WO2024036622A1 - 信号处理装置及时分双工系统 - Google Patents

信号处理装置及时分双工系统 Download PDF

Info

Publication number
WO2024036622A1
WO2024036622A1 PCT/CN2022/113689 CN2022113689W WO2024036622A1 WO 2024036622 A1 WO2024036622 A1 WO 2024036622A1 CN 2022113689 W CN2022113689 W CN 2022113689W WO 2024036622 A1 WO2024036622 A1 WO 2024036622A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switch
module
terminal
diode
Prior art date
Application number
PCT/CN2022/113689
Other languages
English (en)
French (fr)
Inventor
冷舜
冯云
谭胜斌
胡世鹏
何金亮
尧鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/113689 priority Critical patent/WO2024036622A1/zh
Publication of WO2024036622A1 publication Critical patent/WO2024036622A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present application relates to the field of communications, and in particular to a signal processing device and a time division duplex system.
  • Time division duplexing (TDD) system is a communication system that uses time division duplexing for signal transmission. Its signal uses a single frequency and distinguishes the uplink transmission and downlink transmission of the signal by allocating different time intervals (also called time slots) for the uplink transmission and downlink transmission of the signal.
  • the signal is transmitted uplink, the signal is sent by the user equipment (UE) in the time division duplex system.
  • the signal is transmitted downlink, the signal is sent by the base station (evolved node B, eNB) in the time division duplex system. Due to the uplink transmission Due to the link budget requirements and the fact that the uplink transmit power of user equipment is limited by hardware, the downlink coverage of time division duplex systems is usually larger than the uplink coverage.
  • the area outside the uplink coverage and within the downlink coverage may be called an uplink restricted interval.
  • the uplink demand target of the service is at the critical point of the uplink restricted interval and the downlink demand target is at the edge of the downlink coverage, the service initiated by the user will transmit uplink signals within the uplink restricted interval. There will be upward restriction.
  • the existing technology proposes an optimization solution for uplink limitation.
  • the existing technology solution is not very effective in improving uplink sensitivity and uplink coverage, so the optimization of the degree of uplink limitation is also limited. .
  • the present application proposes a signal processing device and a time division duplex system.
  • the noise coefficient of the cascaded device can be reduced, thereby effectively improving the uplink sensitivity and uplink coverage, and reducing the uplink degree of restriction.
  • inventions of the present application provide a signal processing device.
  • the device is provided in a time division duplex system.
  • the working mode of the device includes a signal receiving mode and a signal output mode.
  • the device includes a signal transceiver module. , mode switching module and signal processing module, the signal transceiving module is used to receive the first signal when the device switches to the signal receiving mode, and output the second signal when the device switches to the signal output mode; the mode
  • the switching module is connected to the signal transceiver module and includes a low-noise amplifier for switching the working mode, and when the device switches to the signal receiving mode, the low-noise amplifier is used to amplify the first signal to obtain a third signal.
  • the signal processing module is connected to the mode switching module for processing when the device switches to the signal receiving mode.
  • the third signal is filtered and amplified to obtain a fourth signal, and the second signal is generated when the device switches to the signal output mode; wherein the signal transceiver module, the mode switching module and the signal
  • the processing modules are arranged on the same circuit board.
  • the signal receiving mode and the signal output mode are designed so that the two modes can respectively correspond to the uplink transmission and downlink transmission of signals in the time division duplex system;
  • the mode switching is performed by using a mode switching module , when the mode switching module switches the working mode to the signal receiving mode, the signal transceiving module can receive the first signal, the mode switching module uses a low-noise amplifier to amplify the first signal to obtain a third signal, and the signal processing module filters the third signal and amplification processing to obtain the fourth signal, which can realize uplink transmission of the signal;
  • the mode switching module switches the working mode to the signal output mode, the signal processing module generates the second signal and passes it to the signal transceiver module via the mode switching module.
  • the signal transceiver module outputs the second signal, which can realize downlink transmission of the signal.
  • the first signal can reach the low-noise amplifier for amplification without passing through filters and other devices. Therefore, for signal reception, the insertion loss of the cascaded devices is smaller than that of the existing technology, and the noise coefficient of the cascaded devices is reduced. ; Since the signal transceiver module, mode switching module and signal processing module are arranged on the same circuit board, there is no need to add additional cables for transmitting radio frequency signals and control signals, further reducing the noise coefficient. Therefore, the signal processing in the embodiment of the present application The device can effectively improve uplink sensitivity and coverage, and reduce uplink limitations.
  • the mode switching module further includes a first switch and a second switch, and the low-noise amplifier is connected to the first switch. between one end and the first end of the second switch; the second end of the first switch is connected to the signal processing module, and the third end is connected to the third end of the second switch; the second switch The second end is connected to the signal transceiver module.
  • the signal terminal of the first switch and the signal terminal of the second switch also receive a control signal , when the control signal controls the first end and the second end of the first switch to be conductive, and controls the first end and the second end of the second switch to be conductive, the signal processing device switches to signal reception. mode; when the control signal controls the second end and the third end of the first switch to be turned on, and controls the second end and the third end of the second switch to be turned on, the signal processing device switches to the signal output mode.
  • switching between the two working modes can be achieved.
  • the switching of the two working modes prevents the signal processing device from transmitting the first signal and the second signal at the same time, thus meeting the signal transmission requirements of the time division duplex system.
  • At least one of the first switch and the second switch includes A first diode, a second diode, a third diode, a fourth diode, a fifth diode and a first inductor.
  • the first end of the first diode is connected to the first The first end of the inductor serves as the third end of the first switch/the second switch; the second end of the first diode is connected to the second end of the first inductor and the second end of the second switch.
  • the first end of the diode and the first end of the third diode serve as the second end of the first switch/the second switch; the second end of the second diode is connected ground; the second end of the third diode is connected to the second end of the fourth diode and the second end of the fifth diode; the first end of the fifth diode is connected to Ground; the first terminal of the fourth diode serves as the first terminal of the first switch/the second switch.
  • the uplink sensitivity of the signal processing device can be improved better.
  • At least one of the first switch and the second switch includes a ring-shaped switch. device.
  • the uplink sensitivity of the signal processing device can be improved better, and at the same time, the setting method of the first switch and/or the second switch can be made more flexible.
  • the device in a fifth possible implementation of the signal processing device, is provided in a large-scale antenna array of a time division duplex system,
  • the device also includes: an antenna module, including a plurality of antennas, the plurality of antennas are used to receive the first signal and output it to a signal transceiver module, and receive a second signal from the signal transceiver module and output it to other device antenna.
  • the device By being used in combination with an antenna module, the device can be installed in a large-scale antenna array of a time division duplex system, thereby meeting the time division duplex requirements of a macro base station including a large-scale antenna array.
  • the mode switching module further includes a third A filter, the first filter and the low noise amplifier are connected in series between the first end of the first switch and the first end of the second switch, and the first filter is connected to the a second switch, the low-noise amplifier is connected to the first switch; the first filter is used to filter noise signals in the first signal and the second signal.
  • signals that may cause interference can be filtered out before entering the low-noise amplifier, thereby ensuring that the third signal obtained after the low-noise amplifier amplifies the first signal indeed has a higher signal-to-noise ratio.
  • the signal transceiver module includes a second filter, and the second filter is To filter the noise signal in the first signal.
  • signals that may cause interference can also be filtered out before entering the low-noise amplifier, thereby ensuring that the third signal obtained after the low-noise amplifier amplifies the first signal does indeed have a higher signal-to-noise ratio. And it makes the filter setting method more flexible.
  • the signal transceiver module includes a coupler , the coupler is used to correct the phase error introduced when the plurality of antennas receive the first signal.
  • the first signal input to the low-noise amplifier is more accurate, thereby making the third signal more accurate, which is beneficial to improving the uplink sensitivity.
  • the device Set in the radio frequency remote unit of the time division duplex system.
  • embodiments of the present application provide a time division duplex system, which system includes a large-scale antenna array and/or a radio frequency remote unit, wherein the large-scale antenna array includes the first aspect or the first aspect.
  • the signal processing device is one or more of the multiple possible implementations of the first aspect, and/or the radio frequency remote unit includes the first aspect or one or more of the multiple possible implementations of the first aspect. signal processing device.
  • Figure 1 shows a schematic diagram of a solution in the prior art to improve the sensitivity of uplink signal transmission
  • Figure 2 shows a structural diagram of a large-scale antenna array in the prior art
  • Figure 3 shows a structural diagram of a large-scale antenna array in the prior art
  • Figure 4 shows an exemplary application scenario of a signal processing device according to an embodiment of the present application
  • Figure 5 shows an exemplary structural diagram of a signal processing device according to an embodiment of the present application
  • Figure 6 shows an exemplary structural diagram of the mode switching module 102 according to an embodiment of the present application
  • Figure 7 shows an exemplary structural diagram of the first switch S1/second switch S2 according to the embodiment of the present application
  • Figure 8 shows an example in which both the first switch S1 and the second switch S2 are implemented using a circulator according to an embodiment of the present application
  • Figure 9 shows an exemplary structural diagram when a signal processing device according to an embodiment of the present application is installed in a large-scale antenna array
  • Figure 10 shows an exemplary structural diagram of the mode switching module 102 according to an embodiment of the present application
  • Figure 11 shows an exemplary structural diagram of the signal transceiving module 101 according to an embodiment of the present application
  • Figure 12 shows an exemplary structural diagram of the signal transceiving module 101 according to an embodiment of the present application
  • Figure 13 shows an exemplary structural diagram of a time division duplex system according to an embodiment of the present application.
  • Time division duplex system is a communication system that uses time division duplex mode for signal transmission.
  • a time division duplex system may include a base station and user equipment. When a signal is transmitted from the base station to the user equipment, it is called downlink transmission, and when the signal is transmitted from the user equipment to the base station, it is called uplink transmission.
  • downlink transmission When a signal is transmitted from the base station to the user equipment, it is called downlink transmission, and when the signal is transmitted from the user equipment to the base station, it is called uplink transmission.
  • the maximum allowable air propagation loss in the uplink of the time division duplex system needs to be less than the downlink.
  • the maximum allowable air propagation loss in the downlink is equal to the user equipment transmit power + user equipment antenna gain - base station feeder loss + base station antenna gain + diversity reception gain - human body loss.
  • the maximum air propagation loss allowed in the uplink is equal to base station transmit power - duplex loss - base station feeder loss + base station antenna gain + user equipment antenna gain - human body loss - user equipment signal reception sensitivity.
  • the maximum allowable air propagation loss in the downlink of the time division duplex system is 147.5dB, and the maximum allowable air propagation loss in the uplink is 155dB. Due to hardware constraints, the base station transmit power is usually greater than the user equipment transmit power, so the downlink coverage of the time division duplex system is usually greater than the uplink coverage.
  • the area outside the uplink coverage and within the downlink coverage may be called an uplink restricted interval.
  • the uplink demand target of the service is at the critical point of the uplink restricted interval and the downlink demand target is at the edge of the downlink coverage, the service initiated by the user will transmit uplink signals within the uplink restricted interval.
  • the uplink limited situation can be characterized by the power headroom report (PHR).
  • PHR is used to periodically report the difference between the estimated uplink power and the maximum transmit power of the user equipment to the base station to facilitate adjustment of the user equipment's transmission. power.
  • PHR power headroom report
  • Figure 1 shows a schematic diagram of a solution in the prior art to improve the sensitivity of uplink signal transmission.
  • the base station is set up in a time division duplex system.
  • the base station includes an antenna, a tower top amplifier (ie tower amplifier) and a radio remote unit (radio remote unit, RRU).
  • the signal from the user equipment (not shown) It is first transmitted to the tower top amplifier through the antenna, and then transmitted to the radio frequency remote unit after amplification by the tower top amplifier.
  • the radio frequency remote unit then transmits it to the indoor baseband processing unit (building baseband unit, BBU) (not shown) for the next step. processing.
  • BBU building baseband unit
  • the tower-top amplifier is an independent device connected externally between the antenna and the radio frequency remote unit. It needs to undertake the uplink and downlink transmission of signals.
  • a jumper (signal line) is required between the tower-top amplifier and the antenna; and To achieve the effect of amplifying signals only during uplink transmission, it is necessary to receive a control signal.
  • the control signal is generally sent by a controller (not shown) on the circuit board connected to the antenna, so signal line transmission is also required.
  • the existence of signal lines causes a certain attenuation of signal transmission. Therefore, this solution has very limited improvement in the sensitivity of uplink signal transmission.
  • the base station includes a large-scale antenna array integrated with a radio frequency unit, and devices for signal amplification are integrated into the radio frequency unit.
  • the radio frequency unit and the antenna are placed on the same circuit board. 2 and 3 show structural diagrams of large-scale antenna arrays in the prior art.
  • the large-scale antenna array includes an L1 processing unit, a radio unit (RU), an antenna unit (AU), and a power supply.
  • the power supply supplies power to the L1 processing unit, radio unit, and antenna unit.
  • the antenna unit AU may include multiple groups of antennas
  • the radio frequency unit RU may include multiple radio frequency subunits.
  • Each radio frequency subunit includes an interface module, an analog-to-digital-to-analog conversion module, a radio frequency small signal generation module RF, and a power amplification module.
  • PA, filter module, each set of antennas and a radio frequency subunit are set on the same circuit board.
  • the L1 processing unit obtains a digital signal through channel mapping, weighting and modulation.
  • the digital signal After the digital signal is processed through the interface, it is transmitted to the radio frequency unit RU by the interface module.
  • the radio frequency unit RU converts the digital signal into an analog signal and then based on the analog signal
  • the small radio frequency signal is obtained, amplified and filtered, and then transmitted to a corresponding set of antennas, which are then emitted by the antenna to achieve downlink transmission of the signal.
  • the radio frequency signal received by a set of antennas can be filtered, amplified and converted by the radio frequency unit RU to obtain the corresponding digital signal, and then transmitted to the L1 processing unit for subsequent processing to achieve uplink transmission of the signal.
  • Figure 3 further shows the details of the connection between the power amplification module PA and the filter module in a radio frequency subunit and a set of antennas.
  • the power amplification module PA may include a low noise amplifier LNA, a circulator CI, and a radio frequency switch S
  • the filter module may include a filter F and a coupler CO.
  • the signal passes through the coupler CO, filter F, circulator CI, and radio frequency switch S to the low-noise amplifier LNA for amplification, so that the low-noise amplifier LNA can output a higher-power signal to improve the signal. Noise ratio, thereby improving uplink signal transmission sensitivity.
  • the coupler CO, filter F, circulator CI, and radio frequency switch S are new devices added to the circuit board, which bring large insertion losses, and the cascade noise coefficient of the devices is also relatively large, which affects the sensitivity of uplink transmission. To a certain extent, the effect of improving uplink sensitivity and uplink coverage is not very good, so the optimization of uplink restriction is also limited.
  • the present application proposes a signal processing device and a time division duplex system.
  • the noise coefficient of the cascaded device can be reduced, thereby effectively improving the uplink sensitivity and coverage, and reducing the uplink load. limited extent.
  • Figure 4 shows an exemplary application scenario of a signal processing device according to an embodiment of the present application.
  • the signal processing device can be installed on a base station.
  • the base station is installed in a time division duplex system and can communicate with user equipment in the time division duplex system through an antenna.
  • the signal processing device works in the signal output mode; when the user equipment sends a signal to the base station, the signal processing device works in the signal receiving mode.
  • the signal processing device in the signal receiving mode, can effectively improve the uplink sensitivity and improve the uplink coverage of the system.
  • the base station may be a macro base station or a distributed base station, which is not limited in this application.
  • the base station may include a large-scale antenna array and/or a remote radio frequency unit, and the signal processing device may be provided on the large-scale antenna array or on the remote radio unit. This application does not limit this.
  • FIG. 5 shows an exemplary structural diagram of a signal processing device according to an embodiment of the present application.
  • this application proposes a signal processing device, which is provided in a time division duplex system.
  • the working mode of the device includes a signal receiving mode and a signal output mode.
  • the device includes a signal transceiver module 101, a mode switching module 102 and a signal processing module 103.
  • the signal transceiver module 101 and the signal processing module 102 can be implemented based on existing technologies. This application does not limit the specific structures of the signal transceiver module 101 and the signal processing module 102.
  • the signal transceiver module 101 is configured to receive the first signal P1 when the device switches to the signal receiving mode, and to output the second signal P2 when the device switches to the signal output mode.
  • the signal transceiver module 101 may at least include an interface for signal reception/transmission in order to communicate with other devices or devices (such as an antenna described below) other than the signal processing device.
  • the first signal P1 and the second signal P2 may be radio frequency signals.
  • the first signal P1 may be received from the antenna, and the second signal P2 may be output to the antenna.
  • the mode switching module 102 is connected to the signal transceiver module 101 and includes a low-noise amplifier LNA for switching the working mode, and using the low-noise amplifier LNA to amplify the signal when the device switches to the signal receiving mode.
  • the first signal P1 is used to obtain a third signal P3, and the second signal P2 is transmitted to the signal transceiver module 101 when the device switches to the signal output mode.
  • the low-noise amplifier LNA can achieve the effect of amplifying radio frequency signals and introduces relatively low noise, so that the signal-to-noise ratio of the third signal P3 can be higher than the signal-to-noise ratio of the first signal P1.
  • the structure of the mode switching module 102 can refer to the examples in FIG. 6 , FIG. 8 and FIG. 10 below.
  • the signal processing module 103 is connected to the mode switching module 102, and is used to filter and amplify the third signal P3 to obtain a fourth signal P4 when the device switches to the signal receiving mode, and when the device switches The second signal P2 is generated when entering the signal output mode.
  • the fourth signal P4 may be used for further analysis to determine whether the user equipment that sends the first signal P1 is uplink restricted, etc.
  • the signal processing module 103 may include all or part of the modules on the left side of the coupler CO in FIG. 3 , for example.
  • the signal transceiving module 101, the mode switching module 102 and the signal processing module 103 are arranged on the same circuit board.
  • a low-noise amplifier is an electronic amplifier, mainly used for signal amplification in communication systems. It can amplify signals while producing the lowest possible noise and distortion.
  • the signal receiving mode and the signal output mode are designed so that the two modes can respectively correspond to the uplink transmission and downlink transmission of signals in the time division duplex system;
  • the mode switching is performed by using a mode switching module , when the mode switching module switches the working mode to the signal receiving mode, the signal transceiving module can receive the first signal, the mode switching module uses a low-noise amplifier to amplify the first signal to obtain a third signal, and the signal processing module filters the third signal and amplification processing to obtain the fourth signal, which can realize uplink transmission of the signal;
  • the mode switching module switches the working mode to the signal output mode, the signal processing module generates the second signal and passes it to the signal transceiver module via the mode switching module.
  • the signal transceiver module outputs the second signal, which can realize downlink transmission of the signal.
  • the first signal can reach the low-noise amplifier for amplification without passing through filters and other devices. Therefore, for signal reception, the insertion loss of the cascaded devices is smaller than that of the existing technology, and the noise coefficient of the cascaded devices is reduced. ; Since the signal transceiver module, mode switching module and signal processing module are arranged on the same circuit board, there is no need to add additional cables for transmitting radio frequency signals and control signals, further reducing the noise coefficient. Therefore, the signal processing in the embodiment of the present application The device can effectively improve uplink sensitivity and coverage, and reduce uplink limitations.
  • FIG. 6 shows an exemplary structural diagram of the mode switching module 102 according to an embodiment of the present application.
  • the mode switching module further includes a first switch S1 and a second switch S2,
  • the low noise amplifier LNA is connected between the first terminal s11 of the first switch S1 and the first terminal s21 of the second switch S2;
  • the second terminal s12 of the first switch S1 is connected to the signal processing module 103, and the third terminal s13 is connected to the third terminal s23 of the second switch S2;
  • the second terminal s22 of the second switch S2 is connected to the signal transceiver module 101 .
  • the following describes an exemplary manner in which the mode switching module 102 of the embodiment of the present application implements mode switching with reference to FIG. 6 .
  • the signal terminal (not shown) of the first switch S1 and the signal terminal (not shown) of the second switch S2 also receive a control signal
  • the control signal controls the first terminal s11 and the second terminal s12 of the first switch S1 to be turned on, and controls the first terminal s21 and the second terminal s22 of the second switch S2 to be turned on, the signal processing The device switches to signal reception mode;
  • the control signal controls the second terminal s12 and the third terminal s13 of the first switch S1 to be turned on, and controls the second terminal s22 and the third terminal s23 of the second switch S2 to be turned on, the signal processing The device switches to signal output mode.
  • the first switch S1 and the second switch S2 can be switches that can split one signal path into two paths, that is, the signal input to the first switch S1 and the second switch S2 through one signal path can be Select one output of the two split paths.
  • the specific selection method can be determined by the control signal.
  • the control signal may be output by a controller provided on the same circuit board as the signal transceiver module 101, the mode switching module 102, and the signal processing module 103.
  • the first switch S1 and the second switch S2 may respectively include four ports, which are a first terminal, a second terminal, a third terminal and a signal terminal.
  • the first end to the third end are used to receive/output the first signal P1/the second signal P2/the third signal P3 of the radio frequency.
  • the second end s12 of the first switch S1 can be set to be fixedly connected to the signal processing module. 103.
  • the second terminal s22 of the second switch S2 is fixedly connected to the signal transceiver module 101, the third terminal s13 of the first switch S1 is fixedly connected to the third terminal s23 of the second switch S2, and the low-noise amplifier LNA is fixedly connected to the first switch S1.
  • a signal terminal can be set for receiving a control signal.
  • the control signal can be used to control the conduction object of the second terminal s12 of the first switch S1 and the second terminal s22 of the second switch S2.
  • the selected conductive objects include its first terminal s11 and the third terminal s13.
  • the selectable conductive objects include its first terminal s21 and third terminal s23.
  • the control signal controls the first terminal s11 and the second terminal s12 of the first switch S1 to be turned on, and the second terminal s12 of the second switch S2 is turned on.
  • the first terminal s21 and the second terminal s22 are connected.
  • the first signal P1 can be input to the low-noise amplifier LNA through the second terminal s22 and the first terminal s21 of the second switch S2.
  • the third signal output by the low-noise amplifier LNA P3 can be output through the first terminal s11 and the second terminal s12 of the first switch S1; if the signal processing device is switched to the signal output mode, the control signal controls the second terminal s12 and the third terminal s13 of the first switch S1 to be turned on. , the second terminal s22 and the third terminal s23 of the second switch S2 are turned on, then the second signal P2 will not be transmitted through the low noise amplifier LNA at this time.
  • the control signal may be a signal including two different levels.
  • the first switch S1 and the second switch S2 may be set to switch the conduction mode of the port through the level of the control signal.
  • the third switch of the first switch S1 may be set to a high level.
  • One terminal s11 and the second terminal s12 are turned on, and the second terminal s12 and the third terminal s13 of the first switch S1 are turned on when the level is low.
  • the first terminal s21 and the second terminal s22 of the second switch S2 can be turned on when the level is high, and the second terminal s22 and the third terminal s23 of the second switch S2 can be turned on when the level is low.
  • the first switch and the second switch can correspondingly adjust the conduction of the port according to the identified information.
  • conductive mode and when the second terminal s12 of the first switch S1 and the first terminal s11 are connected, the second terminal s22 of the second switch is also connected to the first terminal s21, and the third terminal s13 of the first switch S1 and the first terminal s11 are connected.
  • the third terminal s23 of the second switch is also turned on with the second terminal s22.
  • switching between the two working modes can be achieved.
  • the switching of the two working modes prevents the signal processing device from transmitting the first signal and the second signal at the same time, thus meeting the signal transmission requirements of the time division duplex system.
  • the first switch S1/second switch S2 in the embodiment of the present application may be a switch implemented based on the existing technology, but the existing switches are usually connected through diodes and have large insertion losses. Based on this, the embodiment of the present application also designs the first switch S1/second switch S2 with smaller insertion loss.
  • FIG. 7 shows an exemplary structural diagram of the first switch S1/second switch S2 according to the embodiment of the present application.
  • At least one of the first switch and the second switch includes a first diode D1, a second diode D2, a third diode tube D3, the fourth diode D4, the fifth diode D5 and the first inductor L1,
  • the first terminal d11 of the first diode D1 is connected to the first terminal l1 of the first inductor L1 and serves as the third terminal s13/s23 of the first switch S1/the second switch S2;
  • the second terminal d12 of the first diode D1 is connected to the second terminal l2 of the first inductor L1, the first terminal d21 of the second diode D2, and the third terminal of the third diode D3.
  • One terminal d31 serves as the second terminal s12/s22 of the first switch S1/the second switch S2;
  • the second terminal d22 of the second diode D2 is connected to ground;
  • the second terminal d32 of the third diode D3 is connected to the second terminal d42 of the fourth diode D4 and the second terminal d52 of the fifth diode D5;
  • the first terminal d51 of the fifth diode D5 is connected to ground;
  • the first terminal d41 of the fourth diode D4 serves as the first terminal s11/s21 of the first switch S1/the second switch S2.
  • the second switch S2 As an example, it can be seen from the above description that when the first terminal s21 and the second terminal s22 of the second switch S2 are turned on, the signal processing device is in the signal receiving mode, and the second terminal s22 and the second terminal s22 are in the signal receiving mode. When the three terminals s23 are turned on, the signal processing device is in the signal output mode. Therefore, it can be considered that in Figure 7, the branch between the first terminal s21 and the second terminal s22 of the second switch S2 is the receiving branch RX. The branch between terminal s22 and the third terminal s23 is the output branch TX.
  • the output branch TX includes a first diode D1 and a first inductor L1 connected in parallel.
  • the turn-on or turn-off of the output branch TX and the receiving branch RX can be controlled.
  • the output branch TX is turned on (that is, the second terminal s22 and the third terminal s23 of the second switch S2 are turned on)
  • the receiving branch RX is turned off
  • the second switch S2 is in a low resistance state
  • the diode D1 transmits, and the power capacity pressure on the first inductor L1 is relatively small.
  • the receiving branch RX includes a third diode D3, a fourth diode D4 and a fifth diode D5.
  • the receiving branch RX is turned on (that is, the first terminal s21 and the second terminal s22 of the second switch S2 are turned on). ), the output branch TX is turned off, the first diode D1 is capacitive, and is connected in parallel with the first inductor L1 to form an LC resonant circuit, which can increase the degree of shutdown of the output branch TX, that is, increase the relationship between the output branch TX and Isolation of the receiving branch RX. Since the isolation is increased, when the first signal P1 is received, the insertion loss of the second switch S1 is also reduced.
  • At least one of the first switch S1 and the second switch S2 includes a circulator.
  • the circulator can be implemented based on existing technology. Compared with the radio frequency switch in the prior art that is only realized by connecting diodes, using a circulator as the first switch/second switch can also reduce the insertion loss of the first switch/second switch.
  • FIG. 8 shows an example in which both the first switch S1 and the second switch S2 are implemented using a circulator according to an embodiment of the present application.
  • the first switch S1 and the second switch S2 respectively include circulators CI1 and CI2 based on the related art.
  • the uplink sensitivity of the signal processing device can be improved better, and at the same time, the setting method of the first switch and/or the second switch can be made more flexible.
  • the signal processing device can be installed in a large-scale antenna array or a radio frequency remote unit of a time division duplex system.
  • the following describes how the signal processing device is installed in a large-scale time division duplex system.
  • the exemplary structure and working mode of the signal processing device are introduced.
  • FIG. 9 shows an exemplary structural diagram when the signal processing device according to the embodiment of the present application is installed in a large-scale antenna array.
  • the device is provided in a large-scale antenna array of a time division duplex system, and the device further includes:
  • the antenna module 104 includes multiple antennas, which are used to receive the first signal P1 and output it to the signal transceiver module 101, and to receive the second signal P2 from the signal transceiver module 101 and output it to other devices. antenna.
  • a massive antenna array can be a device that can independently generate, transmit, receive, and convert signals, in which the signal transmission and reception can be completed by the antenna.
  • the signal processing device may be provided in a large-scale antenna array and may include an antenna module 104, where the antenna module 104 may include multiple antennas in the large-scale antenna array for completing signal transceiver work.
  • the antenna module 104 can be implemented based on existing technology, and may also include a shifter (not shown) and other devices in the existing technology that can be easily integrated with the antenna.
  • the antenna module 104 can be directly connected to the signal transceiver module 101.
  • the base station where the large-scale antenna array is located can be a macro base station.
  • the radio frequency signal received by the antenna module 104 may include the first signal P1, which may be emitted by the user equipment through its own antenna; the signal output by the antenna module 104 may include the second signal P2, which may be output to the antenna of the user equipment.
  • the device By being used in combination with an antenna module, the device can be installed in a large-scale antenna array of a time division duplex system, thereby meeting the time division duplex requirements of a macro base station including a large-scale antenna array.
  • the uplink transmission and downlink transmission of signals in the time-division duplex system are not carried out simultaneously, there is a possibility that the uplink transmission signal is transmitted through the antenna, reflected by the object, and re-received by the antenna during downlink transmission.
  • the signal processing device may also receive interference signals with relatively high power. If the power of these signals that do not actually need to be received is large, the reception may be saturated and the signals that actually need to be received cannot be received. This phenomenon is also called co-site blocking.
  • the embodiment of the present application also proposes to set a filter at a suitable position in the signal processing device to filter out these interference-generating signals.
  • the filter can be set in the mode switching module 102 or in the signal transceiver module 101 .
  • FIG. 10 shows an exemplary structural diagram of the mode switching module 102 according to an embodiment of the present application.
  • the mode switching module 102 further includes a first filter F1, and the first filter F1 and the low noise amplifier LNA are connected in series to the first switch. Between the first terminal s11 of S1 and the first terminal s21 of the second switch S2, and the first filter F1 is connected to the second switch S2, and the low noise amplifier LNA is connected to the first switch S1 ;
  • the first filter F1 is used to filter the noise signal in the first signal P1.
  • the first filter F1 can be connected to the second switch S2, and the low-noise amplifier LNA can be connected to the first switch S1. In this way, signals that may cause interference can be filtered out before entering the low-noise amplifier, thereby ensuring that the third signal obtained after the low-noise amplifier amplifies the first signal indeed has a higher signal-to-noise ratio.
  • Figure 11 shows an exemplary structural diagram of the signal transceiving module 101 according to an embodiment of the present application.
  • the signal transceiver module 101 includes a second filter F2, and the second filter F2 is used to filter the noise signal in the first signal P1.
  • signals that may cause interference can also be filtered out before entering the low-noise amplifier, thereby ensuring that the third signal obtained after the low-noise amplifier amplifies the first signal does indeed have a higher signal-to-noise ratio.
  • the signal processing device may not set the second filter F2 when setting the first filter F1, and may not set the first filter F1 when setting the second filter F2.
  • this application does not limit the specific setting method of the filter.
  • Figure 12 shows an exemplary structural diagram of the signal transceiving module 101 according to an embodiment of the present application.
  • the signal transceiver module 101 includes a coupler CO1, which is used to correct the phase introduced when the multiple antennas receive the first signal P1. error.
  • a phase error may be introduced when receiving the first signal P1, resulting in a deviation in the first signal P1. Therefore, a coupler CO1 can be provided in the signal transceiver module 101, and the coupler CO1 is used to correct the introduced phase error.
  • the first signal input to the low-noise amplifier is more accurate, thereby making the third signal more accurate, which is beneficial to improving the uplink sensitivity.
  • FIG. 12 shows an example in which only the coupler CO1 is included in the signal transceiver module 101 .
  • the coupler CO1 included in the signal transceiver module 101 it may also include more devices, such as the second filter F2, etc., which is not limited in this application.
  • the coupler CO1 may be provided between the second filter and the antenna module 104, or may be provided between the second filter F2 and the second switch. Between S2, this application does not limit the specific location of the coupler CO1.
  • the device is provided in a radio frequency remote unit of a time division duplex system.
  • the signal processing device may also be provided in the remote radio unit.
  • the signal processing device may not include an antenna module.
  • the base station where the radio frequency remote unit is located may be a distributed base station.
  • the radio frequency remote unit and the antenna may be connected by a cable.
  • the signal processing device receives the first signal P1 from the antenna and outputs the second signal P2 to the antenna. Except for not including the antenna module, other structures of the signal processing device can be the same as when they are provided on a large-scale antenna array, and will not be described again here.
  • Figure 13 shows an exemplary structural diagram of a time division duplex system according to an embodiment of the present application.
  • the embodiment of the present application also proposes a time division duplex system.
  • the system includes a large-scale antenna array MM and/or a radio frequency remote unit RRU, wherein the large-scale antenna array MM includes the above The signal processing device, and/or the radio frequency remote unit RRU includes the above-mentioned signal processing device.
  • the signal processing device in the embodiment of the present application can be installed on the large-scale antenna array MM or the radio frequency remote unit RRU, as long as the time division duplex system includes the large-scale antenna array MM and At least one of the remote radio frequency units RRU, and the time division duplex system only includes a large-scale antenna array MM (or a remote radio frequency unit RRU), the large-scale antenna array MM (or a remote radio frequency unit RRU) is provided with signal processing device, when the time division duplex system includes a large-scale antenna array MM and a remote radio frequency unit RRU, and at least one of the large-scale antenna array MM or the remote radio frequency unit RRU is provided with a signal processing device, the time division duplex system can achieve improved The effect of uplink sensitivity. Among them, if the time division duplex system includes a large-scale antenna array MM and a radio frequency remote unit RRU, the large-scale antenna array MM at this time may only include antennas.
  • the uplink sensitivity of the time division duplex system can be improved by more than 1 dB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)

Abstract

本申请提出一种信号处理装置及时分双工系统,装置包括信号收发模块、模式切换模块和信号处理模块,信号收发模块用于在装置切换至信号接收模式时接收第一信号;模式切换模块包括低噪声放大器,用于实现工作模式的切换,以及在装置切换至信号接收模式时使用低噪声放大器放大第一信号得到第三信号;信号处理模块连接模式切换模块,用于在装置切换至信号接收模式时对第三信号进行滤波和放大处理得到第四信号;其中,信号收发模块、模式切换模块与信号处理模块设置在同一电路板上。根据本申请实施例的信号处理装置,可以降低级联器件的噪声系数,从而能有效提升上行灵敏度和覆盖范围,降低上行受限程度。

Description

信号处理装置及时分双工系统 技术领域
本申请涉及通信领域,尤其涉及一种信号处理装置及时分双工系统。
背景技术
时分双工(time division duplexing,TDD)系统是一种采用时分双工方式进行信号传输的通信系统。其信号使用单一频率,通过为信号的上行传输和下行传输分配不同的时间区间(也称时隙),来区分信号的上行传输和下行传输。其中信号上行传输时,信号由时分双工系统中的用户设备(user equipment,UE)发出,信号下行传输时,信号由时分双工系统中的基站(evolved node B,eNB)发出,由于上行传输的链路预算要求,以及用户设备上行发射功率受硬件限制的原因,时分双工系统下行覆盖范围通常大于上行覆盖范围。上行覆盖范围之外、下行覆盖范围之内的区域可被称为上行受限区间。当用户通过用户设备发起业务时,若业务的上行需求目标在上行受限区间的临界点,下行需求目标在下行覆盖范围的边缘,则该用户发起的业务在上行受限区间内进行上行信号传输时将出现上行受限。
为了解决这一问题,现有技术提出了上行受限的优化方案,但现有技术的方案在提升上行灵敏度和上行覆盖范围方面的效果并不是很好,因此对上行受限程度的优化也有限。
发明内容
有鉴于此,本申请提出一种信号处理装置及时分双工系统,根据本申请实施例的信号处理装置,可以降低级联器件的噪声系数,从而能有效提升上行灵敏度和上行覆盖范围,降低上行受限程度。
第一方面,本申请的实施例提供了一种信号处理装置,所述装置设置在时分双工系统中,所述装置的工作模式包括信号接收模式和信号输出模式,所述装置包括信号收发模块、模式切换模块和信号处理模块,所述信号收发模块用于在所述装置切换至信号接收模式时接收第一信号,以及在所述装置切换至信号输出模式时输出第二信号;所述模式切换模块连接所述信号收发模块,包括低噪声放大器,用于实现所述工作模式的切换,以及在所述装置切换至信号接收模式时使用所述低噪声放大器放大所述第一信号得到第三信号,在所述装置切换至信号输出模式时传递所述第二信号至所述信号收发模块;所述信号处理模块连接所述模式切换模块,用于在所述装置切换至信号接收模式时对所述第三信号进行滤波和放大处理得到第四信号,以及在所述装置切换至信号输出模式时生成所述第二信号;其中,所述信号收发模块、所述模式切换模块与所述信号处理模块设置在同一电路板上。
根据本申请实施例的信号处理装置,通过设计信号接收模式和信号输出模式,使得两种模式可以分别与时分双工系统的信号上行传输和下行传输相对应;通过使用模式切换模块进行模式的切换,在模式切换模块将工作模式切换为信号接收模式时,信 号收发模块可以接收到第一信号,模式切换模块使用低噪声放大器放大第一信号得到第三信号,信号处理模块对第三信号进行滤波和放大处理得到第四信号,可以实现信号的上行传输;在模式切换模块将工作模式切换为信号输出模式时,信号处理模块生成第二信号,并经由模式切换模块传递给信号收发模块,信号收发模块输出第二信号,可以实现信号的下行传输。由于模式切换模块中,第一信号无需经过滤波器等器件即可到达低噪声放大器进行放大,因此对于信号接收而言,级联的器件的插入损耗小于现有技术,器件级联的噪声系数降低;由于信号收发模块、模式切换模块与信号处理模块设置在同一电路板上,因此无需额外增加用于传输射频信号和控制信号的线缆,进一步降低了噪声系数,因此本申请实施例的信号处理装置可以有效提升上行灵敏度和覆盖范围,降低上行受限程度。
根据第一方面,在所述信号处理装置的第一种可能的实现方式中,所述模式切换模块还包括第一开关以及第二开关,所述低噪声放大器连接在所述第一开关的第一端和所述第二开关的第一端之间;所述第一开关的第二端连接所述信号处理模块,第三端连接所述第二开关的第三端;所述第二开关的第二端连接所述信号收发模块。
根据第一方面的第一种可能的实现方式,在所述信号处理装置的第二种可能的实现方式中,所述第一开关的信号端和所述第二开关的信号端还接收控制信号,所述控制信号控制所述第一开关的第一端和第二端导通,并控制所述第二开关的第一端和第二端导通时,所述信号处理装置切换至信号接收模式;所述控制信号控制所述第一开关的第二端和第三端导通,并控制所述第二开关的第二端和第三端导通时,所述信号处理装置切换至信号输出模式。
通过这种方式,可以实现两种工作模式的切换。该两种工作模式的切换使得信号处置装置对第一信号和第二信号的传输不会同时进行,因此满足时分双工系统对信号传输的需求。
根据第一方面的第一种或第二种可能的实现方式,在所述信号处理装置的第三种可能的实现方式中,所述第一开关和所述第二开关中的至少一个,包括第一二极管、第二二极管、第三二极管、第四二极管、第五二极管和第一电感,所述第一二极管的第一端连接所述第一电感的第一端,并作为所述第一开关/所述第二开关的第三端;所述第一二极管的第二端连接所述第一电感的第二端、所述第二二极管的第一端、所述第三二极管的第一端,并作为所述第一开关/所述第二开关的第二端;所述第二二极管的第二端连接地;所述第三二极管的第二端连接所述第四二极管的第二端、所述第五二极管的第二端;所述第五二极管的第一端连接地;所述第四二极管的第一端作为所述第一开关/所述第二开关的第一端。
通过这种方式,使得信号处理装置的上行灵敏度的提升效果更好。
根据第一方面的第一种或第二种可能的实现方式,在所述信号处理装置的第四种可能的实现方式中,所述第一开关和所述第二开关中的至少一个包括环形器。
通过这种方式,可以使得信号处理装置的上行灵敏度的提升效果更好,同时使得第一开关和/或第二开关的设置方式更为灵活。
根据第一方面,或第一方面的任意一种可能的实现方式,在所述信号处理装置的第五种可能的实现方式中,所述装置设置在时分双工系统的大规模天线阵列中,所述 装置还包括:天线模块,包括多个天线,所述多个天线用于接收所述第一信号并输出至信号收发模块,以及接收来自所述信号收发模块的第二信号并输出给其他装置的天线。
通过和天线模块结合使用,可以使得装置可以设置在时分双工系统的大规模天线阵列中,从而能满足包括大规模天线阵列的宏基站对于时分双工的需求。
根据第一方面的第一种至第五种可能的实现方式中的任意一种可能的实现方式,在所述信号处理装置的第六种可能的实现方式中,所述模式切换模块还包括第一滤波器,所述第一滤波器和所述低噪声放大器串联在所述第一开关的第一端和所述第二开关的第一端之间,且所述第一滤波器连接所述第二开关,所述低噪声放大器连接所述第一开关;所述第一滤波器用于过滤所述第一信号和所述第二信号中的噪声信号。
通过这种方式,使得可能产生干扰的信号在进入低噪声放大器之前可以被滤除,从而能保证低噪声放大器对第一信号进行放大后得到的第三信号确实是信噪比更高的。
根据第一方面的第五种或第六种可能的实现方式,在所述信号处理装置的第七种可能的实现方式中,所述信号收发模块包括第二滤波器,所述第二滤波器用于过滤所述第一信号中的噪声信号。
通过这种方式,也能够使得可能产生干扰的信号在进入低噪声放大器之前被滤除,从而能保证低噪声放大器对第一信号进行放大后得到的第三信号确实是信噪比更高的。并且使得滤波器的设置方式更加灵活。
根据第一方面的第五种至第七种可能的实现方式中的任意一种可能的实现方式,在所述信号处理装置的第八种可能的实现方式中,所述信号收发模块包括耦合器,所述耦合器用于校正所述多个天线接收所述第一信号时引入的相位误差。
通过这种方式,使得输入低噪声放大器的第一信号更准确,从而使得第三信号的准确度更高,有利于上行灵敏度的提升。
根据第一方面,或第一方面的第一种至第四种可能的实现方式中的任意一种可能的实现方式,在所述信号处理装置的第九种可能的实现方式中,所述装置设置在时分双工系统的射频拉远单元中。
通过这种方式,使得信号处理装置的设置方式更为灵活。
第二方面,本申请的实施例提供了一种时分双工系统,所述系统包括大规模天线阵列和/或射频拉远单元,其中,所述大规模天线阵列包括第一方面或者第一方面的多种可能的实现方式中的一种或几种的信号处理装置,和/或所述射频拉远单元包括第一方面或者第一方面的多种可能的实现方式中的一种或几种的信号处理装置。
附图说明
图1示出现有技术中实现提升上行信号传输灵敏度的一种方案的示意图;
图2示出现有技术的中的大规模天线阵列的结构图;
图3示出现有技术的中的大规模天线阵列的结构图;
图4示出根据本申请实施例的信号处理装置的一种示例性应用场景;
图5示出根据本申请实施例的信号处理装置的示例性结构图;
图6示出根据本申请实施例的模式切换模块102的一种示例性结构图;
图7示出根据本申请实施例的第一开关S1/第二开关S2的一种示例性结构图;
图8示出根据本申请实施例的第一开关S1和第二开关S2均采用环形器实现的一种示例;
图9示出根据本申请实施例的信号处理装置设置在大规模天线阵列时的一种示例性结构图;
图10示出根据本申请实施例的模式切换模块102的一种示例性结构图;
图11示出根据本申请实施例的信号收发模块101的一种示例性结构图;
图12示出根据本申请实施例的信号收发模块101的一种示例性结构图;
图13示出根据本申请实施例的时分双工系统的示例性结构图。
具体实施方式
时分双工系统是一种采用时分双工方式进行信号传输的通信系统。时分双工系统中可包括基站和用户设备,信号由基站传输至用户设备时称为下行传输,从用户设备传输至基站时称为上行传输。在设计时分双工系统时,需要事先确认好上行传输和下行传输的链路预算。时分双工系统的上行允许的最大空中传播损耗需小于下行,其中下行允许的最大空中传播损耗,等于用户设备发射功率+用户设备天线增益-基站馈线损耗+基站天线增益+分集接收增益-人体损耗-基站信号接收灵敏度;上行允许的最大空中传播损耗,等于基站发射功率-双工损耗-基站馈线损耗+基站天线增益+用户设备天线增益-人体损耗-用户设备信号接收灵敏度。一种典型的无线链路配置下,时分双工系统下行允许的最大空中传播损耗为147.5dB,上行允许的最大空中传播损耗为155dB。而受硬件条件限制,基站发射功率通常大于用户设备发射功率,因此时分双工系统下行覆盖范围通常大于上行覆盖范围。
上行覆盖范围之外、下行覆盖范围之内的区域可被称为上行受限区间。当用户通过用户设备发起业务时,若业务的上行需求目标在上行受限区间的临界点,下行需求目标在下行覆盖范围的边缘,则该用户发起的业务在上行受限区间内进行上行信号传输时将出现上行受限。上行受限情况可以使用功率余量报告(power headroom report,PHR)来表征,PHR用于周期性地向基站报告上行链路估算功率和用户设备最大发射功率的差值,便于调整用户设备的发射功率。其中在PHR<0时,可认为用户设备上行信号传输受限,将影响用户的业务。
为了解决这一问题,现有技术提出了上行受限的优化方案。图1示出现有技术中实现提升上行信号传输灵敏度的一种方案的示意图。
如图1所示,基站设置在时分双工系统中,基站包括天线、塔顶放大器(即塔放)和射频拉远单元(radio remote unit,RRU),来自用户设备(未示出)的信号通过天线先传输给塔顶放大器,在塔顶放大器进行放大后再传输给射频拉远单元,射频拉远单元再传输给室内基带处理单元(building baseband unit,BBU)(未示出)进行下一步的处理。然而,塔顶放大器是一个外接在天线和射频拉远单元之间的独立器件,需要承担信号的上行、下行传输工作,因此塔顶放大器和天线之间需要跳线(信号线) 连接;且为实现在上行传输时才放大信号的效果,需要接收一路控制信号,控制信号一般由天线相连的电路板上的控制器(未示出)发出,因此也需要信号线传输。信号线的存在造成信号传输有一定的衰减,因此,该方案对于上行信号传输灵敏度的提升十分有限。
下面介绍现有技术中实现提升上行信号传输灵敏度的另一种方案。该方案中基站包括集成了射频单元的大规模天线阵列,并将实现信号放大的器件集成在射频单元中,射频单元与天线设置同一电路板上。图2和图3示出现有技术的中的大规模天线阵列的结构图。
如图2所示,大规模天线阵列包括L1处理单元、射频单元(radio unit,RU)、天线单元(antenna unit,AU)和电源,电源为L1处理单元、射频单元、天线单元供电。其中,天线单元AU可以包括多组天线,射频单元RU可包括多个射频子单元,每个射频子单元分别包括接口模块、模数-数模转换模块、射频小信号产生模块RF、功率放大模块PA、滤波模块,每一组天线和一个射频子单元设置在同一块电路板上。一方面,L1处理单元通过通道映射、加权和调制得到数字信号,该数字信号通过接口处理后,由接口模块传输给射频单元RU,射频单元RU对数字信号进行转换得到模拟信号后再基于模拟信号得到射频小信号,放大、滤波后传输给对应的一组天线,由天线发射出去,实现信号的下行传输。另一方面,一组天线接收的射频信号可以经射频单元RU滤波、放大、转换后得到对应的数字信号,再传输给L1处理单元做后续处理,实现信号的上行传输。
图3中进一步给出了一个射频子单元中的功率放大模块PA、滤波模块与一组天线相连接的细节。如图3所示,其中功率放大模块PA可以包括低噪声放大器LNA、环形器CI、射频开关S,滤波模块可以包括滤波器F和耦合器CO。则在实现信号的上行传输时,信号经过耦合器CO、滤波器F、环形器CI、射频开关S到达低噪声放大器LNA进行放大,使得低噪声放大器LNA可以输出功率更高的信号,以提高信噪比,从而提高上行信号传输灵敏度。
然而,耦合器CO、滤波器F、环形器CI、射频开关S作为新加入电路板的器件,带来了较大的插入损耗,器件级联噪声系数也比较大,这对上行传输的灵敏度有一定影响,导致提升上行灵敏度和上行覆盖范围方面的效果也并不是很好,因此对上行受限程度的优化也有限。
有鉴于此,本申请提出一种信号处理装置及时分双工系统,根据本申请实施例的信号处理装置,可以降低级联器件的噪声系数,从而能有效提升上行灵敏度和覆盖范围,降低上行受限程度。
图4示出根据本申请实施例的信号处理装置的一种示例性应用场景。
如图4所示,本申请实施例的信号处理装置可以设置在基站上,基站设置在时分双工系统中,并可通过天线和时分双工系统中的用户设备通信。在基站向用户设备发出信号时,信号处理装置工作在信号输出模式,在用户设备向基站发出信号时,信号处理装置工作在信号接收模式。其中,在信号接收模式中,本申请实施例的信号处理装置可以有效提高上行灵敏度,提升系统的上行覆盖范围。
其中,基站可以是宏基站,也可以是分布式基站,本申请对此不作限制。可选地, 基站可包括大规模天线阵列和/或射频拉远单元,信号处理装置可以设置在大规模天线阵列上,也可以设置在射频拉远单元上。本申请对此不作限制。
图5示出根据本申请实施例的信号处理装置的示例性结构图。
如图5所示,在一种可能的实现方式中,本申请提出一种信号处理装置,所述装置设置在时分双工系统中,所述装置的工作模式包括信号接收模式和信号输出模式,所述装置包括信号收发模块101、模式切换模块102和信号处理模块103。其中,信号收发模块101和信号处理模块102可以基于现有技术来实现,本申请对信号收发模块101和信号处理模块102的具体结构不作限制。
所述信号收发模块101用于在所述装置切换至信号接收模式时接收第一信号P1,以及在所述装置切换至信号输出模式时输出第二信号P2。信号收发模块101可至少包括进行信号接收/发送的接口,以便与信号处理装置以外的其他的装置或器件(例如下文所述的天线)进行通信。第一信号P1和第二信号P2可以是射频信号。第一信号P1可以从天线处接收,第二信号P2可以是输出到天线处。
所述模式切换模块102连接所述信号收发模块101,包括低噪声放大器LNA,用于实现所述工作模式的切换,以及在所述装置切换至信号接收模式时使用所述低噪声放大器LNA放大所述第一信号P1得到第三信号P3,在所述装置切换至信号输出模式时传递所述第二信号P2至所述信号收发模块101。低噪声放大器LNA可以实现放大射频信号的效果,且引入的噪声比较低,使得第三信号P3的信噪比可以高于第一信号P1的信噪比。模式切换模块102的结构可以参照下文图6、图8及图10的示例。
所述信号处理模块103连接所述模式切换模块102,用于在所述装置切换至信号接收模式时对所述第三信号P3进行滤波和放大处理得到第四信号P4,以及在所述装置切换至信号输出模式时生成所述第二信号P2。其中,第四信号P4可以用于进一步分析确定发出第一信号P1的用户设备是否上行受限等。在一个示例中,信号处理模块103可例如包括图3中耦合器CO左侧的全部或部分模块。
其中,所述信号收发模块101、所述模式切换模块102与所述信号处理模块103设置在同一电路板上。
其中,低噪音放大器(low-noise amplifier,LNA)是一种电子放大器,主要用于通信系统中的信号放大,能够在放大信号的同时产生尽可能低的噪音以及失真。
根据本申请实施例的信号处理装置,通过设计信号接收模式和信号输出模式,使得两种模式可以分别与时分双工系统的信号上行传输和下行传输相对应;通过使用模式切换模块进行模式的切换,在模式切换模块将工作模式切换为信号接收模式时,信号收发模块可以接收到第一信号,模式切换模块使用低噪声放大器放大第一信号得到第三信号,信号处理模块对第三信号进行滤波和放大处理得到第四信号,可以实现信号的上行传输;在模式切换模块将工作模式切换为信号输出模式时,信号处理模块生成第二信号,并经由模式切换模块传递给信号收发模块,信号收发模块输出第二信号,可以实现信号的下行传输。由于模式切换模块中,第一信号无需经过滤波器等器件即可到达低噪声放大器进行放大,因此对于信号接收而言,级联的器件的插入损耗小于现有技术,器件级联的噪声系数降低;由于信号收发模块、模式切换模块与信号处理模块设置在同一电路板上,因此无需额外增加用于传输射频信号和控制信号的线缆, 进一步降低了噪声系数,因此本申请实施例的信号处理装置可以有效提升上行灵敏度和覆盖范围,降低上行受限程度。
图6示出根据本申请实施例的模式切换模块102的一种示例性结构图。
如图6所示,在一种可能的实现方式中,所述模式切换模块还包括第一开关S1以及第二开关S2,
所述低噪声放大器LNA连接在所述第一开关S1的第一端s11和所述第二开关S2的第一端s21之间;
所述第一开关S1的第二端s12连接所述信号处理模块103,第三端s13连接所述第二开关S2的第三端s23;
所述第二开关S2的第二端s22连接所述信号收发模块101。
下面结合图6介绍本申请实施例的模式切换模块102实现模式切换的示例性方式。
在一种可能的实现方式中,所述第一开关S1的信号端(未示出)和所述第二开关S2的信号端(未示出)还接收控制信号,
所述控制信号控制所述第一开关S1的第一端s11和第二端s12导通,并控制所述第二开关S2的第一端s21和第二端s22导通时,所述信号处理装置切换至信号接收模式;
所述控制信号控制所述第一开关S1的第二端s12和第三端s13导通,并控制所述第二开关S2的第二端s22和第三端s23导通时,所述信号处理装置切换至信号输出模式。
举例来说,第一开关S1和第二开关S2可以是能够将一路信号通路拆分成两路通路的开关,即,通过一路信号通路输入到第一开关S1和第二开关S2的信号,可以选择拆分后的两路通路中的一个输出。具体的选择方式可以由控制信号来确定。其中,控制信号可以是由与信号收发模块101、模式切换模块102、信号处理模块103设置在同一电路板上的控制器输出。
例如,第一开关S1和第二开关S2可以分别包括四个端口,分别是第一端、第二端、第三端和信号端。参见图6,其中第一端到第三端用于接收/输出射频的第一信号P1/第二信号P2/第三信号P3,可以设置第一开关S1的第二端s12固定连接信号处理模块103,第二开关S2的第二端s22固定连接信号收发模块101,第一开关S1的第三端s13固定连接第二开关S2的第三端s23,低噪声放大器LNA固定连接在第一开关S1的第一端s11和第二开关S2的第一端s21之间。并可设置信号端用于接收控制信号,控制信号可以用于控制第一开关S1的第二端s12和第二开关S2的第二端s22的导通对象,对于第一开关S1来说,可选的导通对象包括自身的第一端s11和第三端s13,对于第二开关S2来说,可选的导通对象包括自身的第一端s21和第三端s23。
则结合图6中模式切换模块102的结构可知,若使得信号处理装置切换至信号接收模式时,控制信号控制第一开关S1的第一端s11和第二端s12导通,第二开关S2的第一端s21和第二端s22导通,则此时第一信号P1可以经过第二开关S2的第二端s22、第一端s21输入低噪声放大器LNA,低噪声放大器LNA输出的第三信号P3可以经第一开关S1的第一端s11、第二端s12输出;若使得信号处理装置切换至信号输出模式时,控制信号控制第一开关S1的第二端s12和第三端s13导通,第二开关S2 的第二端s22和第三端s23导通,则此时第二信号P2将不经过低噪声放大器LNA传输。
控制信号可以是包括两种不同电平的信号,可以设置第一开关S1和第二开关S2通过控制信号的电平切换端口的导通方式,例如可以在高电平时使第一开关S1的第一端s11和第二端s12导通,在低电平时使第一开关S1的第二端s12和第三端s13导通。同时,可以在高电平时使第二开关S2的第一端s21和第二端s22导通,在低电平时使第二开关S2的第二端s22和第三端s23导通。本领域技术人员应理解,只要使得控制信号至少包括两种可以被第一开关和第二开关识别的、不同的信息,使得第一开关和第二开关可以根据识别到的信息对应调整端口的导通方式,并使得第一开关S1的第二端s12和第一端s11导通时第二开关的第二端s22也和第一端s21导通,第一开关S1的第三端s13和第二端s12导通时第二开关的第三端s23也和第二端s22导通即可,本申请对于控制信号的具体设置方式不作限制。
通过这种方式,可以实现两种工作模式的切换。该两种工作模式的切换使得信号处置装置对第一信号和第二信号的传输不会同时进行,因此满足时分双工系统对信号传输的需求。
本申请实施例的第一开关S1/第二开关S2可以是基于现有技术实现的开关,但现有的开关通常通过二极管相连接实现,具有较大的插入损耗。基于此,本申请实施例还对应设计了插入损耗较小的第一开关S1/第二开关S2。图7示出根据本申请实施例的第一开关S1/第二开关S2的一种示例性结构图。
如图7所示,在一种可能的实现方式中,所述第一开关和所述第二开关中的至少一个,包括第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4、第五二极管D5和第一电感L1,
所述第一二极管D1的第一端d11连接所述第一电感L1的第一端l1,并作为所述第一开关S1/所述第二开关S2的第三端s13/s23;
所述第一二极管D1的第二端d12连接所述第一电感L1的第二端l2、所述第二二极管D2的第一端d21、所述第三二极管D3的第一端d31,并作为所述第一开关S1/所述第二开关S2的第二端s12/s22;
所述第二二极管D2的第二端d22连接地;
所述第三二极管D3的第二端d32连接所述第四二极管D4的第二端d42、所述第五二极管D5的第二端d52;
所述第五二极管D5的第一端d51连接地;
所述第四二极管D4的第一端d41作为所述第一开关S1/所述第二开关S2的第一端s11/s21。
举例来说,以第二开关S2为例,由上文描述可知,第二开关S2的第一端s21和第二端s22导通时,信号处理装置处于信号接收模式,第二端s22和第三端s23导通时,信号处理装置处于信号输出模式,因此,可认为图7中,第二开关S2的第一端s21和第二端s22之间的支路是接收支路RX,第二端s22和第三端s23之间的支路是输出支路TX。则从图7中可以看出,输出支路TX包括并联的一个第一二极管D1和第一电感L1。通过控制信号输出到各二极管并控制每个二极管的导通或关断,可以控 制输出支路TX和接收支路RX的导通或关断。其中,输出支路TX导通(即第二开关S2的第二端s22和第三端s23导通)时,接收支路RX关断,第二开关S2呈低阻态,信号主要通过第一二极管D1传输,给到第一电感L1的功率容量压力比较小。接收支路RX包括第三二极管D3、第四二极管D4和第五二极管D5,接收支路RX导通(即第二开关S2的第一端s21和第二端s22导通)时,输出支路TX关断,第一二极管D1呈容性,与第一电感L1并联形成LC谐振电路,可以增加输出支路TX关断的程度,也即增加输出支路TX与接收支路RX的隔离度。由于隔离度增加,因此接收第一信号P1时,第二开关S1的插入损耗也降低。
同理,第一开关S1以图7所示的结构实现时,也可以实现增加隔离度、降低插入损耗的效果。从而使得使用图7所示的结构的第一开关S1/第二开关S2时,信号处理装置的上行灵敏度的提升效果更好。
在一种可能的实现方式中,所述第一开关S1和所述第二开关S2中的至少一个包括环形器。
环形器可以基于现有技术来实现。相比于现有技术仅通过二极管相连接实现的射频开关,采用环形器作为第一开关/第二开关时,也能使得第一开关/第二开关的插入损耗降低。图8示出根据本申请实施例的第一开关S1和第二开关S2均采用环形器实现的一种示例。在图8中,第一开关S1和第二开关S2分别包括基于现有技术的环形器CI1和CI2。
通过这种方式,可以使得信号处理装置的上行灵敏度的提升效果更好,同时使得第一开关和/或第二开关的设置方式更为灵活。
在上文的应用场景部分介绍了本申请实施例的信号处理装置可以设置在时分双工系统的大规模天线阵列或射频拉远单元中,下面分别对信号处理装置设置在时分双工系统的大规模天线阵列和射频拉远单元中时,信号处理装置的示例性结构和工作方式进行介绍。
图9示出根据本申请实施例的信号处理装置设置在大规模天线阵列时的一种示例性结构图。
如图9所示,在一种可能的实现方式中,所述装置设置在时分双工系统的大规模天线阵列中,所述装置还包括:
天线模块104,包括多个天线,所述多个天线用于接收所述第一信号P1并输出至信号收发模块101,以及接收来自所述信号收发模块101的第二信号P2并输出给其他装置的天线。
举例来说,大规模天线阵列(massive MIMO,MM)可以是能够独自实现信号的产生、收发、转换的器件,其中信号收发的工作可以由天线来完成。信号处理装置可以设置在大规模天线阵列中,可以包括天线模块104,其中天线模块104可以包括大规模天线阵列中用于完成信号收发工作的多个天线。天线模块104可以基于现有技术来实现,其还可包括移项器(未示出)等现有技术中可以方便地与天线集成的器件。天线模块104可以直接连接信号收发模块101,在此情况下,该大规模天线阵列所处的基站可以是宏基站。天线模块104接收的射频信号可包括第一信号P1,第一信号P1可以是用户设备通过自身的天线发出的;天线模块104输出的信号可包括第二信号P2, 可以输出到用户设备的天线。
通过和天线模块结合使用,可以使得装置可以设置在时分双工系统的大规模天线阵列中,从而能满足包括大规模天线阵列的宏基站对于时分双工的需求。
虽然时分双工系统中的信号上行传输和下行传输并不同时进行,但存在上行传输的信号通过天线发射出去后,被物体反射,并在下行传输时被天线重新接收的可能。在一些情况下,如信号处理装置工作在强干扰环境中,则也可能接收到功率较大的干扰信号。如果这些实际上不需接收的信号功率较大,则可能导致接收已饱和而接收不到实际需接收的信号的情况,这种现象也称为共站阻塞。为了避免这一现象,本申请实施例还提出信号处理装置中的合适的位置设置滤波器,以滤除这些产生干扰的信号。可选地,滤波器可以设置在模式切换模块102中,也可以设置在信号收发模块101中。
图10示出根据本申请实施例的模式切换模块102的一种示例性结构图。
如图10所示,在一种可能的实现方式中,所述模式切换模块102还包括第一滤波器F1,所述第一滤波器F1和所述低噪声放大器LNA串联在所述第一开关S1的第一端s11和所述第二开关S2的第一端s21之间,且所述第一滤波器F1连接所述第二开关S2,所述低噪声放大器LNA连接所述第一开关S1;所述第一滤波器F1用于过滤所述第一信号P1中的噪声信号。
举例来说,可以选择在模式切换模块102中设置第一滤波器F1,并使得第一滤波器F1和低噪声放大器LNA串联在第一开关S1的第一端s11和第二开关S2的第一端s21之间。为避免低噪声放大器LNA进一步放大干扰,可以使得第一滤波器F1连接第二开关S2,低噪声放大器LNA连接第一开关S1。通过这种方式,使得可能产生干扰的信号在进入低噪声放大器之前可以被滤除,从而能保证低噪声放大器对第一信号进行放大后得到的第三信号确实是信噪比更高的。
图11示出根据本申请实施例的信号收发模块101的一种示例性结构图。
如图11所示,在一种可能的实现方式中,所述信号收发模块101包括第二滤波器F2,所述第二滤波器F2用于过滤所述第一信号P1中的噪声信号。
举例来说,可以选择在信号收发模块101中设置第二滤波器F2,则第一信号P1在传输到模式切换模块102中的第二开关S2之前就可以被第二滤波器F2滤除。通过这种方式,也能够使得可能产生干扰的信号在进入低噪声放大器之前被滤除,从而能保证低噪声放大器对第一信号进行放大后得到的第三信号确实是信噪比更高的。并且使得滤波器的设置方式更加灵活。
本领域技术人员应理解,信号处理装置在设置第一滤波器F1时,可以不设置第二滤波器F2,在设置第二滤波器F2时,也可以不设置第一滤波器F1。只要在天线到低噪声放大器之间的任意位置设置一个滤波器即可,本申请对于滤波器的具体设置方式不作限制。
图12示出根据本申请实施例的信号收发模块101的一种示例性结构图。
如图12所示,在一种可能的实现方式中,所述信号收发模块101包括耦合器CO1,所述耦合器CO1用于校正所述多个天线接收所述第一信号P1时引入的相位误差。
举例来说,多个天线存在的情况下,接收第一信号P1时,可能会引入相位误差,使得第一信号P1出现偏差。因此,可以在信号收发模块101中设置耦合器CO1,耦 合器CO1用于校正引入的相位误差。
通过这种方式,使得输入低噪声放大器的第一信号更准确,从而使得第三信号的准确度更高,有利于上行灵敏度的提升。
图12示出信号收发模块101中仅包括耦合器CO1的示例。由上文描述可知,在信号收发模块101中包括耦合器CO1的基础上,还可以包括更多器件,比如第二滤波器F2等,本申请对此不作限制。可选地,在信号收发模块101中还设置有第二滤波器F2时,耦合器CO1可以设置在第二滤波器和天线模块104之间,也可以设置在第二滤波器F2和第二开关S2之间,本申请对于耦合器CO1的具体设置位置不作限制。
在一种可能的实现方式中,所述装置设置在时分双工系统的射频拉远单元中。
举例来说,在时分双工系统包括射频拉远单元时,信号处理装置也可以设置在射频拉远单元中,此时信号处理装置可不包括天线模块。在此情况下,该射频拉远单元所处的基站可以是分布式基站。射频拉远单元和天线可以以线缆连接,信号处理装置从天线处接收第一信号P1,并输出第二信号P2到天线。除不包括天线模块外,信号处理装置的其他结构可以与设置在大规模天线阵列上时相同,在此不再赘述。
通过这种方式,使得信号处理装置的设置方式更为灵活。
图13示出根据本申请实施例的时分双工系统的示例性结构图。
如图13所示,本申请实施例还提出一种时分双工系统,所述系统包括大规模天线阵列MM和/或射频拉远单元RRU,其中,所述大规模天线阵列MM包括以上所述的信号处理装置,和/或所述射频拉远单元RRU包括以上所述的信号处理装置。
参见上文描述,由于本申请实施例的信号处理装置既可以设置在大规模天线阵列MM上,也可以设置在射频拉远单元RRU上,因此,只要时分双工系统包括大规模天线阵列MM和射频拉远单元RRU中的至少一个,且时分双工系统仅包括大规模天线阵列MM(或射频拉远单元RRU)时,大规模天线阵列MM(或射频拉远单元RRU)上设置有信号处理装置,时分双工系统包括大规模天线阵列MM和射频拉远单元RRU时,大规模天线阵列MM或射频拉远单元RRU中的至少一个上设置有信号处理装置,时分双工系统就可以实现提高上行灵敏度的效果。其中,若时分双工系统包括大规模天线阵列MM和射频拉远单元RRU,此时的大规模天线阵列MM可以仅包括天线。
根据本申请实施例的信号处理装置在设置在大规模天线阵列或射频拉远单元中时,可使得时分双工系统的上行灵敏度提升1dB以上。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (11)

  1. 一种信号处理装置,其特征在于,所述装置设置在时分双工系统中,所述装置的工作模式包括信号接收模式和信号输出模式,所述装置包括信号收发模块、模式切换模块和信号处理模块,
    所述信号收发模块用于在所述装置切换至信号接收模式时接收第一信号,以及在所述装置切换至信号输出模式时输出第二信号;
    所述模式切换模块连接所述信号收发模块,包括低噪声放大器,用于实现所述工作模式的切换,以及在所述装置切换至信号接收模式时使用所述低噪声放大器放大所述第一信号得到第三信号,在所述装置切换至信号输出模式时传递所述第二信号至所述信号收发模块;
    所述信号处理模块连接所述模式切换模块,用于在所述装置切换至信号接收模式时对所述第三信号进行滤波和放大处理得到第四信号,以及在所述装置切换至信号输出模式时生成所述第二信号;
    其中,所述信号收发模块、所述模式切换模块与所述信号处理模块设置在同一电路板上。
  2. 根据权利要求1所述的装置,其特征在于,所述模式切换模块还包括第一开关以及第二开关,
    所述低噪声放大器连接在所述第一开关的第一端和所述第二开关的第一端之间;
    所述第一开关的第二端连接所述信号处理模块,第三端连接所述第二开关的第三端;
    所述第二开关的第二端连接所述信号收发模块。
  3. 根据权利要求2所述的装置,其特征在于,所述第一开关的信号端和所述第二开关的信号端还接收控制信号,
    所述控制信号控制所述第一开关的第一端和第二端导通,并控制所述第二开关的第一端和第二端导通时,所述信号处理装置切换至信号接收模式;
    所述控制信号控制所述第一开关的第二端和第三端导通,并控制所述第二开关的第二端和第三端导通时,所述信号处理装置切换至信号输出模式。
  4. 根据权利要求2或3所述的装置,其特征在于,所述第一开关和所述第二开关中的至少一个,包括第一二极管、第二二极管、第三二极管、第四二极管、第五二极管和第一电感,
    所述第一二极管的第一端连接所述第一电感的第一端,并作为所述第一开关/所述第二开关的第三端;
    所述第一二极管的第二端连接所述第一电感的第二端、所述第二二极管的第一端、所述第三二极管的第一端,并作为所述第一开关/所述第二开关的第二端;
    所述第二二极管的第二端连接地;
    所述第三二极管的第二端连接所述第四二极管的第二端、所述第五二极管的第二端;
    所述第五二极管的第一端连接地;
    所述第四二极管的第一端作为所述第一开关/所述第二开关的第一端。
  5. 根据权利要求2或3所述的装置,其特征在于,所述第一开关和所述第二开关中的至少一个包括环形器。
  6. 根据权利要求1-5任意一项所述的装置,其特征在于,所述装置设置在时分双工系统的大规模天线阵列中,所述装置还包括:
    天线模块,包括多个天线,所述多个天线用于接收所述第一信号并输出至信号收发模块,以及接收来自所述信号收发模块的第二信号并输出给其他装置的天线。
  7. 根据权利要求2-6中任一项所述的装置,其特征在于,所述模式切换模块还包括第一滤波器,所述第一滤波器和所述低噪声放大器串联在所述第一开关的第一端和所述第二开关的第一端之间,且所述第一滤波器连接所述第二开关,所述低噪声放大器连接所述第一开关;所述第一滤波器用于过滤所述第一信号和所述第二信号中的噪声信号。
  8. 根据权利要求6或7所述的装置,其特征在于,所述信号收发模块包括第二滤波器,所述第二滤波器用于过滤所述第一信号中的噪声信号。
  9. 根据权利要求6-8中任一项所述的装置,其特征在于,所述信号收发模块包括耦合器,所述耦合器用于校正所述多个天线接收所述第一信号时引入的相位误差。
  10. 根据权利要求1-5任意一项所述的装置,其特征在于,所述装置设置在时分双工系统的射频拉远单元中。
  11. 一种时分双工系统,其特征在于,所述系统包括大规模天线阵列和/或射频拉远单元,其中,
    所述大规模天线阵列包括权利要求6-9任意一项所述的装置,和/或
    所述射频拉远单元包括权利要求10所述的装置。
PCT/CN2022/113689 2022-08-19 2022-08-19 信号处理装置及时分双工系统 WO2024036622A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113689 WO2024036622A1 (zh) 2022-08-19 2022-08-19 信号处理装置及时分双工系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113689 WO2024036622A1 (zh) 2022-08-19 2022-08-19 信号处理装置及时分双工系统

Publications (1)

Publication Number Publication Date
WO2024036622A1 true WO2024036622A1 (zh) 2024-02-22

Family

ID=89940421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113689 WO2024036622A1 (zh) 2022-08-19 2022-08-19 信号处理装置及时分双工系统

Country Status (1)

Country Link
WO (1) WO2024036622A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154971A (zh) * 2006-09-27 2008-04-02 明基电通股份有限公司 增强移动通信装置的信号收发功能的无线电信号收发装置
CN201726540U (zh) * 2010-06-28 2011-01-26 京信通信系统(中国)有限公司 时分双工系统及基于时分双工系统的塔顶放大器
CN102377027A (zh) * 2010-08-27 2012-03-14 大唐移动通信设备有限公司 一种有源天线及校准有源天线的方法
US10498298B1 (en) * 2018-08-10 2019-12-03 Qualcomm Incorporated Time-division duplexing using dynamic transceiver isolation
WO2021258520A1 (zh) * 2020-06-23 2021-12-30 锐石创芯(深圳)科技有限公司 一种射频前端模块、天线装置及通信终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101154971A (zh) * 2006-09-27 2008-04-02 明基电通股份有限公司 增强移动通信装置的信号收发功能的无线电信号收发装置
CN201726540U (zh) * 2010-06-28 2011-01-26 京信通信系统(中国)有限公司 时分双工系统及基于时分双工系统的塔顶放大器
CN102377027A (zh) * 2010-08-27 2012-03-14 大唐移动通信设备有限公司 一种有源天线及校准有源天线的方法
US10498298B1 (en) * 2018-08-10 2019-12-03 Qualcomm Incorporated Time-division duplexing using dynamic transceiver isolation
WO2021258520A1 (zh) * 2020-06-23 2021-12-30 锐石创芯(深圳)科技有限公司 一种射频前端模块、天线装置及通信终端

Similar Documents

Publication Publication Date Title
US8665845B2 (en) Communication system, network element and method for antenna array beam-forming
US6934511B1 (en) Integrated repeater
US7616940B2 (en) Stand-alone low noise amplifier
WO2002033996A1 (en) Adaptive personal repeater
KR20120057603A (ko) 무선 네트워크를 위한 적응형 전치왜곡을 갖는 다중―요소 진폭 및 위상 보상 안테나 어레이
GB2313020A (en) Base Station Apparatus for a CDMA Radio Communication System
US10536120B2 (en) Multi-path communication device for sharing feedback path for digital pre-distortion
US11483057B2 (en) Base station signal matching device, and base station interface unit and distributed antenna system including the same
CN110121218B (zh) 一种5g智能前端系统及其使用方法
US7236807B1 (en) Cellular base station augmentation
US6609013B1 (en) Code division multiple access base transceiver station with active antennas
WO2024036622A1 (zh) 信号处理装置及时分双工系统
US9380527B2 (en) Method for reducing the energy consumption in a wireless communication terminal and communication terminal implementing said method
US20220200690A1 (en) Repeater system
CN106849981B (zh) 基站射频信号收发电路、射频发射电路及信号发送方法
WO2021134366A1 (zh) 一种天线收发模块、多输入多输出天线收发系统和基站
KR100282959B1 (ko) 선택적 이중경로 수신기를 이용한 기지국
EP3811520A1 (en) Radio unit for unsynchronized tdd multi-band operation
CN214154506U (zh) 射频结构及电子设备
KR100292713B1 (ko) 액티브 안테나를 적용한 기지국의 송수신 커버리지 가변장치
KR102246968B1 (ko) 분산 안테나 시스템의 헤드엔드 장치 및 이의 동작 방법
KR102250111B1 (ko) 분산 안테나 시스템의 헤드엔드 장치 및 이의 동작 방법
KR20030068334A (ko) 지상형 중계기 시스템
CN117294326A (zh) 用于tdd系统的接收链路保护模块及接收链路保护电路
KR100299092B1 (ko) 기지국의 고주파 처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955402

Country of ref document: EP

Kind code of ref document: A1