扫描信号和单脉冲数据信号的脉冲时序示意图。如图5所示,单脉冲扫描信号Gj的脉冲开始时间晚于单脉冲数据信号Si的脉冲开始时间第一预设时长。具体实施例 中,第一预设时长可以远小于单脉冲数据信号Si的脉冲持续时长。单脉冲扫描信号Gj的脉冲结束时间早于单脉冲数据信号Si的脉冲结束时间第二预设时长。具体实施例中,第二预设时长可以远小于单脉冲数据信号Si的脉冲持续时长。由此,能够避免单脉冲扫描信号打开像素电路时,像素电路和像素电极读取到错误的数据信号,从而能够避免像素错误显示。
在某些实施方式中,步骤S120的根据单脉冲数据信号确定单脉冲扫描信号,可以包括:
将单脉冲数据信号的脉冲开始时间作为单脉冲扫描信号的脉冲开始时间;
将单脉冲数据信号的脉冲结束时间作为单脉冲扫描信号的脉冲结束时间;
将单脉冲数据信号的脉冲开始时间向前调整第三预设时长;
将单脉冲数据信号的脉冲开始时间向后调整第四预设时长。
其中,第三预设时长和第四预设时长均小于单脉冲扫描信号的脉冲持续时长。
请参阅图6,图6示意性地示出了本公开再一实施例的单脉冲扫描信号和单脉冲数据信号的脉冲时序示意图。如图6所示,单脉冲数据信号Si的脉冲开始时间早于单脉冲扫描信号Gj的脉冲开始时间第三预设时长。具体实施例中,第三预设时长可以远小于单脉冲扫描信号Gj的脉冲持续时长,也即第三预设时长的数量级小于单脉冲扫描信号Gj的脉冲持续时长。单脉冲数据信号Si的脉冲结束时间晚于单脉冲扫描信号Gj的脉冲结束时间第四预设时长。具体实施例中,第四预设时长可以远小于单脉冲扫描信号Gj的脉冲持续时长,也即第四预设时长的数量级小于单脉冲扫描信号Gj的脉冲持续时长。由此,能够避免单脉冲扫描信号打开像素电路时,像素电路和像素电极读取到错误的数据信号,从而能够避免像素错误显示。并且,能够保证单脉冲扫描信号的脉冲持续时间以及单脉冲数据信号的脉冲持续时间足够,从而能够使得足量的电泳粒子运动到目标灰度值,避免电泳显示像素的灰度值出现显示误差。
在某些实施方式中,请参阅图7,图7示意性地示出了本公开某实施例中根据单脉冲数据信号确定单脉冲扫描信号的具体流程示意图。如图7所示,步骤S120的根据单脉冲数据信号确定单脉冲扫描信号,可以包括:
步骤S710,获取当目标灰度值取最大值或最小值时,目标灰度值所对应的单脉冲数据信号的最大脉冲宽度;
步骤S720,将最大脉冲宽度作为单脉冲扫描信号的脉冲宽度,并根据单脉冲扫描信号的脉冲宽度确定单脉冲扫描信号。
请参阅图8,图8示意性地示出了本公开某实施例的包括了多个电泳显示像素、多根行信号线和多根列信号线的显示阵列的结构示意图。示例地,如图8所示,显示阵列包括多个电泳显示像素、多根行信号线和多根列信号线。第一电泳显示像素201的像素电路的控制端与第一行信号线301连接,第一电泳显示像素201的像素电路的输入端与第一列信号线401连接。第二电泳显示像素202的像素电路的控制端与第一行信号线301连接,第二电泳显示像素202的像素电路的输入端与第二列信号线402连接。第三电泳显示像素203的像素电路的控制端与第一行信号线301连接,第三电泳显示像素203的像素电路的输入端与第三列信号线403连接。第四电泳显示像素204的像素电路的控制端与第二行信号线302连接,第四电泳显示像素204的像素电路的输入端与第一列信号线401连接。第五电泳显示像素205的像素电路的控制端与第二行信号线302连接,第五电泳显示像素205的像素电路的输入端与第二列信号线402连接。第六电泳显示像素206的像素电路的控制端与第二行信号线302连接,第六电泳显示像素206的像素电路的输入端与第三列信号线403连接。
可以理解,如图8所示,第一行信号线301上具有相应的寄生电容C1,第二行信号线302上具有相应的寄生电容C2,第一列信号线401上具有相应的寄生电容C3,第二列信号线402上具有相应的寄生电容C4,第三列信号线403上具有相应的寄生电容C5。
请参阅图9,图9示意性地示出了本公开某实施例用于控制显示阵列的像素扫描和显示的单脉冲扫描信号和单脉冲数据信号的时序示意图。图9所示的第一单脉冲扫描信号G1可以输入到图8所示的第一行信号线301上;图9所示的第二单脉冲扫描信号G2可以输入到图8所示的第二行信号线302上。图9所示的第一单脉冲数据信号S1可以输入到图8所示的第一列信号线401上;图9所示的第二单脉冲数据信号S2可以输入到图8所示的第二列信号线402上;图9所示的第三单脉冲数据信号S3可以输入到图8所示的第三列信号线403上。由此,能够通过单脉冲扫描信号和单脉冲数据信号实现对于显示阵列的显示驱动。
如图9所示,每个单脉冲扫描信号的脉冲宽度可以保持相同,均将当目标灰度值取最大值或最小值时,目标灰度值所对应的单脉冲数据信号的最大脉冲宽度作为单脉冲扫描信号的脉冲宽度。如此,可以保证单脉冲扫描信号的脉冲持续时间,能够覆盖将单脉冲数据信号的脉冲持续时间,从而保证像素的正确显示。并且,由于每个单脉冲扫描信号的脉冲宽度保持相同,能够减少确定单脉冲扫描信号的脉冲宽度过程的计 算量,能够提高像素显示速度,节省算力和电耗。
请参阅图10,图10示意性地示出了本公开另一实施例用于控制显示阵列的像素扫描和显示的单脉冲扫描信号和单脉冲数据信号的时序示意图。图10所示的第一单脉冲扫描信号G1可以输入到图8所示的第一行信号线301上;图10所示的第二单脉冲扫描信号G2可以输入到图8所示的第二行信号线302上。图10所示的第一单脉冲数据信号S1可以输入到图8所示的第一列信号线401上;图10所示的第二单脉冲数据信号S2可以输入到图8所示的第二列信号线402上;图10所示的第三单脉冲数据信号S3可以输入到图8所示的第三列信号线403上。由此,能够通过单脉冲扫描信号和单脉冲数据信号实现对于显示阵列的显示驱动。
如图10所示,可以将同一行像素中的各个像素所对应的单脉冲数据信号的最大脉冲宽度,作为该行像素的单脉冲扫描信号的脉冲宽度。也就是说,各个单脉冲扫描信号的脉冲宽度可以不同。如此,可以保证单脉冲扫描信号的脉冲持续时间,能够覆盖将单脉冲数据信号的脉冲持续时间,从而保证像素的正确显示。并且,当某行像素中的各个像素所对应的单脉冲数据信号的最大脉冲宽度较小时,该行像素的单脉冲扫描信号的脉冲宽度也较小,从而能够提高显示面阵的画面刷新频率。
值得注意的是,本公开所说单脉冲扫描信号和单脉冲数据信号,是通过单脉冲可以实现对单个像素的一次显示。虽然图9、图10中的第一单脉冲数据信号S1、第二单脉冲数据信号S2、第三单脉冲数据信号S3在形式上看具有多个脉冲,但这是因为将多个像素的单脉冲数据信号聚合到一根信号线上而产生的。对于单个像素而言,仍然是通过单脉冲实现一次像素的显示。
在某些实施方式中,请参阅图11,图11示意性地示出了本公开某实施例中根据目标灰度值的大小确定目标脉冲宽度的具体流程示意图。如图11所示,步骤S110的根据目标灰度值的大小确定目标脉冲宽度,可以包括:
步骤S1110,获取电泳显示像素的当前灰度值的大小;
步骤S1120,根据目标灰度值的大小和当前灰度值的大小确定灰度差值;
步骤S1130,根据灰度差值确定目标脉冲宽度。
由此,能够在当前灰度值的显示基础上,对像素进行显示驱动,也即在像素的电泳粒子的当前状态上,对电泳粒子进行显示驱动。可以理解,很多时候,显示画面的灰度变化频率是缓慢的,也即上一帧画面某像素的灰度值大小可能与当前帧画面该像素的灰度值大小相近,如此,能够节省电泳粒子复位并重新驱动所带来的较长的粒子 移动时间,能够提高显示响应度和画面刷新频率。
示例地,步骤S110的根据目标灰度值的大小确定目标脉冲宽度,可以包括:
根据电泳显示像素的电泳粒子的粒子材料,以及目标灰度值的大小,确定单脉冲数据信号的目标脉冲宽度。
具体地,可以根据电泳显示像素的电泳粒子的粒子材料,获取该粒子材料在某个预设电压的驱动电场下的粒子运动速度。单脉冲数据信号的脉冲电压可以设置为该预设电压。然后,根据该粒子运动速度以及目标灰度值的大小,确定单脉冲数据信号的目标脉冲宽度。
示例地,单脉冲数据信号Si的目标脉冲宽度,与粒子材料的电泳粒子在驱动电场下的粒子运动速度具有负相关关系;单脉冲数据信号Si的目标脉冲宽度与目标灰度值的大小具有正相关的关系。
在某些实施方式中,请参阅图12,图12示意性地示出了本公开某实施例中根据电泳显示像素的电泳粒子的粒子材料,以及目标灰度值的大小,确定单脉冲数据信号的目标脉冲宽度的具体流程示意图。如图12所示,如上步骤的根据电泳显示像素的电泳粒子的粒子材料,以及目标灰度值的大小,确定单脉冲数据信号的目标脉冲宽度,可以包括:
步骤S1210,根据目标灰度值的大小,确定需运动至目标位置的电泳粒子的目标粒子数量;
步骤S1220,根据目标粒子数量和电泳粒子的粒子材料,确定目标分子量的电泳粒子运动至目标位置所需的目标脉冲宽度。
由此,能够根据目标粒子数量和电泳粒子的粒子材料,确定目标分子量的电泳粒子运动至目标位置所需的目标脉冲宽度,从而使得在单脉冲数据信号的脉冲持续时长内,有模板粒子数据的电泳粒子运动至目标位置,以使得电泳显示像素显示为目标灰度值。
实施例二
基于实施例一提供的电泳显示像素的驱动方法,请参阅图2和图13,本公开示例的实施例二还提供了一种电泳显示像素200的驱动模块1300,驱动模块1300用于驱动电泳显示像素200。电泳显示像素200包括像素电路210、像素电极220、公共电极230、电泳粒子。像素电路210的输出端213与像素电极220连接。像素电极220和 公共电极230相对设置并能够产生驱动电场,电泳粒子容置于像素电极220与公共电极230之间并在驱动电场下运动。图13示意性地示出了本公开某实施例的电泳显示像素的驱动模块的结构示意图。结合图1、图2和图13所示,电泳显示像素200的驱动模块1300可包括:
单脉冲数据信号Si获取单元1310,被配置为获取电泳显示像素200的目标灰度值,根据目标灰度值的大小确定目标脉冲宽度,并根据目标脉冲宽度生成单脉冲数据信号Si;单脉冲数据信号Si用于在单脉冲数据信号Si的脉冲持续时间内驱动电泳粒子运动至目标位置,以使电泳显示像素200显示为目标灰度值;
单脉冲扫描信号Gj获取单元1320,被配置为根据单脉冲数据信号Si确定单脉冲扫描信号Gj,单脉冲扫描信号Gj用于在单脉冲扫描信号Gj的脉冲持续时间内使像素电路210的输入端212与输出端213导通;
信号输出单元1330,被配置为输出单脉冲数据信号Si至像素电路210的输入端212,并输出单脉冲扫描信号Gj至像素电路210的控制端211,以使像素电路210的输入端212与输出端213导通。
本公开方案的电泳显示像素的驱动装置根据目标灰度值的大小确定目标脉冲宽度,并根据目标脉冲宽度生成单脉冲数据信号;再根据单脉冲数据信号确定单脉冲扫描信号,输出单脉冲数据信号至像素电路的输入端,并输出单脉冲扫描信号至像素电路的控制端,从而将单脉冲扫描信号输出至像素电极,以在单脉冲数据信号的脉冲持续时间内驱动电泳粒子运动至目标位置,从而使得电泳显示像素显示为目标灰度值。可以理解,只需要进行一次单脉冲扫描信号和单脉冲数据信号的单脉冲输出,即可在单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,从而实现电泳显示像素的驱动显示,能够减少扫描信号和数据信号的信号频率,从而能够降低像素扫描显示过程的电耗。
本公开各实施例中提供的电泳显示像素的驱动装置的具体细节已经在对应的相关方法实施例中进行了详细的描述,此处不再赘述。
实施例三
基于前述实施例一、实施例二的内容,本实施例三还提供了一种显示装置。结合图2、图8、图13所示,显示装置包括:
如上任一实施方式的电泳显示像素200的驱动模块1300;
行列排布的多个电泳显示像素200,电泳显示像素200包括:
像素电路210,包括控制端211、输入端212和输出端213;
像素电极220,与像素电路210的输出端213连接;
公共电极230,与像素电极220相对设置并能够产生驱动电场;
电泳粒子,容置于像素电极220与公共电极230之间,并在驱动电场下运动;
多根行信号线300,各根行信号线300与显示面板中对应行中的每个电泳显示像素200的像素电路210的控制端211均连接,行信号线300用于接收驱动模块1300输出的单脉冲扫描信号Gj,并将单脉冲扫描信号Gj输出至像素电路210的控制端211;
多根列信号线400,各根列信号线400与显示面板中对应列中的每个电泳显示像素200的像素电路210的输入端212均连接,列信号线400用于接收驱动模块1300输出的单脉冲数据信号Si,并将单脉冲数据信号Si输出至像素电路210的输入端212。
本公开实施例的显示装置可为电子纸显示装置。本公开方案的显示装置无需设置存储电容等结构用于维持像素电极在数据信号的脉冲持续时间结束之后的脉冲电压,就能在单脉冲数据信号的脉冲持续时间内完成电泳显示像素的电泳分子的位置运动,从而实现相应的灰度值显示,能够减少扫描信号和数据信号的信号频率,从而能够降低像素扫描显示过程的电耗。
示例地,像素电路210由开关管构成,开关管的控制端为像素电路210的控制端211,开关管的第一端为像素电路210的输入端212,开关管的第二端为像素电路210的输出端213。由此,像素电路210由开关管构成,在像素电路的输出端、像素电极的数据接收端无需设置存储电容,就能在单脉冲数据信号的脉冲持续时间内完成电泳显示像素的电泳分子的位置运动,从而实现相应的灰度值显示,能够精简电泳显示像素的结构以便电泳显示像素的小型化的同时,能够避免存储电容带来的电损耗,降低电耗。
综上可知,本公开方案的电泳显示像素的驱动方法、电泳显示像素的驱动模块及显示装置能够将电泳粒子的运动时间囊括在单脉冲数据信号的脉冲持续时间中,只需要进行一次单脉冲扫描信号和单脉冲数据信号的单脉冲输出,即可在单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,能够降低像素扫描显示过程的电耗。
在本说明书的描述中,参考术语“一些实施例”、“示例地”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或 示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型,故但凡依本公开的权利要求和说明书所做的变化或修饰,皆应属于本公开专利涵盖的范围之内。

Claims (20)

  1. 一种电泳显示像素的驱动方法,所述方法用于驱动电泳显示像素,所述电泳显示像素包括像素电路、像素电极、公共电极、电泳粒子,所述像素电路的输出端与所述像素电极连接,所述像素电极和所述公共电极相对设置并能够产生驱动电场,所述电泳粒子容置于所述像素电极与所述公共电极之间并在所述驱动电场下运动,其特征在于,所述方法包括:
    获取所述电泳显示像素的目标灰度值,根据所述目标灰度值的大小确定目标脉冲宽度,并根据所述目标脉冲宽度生成单脉冲数据信号;所述单脉冲数据信号用于在所述单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,以使所述电泳显示像素显示为所述目标灰度值;
    根据所述单脉冲数据信号确定单脉冲扫描信号,所述单脉冲扫描信号用于在所述单脉冲扫描信号的脉冲持续时间内使所述像素电路的输入端与输出端导通;
    输出所述单脉冲数据信号至所述像素电路的输入端,并输出所述单脉冲扫描信号至所述像素电路的控制端,以使所述像素电路的输入端与输出端导通。
  2. 根据权利要求1所述的方法,其特征在于,根据所述单脉冲数据信号确定单脉冲扫描信号,包括:
    根据所述单脉冲数据信号的脉冲开始时间向后调整第一预设时长得到第一时间;
    将所述第一时间作为所述单脉冲扫描信号的脉冲开始时间;
    根据所述单脉冲数据信号的脉冲结束时间向前调整第二预设时长得到第二时间;
    将所述第二时间作为所述单脉冲扫描信号的脉冲结束时间;
    其中,所述第一预设时长和所述第二预设时长均小于所述单脉冲数据信号的脉冲持续时长。
  3. 根据权利要求1所述方法,其特征在于,根据所述单脉冲数据信号确定单脉冲扫描信号,包括:
    获取当所述目标灰度值取最大值或最小值时,所述目标灰度值所对应的单脉冲数据信号的最大脉冲宽度;
    将所述最大脉冲宽度作为所述单脉冲扫描信号的脉冲宽度,并根据所述单脉冲扫描信号的脉冲宽度确定所述单脉冲扫描信号。
  4. 根据权利要求1所述方法,其特征在于,根据所述目标灰度值的大小确定目标脉冲宽度,包括:
    获取所述电泳显示像素的当前灰度值的大小;
    根据所述目标灰度值的大小和所述当前灰度值的大小确定灰度差值;
    根据所述灰度差值确定所述目标脉冲宽度。
  5. 根据权利要求1所述的方法,其特征在于,根据所述目标灰度值的大小确定目标脉冲宽度,包括:
    根据所述电泳显示像素的电泳粒子的粒子材料,以及所述目标灰度值的大小,确定所述单脉冲数据信号的目标脉冲宽度。
  6. 根据权利要求5所述的方法,其特征在于,根据所述电泳显示像素的电泳粒子的粒子材料,以及所述目标灰度值的大小,确定所述单脉冲数据信号的目标脉冲宽度,包括:
    根据所述目标灰度值的大小,确定需运动至目标位置的电泳粒子的目标粒子数量;
    根据所述目标粒子数量和所述电泳粒子的粒子材料,确定目标分子量的电泳粒子运动至目标位置所需的目标脉冲宽度。
  7. 根据权利要求5所述的方法,其特征在于,所述单脉冲数据信号的目标脉冲宽度,与所述粒子材料的电泳粒子在所述驱动电场下的粒子运动速度具有负相关关系;所述单脉冲数据信号的目标脉冲宽度与所述目标灰度值的大小具有正相关的关系。
  8. 一种电泳显示像素的驱动模块,所述模块用于驱动电泳显示像素,所述电泳显示像素包括像素电路、像素电极、公共电极、电泳粒子,所述像素电路的输出端与所述像素电极连接,所述像素电极和所述公共电极相对设置并能够产生驱动电场,所述电泳粒子容置于所述像素电极与所述公共电极之间并在所述驱动电场下运动,其特征在于,所述模块包括:
    单脉冲数据信号获取单元,被配置为获取所述电泳显示像素的目标灰度值,根据所述目标灰度值的大小确定目标脉冲宽度,并根据所述目标脉冲宽度生成单脉冲数据信号;所述单脉冲数据信号用于在所述单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,以使所述电泳显示像素显示为所述目标灰度值;
    单脉冲扫描信号获取单元,被配置为根据所述单脉冲数据信号确定单脉冲扫描信号,所述单脉冲扫描信号用于在所述单脉冲扫描信号的脉冲持续时间内使所述像素电路的输入端与输出端导通;
    信号输出单元,被配置为输出所述单脉冲数据信号至所述像素电路的输入端,并输出所述单脉冲扫描信号至所述像素电路的控制端,以使所述像素电路的输入端与输出端导通。
  9. 根据权利要求8所述的驱动模块,其特征在于,单脉冲扫描信号获取单元被配置为:
    根据所述单脉冲数据信号的脉冲开始时间向后调整第一预设时长得到第一时间;
    将所述第一时间作为所述单脉冲扫描信号的脉冲开始时间;
    根据所述单脉冲数据信号的脉冲结束时间向前调整第二预设时长得到第二时间;
    将所述第二时间作为所述单脉冲扫描信号的脉冲结束时间;
    其中,所述第一预设时长和所述第二预设时长均小于所述单脉冲数据信号的脉冲持续时长。
  10. 根据权利要求8所述的驱动模块,其特征在于,单脉冲扫描信号获取单元被配置为:
    获取当所述目标灰度值取最大值或最小值时,所述目标灰度值所对应的单脉冲数据信号的最大脉冲宽度;
    将所述最大脉冲宽度作为所述单脉冲扫描信号的脉冲宽度,并根据所述单脉冲扫描信号的脉冲宽度确定所述单脉冲扫描信号。
  11. 根据权利要求8所述的驱动模块,其特征在于,单脉冲数据信号获取单元被配置为:
    获取所述电泳显示像素的当前灰度值的大小;
    根据所述目标灰度值的大小和所述当前灰度值的大小确定灰度差值;
    根据所述灰度差值确定所述目标脉冲宽度。
  12. 根据权利要求8所述的驱动模块,其特征在于,单脉冲数据信号获取单元被配置为:
    根据所述电泳显示像素的电泳粒子的粒子材料,以及所述目标灰度值的大小,确定所述单脉冲数据信号的目标脉冲宽度。
  13. 根据权利要求12所述的驱动模块,其特征在于,单脉冲数据信号获取单元被配置为:
    根据所述目标灰度值的大小,确定需运动至目标位置的电泳粒子的目标粒子数量;
    根据所述目标粒子数量和所述电泳粒子的粒子材料,确定目标分子量的电泳粒子运动至目标位置所需的目标脉冲宽度。
  14. 根据权利要求12所述的驱动模块,其特征在于,所述单脉冲数据信号的目 标脉冲宽度,与所述粒子材料的电泳粒子在所述驱动电场下的粒子运动速度具有负相关关系;所述单脉冲数据信号的目标脉冲宽度与所述目标灰度值的大小具有正相关的关系。
  15. 一种显示装置,其特征在于,所述显示装置包括:
    电泳显示像素的驱动模块;
    行列排布的多个所述电泳显示像素,所述电泳显示像素包括:
    像素电路,包括控制端、输入端和输出端;
    像素电极,与所述像素电路的输出端连接;
    公共电极,与所述像素电极相对设置并能够产生驱动电场;
    电泳粒子,容置于所述像素电极与所述公共电极之间,并在所述驱动电场下运动;
    多根行信号线,各根所述行信号线与显示面板中对应行中的每个电泳显示像素的像素电路的控制端均连接,所述行信号线用于接收所述驱动模块输出的单脉冲扫描信号,并将所述单脉冲扫描信号输出至所述像素电路的控制端;
    多根列信号线,各根所述列信号线与所述显示面板中对应列中的每个电泳显示像素的像素电路的输入端均连接,所述列信号线用于接收所述驱动模块输出的单脉冲数据信号,并将所述单脉冲数据信号输出至所述像素电路的输入端;
    所述驱动模块用于驱动电泳显示像素,所述电泳显示像素包括像素电路、像素电极、公共电极、电泳粒子,所述像素电路的输出端与所述像素电极连接,所述像素电极和所述公共电极相对设置并能够产生驱动电场,所述电泳粒子容置于所述像素电极与所述公共电极之间并在所述驱动电场下运动,其特征在于,所述驱动模块包括:
    单脉冲数据信号获取单元,被配置为获取所述电泳显示像素的目标灰度值,根据所述目标灰度值的大小确定目标脉冲宽度,并根据所述目标脉冲宽度生成单脉冲数据信号;所述单脉冲数据信号用于在所述单脉冲数据信号的脉冲持续时间内驱动所述电泳粒子运动至目标位置,以使所述电泳显示像素显示为所述目标灰度值;
    单脉冲扫描信号获取单元,被配置为根据所述单脉冲数据信号确定单脉冲扫描信号,所述单脉冲扫描信号用于在所述单脉冲扫描信号的脉冲持续时间内使所述像素电路的输入端与输出端导通;
    信号输出单元,被配置为输出所述单脉冲数据信号至所述像素电路的输入端,并输出所述单脉冲扫描信号至所述像素电路的控制端,以使所述像素电路的输入端与输出端导通。
  16. 根据权利要求15所述的显示装置,其特征在于,所述像素电路由开关管构成,所述开关管的控制端为所述像素电路的控制端,所述开关管的第一端为所述像素电路的输入端,所述开关管的第二端为所述像素电路的输出端。
  17. 根据权利要求15所述的显示装置,其特征在于,单脉冲扫描信号获取单元被配置为:
    根据所述单脉冲数据信号的脉冲开始时间向后调整第一预设时长得到第一时间;
    将所述第一时间作为所述单脉冲扫描信号的脉冲开始时间;
    根据所述单脉冲数据信号的脉冲结束时间向前调整第二预设时长得到第二时间;
    将所述第二时间作为所述单脉冲扫描信号的脉冲结束时间;
    其中,所述第一预设时长和所述第二预设时长均小于所述单脉冲数据信号的脉冲持续时长。
  18. 根据权利要求15所述的显示装置,其特征在于,单脉冲扫描信号获取单元被配置为:
    获取当所述目标灰度值取最大值或最小值时,所述目标灰度值所对应的单脉冲数据信号的最大脉冲宽度;
    将所述最大脉冲宽度作为所述单脉冲扫描信号的脉冲宽度,并根据所述单脉冲扫描信号的脉冲宽度确定所述单脉冲扫描信号。
  19. 根据权利要求18所述的显示装置,其特征在于,单脉冲数据信号获取单元被配置为:
    根据所述电泳显示像素的电泳粒子的粒子材料,以及所述目标灰度值的大小,确定所述单脉冲数据信号的目标脉冲宽度。
  20. 根据权利要求19所述的显示装置,其特征在于,单脉冲数据信号获取单元被配置为:
    根据所述目标灰度值的大小,确定需运动至目标位置的电泳粒子的目标粒子数量;
    根据所述目标粒子数量和所述电泳粒子的粒子材料,确定目标分子量的电泳粒子运动至目标位置所需的目标脉冲宽度。
PCT/CN2022/143414 2022-08-17 2022-12-29 电泳显示像素的驱动方法、模块及显示装置 WO2024036868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210989006.0A CN115223510B (zh) 2022-08-17 2022-08-17 电泳显示像素的驱动方法、模块及显示装置
CN202210989006.0 2022-08-17

Publications (1)

Publication Number Publication Date
WO2024036868A1 true WO2024036868A1 (zh) 2024-02-22

Family

ID=83616140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143414 WO2024036868A1 (zh) 2022-08-17 2022-12-29 电泳显示像素的驱动方法、模块及显示装置

Country Status (2)

Country Link
CN (1) CN115223510B (zh)
WO (1) WO2024036868A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115223510B (zh) * 2022-08-17 2023-07-18 惠科股份有限公司 电泳显示像素的驱动方法、模块及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1839421A (zh) * 2003-08-22 2006-09-27 皇家飞利浦电子股份有限公司 电泳显示板
CN1886775A (zh) * 2003-11-25 2006-12-27 皇家飞利浦电子股份有限公司 具有显示设备的显示装置以及驱动显示设备的轨道稳定方法
US20080018589A1 (en) * 2006-07-19 2008-01-24 Chien-Chia Shih Drive Apparatus for Bistable Displayer and Method Thereof
JP2008139738A (ja) * 2006-12-05 2008-06-19 Seiko Epson Corp 電気泳動表示装置の駆動方法及び電気泳動表示装置
CN101847373A (zh) * 2010-05-11 2010-09-29 中山大学 一种改善微胶囊电泳显示器件显示对比度的驱动方法
CN102376262A (zh) * 2010-08-17 2012-03-14 上海天马微电子有限公司 电子墨水显示面板及其驱动方法和驱动装置
CN115223510A (zh) * 2022-08-17 2022-10-21 惠科股份有限公司 电泳显示像素的驱动方法、模块及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601470B2 (ja) * 2010-12-01 2014-10-08 セイコーエプソン株式会社 電気泳動表示装置の駆動方法、電気泳動表示装置、及び電子機器
JP5601469B2 (ja) * 2010-12-01 2014-10-08 セイコーエプソン株式会社 電気泳動表示装置の駆動方法、電気泳動表示装置、及び電子機器
JP2013231824A (ja) * 2012-04-27 2013-11-14 Mitsubishi Pencil Co Ltd 電気泳動表示装置およびその駆動方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1839421A (zh) * 2003-08-22 2006-09-27 皇家飞利浦电子股份有限公司 电泳显示板
CN1886775A (zh) * 2003-11-25 2006-12-27 皇家飞利浦电子股份有限公司 具有显示设备的显示装置以及驱动显示设备的轨道稳定方法
US20080018589A1 (en) * 2006-07-19 2008-01-24 Chien-Chia Shih Drive Apparatus for Bistable Displayer and Method Thereof
JP2008139738A (ja) * 2006-12-05 2008-06-19 Seiko Epson Corp 電気泳動表示装置の駆動方法及び電気泳動表示装置
CN101847373A (zh) * 2010-05-11 2010-09-29 中山大学 一种改善微胶囊电泳显示器件显示对比度的驱动方法
CN102376262A (zh) * 2010-08-17 2012-03-14 上海天马微电子有限公司 电子墨水显示面板及其驱动方法和驱动装置
CN115223510A (zh) * 2022-08-17 2022-10-21 惠科股份有限公司 电泳显示像素的驱动方法、模块及显示装置

Also Published As

Publication number Publication date
CN115223510A (zh) 2022-10-21
CN115223510B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
JP2002268613A (ja) 液晶表示装置及びその駆動方法
CN108447450B (zh) 栅极驱动电路、显示装置以及驱动方法
EP1662472A2 (en) Liquid crystal display device
US20150116308A1 (en) Pixel driving circuit and method, array substrate and liquid crystal display apparatus
US10429977B2 (en) Array substrate, display panel, display device and method for driving array substrate
US7148871B2 (en) Liquid crystal display device, liquid crystal display device driving method, and liquid crystal projector apparatus
US11662865B2 (en) Array substrate and driving method, display panel and touch display device
US10915192B2 (en) Method for driving display panel, display panel and display device
CN109166543B (zh) 数据同步方法、驱动装置以及显示装置
WO2024036868A1 (zh) 电泳显示像素的驱动方法、模块及显示装置
US20080136801A1 (en) Liquid crystal display and driving method thereof
CN102445796B (zh) 液晶显示装置及其插黑方法
CN101334543B (zh) 液晶显示装置及其驱动方法
CN114677986A (zh) 显示器
US20110157149A1 (en) Apparatus and method of resetting electronic paper panel
US20210271142A1 (en) Array substrate and method for driving the same, and display device
CN102157138B (zh) 液晶显示器及其驱动方法
US20120026148A1 (en) Active matrix type display device and electronic device using the same
US10482834B2 (en) Pixel circuit, display device, display apparatus and driving method
US20170039981A1 (en) Boosting voltage generator and a display apparatus including the same
US20110001743A1 (en) Drive circuit, drive method, liquid crystal display panel, liquid crystal module, and liquid cystal display device
US20130285892A1 (en) Liquid crystal display panel and driving method thereof, and liquid crystal display device
US20230067469A1 (en) Driving control module, driving control method, double-layer panel, and display device
CN109801602B (zh) 栅极驱动电路及显示装置
CN113643645A (zh) 显示面板、显示面板驱动方法及显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955635

Country of ref document: EP

Kind code of ref document: A1