WO2024036424A1 - Downlink control signaling optimization - Google Patents

Downlink control signaling optimization Download PDF

Info

Publication number
WO2024036424A1
WO2024036424A1 PCT/CN2022/112375 CN2022112375W WO2024036424A1 WO 2024036424 A1 WO2024036424 A1 WO 2024036424A1 CN 2022112375 W CN2022112375 W CN 2022112375W WO 2024036424 A1 WO2024036424 A1 WO 2024036424A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
subset
control information
information field
subset value
Prior art date
Application number
PCT/CN2022/112375
Other languages
French (fr)
Inventor
Pingping Wen
Jingyuan Sun
Ping Yuan
Tao Yang
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2022/112375 priority Critical patent/WO2024036424A1/en
Publication of WO2024036424A1 publication Critical patent/WO2024036424A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Abstract

Systems, methods, apparatuses, and computer program products for optimizing downlink control signaling to carry more information such as HARQ feedback enabling and disabling. One method may include determining at least one subset value associated with a control information field, and transmitting a configuration of at least one subset value in DCI associated with the control information field to a user equipment.

Description

DOWNLINK CONTROL SIGNALING OPTIMIZATION TECHNICAL FIELD:
Some example embodiments may generally relate to mobile or wireless telecommunication systems, such as 3 rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) , fifth generation (5G) radio access technology (RAT) , new radio (NR) access technology, sixth generation (6G) , non-terrestrial network (NTN) , and/or other communications systems. For example, certain example embodiments may relate to systems and/or methods for optimizing downlink control signaling to carry more information such as hybrid automatic repeat request (HARQ) feedback enabling and disabling.
BACKGROUND:
Examples of mobile or wireless telecommunication systems may include radio frequency (RF) 5G RAT, the Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (UTRAN) , LTE Evolved UTRAN (E-UTRAN) , LTE-Advanced (LTE-A) , LTE-A Pro, NR access technology, and/or MulteFire Alliance. 5G wireless systems refer to the next generation (NG) of radio systems and network architecture. A 5G system is typically built on a 5G NR, but a 5G (or NG) network may also be built on E-UTRA radio. It is expected that NR can support service categories such as enhanced mobile broadband (eMBB) , ultra-reliable low-latency-communication (URLLC) , and massive machine-type communication (mMTC) . NR is expected to deliver extreme broadband, ultra-robust, low-latency connectivity, and massive networking to support the Internet of Things (IoT) . The next generation radio access network (NG-RAN) represents the radio access network (RAN) for 5G, which may provide radio access for NR, LTE, and LTE-A. It is noted that the nodes in 5G providing radio access functionality to a user equipment (e.g., similar to the Node B in UTRAN or the Evolved Node  B (eNB) in LTE) may be referred to as next-generation Node B (gNB) when built on NR radio, and may be referred to as next-generation eNB (NG-eNB) when built on E-UTRA radio.
SUMMARY:
In accordance with some example embodiments, a method may include determining at least one subset value associated with a control information field. The method may further include configuring at least one subset value in downlink control information associated with the control information field.
In accordance with certain example embodiments, an apparatus may include means for determining at least one subset value associated with a control information field. The apparatus may further include means for configuring at least one subset value in downlink control information associated with the control information field.
In accordance with various example embodiments, a non-transitory computer readable medium comprising program instructions that, when executed by an apparatus, cause the apparatus to perform at least a method. The method may include determining at least one subset value associated with a control information field. The method may further include configuring at least one subset value in downlink control information associated with the control information field.
In accordance with some example embodiments, a computer program product may perform a method. The method may include determining at least one subset value associated with a control information field. The method may further include configuring at least one subset value in downlink control information associated with the control information field.
In accordance with certain example embodiments, an apparatus may include at least one processor and at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to determine at least one subset value associated with a control information field.  The at least one memory and instructions, when executed by the at least one processor, may further cause the apparatus at least to configure at least one subset value in downlink control information associated with the control information field.
In accordance with various example embodiments, an apparatus may include determining circuitry configured to perform determining at least one subset value associated with a control information field. The apparatus may further include configuring circuitry configured to perform configuring at least one subset value in downlink control information associated with the control information field.
In accordance with some example embodiments, a method may include receiving a configuration of at least one subset value in downlink control information associated with a control information field from a network entity. The method may further include determining the meaning of the control information field based on the subset value.
In accordance with certain example embodiments, an apparatus may include means for receiving a configuration of at least one subset value in downlink control information associated with a control information field from a network entity. The apparatus may further include means for determining the meaning of the control information field based on the subset value.
In accordance with various example embodiments, a non-transitory computer readable medium comprising program instructions that, when executed by an apparatus, cause the apparatus to perform at least a method. The method may include receiving a configuration of at least one subset value in downlink control information associated with a control information field from a network entity. The method may further include determining the meaning of the control information field based on the subset value.
In accordance with some example embodiments, a computer program product may perform a method. The method may include receiving a configuration of at least one subset value in downlink control information  associated with a control information field from a network entity. The method may further include determining the meaning of the control information field based on the subset value.
In accordance with certain example embodiments, an apparatus may include at least one processor and at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to receive a configuration of at least one subset value in downlink control information associated with a control information field from a network entity. The at least one memory and instructions, when executed by the at least one processor, may further cause the apparatus at least to determine the meaning of the control information field based on the subset value.
In accordance with various example embodiments, an apparatus may include receiving circuitry configured to perform receiving a configuration of at least one subset value in downlink control information associated with a control information field from a network entity. The apparatus may further include determining circuitry configured to perform determining the meaning of the control information field based on the subset value.
BRIEF DESCRIPTION OF THE DRAWINGS:
For a proper understanding of example embodiments, reference should be made to the accompanying drawings, wherein:
FIG. 1 illustrates an example of downlink control information (DCI) N1 supporting dynamic HARQ enabling/disabling according to certain example embodiments.
FIG. 2 illustrates an example of a flow diagram of a method according to various example embodiments.
FIG. 3 illustrates an example of a flow diagram of another method according to some example embodiments.
FIG. 4 illustrates an example of various network devices according to some example embodiments.
DETAILED DESCRIPTION:
It will be readily understood that the components of certain example embodiments, as generally described and illustrated in the figures herein, may be arranged and designed in a wide variety of different configurations. Thus, the following detailed description of some example embodiments of systems, methods, apparatuses, and computer program products for optimizing downlink control signaling is not intended to limit the scope of certain example embodiments, but is instead representative of selected example embodiments.
Disabling HARQ feedback, such as for IoT NTN, may provide some advantages, including improved power consumption and latency at the user equipment (UE) . Disabling HARQ feedback for downlink transmissions may also mitigate HARQ stalling for narrowband (NB) -IoT, for example, due to the large round trip time (RTT) in NTN. Disabling HARQ feedback for a downlink (DL) transmission can also improve uplink throughput in NTN since more resources may be available in uplink; however, more uplink (UL) resources may be needed for radio link control (RLC) status reporting, therefore partly consuming the UL resources made available by disabling HARQ feedback. However, disabling HARQ feedback may also result in some disadvantages; for example, if HARQ feedback is disabled, the layer 1 (L1) reliability of the downlink transmission may be degraded due to the lack of HARQ feedback.
3GPP does not currently include narrowband physical uplink control channel (NPUCCH) in NB-IoT. Downlink (DL) HARQ feedback (i.e., ACK/non-acknowledgement (NACK) ) may be carried by narrowband physical uplink shared channel (NPUSCH) format 2, scheduled by DCI N1, as shown in Table 1 below:
Figure PCTCN2022112375-appb-000001
Figure PCTCN2022112375-appb-000002
Radio resource control (RRC) /medium access control (MAC) signaling may have higher reliability requirements compared to normal downlink data transmissions. Dynamic HARQ feedback enabling/disabling is important; specifically, enabling HARQ feedback for physical downlink shared channel (PDSCH) with control signaling, such as RRC/MAC signaling, while disabling HARQ feedback for other downlink transmissions.
Enabling/disabling on HARQ feedback for downlink transmission per HARQ process via UE specific RRC signaling, and per HARQ process via system information block (SIB) signaling, are semi-static solutions where HARQ feedback can be enabled/disabled per HARQ process. The granularity of HARQ feedback enabling/disabling may be per HARQ process. However, in NB-IoT, two HARQ processes at most may be supported. Thus, when only one HARQ process is configured, these semi-static solutions may only switch the HARQ feedback enabling/disabling via RRC signaling/SIB signaling semi-statically. Even if two HARQ processes were configured, the per HARQ processes based HARQ feedback enabling/disabling may not provide sufficient granularity. Thus, there is a need to dynamically indicate HARQ feedback enabling/disabling.
Enabling/disabling on HARQ feedback for downlink transmission, whether explicitly indicated by DCI or implicitly determined by existing configured/indicated parameter (s) , may be used for dynamic indication HARQ feedback enabling/disabling. DCI may explicitly indicate this  information in either a new field or reusing existing fields; however, introduction of a new field may have a significant impact on L1 signaling. Similarly, HARQ feedback enabling/disabling may be implicitly indicated by existing fields, but may not be currently feasible since “repetition number” nor “TBS” may not reflect the total transmission time of NPDSCH. Thus, HARQ feedback enabling/disabling may not be determined with these techniques.
As shown in Table 2 below, the number of repetitions N Rep for NPDSCH can range from 1 to 2048; however, in a NTN system, the repetition number may not change significantly, but may be kept within a range for a period of time.
I Rep 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N Rep 1 2 4 8 16 32 64 128 192 256 384 512 768 1024 1536 2048
In addition, the network may schedule resources for NPDSCH including a determination of both the repetition number and the modulation and coding scheme (MCS) . The repetition number and the MCS may not be independent values, and may be closely related; for example, when a low MCS is used, the repetition number range may not be dynamic but be a reduced range.
Some example embodiments discussed herein address the disadvantages above by using the optimization of narrowband physical downlink control channel (NPDCCH) /physical downlink control channel (PDCCH) based upon the features and the relationships of these parameters in NTN. Redundancy information of repetition number field or MCS field in DCI may be reduced, enabling information to be carried through the reduced bits in DCI, for example, to support the dynamic indication of HARQ feedback enabling/disabling.
Certain example embodiments described herein may have various benefits and/or advantages to overcome the disadvantages described above. For example, certain example embodiments may optimize and reduce redundant  information in repetition number fields in DCI N1. As a result, more information can be carried with the conserved bits in DCI, for example, to support the dynamic indication of HARQ feedback enabling/disabling. Dynamic HARQ enabling/disabling may also be supported without creating any additional bits/fields in the DCI and limit network functionality. Thus, certain example embodiments discussed below are directed to improvements in computer-related technology.
Some example embodiments discussed herein relate to an optimized solution on using DCI N1 fields (e.g., repetition number, MCS) in NPDCCH based upon the relationships of these parameters in NTN. For example, by using repetition number, the same solution may be applied for MCS fields and enhanced machine type communication (eMTC) dedicated control channel (DCCH) .
Bits/fields for DCI signaling on repetition number may be 4 bits, with values ranging from 1 to 2048. Repetition number may change infrequently, but may be kept with a range for a period of time. Indications may be used for these subset values in the DCI, without indicating the entire range.
As shown in FIG. 1, at step 1a, the network entity (NE) may configure one table with the index and the corresponding subset values. Table 3 (below) provides an example of the repetition number table with 8 indexes, with each index corresponding to 8 values of the repetition number.
Index Subset values
0  {1, 2, 4, 8, 16, 32, 64, 128}
1  {2, 4, 8, 16, 32, 64, 128, 192}
2  {4, 8, 16, 32, 64, 128, 192, 256}
3  {8, 16, 32, 64, 128, 192, 256, 384}
4  {16, 32, 64, 128, 192, 256, 384, 512}
5  {32, 64, 128, 192, 256, 384, 512, 768}
6  {64, 128, 192, 256, 384, 512, 768, 1024}
7  {192, 256, 384, 512, 768, 1024, 1536, 2048}
The number of index and the number of values of repetition number may be variable and/or pre-configured. The number of values in each repetition number subset may determine the number of bits needed in DCI. For example, 8 values in the repetition number subset may require 3 bits in  DCI, while the remaining one bit may be used to indicate other information, such as HARQ feedback enabling/disabling. The network entity (NE) may determine the repetition number subset table index 1 (i.e., {2, 4, 8, 16, 32, 62, 128, 192} ) to be used, for example, based on the reference signal received power (RSRP) or the coverage level. The UE may then be configured, at step 1b, with this index through RRC signaling.
At step 2, the NE may schedule the NPDSCH, and transmit the DCI with 3 bits on a repetition number (e.g., “001” ) , and 1 bit on HARQ enabling/disabling (e.g., “1” ) , wherein the repetition number may be 4 and HARQ disabling may be supported.
If the NE detects channel variation and determines that the repetition number subset should be updated to index “7” in the repetition number subset table (i.e., {192, 256, 384, 512, 768, 1024, 1536, 2048} ) , at step 3, the NE may transmit the reconfiguration signaling to the UE. The NE may then schedule the NPDSCH, and send the DCI with 3 bits on a repetition number (e.g., “001” ) and 1 bit on HARQ enabling/disabling (e.g., “1” ) , wherein the repetition number may be 256, and HARQ disabling may be supported.
In various example embodiments, the NE may configure the subset values directly instead of the table and the index, as in step 1.
In certain example embodiments, the NE may send the update of the repetition number subset through MAC control elements (CE) instead of RRC re-configuration, in step 3.
In some example embodiments, the NE may send the increased/decreased index value when updating the repetition number subset in step 3.
FIG. 2 illustrates an example of a flow diagram of a method that may be performed by a NE, such as NE 410 illustrated in FIG. 4, according to various example embodiments. Some example embodiments may optimize the usage of the fields in DCI N1 in NPDCCH based upon the features and the relationships of these parameters, such as in NTN; however, various  example embodiments may also be used for eMTC PDCCH. As a result, DCI fields (e.g., repetition number, MCS) may be reduced and optimized, allowing more information to be carried through the reduced bits in DCI, for example, to support the dynamic indication of HARQ feedback enabling/disabling.
At 201, the method may include determining at least one subset value associated with a control information field. The control information field may include at least one of a repetition number field and a MCS field. As pathloss become larger and RSRP becomes smaller, more repetition number may be needed; thus, the method may include updating the repetition number subset value to {64, 128, 192, 256, 384, 512, 768, 1024} . Similarly, as pathloss becomes smaller and/or RSRP becomes larger, fewer repetition numbers may be needed; thus, the method may include updating the repetition number subset values to smaller values.
In various example embodiments, the number of bits of the at least one subset value associated with the control information field may be smaller than the number of bits of the full set. At least one remaining bit of the full set of values may indicate at least one other control information field. At least one saved bit of the full set of values may indicate at least one other control information field
In various example embodiments, at least one bit of the at least one subset value may be associated with a control information field smaller than each bit of each of the at least one subset values. Specifically, at least one remaining bit of the at least one subset value may indicate at least one other control information field, or at least one saved bit of the at least one subset value may indicate at least one other control information field. The other control information field may be configured to enable or disable HARQ feedback. In addition, a first group of bits or a second group of bits may be configured to enable or disable HARQ feedback and/or the at least one subset value may be directly configured (i.e., only one single subset value is configured) . The at least one subset value may be selected from a full set of  values, and a number of the at least one subset value is smaller than the size of the full set of values. The full set of values may be pre-defined or pre-configured.
In some example embodiments, the method may include, at 202, transmitting a configuration of at least one subset value in downlink control information associated with the control information field to a user equipment. In various example embodiments, the configuration of the at least one subset value may be based on at least one of the following: a reported RSRP, an estimated RSRP, or a UE coverage level of a UE (i.e., quality of coverage or channel status) , such as UE 420 illustrated in FIG. 4, according to various example embodiments.
At 203, the method may include determining a change/update of one or more of the at least one subset values based on at least one of the following: a reported RSRP, an estimated RSRP, or a UE coverage level of the UE.
At 204, the method may include transmitting an update of the at least one subset value to the UE. The update may be transmitted using at least one of a RRC re-configuration message or a MAC CE. In addition, the update may include at least one of an absolute index value, an increased index value, or a decreased index value.
At 205, the method may include configuring a table comprising at least one subset value with at least one of the following: at least one index, at least one corresponding subset value, and at least one supported index.
Fewer bits may be needed to indicate a repetition number, while the remaining bits may be used to indicate other information, such as HARQ feedback enabling and disabling. For example, the NE may configure the repetition number subset value as {2, 4, 8, 16, 32, 62, 128, 192} , where 3 bits may be needed to indicate a repetition number, while the remaining one bit may be used to indicate other information, such as HARQ feedback enabling and disabling.
In various example embodiments, a table may be configured with an index, corresponding subset values, and supported indexes. In some example embodiments, the at least one subset value may be configured directly.
In various example embodiments, for MCS, the real allocated MCS level may not change dynamically; for example, the MCS level may be reduced to a subset value to be configured in DCI, and at least 1 bit may be reserved for other indications, for example, enable/disabling HARQ feedback. Additionally or alternatively, the repetition number subset and MCS level selection may be conditional; for example, repetition number subset may be x when MCS is level a, while repetition number subset may be y when MCS is level b.
At 206, the method may include transmitting a configuration of the at least one subset value comprising at least one delay value to the UE.
FIG. 3 illustrates an example of a flow diagram of a method that may be performed by a UE, such as UE 420 illustrated in FIG. 4, according to various example embodiments. Some example embodiments may optimize the usage of the fields in DCI N1 in NPDCCH based upon the features and the relationships of these parameters, such as in NTN; however, various example embodiments may also be used for eMTC PDCCH. As a result, DCI fields (e.g., repetition number, MCS) may be reduced and optimized, allowing more information to be carried through the reduced bits in DCI, for example, to support the dynamic indication of HARQ feedback enabling/disabling.
At 301, the method may include receiving a configuration of at least one subset value in DCI associated with a control information field from a network entity, such as NE 410 illustrated in FIG. 4, according to various example embodiments. In some example embodiments, the received subset values may be based upon configuring at least one subset value in DCI for a repetition number. Fewer bits may be needed to indicate a repetition number, while the remaining bits may be used to indicate other information, such as HARQ feedback enabling and disabling. In some example embodiments, the  at least one subset value may be configured directly. In various example embodiments, the control information field may include at least one of a repetition number field and a MCS field. In some example embodiments, the at least one subset value may be received using at least one of the following: a RRC re-configuration message or a MAC CE. The at least one subset value may include at least one of the following: an absolute index value, an increased index value, or a decreased index value.
In various example embodiments, the subset values may be determined based upon the repetition number, as well as a change/update of the subset values based on a reported or estimated RSRP and/or a coverage level of a UE, such as UE 420 illustrated in FIG. 4, according to various example embodiments. Specifically, the absolute index value or the increased/decreased index value may be transmitted.
In various example embodiments, for MCS, the real allocated MCS level may not change dynamically; for example, the MCS level may be reduced to a subset value to be configured in DCI, and at least 1 bit may be reserved for other indications, for example, enable/disabling HARQ feedback. Additionally or alternatively, the repetition number subset and MCS level selection may be conditional; for example, repetition number subset may be x when MCS is level a, while repetition number subset may be y when MCS is level b.
In various example embodiments, the number of bits of the at least one subset value associated with the control information field may be smaller than the number of bits of the full set. At least one remaining bit of the full set of values may indicate at least one other control information field. At least one saved bit of the full set of values may indicate at least one other control information field.
In some example embodiments, at least one bit of the at least one subset value may be associated with a control information field smaller than a bit of each bit of each of the at least one subset values. At least one remaining bit of  the at least one subset value may indicate at least one other control information field, or at least one saved bit of the at least one subset value may indicate at least one other control information field.
At 302, the method may include determining the meaning of the control information field based on the subset value. For example, determining the meaning may include determining an action to be taken and/or a relationship of the configuration of the at least one subset value received in 301.
At 303, the method may include receiving at least one configuration associated with a delay value. The delay may be based upon a RTT or network-configured value.
At 304, the method may include receiving an indication of HARQ feedback disabling and enabling through the remaining bits.
At 305, the method may include receiving an update of the at least one subset value from the NE. In various example embodiments, the update may be received using at least one of the following: a RRC re-configuration message or a MAC CE. In some example embodiments, the update may include at least one of the following: an absolute index value, an increased index value, or a decreased index value.
At 306, the method may include applying the update of at least one subset value with a delay after successfully decoding a DL RRC for reconfiguration or MAC CE. For example, the method may include applying the new subset values with a delay (e.g., one RTT or network configured value, such as maximum RTT) after the UE successfully decodes the DL RRC for reconfiguration or MAC CE to have a common understanding on the subset values applied between UE and network due to high propagation delay.
FIG. 4 illustrates an example of a system according to certain example embodiments. In one example embodiment, a system may include multiple devices, such as, for example, NE 410 and/or UE 420.
NE 410 may be one or more of a base station, such as an eNB or gNB, a serving gateway, a server, and/or any other access node or combination thereof.
NE 410 may further comprise at least one gNB-centralized unit (CU) , which may be associated with at least one gNB- (DU) . The at least one gNB-CU and the at least one gNB-DU may be in communication via at least one F1 interface, at least one X n-C interface, and/or at least one NG interface via a fifth generation core (5GC) .
UE 420 may include one or more of a mobile device, such as a mobile phone, smart phone, personal digital assistant (PDA) , tablet, or portable media player, digital camera, pocket video camera, video game console, navigation unit, such as a global positioning system (GPS) device, desktop or laptop computer, single-location device, such as a sensor or smart meter, or any combination thereof. Furthermore, NE 410 and/or UE 420 may be one or more of a citizens broadband radio service device (CBSD) .
NE 410 and/or UE 420 may include at least one processor, respectively indicated as 411 and 421.  Processors  411 and 421 may be embodied by any computational or data processing device, such as a central processing unit (CPU) , application specific integrated circuit (ASIC) , or comparable device. The processors may be implemented as a single controller, or a plurality of controllers or processors.
At least one memory may be provided in one or more of the devices, as indicated at 412 and 422. The memory may be fixed or removable. The memory may include computer program instructions or computer code contained therein.  Memories  412 and 422 may independently be any suitable storage device, such as a non-transitory computer-readable medium. The term “non-transitory, ” as used herein, may correspond to a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., random access memory (RAM) vs. read-only memory (ROM) ) . A hard disk drive (HDD) , RAM, flash memory, or other suitable memory may be used. The memories may be combined on a single  integrated circuit as the processor, or may be separate from the one or more processors. Furthermore, the computer program instructions stored in the memory, and which may be processed by the processors, may be any suitable form of computer program code, for example, a compiled or interpreted computer program written in any suitable programming language.
Processors  411 and 421,  memories  412 and 422, and any subset thereof, may be configured to provide means corresponding to the various blocks of FIGs. 1-3. Although not shown, the devices may also include positioning hardware, such as GPS or micro electrical mechanical system (MEMS) hardware, which may be used to determine a location of the device. Other sensors are also permitted, and may be configured to determine location, elevation, velocity, orientation, and so forth, such as barometers, compasses, and the like.
As shown in FIG. 4,  transceivers  413 and 423 may be provided, and one or more devices may also include at least one antenna, respectively illustrated as 414 and 424. The device may have many antennas, such as an array of antennas configured for multiple input multiple output (MIMO) communications, or multiple antennas for multiple RATs. Other configurations of these devices, for example, may be provided.  Transceivers  413 and 423 may be a transmitter, a receiver, both a transmitter and a receiver, or a unit or device that may be configured both for transmission and reception.
The memory and the computer program instructions may be configured, with the processor for the particular device, to cause a hardware apparatus, such as UE, to perform any of the processes described above (i.e., FIGs. 1-3) . Therefore, in certain example embodiments, a non-transitory computer-readable medium may be encoded with computer instructions that, when executed in hardware, perform a process such as one of the processes described herein. Alternatively, certain example embodiments may be performed entirely in hardware.
In certain example embodiments, an apparatus may include circuitry configured to perform any of the processes or functions illustrated in FIGs. 1-3. As used in this application, the term “circuitry” may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) , (b) combinations of hardware circuits and software, such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) , and (c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation. This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
According to certain example embodiments,  processors  411 and 421, and  memories  412 and 422, may be included in or may form a part of processing circuitry or control circuitry. In addition, in some example embodiments,  transceivers  413 and 423 may be included in or may form a part of transceiving circuitry.
In some example embodiments, an apparatus (e.g., NE 410 and/or UE 420) may include means for performing a method, a process, or any of the variants discussed herein. Examples of the means may include one or more  processors, memory, controllers, transmitters, receivers, and/or computer program code for causing the performance of the operations.
In various example embodiments, apparatus 410 may be controlled by memory 412 and processor 411 to at least determine at least one subset value associated with a control information field, and configure at least one subset value in DCI associated with the control information field.
Certain example embodiments may be directed to an apparatus that includes means for performing any of the methods described herein including, for example, means for determining at least one subset value associated with a control information field; and means for configuring at least one subset value in DCI associated with the control information field.
In various example embodiments, apparatus 420 may be controlled by memory 422 and processor 421 to at least receive a configuration of at least one subset value in DCI associated with a control information field from a network entity, and determine the meaning of the control information field based on the subset value.
Certain example embodiments may be directed to an apparatus that includes means for performing any of the methods described herein including, for example, means for receiving a configuration of at least one subset value in DCI associated with a control information field from a network entity, and determining the meaning of the control information field based on the subset value.
The features, structures, or characteristics of example embodiments described throughout this specification may be combined in any suitable manner in one or more example embodiments. For example, the usage of the phrases “various embodiments, ” “certain embodiments, ” “some embodiments, ” or other similar language throughout this specification refers to the fact that a particular feature, structure, or characteristic described in connection with an example embodiment may be included in at least one example embodiment. Thus, appearances of the phrases “in various embodiments, ” “in certain  embodiments, ” “in some embodiments, ” or other similar language throughout this specification does not necessarily all refer to the same group of example embodiments, and the described features, structures, or characteristics may be combined in any suitable manner in one or more example embodiments.
As used herein, “at least one of the following: <a list of two or more elements>” and “at least one of <a list of two or more elements>” and similar wording, where the list of two or more elements are joined by “and” or “or, ” mean at least any one of the elements, or at least any two or more of the elements, or at least all the elements.
Additionally, if desired, the different functions or procedures discussed above may be performed in a different order and/or concurrently with each other. Furthermore, if desired, one or more of the described functions or procedures may be optional or may be combined. As such, the description above should be considered as illustrative of the principles and teachings of certain example embodiments, and not in limitation thereof.
One having ordinary skill in the art will readily understand that the example embodiments discussed above may be practiced with procedures in a different order, and/or with hardware elements in configurations which are different than those which are disclosed. Therefore, although some embodiments have been described based upon these example embodiments, it would be apparent to those of skill in the art that certain modifications, variations, and alternative constructions would be apparent, while remaining within the spirit and scope of the example embodiments.
Partial Glossary
3GPP  Third Generation Partnership Project
5G    Fifth Generation
5GC   Fifth Generation Core
6G    Sixth Generation
ACK   Acknowledgement
AF    Application Function
AMF     Access and Mobility Management Function
ASIC    Application Specific Integrated Circuit
CBSD    Citizens Broadband Radio Service Device
CE      Control Elements
CPU     Central Processing Unit
CRC     Cyclic Redundancy Check
CU      Centralized Unit
DCCH    Dedicated Control Channel
DCI     Downlink Control Information
DL      Downlink
DU      Distributed Unit
eMBB    Enhanced Mobile Broadband
eMTC    Enhanced Machine Type Communication
eNB     Evolved Node B
gNB     Next Generation Node B
GPS     Global Positioning System
HARQ    Hybrid Automatic Repeat Request
HDD     Hard Disk Drive
IoT     Internet of Things
L1      Layer 1
LTE     Long-Term Evolution
LTE-A   Long-Term Evolution Advanced
MAC     Medium Access Control
MCS     Modulation and Coding Scheme
MEMS    Micro Electrical Mechanical System
MIMO    Multiple Input Multiple Output
mMTC    Massive Machine Type Communication
NACK    Negative Acknowledgement
NB-IoT  Narrowband Internet of Things
NE      Network Entity
NG      Next Generation
NG-eNB  Next Generation Evolved Node B
NG-RAN  Next Generation Radio Access Network
NPDCCH  Narrowband Physical Downlink Control Channel
NPDSCH  Narrowband Physical Downlink Shared Channel
NPUCCH  Narrowband Physical Uplink Control Channel
NPUSCH  Narrowband Physical Uplink Shared Channel
NR      New Radio
NTN     Non-Terrestrial Network
PDA     Personal Digital Assistance
PDCCH   Physical Downlink Control Channel
PDSCH   Physical Downlink Shared Channel
QoS     Quality of Service
RAM     Random Access Memory
RAN     Radio Access Network
RAT     Radio Access Technology
RF      Radio Frequency
RLC     Radio Link Control
ROM     Read-Only Memory
RRC     Radio Resource Control
RTT     Round Trip Time
RSRP    Reference Signal Received Power
SIB     System Information Block
SMF     Session Management Function
TBS     Transport Block Size
UE      User Equipment
UL      Uplink
UMTS    Universal Mobile Telecommunications System
UPF     User Plane Function
URLLC   Ultra-Reliable and Low-Latency Communication
UTRAN Universal Mobile Telecommunications System Terrestrial Radio Access Network

Claims (102)

  1. A method comprising:
    determining at least one subset value associated with a control information field;
    and
    transmitting a configuration of at least one subset value in downlink control information associated with the control information field to a user equipment.
  2. The method of claim 1, further comprising:
    transmitting an update of the at least one subset value to a user equipment.
  3. The method of any of claims 1 or 2, wherein the at least one subset value is selected from a full set of values, and a number of the at least one subset value is smaller than the size of the full set of values.
  4. The method of any of claims 1-3, wherein the full set of values is pre-defined or pre-configured.
  5. The method of any of claims 1-4, wherein the update is transmitted using at least one of the following: a radio resource control re-configuration message or a medium access control control element.
  6. The method of any of claims 1-5, wherein the update comprises at least one of the following: an absolute index value, an increased index value, or a decreased index value.
  7. The method of any of claims 1-6, wherein the control information field comprises at least one of a repetition number field and a modulation and coding scheme field.
  8. The method of any of claims 1-7, wherein the number of bits of the at least one subset value associated with the control information field is smaller than the number of bits of the full set, wherein
    at least one remaining bit of the full set of values indicates at least one other control information field, or
    at least one saved bit of the full set of values indicates at least one other control information field.
  9. The method of any of claims 1-8, wherein the at least one other control information field is configured to enable or disable hybrid automatic repeat request feedback.
  10. The method of any of claims 1-9, wherein at least one remaining bit of the full set of values are configured to enable or disable hybrid automatic repeat request feedback.
  11. The method of any of claims 1-10, wherein at least one saved bit of the full set of values are configured to enable or disable hybrid automatic repeat request feedback.
  12. The method of any of claims 1-11, further comprising:
    configuring a table comprising at least one subset value with at least one of the following: at least one index, at least one corresponding subset value, and at least one supported index.
  13. The method of any of claims 1-12, wherein the at least one subset value is directly configured.
  14. The method of any of claims 1-13, wherein a configuration of the at least one subset value is based on at least one of the following: a reported reference signal  received power, an estimated reference signal received power, or a user equipment coverage level.
  15. The method of any of claims 1-14, further comprising:
    determining a change of one or more of the at least one subset values based on at least one of the following: a reported reference signal received power, an estimated reference signal received power, or a user equipment coverage level.
  16. The method of any of claims 1-15, further comprising:
    transmitting a configuration of the at least one subset value comprising at least one delay value to a user equipment.
  17. A method comprising:
    receiving a configuration of at least one subset value in downlink control information associated with a control information field from a network entity; and
    determining the meaning of the control information field based on the subset value.
  18. The method of claim 17, further comprising:
    receiving an update of the at least one subset value from the network entity.
  19. The method of any of claims 17 or 18, wherein the update is received using at least one of the following: a radio resource control re-configuration message or a medium access control control element.
  20. The method of any of claims 17-19, wherein the update comprises at least one of the following: an absolute index value, an increased index value, or a decreased index value.
  21. The method of any of claims 17-20, wherein the control information field  comprises at least one of a repetition number field and a modulation and coding scheme field.
  22. The method of any of claims 17-21, wherein at least one bit of the at least one subset value is associated with a control information field smaller than a bit of each bit of each of the at least one subset values, wherein
    at least one remaining bit of the at least one subset value indicates at least one other control information field, or
    at least one saved bit of the at least one subset value indicates at least one other control information field.
  23. The method of any of claims 17-22, wherein the at least one other control information field is configured to enable or disable hybrid automatic repeat request feedback.
  24. The method of any of claims 17-23, wherein the remaining bit of the at least one subset value are configured to enable or disable hybrid automatic repeat request feedback.
  25. The method of any of claims 17-24, wherein the saved bit of the at least one subset value are configured to enable or disable hybrid automatic repeat request feedback.
  26. The method of any of claims 17-25, further comprising:
    receiving an indication of hybrid automatic repeat request feedback disabling and enabling through the remaining bits.
  27. The method of any of claims 17-26, further comprising:
    receiving a configuration of a table with at least one of the following: at least one index, at least one corresponding subset value, or at least one supported index.
  28. The method of any of claims 17-27, wherein the at least one subset value is directly configured.
  29. The method of any of claims 17-28, further comprising:
    receiving at least one configuration associated with a delay value.
  30. The method of any of claims 17-29, wherein the delay is based upon a round trip time or network-configured value.
  31. The method of any of claims 17-30, further comprising:
    applying the update of at least one subset value with a delay after successfully decoding a downlink radio resource control for reconfiguration or medium access control control element.
  32. The method of any of claims 17-31, wherein the at least one subset value is received using at least one of the following: a radio resource control re-configuration message or a medium access control control element.
  33. The method of any of claims 17-32, wherein the at least one subset value comprises at least one of the following: an absolute index value, an increased index value, or a decreased index value.
  34. An apparatus comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to:
    determine at least one subset value associated with a control information field;
    and
    transmit a configuration of at least one subset value in downlink control information associated with the control information field to a user equipment.
  35. The apparatus of claim 34, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    transmit an update of the at least one subset value to a user equipment.
  36. The apparatus of any of claims 34 or 35, wherein the at least one subset value is selected from a full set of values, and a number of the at least one subset value is smaller than the size of the full set of values.
  37. The apparatus of any of claims 34-36, wherein the full set of values is pre-defined or pre-configured.
  38. The apparatus of any of claims 34-37, wherein the update is transmitted using at least one of the following: a radio resource control re-configuration message or a medium access control control element.
  39. The apparatus of any of claims 34-38, wherein the update comprises at least one of the following: an absolute index value, an increased index value, or a decreased index value.
  40. The apparatus of any of claims 34-39, wherein the control information field comprises at least one of a repetition number field and a modulation and coding scheme field.
  41. The apparatus of any of claims 34-40, wherein the number of bits of the at least one subset value associated with the control information field is smaller than the number of bits of the full set, wherein
    at least one remaining bit of the full set of values indicates at least one other control information field, or
    at least one saved bit of the full set of values indicates at least one other control information field.
  42. The apparatus of any of claims 34-41, wherein the at least one other control information field is configured to enable or disable hybrid automatic repeat request feedback.
  43. The apparatus of any of claims 34-42, wherein at least one remaining bit of the full set of values are configured to enable or disable hybrid automatic repeat request feedback.
  44. The apparatus of any of claims 34-43, wherein at least one saved bit of the full set of values are configured to enable or disable hybrid automatic repeat request feedback.
  45. The apparatus of any of claims 34-44, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    configure a table comprising at least one subset value with at least one of the following: at least one index, at least one corresponding subset value, and at least one supported index.
  46. The apparatus of any of claims 34-45, wherein the at least one subset value is directly configured.
  47. The apparatus of any of claims 34-46, wherein a configuration of the at least one subset value is based on at least one of the following: a reported reference signal received power, an estimated reference signal received power, or a user  equipment coverage level.
  48. The apparatus of any of claims 34-47, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    determine a change of one or more of the at least one subset values based on at least one of the following: a reported reference signal received power, an estimated reference signal received power, or a user equipment coverage level.
  49. The apparatus of any of claims 34-48, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    transmit a configuration of the at least one subset value comprising at least one delay value to a user equipment.
  50. An apparatus comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the apparatus at least to:
    receive a configuration of at least one subset value in downlink control information associated with a control information field from a network entity; and
    determine the meaning of the control information field based on the subset value.
  51. The apparatus of claim 50, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    receive an update of the at least one subset value from the network entity.
  52. The apparatus of any of claims 50 or 51, wherein the update is received using at least one of the following: a radio resource control re-configuration message  or a medium access control control element.
  53. The apparatus of any of claims 50-52, wherein the update comprises at least one of the following: an absolute index value, an increased index value, or a decreased index value.
  54. The apparatus of any of claims 50-53, wherein the control information field comprises at least one of a repetition number field and a modulation and coding scheme field.
  55. The apparatus of any of claims 50-54, wherein at least one bit of the at least one subset value is associated with a control information field smaller than a bit of each bit of each of the at least one subset values, wherein
    at least one remaining bit of the at least one subset value indicates at least one other control information field, or
    at least one saved bit of the at least one subset value indicates at least one other control information field.
  56. The apparatus of any of claims 50-55, wherein the at least one other control information field is configured to enable or disable hybrid automatic repeat request feedback.
  57. The apparatus of any of claims 50-56, wherein the remaining bit of the at least one subset value are configured to enable or disable hybrid automatic repeat request feedback.
  58. The apparatus of any of claims 50-57, wherein the saved bit of the at least one subset value are configured to enable or disable hybrid automatic repeat request feedback.
  59. The apparatus of any of claims 50-58, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    receive an indication of hybrid automatic repeat request feedback disabling and enabling through the remaining bits.
  60. The apparatus of any of claims 50-59, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    receiving a configuration of a table with at least one of the following: at least one index, at least one corresponding subset value, or at least one supported index.
  61. The apparatus of any of claims 50-60, wherein the at least one subset value is directly configured.
  62. The apparatus of any of claims 50-61, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    receive at least one configuration associated with a delay value.
  63. The apparatus of any of claims 50-62, wherein the delay is based upon a round trip time or network-configured value.
  64. The apparatus of any of claims 50-63, wherein the at least one memory and the instructions, when executed by the at least one processor, further cause the apparatus at least to:
    apply the update of at least one subset value with a delay after successfully decoding a downlink radio resource control for reconfiguration or medium access control control element.
  65. The apparatus of any of claims 50-64, wherein the at least one subset value is received using at least one of the following: a radio resource control re-configuration message or a medium access control control element.
  66. The apparatus of any of claims 50-65, wherein the at least one subset value comprises at least one of the following: an absolute index value, an increased index value, or a decreased index value.
  67. An apparatus comprising:
    means for determining at least one subset value associated with a control information field; and
    means for transmitting a configuration of at least one subset value in downlink control information associated with the control information field to a user equipment.
  68. The apparatus of claim 67, further comprising:
    means for transmitting an update of the at least one subset value to a user equipment.
  69. The apparatus of any of claims 67 or 68, wherein the at least one subset value is selected from a full set of values, and a number of the at least one subset value is smaller than the size of the full set of values.
  70. The apparatus of any of claims 67-69, wherein the full set of values is pre-defined or pre-configured.
  71. The apparatus of any of claims 67-70, wherein the update is transmitted using at least one of the following: a radio resource control re-configuration message or a medium access control control element.
  72. The apparatus of any of claims 67-71, wherein the update comprises at  least one of the following: an absolute index value, an increased index value, or a decreased index value.
  73. The apparatus of any of claims 67-72, wherein the control information field comprises at least one of a repetition number field and a modulation and coding scheme field.
  74. The apparatus of any of claims 67-73, wherein the number of bits of the at least one subset value associated with the control information field is smaller than the number of bits of the full set, wherein
    at least one remaining bit of the full set of values indicates at least one other control information field, or
    at least one saved bit of the full set of values indicates at least one other control information field.
  75. The apparatus of any of claims 67-74, wherein the at least one other control information field is configured to enable or disable hybrid automatic repeat request feedback.
  76. The apparatus of any of claims 67-75, wherein at least one remaining bit of the full set of values are configured to enable or disable hybrid automatic repeat request feedback.
  77. The apparatus of any of claims 67-76, wherein at least one saved bit of the full set of values are configured to enable or disable hybrid automatic repeat request feedback.
  78. The apparatus of any of claims 67-77, further comprising:
    means for configuring a table comprising at least one subset value with at least one of the following: at least one index, at least one corresponding subset value, and at least one supported index.
  79. The apparatus of any of claims 67-78, wherein the at least one subset value is directly configured.
  80. The apparatus of any of claims 67-79, wherein a configuration of the at least one subset value is based on at least one of the following: a reported reference signal received power, an estimated reference signal received power, or a user equipment coverage level.
  81. The apparatus of any of claims 67-80, further comprising:
    means for determining a change of one or more of the at least one subset values based on at least one of the following: a reported reference signal received power, an estimated reference signal received power, or a user equipment coverage level.
  82. The apparatus of any of claims 67-81, further comprising:
    means for transmitting a configuration of the at least one subset value comprising at least one delay value to a user equipment.
  83. An apparatus comprising:
    means for receiving a configuration of at least one subset value in downlink control information associated with a control information field from a network entity; and
    means for determining the meaning of the control information field based on the subset value.
  84. The apparatus of claim 83, further comprising:
    means for receiving an update of the at least one subset value from the network entity.
  85. The apparatus of any of claims 83 or 84, wherein the update is received using at least one of the following: a radio resource control re-configuration message or a medium access control control element.
  86. The apparatus of any of claims 83-85, wherein the update comprises at least one of the following: an absolute index value, an increased index value, or a decreased index value.
  87. The apparatus of any of claims 83-86, wherein the control information field comprises at least one of a repetition number field and a modulation and coding scheme field.
  88. The apparatus of any of claims 83-87, wherein at least one bit of the at least one subset value is associated with a control information field smaller than a bit of each bit of each of the at least one subset values, wherein
    at least one remaining bit of the at least one subset value indicates at least one other control information field, or
    at least one saved bit of the at least one subset value indicates at least one other control information field.
  89. The apparatus of any of claims 83-88, wherein the at least one other control information field is configured to enable or disable hybrid automatic repeat request feedback.
  90. The apparatus of any of claims 83-89, wherein the remaining bit of the at least one subset value are configured to enable or disable hybrid automatic repeat request feedback.
  91. The apparatus of any of claims 83-90, wherein the saved bit of the at least one subset value are configured to enable or disable hybrid automatic repeat request feedback.
  92. The apparatus of any of claims 83-91, further comprising:
    means for receiving an indication of hybrid automatic repeat request feedback disabling and enabling through the remaining bits.
  93. The apparatus of any of claims 83-92, further comprising:
    means for receiving a configuration of a table with at least one of the following: at least one index, at least one corresponding subset value, or at least one supported index.
  94. The apparatus of any of claims 83-93, wherein the at least one subset value is directly configured.
  95. The apparatus of any of claims 83-94, further comprising:
    means for receiving at least one configuration associated with a delay value.
  96. The apparatus of any of claims 83-95, wherein the delay is based upon a round trip time or network-configured value.
  97. The apparatus of any of claims 83-96, further comprising:
    means for applying the update of at least one subset value with a delay after successfully decoding a downlink radio resource control for reconfiguration or medium access control control element.
  98. The apparatus of any of claims 83-97, wherein the at least one subset value is received using at least one of the following: a radio resource control re- configuration message or a medium access control control element.
  99. The apparatus of any of claims 83-98, wherein the at least one subset value comprises at least one of the following: an absolute index value, an increased index value, or a decreased index value.
  100. A non-transitory computer readable medium comprising program instructions that, when executed by an apparatus, cause the apparatus to perform at least a method according to any of claims 1-33.
  101. An apparatus comprising circuitry configured to perform a method according to any of claims 1-33.
  102. A computer program comprising instructions, which, when executed by an apparatus, cause the apparatus to perform the method of any of claims 1-33.
PCT/CN2022/112375 2022-08-15 2022-08-15 Downlink control signaling optimization WO2024036424A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112375 WO2024036424A1 (en) 2022-08-15 2022-08-15 Downlink control signaling optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/112375 WO2024036424A1 (en) 2022-08-15 2022-08-15 Downlink control signaling optimization

Publications (1)

Publication Number Publication Date
WO2024036424A1 true WO2024036424A1 (en) 2024-02-22

Family

ID=89940288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112375 WO2024036424A1 (en) 2022-08-15 2022-08-15 Downlink control signaling optimization

Country Status (1)

Country Link
WO (1) WO2024036424A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9967888B1 (en) * 2016-03-17 2018-05-08 Sprint Spectrum L.P. Selective micro-transmission in downlink control information (DCI) message
WO2018174401A1 (en) * 2017-03-22 2018-09-27 엘지전자 주식회사 Method for receiving control information for srs transmission in wireless communication system, and user equipment therefor
US20190222289A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Transmission configuration indication based beam switching
CN111435869A (en) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 Transmission method of downlink control channel, terminal and network side equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9967888B1 (en) * 2016-03-17 2018-05-08 Sprint Spectrum L.P. Selective micro-transmission in downlink control information (DCI) message
WO2018174401A1 (en) * 2017-03-22 2018-09-27 엘지전자 주식회사 Method for receiving control information for srs transmission in wireless communication system, and user equipment therefor
US20190222289A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Transmission configuration indication based beam switching
CN111435869A (en) * 2019-01-11 2020-07-21 电信科学技术研究院有限公司 Transmission method of downlink control channel, terminal and network side equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "DCI design for MTC", 3GPP DRAFT; R1-153962, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Beijing, China; 20150824 - 20150828, 14 August 2015 (2015-08-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050992378 *

Similar Documents

Publication Publication Date Title
EP3566507B1 (en) Sounding reference signal power control for multiple input multiple output wireless system
US11044714B2 (en) Method for transmitting downlink control information, terminal device and network device
US9907031B2 (en) Base station, mobile station, wireless communications system, and wireless communications method
CN110062398B (en) Beam recovery method and device
US20170150477A1 (en) Control channel transmission for paging message coverage enhancement
US11375342B2 (en) Apparatuses, methods and computer programs for grouping users in a non-orthogonal multiple access (NOMA) network
JP2022174252A (en) Communication method, terminal device, and network device
EP3579435B1 (en) Method and device for transmitting data
US11411689B2 (en) Dynamic user grouping in non-orthogonal multiple access (NOMA)—networks
CN112205042B (en) Creating protocol data units for advanced data transmission
CA3048927C (en) Information transmission method, network device, and terminal device
WO2024036424A1 (en) Downlink control signaling optimization
WO2021077372A1 (en) Method and access network node for beam management
EP3918827A1 (en) Measured narrowbands for msg3-based reporting
US20230328705A1 (en) Demodulation Reference Signal Allocation for Uplink Shared Channel for Wireless Communication
EP3396862A1 (en) Use of crc and parity bits for early termination of polar code decoding for wireless networks
EP3512238B1 (en) Method for transmitting information, terminal device, and network device
US20210227476A1 (en) Variable-length coding in a noma-based communication system
WO2024016120A1 (en) Solutions and signaling to enable cell-free multiple input multiple output transmission
WO2019095320A1 (en) Machine type communication physical downlink control channel order
WO2022141438A1 (en) Method and apparatus for performing random access
US11856522B2 (en) Method and device for uplink power control, and storage medium
US20240014983A1 (en) Method for acknowledgment feedback in non-terrestrial networks
US11502892B2 (en) Modulation adjustment for 16-QAM in narrowband IoT
US20240114555A1 (en) Small data transmission optimization using random access channel for reduced capability user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955207

Country of ref document: EP

Kind code of ref document: A1