WO2024035062A1 - 무선 통신 시스템에서 불연속 커버리지 기반 네트워크 선택 방법 및 장치 - Google Patents

무선 통신 시스템에서 불연속 커버리지 기반 네트워크 선택 방법 및 장치 Download PDF

Info

Publication number
WO2024035062A1
WO2024035062A1 PCT/KR2023/011656 KR2023011656W WO2024035062A1 WO 2024035062 A1 WO2024035062 A1 WO 2024035062A1 KR 2023011656 W KR2023011656 W KR 2023011656W WO 2024035062 A1 WO2024035062 A1 WO 2024035062A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
plmn
plmn search
high priority
search timer
Prior art date
Application number
PCT/KR2023/011656
Other languages
English (en)
French (fr)
Inventor
김선희
김현숙
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024035062A1 publication Critical patent/WO2024035062A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the following description is about a wireless communication system and a method and device for selecting a public land mobile network (PLMN) of a terminal based on a discontinuous coverage gap period.
  • PLMN public land mobile network
  • Wireless access systems are being widely deployed to provide various types of communication services such as voice and data.
  • a wireless access system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) systems, etc.
  • enhanced mobile broadband (eMBB) communication technology is being proposed compared to the existing radio access technology (RAT).
  • RAT radio access technology
  • a communication system that takes into account reliability and latency-sensitive services/UE (user equipment) as well as mMTC (massive machine type communications), which connects multiple devices and objects to provide a variety of services anytime and anywhere, is being proposed. .
  • mMTC massive machine type communications
  • the present disclosure relates to a method and device for a terminal to perform PLMN selection in a PLMN that supports discontinuous coverage in a wireless communication system.
  • the present disclosure relates to a method and apparatus for a network to indicate an HPLMN search timer based on discontinuous coverage in a wireless communication system.
  • the present disclosure relates to a method and device for a terminal to directly determine an HPLMN search timer based on discontinuous coverage in a wireless communication system.
  • the present disclosure relates to a method and apparatus for setting priority for an HPLMN search timer based on discontinuous coverage in a wireless communication system.
  • the terminal in a method of operating a terminal in a wireless communication system, connects to a public land mobile network (HPLMN) or a high-priority PLMN, and the terminal stops connecting to the PLMN to which the terminal is connected.
  • HPLMN public land mobile network
  • PLMN search timer performing a PLMN search with a higher priority than the PLMN to which the terminal is connected based on a high priority PLMN search timer and performing a connection connection with the PLMN with the highest available priority based on the PLMN search.
  • a high priority PLMN search timer may be set in consideration of discontinuous coverage of the satellite network.
  • a terminal operating in a wireless communication system at least one transceiver, at least one processor, and operably connected to at least one processor, when executed, at least one processor performs a specific operation. It includes at least one memory that stores instructions to be performed, and the specific operation is: connecting to an HPLMN or a high-priority PLMN, and when the terminal's connection to the connected PLMN is interrupted, Based on the high priority PLMN search timer, the terminal performs a PLMN search with a higher priority than the connected PLMN, and performs a connection connection to the PLMN with the highest available priority based on the PLMN search, where the terminal When operating based on a satellite network, a high priority PLMN search timer can be set considering the discontinuous coverage of the satellite network.
  • a terminal and a high-priority PLMN perform a connection connection, and when the connection connection to a PLMN to which the terminal is connected is interrupted, A step of performing a connection connection to a high-priority PLMN through a PLMN search of the terminal based on a high-priority PLMN search timer; however, when the terminal operates based on a satellite network, the high-priority PLMN search timer is discontinuous in the satellite network. It can be set considering coverage.
  • the at least one processor Control the device to connect to the PLMN, and if the connection to the PLMN to which the device is connected is interrupted, the terminal searches for a PLMN with a higher priority than the PLMN to which the terminal is connected based on the high priority PLMN search timer. and control the device to perform a connection connection to the highest available PLMN based on the PLMN search, wherein if the device operates based on a satellite network, the high priority PLMN search timer is set to the highest priority PLMN available. It can be set considering discontinuous coverage.
  • a high-priority PLMN search timer is set. Based on this, the terminal is controlled to perform a PLMN search with a higher priority than the connected PLMN, and the terminal is controlled to perform a connection connection to the PLMN with the highest available priority based on the PLMN search, and the device is controlled to perform a connection connection based on the satellite network.
  • a high priority PLMN search timer can be set considering the discontinuous coverage of the satellite network.
  • the first high priority PLMN search timer is set by the HPLMN operator and stored in the Subscriber Identification Module (SIM) of the terminal, and the terminal is based on the first high priority PLMN search timer stored in the SIM.
  • SIM Subscriber Identification Module
  • the terminal can search for a PLMN that has a higher priority than the connected PLMN.
  • the network when the terminal operates based on a satellite network, the network sets a new second high priority PLMN search timer and instructs the terminal, and the terminal sets the second high priority PLMN search timer based on the discontinuous coverage of the satellite network.
  • PLMN search can be performed according to the priority PLMN search timer.
  • the network confirms the eDRX (enhanced discontinuous reception) and satellite location of the terminal based on ephemeris orbital data, obtains location information of the terminal from the terminal, and obtains ephemeris orbital information. And based on the location information of the terminal, a new second high priority PLMN search timer may be set and instructed to the terminal.
  • the terminal when the terminal operates based on a satellite network, the terminal sets a third high priority PLMN search timer, and the terminal sets a third high priority PLMN search timer based on the discontinuous coverage of the satellite network. Accordingly, the terminal can search for a PLMN with a higher priority than the connected PLMN.
  • the terminal acquires ephemeris orbital data for a satellite network through a system information block (SIB), the terminal acquires location information of the terminal, and the ephemeris information and terminal Based on the location information, a third high priority PLMN search timer can be set to search for a PLMN with a higher priority than the PLMN to which the terminal is connected.
  • SIB system information block
  • the terminal determines a high priority PLMN search timer based on priority, including a first high priority PLMN search timer stored in the SIM, and a second high priority PLMN search timer indicated by the network.
  • the high priority PLMN search timer may be determined based on one of the third high priority PLMN search timer and the basic high priority PLMN search timer directly determined by the UE.
  • the priorities may be set in the following order: the second high priority PLMN search timer, the third high priority PLMN search timer, the first high priority PLMN search timer, and the default high priority PLMN search timer. You can.
  • the high priority PLMN search timer is set to the value T, and the terminal connects to the PLMN through PLMN search with another higher priority based on the high priority PLMN search timer at the first time.
  • the terminal After attempting to connect, if the terminal connects to a VPLMN (visited PLMN) and is present in the VPLMN at a second time point after the T value from the first time point, the terminal may perform a high priority PLMN search at the second time point.
  • VPLMN visited PLMN
  • the AS access stratum
  • the AS of the terminal is deactivated, and when the terminal leaves the discontinuous coverage of the satellite network, the AS of the terminal is re-activated. You can.
  • the AS of the terminal may instruct re-activation of the AS to the non-access stratum (NAS) of the terminal.
  • NAS non-access stratum
  • high priority PLMN search is performed. It can be done.
  • the present disclosure may provide a method for a terminal to perform PLMN selection in a PLMN that supports discontinuous coverage in a wireless communication system.
  • the present disclosure may provide a method for a network to indicate an HPLMN search timer based on discontinuous coverage in a wireless communication system.
  • the present disclosure can provide a method for a terminal to directly determine an HPLMN search timer based on discontinuous coverage in a wireless communication system.
  • the present disclosure may provide a method for setting a priority for an HPLMN search timer based on discontinuous coverage in a wireless communication system.
  • FIG. 1 is a diagram showing an example of a communication system applicable to the present disclosure.
  • Figure 2 shows an example of a UE to which the implementation of the present specification is applied.
  • Figure 3 is a diagram showing an example of functional separation of a general NG-RAN and 5GC (5th generation core).
  • Figure 4 is a diagram showing an example of a general architecture of a 5G (5th generation) system.
  • Figure 5 is a diagram showing a method of selecting a network considering discontinuous coverage applicable to the present disclosure.
  • Figure 6 is a diagram showing a method for a terminal applicable to the present disclosure to connect to a network based on a satellite network.
  • Figure 7 is a diagram showing a terminal operation method applicable to the present disclosure.
  • Figure 8 is a diagram showing terminal operations applicable to this disclosure.
  • each component or feature may be considered optional unless explicitly stated otherwise.
  • Each component or feature may be implemented in a form that is not combined with other components or features. Additionally, some components and/or features may be combined to configure an embodiment of the present disclosure. The order of operations described in embodiments of the present disclosure may be changed. Some features or features of one embodiment may be included in another embodiment or may be replaced with corresponding features or features of another embodiment.
  • the base station is meant as a terminal node of the network that directly communicates with the mobile station. Certain operations described in this document as being performed by the base station may, in some cases, be performed by an upper node of the base station.
  • 'base station' is a term such as fixed station, Node B, eNB (eNode B), gNB (gNode B), ng-eNB, advanced base station (ABS), or access point. It can be replaced by .
  • a terminal may include a user equipment (UE), a mobile station (MS), a subscriber station (SS), a mobile subscriber station (MSS), It can be replaced with terms such as mobile terminal or advanced mobile station (AMS).
  • UE user equipment
  • MS mobile station
  • SS subscriber station
  • MSS mobile subscriber station
  • AMS advanced mobile station
  • the transmitting end refers to a fixed and/or mobile node that provides a data service or a voice service
  • the receiving end refers to a fixed and/or mobile node that receives a data service or a voice service. Therefore, in the case of uplink, the mobile station can be the transmitting end and the base station can be the receiving end. Likewise, in the case of downlink, the mobile station can be the receiving end and the base station can be the transmitting end.
  • Embodiments of the present disclosure include wireless access systems such as the IEEE 802.xx system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP Long Term Evolution (LTE) system, the 3GPP 5th generation (5G) New Radio (NR) system, and the 3GPP2 system. It may be supported by standard documents disclosed in at least one of the following, and in particular, embodiments of the present disclosure are supported by 3GPP TS (technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321, and 3GPP TS 38.331 documents. It can be supported.
  • 3GPP TS technical specification
  • embodiments of the present disclosure can be applied to other wireless access systems and are not limited to the above-described systems. As an example, it may be applicable to systems applied after the 3GPP 5G NR system and is not limited to a specific system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • LTE may refer to technology after 3GPP TS 36.xxx Release 8.
  • LTE technology after 3GPP TS 36.xxx Release 10 may be referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 may be referred to as LTE-A pro.
  • 3GPP NR may refer to technology after TS 38.xxx Release 15.
  • 3GPP 6G may refer to technologies after TS Release 17 and/or Release 18. “xxx” refers to the standard document detail number.
  • LTE/NR/6G can be collectively referred to as a 3GPP system.
  • abbreviations, and other background technology that may be used in this document, please refer to the following standard document description published prior to this document.
  • terms, abbreviations, and other background technologies related to LTE/EPS can refer to the 36.xxx series, 23.xxx series, and 24.xxx series, and terms and abbreviations related to NR (new radio)/5GS.
  • other background technologies can refer to the 38.xxx series, 23.xxx series, and 24.xxx series.
  • the three key requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Ultra-Reliable and Includes the area of ultra-reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC ultra-Reliable and Includes the area of ultra-reliable and low latency communications
  • KPI Key Performance Indicator
  • FIG. 1 is a diagram illustrating an example of a communication system applied to the present disclosure.
  • the communication system 100 applied to the present disclosure includes a wireless device, a base station, and a network.
  • a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR, LTE) and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots (100a), vehicles (100b-1, 100b-2), extended reality (XR) devices (100c), hand-held devices (100d), and home appliances (100d).
  • appliance) (100e), IoT (Internet of Thing) device (100f), and AI (artificial intelligence) device/server (100g).
  • vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc.
  • the vehicles 100b-1 and 100b-2 may include an unmanned aerial vehicle (UAV) (eg, a drone).
  • UAV unmanned aerial vehicle
  • the XR device 100c includes augmented reality (AR)/virtual reality (VR)/mixed reality (MR) devices, including a head-mounted device (HMD), a head-up display (HUD) installed in a vehicle, a television, It can be implemented in the form of smartphones, computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • the mobile device 100d may include a smartphone, smart pad, wearable device (eg, smart watch, smart glasses), computer (eg, laptop, etc.), etc.
  • Home appliances 100e may include a TV, refrigerator, washing machine, etc.
  • IoT device 100f may include sensors, smart meters, etc.
  • the base station 120 and the network 130 may also be implemented as wireless devices, and a specific wireless device 120a may operate as a base station/network node for other wireless devices.
  • Wireless devices 100a to 100f may be connected to the network 130 through the base station 120.
  • AI technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 100g through the network 130.
  • the network 130 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network.
  • Wireless devices 100a to 100f may communicate with each other through the base station 120/network 130, but communicate directly (e.g., sidelink communication) without going through the base station 120/network 130. You may.
  • vehicles 100b-1 and 100b-2 may communicate directly (eg, vehicle to vehicle (V2V)/vehicle to everything (V2X) communication).
  • the IoT device 100f eg, sensor
  • the IoT device 100f may communicate directly with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection may be established between the wireless devices (100a to 100f)/base station (120) and the base station (120)/base station (120).
  • wireless communication/connection includes various methods such as uplink/downlink communication (150a), sidelink communication (150b) (or D2D communication), and inter-base station communication (150c) (e.g., relay, integrated access backhaul (IAB)).
  • IAB integrated access backhaul
  • This can be achieved through wireless access technology (e.g. 5G NR).
  • wireless communication/connection 150a, 150b, 150c
  • a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to each other.
  • wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
  • various configuration information setting processes for transmitting/receiving wireless signals various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.) , at least some of the resource allocation process, etc. may be performed.
  • Figure 2 may show an example of a UE to which the implementation of the present specification is applied.
  • the UE 200 includes a processor 202, a memory 204, a transceiver 206, one or more antennas 208, a power management module 241, a battery 242, a display 243, It may include a keypad 244, a Subscriber Identification Module (SIM) card 245, a speaker 246, and a microphone 247.
  • SIM Subscriber Identification Module
  • Processor 202 may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein. Processor 202 may be configured to control one or more other components of UE 200 to implement the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed herein.
  • a layer of the air interface protocol may be implemented in processor 202.
  • Processor 202 may include an ASIC, other chipset, logic circuitry, and/or data processing devices.
  • Processor 202 may be an application processor.
  • the processor 202 may include at least one of a DSP, a Central Processing Unit (CPU), a Graphics Processing Unit (GPU), and a modem (modulator and demodulator).
  • the memory 204 is operatively coupled to the processor 202 and can store various information for operating the processor 202.
  • Memory 204 may include ROM, RAM, flash memory, memory cards, storage media, and/or other storage devices.
  • modules e.g., procedures, functions, etc.
  • Modules may be stored in memory 204 and executed by processor 202.
  • Memory 204 may be implemented within processor 202 or external to processor 202, in which case it may be communicatively coupled to processor 202 through various methods known in the art.
  • Transceiver 206 is operatively coupled to processor 202 and can transmit and/or receive wireless signals.
  • Transceiver 206 may include a transmitter and a receiver.
  • Transceiver 206 may include baseband circuitry for processing radio frequency signals.
  • the transceiver 206 may control one or more antennas 208 to transmit and/or receive wireless signals.
  • the power management module 241 may manage power of the processor 202 and/or the transceiver 206.
  • the battery 242 may supply power to the power management module 241.
  • the display 243 may output results processed by the processor 202.
  • Keypad 244 may receive input for use by processor 202. Keypad 244 may be displayed on display 243.
  • SIM card 245 is an integrated circuit for securely storing an International Mobile Subscriber Identity (IMSI) and associated keys, and can be used to identify and authenticate subscribers in mobile phone devices such as cell phones or computers. You can also store contact information on many SIM cards.
  • IMSI International Mobile Subscriber Identity
  • the speaker 246 may output sound-related results processed by the processor 202.
  • Microphone 247 may receive sound-related input for use by processor 202.
  • the UE may operate as a transmitting device in the uplink and as a receiving device in the downlink.
  • the base station may operate as a receiving device in the UL and as a transmitting device in the DL.
  • the base station may be referred to as Node B (Node B), eNode B (eNB), or gNB, and may not be limited to a specific form.
  • each UE may include a communication device, a control device, a memory device, and additional components.
  • a communication device may include communication circuitry and a transceiver.
  • communications circuitry may include one or more processors and/or one or more memory.
  • a transceiver may include one or more transceivers and/or one or more antennas.
  • the control unit is electrically connected to the communication unit, memory unit and additional components and can control the overall operation of each UE.
  • control device may control the electrical/mechanical operation of each UE based on programs/codes/commands/information stored in the memory device.
  • the control device transmits information stored in the memory device to the outside (e.g., other communication devices) via a communication device through a wireless/wired interface, or to the outside (e.g., other communication devices) via a communication device through a wireless/wired interface.
  • Information received from can be stored in a memory device.
  • the additional component may include at least one of a power unit/battery, an input/output (I/O) device (e.g., an audio I/O port, a video I/O port), a drive device, and a computing device.
  • I/O input/output
  • the UE is not limited to this, but includes robots (100a in FIG. 1), vehicles (100b-1 and 100b-2 in FIG. 1), XR devices (100c in FIG. 1), portable devices (100d in FIG. 1), and home appliances.
  • Products (100e in Figure 1), IoT devices (100f in Figure 1), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, and climate/environment devices.
  • It can be implemented in the form of an AI server/device (100g in FIG. 1), a base station (120 in FIG. 1), and a network node.
  • the UE can be used in a mobile or fixed location depending on the usage/service.
  • a control device may be comprised of a set of one or more processors.
  • the control device may be composed of a set of a communication control processor, an application processor (AP), an electronic control unit (ECU), a graphics processing unit, and a memory control processor.
  • the memory device may be comprised of RAM, Dynamic RAM (DRAM), ROM, flash memory, volatile memory, non-volatile memory, and/or a combination thereof.
  • the 5G system is an advanced technology from the 4th generation LTE mobile communication technology. It is an evolution of the existing mobile communication network structure or a new radio access technology (RAT) and LTE (Long-State) through a clean-state structure. As an extended technology of Term Evolution, it supports eLTE (extended LTE), non-3GPP (e.g., WLAN) access, etc.
  • RAT new radio access technology
  • LTE Long-State
  • eLTE extended LTE
  • non-3GPP e.g., WLAN
  • the 5G system is defined as service-based, and the interaction between network functions (NF) within the architecture for the 5G system can be expressed in two ways as follows.
  • NF network functions
  • NF - Reference point representation Interaction between NF services within NFs described by a point-to-point reference point (e.g., N11) between two NFs (e.g., AMF and SMF) indicates.
  • a point-to-point reference point e.g., N11
  • two NFs e.g., AMF and SMF
  • Network functions eg, AMF
  • CP control plane
  • This expression also includes point-to-point reference points if necessary.
  • 5GC may include various components, some of which include access and mobility management function (AMF), session management function (SMF), and policy control function. (policy control function, PCF), user plane function (UPF), application function (AF), unified data management (UDM), and non-3GPP interworking function (N3IWF).
  • AMF access and mobility management function
  • SMF session management function
  • policy control function policy control function
  • PCF user plane function
  • UPF user plane function
  • AF application function
  • UDM unified data management
  • N3IWF non-3GPP interworking function
  • the UE is connected to the data network via UPF through NG-RAN (next generation radio access network) including gNB.
  • NG-RAN next generation radio access network
  • the UE may be provided with data services through an untrusted non-3GPP access, for example, a wireless local area network (WLAN).
  • WLAN wireless local area network
  • N3IWF may be deployed.
  • N3IWF performs the function of managing non-3GPP access and interworking between 5G systems. If the UE is connected to a non-3GPP access (e.g. WiFi aka IEEE 802.11), the UE can connect to the 5G system via N3IWF. N3IWF performs control signaling with AMF and is connected to UPF through the N3 interface for data transmission.
  • a non-3GPP access e.g. WiFi aka IEEE 802.11
  • N3IWF performs control signaling with AMF and is connected to UPF through the N3 interface for data transmission.
  • AMF can manage access and mobility in 5G systems.
  • AMF can perform the function of managing NAS (non-access stratum) security.
  • AMF may perform the function of handling mobility in an idle state.
  • UPF performs the function of a gateway to transmit and receive user data.
  • the UPF node can perform all or part of the user plane functions of S-GW (serving gateway) and P-GW (packet data network gateway) of 4th generation mobile communication.
  • UPF operates as a boundary point between the next generation radio access network (next generation RAN, NG-RAN) and the core network, and is an element that maintains the data path between gNB and SMF. Additionally, when the UE moves across the area served by the gNB, the UPF serves as a mobility anchor point. UPF can perform the function of handling PDUs. For mobility within NG-RAN (e.g. NG-RAN defined in 3GPP Release-15 and later), UPF can route packets. Additionally, UPF can be used in other 3GPP networks (e.g., RAN defined before 3GPP Release-15), e.g., universal mobile telecommunications system (UMTS) terrestrial radio access network (UTRAN), evolved-UTRAN (E-UTRAN), or GERAN. It may also function as an anchor point for mobility with (global system for mobile communication (GSM)/enhanced data rates for global evolution (EDGE) radio access network). UPF may correspond to the termination point of the data interface toward the data network.
  • GSM global
  • PCF is a node that controls the operator's policy.
  • AF is a server that provides various services to the UE.
  • UDM is a server that manages subscriber information, like HSS (home subscriber server) in 4th generation mobile communication.
  • UDM 460 stores and manages subscriber information in a unified data repository (UDR).
  • UDR unified data repository
  • the SMF may perform the function of allocating the IP (Internet protocol) address of the UE. And, SMF can control protocol data unit (PDU) sessions.
  • IP Internet protocol
  • PDU protocol data unit
  • reference numerals for AMF, SMF, PCF, UPF, AF, UDM, N3IWF, gNB, or UE may be omitted, and the operation is performed by referring to matters described in standard documents published before this document. can do.
  • FIG. 3 is a diagram illustrating an example of the structure of a wireless communication system applied to the present disclosure expressed from a node perspective.
  • the UE is connected to a data network (DN) through the next generation RAN.
  • the control plane function (CPF) node is all or part of the functions of the mobility management entity (MME) of 4th generation mobile communication, and all of the control plane functions of the serving gateway (S-GW) and PDN gateway (P-GW). Or do some of it.
  • CPF nodes include AMF and SMF.
  • the UPF node functions as a gateway through which user data is transmitted and received.
  • the authentication server function (AUSF) authenticates and manages the UE.
  • the Network Slice Selection Function (NSSF) is a node for network slicing as will be described later.
  • the network exposure function provides a mechanism to securely expose the services and functions of the 5G core.
  • N1 represents a reference point between UE and AMF.
  • N2 represents a reference point between (R)AN and AMF.
  • N3 represents a reference point between (R)AN and UPF.
  • N4 represents the reference point between SMF and UPF.
  • N5 represents the reference point between PCF and AF.
  • N6 represents the reference point between UPF and DN.
  • N7 represents the reference point between SMF and PCF.
  • N8 represents a reference point between UDM and AMF.
  • N9 represents a reference point between UPFs.
  • N10 represents a reference point between UDM and SMF.
  • N11 represents a reference point between AMF and SMF.
  • N12 represents the reference point between AMF and AUSF.
  • N13 represents the reference point between UDM and AUSF.
  • N14 represents a reference point between AMFs.
  • N15 represents the reference point between the PCF and the AMF in a non-roaming scenario, and the reference point between the AMF and the PCF of the visited network in the roaming scenario.
  • N16 represents a reference point between SMFs.
  • N22 represents a reference point between AMF and NSSF.
  • N30 represents the reference point between PCF and NEF.
  • N33 may represent a reference point between AF and NEF, and the above-described entities and interfaces may be configured with reference to matters described in standard documents published prior to this document.
  • N58 represents a reference point between AMF and NSSAAF.
  • N59 represents a reference point between UDM and NSSAAF.
  • N80 represents a reference point between AMF and NSACF.
  • N81 represents a reference point between SMF and NSACF.
  • the air interface protocol is based on the 3GPP wireless access network standard.
  • the air interface protocol consists of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control signal for data information transmission vertically. It is divided into a control plane for signaling transmission.
  • Protocol layers are L1 (layer-1), L2 (layer-2), and L3 (layer-3) based on the lower three layers of the open system interconnection (OSI) standard model, which is widely known in communication systems. It can be divided into:
  • Figure 4 is a diagram showing an example of the structure of a radio interface protocol between a UE and a gNB.
  • the access stratum (AS) layer includes a physical (PHY) layer, a medium access control layer, a radio link control (RLC) layer, and a packet data convergence protocol (PDCP) layer.
  • PHY physical
  • RLC radio link control
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • the terminal can acquire system information broadcast from the base station and select an appropriate cell to camp. Afterwards, the terminal can obtain service-based configuration information and connect to the network.
  • a public land mobile network may be composed of a mobile country code (MCC) and a mobile network code (MNC).
  • MCC mobile country code
  • MNC mobile network code
  • HPLMN home PLMN
  • VPLMN visited PLMN
  • equivalent HPLMN may refer to a PLMN equivalent to HPLMN, and the list may be stored in the universal subscriber identity module (USIM) of the terminal.
  • the terminal can select a PLMN with high priority, and automatic mode or manual mode can be considered for PLMN selection.
  • the terminal can perform PLMN selection when it is turned on or returns from unserviceable coverage to communicable coverage.
  • the terminal can register in the network by prioritizing the last registered PLMN or selecting a PLMN in the HPLMN or equivalent HPLMN list. If the terminal cannot access the HPLMN or equivalent PLMN, the terminal can select another PLMN based on priority information stored in USIM. That is, the terminal can select a PLMN based on priority information about the PLMN.
  • the terminal when selecting a PLMN based on automatic mode, the terminal can automatically select the PLMN based on a preset priority. Specifically, the terminal may first select a PLMN with priority in the following order: HPLMN, equivalent HPLMN, equivalent HPLMN, user controlled PLMN selector with Access Technology, and operator controlled PLMN Selector with Access Technology, but may not be limited to this.
  • the terminal when performing PLMN selection based on manual mode, the terminal can display a list of connectable PLMNs and connect to the selected PLMN. As an example, the terminal may be able to select a prohibited PLMN based on the PLMN selection, and if registration is successfully performed, the corresponding PLMN may no longer be prohibited.
  • the terminal may receive services from the VPLMN rather than the HPLMN.
  • the terminal may be registered with a PLMN outside the coverage of the HPLMN (e.g. another country) based on information stored in the USIM.
  • the terminal may periodically search for Higher priority PLMN, but may not be limited to this.
  • SOR may mean updating the HPLMN's preferred PLMN/AT (access-technology) combination in the control plane.
  • the terminal can receive a preferred PLMN/AT combination and perform PLMN selection based on the received PLMN/AT list. That is, the PLMN (Operator Controlled PLMN Selector with Access Technology) priority controlled by the operator in the corresponding access technology may be changed to the received PLMN list.
  • PLMN Interle Controlled PLMN Selector with Access Technology
  • a connection coverage cell in a terrestrial network may always be a cell with a fixed size. That is, in a fixed base station, the size of the cell does not need to change flexibly and can always have a fixed size.
  • the terminal may perform connection based on a non-terrestrial network.
  • non-terrestrial networks may have coverage determined based on satellites moving in Earth's orbit.
  • the terminal's connection may be disconnected based on the movement of the satellite.
  • a terminal may not be able to connect to a network in discontinuous coverage based on satellite movement, and network connection may be maintained in continuous coverage.
  • the AS (access stratum) layer of the terminal may be deactivated. If the terminal's AS layer is disabled, some NAS (non-access stratum) timers (e.g. T3412, T3346, T3396, T3447) and related procedures may be interrupted.
  • NAS non-access stratum
  • a back-off timer and a timer T that periodically searches for a home public land mobile network (HPLMN), an EHPLMN, or a high-priority PLMN may operate.
  • a terminal using a RAN that provides the above-described discontinuous coverage can recognize time-based coverage change information.
  • discontinuous coverage may be set in a non-terrestrial network, but is not limited to this.
  • the terminal may recognize time-based coverage change information through ephemeris data of a non-terrestrial network.
  • the terminal may disable the AS function to reduce power consumption in consideration of discontinuous coverage, which will be described later.
  • a case where the terminal exists in a Visited Public Land Mobile Network may be considered.
  • the terminal may attempt to access another network.
  • the terminal may attempt to connect from HPLMN (Home PLMN).
  • HPLMN Home PLMN
  • the terminal can connect to one of the EHPLMNs.
  • the terminal can perform access to one of the higher priority PLMN/AT (access technology) combinations listed in “User Controlled PLMN Selector” or “Operator Controlled PLMN Selector”.
  • the timer T value may be stored in a subscriber identification module (SIM).
  • SIM subscriber identification module
  • the terminal may search for HPLMN, EHPLMN, or higher priority PLMN/AT based on a preset period according to the set timer T value and perform connection.
  • the terminal sets the minimum period search timer (MinimumPeriodicSearchTimer)
  • the terminal may not use a T value smaller than the minimum period search timer. For example, if the value stored in the SIM or the default value for T (if the value is not stored) is smaller than the minimum period search timer, T may be set to the minimum period search timer.
  • the UE may perform periodic PLMN selection during discontinuous coverage.
  • the terminal when the terminal supports a discontinuous coverage service in a registered PLMN (RPLMN), the lower layer of the terminal recognizes that it is connected to a non-terrestrial network and recognizes the point of entry and exit from the discontinuous coverage. You can.
  • the terminal can disable the satellite-based radio during discontinuous coverage.
  • the lower layer of the UE can recognize the discontinuous coverage operation of the RPLMN through orbital information.
  • the lower layer of the terminal may indicate this information to the NAS layer of the terminal.
  • the terminal may not be able to perform PLMN selection based on the highest priority.
  • the terminal can use a higher PLMN through another terrestrial network or non-terrestrial network.
  • the terminal may not be able to search for a PLMN other than the RPLMN. Therefore, the UE needs to evaluate the priority of the RPLMN before deciding whether to delay periodic PLMN selection.
  • the terminal may postpone periodic PLMN search. For example, if the first PLMN in the "Operator/User Controlled PLMN Selector with Access Technology" list is a VPLMN, the terminal may delay periodic PLMN search during discontinuous coverage.
  • the terminal may perform periodic PLMN search.
  • the terminal may not delay periodic PLMN search during discontinuous coverage. That is, the terminal needs to perform periodic PLMN search to search for a higher priority PLMN.
  • the UE deactivates the AS during discontinuous coverage, but there is a need to activate the AS for periodic PLMN search, which will be described later.
  • Figure 5 is a diagram showing a method of selecting a network considering discontinuous coverage applicable to the present disclosure.
  • a terminal can remain in coverage for less time than in an existing network.
  • a terminal may always be able to use a PLMN that is available based on the location of the terminal, and a PLMN that is not available based on the location of the terminal may always be unavailable.
  • whether the terminal will use the PLMN may be determined based on time.
  • the terminal may be turned on after the HPLMH flyover (510) with continuous coverage of HPLMN.
  • HPLMN flyover 510 may be a section where the terminal can access HPLMN.
  • VPLMN flyover (520) may occur.
  • the terminal can select a VPLMN based on the VPLMN flyover (520) that occurred before the HPLMN flyover (510).
  • the terminal can select VPLMN and select HPLMN again through reselection.
  • the terminal may wait for the next HPLMN flyover (530) without selecting the VPLMN, but this is not limited to a specific embodiment.
  • Figure 6 is a diagram showing a method for a terminal applicable to the present disclosure to connect to a network based on a satellite network.
  • the UE when HPLMN uses discontinuous coverage, the UE can select VPLMN even though HPLMN is available.
  • the HPLMN flyover 610 using discontinuous coverage may be shorter than the higher priority PLMN search interval. Therefore, the terminal may not be aware of the HPLMN coverage and may not be able to perform HPLMN selection.
  • the terminal needs to adjust the timer interval to recognize the HPLMN flyover (610).
  • the optimal PLMN may not be selected.
  • the terminal may not be able to select HPLMN for a long period of time.
  • the terminal needs to recognize whether the HPLMN uses discontinuous coverage.
  • the USIM may indicate whether the HPLMN uses discontinuous coverage, but may not be limited thereto.
  • the HPLMN selection probability can be maximized when the terminal is turned on or coverage is restored.
  • the terminal may perform communication based on satellite communication.
  • a satellite network or non-terrestrial network moving along a specific orbit of the Earth
  • the terminal can perform network connection access.
  • the terminal may not be able to perform network connection.
  • the terminal when the terminal is connected to a visited public land mobile network (VPLMN), the terminal may perform an operation to search for a PLMN with a higher priority than the currently connected PLMN, as described above. . That is, the terminal can search for a home PLMN (HPLMN) as a PLMN with a higher priority than the currently connected PLMN. As a specific example, the terminal may search for a PLMN with a higher priority than the PLMN of the current cell based on a preset timer T.
  • timer T can be set by a home operator and stored as a fixed value in USIM (Universal Subscriber Identity Module).
  • the terminal when searching for a higher priority PLMN based on a satellite network moving along a specific orbit of the Earth, the terminal uses a higher PLMN or HPLMN with a higher priority than the current PLMN only when a satellite network exists above the terminal based on HPLMN flyover. You can search. On the other hand, the terminal cannot search HPLMN if there is no HPLMN flyover. Therefore, when the terminal connects to the VPLMN and searches for HPLMN every T time, there may be a case where HPLMN is not searched instead of HPLMN flyover.
  • the HPLMN flyover may be a very short time (e.g. 10 minutes) based on the movement of the satellite, and the discontinuous coverage state may be a very long time (e.g. 10 hours).
  • the terminal when the terminal performs HPLMN search based on the T cycle with a specific timer set, as shown in Figure 6, the terminal is in a position where it can perform a connection to the HPLMN (HPLMN flyover).
  • HPLMN may not be searchable.
  • the access stratum (AS) of the terminal may be deactivated in a discontinuous coverage state based on timer operation to prevent unnecessary power waste of the terminal.
  • the terminal when a terminal connected to a satellite network moves on a ship, etc., the terminal may not move along a set orbit and may move in various forms. Therefore, discontinuous coverage based on the satellite network in the terminal may not have a constant cycle or pattern.
  • the entry point time value and the exit point time value are based on satellite information and GPS information measured by the terminal, and only the terminal knows the actual time information of the terminal. can do.
  • the network can predict when the terminal enters and leaves the discontinuous coverage state based on the terminal's information.
  • the terminal when the terminal is outside the discontinuous coverage of the Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) satellite network, the terminal can select another inter-RAT (e.g. LTE, E-UTRAN, NR satellite network) based on terminal capabilities. .
  • another inter-RAT e.g. LTE, E-UTRAN, NR satellite network
  • the terminal may not be able to connect to another RAT.
  • the terminal may be unable to search for other networks by deactivating the entire AS based on discontinuous coverage.
  • the terminal may not be able to connect to another network (e.g. HPLMN, EHPLMN, higher priority PLMN) until HPLMN search is activated based on timer T, and accordingly, network connection access This may be delayed.
  • another network e.g. HPLMN, EHPLMN, higher priority PLMN
  • the terminal even when the terminal activates AS to search for a higher priority PLMN, it may not be able to search for the HPLMN based on the HPLMN flyover.
  • the terminal if the terminal is registered in a VPLMN and supports a different priority PLMN/AT (Access Technology), the terminal may not be able to search for a higher priority PLMN.
  • an inter-RAT PLMN selection procedure or an enhanced PLMN selection procedure may be necessary as a procedure for the terminal to select a PLMN, and the related details are described below. and describe it.
  • the terminal may perform a PLMN search operation with a higher priority than the current PLMN, which is the registered PLMN to which the current connection is made, as described above. .
  • the terminal may perform a higher priority PLMN search operation including HPLMN based on whether it is within discontinuous coverage based on the satellite network.
  • the UE when the UE deactivates the AS in discontinuous coverage and then returns to continuous coverage where higher PLMN search is possible, the UE can activate the AS and perform a higher priority PLMN search including HPLMN. That is, when the terminal returns to continuous coverage where higher priority PLMN search is possible, it operates as if timer T has expired, so that the terminal can perform a higher priority PLMN search with a higher priority than the registered PLMN to which the terminal is currently connected.
  • higher priority PLMN may include HPLMN.
  • a higher priority PLMN search timer T may be indicated by the network.
  • the network may set a higher priority PLMN search timer T based on the eDRX (enhanced discontinuous reception) value and satellite location information of the terminal and instruct it to the terminal. That is, the network may set a higher priority PLMN search timer T as a cycle time value for new HPLMN access in the network based on ephemeris orbital data and location information of the terminal and instruct the terminal.
  • the terminal may perform a high priority PLMN search based on the higher priority PLMN search timer T indicated from the network.
  • the terminal may directly determine the higher priority PLMN search timer T.
  • the terminal can directly determine the cycle time value for higher priority PLMN access based on ephemeris data and terminal location information that can determine the terminal's own eDRX value and satellite location information.
  • the network can drive a new higher priority PLMN search timer based on the eDRX value of the terminal, ephemeris data that can determine the satellite location, and the location information of the terminal.
  • the above-described timer may be a new timer value rather than a value (e.g. MinimumPeriodicSearchTimer) stored in USIM.
  • the network may indicate which higher priority PLMN search timer the terminal will use.
  • the indication for the higher priority PLMN search timer can be indicated by the network to the terminal through a NAS (non-access stratum) message.
  • the terminal can determine which higher priority PLMN search timer to use based on the instruction.
  • an indication for a higher priority PLMN search timer may be provisioned in the terminal.
  • an indication for a higher priority PLMN search timer may be stored in USIM, but may not be limited thereto.
  • the terminal can determine which higher priority PLMN search timer to use based on the preset priority.
  • the priority for the higher priority PLMN search timer may be as shown in Table 1 below, but this is only an example and may not be limited thereto.
  • the terminal may apply the higher priority PLMN search timer T indicated by the network with highest priority. That is, the higher priority PLMN search timer T indicated by the network may have the highest priority.
  • the terminal may apply the higher priority PLMN search timer T determined directly. That is, the higher priority PLMN search timer T determined by the terminal may have the next priority.
  • the terminal may apply the minimum period search timer stored in the USIM as the higher priority PLMN search timer T. .
  • the default value can be used.
  • the terminal when the terminal accesses the VPLMN after the next T time after attempting to search for a higher priority PLMN, the terminal searches for the higher priority PLMN at time T based on the timer and connects to the higher priority PLMN. You can access it.
  • the terminal in the VPLMN can instruct the terminal's NAS when to perform PLMN selection within continuous coverage.
  • the network when the network sets a new higher priority PLMN search timer, the network must deliver the terminal context stored in the HPLMN through the VPLMN, so the above-described steering of roaming (SOR) procedure or UE parameter update (UPU) procedure is performed. Through this, a new higher priority PLMN search timer can be instructed to the terminal.
  • SOR steering of roaming
  • UUI UE parameter update
  • the terminal or its NAS may recognize that it enters continuous coverage based on re-activation of the AS in discontinuous coverage.
  • the terminal may set the above-described timer T to periodically perform PLMN search in order to receive service from a high priority PLMN.
  • the network instructs the UE to set a new higher priority PLMN search timer for discontinuous coverage by satellite, the UE may perform PLMN selection based on the timer T indicated by the network.
  • the terminal may attempt to connect to the PLMN at time T based on the above-described timer.
  • the network does not instruct the terminal to set a new higher priority PLMN search timer for discontinuous coverage by satellite, and the network ephemeris information (ephemeris) obtained through the terminal's measured location information and SIB (system information block)
  • the UE can perform PLMN selection based on the directly determined timer T.
  • the terminal may attempt to connect to the PLMN at time T based on the above-described timer.
  • the network does not instruct the terminal to set a new higher priority PLMN search timer for discontinuous coverage by satellite, and the terminal also uses higher priority based on the measured location information of the terminal and the ephemeris information of the network acquired through SIB. If the priority PLMN search timer cannot be directly determined, the terminal may perform PLMN selection based on the minimum period search timer stored in the USIM. On the other hand, if the minimum period search timer does not exist, the terminal may perform PLMN selection based on the default value.
  • the terminal may not use a timer value smaller than the minimum period search timer. For example, if the value stored in the SIM or the default value for timer T is smaller than the minimum period search timer, timer T may be set as the minimum period search timer.
  • timer T may control the access attempt period through the higher priority PLMN search timer provided by the higher priority PLMN.
  • a new higher priority PLMN search timer is not set in the terminal, and the terminal detects higher priority PLMN based on the measured location information of the terminal and the ephemeris information of the network acquired through SIB.
  • timer T can control the access attempt cycle through a higher priority PLMN search timer directly determined by the terminal.
  • a case where a UE attempts to access from a VPLMN to one of HPLMN, EHPLMN, or high priority PLMN can be considered.
  • the terminal may attempt access based on automatic mode.
  • the terminal may attempt access to receive service from the high priority PLMN.
  • the UE is in a VPLMN and the higher priority PLMN search timer T for discontinuous coverage of satellite NG-RAN or satellite E-UTRAN expires, the UE will attempt access to receive service from the high priority PLMN. You can.
  • the higher priority PLMN search timer T for discontinuous coverage of satellite NG-RAN or satellite E-UTRAN is not set, and the terminal returns to NG-RAN satellite coverage or satellite E-UTRAN coverage after discontinuous coverage. If the AS is re-activated and the AS instructs the terminal's NAS to do so, the terminal may consider that the timer T has expired at that point and attempt to access to receive service from the high priority PLMN. It may not be limited to this.
  • the HPLMN may update the UE's new UE context based on NAS signaling.
  • a higher priority PLMN search timer T for discontinuous coverage of satellite NG-RAN or satellite E-UTRAN may be considered with the following NAS signaling, as described above. That is, the HPLMN may perform an update based on the higher priority PLMN search timer T described above.
  • HPLMN can provide a new higher priority PLMN search timer to the terminal for discontinuous coverage of satellite NG-RAN or satellite E-UTRAN based on operator policy, measured location information of the terminal, and ephemeris information of the network.
  • a new higher priority PLMN search timer can control the timing of HPLMN to attempt access to HPLMN or high priority PLMN/AT combination, but is not limited to this. No.
  • FIG. 7 is a diagram showing a terminal operation method applicable to the present disclosure.
  • the terminal may perform a connection to the HPLMN or a high-priority PLMN (S710). After that, the terminal may stop connecting to the PLMN to which the terminal is connected. (S720) For example, the terminal may leave the area of the HPLMN or the connection to the HPLMN may be interrupted based on other reasons. If the terminal's connection to the connected PLMN is interrupted, the terminal may perform a PLMN search with another higher priority based on the higher priority PLMN search timer. Afterwards, the terminal can perform a connection to a high-priority PLMN based on the PLMN search.
  • the terminal may perform a different operation based on whether a higher priority PLMN search timer is set based on the discontinuous coverage of the satellite network.
  • the terminal may perform a different operation. If the search timer is not set (S730), the terminal may perform a PLMN search with a higher priority based on the higher priority PLMN search timer stored in the SIM of the terminal (S740). That is, the terminal may perform a PLMN search with an existing terrestrial network.
  • the terminal can perform a PLMN search with a higher priority than the currently connected PLMN through the higher priority PLMN search timer stored in the terminal's SIM.
  • the higher priority PLMN search timer is set based on the discontinuous coverage of the satellite network (S730)
  • the terminal may perform PLMN search based on the higher priority PLMN search timer indicated by the network or the higher priority PLMN search timer directly determined by the terminal.
  • the terminal searches for a higher priority PLMN search timer indicated by the network or a higher priority PLMN determined directly. You can use a timer.
  • the network can confirm the enhanced discontinuous reception (eDRX) and satellite location of the terminal based on ephemeris orbital data. Additionally, the network may obtain the location information of the terminal from the terminal, set a new higher priority PLMN search timer based on the ephemeris information and the location information of the terminal, and instruct the terminal to do so.
  • eDRX enhanced discontinuous reception
  • the network may obtain the location information of the terminal from the terminal, set a new higher priority PLMN search timer based on the ephemeris information and the location information of the terminal, and instruct the terminal to do so.
  • the terminal when the terminal operates based on a satellite network, the terminal acquires ephemeris orbital data for the satellite network through SIB, directly acquires the location information of the terminal, and then acquires the ephemeris orbital data and the terminal's ephemeris information. You can directly set the higher priority PLMN search timer based on location information.
  • the terminal may determine a higher priority PLMN search timer based on priority.
  • the terminal may determine the priority in the order of the higher priority PLMN search timer indicated by the network, the higher priority PLMN search timer directly determined by the terminal, and the HPLMN search timer and basic HPLMN search timer stored in the SIM of the terminal, which is the above-mentioned It's like a bar.
  • the higher priority PLMN search timer may be set to the value T.
  • the terminal attempts to connect to the HPLMN through a higher PLMN search based on the higher priority PLMN search timer at the first time and then connects to the VPLMN (visited PLMN) and connects to the VPLMN at the second time after the T value from the first time. If present, the terminal may perform HPLMN search at the second time point.
  • Figure 8 is a diagram showing terminal operations applicable to this disclosure.
  • the terminal supports satellite network services and can receive services based on the satellite network.
  • the terminal may deactivate the AS of the terminal (S820).
  • AS can be re-activated.
  • the AS of the terminal may indicate information about whether the AS is activated to the NAS of the terminal. That is, the terminal can disable AS to reduce unnecessary power consumption in discontinuous coverage based on the satellite network.
  • the terminal when the terminal leaves discontinuous coverage and activates the AS (S830), the terminal can re-activate the AS and perform a higher priority PLMN search (S840).
  • the terminal exists in the VPLMN,
  • the AS When the AS is re-activated by leaving discontinuous coverage, it operates as if the higher priority PLMN search timer has expired and the terminal can perform a PLMN search with a higher priority than the connected PLMN. Through this, the terminal can search for another PLMN with high priority at the time the AS is re-activated, as described above.
  • the terminal in the VPLMN maintains discontinuous coverage of the satellite network (S830)
  • the terminal can maintain the AS deactivated state, as described above (S850).
  • examples of the proposed methods described above can also be included as one of the implementation methods of the present disclosure, and thus can be regarded as a type of proposed methods. Additionally, the proposed methods described above may be implemented independently, but may also be implemented in the form of a combination (or merge) of some of the proposed methods.
  • a rule may be defined so that the base station informs the terminal of the application of the proposed methods (or information about the rules of the proposed methods) through a predefined signal (e.g., a physical layer signal or a higher layer signal). .
  • Embodiments of the present disclosure can be applied to various wireless access systems.
  • Examples of various wireless access systems include the 3rd Generation Partnership Project (3GPP) or 3GPP2 system.
  • Embodiments of the present disclosure can be applied not only to the various wireless access systems, but also to all technical fields that apply the various wireless access systems. Furthermore, the proposed method can also be applied to mmWave and THz communication systems using ultra-high frequency bands.
  • embodiments of the present disclosure can be applied to various applications such as autonomous vehicles and drones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 무선 통신 시스템에서 단말 동작 방법에 있어서, 단말이 HPLMN 혹은 higher priority PLMN 에 연결 접속하는 단계, HPLMN 혹은 higher priority PLMN 에 연결 접속이 중단된 경우, 단말이 higher priority PLMN 검색 타이머에 기초하여 PLMN 검색을 수행하는 단계 및 higher priority PLMN 검색에 기초하여 우선순위가 높은 PLMN으로 연결 접속을 수행하는 단계를 포함하되, 단말이 위성망에 기초하여 동작하는 경우, higher priority PLMN 검색 타이머는 위성망의 불연속 커버리지를 고려하여 설정될 수 있다.

Description

무선 통신 시스템에서 불연속 커버리지 기반 네트워크 선택 방법 및 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 불연속 커버리지(discontinuous coverage) 갭 주기를 기반으로 단말의 PLMN(public land mobile network) 선택 방법 및 장치에 대한 것이다.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
특히, 많은 통신 기기들이 큰 통신 용량을 요구하게 됨에 따라 기존 RAT(radio access technology)에 비해 향상된 모바일 브로드밴드(enhanced mobile broadband, eMBB) 통신 기술이 제안되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 mMTC(massive machine type communications) 뿐만 아니라 신뢰성 (reliability) 및 지연(latency) 민감한 서비스/UE(user equipment)를 고려한 통신 시스템이 제안되고 있다. 이를 위한 다양한 기술 구성들이 제안되고 있다.
본 개시는 무선 통신 시스템에서 불연속 커버리지를 지원하는 PLMN에서 단말이 PLMN 선택을 수행하는 방법 및 장치에 대한 것이다.
본 개시는 무선 통신 시스템에서 불연속 커버리지에 기초하여 HPLMN 검색 타이머를 네트워크가 지시하는 방법 및 장치에 대한 것이다.
본 개시는 무선 통신 시스템에서 불연속 커버리지에 기초하여 HPLMN 검색 타이머를 단말이 직접 결정하는 방법 및 장치에 대한 것이다.
본 개시는 무선 통신 시스템에서 불연속 커버리지에 기초하여 HPLMN 검색 타이머에 대한 우선순위를 설정하는 방법 및 장치에 대한 것이다.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시의 일 예로서, 무선 통신 시스템에서 단말 동작 방법에 있어서, 단말이 HPLMN(public land mobile network) 또는 우선순위가 높은 PLMN과 연결 접속하는 단계, 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초하여 단말이 연결 접속된 PLMN보다 높은 우선순위를 갖는 PLMN 검색을 수행하는 단계 및 PLMN 검색에 기초하여 이용 가능한 우선순위가 가장 높은 PLMN으로 연결 접속을 수행하는 단계를 포함하되, 단말이 위성망에 기초하여 동작하는 경우, 높은 우선순위 PLMN 검색 타이머는 위성망의 불연속 커버리지를 고려하여 설정될 수 있다.
또한, 본 개시의 일 예로서, 무선 통신 시스템에서 동작하는 단말에 있어서, 적어도 하나의 송수신기, 적어도 하나의 프로세서 및 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 특정 동작은: HPLMN 또는 우선순위가 높은 PLMN과 연결 접속하고, 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초하여 단말이 연결 접속된 PLMN보다 높은 우선순위를 갖는 PLMN 검색을 수행하고, 및 PLMN 검색에 기초하여 이용 가능한 우선순위가 가장 높은 PLMN으로 연결 접속을 수행하되, 단말이 위성망에 기초하여 동작하는 경우, 높은 우선순위 PLMN 검색 타이머는 위성망의 불연속 커버리지를 고려하여 설정될 수 있다.
또한, 본 개시의 일 예로서, 무선 통신 시스템에서 네트워크의 동작 방법에 있어서, 단말과 우선순위가 높은 PLMN이 연결 접속을 수행하는 단계 및 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초한 단말의 PLMN 검색을 통해 우선순위가 높은 PLMN으로 연결 접속을 수행하는 단계를 포함하되, 단말이 위성망에 기초하여 동작하는 경우, 높은 우선순위 PLMN 검색 타이머는 위성망의 불연속 커버리지를 고려하여 설정될 수 있다.
또한, 본 개시의 일 예로서, 무선 통신 시스템에서 동작하는 네트워크에 있어서, 적어도 하나의 송수신기, 적어도 하나의 프로세서 및 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고, 특정 동작은: 단말과 HPLMN 또는 우선순위가 높은 PLMN이 연결 접속을 수행하고, 및 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초한 단말의 PLMN 검색을 통해 우선순위가 높은 PLMN으로 연결 접속을 수행하되, 단말이 위성망에 기초하여 동작하는 경우, 높은 우선순위 PLMN 검색 타이머는 위성망의 불연속 커버리지를 고려하여 설정될 수 있다.
또한, 본 개시의 일 예로서, 적어도 하나의 메모리 및 적어도 하나의 메모리들과 기능적으로 연결되어 있는 적어도 하나의 프로세서를 포함하는 장치에 있어서, 적어도 하나의 프로세서는 장치가, HPLMN 또는 우선순위가 높은 PLMN과 연결 접속하도록 장치를 제어하고, 장치가 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초하여 단말이 연결 접속된 PLMN보다 높은 우선순위를 갖는 PLMN 검색을 수행하도록 장치를 제어하고, 및 PLMN 검색에 기초하여 이용 가능한 우선순위가 가장 높은 PLMN으로 연결 접속을 수행하도록 장치를 제어하되, 장치가 위성망에 기초하여 동작하는 경우, 높은 우선순위 PLMN 검색 타이머는 위성망의 불연속 커버리지를 고려하여 설정될 수 있다.
또한, 본 개시의 일 예로서, 적어도 하나의 명령어(instructions)을 저장하는 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서, 프로세서에 의해 실행 가능한(executable) 적어도 하나의 명령어를 포함하며, 적어도 하나의 명령어는, 장치가 HPLMN 또는 우선순위가 높은 PLMN과 연결 접속하도록 제어하고, 장치가 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초하여 단말이 연결 접속된 PLMN보다 높은 우선순위를 갖는 PLMN 검색을 수행하도록 제어하고, 및 PLMN 검색에 기초하여 이용 가능한 우선순위가 가장 높은 PLMN으로 연결 접속을 수행하도록 제어하되, 장치가 위성망에 기초하여 동작하는 경우, 높은 우선순위 PLMN 검색 타이머는 위성망의 불연속 커버리지를 고려하여 설정될 수 있다.
또한, 다음의 사항들은 공통으로 적용될 수 있다.
본 개시의 일 예로서, 제1 높은 우선순위 PLMN 검색 타이머는 HPLMN 운영자에 의해 설정되어 단말의 SIM(Subscriber Identification Module)에 저장되고, 단말은 SIM에 저장된 제1 높은 우선순위 PLMN 검색 타이머에 기초하여 단말이 연결 접속된 PLMN보다 높은 우선순위를 갖는 PLMN을 검색할 수 있다.
또한, 본 개시의 일 예로서, 단말이 위성망에 기초하여 동작하는 경우, 네트워크는 제2 높은 우선순위 PLMN 검색 타이머를 새롭게 설정하여 단말로 지시하고, 단말은 위성망의 불연속 커버리지에 기초하여 제2 높은 우선순위 PLMN 검색 타이머에 따라 PLMN 검색을 수행할 수 있다.
또한, 본 개시의 일 예로서, 네트워크는 궤도력 정보(ephemeris orbital data)에 기초하여 단말의 eDRX(enhanced discontinuous reception) 및 위성 위치를 확인하고, 단말로부터 단말의 위치 정보를 획득하고, 궤도력 정보 및 단말의 위치 정보에 기초하여 제2 높은 우선순위 PLMN 검색 타이머를 새롭게 설정하여 단말로 지시할 수 있다.
또한, 본 개시의 일 예로서, 단말이 위성망에 기초하여 동작하는 경우, 단말은 제3 높은 우선순위 PLMN 검색 타이머를 설정하고, 단말은 위성망의 불연속 커버리지에 기초하여 제3 높은 우선순위 PLMN 검색 타이머에 따라 단말이 연결 접속된 PLMN보다 높은 우선순위를 갖는 PLMN을 검색할 수 있다.
또한, 본 개시의 일 예로서, 단말은 SIB(system information block)을 통해 위성망에 대한 궤도력 정보(ephemeris orbital data)를 획득하고, 단말은 단말의 위치 정보를 획득하고, 궤도력 정보 및 단말의 위치 정보에 기초하여 제3 높은 우선순위 PLMN 검색 타이머를 설정하여 단말이 연결 접속된 PLMN보다 높은 우선순위를 갖는 PLMN을 검색할 수 있다.
또한, 본 개시의 일 예로서, 단말은 우선순위에 기초하여 높은 우선순위 PLMN 검색 타이머를 결정하되, SIM에 저장된 제1 높은 우선순위 PLMN 검색 타이머, 네트워크가 지시하는 제2 높은 우선순위 PLMN 검색 타이머, 단말이 직접 결정하는 제3 높은 우선순위 PLMN 검색 타이머 및 기본 높은 우선순위 PLMN 검색 타이머 중 어느 하나에 기초하여 높은 우선순위 PLMN 검색 타이머가 결정될 수 있다.
또한, 본 개시의 일 예로서, 제2 높은 우선순위 PLMN 검색 타이머, 제3 높은 우선순위 PLMN 검색 타이머, 제1 높은 우선순위 PLMN 검색 타이머 및 기본 높은 우선순위 PLMN 검색 타이머 순서로 우선순위가 설정될 수 있다.
또한, 본 개시의 일 예로서, 높은 우선순위 PLMN 검색 타이머가 T 값으로 설정되고, 단말이 제1 시점에 높은 우선순위 PLMN 검색 타이머에 기초하여 다른 더 높은 우선순위를 지니는 PLMN 검색을 통해 PLMN 연결 접속을 시도한 후 VPLMN(visited PLMN)에 연결 접속하여 제1 시점으로부터 T 값 이후인 제2 시점에 VPLMN에 존재하는 경우, 단말은 제2 시점에서 높은 우선순위 PLMN 검색을 수행할 수 있다.
또한, 본 개시의 일 예로서, 단말이 위성망의 불연속 커버리지에 진입하는 경우, 단말의 AS(access stratum)는 비활성화되고, 단말이 위성망의 불연속 커버리지를 이탈하는 경우, 단말의 AS는 재-활성화될 수 있다.
또한, 본 개시의 일 예로서, 단말의 AS는 단말의 NAS(non-access stratum)로 AS의 재-활성화를 지시할 수 있다.
또한, 본 개시의 일 예로서, VPLMN에 존재하는 단말이 불연속 커버리지 이탈에 기초하여 AS가 재-활성화되고, 단말의 AS가 단말의 NAS로 AS의 재-활성화를 지시하면 높은 우선순위 PLMN 검색을 수행할 수 있다.
본 개시는 무선 통신 시스템에서 불연속 커버리지를 지원하는 PLMN에서 단말이 PLMN 선택을 수행하는 방법을 제공할 수 있다.
본 개시는 무선 통신 시스템에서 불연속 커버리지에 기초하여 HPLMN 검색 타이머를 네트워크가 지시하는 방법을 제공할 수 있다.
본 개시는 무선 통신 시스템에서 불연속 커버리지에 기초하여 HPLMN 검색 타이머를 단말이 직접 결정하는 방법을 제공할 수 있다.
본 개시는 무선 통신 시스템에서 불연속 커버리지에 기초하여 HPLMN 검색 타이머에 대한 우선순위를 설정하는 방법을 제공할 수 있다.
본 개시에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 개시의 실시 예들로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.
본 개시의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 개시의 실시 예들에 대한 기재로부터 본 개시의 기술 구성이 적용되는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 개시에서 서술하는 구성을 실시함에 따른 의도하지 않은 효과들 역시 본 개시의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
이하에 첨부되는 도면들은 본 개시에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 개시에 대한 실시 예들을 제공할 수 있다. 다만, 본 개시의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미할 수 있다.
도 1은 본 개시에 적용 가능한 통신 시스템 예시를 나타낸 도면이다.
도 2는 본 명세서의 구현이 적용되는 UE의 예를 나타낸다.
도 3은 일반적인 NG-RAN과 5GC(5th generation core)의 기능적 분리의 예를 도시한 도면이다.
도 4는 5G(5th generation) 시스템의 일반적인 아키텍쳐의 예를 도시한 도면이다.
도 5는 본 개시에 적용 가능한 불연속 커버리지를 고려하여 네트워크를 선택하는 방법을 나타낸 도면이다.
도 6은 본 개시에 적용 가능한 단말이 위성망에 기초하여 네트워크에 연결 접속을 수행하는 방법을 나타낸 도면이다.
도 7은 본 개시에 적용 가능한 단말 동작 방법을 나타낸 도면이다.
도 8은 본 개시에 적용 가능한 단말 동작을 나타낸 도면이다.
이하의 실시 예들은 본 개시의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시 예를 구성할 수도 있다. 본 개시의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.
도면에 대한 설명에서, 본 개시의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 개시를 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.
본 명세서에서 본 개시의 실시 예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNB(eNode B), gNB(gNode B), ng-eNB, 발전된 기지국(advanced base station, ABS) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
또한, 본 개시의 실시 예들에서 단말(terminal)은 사용자 기기(user equipment, UE), 이동국(mobile station, MS), 가입자국(subscriber station, SS), 이동 가입자 단말(mobile subscriber station, MSS), 이동 단말(mobile terminal) 또는 발전된 이동 단말(advanced mobile station, AMS) 등의 용어로 대체될 수 있다.
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크의 경우, 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크의 경우, 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.
본 개시의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE(Long Term Evolution) 시스템, 3GPP 5G(5th generation) NR(New Radio) 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 개시의 실시 예들은 3GPP TS(technical specification) 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.321 및 3GPP TS 38.331 문서들에 의해 뒷받침 될 수 있다.
또한, 본 개시의 실시 예들은 다른 무선 접속 시스템에도 적용될 수 있으며, 상술한 시스템으로 한정되는 것은 아니다. 일 예로, 3GPP 5G NR 시스템 이후에 적용되는 시스템에 대해서도 적용 가능할 수 있으며, 특정 시스템에 한정되지 않는다.
즉, 본 개시의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시 형태를 설명하고자 하는 것이며, 본 개시의 기술 구성이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
또한, 본 개시의 실시 예들에서 사용되는 특정 용어들은 본 개시의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 개시의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.
이하 설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE, NR 등)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미할 수 있다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭될 수 있다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미할 수 있다. 3GPP 6G는 TS Release 17 및/또는 Release 18 이후의 기술을 의미할 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR/6G는 3GPP 시스템으로 통칭될 수 있다.
본 개시에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 일 예로, 36.xxx 및 38.xxx 표준 문서를 참조할 수 있다.
본 문서에서 사용될 수 있는 용어, 약어 및 그 밖의 배경기술에 대해서는 본 문서 이전에 공개된 하기 표준 문서 기재를 참조할 수 있다. 특히, LTE/EPS(Evolved Packet System) 관련 용어, 약어 및 그 밖의 배경기술들은 36.xxx 시리즈, 23.xxx 시리즈 및 24.xxx 시리즈를 참고할 수 있으며, NR(new radio)/5GS 관련 용어, 약어 및 그 밖의 배경기술들은 38.xxx 시리즈, 23.xxx 시리즈 및 24.xxx 시리즈를 참고할 수 있다.
이하, 위와 같이 정의된 용어를 바탕으로 본 명세서에 대하여 기술한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
본 개시에 적용 가능한 통신 시스템
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들 간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 1은 본 개시에 적용되는 통신 시스템 예시를 도시한 도면이다.
도 1을 참조하면, 본 개시에 적용되는 통신 시스템(100)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR, LTE)을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(extended reality) 기기(100c), 휴대 기기(hand-held device)(100d), 가전(home appliance)(100e), IoT(Internet of Thing) 기기(100f), AI(artificial intelligence) 기기/서버(100g)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량(100b-1, 100b-2)은 UAV(unmanned aerial vehicle)(예, 드론)를 포함할 수 있다. XR 기기(100c)는 AR(augmented reality)/VR(virtual reality)/MR(mixed reality) 기기를 포함하며, HMD(head-mounted device), 차량에 구비된 HUD(head-up display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 장치, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기(100d)는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전(100e)은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기(100f)는 센서, 스마트 미터 등을 포함할 수 있다. 예를 들어, 기지국(120), 네트워크(130)는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(120a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(120)을 통해 네트워크(130)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(130)를 통해 AI 서버(100g)와 연결될 수 있다. 네트워크(130)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(120)/네트워크(130)를 통해 서로 통신할 수도 있지만, 기지국(120)/네트워크(130)를 통하지 않고 직접 통신(예, 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(예, V2V(vehicle to vehicle)/V2X(vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(100f)(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(120), 기지국(120)/기지국(120) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(예, relay, IAB(integrated access backhaul))과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 2는 본 명세서의 구현이 적용되는 UE의 예를 나타낼 수 있다.
도 2를 참조하면, UE(200)는 프로세서(202), 메모리(204), 송수신기(206), 하나 이상의 안테나(208), 전원 관리 모듈(241), 배터리(242), 디스플레이(243), 키패드(244), SIM(Subscriber Identification Module) 카드(245), 스피커(246), 마이크(247)를 포함할 수 있다.
프로세서(202)는 본 명세서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 작동 흐름도를 구현하도록 구성될 수 있다. 프로세서(202)는 본 명세서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 작동 흐름도를 구현하도록 UE(200)의 하나 이상의 다른 구성 요소를 제어하도록 구성될 수 있다. 무선 인터페이스 프로토콜의 계층은 프로세서(202)에 구현될 수 있다. 프로세서(202)는 ASIC, 기타 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 프로세서(202)는 애플리케이션 프로세서일 수 있다. 프로세서(202)는 DSP, CPU(Central Processing Unit), GPU(Graphics Processing Unit), 모뎀(변조 및 복조기) 중 적어도 하나를 포함할 수 있다.
메모리(204)는 프로세서(202)와 동작 가능하도록 결합되며, 프로세서(202)를 작동하기 위한 다양한 정보를 저장할 수 있다. 메모리(204)는 ROM, RAM, 플래시 메모리, 메모리 카드, 저장 매체 및/또는 기타 저장 장치를 포함할 수 있다. 구현이 소프트웨어에서 구현될 때, 여기에 설명된 기술은 본 명세서에서 개시된 설명, 기능, 절차, 제안, 방법 및/또는 작동 흐름도를 수행하는 모듈(예: 절차, 기능 등)을 사용하여 구현될 수 있다. 모듈은 메모리(204)에 저장되고 프로세서(202)에 의해 실행될 수 있다. 메모리(204)는 프로세서(202) 내에 또는 프로세서(202) 외부에 구현될 수 있으며, 이 경우 기술에서 알려진 다양한 방법을 통해 프로세서(202)와 통신적으로 결합될 수 있다.
송수신기(206)는 프로세서(202)와 동작 가능하도록 결합되며, 무선 신호를 전송 및/또는 수신할 수 있다. 송수신기(206)는 송신기와 수신기를 포함할 수 있다. 송수신기(206)는 무선 주파수 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 송수신기(206)는 하나 이상의 안테나(208)를 제어하여 무선 신호를 전송 및/또는 수신할 수 있다.
전원 관리 모듈(241)은 프로세서(202) 및/또는 송수신기(206)의 전원을 관리할 수 있다. 배터리(242)는 전원 관리 모듈(241)에 전원을 공급할 수 있다.
디스플레이(243)는 프로세서(202)에 의해 처리된 결과를 출력할 수 있다. 키패드(244)는 프로세서(202)에서 사용할 입력을 수신할 수 있다. 키패드(244)는 디스플레이(243)에 표시될 수 있다.
SIM 카드(245)는 IMSI(International Mobile Subscriber Identity)와 관련 키를 안전하게 저장하기 위한 집적 회로이며, 휴대 전화나 컴퓨터와 같은 휴대 전화 장치에서 가입자를 식별하고 인증하는 데에 사용될 수 있다. 또한, 많은 SIM 카드에 연락처 정보를 저장할 수도 있다.
스피커(246)는 프로세서(202)에서 처리한 사운드 관련 결과를 출력할 수 있다. 마이크(247)는 프로세서(202)에서 사용할 사운드 관련 입력을 수신할 수 있다.
본 명세서의 구현에서, UE는 상향링크에서 송신 장치로, 하향링크에서 수신 장치로 작동할 수 있다. 본 명세서의 구현에서, 기지국은 UL에서 수신 장치로, DL에서 송신 장치로 동작할 수 있다. 본 명세서에서, 기지국은 노드 B(Node B), eNode B(eNB), gNB로 불릴 수 있으며, 특정 형태로 한정되는 것은 아닐 수 있다.
또한, 일 예로, UE는 사용 예/서비스에 따라 다양한 형태로 구현될 수 있다. UE는 다양한 구성 요소, 장치/부분 및/또는 모듈에 의해 구성될 수 있다. 예를 들어, 각 UE는 통신 장치, 제어 장치, 메모리 장치 및 추가 구성 요소를 포함할 수 있다. 통신 장치는 통신 회로 및 송수신기를 포함할 수 있다. 예를 들어, 통신 회로는 하나 이상의 프로세서 및/또는 하나 이상의 메모리를 포함할 수 있다. 예를 들어, 송수신기는 하나 이상의 송수신기 및/또는 하나 이상의 안테나를 포함할 수 있다. 제어 장치는 통신 장치, 메모리 장치, 추가 구성 요소에 전기적으로 연결되며, 각 UE의 전체 작동을 제어할 수 있다. 예를 들어, 제어 장치는 메모리 장치에 저장된 프로그램/코드/명령/정보를 기반으로 각 UE의 전기/기계적 작동을 제어할 수 있다. 제어 장치는 메모리 장치에 저장된 정보를 무선/유선 인터페이스를 통해 통신 장치를 거쳐 외부(예: 기타 통신 장치)로 전송하거나, 또는 무선/유선 인터페이스를 통해 통신 장치를 거쳐 외부(예: 기타 통신 장치)로부터 수신한 정보를 메모리 장치에 저장할 수 있다.
추가 구성 요소는 UE의 유형에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 구성 요소는 동력 장치/배터리, 입출력(I/O) 장치(예: 오디오 I/O 포트, 비디오 I/O 포트), 구동 장치 및 컴퓨팅 장치 중 적어도 하나를 포함할 수 있다. 또한, UE는 이에 국한되지 않고, 로봇(도 1의 100a), 차량(도 1의 100b-1 및 100b-2), XR 장치(도 1의 100c), 휴대용 장치(도 1의 100d), 가전 제품(도 1의 100e), IoT 장치(도 1의 100f), 디지털 방송 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/장치(도 1의 100g), 기지국(도 1의 120), 네트워크 노드의 형태로 구현될 수 있다. UE는 사용 예/서비스에 따라 이동 또는 고정 장소에서 사용할 수 있다.
UE의 다양한 구성 요소, 장치/부분 및/또는 모듈의 전체는 유선 인터페이스를 통해 서로 연결되거나, 적어도 일부가 통신 장치를 통해 무선으로 연결될 수 있다. 또한, UE의 각 구성 요소, 장치/부분 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어 장치는 하나 이상의 프로세서 집합에 의해 구성될 수 있다. 일 예로, 제어 장치는 통신 제어 프로세서, 애플리케이션 프로세서(AP; Application Processor), 전자 제어 장치(ECU; Electronic Control Unit), 그래픽 처리 장치 및 메모리 제어 프로세서의 집합에 의해 구성될 수 있다. 또 다른 예로, 메모리 장치는 RAM, DRAM(Dynamic RAM), ROM, 플래시 메모리, 휘발성 메모리, 비휘발성 메모리 및/또는 이들의 조합에 의해 구성될 수 있다.
본 개시에 적용될 수 있는 5G 시스템 아키텍처
5G 시스템은 4세대 LTE 이동 통신 기술로부터 진보된 기술로서 기존 이동 통신망 구조의 개선(Evolution) 혹은 클린-스테이트(Clean-state) 구조를 통해 새로운 무선 액세스 기술(RAT: Radio Access Technology), LTE(Long Term Evolution)의 확장된 기술로서 eLTE(extended LTE), non-3GPP(예를 들어, WLAN) 액세스 등을 지원한다.
5G 시스템은 서비스-기반으로 정의되고, 5G 시스템을 위한 아키텍처(architecture) 내 네트워크 기능(NF: Network Function)들 간의 상호동작(interaction)은 다음과 같이 2가지 방식으로 나타낼 수 있다.
- 참조 포인트 표현(representation): 2개의 NF들(예를 들어, AMF 및 SMF) 간의 점-대-점 참조 포인트(예를 들어, N11)에 의해 기술되는 NF들 내 NF 서비스들 간의 상호 동작을 나타낸다.
- 서비스-기반 표현(representation): 제어 평면(CP: Control Plane) 내 네트워크 기능들(예를 들어, AMF)은 다른 인증된 네트워크 기능들이 자신의 서비스에 액세스하는 것을 허용한다. 이 표현은 필요한 경우 점-대-점(point-to-point) 참조 포인트(reference point)도 포함한다.
5GC(5G Core)는 다양한 구성요소들을 포함할 수 있으며, 그 중에서 일부에 해당하는 액세스 및 이동성 관리 기능(access and mobility management function, AMF)와 세션 관리 기능(session management function, SMF)와 정책 제어 기능(policy control function, PCF), 사용자 평면 기능(user plane function, UPF), 애플리케이션 기능(application function, AF), 통합 데이터 관리(unified data management, UDM), N3IWF(non-3GPP interworking function)를 포함한다.
UE는 gNB를 포함하는 NG-RAN(next generation radio access network)를 통해 UPF를 거쳐 데이터 네트워크로 연결된다. UE는 신뢰되지 않는 비-3GPP 액세스, 예컨대, WLAN(wireless local area network)를 통해서 데이터 서비스를 제공받을 수 있다. 비-3GPP 액세스를 코어 네트워크에 접속시키기 위하여, N3IWF가 배치될 수 있다.
N3IWF는 비-3GPP 액세스와 5G 시스템 간의 인터워킹을 관리하는 기능을 수행한다. UE가 비-3GPP 액세스(예: IEEE 802.11로 일컬어지는 WiFi)와 연결된 경우, UE는 N3IWF를 통해 5G 시스템과 연결될 수 있다. N3IWF는 AMF와 제어 시그너링을 수행하고, 데이터 전송을 위해 N3 인터페이스를 통해 UPF와 연결된다.
AMF는 5G 시스템에서 액세스 및 이동성을 관리할 수 있다. AMF는 NAS(non-access stratum) 보안을 관리하는 기능을 수행할 수 있다. AMF는 아이들 상태(idle state)에서 이동성을 핸들링하는 기능을 수행할 수 있다.
UPF는 사용자의 데이터를 송수신하기 위한 게이트웨이의 기능을 수행한다. UPF 노드는 4세대 이동통신의 S-GW(serving gateway) 및 P-GW(packet data network gateway)의 사용자 평면 기능의 전부 또는 일부를 수행할 수 있다.
UPF는 차세대 무선 접속 네트워크(next generation RAN, NG-RAN)와 코어 네트워크 사이의 경계점으로 동작하고, gNB와 SMF 사이의 데이터 경로를 유지하는 요소이다. 또한, UE가 gNB에 의해서 서빙되는 영역에 걸쳐 이동하는 경우, UPF는 이동성 앵커 포인트(mobility anchor point) 역할을 수행한다. UPF는 PDU를 핸들링하는 기능을 수행할 수 있다. NG-RAN(예: 3GPP 릴리즈-15 이후에서 정의되는 NG-RAN) 내에서의 이동성을 위해, UPF는 패킷들을 라우팅할 수 있다. 또한, UPF는 다른 3GPP 네트워크(예: 3GPP 릴리즈-15 전에 정의되는 RAN), 예를 들어, UTRAN(UMTS(universal mobile telecommunications system) terrestrial radio access network)), E-UTRAN(evolved-UTRAN) 또는 GERAN(GSM(global system for mobile communication)/EDGE(enhanced data rates for global evolution) radio access network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다. UPF는 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당할 수 있다.
PCF는 사업자의 정책을 제어하는 노드이다. AF는 UE에게 여러 서비스를 제공하기 위한 서버이다. UDM은 4세대 이동 통신의 HSS(home subscriber server)와 같이, 가입자 정보를 관리하는 서버이다. UDM(460)은 가입자 정보를 통합 데이터 저장소(unified data repository: UDR)에 저장하고 관리한다.
SMF는 UE의 IP(Internet protocol) 주소를 할당하는 기능을 수행할 수 있다. 그리고, SMF는 PDU(protocol data unit) 세션을 제어할 수 있다.
이하 설명의 편의를 위해, AMF, SMF, PCF, UPF, AF, UDM, N3IWF, gNB, 또는 UE에 대한 도면 부호는 생략될 수 있으며, 본 문서 이전에 공개된 표준 문서에 기재된 사항을 참조하여 동작할 수 있다.
도 3은 본 개시에 적용되는 무선 통신 시스템의 구조를 노드 관점에서 표현한 예를 나타내는 도면이다.
도 3을 참고하면, UE는 차세대 RAN를 통해 데이터 네트워크(data network, DN)와 연결된다. 제어 평면 기능(control plane function, CPF) 노드는 4세대 이동 통신의 MME(mobility management entity)의 기능 전부 또는 일부, S-GW(serving gateway) 및 P-GW(PDN gateway)의 제어 평면 기능의 전부 또는 일부를 수행한다. CPF 노드는 AMF와 SMF을 포함한다.
UPF 노드는 사용자의 데이터가 송수신되는 게이트웨이의 기능을 수행한다.
인증 서버 기능(authentication server function, AUSF)은 UE를 인증 및 관리한다. 네트워크 슬라이스 선택 기능(Network Slice Selection Function: NSSF)는 후술하는 바와 같은 네트워크 슬라이싱을 위한 노드이다.
네트워크 공개 기능(network exposure function, NEF)는 5G 코어의 서비스와 기능을 안전하게 공개하는 메커니즘을 제공한다.
도 3에 나타난 레퍼런스 포인트는 다음과 같다. N1은 UE와 AMF간에 레퍼런스 포인트를 나타낸다. N2은 (R)AN과 AMF 간에 레퍼런스 포인트를 나타낸다. N3은 (R)AN과 UPF 간에 레퍼런스 포인트를 나타낸다. N4은 SMF와 UPF 간에 레퍼런스 포인트를 나타낸다. N5은 PCF과 AF 간에 레퍼런스 포인트를 나타낸다. N6은 UPF와 DN 간에 레퍼런스 포인트를 나타낸다. N7은 SMF과 PCF 간에 레퍼런스 포인트를 나타낸다. N8은 UDM과 AMF 간에 레퍼런스 포인트를 나타낸다. N9은 UPF들 간에 레퍼런스 포인트를 나타낸다. N10은 UDM과 SMF 간에 레퍼런스 포인트를 나타낸다. N11은 AMF과 SMF 간에 레퍼런스 포인트를 나타낸다. N12은 AMF과 AUSF 간에 레퍼런스 포인트를 나타낸다. N13은 UDM과 AUSF 간에 레퍼런스 포인트를 나타낸다. N14은 AMF들 간에 레퍼런스 포인트를 나타낸다. N15은 비-로밍 시나리오(non-roaming scenario)에서, PCF와 AMF 간의 레퍼런스 포인트, 로밍 시나리오에서, AMF와 방문 네트워크(visited network)의 PCF 간의 레퍼런스 포인트를 나타낸다. N16은 SMF들 간에 레퍼런스 포인트를 나타낸다. N22은 AMF와 NSSF 간에 레퍼런스 포인트를 나타낸다. N30은 PCF와 NEF 간의 레퍼런스 포인트를 나타낸다. N33은 AF와 NEF 간의 레퍼런스 포인트를 나타낼 수 있으며, 상술한 엔티티 및 인터페이스는 본 문서 이전에 공개된 표준 문서에 기재된 사항을 참조하여 구성될 수 있다. N58은 AMF와 NSSAAF 간에 레퍼런스 포인트를 나타낸다. N59는 UDM과 NSSAAF 간에 레퍼런스 포인트를 나타낸다. N80은 AMF와 NSACF 간에 레퍼런스 포인트를 나타낸다. N81은 SMF와 NSACF 간에 레퍼런스 포인트를 나타낸다.
무선 인터페이스 프로토콜은 3GPP 무선 접속 망 규격을 기반으로 한다. 무선 인터페이스 프로토콜은 수평적으로 물리 계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 사용자 평면(user plane)과 제어 신호(signaling) 전달을 위한 제어 평면(control plane)으로 구분된다.
프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템 간 상호접속(open system interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(layer-1), L2(layer-2), L3(layer-3)로 구분될 수 있다.
이하, 본 개시는 무선 프로토콜의 각 계층을 설명한다. 도 4는 UE과 gNB 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 구조의 예를 나타내는 도면이다.
도 4를 참고하면, AS(access stratum) 계층은 물리(physical, PHY) 계층, 매체 접속 제어 계층, 무선 링크 제어(radio link control, RLC) 계층, 패킷 데이터 수렴(packet data convergence protocol, PDCP) 계층, 무선 자원 제어(radio resource control, RRC) 계층을 포함할 수 있으며, 각 계층에 기초한 동작은 본 문서 이전에 공개된 표준 문서에 기재된 사항을 참조하여 동작할 수 있다.
단말은 기지국으로부터 브로드캐스트되는 시스템 정보를 획득하고, 적합한 셀을 선택하여 캠핑될 수 있다. 그 후, 단말은 서비스 기반 구성 정보를 획득하여 네트워크에 연결될 수 있다. 일 예로, PLMN(public land mobile network)은 MCC(mobile country code)와 MNC(mobile network code)로 구성될 수 있다. 여기서, HPLMN(home PLMN)은 단말에에 정의되는 PLMN일 수 있으며, VPLMN(visited PLMN)은 단말의 현재 위치에 기초한 PLMN일 수 있다. 또한, equivalent HPLMN은 HPLMN과 동등한 PLMN을 지칭할 수 있으며, 단말의 USIM(Universal subscriber identity module)에 리스트가 저장될 수 있다. 단말은 우선순위가 높은 PLMN을 선택할 수 있으며, PLMN 선택은 자동 선택 모드(automatic mode) 또는 매뉴얼 모드(manual mode)를 고려할 수 있다.
구체적으로, 단말은 턴 온 되거나 서비스 불가 커버리지에서 통신 가능 커버리지로 돌아오면 PLMN 선택을 수행할 수 있다. 단말은 마지막에 등록된 PLMN을 우선하여 선택하거나 HPLMN 또는 equivalent HPLMN 리스트 내의 PLMN을 선택하여 네트워크에 등록할 수 있다. 단말이 HPLMN이나 equivalent PLMN에 접속하지 못하는 경우, 단말은 USIM에 저장된 우선순위 정보에 기초하여 다른 PLMN을 선택할 수 있다. 즉, 단말은 PLMN에 대한 우선순위 정보에 기초하여 PLMN을 선택할 수 있다.
일 예로, 자동 모드에 기초하여 PLMN을 선택하는 경우, 단말은 기 설정된 우선순위에 기초하여 PLMN을 자동으로 선택할 수 있다. 구체적으로, 단말은 HPLMN, equivalent HPLMN, equivalent HPLMN, user controlled PLMN selector with Access Technology 및 operator controlled PLMN Selector with Access Technology 순으로 우선순위를 지닌 PLMN 은 먼저 선택할 수 있으나, 이에 한정되지 않을 수 있다. 반면, 매뉴얼 모드에 기초하여 PLMN 선택을 수행하는 경우, 단말은 접속 가능한 PLMN 리스트를 디스플레이하고, 선택된 PLMN에 연결을 수행할 수 있다. 일 예로, 단말은 PLMN 선택에 기초하여 금지된 PLMN을 선택하는 것도 가능할 수 있으며, 등록이 성공적으로 수행되면 해당 PLMN이 더 이상 금지되지 않을 수 있다.
또한, 일 예로, 로밍에 기초하여 PLMN을 선택하는 경우, 단말은 HPLMN이 아닌 VPLMN에서 서비스를 제공받을 수 있다. 일 예로, 단말은 USIM에 저장된 정보에 기초하여 HPLMN의 커버리지 외(e.g. 다른 국가)의 PLMN에 등록될 수 있다. 일 예로, 단말은 주기적으로 Higher priority PLMN을 검색할 수 있으나, 이에 한정되는 거은 아닐 수 있다.
또한, 로밍 단말의 PLMN 선택과 관련하여 SOR(Steering of Roaming)은 제어 평면에서 HPLMN이 선호하는 PLMN/AT(access-technology) 조합을 업데이트하는 것을 의미할 수 있다. 단말은 선호하는 PLMN/AT 조합을 수신할 수 있으며, 수신한 PLMN/AT 리스트에 기초하여 PLMN 선택을 수행할 수 있다. 즉, 해당 액세스 기술에서 오퍼레이터에 의해 제어되는 PLMN(Operator Controlled PLMN Selector with Access Technology) 우선순위가 수신한 PLMN 리스트로 변경될 수 있다.
또한, 일 예로, 지상파 망에서 단말이 연결 접속을 수행하는 경우, 단말은 고정된 기지국을 통해서 연결 접속을 수행할 수 있다. 지상파 망에서의 접속 커버리지 셀(coverage cell)은 항상 고정된 크기를 갖는 셀일 수 있다. 즉, 고정된 기지국에서 셀의 크기는 유동적으로 변동될 필요성이 없으며 항상 고정된 크기를 갖을 수 있다.
또 다른 일 예로, 단말은 비-지상망에 기초하여 연결 접속을 수행할 수 있다. 여기서, 비-지상망은 지구의 궤도를 따라 이동하는 위성에 기초하여 커버리지가 결정될 수 있다. 단말의 연결 접속은 위성의 이동에 기초하여 끊길 수 있다. 일 예로, 단말은 위성 이동에 기초하여 불연속 커버리지(discontinuous coverage)에서 네트워크에 연결되지 못할 수 있으며, 연속 커버리지(continuous coverage)에서 네트워크 연결 접속이 유지될 수 있다. 여기서, 단말의 연결 접속이 끊기는 구간에서 단말의 AS(access stratum) 레이어는 비활성화될 수 있다. 단말의 AS 레이어가 비활성화되는 경우, 일부 NAS(non-access stratum) 타이머(e.g. T3412, T3346, T3396, T3447) 및 관련 절차가 중단될 수 있다. 반면, 백 오프 타이머와 HPLMN(home public land mobile network), EHPLMN 또는 우선순위가 높은 PLMN을 주기적으로 탐색하는 타이머 T는 동작할 수 있다. 일 예로, 상술한 불연속 커버리지를 제공하는 RAN을 사용하는 단말은 시간 기반 커버리지 변동 정보를 인지할 수 있다. 여기서, 불연속 커버리지는 비-지상망에서 설정될 수 있으나, 이에 한정되지 않는다. 또한, 일 예로, 단말은 비-지상망의 궤도력 정보(ephemeris data)를 통해 시간 기반 커버리지 변동 정보를 인지할 수 있다. 여기서, 단말은 불연속 커버리지를 고려하여 전력 소모를 줄이기 위해 AS 기능을 비활성화 할 수 있으며, 이와 관련하여 후술한다.
또한, 일 예로, 단말이 VPLMN(Visited Public Land Mobile Network)에 존재하는 경우를 고려할 수 있다. 여기서, 단말이 재난 로밍 서비스에 등록되어 있지 않은 경우, 단말은 다른 네트워크 접속을 위한 액세스를 시도할 수 있다. 일 예로, 단말은 EHPLMN 목록이 없거나 비어 있으면 HPLMN(Home PLMN)에서 접속을 시도할 수 있다. 반면, EHPLMN 목록이 존재하는 경우, 단말은 EHPLMN 중 하나에 접속을 수행할 수 있다.
EHPLMN 목록이 비워있고, HPLMN 접속이 불가능한 경우, 단말은 "사용자 제어 PLMN 선택자" 또는 "운영자 제어 PLMN 선택자"에 나열된 더 높은 우선순위의 PLMN/AT(access technology) 조합 중 하나에 접속을 수행할 수 있다. 여기서, 일 예로, 타이머 T 값이 SIM(subscriber identification module)에 저장될 수 있다. 단말은 설정된 타이머 T 값에 따라 기 설정된 주기에 기초하여 HPLMN, EHPLMN 또는 더 높은 우선순위의 PLMN/AT를 검색하고, 접속을 수행할 수 있다. 또한, 단말이 최소주기탐색 타이머(MinimumPeriodicSearchTimer)를 설정한 경우, 단말은 최소주기탐색 타이머보다 작은 T 값을 사용하지 않을 수 있다. 일 예로, SIM에 저장된 값 또는 T에 대한 기본 값(값이 저장되지 않은 경우)이 최소주기탐색 타이머보다 작은 경우, T는 최소주기탐색 타이머로 설정될 수 있다.
또한, 일 예로, 단말은 불연속 커버리지 동안 주기적 PLMN 선택(periodic PLMN selection)을 수행할 수 있다. 구체적인 일 예로, 단말이 등록된 PLMN(registered PLMN, RPLMN)에서 불연속 커버리지 서비스를 지원하는 경우, 단말의 하위 계층은 비-지상망에 접속함을 인지하고, 불연속 커버리지 진입 시점 및 이탈 시점을 인지할 수 있다. 여기서, 단말은 불연속 커버리지 동안 위성 기반 라디오를 비활성화 할 수 있다.
일 예로, 단말의 하위 계층은 RPLMN의 불연속 커버리지 동작을 궤도력 정보를 통해 인지할 수 있다. RPLMN의 불연속 커버리지가 시작되고 중지되는 경우, 단말의 하위 계층은 이에 대한 정보를 단말의 NAS 계층에게 지시할 수 있다.
일 예로, RPLMN이 우선 순위가 낮은 PLMN인 경우, RPLMN의 불연속 커버리지에 대한 주기적인 PLMN 검색이 지연되면 단말은 최우선 순위에 기초한 PLMN 선택을 수행하지 못할 수 있다.
또 다른 일 예로, RPLMN으로 비-지상망이 사용 불가능한 경우, 단말은 다른 지상망 또는 비-지상망을 통해 더 높은 PLMN을 사용할 수 있다.
또 다른 일 예로, 불연속 커버리지에 기초하여 RPLMN이 사용 불가능하다가 다시 사용 가능한 경우, 단말은 RPLMN 이외의 다른 PLMN을 검색하지 못할 수 있다. 따라서, 단말은 주기적인 PLMN 선택을 지연할지 여부를 결정하기 전에 RPLMN의 우선 순위를 평가할 필요성이 있다. 여기서, 일 예로, 단말의 위치에서 RPLMN이 가장 높은 우선순위 PLMN인 경우, 단말은 주기적인 PLMN 검색을 연기할 수 있다. 일 예로, "Operator/User Controlled PLMN Selector with Access Technology" 목록의 첫 번째 PLMN이 VPLMN인 경우, 단말은 불연속 커버리지동안 주기적인 PLMN 검색을 지연시킬 수 있다.
반면, RPLMN이 가장 높은 우선순위 PLMN이 아닌 경우, 단말은 주기적은 PLMN 검색을 수행할 수 있다. 일 예로, "Operator/User Controlled PLMN Selector with Access Technology" 목록의 두 번째 PLMN이 VPLMN인 경우, 단말은 불연속 커버리지 동안 주기적인 PLMN 검색을 지연해서는 안될 수 있다. 즉, 단말은 더 높은 우선순위 PLMN을 검색하기 위해 주기적인 PLMN 검색을 수행할 필요성이 있다. 여기서, 단말은 불연속 커버리지 동안 AS를 비활성화하지만 주기적인 PLMN 검색을 위해서는 AS를 활성화 할 필요성이 있으며, 이와 관련하여 후술한다.
도 5는 본 개시에 적용 가능한 불연속 커버리지를 고려하여 네트워크를 선택하는 방법을 나타낸 도면이다.
단말은 불연속 커버리지를 사용하는 PLMN에서 기존 네트워크보다 적은 시간동안 커버리지 내에 존재할 수 있다. 일 예로, 기존 네트워크에서 단말은 단말의 위치에 기초하여 사용 가능한 PLMN은 항상 사용 가능하고, 단말의 위치에 기초하여 사용 불가능한 PLMN은 항상 사용 불가능할 수 있었다. 다만, 불연속 커버리지를 사용하는 PLMN은 시간 기반으로 단말이 PLMN을 사용할지 여부가 결정될 수 있다. 구체적인 일 예로, 도 5를 참조하면, 단말은 HPLMN의 연속 커버리지로 HPLMH flyover(510) 이후에 전원이 켜질 수 있다. 여기서 HPLMN flyover(510)는 단말이 HPLMN에 접속 가능한 구간일 수 있다. 그 후, VPLMN flyover(520)가 발생할 수 있다. 즉, 단말은 HPLMN flyover(510)보다 먼저 발생한 VPLMN flyover(520)에 기초하여 VPLMN을 선택할 수 있다. 여기서, 단말은 VPLMN을 선택하고, 재선택을 통해 다시 HPLMN을 선택할 수 있다. 또 다른 일 예로, 단말은 VPLMN을 선택하지 않고, 다음 HPLMN flyover(530)를 기다릴 수 있으나, 특정 실시예로 한정되지 않는다.
도 6은 본 개시에 적용 가능한 단말이 위성망에 기초하여 네트워크에 연결 접속을 수행하는 방법을 나타낸 도면이다. 도 6을 참조하면, HPLMN이 불연속 커버리지를 사용하는 경우, 단말은 HPLMN이 사용 가능한 상태임에도 불구하고 VPLMN을 선택할 수 있다. 여기서, 단말이 VPLMN에 존재하는 경우에 불연속 커버리지를 사용하는 HPLMN flyover(610)가 더 높은 우선 순위 PLMN 검색 간격보다 짧을 수 있다. 따라서, 단말은 HPLMN의 커버리지를 인지하지 못하고, HPLMN 선택을 수행하지 못할 수 있다. 상술한 바를 고려하여, 단말은 HPLMN flyover(610)를 인지하기 위해 타이머 간격을 조절할 필요성이 있다.
또 다른 일 예로, 불연속 커버리지를 사용하는 PLMN에서 PLMN 검색 및 선택 절차를 사용하면 최적의 PLMN이 선택되지 않을 수 있다. 최악의 경우에 단말은 HPLMN을 장기간 동안 선택하지 못할 수 있다.
상술한 점을 고려하여, 단말은 HPLMN이 불연속 커버리지를 사용하는지 여부를 인지할 필요성이 있다. 일 예로, USIM에 HPLMN이 불연속 커버리지를 사용하는지 여부가 지시될 수 있으나, 이에 한정되는 것은 아닐 수 있다. 또 다른 일 예로, 단말의 전원이 켜지거나 커버리지를 복구하는 경우에 HPLMN 선택 확률을 최대화하도록 할 수 있다.
상술한 바에 기초하여 불연속 커버리지를 고려하여 HPLMN 검색 타이머를 상이하게 설정하는 방법이 필요할 수 있으며, 하기에서는 이와 관련하여 후술한다.
일 예로, 단말은 위성 통신에 기초하여 통신을 수행할 수 있다. 여기서, 지구의 특정 궤도를 따라 움직이는 위성망(또는 비-지상망)이 단말 상공에 위치하는 경우, 단말은 네트워크 연결 접속을 수행할 수 있다. 반면, 위성망이 단말 상공에 위치하지 않는 경우, 단말은 네트워크 연결 접속을 수행하지 못할 수 있다.
일 예로, 단말이 VPLMN(visited public land mobile network)에 연결 접속한 경우, 단말은 현재 연결 접속한 PLMN보다 더 높은 우선순위를 갖는 PLMN을 검색하기 위한 동작을 수행할 수 있으며, 이는 상술한 바와 같다. 즉, 단말은 현재 연결 접속한 PLMN보다 더 높은 우선순위를 갖는 PLMN으로 HPLMN(home PLMN)을 검색할 수 있다. 구체적인 일 예로, 단말은 기 설정된 타이머 T에 기초하여 current cell의 PLMN 보다 더 높은 우선순위를 지닌 PLMN을 검색할 수 있다. 여기서, 타이머 T는 홈 오퍼레이터(home operator)에 의해 설정될 수 있으며, USIM(Universal Subscriber Identity Module)에 고정 값으로 저장될 수 있다.
일 예로, 지구의 특정 궤도를 따라 이동하는 위성망에 기초하여 higher priority PLMN을 검색하는 경우, 단말은 HPLMN flyover에 기초하여 위성망이 단말 상공에 존재하는 경우에만 current PLMN 보다 높은 우선순위를 지니는 higher PLMN 혹은 HPLMN을 검색할 수 있다. 반면, 단말은 HPLMN flyover가 없으면 HPLMN을 검색할 수 없다. 따라서, 단말이 VPLMN에 접속하여 T 시간마다 HPLMN을 검색하는 경우에 HPLMN flyover가 아니라 HPLMN을 검색하지 못하는 경우가 존재할 수 있다.
일 예로, 단말이 동일한 위치에 존재하고, 위성만 지속적으로 지구의 궤도를 따라 이동하는 경우를 고려할 수 있다. 여기서, HPLMN flyover는 위성의 이동에 기초하여 매우 짧은 시간(e.g. 10분)이고, 불연속 커버리지(discontinuous coverage) 상태는 매우 긴 시간(e.g. 10시간)일 수 있다. 다만, 이는 하나의 일 예일 뿐, 이에 한정되지 않는다. 상술한 상황에서 단말 이 기 설정된 특정 타이머로 T 주기에 기초하여 HPLMN 검색을 수행하는 경우, 도 6에서처럼 단말은 HPLMN으로 연결 접속을 수행할 수 있는 위치에 존재하는 경우 (HPLMN flyover)가 아닌 경우에 HPLMN을 검색하지 못할 수 있다. 여기서, 일 예로, 단말의 AS(access stratum)는 단말의 불필요한 전력 낭비를 방지하기 위해 타이머 구동에 기초하여 불연속 커버리지 상태에서 비활성화될 수 있다.
또 다른 일 예로, 위성 네트워크에 연결된 단말이 선박 등에서 이동하는 경우, 단말은 정해진 궤도를 따라 이동하지 않을 수 있으며, 다양한 형태로 이동할 수 있다. 따라서, 단말에서 위성망에 기초한 불연속 커버리지는 일정한 주기나 패턴을 갖지 않을 수 있다. 여기서, 단말이 불연속 커버리지 상태로 진입하거나 불연속 커버리지 상태를 벗어나는 경우, 진입 시점 시간 값과 이탈 시점 시간 값은 위성정보와 단말이 측정한 GPS 정보에 기초하여 단말만이 실제 단말의 정확한 시간 정보를 인지할 수 있다. 네트워크는 단말의 정보에 기초하여 단말이 불연속 커버리지 상태로 진입한 시점과 이탈한 시점을 예측할 수 있다.
여기서, 단말이 E-UTRAN(Evolved UMTS Terrestrial Radio Access Network) 위성망의 불연속 커버리지를 벗어난 경우, 단말은 단말 능력에 기초하여 다른 인터-RAT(e.g LTE, E-UTRAN, NR 위성 네트워크)을 선택할 수 있다. 다만, 상술한 바와 같이 단말의 전체 AS가 비활성화된 경우, 단말은 다른 RAT으로 접속이 불가능할 수 있다. 또한, 단말이 접속한 E-UTRAN 위성 네트워크보다 높은 우선순위를 갖는 네트워크를 찾을 수 있는 능력이 존재함에도 단말은 불연속 커버리지에 기초하여 전체 AS를 비활성화하여 다른 네트워크를 검색하지 못할 수 있다. 즉, 불연속 커버리지에 기초하여 단말의 AS가 비활성화된 경우, 단말은 타이머 T에 기초하여 HPLMN 검색 활성화 전까지 다른 네트워크(e.g. HPLMN, EHPLMN, higher priority PLMN)에 연결하지 못할 수 있으며, 이에 따라 네트워크 연결 접속이 지연될 수 있다.
또 다른 일 예로, 단말이 AS를 활성화하여 higher priority PLMN을 검색하는 경우에도 HPLMN flyover에 기초하여 HPLMN을 검색하지 못할 수 있다. 또 다른 일 예로, 단말이 VPLMN에 등록되고, 다른 우선순위 PLMN/AT(Access Technology)를 지원하는 경우, 단말은 우선순위가 더 높은 PLMN을 검색하지 못할 수 있다. 상술한 점을 고려하여, 단말이 PLMN을 선택하도록 하는 절차로 인터-RAT PLMN 선택 절차(inter-RAT PLMN selection procedure) 또는 향상된 PLMN 선택 절차(enhanced PLMN selection procedure)가 필요할 수 있으며, 하기에서는 이와 관련하여 서술한다.
구체적인 일 예로, 단말은 상술한 higher priority PLMN 검색 타이머 T가 만료되면 단말은 현재 연결 접속이 이루어진 registered PLMN 인 현재 PLMN 보다 더 높은 우선순위를 지니는 PLMN 검색 동작을 수행할 수 있으며, 이는 상술한 바와 같다.
또한, 일 예로, 단말은 위성망에 기초하여 불연속 커버리지 내인지 여부에 기초하여 HPLMN이 포함된 higher priority PLMN 검색 동작을 수행할 수 있다. 구체적으로, 단말이 불연속 커버리지에서 AS를 비활성화 한 후에 다시 higher PLMN 검색이 가능한 연속 커버리지로 복귀하는 경우, 단말은 AS를 활성화하고 HPLMN 이 포함된 higher priority PLMN 검색을 수행할 수 있다. 즉, 단말은 higher priority PLMN 검색이 가능한 연속 커버리지로 복귀하면 타이머 T가 만료된 것처럼 동작하여 단말이 현재 연결 접속이 이루어진 registered PLMN 보다 더 높은 우선순위를 지닌 higher priority PLMN 검색을 수행할 수 있다. 여기서, higher priority PLMN은 HPLMN을 포함할 수 있다.
또 다른 일 예로, higher priority PLMN 검색 타이머 T가 네트워크에 의해 지시될 수 있다. 네트워크는 단말의 eDRX(enhanced discontinuous reception) 값 및 위성 위치 정보에 기초하여 higher priority PLMN 검색 타이머 T를 설정하고, 이를 단말로 지시할 수 있다. 즉, 네트워크는 궤도력 데이터(ephemeris orbital data)와 단말의 위치 정보에 기초하여 네트워크에서 새롭게 HPLMN 액세스를 위한 주기 시간 값으로 higher priority PLMN 검색 타이머 T를 설정하여 단말로 지시할 수 있다. 단말은 네트워크로부터 지시된 higher priority PLMN 검색 타이머 T에 기초하여 우선순위가 높은 PLMN 검색을 수행할 수 있다.
또 다른 일 예로, 단말이 higher priority PLMN 검색 타이머 T를 직접 결정할 수 있다. 단말은 단말 자체의 eDRX 값 및 위성 위치 정보를 판단할 수 있는 궤도력 데이터와 단말 위치 정보를 기반으로 직접 higher priority PLMN 액세스를 위한 주기 시간 값을 결정할 수 있다. 여기서, 네트워크는 단말의 eDRX 값 및 위성 위치를 판단할 수 있는 궤도력 데이터와 단말의 위치 정보에 기초하여 새로운 higher priority PLMN 검색 타이머를 구동할 수 있다. 일 예로, 상술한 타이머는 USIM에 저장된 값(e.g. MinimumPeriodicSearchTimer)이 아닌 새로운 타이머 값일 수 있다.
또한, 일 예로, 네트워크는 단말이 어떤 higher priority PLMN 검색 타이머를 사용할지 여부를 지시할 수 있다. 여기서, higher priority PLMN 검색 타이머에 대한 지시는 네트워크가 NAS(non-access stratum) 메시지를 통해 단말로 지시할 수 있다. 단말은 해당 지시에 기초하여 어떤 higher priority PLMN 검색 타이머를 사용할지 여부를 결정할 수 있다.
또 다른 일 예로, higher priority PLMN 검색 타이머에 대한 지시는 단말에 프로비젼(provision)되어 있을 수 있다. 구체적인 일 예로, higher priority PLMN 검색 타이머에 대한 지시는 USIM에 저장될 수 있으나 이에 한정되는 것은 아닐 수 있다. 여기서, 단말은 기 설정된 우선순위에 기초하여 어떤 higher priority PLMN 검색 타이머를 사용할지 여부를 결정할 수 있다. 일 예로, higher priority PLMN 검색 타이머에 대한 우선순위는 하기 표 1과 같을 수 있으나, 이는 하나의 일 예일 뿐 이에 한정되는 것은 아닐 수 있다.
구체적인 일 예로, 단말은 네트워크가 지시한 higher priority PLMN 검색 타이머 T를 가장 우선하여 적용할 수 있다. 즉, 네트워크가 지시한 higher priority PLMN 검색 타이머 T가 우선순위가 가장 높을 수 있다. 여기서, 네트워크가 지시한 higher priority PLMN 검색 타이머가 없는 경우, 단말은 직접 결정한 higher priority PLMN 검색 타이머 T를 적용할 수 있다. 즉, 단말이 결정하는 higher priority PLMN 검색 타이머 T가 그 다음 우선순위를 가질 수 있다. 여기서, 네트워크가 지시한 higher priority PLMN 검색 타이머 T도 없고, 단말이 직접 결정한 higher priority PLMN 검색 타이머 T도 없는 경우, 단말은 USIM에 저장된 최소주기검색 타이머를 higher priority PLMN 검색 타이머 T로 적용할 수 있다. 반면, 최소주기검색 타이머도 없으면 디폴트 값을 사용할 수 있다.
[표 1]
Figure PCTKR2023011656-appb-img-000001
또한, 일 예로, 상술한 도 5와 같이 단말이 higher priority PLMN 검색을 시도한 후 다음 T 시간 이후에 VPLMN에 접속한 경우, 단말은 타이머에 기초하여 T 시점에서 higher priority PLMN을 검색하여 higher priority PLMN에 액세스할 수 있다. 여기서, VPLMN에 있는 단말은 단말의 NAS에게 연속 커버리지(continuous coverage) 내에서 PLMN 선택을 수행할 시점을 지시할 수 있다. 또한, 일 예로, 네트워크가 새로운 higher priority PLMN 검색 타이머를 설정하는 경우, 네트워크는 VPLMN을 통해 HPLMN 에 저장된 단말 context를 전달해야 하므로 상술한 SOR(steering of Roaming) 절차 또는 UPU(UE parameter update) 절차를 통해 새로운 higher priority PLMN 검색 타이머를 단말로 지시할 수 있다.
보다 구체적인 일 예로, 표 2를 참조하면, 단말 또는 단말의 NAS는 불연속 커버리지에서 AS의 재-활성화에 기초하여 연속 커버리지(continuous coverage)에 진입함을 인식할 수 있다. 여기서, 단말은 높은 우선순위 PLMN으로부터 서비스를 받기 위해 주기적으로 PLMN 검색을 수행하기 위해 상술한 타이머 T를 설정할 수 있다. 일 예로, 네트워크가 위성에 의한 불연속 커버리지를 위해 새로운 higher priority PLMN 검색 타이머를 단말로 지시한 경우, 단말은 네트워크로부터 지시된 타이머 T에 기초하여 PLMN 선택을 수행할 수 있다. 일 예로, 단말이 마지막 PLMN 접속 시도 이후에 VPLMN에 존재하는 경우, 단말은 상술한 타이머에 기초하여 T 시점에서 PLMN 연결 접속을 시도할 수 있다.
반면, 네트워크가 위성에 의한 불연속 커버리지를 위해 새로운 higher priority PLMN 검색 타이머를 단말로 지시하지 않고, 단말이 측정된 단말의 위치 정보 및 SIB(system information block)을 통해 획득한 네트워크의 궤도력 정보(ephemeris orbital data)에 기초하여 higher priority PLMN 검색 타이머를 직접 결정한 경우, 단말은 직접 결정한 타이머 T에 기초하여 PLMN 선택을 수행할 수 있다. 일 예로, 단말이 마지막 PLMN 접속 시도 이후에 VPLMN에 존재하는 경우, 단말은 상술한 타이머에 기초하여 T 시점에서 PLMN 연결 접속을 시도할 수 있다.
또 다른 일 예로, 네트워크가 위성에 의한 불연속 커버리지를 위해 새로운 higher priority PLMN 검색 타이머를 단말로 지시하지 않고, 단말도 측정된 단말의 위치 정보 및 SIB을 통해 획득한 네트워크의 궤도력 정보에 기초하여 higher priority PLMN 검색 타이머를 직접 결정하지 못한 경우, 단말은 USIM에 저장된 최소주기검색 타이머에 기초하여 PLMN 선택을 수행할 수 있다. 반면, 최소주기검색 타이머도 존재하지 않으면 단말은 기본 값(default value)에 기초하여 PLMN 선택을 수행할 수 있다.
[표 2]
Figure PCTKR2023011656-appb-img-000002
또한, 일 예로, 표 3을 참조하면, VPLMN에서 단말에 최소주기검색 타이머가 설정된 경우, 단말은 최소주기검색 타이머보다 작은 타이머 값은 사용하지 않을 수 있다. 일 예로, SIM에 저장된 값 또는 타이머 T를 위한 기본 값이 최소주기검색 타이머보다 작은 경우, 타이머 T는 최소주기검색타이머로 설정될 수 있다.
여기서, 일 예로, HPLMN이 위성에 기초한 불연속 커버리지를 위해 higher priority PLMN 검색 타이머를 단말에 설정한 경우, 타이머 T는 higher priority PLMN에 의해 제공된 higher priority PLMN 검색 타이머를 통해 액세스 시도 주기를 제어할 수 있다. 반면, HPLMN에 의해 위성에 의한 불연속 커버리지를 위해 새로운 higher priority PLMN 검색 타이머가 단말에 설정되지 않고, 단말이 측정된 단말의 위치 정보 및 SIB을 통해 획득한 네트워크의 궤도력 정보에 기초하여 higher priority PLMN 검색 타이머를 직접 결정한 경우, 타이머 T는 액세스 시도 주기를 단말이 직접 결정한 higher priority PLMN 검색 타이머를 통해 제어할 수 있다.
[표 3]
Figure PCTKR2023011656-appb-img-000003
또한, 일 예로, 표 4를 참조하면, 단말이 VPLMN에서 HPLMN, EHPLMN 또는 높은 우선순위 PLMN 중 어느 하나로 액세스를 시도하는 경우를 고려할 수 있다. 여기서, 단말이 로밍되어 있고, 비상 서비스와 관련된 설정이 없으면 단말은 자동 모드(automatic mode)에 기초하여 액세스를 시도할 수 있다. 또한, 단말이 VPLMN에 존재하고, 마지막 액세스 이후 T 타이머가 도래하면 단말은 높은 우선순위의 PLMN으로부터 서비스를 받기 위해 액세스를 시도할 수 있다. 구체적으로, 단말이 VPLMN에 존재하고, 위성 NG-RAN 또는 위성 E-UTRAN의 불연속 커버러지를 위한 higher priority PLMN 검색 타이머 T가 만료되면 단말은 높은 우선순위의 PLMN으로부터 서비스를 받기 위해 액세스를 시도할 수 있다.
또한, 일 예로, 위성 NG-RAN 또는 위성 E-UTRAN의 불연속 커버러지를 위한 higher priority PLMN 검색 타이머 T가 설정되지 않고, 단말이 불연속 커버리지 이후에 NG-RAN 위성 커버리지 또는 위성 E-UTRAN 커버리지로 복귀하여 AS가 재-활성화되어 AS가 단말의 NAS로 이를 지시한 경우, 단말은 해당 시점에서 타이머가 T가 만료된 것으로 간주하고, 높은 우선순위의 PLMN으로부터 서비스를 받기 위해 액세스를 시도할 수 있으나, 이에 한정되는 것은 아닐 수 있다.
[표 4]
Figure PCTKR2023011656-appb-img-000004
또한, 일 예로, 표 5를 참조하면, SOR 절차에서 NAS 시그널링에 기초하여 HPLMN이 단말의 새로운 UE context에 대한 업데이트가 수행될 수 있다. 여기서, 일 예로, 하기 NAS 시그널링으로 위성 NG-RAN 또는 위성 E-UTRAN의 불연속 커버리지를 위한 higher priority PLMN 검색 타이머 T를 고려할 수 있으며, 이는 상술한 바와 같다. 즉, HPLMN은 상술한 higher priority PLMN 검색 타이머 T에 기초하여 업데이트를 수행할 수 있다.
구체적으로, HPLMN은 위성 NG-RAN 또는 위성 E-UTRAN의 불연속 커버리지를 위해 새로운 higher priority PLMN 검색 타이머를 운영자 정책, 측정된 단말의 위치 정보 및 네트워크의 궤도력 정보에 기초하여 단말로 제공할 수 있다. 여기서, 위성 NG-RAN 또는 위성 E-UTRAN의 불연속 커버리지를 위해 새로운 higher priority PLMN 검색 타이머는 HPLMN이 HPLMN 또는 높은 우선순위의 PLMN/AT 조합으로 액세스를 시도하도록 타이밍을 제어할 수 있으나, 이에 한정되지 않는다.
[표 5]
Figure PCTKR2023011656-appb-img-000005
도 7은 본 개시에 적용 가능한 단말 동작 방법을 나타낸 도면이다. 도 7을 참조하면, 단말은 HPLMN 또는 우선순위가 높은 PLMN에 연결 접속을 수행할 수 있다.(S710) 그 후, 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단될 수 있다.(S720) 일 예로, 단말이 HPLMN의 영역을 벗어나거나 그 밖의 이유에 기초하여 HPLMN에 대한 연결 접속이 중단될 수 있다. 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 단말은 higher priority PLMN 검색 타이머에 기초하여 다른 높은 우선순위를 갖는 PLMN 검색을 수행할 수 있다. 그 후, 단말은 PLMN 검색에 기초하여 우선순위가 높은 PLMN으로 연결 접속을 수행할 수 있다. 여기서, 일 예로, 단말은 위성망의 불연속 커버리지에 기초하여 higher priority PLMN 검색 타이머가 설정되었는지 여부에 기초하여 상이한 동작을 수행할 수 있다.(S730) 일 예로, 위성망의 불연속 커버리지에 기초하여 higher priority PLMN 검색 타이머가 설정되지 않은 경우(S730), 단말은 단말의 SIM에 저장된 higher priority PLMN 검색 타이머에 기초하여 더 높은 우선순위를 지닌 PLMN 검색을 수행할 수 있다.(S740) 즉, 단말이 기존 지상망에 기초하여 HPLMN 연결 접속이 중단되어 higher priority PLMN 검색을 수행하는 경우, 단말은 단말의 SIM에 저장된 higher priority PLMN 검색 타이머를 통해 현재 연결접속된 PLMN 보다 더 높은 우선순위를 지니는 PLMN 검색을 수행할 수 있다. 반면, 위성망의 불연속 커버리지에 기초하여 higher priority PLMN 검색 타이머가 설정된 경우(S730), 단말은 네트워크로부터 지시된 higher priority PLMN 검색 타이머 또는 단말이 직접 결정한 higher priority PLMN 검색 타이머에 기초하여 PLMN 검색을 수행할 수 있다.(S750) 즉, HPLMN이 위성망에 기초하여 동작하고, 단말이 불연속 커버리지에서 네트워크 연결 접속을 수행할 수 없는 경우에 단말은 네트워크로부터 지시된 higher priority PLMN 검색 타이머 또는 직접 결정한 higher priority PLMN 검색 타이머를 이용할 수 있다. 여기서, 일 예로, 네트워크는 궤도력 정보(ephemeris orbital data)에 기초하여 단말의 eDRX(enhanced discontinuous reception) 및 위성 위치를 확인할 수 있다. 또한, 네트워크는 단말로부터 단말의 위치 정보를 획득하고, 궤도력 정보 및 단말의 위치 정보에 기초하여 higher priority PLMN 검색 타이머를 새롭게 설정하여 단말로 지시할 수 있다.
또 다른 일 예로, 단말이 위성망에 기초하여 동작하는 경우, 단말은 SIB을 통해 위성망에 대한 궤도력 정보(ephemeris orbital data)를 획득하고, 단말의 위치 정보를 직접 획득한 후 궤도력 정보 및 단말의 위치 정보에 기초하여 higher priority PLMN 검색 타이머를 직접 설정할 수 있다.
또 다른 일 예로, 단말은 우선순위에 기초하여 higher priority PLMN 검색 타이머를 결정할 수 있다. 일 예로, 단말은 네트워크로부터 지시된 higher priority PLMN 검색 타이머, 단말이 직접 결정한 higher priority PLMN 검색 타이머 및 단말의 SIM에 저장된 HPLMN 검색 타이머 및 기본 HPLMN 검색 타이머 순서로 우선순위를 결정할 수 있으며, 이는 상술한 바와 같다.
또 다른 일 예로, higher priority PLMN 검색 타이머는 T 값으로 설정될 수 있다. 여기서, 단말이 제1 시점에 higher priority PLMN 검색 타이머에 기초하여 더 높은 PLMN 검색을 통해 HPLMN 연결 접속을 시도한 후 VPLMN(visited PLMN)에 연결 접속하여 제1 시점으로부터 T 값 이후인 제2 시점에 VPLMN에 존재하는 경우, 단말은 제2 시점에서 HPLMN 검색을 수행할 수 있다.
도 8은 본 개시에 적용 가능한 단말 동작을 나타낸 도면이다. 도 8을 참조하면, 단말은 위성망 서비스를 지원하고, 위성망에 기초하여 서비스를 제공받을 수 있다. 여기서, 단말이 위성망에 기초하여 불연속 커버리지에 진입하는 경우(S810), 단말은 단말의 AS를 비활성화할 수 있다.(S820) 그 후, 단말이 위성망의 불연속 커버리지를 이탈하는 경우, 단말은 단말의 AS는 재-활성화될 수 있다. 여기서, 단말의 AS는 AS 활성화 여부에 대한 정보를 단말의 NAS로 지시할 수 있다. 즉, 단말은 위성망에 기초하여 불연속 커버리지에서 불필요한 전력 소모를 줄이기 위해 AS를 비활성화 할 수 있다.
일 예로, 단말이 VPLMN에 존재하고, 불연속 커버리지에 기초하여 AS가 비활성화 된 경우를 고려할 수 있다. 여기서, 단말이 불연속 커버리지를 이탈하여 AS를 활성화하는 경우(S830), 단말은 AS를 재-활성화하고, higher priority PLMN 검색을 수행할 수 있다.(S840) 구체적으로, 단말이 VPLMN에 존재하고, 불연속 커버리지를 이탈하여 AS가 재-활성화된 경우에는 higher priority PLMN 검색 타이머가 만료된 것처럼 동작하여 단말이 연결접속해 있는 PLMN 보다 더 높은 우선순위를 지닌 PLMN 검색을 수행할 수 있다. 이를 통해, 단말은 AS가 재-활성화된 시점에 우선순위가 높은 다른 PLMN을 검색할 수 있으며, 이는 상술한 바와 같다. 반면, VPLMN에 존재하는 단말이 위성망의 불연속 커버리지를 유지하고 있는 경우(S830), 단말은 AS 비활성화 상태를 유지할 수 있으며, 이는 상술한 바와 같다.(S850)
상기 설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백한 사실이다. 또한, 상기 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (또는 병합) 형태로 구현될 수도 있다. 상기 제안 방법들의 적용 여부 정보 (또는 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (예: 물리 계층 시그널 또는 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 있다.
본 개시는 본 개시에서 서술하는 기술적 아이디어 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.
본 개시의 실시 예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project) 또는 3GPP2 시스템 등이 있다.
본 개시의 실시 예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다. 나아가, 제안한 방법은 초고주파 대역을 이용하는 mmWave, THz 통신 시스템에도 적용될 수 있다.
추가적으로, 본 개시의 실시 예들은 자율 주행 차량, 드론 등 다양한 애플리케이션에도 적용될 수 있다.

Claims (17)

  1. 무선 통신 시스템에서 단말 동작 방법에 있어서,
    상기 단말이 HPLMN(public land mobile network) 또는 우선순위가 높은 PLMN과 연결 접속하는 단계;
    상기 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초하여 상기 단말이 연결 접속된 상기 PLMN보다 높은 우선순위를 갖는 PLMN 검색을 수행하는 단계; 및
    상기 PLMN 검색에 기초하여 이용 가능한 우선순위가 가장 높은 PLMN으로 연결 접속을 수행하는 단계를 포함하되,
    상기 단말이 위성망에 기초하여 동작하는 경우, 상기 높은 우선순위 PLMN 검색 타이머는 상기 위성망의 불연속 커버리지를 고려하여 설정되는, 단말 동작 방법.
  2. 제1 항에 있어서,
    제1 높은 우선순위 PLMN 검색 타이머는 HPLMN 운영자에 의해 설정되어 상기 단말의 SIM(Subscriber Identification Module)에 저장되고, 상기 단말은 상기 SIM에 저장된 상기 제1 높은 우선순위 PLMN 검색 타이머에 기초하여 상기 단말이 연결 접속된 상기 PLMN보다 높은 우선순위를 갖는 PLMN을 검색하는, 단말 동작 방법.
  3. 제2 항에 있어서,
    상기 단말이 상기 위성망에 기초하여 동작하는 경우, 네트워크는 제2 높은 우선순위 PLMN 검색 타이머를 새롭게 설정하여 상기 단말로 지시하고,
    상기 단말은 상기 위성망의 상기 불연속 커버리지에 기초하여 상기 제2 높은 우선순위 PLMN 검색 타이머에 따라 상기 PLMN 검색을 수행하는, 단말 동작 방법.
  4. 제3 항에 있어서,
    상기 네트워크는 궤도력 정보(ephemeris orbital data)에 기초하여 단말의 eDRX(enhanced discontinuous reception) 및 위성 위치를 확인하고,
    상기 단말로부터 단말의 위치 정보를 획득하고,
    상기 궤도력 정보 및 상기 단말의 위치 정보에 기초하여 상기 제2 높은 우선순위 PLMN 검색 타이머를 새롭게 설정하여 상기 단말로 지시하는, 단말 동작 방법.
  5. 제2 항에 있어서,
    상기 단말이 상기 위성망에 기초하여 동작하는 경우, 상기 단말은 제3 높은 우선순위 PLMN 검색 타이머를 설정하고,
    상기 단말은 상기 위성망의 상기 불연속 커버리지에 기초하여 상기 제3 높은 우선순위 PLMN 검색 타이머에 따라 상기 단말이 연결 접속된 상기 PLMN보다 높은 우선순위를 갖는 PLMN을 검색하는, 단말 동작 방법.
  6. 제5 항에 있어서,
    상기 단말은 SIB(system information block)을 통해 상기 위성망에 대한 궤도력 정보(ephemeris orbital data)를 획득하고,
    상기 단말은 단말의 위치 정보를 획득하고,
    상기 궤도력 정보 및 상기 단말의 위치 정보에 기초하여 상기 제3 높은 우선순위 PLMN 검색 타이머를 설정하여 상기 단말이 연결 접속된 상기 PLMN보다 높은 우선순위를 갖는 PLMN을 검색하는, 단말 동작 방법.
  7. 제2 항에 있어서,
    상기 단말은 우선순위에 기초하여 상기 높은 우선순위 PLMN 검색 타이머를 결정하되,
    상기 SIM에 저장된 상기 제1 높은 우선순위 PLMN 검색 타이머, 네트워크가 지시하는 제2 높은 우선순위 PLMN 검색 타이머, 단말이 직접 결정하는 제3 높은 우선순위 PLMN 검색 타이머 및 기본 높은 우선순위 PLMN 검색 타이머 중 어느 하나에 기초하여 상기 높은 우선순위 PLMN 검색 타이머가 결정되는, 단말 동작 방법.
  8. 제7 항에 있어서,
    상기 제2 높은 우선순위 PLMN 검색 타이머, 상기 제3 높은 우선순위 PLMN 검색 타이머, 상기 제1 높은 우선순위 PLMN 검색 타이머 및 상기 기본 높은 우선순위 PLMN 검색 타이머 순서로 상기 우선순위가 설정되는, 단말 동작 방법.
  9. 제1 항에 있어서,
    상기 높은 우선순위 PLMN 검색 타이머가 T 값으로 설정되고,
    상기 단말이 제1 시점에 상기 높은 우선순위 PLMN 검색 타이머에 기초하여 상기 다른 더 높은 우선순위를 지니는 PLMN 검색을 통해 상기 PLMN 연결 접속을 시도한 후 VPLMN(visited PLMN)에 연결 접속하여 상기 제1 시점으로부터 상기 T 값 이후인 제2 시점에 상기 VPLMN에 존재하는 경우, 상기 단말은 상기 제2 시점에서 상기 높은 우선순위 PLMN 검색을 수행하는, 단말 동작 방법.
  10. 제1 항에 있어서,
    상기 단말이 상기 위성망의 상기 불연속 커버리지에 진입하는 경우, 단말의 AS(access stratum)는 비활성화되고,
    상기 단말이 상기 위성망의 상기 불연속 커버리지를 이탈하는 경우, 상기 단말의 AS는 재-활성화되는, 단말 동작 방법.
  11. 제10 항에 있어서,
    상기 단말의 AS는 단말의 NAS(non-access stratum)로 상기 AS의 상기 재-활성화를 지시하는, 단말 동작 방법.
  12. 제11 항에 있어서,
    VPLMN에 존재하는 상기 단말이 상기 불연속 커버리지 이탈에 기초하여 상기 AS가 상기 재-활성화되고, 상기 단말의 AS가 상기 단말의 NAS로 상기 AS의 상기 재-활성화를 지시하면 상기 높은 우선순위 PLMN 검색을 수행하는, 단말 동작 방법.
  13. 무선 통신 시스템에서 동작하는 단말에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 특정 동작은:
    HPLMN 또는 우선순위가 높은 PLMN과 연결 접속하고,
    상기 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초하여 상기 단말이 연결 접속된 상기 PLMN보다 높은 우선순위를 갖는 PLMN 검색을 수행하고, 및
    상기 PLMN 검색에 기초하여 이용 가능한 우선순위가 가장 높은 PLMN으로 연결 접속을 수행하되,
    상기 단말이 위성망에 기초하여 동작하는 경우, 상기 높은 우선순위 PLMN 검색 타이머는 상기 위성망의 불연속 커버리지를 고려하여 설정되는, 단말.
  14. 무선 통신 시스템에서 네트워크의 동작 방법에 있어서,
    단말과 우선순위가 높은 PLMN이 연결 접속을 수행하는 단계; 및
    단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초한 상기 단말의 PLMN 검색을 통해 우선순위가 높은 PLMN으로 연결 접속을 수행하는 단계를 포함하되,
    상기 단말이 위성망에 기초하여 동작하는 경우, 상기 높은 우선순위 PLMN 검색 타이머는 상기 위성망의 불연속 커버리지를 고려하여 설정되는, 네트워크 동작 방법.
  15. 무선 통신 시스템에서 동작하는 네트워크에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리를 포함하고,
    상기 특정 동작은:
    단말과 HPLMN 또는 우선순위가 높은 PLMN이 연결 접속을 수행하고, 및
    상기 단말이 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초한 상기 단말의 PLMN 검색을 통해 우선순위가 높은 PLMN으로 연결 접속을 수행하되,
    상기 단말이 위성망에 기초하여 동작하는 경우, 상기 높은 우선순위 PLMN 검색 타이머는 상기 위성망의 불연속 커버리지를 고려하여 설정되는, 네트워크.
  16. 적어도 하나의 메모리 및 상기 적어도 하나의 메모리들과 기능적으로 연결되어 있는 적어도 하나의 프로세서를 포함하는 장치에 있어서,
    상기 적어도 하나의 프로세서는 상기 장치가,
    HPLMN 또는 우선순위가 높은 PLMN과 연결 접속하도록 상기 장치를 제어하고,
    상기 장치가 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초하여 상기 단말이 연결 접속된 상기 PLMN보다 높은 우선순위를 갖는 PLMN 검색을 수행하도록 상기 장치를 제어하고, 및
    상기 PLMN 검색에 기초하여 이용 가능한 우선순위가 가장 높은 PLMN으로 연결 접속을 수행하도록 상기 장치를 제어하되,
    상기 장치가 위성망에 기초하여 동작하는 경우, 상기 높은 우선순위 PLMN 검색 타이머는 상기 위성망의 불연속 커버리지를 고려하여 설정되는, 장치.
  17. 적어도 하나의 명령어(instructions)을 저장하는 비-일시적인(non-transitory) 컴퓨터 판독 가능 매체(computer-readable medium)에 있어서,
    프로세서에 의해 실행 가능한(executable) 상기 적어도 하나의 명령어를 포함하며,
    상기 적어도 하나의 명령어는, 장치가
    HPLMN 또는 우선순위가 높은 PLMN과 연결 접속하도록 제어하고,
    상기 장치가 연결 접속된 PLMN에 대한 연결 접속이 중단된 경우, 높은 우선순위 PLMN 검색 타이머에 기초하여 상기 단말이 연결 접속된 상기 PLMN보다 높은 우선순위를 갖는 PLMN 검색을 수행하도록 제어하고, 및
    상기 PLMN 검색에 기초하여 이용 가능한 우선순위가 가장 높은 PLMN으로 연결 접속을 수행하도록 제어하되,
    상기 장치가 위성망에 기초하여 동작하는 경우, 상기 높은 우선순위 PLMN 검색 타이머는 상기 위성망의 불연속 커버리지를 고려하여 설정되는, 컴퓨터 판독 가능 매체.
PCT/KR2023/011656 2022-08-08 2023-08-08 무선 통신 시스템에서 불연속 커버리지 기반 네트워크 선택 방법 및 장치 WO2024035062A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263395876P 2022-08-08 2022-08-08
US63/395,876 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024035062A1 true WO2024035062A1 (ko) 2024-02-15

Family

ID=89852016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011656 WO2024035062A1 (ko) 2022-08-08 2023-08-08 무선 통신 시스템에서 불연속 커버리지 기반 네트워크 선택 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2024035062A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031549A (ko) * 2010-09-27 2012-04-04 삼성전자주식회사 복수의 sim 카드를 구비하는 이동통신 단말기의 plmn 선택 방법 및 장치
US20150055447A1 (en) * 2012-03-12 2015-02-26 Samsung Electronics Co., Ltd. Method and system for selective access control with ensured service continuity guarantees
KR20220029466A (ko) * 2020-08-28 2022-03-08 에이서 인코포레이티드 Ntn 이동성을 구현하기 위한 방법 및 사용자 장비
US20220110051A1 (en) * 2020-10-07 2022-04-07 Qualcomm Incorporated Network selection for satellite access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120031549A (ko) * 2010-09-27 2012-04-04 삼성전자주식회사 복수의 sim 카드를 구비하는 이동통신 단말기의 plmn 선택 방법 및 장치
US20150055447A1 (en) * 2012-03-12 2015-02-26 Samsung Electronics Co., Ltd. Method and system for selective access control with ensured service continuity guarantees
KR20220029466A (ko) * 2020-08-28 2022-03-08 에이서 인코포레이티드 Ntn 이동성을 구현하기 위한 방법 및 사용자 장비
US20220110051A1 (en) * 2020-10-07 2022-04-07 Qualcomm Incorporated Network selection for satellite access

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Non-Access-Stratum (NAS) functions related to Mobile Station (MS) in idle mode (Release 17)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 23.122, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. CT WG1, no. V17.7.1, 27 June 2022 (2022-06-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 132, XP052183454 *

Similar Documents

Publication Publication Date Title
WO2019194630A1 (en) Method and apparatus for supporting vehicle communications in 5g system
WO2022014960A1 (ko) 재난 로밍 사용자로 인한 혼잡 상황을 제어하는 방법 및 이를 지원하는 장치
WO2019209032A1 (ko) 무선 통신 시스템에서 v2x 서비스를 통한 차량 단말들간의 v2x 메시지 전송을 제어하기 위한 차량 단말 및 그 통신 제어 방법
WO2022014973A1 (ko) 재난 로밍 시 금지 plmn 리스트를 관리하는 방법 및 이를 지원하는 장치
WO2021020834A1 (ko) 단말이 네트워크에 접속하는 방법
WO2023038434A1 (en) Service reception among multiple networks in wireless communications
WO2024035062A1 (ko) 무선 통신 시스템에서 불연속 커버리지 기반 네트워크 선택 방법 및 장치
WO2022014962A1 (ko) Ran 노드의 재난 상황 통지에 따른 ui/ux 표시 방법 및 이를 지원하는 장치
WO2022080960A1 (ko) 무선 통신 시스템에서 모빌리티를 위한 방법 및 장치
WO2022014963A1 (ko) Ran 노드가 재난 상황을 통지하는 방법 및 이를 지원하는 장치
WO2021206322A1 (ko) 멀티 usim 단말의 usim 간 이동 동작을 위한 혼잡제어 예외 처리 방안
WO2023191532A1 (ko) 무선 통신 시스템에서 단말 동작 방법 및 장치
WO2024034764A1 (ko) 무선 통신 시스템에서 단말 동작 방법 및 장치
WO2024035195A1 (ko) 무선 통신 시스템에서 ursp 규칙 식별자를 생성하는 방법 및 장치
WO2024034763A1 (ko) 무선 통신 시스템에서 단말 동작 방법 및 장치
WO2024019470A1 (ko) 무선 통신 시스템에서 네트워크 슬라이스 재매핑을 수행하는 방법 및 장치
WO2024005588A1 (ko) 무선 통신 시스템에서 혼잡 제어 방법 및 장치
WO2023249302A1 (ko) 무선 통신 시스템에서 단말 동작 방법 및 장치
WO2023214753A1 (ko) 무선 통신 시스템에서 단말 동작 방법 및 장치
WO2023249192A1 (ko) 무선 통신 시스템에서 단말 인증 방법 및 장치
WO2022240237A1 (ko) 무선 통신 시스템에서 단말 동작 방법 및 장치
WO2022158928A1 (ko) 무선 통신 시스템에서 단말 위치 업데이트 방법 및 장치
WO2023177219A1 (ko) 무선 통신 시스템에서 단말 동작 방법 및 장치
WO2024014640A1 (ko) 무선 통신 시스템에서 단말 인증 방법 및 장치
WO2022149873A1 (ko) 무선 통신 시스템에서 액세스 제어를 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852937

Country of ref document: EP

Kind code of ref document: A1