WO2024036639A1 - 一种内窥镜装置及其系统 - Google Patents

一种内窥镜装置及其系统 Download PDF

Info

Publication number
WO2024036639A1
WO2024036639A1 PCT/CN2022/113766 CN2022113766W WO2024036639A1 WO 2024036639 A1 WO2024036639 A1 WO 2024036639A1 CN 2022113766 W CN2022113766 W CN 2022113766W WO 2024036639 A1 WO2024036639 A1 WO 2024036639A1
Authority
WO
WIPO (PCT)
Prior art keywords
long tube
phase change
conductive member
change heat
heat
Prior art date
Application number
PCT/CN2022/113766
Other languages
English (en)
French (fr)
Inventor
冷晓鲁
潘大志
梁冬生
石强勇
Original Assignee
武汉迈瑞医疗技术研究院有限公司
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉迈瑞医疗技术研究院有限公司, 深圳迈瑞生物医疗电子股份有限公司 filed Critical 武汉迈瑞医疗技术研究院有限公司
Priority to PCT/CN2022/113766 priority Critical patent/WO2024036639A1/zh
Publication of WO2024036639A1 publication Critical patent/WO2024036639A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements

Definitions

  • the present invention relates to a medical product, in particular to an endoscopic device and its system.
  • the camera module and other heating devices of traditional rigid endoscopes are installed in the endoscope handle, but the emergence of electronic endoscopes has also resulted in a heat source at the far end of the endoscope.
  • the distal insertion part of the endoscope will be inserted into the patient's body. The temperature should not be too high, otherwise it may cause harm to the patient.
  • the distal end of the endoscope is also equipped with precision electronic components such as sensors. Excessive temperature will affect the normal operation of the electronic components. .
  • the present invention proposes an endoscope device and its system to achieve high-efficiency heat conduction, ensure that the temperature of the endoscope device is maintained within an appropriate range, and heat will not accumulate in the heat source part, causing damage to a certain part.
  • the temperature is significantly higher than other parts.
  • the present invention provides an endoscope device and its system:
  • an endoscope device in one embodiment, includes a long tube, a heat source and a phase change heat conducting member; the long tube has a tubular structure with a hollow interior, the heat source and the phase change heat conducting member are arranged inside the long tube, and the phase change heat conducting member It is thermally coupled with the long tube; the phase change heat conducting member extends along the axial direction of the long tube, and the length of the phase change heat conducting member extending along the axial direction of the long tube is less than half the length of the long tube; a part of the phase change heat conducting member is thermally coupled with the heat source, The remainder extends axially along the long tube in a direction away from the heat source.
  • At least part of the outer surface of the phase change heat conductive element is in direct contact with the inner surface of the long tube.
  • At least part of the outer surface of the phase change heat conductive member is in contact with the inner surface of the long tube in its peripheral direction, and the shapes of the contact surfaces fit together.
  • a bracket is further included, and the bracket is disposed in the long tube.
  • the long tube includes a first accommodation cavity and a second accommodation cavity.
  • the phase change heat conductive member and the bracket are arranged in the first accommodation cavity.
  • the second accommodation cavity is used to place the circuit board.
  • the long tube includes a first accommodation cavity and a second accommodation cavity
  • the phase change heat conductive member, the bracket and the circuit board are arranged in the first accommodation cavity
  • the second accommodation cavity is used to place the optical fiber.
  • At least part of the surface of the stent is in direct contact with the inner surface of the elongated tube.
  • At least part of the surface of the bracket and the inner surface of the long tube are in contact with each other in the inner circumferential direction, and the shapes of the contact surfaces fit together.
  • a thermally conductive material is further included, the thermally conductive material is filled between the outer surface of the phase change thermally conductive member and the inner surface of the long tube, and/or the thermally conductive material is disposed between the surface of the bracket and the inner surface of the long tube.
  • the bracket includes at least two bracket single pieces, and the bracket single pieces are axially distributed along the phase change heat conductive member.
  • a thermal coupling element is further included, and the phase change thermal conductive member or/and the bracket is thermally coupled with the heat source through the thermal coupling element.
  • the thermal coupling element is provided with a groove structure, and a portion of the phase change heat conductive member or/and the bracket is provided in the groove structure.
  • the shape of the groove structure and the shape of the phase change heat conductive member or/and the bracket fit closely with each other.
  • a thermally conductive material is filled between the phase change thermally conductive member or/and the bracket and the thermal coupling element.
  • the phase change heat conducting component is a heat pipe component or a vapor chamber.
  • the heat sources include at least two, respectively arranged at different positions inside the long tube along the axial direction of the long tube.
  • an endoscope camera system includes a light source, a light guide, a camera host, a cable, and the endoscope device described in any of the above embodiments.
  • the light source is connected to the endoscope device through the light guide.
  • one end of the endoscope device is connected to the camera host through a cable.
  • Figure 1 is a schematic diagram of an endoscope system solution in an embodiment
  • Figure 2 is a schematic diagram of the structure of an endoscope device in an embodiment
  • Figure 3 is a schematic diagram of the structure of an endoscope device in an embodiment
  • Figure 4 is a schematic diagram of the thermal coupling structure of the endoscope device in an embodiment
  • Figure 5 is a schematic diagram of the cross-sectional structure of an endoscope device in an embodiment
  • Figure 6 is a schematic diagram of a bracket structure in an embodiment
  • Figure 7 is a schematic diagram of the cross-sectional structure of an endoscope device in an embodiment
  • Figure 8 is a schematic diagram of a bracket structure in an embodiment
  • Figure 9 is a schematic diagram of the structure of an endoscope device in an embodiment
  • FIG. 10 is a schematic diagram of the structure of the thermal coupling region in an embodiment.
  • connection and “connection” mentioned in this application include direct and indirect connections (connections) unless otherwise specified.
  • distal end and “proximal end” mentioned in this application should be understood as being far away from the endoscope handle.
  • the end 10 is the distal end, and the end 10 close to the endoscope handle is the proximal end.
  • an endoscope device includes a long tube 4, a heat source 1 and a phase change heat conductor 6; the long tube 4 is a tubular structure with a hollow interior, and the heat source 1 and the phase change heat conductor 6 are arranged on Inside the long tube 4, the phase change heat conducting member 6 is thermally coupled with the long tube 4; a part of the phase change heat conducting member 6 is thermally coupled with the heat source 1, and the remaining part extends along the long tube 4 in a direction away from the heat source 1.
  • the phase change heat conducting member 6 can be a heat pipe or a vapor chamber or other materials that can absorb heat through phase change; the heat generated by the heat source 1 can be conducted from the end of the phase change heat conducting member 6 close to the heat source 1 to the end far away from the heat source. , and through the thermal coupling relationship between the phase change heat conductor 6 and the long tube 4, heat can also be conducted to the long tube 4, which can avoid heat accumulation near the heat source 1 to the greatest extent and cause excessive local temperature, and improve the heat dissipation efficiency.
  • the phase change heat conducting member 6 extends along the axial direction of the long tube 4 , and the length of the phase change heat conducting member 6 extending along the axial direction of the long tube 4 is less than half the length of the long tube 4 , which can reduce costs. In one embodiment, the phase change heat conducting member 6 extends along the axial direction of the long tube 4. The length of the phase change heat conducting member 6 extending along the axial direction of the long tube 4 is greater than or equal to half the length of the long tube 4. Increasing the phase change heat conducting member The thermal coupling length of 6 and long tube 4 can further improve the heat dissipation effect. In one embodiment, the phase change heat conducting member 6 can be disposed through the inside of the long tube 4 , and the length of the phase change heat conducting member 6 extending along the axial direction of the long tube 4 can be substantially the same as the length of the long tube 4 .
  • At least part of the outer surface of the phase change heat conducting member 6 is in direct contact with the inner surface of the long tube 4 , and the heat generated by the heat source 1 can be directly conducted to the long tube 4 through the phase change heat conducting member 6 .
  • At least part of the outer surface of the phase change heat conductive member 6 is in contact with the inner surface of the production pipe in its peripheral direction.
  • the shapes of the contact surfaces fit together, making the contact area larger and more adaptable, making the heat conduction efficiency higher. .
  • a bracket 5 is also included.
  • the bracket 5 is arranged inside the long tube 4.
  • the figures describe two different structural forms of the bracket 5, but the invention is not limited to these two structures. form.
  • the long tube 4 includes an inner tube 7, so that the inside of the long tube 4 can be divided into two areas; in one embodiment, the long tube 4 includes a first accommodation chamber and a second accommodation cavity, in which the phase change heat conductive member 6 and the bracket 5 are arranged, and the second accommodation cavity is used to place a circuit board (not shown in the figure). In another embodiment, the long tube 4 includes a first accommodation cavity and a second accommodation cavity. The phase change heat conductive member 6 , the bracket 5 and the circuit board are arranged in the first accommodation cavity, and the second accommodation cavity is used to place the optical fiber 3 .
  • At least part of the surface of the bracket 5 is in direct contact with the inner surface of the long tube 4 to conduct heat to the long tube 4 through the bracket 5 .
  • At least part of the surface of the bracket 5 and the inner surface of the long tube 4 are in contact with each other in the inner circumferential direction, and the shapes of the contact surfaces fit and match each other.
  • the shapes of the contact surfaces fit and match each other, and the contact surface is larger. More adaptable, making heat conduction more efficient.
  • a thermal conductive material 13 is also included.
  • the thermal conductive material 13 is filled between the outer surface of the phase change thermal conductive member 6 and the inner surface of the long tube 4 , and/or the thermal conductive material 13 is provided on the surface of the bracket 5 between the thermally conductive material 13 and the inner surface of the long tube 4, the thermally conductive material 13 may be thermally conductive glue, thermally conductive silicone grease, etc.
  • the bracket 5 includes at least two single-piece brackets.
  • the single-piece brackets are axially distributed along the phase-change thermal conductor 6. Multiple bracket single-pieces are arranged at different positions to provide multiple points for the phase-change thermal conductor 6. Support can also meet the scenario of multiple heat sources and 1 heat dissipation.
  • the single piece of bracket 5 can be provided at the distal end and proximal end of the endoscope, or can be provided at the middle position of the long tube 4 . In one embodiment, the bracket 5 can be fixed in a certain position as a single piece or can slide relative to the long tube 4 .
  • a thermal coupling element 2 is also included.
  • the phase change heat conductor 6 or/and the bracket 5 is thermally coupled with the heat source 1 through the thermal coupling element 2.
  • the thermal coupling element 2 generates the heat generated by the heat source 1. The heat is transferred to the phase change heat conductor 6 or/and the bracket 5, and then through the thermal coupling relationship between the phase change heat conductor 6 or/and the bracket 5 and the long tube 4, the heat is directed to the long tube 4.
  • the thermal coupling element 2 is provided with a groove structure, and a portion of the phase change heat conductive member 6 or/and the bracket 5 is disposed in the groove structure.
  • the shape of the groove structure and the shape of the contact portion of the phase change heat conductor 6 or/and the bracket 5 are closely matched to each other, which can expand the contact area and improve the heat dissipation efficiency.
  • the gap between the groove structure and the contact portion of the phase change thermal conductor 6 or/and the bracket 5 is filled with thermal conductive material 13.
  • the phase change thermal conductor 6 or/and the bracket 5 can be fixed to improve stability.
  • the heat dissipation efficiency can be further improved.
  • thermal coupling element 2 and the phase change thermal conductor 6 or/and the bracket 5 can be filled with thermal conductive material 13, but also other parts of the thermal coupling element 2 and the phase change thermal conductor 6 or/and Thermal conductive materials 13 may also be filled between the brackets 5 to improve heat dissipation efficiency.
  • the heat source 1 includes at least two, which are respectively arranged at different positions inside the long tube 4 along the axial direction of the long tube 4 .
  • the solution disclosed in the present invention can be applied to multiple heat sources 1 In the scene, it facilitates heat dissipation and avoids heat accumulation, causing component damage or affecting accuracy.
  • an endoscope device in one embodiment, as shown in Figures 9 and 10, includes a long tube 4, a heat source 1, a phase change heat conductor 6 and a heat insulator 8; wherein the long tube 4 has a tubular structure, and The interior is hollow, and the heat source 1, the phase change heat conducting member 6 and the heat insulating member 8 are arranged inside the long tube 4; the heat source 1 will generate heat during the use of the endoscope device; the phase change heat conducting member 6 extends along the axial direction of the long tube 4 is provided, and the phase change heat conducting member 6 is thermally coupled with the heat source 1 and the long tube 4 to conduct the heat generated by the heat source 1 to the long tube 4 through the phase change heat conducting member 6.
  • the phase change heat conducting member 6 It can be a heat pipe or a vapor chamber and other materials that can absorb heat through phase change; the heat generated by the heat source 1 can be conducted from the end of the phase change heat conductor 6 close to the heat source 1 to the end far away from the heat source 1, and through the phase change heat conductor 6 and the long Due to the thermal coupling relationship of the tube 4, heat can also be conducted to the long tube 4, which can avoid heat accumulation near the heat source 1 to the greatest extent, causing local temperatures to be too high, and improve the heat dissipation efficiency; the heat insulator 8 is arranged on the phase change heat conductor 6 Between the outer surface and the inner surface of the long tube 4, the heat insulator 8 is used to block the heat of the phase change heat conductor 6 from being transmitted to the long tube 4.
  • the heat insulator 8 extends along the axial direction of the long tube 4 , and the extension length is greater than half of the length of the long tube 4 .
  • the heat insulating member 8 can be a plurality of heat insulating single pieces, and the total length of the multiple heat insulating single pieces is greater than half the length of the long pipe 4; in another embodiment, the multiple heat insulating single pieces are The heat-insulating single piece extends along the axial direction of the phase-change heat-conducting piece 6 .
  • At least one heat-insulating single piece is disposed at the distal end of the long tube 4 and needs to be inserted into the human body to prevent the heat generated by the heat source 1 from being transmitted to the distal end of the long tube 4 and damaging the patient's body.
  • a thermally conductive material 13 is also included, and the thermally conductive material 13 is filled between the outer surface of the phase change thermally conductive member 6 where the thermal insulation member 8 is not provided and the inner surface of the long tube 4 . Can improve thermal conductivity efficiency.
  • the heat insulator 8 is disposed around the phase change heat conductor 6 along the peripheral direction of the phase change heat conductor 6 . In one embodiment, the heat insulating member 8 is completely enclosed and arranged along the outer circumferential direction of the phase change heat conducting member 6 .
  • the interior of the long tube 4 includes an inner tube, so that the interior of the long tube 4 can be divided into two areas; in one embodiment, the long tube 4 includes a first accommodation chamber and a second accommodation chamber, and the phase change heat conductive member 6 and the bracket 5 are arranged in the first accommodation cavity, and the second accommodation cavity is used to place the circuit board. In another embodiment, the long tube 4 includes a first accommodation cavity and a second accommodation cavity. The phase change heat conductor 6, the heat insulator 8, the bracket 5 and the circuit board are arranged in the first accommodation cavity. The second accommodation cavity is used for Place fiber 3.
  • the thermal coupling element 2 is provided with a groove structure, and at least a part of the phase change heat conductive member 6 is provided in the groove structure.
  • the shape of the groove structure and the shape of the contact portion of the phase change heat conductor 6 fit closely with each other, which can expand the contact area and improve the heat dissipation efficiency.
  • the groove structure is provided with chamfers so that the phase change heat conductive member 6 can be introduced into the groove structure during installation.
  • the endoscope camera system 10000 includes a light source 100, a light guide 200, a rigid endoscope 300, an optical bayonet 400, a camera 500, a communication cable 810, a camera host 600, a display 700 and a video connection cable 820.
  • the camera host 600 is connected to the camera 500 through a communication cable 810, and the image signal obtained by the camera 500 is transmitted to the camera host 600 through the communication cable 810 for processing.
  • the communication cable 810 may be a purely electrical communication cable, a purely optical communication cable, or an optical-electrical composite communication cable.
  • the communication cable 810 includes an optical communication cable, such as an optical fiber; the camera 500 converts the image signal (electrical signal) into an optical signal, which is transmitted to the camera host 600 by the communication cable 810, and the camera host 600 then converts the optical signal into an electrical signal. Signal.
  • the communication cable 810 is connected to the camera host 600 through an electrical signal interface.
  • the communication cable 810 first converts the optical signal into an electrical signal at the end connected to the camera host 600, and then converts the electrical signal through the electrical connector. The signal is transmitted to the camera host 600.
  • the camera host 600 is connected to the display 700 through a video connection cable 820 for sending video signals to the display 700 for display.
  • the camera 500 and the camera host 600 transmit wireless signals instead of communicating through the communication cable 810 .
  • Figure 1 is only an example of the endoscope camera system 10000 and does not constitute a limitation on the endoscope camera system 10000.
  • the endoscope camera system 10000 may include more or more components than those shown in Figure 1 or Fewer parts, or combinations of certain parts, or different parts.
  • the endoscope camera system 10000 may also include a dilator, a smoke control device, an input and output device, a network access device, and the like.
  • the rigid endoscope 300 and the camera 500 shown in Figure 1 are optical rigid endoscopes, and the image sensor is provided in the camera 500; in other embodiments, the rigid endoscope 300 and the camera 500 can be integrated electronic devices.
  • the image sensor of an endoscope (such as a 3D electronic endoscope) is disposed at the head end of the rigid endoscope 300 .
  • the light source 100 is used to provide an illumination source to the site 1000 to be observed.
  • the illumination light source includes a visible light illumination light source and a laser illumination light source corresponding to the fluorescent reagent (for example, near-infrared excitation light).
  • the light source 100 includes a visible light source and a laser light source corresponding to a fluorescent reagent.
  • the visible light source is an LED light source.
  • the visible light source can provide multiple monochromatic lights in different wavelength ranges, such as blue light, green light, red light, etc.
  • the visible light source may also provide a combination of the plurality of monochromatic lights, or may be a broad spectrum white light source.
  • the wavelength range of the monochromatic light is approximately 400nm to 700nm.
  • Laser light sources are used to generate laser light.
  • the laser is, for example, near-infrared excitation light (Near Infrared; NIR).
  • the peak wavelength of the laser can take at least any value in the range of 780nm-808nm.
  • the light source 100 can simultaneously provide continuous visible light and laser light corresponding to the fluorescent reagent to the site to be observed, or provide visible light and laser light to the site to be observed in a time-sharing manner.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

一种内窥镜装置,包括长管(4)、热源(1)、相变导热件(6);其中长管(4)为管状结构,内部中空,热源(1)、相变导热件(6)设置在长管(4)内部,相变导热件(6)与长管(4)热耦合;相变导热件(6)沿长管(4)轴向方向延伸设置,相变导热件(6)沿长管(4)轴向方向延伸的长度小于长管(4)长度的一半;相变导热件(6)的一部分与热源(1)热耦合,其余部分以远离热源(1)的方向沿长管(4)轴向延伸。通过设置相变导热件(6)和长管(4)热耦合实现热量通过相变导热件(6)从热源(1)传递到长管(4)上,并且限制相变导热件(6)长度,进一步降低成本,并提高使用者持握舒适度。

Description

一种内窥镜装置及其系统 技术领域
本发明涉及一种医用产品,特别是一种内窥镜装置及其系统。
背景技术
传统硬管内窥镜的摄像头模组等发热装置都设置在内窥镜手柄,但是电子内窥镜的出现,使得内窥镜远端也有热源。内窥镜远端插入部部分会插入到患者体内,温度不宜过高,否则可能对患者造成伤害,并且内窥镜远端还设置有传感器等精密电子元件,温度过高会影响电子元件正常工作。
为了实现有效降低内窥镜远端温度,出现了采用热管、金属件等与热源热耦合,进而实现热量向近端传导的方案。但是现有方案中传导效率不高,温度不能有效地、快速地降低到适合的工作范围内。
发明内容
有鉴于此,本发明提出了一种内窥镜装置及其系统,以实现高效率的热传导,保证内窥镜装置温度保持在合适的范围内,热量不会在热源部分聚集,造成某一部分的温度明显远高于其他部分的现象。
为了解决上述问题,本发明提供了一种内窥镜装置及其系统:
在一实施例中,一种内窥镜装置,包括长管、热源和相变导热件;其中长管为管状结构,内部中空,热源、相变导热件设置在长管内部,相变导热件与长管热耦合;相变导热件沿长管轴向方向延伸设置,相变导热件沿长管轴向方向延伸的长度小于长管长度的一半;相变导热件的一部分与热源热耦合,其余部分以远离热源的方向沿长管轴向延伸。
在一实施例中,至少部分相变导热件外表面直接与长管内表面接触。
在一实施例中,至少部分所述相变导热件外表面在其外周方向上与所述长管内表面接触,接触表面形状上相互贴合适配。
在一实施例中,还包括支架,所述支架设置在所述长管内。
在一实施例中,长管包括第一容纳腔和第二容纳腔,相变导热件和支架设置在第一容纳腔内,第二容纳腔用于放置电路板
在一实施例中,长管包括第一容纳腔和第二容纳腔,相变导热件、支架和 电路板设置第一容纳腔内,第二容纳腔用于放置光纤。
在一实施例中,至少部分支架表面直接与长管内表面接触。
在一实施例中,至少部分支架表面和长管内表面在其内周方向上接触,接触表面形状上相互贴合适配。
在一实施例中,还包括导热材料,导热材料填充在相变导热件外表面和长管内表面之间,和/或导热材料设置在支架表面和长管内表面之间。
在一实施例中,支架包括至少两个支架单件,支架单件沿相变导热件轴向分布。
在一实施例中,还包括热耦合元件,相变导热件或/和支架通过热耦合元件与热源热耦合。
在一实施例中,热耦合元件设置有凹槽结构,相变导热件或/和支架的一部分设置在凹槽结构中。
在一实施例中,凹槽结构的形状和相变导热件或/和支架的形状相互贴合适配。
在一实施例中,相变导热件或/和支架与热耦合元件之间填充有导热材料。
在一实施例中,相变导热件为热管件或均热板。
在一实施例中,热源包括至少两个,沿长管轴向方向分别设置在长管内部不同位置。
在一实施例中,一种内窥镜摄像系统,包括光源、导光束、摄像主机、线缆和上述实施例中任一所述的内窥镜装置,光源通过导光束与内窥镜装置连接,内窥镜装置的一端通过线缆与摄像主机连接。
附图说明
图1为一实施例中内窥镜系统方案的示意图;
图2为一实施例中内窥镜装置结构的示意图;
图3为一实施例中内窥镜装置结构的示意图;
图4为一实施例中内窥镜装置热耦合结构的示意图;
图5为一实施例中内窥镜装置截面结构的示意图;
图6为一实施例中的支架结构的示意图;
图7为一实施例中内窥镜装置截面结构的示意图;
图8为一实施例中的支架结构的示意图;
图9为一实施例中内窥镜装置结构的示意图;
图10为一实施例中热耦合区结构的示意图。
1-热源;2-热耦合元件;3-光纤;4-长管;5-支架;6-相变导热件;7-内管;8-隔热件;10-内窥镜手柄;11-热耦合区1;13-导热材料;1 /-图像传感器;1 //-电路板;10000-内窥镜摄像系统;100-光源;200-导光束;300-硬管内窥镜;400-光学卡口;500-摄像头;810-通信线缆;600-摄像主机;700-显示器;820-视频连接线;A-空腔;B-相变导热件设置区;
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接),本申请所述的“远端”、“近端”应理解为远离内窥镜手柄10端为远端,靠近内窥镜手柄10端为近端。
如图2-3所示,一种内窥镜装置,包括长管4、热源1和相变导热件6;其中长管4为管状结构,内部中空,热源1、相变导热件6设置在长管4内部,相变导热件6与长管4热耦合;相变导热件6的一部分与热源1热耦合,其余部 分以远离热源1的方向沿长管4向延伸。在本实施例中,相变导热件6可以是热管或均热板等其他可以通过相变吸收热量的材料;热源1产生的热量可以从相变导热件6靠近热源1端传导到远离热源端,并且通过相变导热件6和长管4的热耦合关系,热量还可以传导到长管4上,最大程度上避免热量在热源1附近聚集,造成局部温度过高,提高了散热效率。
在一实施例中,相变导热件6沿长管4轴向方向延伸设置,相变导热件6沿长管4轴向方向延伸的长度小于长管4长度的一半,可以减少成本。在一实施例中,相变导热件6沿长管4轴向方向延伸设置,相变导热件6沿长管4轴向方向延伸的长度大于等于长管4长度的一半,增加相变导热件6和长管4的热耦合长度可以进一步提高散热效果。在一实施例中,相变导热件6可以贯通设置在长管4内部,相变导热件6沿长管4轴向方向延伸的长度可以基本同长管4长度一致。
在一实施例中,至少部分相变导热件6外表面直接与长管4内表面接触,热源1产生的热量可以通过相变导热件6直接传导到长管4上。
在一实施例中,至少部分相变导热件6外表面在其外周方向上与产管内表面接触,接触表面形状上相互贴合适配,接触面更大,更适配,使得热传导效率更高。
如图5-图8所示,在一实施例中,还包括支架5,支架5设置在长管4内部,附图描述了支架5两种不同结构形态,但本发明不限于这两种结构形态。
如图5和图7所示,在一实施例中,长管4内部包括内管7,使得长管4内部可以划分为两个区域;在一实施例中,长管4包括第一容纳腔和第二容纳腔,相变导热件6和支架5设置在第一容纳腔内,第二容纳腔用于放置电路板(图中未显示)。在另一实施例中,长管4包括第一容纳腔和第二容纳腔,相变导热件6、支架5和电路板设置第一容纳腔内,第二容纳腔用于放置光纤3。
在一实施例中,至少部分支架5表面直接与长管4内表面接触,用以通过支架5将热量传导到长管4上。
在一实施例中,至少部分支架5表面和长管4内表面在其内周方向上接触,接触表面形状上相互贴合适配,接触表面形状上相互贴合适配,接触面更大,更适配,使得热传导效率更高。
如图4所示,在一实施例中,还包括导热材料13,导热材料13填充在相变 导热件6外表面和长管4内表面之间,和/或导热材料13设置在支架5表面和长管4内表面之间,导热材料13可以是导热胶、导热硅脂等。
在一实施例中,支架5包括至少两个支架单件,支架单件沿相变导热件6轴向分布,多个支架单件设置在不同的位置,可以为相变导热件6提供多点支撑,也可以满足多热源1散热的场景。支架5单件可以在内窥镜远端和近端分别设置,也可以设置在长管4中间位置。在一实施例中,支架5单件可以固定在某一位置或可相对长管4滑动。
如图4所示,在一实施例中,还包括热耦合元件2,相变导热件6或/和支架5通过热耦合元件2与热源1热耦合,通过热耦合元件2将热源1产生的热量传递到相变导热件6或/和支架5上,再通过相变导热件6或/和支架5与长管4热耦合关系,实现将热量导向长管4。
在一实施例中,热耦合元件2设置有凹槽结构,相变导热件6或/和支架5的一部分设置在凹槽结构中。在一实施例中,凹槽结构的形状和相变导热件6或/和支架5接触部分的形状相互贴合适配,可以扩大接触面积,提高散热效率。在另一实施例中,凹槽结构和相变导热件6或/和支架5接触部分的缝隙填充有导热材料13,一方面可以固定相变导热件6或/和支架5,提高稳定性,另一方面可以进一步提高散热效率。在另一实施例中,不仅热耦合元件2的凹槽结构和相变导热件6或/和支架5之间可以填充导热材料13,热耦合元件2其他部分和相变导热件6或/和支架5之间也可以填充有导热材料13,用于提高散热效率。
在一实施例中,热源1包括至少两个,沿长管4轴向方向分别设置在长管4内部不同位置。在一个内窥镜中可能存在多个热源1,如电子内窥镜远端有摄像模组,近端可能设置有信号处理组件等发热元件,而本发明披露的方案可以适用于多个热源1场景下,便于散热,避免热量聚集,造成元件损坏或影响精度。
在一实施例中,如图9和图10所示,一种内窥镜装置,包括长管4、热源1、相变导热件6和隔热件8;其中长管4为管状结构,且内部中空,热源1、相变导热件6和隔热件8设置在长管4内部;热源1在内窥镜装置使用过程中会产生热量;相变导热件6沿长管4轴向方向延伸设置,且相变导热件6与热源1和长管4热耦合,用以将热源1产生的热量通过相变导热件6传导至长管4上,在本实施例中,相变导热件6可以是热管或均热板等其他可以通过相变吸收热量的材料;热源1产生的热量可以从相变导热件6靠近热源1端传导到远 离热源1端,并且通过相变导热件6和长管4的热耦合关系,热量还可以传导到长管4上,最大程度上避免热量在热源1附近聚集,造成局部温度过高,提高了散热效率;隔热件8设置在相变导热件6外表面和长管4内表面之间,隔热件8用于阻隔相变导热件6的热量传导到长管4上,因为长管4远端部分会插入患者体内,所以长管4远端部分并不适合用于散热,所以隔热件8沿长管4轴向方向延伸设置,且延伸长度大于长管4长度的一半。在另一实施例中,隔热件8可以为多个隔热单件,多个隔热单件的总长度要大于长管4长度的一半;在另一实施例中,多个隔热单件,隔热单件沿着相变导热件6轴向方向延伸。在一实施例中,其中,至少有一个隔热单件设置在长管4远端,需插入人体部分,用于阻隔热源1产生的热量传导至长管4远端,损害患者身体。
在另一实施例中,还包括导热材料13,导热材料13填充在未设置隔热件8的相变导热件6外表面和长管4内表面之间。可以提高导热效率。
在一实施例中,隔热件8沿相变导热件6的外周方向围绕相变导热件6设置。在一实施例中,隔热件8沿相变导热件6外周方向上全封闭围绕设置。
在一实施例中,长管4内部包括内管,使得长管4内部可以划分为两个区域;在一实施例中,长管4包括第一容纳腔和第二容纳腔,相变导热件6和支架5设置在第一容纳腔内,第二容纳腔用于放置电路板。在另一实施例中,长管4包括第一容纳腔和第二容纳腔,相变导热件6、隔热件8、支架5和电路板设置第一容纳腔内,第二容纳腔用于放置光纤3。
热耦合元件2设置有凹槽结构,相变导热件6至少一部分设置在凹槽结构中。在一实施例中,凹槽结构的形状和相变导热件6接触部分的形状相互贴合适配,可以扩大接触面积,提高散热效率。在另一实施例中,凹槽结构设置有倒角,以便安装时将相变导热件6导入凹槽结构中。
如图1所示,为一实施例中,内窥镜摄像系统的架构示意图。内窥镜摄像系统10000包括光源100、导光束200、硬管内窥镜300、光学卡口400、摄像头500、通信线缆810、摄像主机600、显示器700和视频连接线820。
摄像主机600通过通信线缆810与摄像头500连接,摄像头500获得的图像信号通过通信线缆810传输到摄像主机600进行处理。在某些实施例中,通信线缆810可以为纯电通信线缆、纯光通信线缆或光电复合通信线缆。当通信线缆810包括光通信线缆时,例如光纤;摄像头500将图像信号(电信号)转 成光信号,由通信线缆810传输到摄像主机600,摄像主机600再将光信号转成电信号。或者在另一实施例中,通信线缆810与摄像主机600通过电信号接口连接,通信线缆810在与摄像主机600连接的一端先将光信号转成电信号,再通过电连接器将电信号传输至摄像主机600。摄像主机600通过视频连接线820与显示器700连接,用于将视频信号发送到显示器700进行显示。又例如,在其他实施例中,摄像头500与摄像主机600为无线信号传输,而非通过通信线缆810进行通信连接。
本领技术人员应当理解的是,图1仅是内窥镜摄像系统10000的示例,并不构成对内窥镜摄像系统10000的限定,内窥镜摄像系统10000可以包括比图1所示更多或更少的部件,或者组合某些部件,或者不同的部件。例如,内窥镜摄像系统10000还可以包括扩张器、烟雾控制装置、输入输出设备、网络接入设备等。又例如,图1示出的硬管内窥镜300和摄像头500为光学硬管镜,图像传感器设置于摄像头500内;在其他实施例中,硬管内窥镜300和摄像头500可以为集成式的电子内窥镜(例如3D电子内窥镜),其图像传感器设置于硬管内窥镜300的头端。
光源100用于向待观察部位1000提供照明光源。所述照明光源包括可见光照明光源和对应于荧光试剂的激光照明光源(例如近红外激励光)。
在本实施例中,光源100包括可见光光源和对应于荧光试剂的激光光源。可见光光源为LED光源。在一实施例中,可见光光源可分别提供不同波长范围的多个单色光,例如蓝光、绿光、红光等。在其他实施例中,可见光光源还可以提供所述多个单色光的组合光,或者是宽光谱的白光光源。所述单色光的波长范围大致为400nm至700nm。激光光源用于产生激光。所述激光例如是近红外激励光(Near Infrared;NIR)。例如,所述激光的峰值波长可以取780nm-808nm范围内至少任意1个值。光源100可向待观察部位同时提供连续的可见光和对应于荧光试剂的激光,或者向待观察部位分时提供可见光和激光。以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (17)

  1. 一种内窥镜装置,其特征在于,包括长管、热源和相变导热件;其中
    所述长管为管状结构,内部中空,所述热源、所述相变导热件设置在所述长管内部,所述相变导热件与所述长管热耦合;
    所述相变导热件沿所述长管轴向方向延伸设置,所述相变导热件沿所述长管轴向方向延伸的长度小于所述长管长度的一半;所述相变导热件的一部分与所述热源热耦合,其余部分以远离所述热源的方向沿所述长管轴向延伸。
  2. 如权利要求1所述的内窥镜装置,其特征在于,至少部分所述相变导热件外表面直接与所述长管内表面接触。
  3. 如权利要求2所述的内窥镜装置,其特征在于,至少部分所述相变导热件外表面在其外周方向上与所述长管内表面接触,接触表面形状上相互贴合适配。
  4. 如权利要求1-3所述的内窥镜装置,其特征在于,还包括支架,所述支架设置在所述长管内。
  5. 如权利要求4所述内窥镜装置,其特征在于,所述长管包括第一容纳腔和第二容纳腔,所述相变导热件和所述支架设置在所述第一容纳腔内,所述第二容纳腔用于放置电路板。
  6. 如权利要求4所述的内窥镜装置,其特征在于,所述长管包括第一容纳腔和第二容纳腔,所述相变导热件、所述支架和电路板设置所述第一容纳腔内,所述第二容纳腔用于放置光纤。
  7. 如权利要求4所述的内窥镜装置,其特征在于,至少部分所述支架表面直接与所述长管内表面接触。
  8. 如权利要求7所述的内窥镜装置,其特征在于,至少部分所述支架表面和所述长管内表面在其内周方向上接触,接触表面形状上相互贴合适配。
  9. 如权利要求4所述的内窥镜装置,其特征在于,还包括导热材料,所述导热材料填充在所述相变导热件外表面和所述长管内表面之间,和/或所述导热材料设置在所述支架表面和所述长管内表面之间。
  10. 如权利要求4所述的内窥镜装置,其特征在于,所述支架包括至少两个支架单件,所述支架单件沿所述相变导热件轴向分布。
  11. 如权利要求4所述的内窥镜装置,其特征在于,还包括热耦合元件,所述相变导热件或/和所述支架通过所述热耦合元件与所述热源热耦合。
  12. 如权利要求11所述的内窥镜装置,其特征在于,所述热耦合元件设置有凹槽结构,所述相变导热件或/和所述支架的一部分设置在所述凹槽结构中。
  13. 如权利要求12所述的内窥镜装置,其特征在于,所述凹槽结构的形状和所述相变导热件或/和所述支架接触部分的形状相互贴合适配。
  14. 如权利要求12所述的内窥镜装置,其特征在于,所述相变导热件或/和所述支架与所述热耦合元件之间填充有导热材料。
  15. 如权利要求1-14所述的内窥镜装置,其特征在于,所述相变导热件为热管件或均热板。
  16. 如权利要求1-15所述的内窥镜装置,其特征在于,所述热源包括至少两个,沿所述长管轴向方向分别设置在所述长管内部不同位置。
  17. 一种内窥镜摄像系统,其特征在于,包括光源、导光束、摄像主机、线缆和如权利要求1-16任意一项所述的内窥镜装置,所述光源通过所述导光束与所述内窥镜装置连接,所述内窥镜装置的一端通过所述线缆与所述摄像主机连接。
PCT/CN2022/113766 2022-08-19 2022-08-19 一种内窥镜装置及其系统 WO2024036639A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113766 WO2024036639A1 (zh) 2022-08-19 2022-08-19 一种内窥镜装置及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113766 WO2024036639A1 (zh) 2022-08-19 2022-08-19 一种内窥镜装置及其系统

Publications (1)

Publication Number Publication Date
WO2024036639A1 true WO2024036639A1 (zh) 2024-02-22

Family

ID=89940477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113766 WO2024036639A1 (zh) 2022-08-19 2022-08-19 一种内窥镜装置及其系统

Country Status (1)

Country Link
WO (1) WO2024036639A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011612A (ja) * 2007-07-05 2009-01-22 Olympus Corp 内視鏡装置
JP2009056107A (ja) * 2007-08-31 2009-03-19 Fujifilm Corp 内視鏡
US20110306834A1 (en) * 2010-06-11 2011-12-15 Stephan Schrader Endoscope
US20150335233A1 (en) * 2014-05-22 2015-11-26 Karl Storz Gmbh & Co. Kg Optical Medical Instrument
US20170258309A1 (en) * 2016-03-14 2017-09-14 Intuitive Surgical Operations, Inc. Endoscopic instrument with compliant thermal interface
CN114206195A (zh) * 2019-06-05 2022-03-18 270外科有限公司 用于内窥镜的排热基础结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009011612A (ja) * 2007-07-05 2009-01-22 Olympus Corp 内視鏡装置
JP2009056107A (ja) * 2007-08-31 2009-03-19 Fujifilm Corp 内視鏡
US20110306834A1 (en) * 2010-06-11 2011-12-15 Stephan Schrader Endoscope
US20150335233A1 (en) * 2014-05-22 2015-11-26 Karl Storz Gmbh & Co. Kg Optical Medical Instrument
US20170258309A1 (en) * 2016-03-14 2017-09-14 Intuitive Surgical Operations, Inc. Endoscopic instrument with compliant thermal interface
CN114206195A (zh) * 2019-06-05 2022-03-18 270外科有限公司 用于内窥镜的排热基础结构

Similar Documents

Publication Publication Date Title
CN110290737B (zh) 电外科能量输送结构和包含其的电外科装置
US9757019B2 (en) Optical medical instrument
JP2008080112A (ja) 温度に基づいた光源制御を備えた内視鏡デバイス
US10646106B2 (en) Endoscopic device intended, in particular, for a medical usage
AU2018309165B2 (en) Medical Illumination Device and Related Methods
EP3087905A1 (en) Imaging apparatus of electronic endoscope and electronic endoscope
CN106061366B (zh) 使用导热透镜托架的医学成像设备
WO2024036639A1 (zh) 一种内窥镜装置及其系统
US20150065800A1 (en) Video endoscope
US20100280323A1 (en) Ceramic Fiber Optic Taper Housing For Medical Devices
WO2022057233A1 (zh) 软性内窥装置
CN111202487A (zh) 软性内窥镜
CN219331590U (zh) 一种内窥镜装置及具有其的摄像系统
JP2008029597A (ja) 内視鏡装置
CN219500956U (zh) 一种内窥镜装置及具有其的摄像系统
CN208926307U (zh) 全高清3d电子腹腔镜系统
CN117617878A (zh) 一种内窥镜装置及其系统
CN217907705U (zh) 一种嵌入式光源的内窥镜
CN117617879A (zh) 一种内窥镜装置及其系统
CN113100691A (zh) 一种具有加热去雾功能的内窥镜
TWM617566U (zh) 可拋整合型內視鏡
TW202214170A (zh) 可拋整合型內視鏡
CN214906599U (zh) 一种具有加热去雾功能的内窥镜
CN209932671U (zh) 一种内窥镜显微成像光纤探头
CN215687732U (zh) 一种具有加热防雾功能的腹腔镜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955419

Country of ref document: EP

Kind code of ref document: A1