WO2024035236A1 - 고시페틴을 포함하는 지방간 개선용 조성물 - Google Patents

고시페틴을 포함하는 지방간 개선용 조성물 Download PDF

Info

Publication number
WO2024035236A1
WO2024035236A1 PCT/KR2023/012007 KR2023012007W WO2024035236A1 WO 2024035236 A1 WO2024035236 A1 WO 2024035236A1 KR 2023012007 W KR2023012007 W KR 2023012007W WO 2024035236 A1 WO2024035236 A1 WO 2024035236A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty liver
gocyphetin
liver
ampk
liver disease
Prior art date
Application number
PCT/KR2023/012007
Other languages
English (en)
French (fr)
Inventor
김경태
오은지
이재
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2024035236A1 publication Critical patent/WO2024035236A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/116Heterocyclic compounds
    • A23K20/121Heterocyclic compounds containing oxygen or sulfur as hetero atom
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/30Other Organic compounds

Definitions

  • the present invention relates to the use of gocyphetin to improve fatty liver, etc.
  • Nonalcoholic fatty liver disease is a condition in which fat accumulates in the liver due to a westernized diet and lack of exercise.
  • Nonalcoholic steatohepatitis nonalcoholic steatohepatitis
  • NASH a dangerous metabolic disease that can progress to end-stage liver disease such as cirrhosis or hepatocellular carcinoma.
  • the prevalence of non-alcoholic fatty liver disease is rapidly increasing worldwide, but due to its complex pathophysiology, there is currently no treatment other than exercise and weight loss.
  • the conventional "two-hit model” is that hepatic lipid accumulation caused by high-fat diet, obesity, and insulin resistance occurs first, followed by liver inflammation, liver damage, and fibrosis. It was proposed that the disease progresses from simple fatty liver to steatohepatitis through a second hit.
  • AMPK AMP-activated protein kinase
  • AMPK is an enzyme that detects intracellular energy status and performs key functions in regulating metabolism and maintaining homeostasis. Its activity is reduced in metabolic diseases such as inflammation, obesity, diabetes, and non-alcoholic fatty liver disease. It is attracting attention as a major disease target for disease improvement (Zhao, Peng, and Alan R. Saltiel (2020) and Gluais-Dagorn, Pascale, et al. (2022)].
  • the present inventor studied a method for improving fatty liver disease by effectively activating AMPK protein, and as a result, the present invention was completed by confirming that gocyphetin, as a novel AMPK activator, exhibits an excellent fatty liver improvement effect. .
  • the purpose of the present invention is to provide uses of gocyphetin for improving fatty liver disease and activating AMPK protein.
  • the present invention provides a pharmaceutical composition for preventing or treating fatty liver disease, comprising gossypetin or a salt thereof as an active ingredient.
  • the gocyphetin or its salt may be chemically synthesized or derived from natural products.
  • fatty liver disease can be achieved by increasing AMPK activity in liver cells.
  • the fatty liver disease may be characterized by decreased AMPK activity in liver cells.
  • the fatty liver disease may be non-alcoholic fatty liver disease (NAFLD), specifically non-alcoholic steatohepatitis (NASH), and may optionally be accompanied by one or more metabolic diseases.
  • NAFLD non-alcoholic fatty liver disease
  • NASH non-alcoholic steatohepatitis
  • the fatty liver disease may be non-alcoholic fatty liver disease caused by a high-fat diet.
  • the composition may have the effect of reducing liver lipid accumulation, reducing liver damage, reducing liver inflammation, reducing liver fibrosis, and improving hepatotoxicity.
  • the present invention also provides a method for preventing or treating fatty liver disease, comprising administering gocyphetin or a salt thereof to a patient in a therapeutically effective amount.
  • the present invention also provides a use of gocyphetin or a salt thereof for the prevention or treatment of fatty liver disease.
  • the present invention also provides the use of gocyphetin or a salt thereof for the production of a drug for preventing or treating fatty liver disease.
  • the present invention provides a food composition for improving fatty liver comprising gocyphetin or a salt thereof.
  • the food may be a health functional food.
  • the present invention provides a feed composition for improving fatty liver comprising gocyphetin or a salt thereof.
  • the present invention also provides a method for improving fatty liver, comprising the step of ingesting gocyphetin or a salt thereof by a person or an animal.
  • the present invention also provides a use of gocyphetin or a salt thereof for improving fatty liver.
  • the present invention also provides the use of gocyphetin or a salt thereof for the production of food or feed for improving fatty liver.
  • the present invention provides a pharmaceutical composition for preventing or treating obesity, hepatotoxic disease, liver damage disease, inflammatory disease, or fibrosis, comprising gocyphetin or a salt thereof as an active ingredient.
  • the present invention provides a food composition or feed composition for improving obesity, liver toxicity, liver damage, inflammation or fibrosis, containing gocyphetin or a salt thereof.
  • the present invention provides a method of inducing AMPK protein phosphorylation in liver cells, comprising treating liver cells with gocyphetin or a salt thereof.
  • Gocyphetin has an excellent effect on improving fatty liver disease through its strong AMPK activation effect, so it can be usefully used as a pharmaceutical composition for preventing or treating fatty liver disease, and as a food or feed composition for improving fatty liver disease.
  • Figure 1 shows the results of measuring the level of AMPK protein phosphorylation in a liver cell line (AML12) treated with gocyphetin.
  • Figure 2 shows the results showing the effect of AMPK phosphorylation by gocyphetin administration in MCD (Methionine-choline deficient) diet mice.
  • Figure 3 shows the results confirming the direct binding of gocyphetin and AMPK protein through pull-down assay
  • Figure 4 shows the interaction between gocyphetin and the activation site in the AMPK protein structure.
  • Figure 5 shows the results of comparing the AMPK phosphorylation effects of known major AMPK activators and gocyphetin
  • Figure 6 shows the results of comparing the AMPK phosphorylation effect of flavonoids of similar structure and gocyphetin
  • Figure 7 is a photograph observing the effect of improving fatty liver lesions in liver tissue by gocyphetin administration in MCD diet mice [red arrow: indicator of hepatocyte ballooning; black arrow: indicator of liver tissue inflammation];
  • Figure 8 is a graph showing the effect of improving lesions in liver tissue by gocyphetin administration in MCD diet mice;
  • Figure 9 is a graph showing the effect of improving NAFLD activity score (NAS) by gocyphetin administration in MCD diet mice;
  • NAS NAFLD activity score
  • Figures 10 and 11 are photographs and graphs observing the effect of improving fat accumulation in liver tissue by gocyphetin administration in MCD diet mice;
  • Figure 12 shows the results of measuring the level of free fatty acids in liver tissue by gocyphetin administration in MCD diet mice
  • Figure 13 shows the results of measuring the expression level of genes related to lipid accumulation in liver tissue by gocyphetin administration in MCD diet mice;
  • Figures 14 and 15 are photographs and graphs observing the effect of improving fat accumulation after treatment with gocyphetin and AMPK protein inhibitor (Compound C) in liver cell line (AML12);
  • Figures 16 and 17 are photographs and graphs showing the effect of improving fibrosis in liver tissue by gocyphetine administration in MCD diet mice using Sirius red staining;
  • Figure 18 is a graph measuring the level of collagen precursor (hydroxyproline) in liver tissue by gocyphetin administration in MCD diet mice;
  • Figure 19 is a graph showing the effect of regulating fibrosis gene expression in liver tissue by gocyphetin administration in MCD diet mice;
  • Figure 20 is a graph measuring the effect of improving liver toxicity by gocyphetin administration in MCD diet mice.
  • the present inventors assumed that an improvement in fatty liver would be achieved by activating AMPK protein, which performs a key function of energy metabolism in liver cells, and made efforts to discover a new AMPK activator. As a result, it was confirmed that gocyphetin, one of the flavonoids, has a stronger AMPK activation effect compared to flavonoids of similar structure and effectively improves fatty liver symptoms in an animal model of fatty liver disease, and the present invention was completed.
  • gossypetin is a flavonoid called 3,5,7,8,3',4'-hexahydroxyflavone, and is a compound represented by the following formula (1).
  • the salt of gocyphetin refers to a salt suitable for the industrial application field of the composition, such as a salt that can be commonly used in pharmaceuticals, quasi-drugs, food, feed, etc.
  • the salts include, for example, inorganic ion salts including sodium, potassium, calcium, magnesium, lithium, copper, manganese, zinc, and iron of gocyphetin, inorganic acid salts such as hydrochloric acid, phosphoric acid, and sulfuric acid, ascorbic acid, citric acid, and tartaric acid.
  • organic acid salts such as lactic acid, maleic acid, malonic acid, fumaric acid, glycolic acid, succinic acid, propionic acid, acetic acid, orotate acid, and acetylsalicylic acid, and amino acid salts such as lysine, arginine, and guanidine, but are not limited thereto.
  • gocyphetin or its salt may be chemically synthesized or derived from natural products.
  • gocyphetin or a salt thereof is synthesized via known organic reactions from low molecule starting materials and/or precursors.
  • gocyphetin is obtained through extraction, isolation and concentration from natural products such as mallow and Hibiscus plants.
  • fatty liver disease refers to a condition in which excessive lipids accumulate in the liver, also called hepatic steatosis.
  • the above condition can be defined, for example, as a state in which fat is deposited in more than 5% of hepatocytes when examining liver tissue.
  • the prevention or treatment of fatty liver disease includes the effects of preventing, preventing, delaying, improving, resolving, alleviating, relieving, improving, treating the condition or symptoms of fatty liver disease, and is not limited to completely suppressing the onset of fatty liver disease. .
  • Prevention or treatment of fatty liver disease can be achieved by increasing AMPK protein activity in liver cells. More specifically, the increase in AMPK protein activity means induction of AMPK protein phosphorylation.
  • AMPK AMP-activated protein kinase
  • AMPK AMP-activated protein kinase protein
  • AMPK ⁇ AMP-activated protein kinase
  • AMPK ⁇ AMP-activated protein kinase protein
  • Direct AMPK activator which directly interacts with AMPK protein and induces AMPK phosphorylation, can improve key indicators of fatty liver disease and alleviate related metabolic symptoms, making it the main treatment for fatty liver disease, including non-alcoholic steatohepatitis. It is well known that low-molecular-weight compounds such as AICAR, A-769662, C13, PF-249/739, PF-06409577, Compound 1, and PXL770, which are direct AMPK activators, show effects on improving fatty liver disease in animal models. (Zhao, Peng, and Alan R. Saltiel. (2020) and Gluais-Dagorn, Pascale, et al. (2022), etc.).
  • Gocyphetin is characterized by a flavonol structure with hydroxyl groups attached to carbons 5, 7, and 8 of the flavonoid skeleton A ring, carbons 3' and 4' of the B ring, and carbon 3 of the C ring, respectively. It forms a unique scaffold structure that differentiates it from bonolic compounds. Because of this, gocyphetin can function as a direct AMPK activator that can induce phosphorylation of AMPK protein by directly binding to the ADaM (allosteric drug and metabolite) site of AMPK protein ( Figures 3 to 5 ). Furthermore, it was confirmed that gocyphetin can exert a fatty liver improvement effect, including a lipid accumulation reduction effect, through the strong AMPK protein phosphorylation effect ( Figures 14 and 15).
  • fatty liver disease may be characterized by reduced AMPK activity, specifically AMPK phosphorylation levels, in liver cells compared to normal liver cells (Zhao, Peng, and Alan R. Saltiel. (2020)) , Gluais-Dagorn, Pascale, et al. (2022), Smith, Brennan K., et al. (2016), etc.).
  • fatty liver disease includes alcoholic fatty liver disease (alcoholic liver disease) and non-alcoholic fatty liver disease (NAFLD) depending on the cause, and is preferably non-alcoholic fatty liver disease.
  • Non-alcoholic fatty liver disease is defined as a disease with appropriate clinical findings, biochemical, imaging, and pathological examination without liver disease caused by secondary causes such as significant alcohol consumption, drug exposure, viral hepatitis, etc. (Reference [ Korean Association for the Study of the Liver (2021)], etc.).
  • the non-alcoholic fatty liver disease includes simple fatty liver, which is a state in which only fat is accumulated in the liver, nonalcoholic steatohepatitis (NASH), which is inflammatory with hepatocyte damage (ballooning or fibrosis, etc.), and accompanying diseases. It includes various sub-diseases depending on the degree of disease progression, including liver cirrhosis or hepatocellular carcinoma.
  • the nonalcoholic fatty liver disease is nonalcoholic steatohepatitis (NASH).
  • the non-alcoholic fatty liver disease is non-alcoholic fatty liver disease caused by a high-fat diet (HFD).
  • HFD high-fat diet
  • the high-fat diet may be a diet in which more than 35% of total calories consist of unsaturated and saturated fat.
  • a high-fat diet is closely associated with a decrease in AMPK activity in liver cells (Lindholm, Christopher R., et al. (2013), Shiwa, Mami, et al. (2015), etc.).
  • liver tissue AMPK activity in a mouse model that can specifically regulate liver tissue AMPK activity, artificially increasing liver cell AMPK activity in high-fat diet mice can improve fatty liver disease indicators such as liver fat accumulation, inflammation, and fibrosis (Reference [Garcia , Daniel, et al. (2019)). Therefore, in non-alcoholic fatty liver disease caused by a high-fat diet, the strong increase in AMPK activity of liver cells by gocyphetin or its salt can exert excellent effects in preventing or treating fatty liver disease (FIGS. 1 to 3).
  • mice fed a methionine-choline deficient (MCD) diet or a choline-deficient high fat diet (CDHFD) were used to induce non-alcoholic fatty liver disease.
  • MCD methionine-choline deficient
  • CDHFD choline-deficient high fat diet
  • the fatty liver improvement effect is due to the strong AMPK activation effect of gocyphetin and is significantly improved compared to flavonoid compounds with similar structures ( Figures 1 to 6 and 14 to 15). Therefore, gocyphetin can be usefully used for the prevention or treatment of non-alcoholic fatty liver disease.
  • fatty liver disease may be accompanied by systemic metabolic diseases, such as obesity, type 2 diabetes, metabolic syndrome, hyperlipidemia, and/or chronic kidney disease.
  • the pharmaceutical composition of the present invention may contain one or more pharmaceutically acceptable carriers, excipients, diluents, solubilizers, etc. in addition to gocyphetin or its salt as an active ingredient.
  • the carriers, excipients, and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, gum acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, and microcrystalline.
  • Examples include cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, and mineral oil, and solubilizers include poloxamer and labrasol. Not limited.
  • dosage forms for oral administration may include tablets, pills, powders, powders, granules, pellets, capsules, troches, lozenges, suspensions, emulsions, syrups, elixirs, etc.
  • dosage forms for parenteral administration may include It may include, but is not limited to, injections, suppositories, respiratory inhalants, aerosols, ointments, solutions, lotions, patches, powders for application, oils, creams, gels, etc.
  • the pharmaceutical composition may be administered orally or parenterally depending on the dosage form.
  • Parenteral administration may include, but is not limited to, subcutaneous administration, intradermal administration, transdermal administration, hair administration, intraperitoneal administration, rectal administration, intravenous administration, intramuscular administration, thoracic administration, etc.
  • the pharmaceutical composition may be administered in a pharmaceutically effective amount.
  • the pharmaceutically effective amount refers to an amount sufficient to treat the disease with a reasonable benefit/risk ratio applicable to medical treatment
  • the level of the effective amount refers to the patient's condition, weight, gender, age, health condition, and degree of disease. , can be determined based on factors including sensitivity to the drug, time of administration, route of administration, excretion rate, duration of treatment, concurrently used drugs, and other factors well known in the field of medicine.
  • the pharmaceutical composition may be used as a combination composition to increase the prevention or treatment efficacy of fatty liver disease by further containing one or more active ingredients with metabolic improvement effects in addition to gocyphetin or its salt.
  • the food composition includes all food forms such as health foods, health functional foods, beverages, food additives, and food supplements containing gocyphetin or its salt at a certain concentration, and is preferably a health functional food.
  • the above-mentioned health functional food refers to food manufactured and processed to efficiently exhibit bioregulatory functions in addition to providing nutrition using raw materials or ingredients with functional properties useful to the human body.
  • Gocyphetin or its salt may be included as a functional ingredient in the above health functional food.
  • mice fed a methionine-choline deficient (MCD) diet were used to reproduce the fatty liver condition, and the effect of improving the fatty liver condition was confirmed after administration of gocyphetine to the mice.
  • MCD methionine-choline deficient
  • the effect of improving fat accumulation, liver damage and inflammation in the liver tissue of fatty liver animals Figures 7 and 8
  • improving fatty liver Figure 9
  • inhibiting liver fat accumulation Figures 10 to 15
  • improving liver fibrosis The effect (FIGS. 16 and 17), the effect of regulating fibrosis gene expression in liver tissue (FIGS. 18 and 19), and the effect of improving hepatotoxicity (FIG.
  • the fatty liver improvement effect is due to the strong AMPK activation effect of gocyphetin and is significantly improved compared to flavonoid compounds with similar structures ( Figures 1 to 6 and 14 to 15). Therefore, gocyphetin can be usefully used to improve liver health such as fatty liver disease.
  • composition of the present invention When used as a health functional food, it can be administered to humans once or several times a day, and the daily dose of gocyphetin or its salt may be 0.1 to 500 mg/day, specifically 1 to 100 mg/day. It may be mg/day.
  • the feed composition is a diet provided for consumption by animals, including mammals other than humans, and can exert an effect of improving fatty liver in these animals.
  • mice Four-week-old male C57BL/6 mice were purchased from Central Lab Animal Inc. (Seoul, Korea). After 2 weeks of acclimation, mice in the control group were fed a standard chow diet and MCD diet (Research Diets, New Brunswick, NJ, United States) for 4 weeks, or a CDHFD diet (Research Diets) for 3 months. It caused alcoholic steatohepatitis (NASH).
  • MCD diet Research Diets, New Brunswick, NJ, United States
  • CDHFD diet Research Diets
  • NASH alcoholic steatohepatitis
  • gocyphetin was administered orally at a dose of 20 mg/kg/day for 4 weeks with the MCD diet and for 3 months with the CDHFD diet. Afterwards, blood samples were collected by retrobulbar bleeding, and serum was collected by centrifugation at 3000 rpm for 20 minutes. ALT and AST levels in serum samples were measured at SCL Health Inc. (Seoul, Korea) to evaluate lipid toxicity.
  • Mouse liver tissue was fixed with 4% paraformaldehyde (PFA) and embedded in paraffin for hematoxylin and eosin (H&E) and Sirius red staining.
  • the paraffin block was sectioned at 4 ⁇ m thickness, H&E stained, and NAFLD activity score (NAS) was measured.
  • paraffin sections were stained with Picrosirius red solution (IHC WORLD, Ellicott City, MD, USA). Sections were deparaffinized in xylene and dehydrated by decreasing the ethanol concentration from 100% to 70%. Dehydrated sections were stained with Weigert's iron hematoxylin solution (IHC WORLD), washed with running tap water, and then subjected to Sirius red staining. Then, the sections were washed with 0.5% acetic acid solution and dehydrated with 100% ethanol. Sections were mounted on glass slides with Optic mount S3 (BBC Biochemical, Mount Vernon, WA, USA) and used for further analysis. All images were taken with an Axioplan2 microscope (Zeiss Axio Scan Z.1, Jena, Germany).
  • OCT optimal cutting temperature
  • Sections were stained with Mayer's modified hematoxylin solution (Abcam, Cambridge, UK) and washed with running tap water. Sections were mounted on Dako (Agilent, Glostrup, Denmark) slide glasses and used for further analysis.
  • liver collagen content was determined by measuring the relative levels of hydroxyproline, a precursor of collagen. Liver samples (50 mg) were homogenized in distilled water (100 ⁇ l) and hydrolyzed with 10 N HCl for 3 hours at 120 °C. Hydroxyproline content was determined as described in Brown et al., 2001.
  • Free fatty acid levels in liver tissue were measured using a free fatty acid quantification kit (Sigma-Aldrich) according to the manufacturer's instructions.
  • AML12 mouse hepatocytes were incubated with 10% fetal calf serum (Hyclone), 10% penicillin/streptomycin (Welgene, Gyeongsan-si, Korea), 20 mg of dexamethasone (Sigma-Aldrich), and 5 ml of insulin-transferrin-selenium containing Dulbecco's Modified. Cultured in a 5% CO 2 incubator humidified with Eagle Medium/F12 (Hyclone, Logan, UT, USA) at 37°C.
  • the crystal structure of human AMPK (code: 5iso) was prepared from the RCSB Protein Data Bank. Molecular docking and predicted binding energy calculations were performed using AutoDock Vina in PyRx software to confirm the docking position in AMPK. The grid map for docking covered the ADaM site within the N-terminus of AMPK. Docking results were visualized using the PyMol visualization system. Hydrogen bonds were predicted with PyMol software.
  • Cells were lysed with lysis buffer containing 50mM Tris (pH 7.4), 140mM NaCl, 5mM EDTA, and protease inhibitor tablets, followed by sonication.
  • the protein concentration of the lysate was determined using Bradford reagent (AMERSCO, Framingham, MA, USA). Proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred to nitrocellulose membranes (Pall Corporation, New York, NY, USA), and blocked in blocking buffer (5% nonfat drying oil and 0.1% Tween 20 in TBS). ) and incubated for 30 minutes.
  • Western blotting was performed using primary antibodies against AMPK, phospho-AMPK, LKB, phospho-LKB (Cell Signaling Technology, Danvers, MA, USA) and GAPDH (Bethyl Laboratories, Montgomery, TX, USA). Rabbit (Promega, Madison, WI, USA), rat, and goat antibodies (Bethyl Laboratories) were used as secondary antibodies, and SUPEX ECL reagent (Neuronex, Goryeong, Korea) and ImageQuant LAS-4000 (GE Healthcare, Inc.) were used according to the manufacturer's instructions. Detection was performed using (Chicago, MA, USA). Integrated blotting density was quantified using ImageJ.
  • RT-PCR Reverse transcription
  • qPCR real-time quantitative PCR
  • a CNBr-bead conjugation assay was performed to determine whether AMPK phosphorylation of gocyphetin is induced by direct binding of gocyphetin and AMPK proteins. Specifically, gocyphetin was incubated with CNBr beads for 24 hours to allow conjugation, and then cell lysate of AML12 cells was incubated with CNBr beads. Next, detection of AMPK protein was confirmed through Western blotting through a pull-down assay. As a result, the AMPK protein band was strongly detected in the gocyphetin-conjugated CNBr bead sample, confirming that gocyphetin directly binds to AMPK (Figure 3).
  • ADaM allosteric drug and metabolite
  • gocyphetin can interact with Ser108, Lys29, Lys31, and Asn48 of the ADaM site in AMPK ( Figure 4), and its binding energy is It was confirmed that it was at a similar level to the known AMPK activators AICAR and A-769662.
  • Flavonoid metabolites such as quercetin are known to be able to partially alleviate the lesions of NAFLD and NASH (Tan, Panli, et al. (2022)], so the AMPK activation effect of gocyphetin was tested using a flavonoid compound with a similar structure (comparative compound). 1 to 4), the level of AMPK phosphorylation was compared after drug treatment in liver cells (AML12).
  • liver disease lesions such as liver steatosis, hepatocyte ballooning, and inflammation were observed under a microscope. As a result, it was confirmed that fatty liver disease lesions in liver tissue were improved upon gocyphetin administration ( Figures 7 and 8).
  • the NAFLD activity score is a sum of the grades of fatty changes (0-3 points), lobular inflammation (0-3 points), and ballooning degeneration (1-2) observed in liver biopsy.
  • NAS NAFLD activity score
  • liver tissue Oil Red O staining in MCD diet mice administered gocyphetin As a result of liver tissue Oil Red O staining in MCD diet mice administered gocyphetin, it was confirmed that the level of staining indicating lipid accumulation was decreased (FIGS. 10 and 11). In addition, it was confirmed that the level of free fatty acids in liver tissue also decreased after gocyphetin administration (FIG. 12).
  • Fibrotic lesions observed in liver biopsies are widely used clinical indicators of steatohepatitis along with the NAFLD activity score (document [Korean Society of Liver Studies, 2021], etc.). Accordingly, the liver tissue of MCD diet mice was stained with Sirius Red and changes in fibrotic lesions were measured through microscopic observation. As a result, the level of liver fibrosis near blood vessels increased in the liver tissue of MCD diet mice, but the staining area decreased in the liver tissue of MCD diet mice administered gocyphetin, confirming that the level of fibrosis was significantly improved ( Figures 16 and 17 ).
  • Serum liver toxicity indicators can be used as a screening method for non-alcoholic fatty liver disease along with lesions in liver tissue (Yoo, JangSuk, et al. (2008), etc.). Accordingly, blood samples were collected from MCD diet mice administered gocyphetin, and liver toxicity indicators such as ALT and AST were measured. As a result, it was confirmed that the liver toxicity index, which increased in MCD diet mice, decreased when gocyphetine was administered, confirming the hepatotoxicity inhibitory effect of gocyphetin in fatty liver disease (FIG. 20).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Husbandry (AREA)
  • Nutrition Science (AREA)
  • Zoology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 고시페틴의 지방간 개선 용도를 제공하는 것으로, 고시페틴은 AMPK 단백질 활성화를 통해 우수한 지방간 개선 효과를 발휘할 수 있다. 따라서, 본 발명은 고시페틴 또는 이의 염을 포함하는 지방간 질환, 구체적으로 비알콜성 지방간염과 같은 비알콜성 지방간 질환의 예방 또는 치료용 약학 조성물과 함께 지방간 개선용 식품 또는 사료 조성물을 제공한다.

Description

고시페틴을 포함하는 지방간 개선용 조성물
본 발명은 고시페틴의 지방간 개선 용도 등에 관한 것이다.
본 발명은 대한민국 특허청에 2022년 8월 12일 제출된 특허출원 제10-2022-0101415호의 우선권을 주장하며, 상기 특허출원의 전체 내용은 본 발명에 참조로 포함된다.
본 발명을 지원한 국가연구개발사업은 다음과 같다.
[과제고유번호] 1395074337
[세부과제번호] PJ016402022022
[부처명] 농촌진흥청
[연구관리전문기관] 농촌진흥청
[연구사업명] 바이오그린연계농생명혁신기술개발
[연구과제명] 프로바이오틱스 및 천연물을 이용한 비알코올성 지방간 개선 연구
[기여율] 100%
[주관기관] 포항공과대학교 산학협력단
[연구기간] 2022.01.01 ~ 2022.12.31
비알콜성 지방간 질환(nonalcoholic fatty liver disease; NAFLD)은 서구화된 식생활과 운동 부족 등으로 인해 간에 지방이 축적된 상태로, 단순 지방간 상태에서 간 염증 및 간 손상이 진행된 비알콜성 지방간염(nonalcoholic steatohepatitis; NASH), 나아가 간경변증 또는 간세포암종 등 말기 간질환으로 진행될 수 있는 위험한 대사 질환이다. 전세계적으로 비알콜성 지방간 질환의 유병률은 급격히 증가하고 있으나, 복잡한 병태생리로 인해 현재까지 운동과 체중 감량 외에는 마땅한 치료 요법이 없는 실정이다.
비알콜성 지방간 질환의 발병 메커니즘을 설명하기 위해, 종래 "two-hit model"은 고지방 식이, 비만 및 인슐린 저항성 등에 의해 유발된 간 지질 축적이 먼저 발생하고, 뒤이어 간 염증, 간 손상, 섬유화를 유발하는 두 번째 타격(second hit)을 통해 단순 지방간에서 지방간염으로 질환이 진행된다고 제안하였다. 이후, 보다 다양한 유전적, 환경적 요인이 지방간 질환의 발병에 관여하고, 지방 조직, 췌장, 장(gut) 및 간 등 다양한 기관 기능이 서로 밀접하게 관련되어 있음이 밝혀짐에 따라, 다양한 병리 인자가 동시에 상승적으로 작용하여야 지방간 질환이 유도된다는 "multiple-hit model"이 새롭게 제안되었다(문헌[Buzzetti, Elena, Massimo Pinzani, and Emmanuel A. Tsochatzis(2016)]).
AMPK (AMP-activated protein kinase)는 세포 내 에너지 상태를 감지하여 대사 조절 및 항상성 유지에 핵심 기능을 수행하는 효소로, 염증, 비만, 당뇨병 등 대사 질환에서 그 활성이 감소되어 있으며, 비알콜성 지방간 질환 개선을 위한 주요 질환 타겟으로 주목받고 있다(문헌[Zhao, Peng, and Alan R. Saltiel(2020)] 및 문헌[Gluais-Dagorn, Pascale, et al.(2022)]).
이와 같은 배경 하에, 본 발명자는 AMPK 단백질을 효과적으로 활성화시킴으로써 지방간을 개선할 수 있는 방법을 연구하였고, 그 결과 고시페틴이 신규한 AMPK 활성화제로서 우수한 지방간 개선 효과를 나타냄을 확인함으로써 본 발명을 완성하였다.
본 발명의 목적은 고시페틴의 지방간 개선 및 AMPK 단백질 활성화 용도 등을 제공하는 것이다.
일 측면에서, 본 발명은 고시페틴(gossypetin) 또는 이의 염을 유효성분으로 포함하는 지방간 질환(fatty liver disease) 예방 또는 치료용 약학 조성물을 제공한다.
상기 고시페틴 또는 이의 염은 화학적으로 합성되거나 또는 천연물에서 유래될 수 있다.
상기 지방간 질환 예방 또는 치료는 간 세포 내 AMPK 활성 증가에 의해 달성될 수 있다. 여기서, 상기 지방간 질환은 간 세포 내 AMPK 활성이 감소된 것을 특징으로 할 수 있다.
상기 지방간 질환은 비알콜성 지방간 질환(NAFLD)일 수 있고, 구체적으로 비알콜성 지방간염(NASH)일 수 있으며, 선택적으로 1종 이상의 대사 질환을 동반할 수 있다. 구체적으로, 상기 지방간 질환은 고지방 식이에 의한 비알콜성 지방간 질환일 수 있다.
상기 조성물은 간 지질 축적 감소, 간 손상 감소, 간 염증 감소, 간 섬유증 감소 및 간독성 개선 효과를 가질 수 있다.
본 발명은 또한, 고시페틴 또는 이의 염을 치료적 유효량으로 환자에게 투여하는 단계를 포함하는, 지방간 질환의 예방 또는 치료방법을 제공한다.
본 발명은 또한, 고시페틴 또는 이의 염의 지방간 질환의 예방 또는 치료 용도를 제공한다.
본 발명은 또한, 지방간 질환의 예방 또는 치료용 약제의 제조를 위한 고시페틴 또는 이의 염의 용도를 제공한다.
또다른 일 측면에서, 본 발명은 고시페틴 또는 이의 염을 포함하는 지방간 개선용 식품 조성물을 제공한다. 상기 식품은 건강기능식품일 수 있다.
또다른 일 측면에서, 본 발명은 고시페틴 또는 이의 염을 포함하는 지방간 개선용 사료 조성물을 제공한다.
본 발명은 또한, 고시페틴 또는 이의 염을 사람 또는 동물이 섭취하는 단계를 포함하는, 지방간 개선 방법을 제공한다.
본 발명은 또한, 고시페틴 또는 이의 염의 지방간 개선 용도를 제공한다.
본 발명은 또한, 지방간 개선용 식품 또는 사료의 제조를 위한 고시페틴 또는 이의 염의 용도를 제공한다.
또다른 일 측면에서, 본 발명은 고시페틴 또는 이의 염을 유효성분으로 포함하는 비만, 간 독성 질환, 간 손상 질환, 염증성 질환 또는 섬유증에 대한 예방 또는 치료용 약학 조성물을 제공한다.
또다른 일 측면에서, 본 발명은 고시페틴 또는 이의 염을 포함하는 비만, 간 독성, 간 손상, 염증 또는 섬유증 개선용 식품 조성물 또는 사료 조성물을 제공한다.
또다른 일 측면에서, 본 발명은 고시페틴 또는 이의 염을 간 세포에 처리하는 단계를 포함하는 간 세포 내 AMPK 단백질 인산화 유도 방법을 제공한다.
고시페틴은 강력한 AMPK 활성화 효과 통해 우수한 지방간 개선 효과를 발휘하므로 지방간 질환 예방 또는 치료용 약학 조성물, 지방간 개선용 식품 또는 사료 조성물 등으로 유용하게 활용될 수 있다.
도 1은 고시페틴을 처리한 간 세포주(AML12)에서 AMPK 단백질 인산화 수준을 측정한 결과를 나타내고,
도 2는 MCD(Methionine-choline deficient) 식이 마우스에서 고시페틴 투여에 의한 AMPK 인산화 효과를 나타낸 결과이고,
도 3은 풀-다운 어세이(pull-down assay)를 통해 고시페틴과 AMPK 단백질의 직접 결합을 확인한 결과를 나타내고,
도 4는 고시페틴과 AMPK 단백질 구조 내 활성화 사이트 간 상호작용을 나타내고,
도 5는 공지된 주요 AMPK 활성화제와 고시페틴의 AMPK 인산화 효과를 비교한 결과를 나타내고,
도 6은 유사 구조의 플라보노이드와 고시페틴의 AMPK 인산화 효과를 비교한 결과를 나타내고,
도 7는 MCD 식이 마우스에서 고시페틴 투여에 의한 간 조직 내 지방간 병변 개선 효과를 관찰한 사진이고[붉은색 화살표: 간세포 풍선양 변화 지표 (Hepatocyte ballooning) 검정색 화살표: 간조직 염증 지표],
도 8은 MCD 식이 마우스에서 고시페틴 투여에 의한 간 조직 내 병변 개선 효과를 나타낸 그래프이고,
도 9는 MCD 식이 마우스에서 고시페틴 투여에 의한 NAFLD 활성 스코어(NAS) 개선 효과를 나타낸 그래프이고,
도 10 및 도 11은 MCD 식이 마우스에서 고시페틴 투여에 의한 간 조직 내 지방 축적 개선 효과를 관찰한 사진 및 그래프이고,
도 12은 MCD 식이 마우스에서 고시페틴 투여에 의한 간 조직 내 자유 지방산 수준을 측정한 결과를 나타내고,
도 13은 MCD 식이 마우스에서 고시페틴 투여에 의한 간 조직 내 지질 축적 관련 유전자의 발현 수준을 측정한 결과를 나타내고,
도 14 및 도 15는 간 세포주(AML12)에서 고시페틴과 AMPK 단백질 억제제(컴파운드 C) 처리 후 지방 축적 개선 효과를 관찰한 사진 및 그래프이고,
도 16 및 도 17은 MCD 식이 마우스에서 고시페틴 투여에 의한 간 조직 내 섬유증 개선 효과를 시리우스 레드 염색으로 관찰한 사진 및 그래프이고,
도 18은 MCD 식이 마우스에서 고시페틴 투여에 의한 간 조직 내 콜라겐 전구물질(히드록시프롤린) 수준을 측정한 그래프이고,
도 19은 MCD 식이 마우스에서 고시페틴 투여에 의한 간 조직 내 섬유증 유전자 발현 조절 효과를 나타낸 그래프이고,
도 20은 MCD 식이 마우스에서 고시페틴 투여에 의한 간 독성 개선 효과를 측정한 그래프이다.
본 발명자는 간 세포에서 에너지 대사의 핵심 기능을 수행하는 AMPK 단백질을 활성화시킬 경우 지방간 개선 효과를 달성할 수 있을 것이라 가정하고, 신규 AMPK 활성화제를 발굴하기 위해 노력하였다. 그 결과, 플라보노이드 중 하나인 고시페틴에서 유사 구조의 플라보노이드 대비 강력한 AMPK 활성화 효과가 있으며, 지방간 질환 동물 모델에서 효과적으로 지방간 증상을 개선한다는 점을 확인하고 본 발명을 완성하였다.
본 발명에서, 고시페틴(gossypetin)은 3,5,7,8,3',4'-헥사히드록시플라본(hexahydroxyflavone)으로 불리는 플라보노이드(flavonoid)로서, 하기 화학식 1로 표시되는 화합물이다.
[화학식 1]
Figure PCTKR2023012007-appb-img-000001
본 발명에서, 고시페틴의 염은 조성물의 산업적 적용 분야에 따라 적합한 염, 예컨대 의약품, 의약외품, 식품, 사료 등에 통상적으로 사용가능한 염을 의미한다. 상기 염은 예컨대, 고시페틴의 나트륨, 칼륨, 칼슘, 마그네슘, 리튬, 구리, 망간, 아연, 철 등을 비롯한 무기이온 염과 염산, 인산, 황산과 같은 무기산 염, 그 외에 아스코르브산, 시트르산, 타르타르산, 락트산, 말레산, 말론산, 푸마르산, 글리콜산, 숙신산, 프로피온산, 아세트산, 오로테이트산, 아세틸살리실산과 같은 유기산 염과 라이신, 아르기닌, 구아니딘 등의 아미노산 염 등을 포함하지만, 이에 제한되지 않는다.
본 발명에서, 고시페틴 또는 이의 염은 화학적으로 합성되거나 또는 천연물에서 유래될 수 있다. 일 실시양태에서, 고시페틴 또는 이의 염은 저분자 출발 물질 및/또는 전구체로부터 공지된 유기 반응을 통해 합성된다. 또다른 일 실시양태에서, 고시페틴은 아욱과 무궁화속(Hibiscus) 식물 등의 천연물에서 추출, 분리 및 농축을 통해 수득된다.
본 발명에서, 지방간 질환(fatty liver disease; FLD)은 간 지방증(hepatic steatosis)으로 불리는, 간에 과도한 지질이 축적된 상태를 지칭한다. 상기 상태는 예컨대 간조직 검사시 5% 이상의 간세포에 지방이 침착된 상태로 정의될 수 있다.
본 발명에서 지방간 질환 예방 또는 치료는 지방간 질환의 병태 또는 증상의 예방, 방지, 지연, 호전, 해소, 완화, 경감, 개선, 치료 등의 효과를 포함하며, 지방간 질환의 완전한 발병 억제에 한정되지 않는다.
상기 지방간 질환 예방 또는 치료는 간 세포 내 AMPK 단백질 활성을 증가시킴으로써 달성될 수 있다. 보다 구체적으로, 상기 AMPK 단백질 활성 증가는 AMPK 단백질 인산화 유도를 의미한다.
본 발명에서, AMPK (AMP-activated protein kinase) 단백질은 간 세포에서 당과 지방산의 섭취, 산화 등 에너지 항상성에 핵심적인 역할을 수행하는 단백질로, 세포 내에서 AMPKα, AMPKβ 및 AMPKγ 세 가지 아형이 결합된 헤테로트라이머(heterotrimer) 형태로 존재한다. 인간에서 AMPKα, AMPKβ 및 AMPKγ 유전자 유형 및 서열 정보는 본 발명이 속한 기술 분야에 공지되어 있다.
AMPK 단백질과 직접 상호작용하여 AMPK 인산화를 유도하는 직접 AMPK 활성화제(direct AMPK activator)는 지방간 질환의 핵심 지표를 개선하고 관련 대사 증상을 완화할 수 있어 비알콜성 지방간염을 비롯한 지방간 질환의 주요 치료 타겟으로 고려되고 있으며, 예컨대 직접 AMPK 활성화제인 AICAR, A-769662, C13, PF-249/739, PF-06409577, Compound 1, PXL770 등의 저분자 화합물은 동물 모델에서 지방간 개선 효과를 나타낸다는 점이 잘 알려져 있다(문헌[Zhao, Peng, and Alan R. Saltiel. (2020)] 및 문헌[Gluais-Dagorn, Pascale, et al. (2022)] 등).
고시페틴은 플라보노이드 골격 A 고리 5번, 7번 및 8번 탄소, B 고리의 3'번 및 4'번 탄소 및 C 고리의 3번 탄소에 각각 히드록시기가 부착된 플라보놀 구조를 특징으로 하며 다른 플라보놀 화합물과 차별화되는 독특한 스캐폴드 구조를 형성한다. 이로 인해, 고시페틴은 AMPK 단백질의 ADaM(allosteric drug and metabolite) 사이트에 직접 결합하여 AMPK 단백질의 인산화를 유도할 수 있는 직접 AMPK 활성화제(direct AMPK activator)로 기능할 수 있다(도 3 내지 도 5). 나아가, 이와 같은 고시페틴의 강력한 AMPK 단백질 인산화 효과를 통해, 지질 축적 감소 효과를 포함한 지방간 개선 효과를 발휘할 수 있음을 확인하였다(도 14 및 도 15).
AMPK 단백질의 신호전달 경로는 NASH를 포함한 지방간 질환의 발병 과정에서 지질 대사 및 간 섬유증 등을 효과적으로 조절할 수 있다고 알려져 있다(문헌[Herzig, Sebastien, and Reuben J. Shaw. (2018)] 및 문헌[Garcia, Daniel, et al.(2019)] 등). 따라서, 고시페틴은 다른 플라보노이드 대비 현저하게 향상된 AMPK 활성화 기능을 통해 지방간 질환 예방 또는 치료에 유용하게 활용될 수 있다.
일 실시양태에서, 지방간 질환은 간 세포 내 AMPK 활성, 구체적으로 AMPK 인산화 수준이 정상 간 세포에 비해 감소된 것을 특징으로 할 수 있다(문헌[Zhao, Peng, and Alan R. Saltiel. (2020)], 문헌[Gluais-Dagorn, Pascale, et al. (2022)], 문헌[Smith, Brennan K., et al. (2016)] 등).
본 발명에서, 지방간 질환은 발병 원인에 따라 알콜성 지방간 질환(alcoholic liver disease) 및 비알콜성 지방간 질환(non-alcoholic fatty liver disease; NAFLD)을 포함하며, 바람직하게는 비알콜성 지방간 질환이다. 비알콜성 지방간 질환은 유의한 음주, 약인성, 바이러스 간염 등과 같은 이차적 원인에 의한 간질환이 없으면서 임상적 소견이나 생화학적, 영상학적, 병리학적 검사에 합당한 소견이 있는 질환으로 정의된다(문헌[대한간학회(2021)] 등).
상기 비알콜성 지방간 질환은 간에 단순히 지방만 축적된 상태인 단순 지방간, 간세포 손상(풍선화 또는 섬유화 등)을 동반한 염증 소견이 있는 비알콜성 지방간염(nonalcoholic steatohepatitis; NASH), 및 이를 동반한 간경변 또는 간세포암종까지 질환의 진행 정도에 따라 다양한 하위 질환을 포함한다. 일 실시양태에서, 비알콜성 지방간 질환은 비알콜성 지방간염(NASH)이다.
일 실시양태에서, 비알콜성 지방간 질환은 고지방 식이(high-fat diet; HFD)에 의한 비알콜성 지방간 질환이다. 구체적으로, 상기 고지방 식이는 총 칼로리의 35% 이상이 불포화 및 포화 지방으로 구성된 식단일 수 있다.
고지방 식이는 간 세포 내 AMPK 활성 저하와 밀접하게 연관되어 있다(문헌[Lindholm, Christopher R., et al. (2013)], 문헌[Shiwa, Mami, et al. (2015)] 등). 간 조직 특이적으로 AMPK 활성을 조절할 수 있는 마우스 모델에서, 고지방 식이 마우스의 간 세포 AMPK 활성을 인위적으로 증가시킬 경우 간 지방 축적, 염증, 섬유증 개선 등 지방간 질환 지표를 개선시킬 수 있다(문헌[Garcia, Daniel, et al. (2019)). 따라서, 고지방 식이에 의한 비알콜성 지방간 질환에서 고시페틴 또는 이의 염에 의한 간 세포의 강력한 AMPK 활성 증가는 우수한 지방간 질환의 예방 또는 치료 효과를 발휘할 수 있다(도 1 내지 도 3).
본 발명의 실시예에서, 비알콜성 지방간 질환을 유발하기 위해 메티오닌-콜린 결핍(methionine-choline deficient; MCD) 식이 또는 콜린 결핍 고지방식(choline-deficient high fat diet; CDHFD)을 섭취한 마우스를 사용하였고, 상기 마우스에게 고시페틴 투여 후 지방간 질환 병변의 개선 효과를 확인하였다. 그 결과, 질환 동물 모델에서 간 조직 내 지방증(steatosis), 풍선화(ballooning) 및 염증 개선 효과(도 7 및 도 8) 및 NAFLD 활성 스코어(NAS) 개선 효과(도 9), 간 지방 축적 억제 효과(도 10 내지 도 15), 간 섬유화 증상 개선 효과(도 16 및 도 17), 간 조직 내 섬유화 유전자 발현 조절 효과(도 18 및 도 19) 및 간독성 개선 효과(도 20)를 확인하였다. 상기 지방간 개선 효과는, 고시페틴의 강력한 AMPK 활성화 작용에 의한 것으로 유사 구조의 플라보노이드 화합물보다 현저히 개선된 것이다(도 1 내지 도 6 및 도 14 내지 도 15). 따라서, 고시페틴은 비알콜성 지방간 질환의 예방 또는 치료를 위해 유용하게 활용될 수 있다.
본 발명에서, 지방간질환은 전신적인 대사 질환을 동반할 수 있으며, 예컨대 비만, 제2형 당뇨병, 대사증후군, 고지혈증 및/또는 만성 신장병 등의 간 외 질환을 동반할 수 있다.
본 발명의 약학 조성물은 유효성분으로서 고시페틴 또는 이의 염 외에 약학적으로 허용 가능한 1종 이상의 담체, 부형제, 희석제, 가용화제 등을 포함할 수 있다. 상기 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있고, 가용화제로는 폴록사머 및 라브라솔 등을 들 수 있으나, 이에 제한되지 않는다.
상기 약학 조성물은 경구 또는 비경구 투여를 위한 적합하고 다양한 제형으로 존재할 수 있다. 본 발명에서, 경구 투여용 제형은 정제, 환제, 분말, 산제, 과립, 펠렛, 캡슐, 트로키, 로젠지, 현탁액, 에멀젼, 시럽 및 엘릭시르제 등을 포함할 수 있고, 비경구 투여용 제형은 주사제, 좌제, 호흡기 흡입제, 에어로졸제, 연고, 액제, 로션제, 패치제, 도포용 분말, 오일, 크림, 겔 등을 포함할 수 있으나 이에 제한되지 않는다.
상기 약학 조성물은 제형에 따라 경구 또는 비경구 투여될 수 있다. 비경구 투여는 피하 투여, 피내 투여, 경피 투여, 모발 투여, 복강 투여, 직장 투여, 정맥 투여, 근육 투여, 흉부 투여 등을 포함할 수 있으나, 이에 제한되지 않는다.
상기 약학 조성물은 약학적으로 유효한 양으로 투여될 수 있다. 여기서, 약학적으로 유효한 양은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효한 양의 수준은 환자의 상태, 체중, 성별, 연령, 건강상태, 질병의 정도, 약물에 대한 민감도, 투여 시간, 투여 경로, 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.
상기 약학 조성물은 고시페틴 또는 이의 염 외에도 대사성의 개선 효능을 갖는 1종 이상의 유효성분을 더 포함하여 지방간 질환의 예방 또는 치료 효능을 상승시키는 병용 조성물로 사용될 수 있다.
본 발명에서, 식품 조성물은 고시페틴 또는 이의 염을 일정 농도로 포함하는 건강식품, 건강기능식품, 음료, 식품 첨가제, 식품 보조제 등 모든 식품 형태를 포함하며, 바람직하게는 건강기능식품이다. 상기 건강기능식품은 인체에 유용한 기능성을 가진 원료나 성분을 사용하여, 영양 공급 외에도 생체조절기능이 효율적으로 나타나도록 제조 및 가공한 식품을 의미한다.
상기 건강기능식품에 고시페틴 또는 이의 염은 기능성 원료로 포함될 수 있다. 본 발명의 실시예에서, 지방간 상태를 재현하기 위해 메티오닌-콜린 결핍(methionine-choline deficient; MCD) 식이를 섭취한 마우스를 사용하였고, 상기 마우스에게 고시페틴 투여 후 지방간 상태 개선 효과를 확인하였다. 그 결과, 지방간 동물의 간 조직 내 지방 축적, 간 손상 및 염증 개선 효과(도 7 및 도 8) 및 지방간 개선 효과(도 9), 간 지방 축적 억제 효과(도 10 내지 도 15), 간 섬유화 개선 효과(도 16 및 도 17), 간 조직 내 섬유화 유전자 발현 조절 효과(도 18 및 도 19) 및 간독성 개선 효과(도 20)를 확인하였다. 상기 지방간 개선 효과는, 고시페틴의 강력한 AMPK 활성화 작용에 의한 것으로 유사 구조의 플라보노이드 화합물보다 현저히 개선된 것이다(도 1 내지 도 6 및 도 14 내지 도 15). 따라서, 고시페틴은 지방간과 같은 간 건강 개선을 위해 유용하게 활용될 수 있다.
본 발명의 조성물이 건강기능식품으로 사용될 경우, 사람에게 하루 1회 내지 수회에 걸쳐 투여될 수 있으며, 이때 고시페틴 또는 이의 염의 하루 투여 용량은 0.1 내지 500 mg/일일 수 있고, 구체적으로 1 내지 100 mg/일일 수 있다.
본 발명에서, 사료 조성물은 인간을 제외한 포유류를 포함하는 동물에게 섭취를 위해 제공되는 식이로서, 상기 동물의 지방간 개선 효과를 발휘할 수 있다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
<재료 및 방법>
1. 실험 동물
4 주령 수컷 C57BL/6 마우스를 Central Lab Animal Inc.(Seoul, Korea)에서 구입하였다. 적응 2 주 후, 대조군 내 마우스를 표준 보통 식이(chow diet) 및 MCD 식이(Research Diets, New Brunswick, NJ, United States)로 4 주 동안, 또는 CDHFD 식이(Research Diets)로 3 개월 동안 배급하여 비알콜성 지방간염(NASH)을 유발하였다.
고시페틴의 약리 효과 측정을 위해, 고시페틴을 MCD 식이와 함께 4 주 동안 및 CDHFD 식이와 함께 3 개월 동안 20 mg/kg/일의 용량으로 경구 투여하였다. 이후, 혈액 샘플을 구후 출혈법(retrobulbar bleeding)으로 수집하고, 혈청을 3000 rpm, 20 분 동안 원심분리 하여 수집하였다. 혈청 샘플 내 ALT 및 AST 수준을 SCL Health Inc. (Seoul, Korea)에서 측정하여 지질 독성을 평가하였다.
2. 약물 처리
고시페틴은 Boc sciences (Shirley, NY, USA)에서 합성되었고 세포 기반 실험 및 마우스 투여를 위해 DMSO(Sigma-Aldrich)에 용해되었다. 효과 확인을 위해 고시페틴(20 mg/kg) 또는 비히클(1% 카복시메틸셀룰로오스)을 4 개의 상이한 마우스 그룹(n=17-20)에 4 주 동안 경구 투여하였다.
3. 조직 검사
마우스 간 조직을 4% 파라포름알데히드(PFA)로 고정하고 H&E(Hematoxylin and eosin) 및 시리우스 레드(Sirius red) 염색을 위해 파라핀에 포매하였다. 파라핀 블록을 4 μm 두께로 절편화하고 H&E 염색 후 NAFLD 활성 스코어(NAFLD activity score; NAS)를 측정하였다.
섬유증 수준을 측정하기 위해 파라핀 절편을 Picrosirius red 용액(IHC WORLD, Ellicott City, MD, USA)으로 염색하였다. 절편을 자일렌으로 탈파라핀화하고 에탄올 농도를 100%에서 70%로 줄여가며 탈수시켰다. 탈수된 절편을 Weigert's iron hematoxylin solution (IHC WORLD)으로 염색하고 흐르는 수돗물로 세척한 후 시리우스 레드 염색을 수행하였다. 그 다음, 절편을 0.5% 아세트산 용액으로 세척하고 100% 에탄올로 탈수시켰다. 절편을 Optic mount S3 (BBC Biochemical, Mount Vernon, WA, USA)로 슬라이드 글래스에 마운팅하고 추가 분석에 사용하였다. 모든 이미지는 Axioplan2 microscope (Zeiss Axio Scan Z.1, Jena, Germany)로 촬영하였다.
간 조직을 OCT(optimal cutting temperature) 컴파운드(Sakura Finetek USA, St, Torrance, CA, USA)로 포매 및 동결화하였다. OCT 블록을 10 μm 두께로 절편화하고 오일 레드 O(Sigma-Aldrich)로 염색하여 간 지방증을 측정하였다. 동결 절편을 상온에서 공기 건조시킨 다음, 냉각된 10% 포르말린(Sigma-Aldrich)으로 고정하였다. 고정된 절편을 증류수로 3 회 세척한 다음, 절편을 100% 프로필렌 글리콜(Sigma-Aldrich)에 집어넣고 60 ℃ 오븐에서 예열된 오일 레드 O 용액에서 염색하였다. 그 다음, 절편을 85% 프로필렌 글리콜 용액에 처리하고 증류수로 2회 세척하였다. 다음으로, 절편을 Mayer's modified hematoxylin 용액(Abcam, Cambridge, UK)으로 염색하고 흐르는 수돗물로 세척하였다. 절편을 Dako(Agilent, Glostrup, Denmark) 슬라이드 글래스에 마운팅하여 추가 분석에 사용하였다.
4. 히드록시프롤린 어세이
고시페틴이 MCD 식이-섭취 마우스의 간 조직에서 섬유증 병태를 감소시키는지 조사하기 위해, 히드록시프롤린 함량을 측정하였다. 콜라겐의 전구물질인 히드록시프롤린의 상대 수준을 측정하여 총 간 콜라겐 함량을 결정하였다. 간 샘플(50 mg)을 증류수(100 μl)에 균질화하고 120 ℃에서 3 시간 동안 10 N HCl로 hydrolyze하였다. 히드록시프롤린 함량을 문헌[Brown et al., 2001]에 기재된 대로 결정하였다.
5. 자유 지방산 정량화
간 조직 내 자유 지방산 수준을 제조사 설명서에 따라 자유 지방산 정량화 키트(Sigma-Aldrich)를 통해 측정하였다.
6. 세포 배양
AML12 마우스 간세포를 10% 우태아 혈청(Hyclone), 10% 페니실린/스트렙토마이신 (Welgene, Gyeongsan-si, Korea), 20 mg의 덱사메타손(Sigma-Aldrich) 및 5 ml의 인슐린-트랜스페린-셀레늄 함유 Dulbecco's Modified Eagle Medium/F12 (Hyclone, Logan, UT, USA)로 37 ℃에서 습윤화된 5% CO2 인큐베이터에서 배양하였다.
7. 분자 도킹
인간 AMPK(code: 5iso)의 결정 구조를 RCSB Protein Data Bank에서 준비하였다. 분자 도킹 및 예측 결합 에너지 계산을 PyRx 소프트웨어 내 AutoDock Vina를 이용해 수행하여 AMPK 내 도킹 위치를 확인하였다. 도킹을 위한 그리드 맵은 AMPK의 N-말단 내 ADaM 사이트에 커버되었다. 도킹 결과를 PyMol 시각화 시스템을 이용해 시각화하였다. 수소 결합은 PyMol 소프트웨어로 예측되었다.
8. 웨스턴 블롯팅
세포를 50 mM Tris (pH 7.4), 140 mM NaCl, 5 mM EDTA 및 프로테아제 억제제 태블릿을 함유한 라이시스 버퍼로 용해한 후 초음파 처리를 수행하였다. 용해물의 단백질 농도를 브래드포드 시약(AMERSCO, Framingham, MA, USA)을 이용해 결정하였다. 단백질을 소듐 도데실 설페이트-폴리아크릴아미드 젤 전기영동법으로 분석하고, 니트로셀룰로오스 멤브레인(Pall Corporation, New York, NY, USA)으로 트랜스퍼한 후 블로킹 버퍼(TBS 내 5% 무지방 건조유 및 0.1% Tween 20)로 30 분 동안 인큐베이션하였다. 웨스턴 블롯팅을 AMPK, 인산화-AMPK, LKB, 인산화-LKB(Cell Signaling Technology, Danvers, MA, USA) 및 GAPDH (Bethyl Laboratories, Montgomery, TX, USA)에 대한 일차 항체를 이용해 수행하였다. 이차 항체로 토끼(Promega, Madison, WI, USA), 랫트, 및 염소 항체(Bethyl Laboratories)를 사용하였고, 제조사 설명서에 따라 SUPEX ECL 시약(Neuronex, Goryeong, Korea) 및 ImageQuant LAS-4000 (GE Healthcare, Chicago, MA, USA)를 이용하여 검출을 수행하였다. 통합 블롯팅 밀도를 ImageJ로 정량화하였다.
9. 역전사(RT-PCR) 및 리얼-타임 정량 PCR(qPCR)
전체 RNA를 NucleoZOL 시약(Takara Bio Inc., Kusatsu, Shiga, Japan)을 이용해 분리하였다. RNA를 제조사 설명서에 따라 ImProm-II™ Reverse Transcription System (Promega)를 이용해 역전사하였다. 검출 및 정량화를 위해 StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA)을 FastStart Universal SYBR Green Master(Roche, Basel, Switzerland)와 함께 사용하였다. 리얼-타임 qPCR 데이터를 비교 CT 방법(comparative CT method)으로 분석하였다.
10. 통계 분석
모든 정량 데이터는 평균±표준편차로 나타냈다. 두 그룹 간 비교는 two-tailed unpaired Student's t-test를 통해 분석하였다. 둘을 초과하는 그룹간 비교는 일원 또는 이원 배치 분산 분석을 Tukey 테스트와 함께 수행하였다.
p < 0.05는 통계적으로 유의하다고 간주된다.
<실시예 1> 고시페틴의 간 세포 AMPK 활성화 효과
고시페틴이 AMPK 단백질의 인산화를 유도하는지 확인하기 위해 마우스 간 세포(AML12)에 상이한 농도의 고시페틴을 처리하고, 인산화된 AMPK 단백질의 양을 웨스턴 블롯팅으로 확인하였다. 그 결과, 고시페틴은 농도 의존적으로 AMPK 인산화를 유도하였으며 저농도(EC50 수치 0.43 μM)에서 AMPK를 인산화시킬 수 있음을 확인하였다(도 1).
고시페틴의 간 세포 AMPK 활성화 기능이 실제 지방간 질환 동물의 간조직에서 발휘되는지 확인하기 위해, 고시페틴을 투여받은 MCD 식이 마우스의 간 조직에서 웨스턴 블롯팅으로 AMPK 인산화 정도를 측정하였다. 그 결과, 고시페틴은 지방간 마우스의 간 세포에서도 AMPK 단백질의 인산화를 유도함을 확인하였다(도 2).
<실시예 2> AMPK 단백질의 직접 활성화제로서 고시페틴의 AMPK 인산화 효과
고시페틴의 AMPK 인산화가 고시페틴 및 AMPK 단백질의 직접 결합에 의해 유도되는지 알아보기 위해 CNBr-비드 컨쥬게이션 어세이를 수행하였다. 구체적으로, 고시페틴을 CNBr 비드와 24 시간 동안 인큐베이션하여 컨쥬게이션되도록 한 후, AML12 세포의 세포 용해물을 CNBr 비드와 함께 인큐베이션하였다. 그 다음, 풀-다운 어세이를 통해 AMPK 단백질 검출 여부를 웨스턴 블롯팅을 통해 확인하였다. 그 결과, 고시페틴-컨쥬게이션된 CNBr 비드 샘플에서 AMPK 단백질 밴드가 강하게 검출되어 고시페틴이 AMPK에 직접 결합한다는 점을 확인하였다(도 3).
AMPK의 ADaM(allosteric drug and metabolite) 사이트에 결합하는 저분자 활성화제는 활성 AMPK 구조를 안정화시킨다는 점이 알려져있으므로(문헌[Gu, Xin, et al. (2018)] 등), 고시페틴이 ADaM 사이트 활성화제로서 AMPK의 알로스테릭 구조를 직접 조절할 수 있는지 조사하였다. AutoDock 프로그램을 이용해 AMPK의 ADaM 사이트에 대한 고시페틴의 결합 친화도를 예측한 결과, 고시페틴은 AMPK 중 ADaM 사이트의 Ser108, Lys29, Lys31 및 Asn48와 상호작용할 수 있고(도 4), 그 결합 에너지가 공지된 AMPK 활성화제인 AICAR 및 A-769662와 유사한 수준이라는 점을 확인하였다.
마우스 간 세포(AML12)에서 AMPK 활성화제와 고시페틴의 AMPK 인산화 유도 효과를 비교한 결과, 고시페틴은 주요 AMPK 직접 활성화제인 AICAR 및 A-769662보다 AMPK 인산화 유도 효과가 더 우수한 것으로 확인하였다(도 5).
<실시예 3> 고시페틴과 유사 플라보노이드 간의 AMPK 활성화 효과 비교
퀘르세틴 등 플라보노이드 대사 산물은 NAFLD 및 NASH의 병변을 일부 완화할 수 있다고 알려져 있어(문헌[Tan, Panli, et al. (2022)]), 고시페틴의 AMPK 활성화 효과를 유사한 구조의 플라보노이드 화합물(비교 화합물 1 내지 4)과 비교하기 위해 간 세포(AML12)에 약물 처리 후 AMPK 인산화 수준을 비교하였다.
[표 1]
Figure PCTKR2023012007-appb-img-000002
그 결과, 고시페틴은 유사한 플라보노이드 배당체(비교 화합물 1) 뿐만 아니라 골격 및 히드록시기 부착 위치가 유사한 플라보노이드 화합물(비교 화합물 2 내지 4)에 비해 현저히 우수한 AMPK 인산화 효과를 발휘한다는 점을 확인하였다(도 6).
<실시예 4> 질환 동물에서 고시페틴의 지방간 질환 병변 개선 효과
고시페틴을 투여한 MCD 식이 마우스 간 조직에 대해 H&E 염색 후, 간 지방증(steatosis), 간세포 확장 정도(hepatocyte ballooning) 및 염증 등 지방간 질환 병변을 현미경으로 관찰하였다. 그 결과, 고시페틴 투여시 간 조직에서 지방간 질환 병변이 개선됨을 확인하였다(도 7 및 도 8).
NAFLD 활성 스코어(NAFLD activity score; NAS)는 간 조직검사에서 관찰된 지방 변화(0-3점), 소엽 염증(0-3점) 및 풍선화 변성(1-2) 등급을 합산한 수치로, 이를 통해 지방간 질환의 진단 및 약물 치료 효능 개선 여부 등을 평가한다(문헌[De, Arka, and Ajay Duseja.(2020)] 등). NAS 평가 결과, 고시페틴 투여시 지방간 질환 개선 지표 역시 현저히 개선됨을 확인하였다(도 9).
<실시예 5> 고시페틴의 AMPK 활성화를 통한 지방 축적 감소 효과
고시페틴을 투여한 MCD 식이 마우스에서 간 조직 오일 레드 O 염색을 실시한 결과, 지질 축적을 나타내는 염색 수준이 감소함을 확인하였다(도 10 및 도 11). 또한, 간 조직 내 자유 지방산 수준 역시 고시페틴 투여 후 감소함을 확인하였다(도 12).
간 조직에서 지방 생성 및 β-산화와 관련된 지질 대사 유전자 발현 수준을 측정한 결과, 고시페틴을 투여받은 지방간 마우스에서 지방 생성 유전자(Srebp1c Acyl)의 발현은 감소되고 β-산화 유전자(CptαAcox1)의 발현은 증가됨을 확인하였다(도 13).
한편, AMPK 단백질 억제제인 컴파운드 C (5 μM)와 고시페틴을 함께 처리한 후 오일 레드 O 염색을 통해 지질 축적 수준을 평가하였다. 그 결과, 컴파운드 C가 처리되어 AMPK 활성화가 억제된 경우 고시페틴의 지질 축적 효과가 관찰되지 않아, 고시페틴의 지질축적 효과가 AMPK 활성화 효과를 통해 발휘된다는 점을 확인하였다(도 14 및 도 15).
<실시예 6> 질환 동물에서 고시페틴의 간 섬유증 개선 효과
간 조직검사에서 관찰되는 섬유화 병변은 NAFLD 활성 스코어와 함께 임상적으로 널리 사용되는 지방간염 지표이다(문헌[대한간학회, 2021] 등). 이에, MCD 식이 마우스의 간 조직을 시리우스 레드(Sirius Red) 염색한 후 현미경 관찰을 통해 섬유화 병변의 변화를 측정하였다. 그 결과, MCD 식이 마우스의 간 조직에서는 혈관 근처 간 섬유증 수준이 증가하였으나, 고시페틴을 투여받은 MCD 식이 마우스의 간 조직에서는 염색 영역이 감소하여 섬유화 수준이 현저히 개선됨을 확인하였다(도 16 및 도 17).
MCD 식이 마우스에서 섬유증과 관련한 지표인 콜라겐 생성에 미치는 고시페틴의 억제 효과를 확인하기 위해 간 조직에서 관련 지표 수준을 측정한 결과, 고시페틴 처리 후 콜라겐 전구물질인 히드록시프롤린 함량(도 18) 및 콜라겐 유전자인 collagen 1acollagen 3a의 발현(도 19)이 모두 감소됨을 확인하였다.
<실시예 7> 지방간 질환 동물 모델에서 고시페틴의 간 독성 개선 효과
혈청 간 독성 지표(ALT, AST)는 간 조직 내 병변과 함께 비알콜성 지방간 질환의 선별검사 방법으로 사용될 수 있다(문헌[Yoo, JangSuk, et al.(2008)] 등). 이에, 고시페틴을 투여한 MCD 식이 마우스에서 혈액 샘플을 채취하여, ALT, AST 등 간 독성 지표를 측정하였다. 그 결과, MCD 식이 마우스에서 증가한 간 독성 지표가 고시페틴 투여시 감소함을 확인하여, 지방간 질환에서 고시페틴의 간독성 저해 효과를 확인하였다(도 20).
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (8)

  1. 고시페틴(gossypetin) 또는 이의 염을 유효성분으로 포함하는 지방간 질환(fatty liver disease) 예방 또는 치료용 약학 조성물.
  2. 제 1 항에 있어서, 고시페틴 또는 이의 염은 화학적으로 합성되거나 또는 천연물에서 유래된 것인 조성물.
  3. 제 1 항에 있어서, 지방간 질환 예방 또는 치료는 간 세포 내 AMPK 활성 증가에 의해 달성되는 것인 조성물.
  4. 제 1 항에 있어서, 지방간 질환은 비알콜성 지방간 질환(NAFLD)인 조성물.
  5. 제 4 항에 있어서, 비알콜성 지방간 질환은 비알콜성 지방간염(NASH)인 조성물.
  6. 제 5 항에 있어서, 간 지질 축적 감소, 간 손상 감소, 간 염증 감소, 감 섬유증 감소 및 간독성 개선 효과를 갖는 조성물.
  7. 고시페틴 또는 이의 염을 포함하는 지방간 개선용 식품 조성물.
  8. 고시페틴 또는 이의 염을 포함하는 지방간 개선용 사료 조성물.
PCT/KR2023/012007 2022-08-12 2023-08-12 고시페틴을 포함하는 지방간 개선용 조성물 WO2024035236A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220101415 2022-08-12
KR10-2022-0101415 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024035236A1 true WO2024035236A1 (ko) 2024-02-15

Family

ID=89852243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012007 WO2024035236A1 (ko) 2022-08-12 2023-08-12 고시페틴을 포함하는 지방간 개선용 조성물

Country Status (2)

Country Link
KR (1) KR20240023004A (ko)
WO (1) WO2024035236A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090020697A (ko) * 2006-06-14 2009-02-26 리브라겐 기능성 미용제품 및 치료용 약품에 적용되는 수용성 및 활성 페놀화합물 유도체 및 그 유도체의 제조방법
US20120052053A1 (en) * 2008-11-14 2012-03-01 Manning-Bog Amy B Compositions and methods for the treatment of altered alpha-synuclein function
JP2014070056A (ja) * 2012-09-28 2014-04-21 Oriza Yuka Kk 脂肪蓄積抑制剤
CN103880900A (zh) * 2014-03-06 2014-06-25 山东禾本堂生物科技有限公司 一种黄酮苷化合物及其制备方法和用途
US20170216272A1 (en) * 2003-12-29 2017-08-03 President And Fellows Of Harvard College Compositions for treating or preventing obesity and insulin resistance disorders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170216272A1 (en) * 2003-12-29 2017-08-03 President And Fellows Of Harvard College Compositions for treating or preventing obesity and insulin resistance disorders
KR20090020697A (ko) * 2006-06-14 2009-02-26 리브라겐 기능성 미용제품 및 치료용 약품에 적용되는 수용성 및 활성 페놀화합물 유도체 및 그 유도체의 제조방법
US20120052053A1 (en) * 2008-11-14 2012-03-01 Manning-Bog Amy B Compositions and methods for the treatment of altered alpha-synuclein function
JP2014070056A (ja) * 2012-09-28 2014-04-21 Oriza Yuka Kk 脂肪蓄積抑制剤
CN103880900A (zh) * 2014-03-06 2014-06-25 山东禾本堂生物科技有限公司 一种黄酮苷化合物及其制备方法和用途

Also Published As

Publication number Publication date
KR20240023004A (ko) 2024-02-20

Similar Documents

Publication Publication Date Title
Zhang et al. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota
He et al. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways
Zhao et al. Trimethylamine N-oxide attenuates high-fat high-cholesterol diet-induced steatohepatitis by reducing hepatic cholesterol overload in rats
Froh et al. Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes
JP2023113626A (ja) 胆汁うっ滞性疾患を治療するための組成物及び方法
Hamao et al. Anti-obesity effects of the methanolic extract and chakasaponins from the flower buds of Camellia sinensis in mice
AU2005222994A1 (en) Treatment of fibrosis using FXR ligands
Guo et al. Effects and mechanisms of dendrobium officinalis six nostrum for treatment of hyperuricemia with hyperlipidemia
Odiase et al. In esophageal squamous cells from eosinophilic esophagitis patients, Th2 cytokines increase eotaxin-3 secretion through effects on intracellular calcium and a non-gastric proton pump
Liu et al. Effects of long non-coding RNA NEAT1 on sepsis-induced brain injury in mice via NF-κB.
CN111886026A (zh) 用于治疗或预防高细胞因子血症和重度流感的方法和化合物
Wang et al. Kynurenic acid ameliorates lipopolysaccharide-induced endometritis by regulating the GRP35/NF-κB signaling pathway
Lu et al. The protective effect of isoflurane pretreatment on liver IRI by suppressing noncanonical pyroptosis of liver macrophages
WO2024035236A1 (ko) 고시페틴을 포함하는 지방간 개선용 조성물
Tang et al. Efficacy of Tiopronin in treatment of severe non-alcoholic fatty liver disease
WO2018105921A2 (ko) 지방간의 진단 또는 치료를 위한 류신 지퍼 단백질의 용도
Wang et al. Effects of Bifidobacterium infantis on cytokine-induced neutrophil chemoattractant and insulin-like growth factor-1 in the ileum of rats with endotoxin injury
Wang et al. Parthenolide plays a protective role in the liver of mice with metabolic dysfunction‑associated fatty liver disease through the activation of the HIPPO pathway
WO2015178653A1 (ko) Akkermansia muciniphila 균에서 유래하는 세포밖 소포를 유효성분으로 함유하는 대사질환의 치료 또는 예방용 조성물
WO2023217179A1 (zh) 甘露糖抑制细胞焦亡或减轻化疗药物毒副作用的应用
WO2023008919A1 (ko) 벤질아미노에탄올 유도체를 유효성분으로 포함하는 대사질환의 예방 또는 치료용 조성
Wang et al. Effects of salvianolic acid A on intestinal microbiota and lipid metabolism disorders in Zucker diabetic fatty rats
Tian et al. Gut microbiota dysbiosis and intestinal barrier impairment in diarrhea caused by cold drink and high-fat diet
Meng et al. Salidroside alleviates LPS-induced liver injury and inflammation through SIRT1-NF-κB pathway and NLRP3 inflammasome
Li et al. DUSP9 alleviates hepatic ischemia/reperfusion injury by restraining both mitogen-activated protein kinase and IKK in an apoptosis signal-regulating kinase 1-dependent manner: Role of DUSP9 in hepatic ischemia/reperfusion injury

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23853101

Country of ref document: EP

Kind code of ref document: A1