WO2024035018A1 - 하향링크 신호를 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 신호를 전송하는 방법 및 기지국 - Google Patents

하향링크 신호를 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 신호를 전송하는 방법 및 기지국 Download PDF

Info

Publication number
WO2024035018A1
WO2024035018A1 PCT/KR2023/011515 KR2023011515W WO2024035018A1 WO 2024035018 A1 WO2024035018 A1 WO 2024035018A1 KR 2023011515 W KR2023011515 W KR 2023011515W WO 2024035018 A1 WO2024035018 A1 WO 2024035018A1
Authority
WO
WIPO (PCT)
Prior art keywords
sib1
ssb
pdcch
demand
synchronization signal
Prior art date
Application number
PCT/KR2023/011515
Other languages
English (en)
French (fr)
Inventor
명세창
김선욱
이영대
김기준
김재형
양석철
황승계
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024035018A1 publication Critical patent/WO2024035018A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • This specification relates to a wireless communication system.
  • M2M machine-to-machine
  • MTC machine type communication
  • smart phones and tablet PCs personal computers
  • eMBB enhanced mobile broadband
  • RAT legacy radio access technology
  • massive machine type communication which is designed to provide various services anytime, anywhere by connecting multiple devices and objects, is one of the major issues to be considered in next-generation communication.
  • One technical task of the present specification is to provide methods and/or procedures for a BS to transmit a common signal/channel(s).
  • BS operates for the purpose of Network Energy Saving (NES) by performing transmission/reception of a specific signal/channel based on UL (uplink) WUS (wake up signal) detection. and/or providing procedures.
  • NES Network Energy Saving
  • Another technical task of this specification is to provide methods and/or procedures for UE secondary cell (SCell) activation.
  • SCell UE secondary cell
  • Another technical challenge of this specification is to provide methods and/or procedures that complement the load based cell activation method.
  • Another technical task of this specification is to provide methods and/or procedures for the UE to adjust the power of UL WUS.
  • a method for a user device to receive a downlink signal in a wireless communication system is provided.
  • the method is: a synchronization signal block including a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH) on the cell.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • SIB1 system information block 1
  • SI system information block 1
  • SIB1 system information block 1
  • SI system information block 1
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a user device for receiving a downlink signal in a wireless communication system.
  • the user device includes: at least one transceiver; at least one processor; and at least one computer memory operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations.
  • a synchronization signal block including a primary synchronization signal (PSS), a secondary synchronization signal (SSS) and a physical broadcast channel (PBCH) on the cell; block, SSB) detection; Obtain information about whether system information block 1 (SIB1) is on-demand system information (SI) from the SSB; Based on the SIB1 being an on-demand SI, sending a SIB1 request; Based on the SIB1 request, monitoring a physical downlink control channel (PDCCH) related to the SIB1; And based on detecting the PDCCH, receiving a physical downlink shared channel (PDSCH) carrying the SIB1.
  • SIB1 system information block 1
  • SIB1 system information block 1
  • SIB1 system information block 1
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a processing device in another aspect of the present disclosure, includes: at least one transceiver; at least one processor; and at least one computer memory operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations.
  • a synchronization signal block including a primary synchronization signal (PSS), a secondary synchronization signal (SSS) and a physical broadcast channel (PBCH) on the cell; block, SSB) detection; Obtain information about whether system information block 1 (SIB1) is on-demand system information (SI) from the SSB; Based on the SIB1 being an on-demand SI, sending a SIB1 request; Based on the SIB1 request, monitoring a physical downlink control channel (PDCCH) related to the SIB1; And based on detecting the PDCCH, receiving a physical downlink shared channel (PDSCH) carrying the SIB1.
  • SIB1 system information block 1
  • SIB1 system information block 1
  • SIB1 system information block 1
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a computer-readable storage medium stores at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for a user device.
  • the operations are: a synchronization signal block including a primary synchronization signal (PSS), a secondary synchronization signal (SSS) and a physical broadcast channel (PBCH) on the cell; block, SSB) detection; Obtain information about whether system information block 1 (SIB1) is on-demand system information (SI) from the SSB; Based on the SIB1 being an on-demand SI, sending a SIB1 request; Based on the SIB1 request, monitoring a physical downlink control channel (PDCCH) related to the SIB1; And based on detecting the PDCCH, receiving a physical downlink shared channel (PDSCH) carrying the SIB1.
  • SIB1 system information block 1
  • SI system information block 1
  • PDCCH physical downlink control channel
  • a computer program stored on a computer program readable storage medium includes at least one program code that, when executed, includes instructions that cause at least one processor to perform operations.
  • the operations are: a synchronization signal block including a primary synchronization signal (PSS), a secondary synchronization signal (SSS) and a physical broadcast channel (PBCH) on the cell; block, SSB) detection; Obtain information about whether system information block 1 (SIB1) is on-demand system information (SI) from the SSB; Based on the SIB1 being an on-demand SI, sending a SIB1 request; Based on the SIB1 request, monitoring a physical downlink control channel (PDCCH) related to the SIB1; And based on detecting the PDCCH, receiving a physical downlink shared channel (PDSCH) carrying the SIB1.
  • SIB1 system information block 1
  • SI system information block 1
  • PDCCH physical downlink control channel
  • a method for a base station to transmit a downlink signal in a wireless communication system is provided.
  • the method is: a synchronization signal block including a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH) on the cell. block, SSB);
  • the SSB includes information on whether system information block 1 (SIB1) is on-demand system information (SI), and is based on the fact that SIB1 is on-demand SI.
  • SIB1 receives the request; Based on the SIB1 request, transmitting a physical downlink control channel (PDCCH) related to the SIB1; And it includes transmitting a physical downlink shared channel (PDSCH) carrying the SIB1.
  • SIB1 system information block 1
  • SIB1 receives the request
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a base station for transmitting a downlink signal in a wireless communication system.
  • the base station may include: at least one transceiver; at least one processor; and at least one computer memory operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations.
  • the operations are: a synchronization signal block including a primary synchronization signal (PSS), a secondary synchronization signal (SSS) and a physical broadcast channel (PBCH) on the cell; block, SSB);
  • the SSB includes information on whether system information block 1 (SIB1) is on-demand system information (SI), and is based on the fact that SIB1 is on-demand SI.
  • SIB1 receives the request; Based on the SIB1 request, transmitting a physical downlink control channel (PDCCH) related to the SIB1; And it includes transmitting a physical downlink shared channel (PDSCH) carrying the SIB1.
  • PDCH physical downlink control channel
  • the information about whether the SIB1 is an on-demand SI includes at least one of a specific bit in the PBCH, a synchronization signal sequence, or a demodulation reference signal (DMRS) sequence for the PBCH. It can be obtained based on
  • information about whether the SIB1 is an on-demand SI can be obtained based on the SIB1-related PDCCH configuration field in the master information block (MIB) carried by the PBCH.
  • MIB master information block
  • determining whether the SIB1 is an on-demand SI based on the SIB1-related PDCCH configuration field value being a predetermined value; And it may include transmitting the SIB1 request based on determining that the SIB1 is an on-demand SI.
  • information about whether the SIB1 is an on-demand SI can be obtained based on the SSB subcarrier offset field in a master information block (MIB) carried by the PBCH.
  • MIB master information block
  • determining whether the SIB1 is an on-demand SI based on the SSB subcarrier offset field value in the MIB being a predetermined value; And it may include transmitting the SIB1 request based on determining that the SIB1 is an on-demand SI.
  • transmitting the SIB1 request is transmitting a random access channel (RACH) associated with the SSB, and the SIB1 has a predetermined SSB index corresponding to the RACH and It may be the associated SIB1.
  • RACH random access channel
  • transmitting the SIB1 request means transmitting a random access channel (RACH) associated with the SSB, and the SIB1 may be SIB1 associated with all SSB indexes being transmitted.
  • RACH random access channel
  • energy saving methods and/or procedures of a base station and user equipment may be provided.
  • the BS operates for the purpose of Network Energy Saving (NES) by performing transmission/reception of a specific signal/channel based on UL (uplink) WUS (wake up signal) detection.
  • NES Network Energy Saving
  • SCell UE secondary cell
  • FIG 1 shows an example of communication system 1 to which implementation(s) of the present specification are applied.
  • Figure 2 is a block diagram showing an example of communication devices capable of performing a method according to the present specification.
  • FIG. 3 illustrates another example of a wireless device capable of implementing implementation(s) of the present specification.
  • Figure 4 shows an example of a frame structure available in a 3rd generation partnership project (3GPP)-based wireless communication system, which is an example of a wireless communication system.
  • 3GPP 3rd generation partnership project
  • Figure 5 illustrates a resource grid of slots.
  • Figure 6 illustrates physical channels used in a 3GPP-based communication system and a signal transmission/reception process using them.
  • FIG. 7 illustrates a system information (SI) acquisition process.
  • Figure 8 illustrates a random access process that can be applied to implementation(s) of this specification.
  • Figure 9 illustrates SSB and CORESET multiplexing patterns.
  • Figure 11 illustrates a case where a long DRX cycle and a short DRX cycle are set.
  • Figure 12 illustrates transmission of SIB1 in a 3GPP based system.
  • Figure 13 illustrates a downlink signal reception flow in a UE according to some implementations of the present specification.
  • Figure 14 illustrates a downlink signal transmission flow in a BS according to some implementations of the present specification.
  • multiple access systems examples include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) systems, etc.
  • CDMA can be implemented in radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented in wireless technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA can be implemented in wireless technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), etc.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS)
  • 3GPP 3rd Generation Partnership Project
  • LTE long term evolution
  • E-UMTS Evolved UMTS
  • 3GPP LTE adopts OFDMA in the downlink (DL) and SC-FDMA in the uplink (UL).
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP-based standard documents for example, 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.300, 3GPP See TS 36.331, 3GPP TS 37.213, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.214, 3GPP TS 38.300, 3GPP TS 38.321, 3GPP TS 38.331, etc. You can do it.
  • the expression that the device “assumes” may mean that the entity transmitting the channel transmits the channel to comply with the “assumption.” This may mean that the subject receiving the channel receives or decodes the channel in a form that conforms to the “assumption,” under the premise that the channel was transmitted in compliance with the “assumption.”
  • the UE may be fixed or mobile, and includes various devices that transmit and/or receive user data and/or various control information by communicating with a base station (BS).
  • BS includes (Terminal Equipment), MS (Mobile Station), MT (Mobile Terminal), UT (User Terminal), SS (subscribe Station), wireless device, PDA (Personal digital Assistant), and wireless modem. ), can be called a handheld device, etc.
  • BS generally refers to a fixed station that communicates with the UE and/or other BSs, and exchanges various data and control information by communicating with the UE and other BSs.
  • BS may be called by different terms, such as Advanced Base Station (ABS), Node-B (NB), evolved-NodeB (eNB), Base Transceiver System (BTS), Access Point, and Processing Server (PS).
  • ABS Advanced Base Station
  • NB Node-B
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • gNB BS of a new radio access technology network
  • the base station is collectively referred to as BS, regardless of the type or version of communication technology.
  • a node refers to a fixed point that can transmit/receive wireless signals by communicating with the UE.
  • Various types of BSs can be used as nodes regardless of their names.
  • a BS, NB, eNB, pico-cell eNB (PeNB), home eNB (HeNB), relay, repeater, etc. may be nodes.
  • the node may not be a BS.
  • it may be a radio remote head (RRH) or a radio remote unit (RRU).
  • RRH, RRU, etc. generally have a power level lower than that of the BS.
  • RRH or RRU (hereinafter referred to as RRH/RRU) is generally connected to the BS through a dedicated line such as an optical cable, so compared to cooperative communication by BSs generally connected through wireless lines, RRH/RRU and BS Collaborative communication can be performed smoothly.
  • At least one antenna is installed in one node.
  • the antenna may refer to a physical antenna, an antenna port, a virtual antenna, or an antenna group. Nodes are also called points.
  • a cell refers to a certain geographical area where one or more nodes provide communication services. Therefore, in this specification, communicating with a specific cell may mean communicating with a BS or node that provides communication services to the specific cell.
  • the downlink/uplink signal of a specific cell refers to a downlink/uplink signal from/to a BS or node that provides communication services to the specific cell.
  • a cell that provides uplink/downlink communication services to the UE is specifically called a serving cell.
  • the channel status/quality of a specific cell refers to the channel status/quality of a channel or communication link formed between a BS or node providing a communication service to the specific cell and the UE.
  • the UE determines the downlink channel status from a specific node through the antenna port(s) of the specific node and the CRS (Cell-specific Reference Signal) transmitted on the CRS (Cell-specific Reference Signal) resource allocated to the specific node. /Or it can be measured using CSI-RS (Channel State Information Reference Signal) resources transmitted on CSI-RS (Channel State Information Reference Signal) resources.
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • 3GPP-based communication systems use the concept of cells to manage radio resources, and cells associated with radio resources are distinguished from cells in a geographic area.
  • a “cell” in a geographic area can be understood as the coverage through which a node can provide services using a carrier
  • a “cell” in a wireless resource can be understood as the bandwidth (bandwidth), which is the frequency range configured by the carrier. It is related to bandwidth, BW).
  • Downlink coverage which is the range where a node can transmit a valid signal
  • uplink coverage which is the range where a valid signal can be received from the UE, depend on the carrier that carries the signal, so the node's coverage is used by the node. It is also associated with the coverage of a “cell” of wireless resources. Accordingly, the term "cell” can sometimes be used to mean coverage of a service by a node, sometimes a radio resource, and sometimes a range within which a signal using the radio resource can reach with effective strength.
  • a “cell” associated with a radio resource is defined as a combination of downlink resources (DL resources) and uplink resources (UL resources), that is, a combination of a DL component carrier (CC) and a UL CC. .
  • a cell may be configured with DL resources alone or a combination of DL resources and UL resources.
  • the linkage between the carrier frequency of DL resources (or, DL CC) and the carrier frequency of UL resources (or, UL CC) is indicated by system information. It can be.
  • SIB2 System Information Block Type2
  • the carrier frequency may be the same as or different from the center frequency of each cell or CC.
  • CA carrier aggregation
  • the UE has only one radio resource control (RRC) connection with the network.
  • RRC radio resource control
  • One serving cell provides non-access stratum (NAS) mobility information during RRC connection establishment/re-establishment/handover, and one serving cell Provides security input during RRC connection re-establishment/handover.
  • NAS non-access stratum
  • NAS non-access stratum
  • Scells secondary cells
  • Scells may be configured to form a set of serving cells together with the Pcell.
  • An Scell is a cell that can be set up after RRC (Radio Resource Control) connection establishment and provides additional radio resources in addition to the resources of a special cell (SpCell).
  • the carrier corresponding to the Pcell in the downlink is called the downlink primary CC (DL PCC)
  • the carrier corresponding to the Pcell in the uplink is called the UL primary CC (DL PCC).
  • the carrier corresponding to the Scell in the downlink is called a DL secondary CC (DL SCC)
  • UL SCC UL secondary CC
  • PSCell Primary SCG Cell
  • SCG secondary cell group
  • the term SpCell refers to the Pcell of the master cell group (MCG) or the Pcell of the secondary cell group (SCG).
  • MCG is a group of serving cells associated with a master node (e.g., BS) and consists of an SpCell (Pcell) and optionally one or more Scells.
  • Pcell SpCell
  • the SCG is a subset of serving cells associated with a secondary node and consists of a PSCell and zero or more Scells.
  • RRC_CONNECTED state that is not configured as CA or DC, there is only one serving cell consisting of only Pcells.
  • serving cells refers to the set of cells consisting of SpCell(s) and all Scell(s).
  • two MAC entities are configured in the UE: one medium access control (MAC) entity for MCG and one MAC entity for SCG.
  • MAC medium access control
  • a Pcell PUCCH group consisting of a Pcell and zero or more Scells and a Scell PUCCH group consisting of only Scell(s) may be configured.
  • an Scell hereinafter referred to as PUCCH cell
  • PUCCH cell through which the PUCCH associated with the cell is transmitted may be set.
  • a Scell for which a PUCCH Scell is indicated belongs to the Scell PUCCH group and PUCCH transmission of the related UCI is performed on the PUCCH Scell, and a Scell for which no PUCCH Scell is indicated or where the cell indicated as a PUCCH transmission cell is a Pcell belongs to the Pcell PUCCH group and PUCCH transmission of the relevant UCI is performed on the Pcell.
  • the UE receives information from the BS through downlink (DL), and the UE transmits information to the BS through uplink (UL).
  • Information transmitted and/or received by the BS and UE includes data and various control information, and various physical channels exist depending on the type/purpose of the information they transmit and/or receive.
  • the 3GPP-based communication standard includes downlink physical channels corresponding to resource elements carrying information originating from the upper layer, and downlink physical channels corresponding to resource elements used by the physical layer but not carrying information originating from the upper layer.
  • Link physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical downlink control channel (PDCCH), etc. are downlink physical channels.
  • PBCH physical broadcast channel
  • PDCCH physical downlink control channel
  • a reference signal and synchronization signal are defined as downlink physical signals.
  • a reference signal (RS) also called a pilot, refers to a signal with a predefined special waveform that is known to both the BS and the UE.
  • DMRS demodulation reference signal
  • CSI-RS channel state information RS
  • the 3GPP-based communication standard includes uplink physical channels corresponding to resource elements carrying information originating from upper layers, and uplink physical channels corresponding to resource elements used by the physical layer but not carrying information originating from upper layers.
  • Link physical signals are defined. For example, a physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), and a physical random access channel (PRACH) are used as uplink physical channels.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • a demodulation reference signal (DMRS) for uplink control/data signals, a sounding reference signal (SRS) used for uplink channel measurement, etc. are defined.
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • the expression that the user device transmits/receives PUCCH/PUSCH/PRACH is used in the same sense as transmitting/receiving uplink control information/uplink data/random access signal on or through PUSCH/PUCCH/PRACH, respectively.
  • the expression that the BS transmits/receives PBCH/PDCCH/PDSCH is used in the same meaning as transmitting broadcast information/downlink data/downlink control information on or through PBCH/PDCCH/PDSCH, respectively.
  • next-generation communications As more communication devices require greater communication capacity, the need for improved mobile broadband communication compared to existing radio access technology (RAT) is emerging. Additionally, massive MTC, which provides various services anytime, anywhere by connecting multiple devices and objects, is also one of the major issues to be considered in next-generation communications. In addition, communication system design considering services/UEs sensitive to reliability and latency is being discussed. As such, the introduction of next-generation RAT considering advanced mobile broadband communications, massive MTC, and URLLC (Ultra-Reliable and Low Latency Communication) is being discussed. Currently, 3GPP is conducting studies on next-generation mobile communication systems after EPC. In this specification, for convenience, the technology is referred to as new RAT (new RAT, NR) or 5G RAT, and a system that uses or supports NR is referred to as an NR system.
  • new RAT new RAT
  • 5G RAT 5G RAT
  • FIG 1 shows an example of communication system 1 to which implementation(s) of the present specification are applied.
  • the communication system 1 to which this specification applies includes a wireless device, a BS, and a network.
  • a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR (New RAT), LTE (e.g., E-UTRA)) and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots (100a), vehicles (100b-1, 100b-2), XR (eXtended Reality) devices (100c), hand-held devices (100d), and home appliances (100e). ), IoT (Internet of Thing) device (100f), and AI device/server (400).
  • vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device), HUD (Head-Up Display) installed in vehicles, televisions, smartphones, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • Portable devices may include smartphones, smart pads, wearable devices (e.g., smartwatches, smart glasses), and computers (e.g., laptops, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, etc.
  • IoT devices may include sensors, smart meters, etc.
  • a BS or network may also be implemented with a wireless device, and a specific wireless device 200a may operate as a BS/network node for other wireless devices.
  • Wireless devices 100a to 100f may be connected to the network 300 through the BS 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network.
  • Wireless devices 100a to 100f may communicate with each other through the BS 200/network 300, but may also communicate directly (e.g. sidelink communication) without going through the BS/network.
  • vehicles 100b-1 and 100b-2 may communicate directly (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • an IoT device eg, sensor
  • another IoT device eg, sensor
  • another wireless device 100a to 100f
  • Wireless communication/connection (150a, 150b) may be performed between wireless devices (100a ⁇ 100f)/BS(200)-BS(200)/wireless devices (100a ⁇ 100f).
  • wireless communication/connection, uplink/downlink communication 150a and sidelink communication 150b (or D2D communication) may be achieved through various wireless access technologies (e.g., 5G NR).
  • 5G NR wireless access technologies
  • the wireless device and the BS/wireless device can transmit/receive wireless signals to each other.
  • various configuration information setting processes for transmitting/receiving wireless signals various signal processing processes (e.g., channel encoding/decoding, modulation/demodulation, resource Mapping/demapping, etc.), resource allocation process, etc. may be performed.
  • various signal processing processes e.g., channel encoding/decoding, modulation/demodulation, resource Mapping/demapping, etc.
  • resource allocation process etc.
  • Figure 2 is a block diagram showing an example of communication devices capable of performing a method according to the present specification.
  • the first wireless device 100 and the second wireless device 200 may transmit and/or receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ refers to ⁇ wireless device 100x, BS 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) in FIG. ⁇ can be responded to.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may additionally include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the functions, procedures and/or methods described/suggested above. For example, the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106. Additionally, the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102, or may store software code including instructions for performing procedures and/or methods described/suggested above. .
  • the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the functions, procedures and/or methods described/suggested above. For example, the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206. Additionally, the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202, or may store software code including instructions for performing procedures and/or methods described/suggested above. .
  • the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. The transceiver 206 can be used interchangeably with the RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may operate on one or more layers (e.g., a physical (PHY) layer, a medium access control (MAC) layer, and a radio link control (RLC) layer.
  • layers e.g., a physical (PHY) layer, a medium access control (MAC) layer, and a radio link control (RLC) layer.
  • functional layers such as packet data convergence protocol (PDCP) layer, radio resource control (RRC) layer, and service data adaptation protocol (SDAP) can be implemented.
  • PDCP packet data convergence protocol
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • One or more processors 102, 202 may process one or more protocol data units (PDUs) and/or one or more service data units (SDUs) according to the functions, procedures, proposals and/or methods disclosed herein. ) can be created.
  • One or more processors 102, 202 may generate messages, control information, data or information according to the functions, procedures, suggestions and/or methods disclosed herein.
  • One or more processors 102, 202 may process signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information in accordance with the functions, procedures, proposals and/or methods disclosed herein. Can be generated and provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206 and transmit a PDU, SDU, or PDU according to the functions, procedures, suggestions, and/or methods disclosed herein. , messages, control information, data or information can be obtained.
  • signals e.g., baseband signals
  • transceivers 106, 206 may transmit signals (e.g., baseband signals) from one or more transceivers 106, 206 and transmit a PDU, SDU, or PDU according to the functions, procedures, suggestions, and/or methods disclosed herein. , messages, control information, data or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Firmware or software configured to perform the functions, procedures, suggestions and/or methods disclosed herein may be included in one or more processors (102, 202) or stored in one or more memories (104, 204) to enable one or more processors (102, 202). 202).
  • the functions, procedures, suggestions and or methods disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. mentioned in the functions, procedures, proposals, methods and/or operational flowcharts disclosed herein, etc. from one or more other devices.
  • one or more transceivers 106, 206 may be coupled with one or more processors 102, 202 and may transmit and/or receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may perform the functions and procedures disclosed in this document through one or more antennas (108, 208). , may be set to transmit and/or receive user data, control information, wireless signals/channels, etc.
  • one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
  • One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
  • one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
  • FIG. 3 illustrates another example of a wireless device capable of implementing implementation(s) of the present specification.
  • wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 2 and include various elements, components, units/units, and/or modules. It can be composed of (module).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include communication circuitry 112 and transceiver(s) 114.
  • communication circuitry 112 may include one or more processors 102, 202 and/or one or more memories 104, 204 of FIG. 2.
  • transceiver(s) 114 may include one or more transceivers 106, 206 and/or one or more antennas 108, 208 of FIG.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls overall operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (e.g., another communication device) through the communication unit 110 through a wireless/wired interface, or to the outside (e.g., to another communication device) through the communication unit 110. Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
  • the outside e.g., another communication device
  • Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130.
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIG. 1, 100a), vehicles (FIG. 1, 100b-1, 100b-2), XR devices (FIG. 1, 100c), portable devices (FIG. 1, 100d), and home appliances.
  • FIG. 1 100e IoT device ( Figure 1, 100f), digital broadcasting UE, hologram device, public safety device, MTC device, medical device, fintech device (or financial device), security device, climate/environment device, It can be implemented in the form of an AI server/device ( Figure 1, 400), BS ( Figure 1, 200), network node, etc.
  • Wireless devices can be mobile or used in fixed locations depending on the usage/service.
  • various elements, components, units/parts, and/or modules within the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least a portion may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (e.g., 130 and 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit e.g., 130 and 140
  • each element, component, unit/part, and/or module within the wireless devices 100 and 200 may further include one or more elements.
  • the control unit 120 may be comprised of one or more processor sets.
  • control unit 120 may be comprised of a communication control processor, an application processor, an electronic control unit (ECU), a graphics processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • At least one memory can store instructions or programs, wherein the instructions or programs, when executed, are operably coupled to the at least one memory.
  • a single processor can be enabled to perform operations according to several embodiments or implementations of the present specification.
  • a computer-readable storage medium may store at least one instruction or computer program, and when the at least one instruction or computer program is executed by at least one processor, the at least one instruction or computer program may store the at least one instruction or computer program.
  • a single processor can be enabled to perform operations according to several embodiments or implementations of the present specification.
  • a processing device or apparatus may include at least one processor and at least one computer memory connectable to the at least one processor.
  • the at least one computer memory may store instructions or programs that, when executed, cause at least one processor operably coupled to the at least one memory to perform some of the instructions herein. Operations according to embodiments or implementations may be performed.
  • the communication device of the present specification includes at least one processor; and operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations according to example(s) of the present disclosure described below.
  • Figure 4 shows an example of a frame structure available in a 3rd generation partnership project (3GPP)-based wireless communication system, which is an example of a wireless communication system.
  • 3GPP 3rd generation partnership project
  • the structure of the frame in FIG. 4 is only an example, and the number of subframes, number of slots, and number of symbols in the frame can be changed in various ways.
  • OFDM numerology e.g., subcarrier spacing (SCS)
  • SCS subcarrier spacing
  • TTI transmission time intervals
  • the symbol is OFDM.
  • Symbol (or, cyclic prefix - orthogonal frequency division multiplexing (CP-OFDM) symbol), SC-FDMA symbol (or, discrete Fourier transform-spread-OFDM, DFT-s-OFDM) symbol).
  • CP-OFDM cyclic prefix - orthogonal frequency division multiplexing
  • SC-FDMA symbol or, discrete Fourier transform-spread-OFDM, DFT-s-OFDM symbol.
  • the symbol, OFDM-based symbol, OFDM symbol, CP-OFDM symbol, and DFT-s-OFDM symbol can be replaced with each other.
  • uplink and downlink transmissions are organized into frames.
  • Each half-frame consists of 5 subframes, and the period T sf of a single subframe is 1 ms.
  • Subframes are further divided into slots, and the number of slots within a subframe depends on the subcarrier spacing.
  • Each slot consists of 14 or 12 OFDM symbols based on a cyclic prefix. In a normal cyclic prefix (CP), each slot consists of 14 OFDM symbols, and in the case of an extended CP, each slot consists of 12 OFDM symbols.
  • the slots are arranged in increasing order within a subframe as n u s ⁇ ⁇ 0, ..., n subframe,u slot - 1 ⁇ and in increasing order within a frame as n u s,f ⁇ ⁇ Numbered as 0, ..., n frame, u slot - 1 ⁇ .
  • NR frequency bands are defined in two types of frequency ranges, FR1 and FR2, with FR2 also called millimeter wave (mmW).
  • FR1 frequency ranges
  • FR2 also called millimeter wave (mmW).
  • mmW millimeter wave
  • Figure 5 illustrates a resource grid of slots.
  • a slot includes a plurality of symbols (eg, 14 or 12) in the time domain.
  • a common resource block (CRB) N start, indicated by higher layer signaling (e.g., radio resource control (RRC) signaling)
  • RRC radio resource control
  • N size,u grid,x is the number of resource blocks (RB) in the resource grid
  • the subscript x is DL for downlink and UL for uplink.
  • N RB sc is the number of subcarriers per RB, and in a 3GPP-based wireless communication system, N RB sc is usually 12.
  • the carrier bandwidth N size,u grid for the subcarrier spacing setting u is given to the UE by upper layer parameters (e.g., RRC parameters) from the network.
  • RRC parameters resource resource element
  • Each element in the resource grid for the antenna port p and the subcarrier spacing setting u is called a resource element (RE), and one complex symbol may be mapped to each resource element.
  • RE resource element
  • Each resource element in the resource grid is uniquely identified by an index k in the frequency domain and an index l indicating the symbol position relative to a reference point in the time domain.
  • RB is defined by 12 consecutive subcarriers in the frequency domain.
  • RBs can be classified into common resource blocks (CRBs) and physical resource blocks (PRBs).
  • CRBs are numbered upwards from 0 in the frequency domain for the subcarrier spacing setting u .
  • the center of subcarrier 0 of CRB 0 for the subcarrier spacing setting u coincides with 'point A', which is a common reference point for resource block grids.
  • PRBs are defined within a bandwidth part (BWP) and numbered from 0 to N size BWP,i -1, where i is the number of the bandwidth part.
  • BWP bandwidth part
  • BWP includes multiple consecutive RBs in the frequency domain.
  • a carrier wave may contain up to N (e.g., 5) BWPs.
  • a UE may be configured to have one or more BWPs on a given component carrier. Data communication is performed through activated BWPs, and only a predetermined number (e.g., one) of BWPs configured for the UE can be activated on the corresponding carrier.
  • the network For each serving cell in a set of DL BWPs or UL BWPs, the network must have at least one initial DL BWP and one (if the serving plan is set up with uplink) or two (if using supplementary uplink). Set the initial UL BWP.
  • the network may configure additional UL and DL BWPs for the serving cell.
  • BWP O carrier + RB start and the number of contiguous RBs N size
  • BWP L RB , provided by the RRC parameter locationAndBandwidth indicated by the resource indicator value (RIV), and for the subcarrier spacing.
  • O carrier provided by RRC parameter offsetToCarrier ; Index within the set of DL BWPs or UL BWPs; A set of BWP-common parameters and a set of BWP-specific parameters.
  • VRBs are defined within a bandwidth part and numbered from 0 to N size,u BWP,i -1, where i is the number of the bandwidth part. VRBs are mapped to physical resource blocks (PRBs) according to interleaved mapping or non-interleaved mapping. In some implementations, for non-interleaved VRB-to-PRB mapping, VRB n may be mapped to PRB n.
  • PDCCH carries DCI.
  • DCI includes transmission format and resource allocation for a downlink shared channel (DL-SCH), resource allocation information for an uplink shared channel (UL-SCH), Located above the physical layer among the protocol stacks of the UE/BS, such as paging information on the paging channel (PCH), system information on the DL-SCH, and random access response (RAR) transmitted on the PDSCH. It carries resource allocation information for control messages of the layer (hereinafter, upper layer), transmission power control commands, activation/deactivation of configured scheduling (CS), etc.
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • RAR random access response
  • a DCI containing resource allocation information for the DL-SCH is also called a PDSCH scheduling DCI
  • a DCI containing resource allocation information for the UL-SCH is also called a PUSCH scheduling DCI.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (e.g., radio network temporary identifier (RNTI)) depending on the owner or usage of the PDCCH.
  • RNTI radio network temporary identifier
  • the PDCCH is for a specific UE
  • the CRC is masked with the UE identifier (e.g., cell RNTI (C-RNTI)).
  • the CRC is masked with the paging RNTI (P-RNTI). If the PDCCH relates to system information (e.g., system information block (SIB)), the CRC is masked with a system information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with It is masked with random access RNTI (RA-RATI).
  • SIB system information block
  • RA-RATI random access RNTI
  • cross-carrier scheduling When the PDCCH on one serving cell schedules the PDSCH or PUSCH on another serving cell, it is called cross-carrier scheduling.
  • Cross-carrier scheduling using a carrier indicator field (CIF) may allow the PDCCH of a serving cell to schedule resources on other serving cells. Meanwhile, scheduling the PDSCH or PUSCH on the serving cell to the serving cell is called self-carrier scheduling.
  • the BS can provide the UE with information about the cell scheduling the cell. For example, the BS tells the UE whether the serving cell is scheduled by the PDCCH on another (scheduling) cell or by the serving cell, and if the serving cell is scheduled by another (scheduling) cell, which cell is it?
  • a cell that carries the PDCCH is referred to as a scheduling cell, and a cell in which transmission of the PUSCH or PDSCH is scheduled by the DCI included in the PDCCH, that is, a cell that carries the PUSCH or PDSCH scheduled by the PDCCH. is called a scheduled cell.
  • CORESET control resource set
  • One or more CORESETs may be set to the UE.
  • CORESET is determined based on the following parameters.
  • controlResourceSetId ID of CORESET.
  • CORESET's frequency domain resources are indicated through a bitmap, and each bit corresponds to an RB group (6 consecutive RBs). For example, the Most Significant Bit (MSB) of the bitmap corresponds to the first RB group in the BWP. The RB group corresponding to the bit with a bit value of 1 is allocated as a frequency domain resource of CORESET.
  • MSB Most Significant Bit
  • the time domain resource of CORESET represents the number of consecutive OFDMA symbols constituting CORESET. For example, duration has values from 1 to 3.
  • TCI-StateID Information indicating the Transmission Configuration Indication (TCI) state for the PDCCH (e.g., TCI-StateID).
  • TCI state is used to provide the Quasi-Co-Location (QCL) relationship of the DL RS(s) and PDCCH DMRS port within the RS set (TCI-state).
  • QCL Quasi-Co-Location
  • CORESET consists of a set of physical resource blocks (PRBs) with a time duration of 1 to 3 OFDM symbols. PRBs constituting CORESET and CORESET duration may be provided to the UE through higher layer (eg, RRC) signaling.
  • RRC resource control
  • the set of PDCCH candidates is monitored according to the corresponding search space sets. In this specification, monitoring implies decoding (aka blind decoding) each PDCCH candidate according to the monitored DCI formats.
  • the master information block (MIB) on the PBCH provides the UE with parameters (e.g., CORESET#0 setting) for monitoring the PDCCH for scheduling the PDSCH carrying system information block 1 (SIB1). do.
  • the PBCH may also indicate that there is no SSB1 associated with it, in which case the UE may be instructed not only the frequency range over which it can assume that there is no SSB associated with SSB1, but also other frequencies to search for the SSB associated with SIB1.
  • CORESET#0 which is at least a CORESET for scheduling SIB1, can be set through MIB or dedicated RRC signaling.
  • the set of PDCCH candidates monitored by the UE is defined in terms of PDCCH search space sets.
  • the search space set may be a common search space (CSS) set or a UE-specific search space (UE-specific search space (USS)) set.
  • Each CORESET setting is associated with one or more search space sets, and each search space set is associated with one CORESET setting.
  • the search space set is determined based on the following parameters provided to the UE by the BS.
  • controlResourceSetId Identifier that identifies the CORESET associated with the search space set.
  • the UE monitors PDCCH candidates only at PDCCH monitoring occasions.
  • the UE determines the PDCCH monitoring timing based on the PDCCH monitoring periodicity, PDCCH monitoring offset, and in-slot PDCCH monitoring pattern.
  • the parameter monitoringSymbolsWithinSlot indicates, for example, the first symbol(s) for PDCCH monitoring within the slots set for PDCCH monitoring (e.g., see parameters monitoringSlotPeriodicityAndOffset and duration ). For example, if monitoringSymbolsWithinSlot is 14-bit, the most significant (left) bit represents the first OFDM symbol in the slot, and the second most significant (left) bit represents the second OFDM symbol in the slot.
  • the bits of monitoringSymbolsWithinSlot can (respectively) symbolize each of the 14 OFDM symbols in the slot. For example, among the bits in monitoringSymbolsWithinSlot , bit(s) set to 1 identifies the first symbol(s) of CORESET within the slot.
  • the following table illustrates search space sets, associated RNTIs, and usage examples.
  • the following table illustrates the DCI format that the PDCCH can carry.
  • DCI format 0_0 is used to schedule transport block (TB)-based (or TB-level) PUSCH
  • DCI format 0_1 is used to schedule TB-based (or TB-level) PUSCH or code block group (CBG).
  • CBG code block group
  • DCI format 1_0 is used to schedule a TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used to schedule a TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH.
  • DCI format 0_0 and DCI format 1_0 have a fixed size since the BWP size is initially given by RRC.
  • DCI format 0_0 and DCI format 1_0 have fixed sizes of the remaining fields except for the size of the frequency domain resource assignment (FDRA) field, but the size of the FDRA field is determined by the related parameters by the BS. This can be changed through settings.
  • the size of the DCI field of DCI format 0_1 and DCI format 1_1 can be changed through various RRC reconfigurations by the BS.
  • DCI format 2_0 can be used to deliver dynamic slot format information (e.g., SFI DCI) to the UE
  • DCI format 2_1 can be used to deliver downlink pre-emption information to the UE.
  • DCI format 2_0 and/or DCI format 2_1 may be delivered to UEs within the group through group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • PDSCH carries downlink data (e.g., DL-SCH transport block), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are applied.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • TB transport block
  • PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword may be mapped to one or more layers. Each layer is mapped to radio resources along with DMRS, generated as an OFDM symbol signal, and transmitted through the corresponding antenna port.
  • PDSCH is either dynamically scheduled by PDCCH, or semi-statically based on upper layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)).
  • Upper layer e.g., RRC
  • L1 Layer 1
  • PDCCH Packet Control Channel
  • Can be scheduled Configured Scheduling, CS. Therefore, in dynamic scheduling, PDSCH transmission is accompanied by PDCCH, but in CS, PDSCH transmission is not accompanied by PDCCH.
  • CS includes semi-persistent scheduling (SPS).
  • PUCCH refers to the physical layer UL channel for UCI transmission.
  • PUCCH carries UCI (Uplink Control Information).
  • UCI includes:
  • SR Scheduling request
  • Hybrid automatic repeat request (HARQ)-acknowledgement (ACK) A response to a downlink data packet (e.g., codeword) on the PDSCH. Indicates whether the downlink data packet has been successfully received by the communication device. 1 bit of HARQ-ACK may be transmitted in response to a single codeword, and 2 bits of HARQ-ACK may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (simply ACK), negative ACK (NACK), DTX or NACK/DTX.
  • the term HARQ-ACK is used interchangeably with HARQ ACK/NACK, ACK/NACK, or A/N.
  • CSI Channel state information
  • CQI channel quality information
  • RI rank indicator
  • PMI precoding matrix indicator
  • CSI-RS resource indicator CRI
  • CRI CSI-RS resource indicator
  • SS resource block indicator
  • LI layer indicator
  • CSI can be divided into CSI Part 1 and CSI Part 2 depending on the UCI type included in the CSI. For example, CRI, RI, and/or CQI for the first codeword may be included in CSI Part 1, and LI, PMI, and CQI for the second codeword may be included in CSI Part 2.
  • the PUCCH resources configured and/or indicated by the BS to the UE for HARQ-ACK, SR, and CSI transmission are referred to as HARQ-ACK PUCCH resources, SR PUCCH resources, and CSI PUCCH resources, respectively.
  • PUCCH formats can be classified as follows depending on UCI payload size and/or transmission length (e.g., number of symbols constituting PUCCH resources). For details on the PUCCH format, please refer to Table 6.
  • PUCCH format 0 consists of only a UCI signal without DMRS, and the UE transmits the UCI status by selecting and transmitting one of a plurality of sequences. For example, the UE transmits one sequence among a plurality of sequences through PUCCH, which is PUCCH format 0, and transmits a specific UCI to the BS. The UE transmits a PUCCH with PUCCH format 0 within the PUCCH resource for SR configuration only when transmitting a positive SR.
  • PUCCH format 0 includes the following parameters for the corresponding PUCCH resource: index for initial cyclic transition, number of symbols for PUCCH transmission, and first symbol for the PUCCH transmission.
  • DMRS and UCI are set/mapped to different OFDM symbols in TDM format. That is, DMRS is transmitted in a symbol in which no modulation symbol is transmitted. UCI is expressed by multiplying a specific sequence (e.g., orthogonal cover code, OCC) by a modulation (e.g., QPSK) symbol. Cyclic shift (CS)/OCC is applied to both UCI and DMRS ( Code division multiplexing (CDM) is supported between multiple PUCCH resources (within the same RB) (following PUCCH format 1). PUCCH format 1 carries UCI of up to 2 bits in size, and the modulation symbol is in the time domain. It is spread by an orthogonal cover code (OCC) (set differently depending on whether or not there is frequency hopping).
  • OCC orthogonal cover code
  • PUCCH format 1 includes the following parameters for the corresponding PUCCH resource: index for initial cyclic transition, number of symbols for PUCCH transmission, first symbol for PUCCH transmission, orthogonal cover code ) index for.
  • DMRS and UCI are set/mapped in the form of frequency division multiplex (FDM) within the same symbol.
  • the UE transmits by applying only IFFT without DFT to the coded UCI bits.
  • PUCCH format 2 carries UCI with a bit size larger than K bits, and modulation symbols are transmitted using DMRS and FDM.
  • DMRS is located at symbol indices #1, #4, #7, and #10 within a given resource block at a density of 1/3.
  • a pseudo noise (PN) sequence is used for the DMRS sequence. Frequency hopping can be activated for 2-symbol PUCCH format 2.
  • - Settings for PUCCH format 2 include the following parameters for the corresponding PUCCH resource: the number of PRBs, the number of symbols for PUCCH transmission, and the first symbol for the PUCCH transmission.
  • DMRS and UCI are set/mapped to different symbols in TDM format.
  • the UE applies DFT to the coded UCI bits and transmits them.
  • PUCCH format 3 does not support UE multiplexing on the same time-frequency resource (e.g., same PRB).
  • - Settings for PUCCH format 3 include the following parameters for the corresponding PUCCH resource: the number of PRBs, the number of symbols for PUCCH transmission, and the first symbol for the PUCCH transmission.
  • DMRS and UCI are set/mapped to different symbols in TDM format.
  • PUCCH format 4 can multiplex up to 4 UEs within the same PRB by applying OCC in the DFT front end and applying CS (or interleaved FDM (interleaved FDM, IFDM) mapping) to DMRS.
  • CS or interleaved FDM (interleaved FDM, IFDM) mapping
  • IFDM interleaved FDM
  • - Settings for PUCCH format 4 include the following parameters for the corresponding PUCCH resource: the number of symbols for PUCCH transmission, the length for the orthogonal cover code, the index for the orthogonal cover code, and the first symbol for the PUCCH transmission.
  • the following table illustrates PUCCH formats. Depending on the PUCCH transmission length, it can be divided into short PUCCH (formats 0, 2) and long PUCCH (formats 1, 3, 4).
  • PUCCH resources may be determined for each UCI type (e.g., A/N, SR, CSI). PUCCH resources used for UCI transmission can be determined based on UCI (payload) size. For example, the BS configures a plurality of PUCCH resource sets to the UE, and the UE may select a specific PUCCH resource set corresponding to a specific range according to the range of UCI (payload) size (e.g., number of UCI bits). For example, the UE may select one of the following PUCCH resource sets according to the number of UCI bits (N UCI ).
  • N UCI the number of UCI bits
  • K is the number of PUCCH resource sets (K>1)
  • N i is the maximum number of UCI bits supported by PUCCH resource set #i.
  • PUCCH resource set #1 may be composed of resources of PUCCH formats 0 to 1
  • other PUCCH resource sets may be composed of resources of PUCCH formats 2 to 4.
  • Settings for each PUCCH resource include a PUCCH resource index, an index of the start PRB, settings for one of PUCCH formats 0 to PUCCH 4, etc.
  • the code rate for the UE to multiplex HARQ-ACK, SR and CSI report(s) within PUCCH transmission using PUCCH format 2, PUCCH format 3, or PUCCH format 4 is set to the UE by the BS via the upper layer parameter maxCodeRate .
  • the upper layer parameter maxCodeRate is used to determine how to feed back UCI on PUCCH resources for PUCCH format 2, 3 or 4.
  • the PUCCH resource to be used for UCI transmission within the PUCCH resource set may be set to the UE by the network through higher layer signaling (e.g., RRC signaling).
  • the UCI type is HARQ-ACK for Semi-Persistent Scheduling (SPS) PDSCH
  • the PUCCH resource to be used for UCI transmission within the PUCCH resource set can be set to the UE by the network through higher layer signaling (e.g., RRC signaling). there is.
  • the UCI type is HARQ-ACK for PDSCH scheduled by DCI
  • the PUCCH resource to be used for UCI transmission within the PUCCH resource set can be scheduled based on DCI.
  • the BS transmits DCI to the UE through PDCCH, and determines the PUCCH to be used for UCI transmission within a specific PUCCH resource set through the ACK/NACK resource indicator (ARI) in the DCI.
  • Resources can be directed.
  • ARI is used to indicate PUCCH resources for ACK/NACK transmission, and may also be referred to as a PUCCH resource indicator (PRI).
  • DCI is a DCI used for PDSCH scheduling
  • UCI may include HARQ-ACK for PDSCH.
  • the BS can set a PUCCH resource set consisting of more PUCCH resources than the number of states that can be expressed by ARI to the UE using a (UE-specific) higher layer (e.g., RRC) signal.
  • the ARI indicates a PUCCH resource sub-set within the PUCCH resource set, and which PUCCH resource to use within the indicated PUCCH resource sub-set is determined by transmission resource information for the PDCCH (e.g., PDCCH start control channel element (control channel element) It can be determined according to implicit rules based on (element, CCE) index, etc.).
  • the UE must have uplink resources available to the UE in order to transmit UL-SCH data, and must have downlink resources available to the UE in order to receive DL-SCH data.
  • Uplink resources and downlink resources are assigned to the UE through resource allocation by the BS.
  • Resource allocation may include time domain resource allocation (TDRA) and frequency domain resource allocation (FDRA).
  • uplink resource allocation is also referred to as an uplink grant
  • downlink resource allocation is also referred to as downlink allocation.
  • the uplink grant is received dynamically by the UE on the PDCCH or within the RAR, or is set semi-persistently to the UE by RRC signaling from the BS.
  • the downlink assignment is received dynamically by the UE on the PDCCH or set semi-persistently to the UE by RRC signaling from the BS.
  • the BS can dynamically allocate uplink resources to the UE through PDCCH(s) addressed to a temporary identifier (cell radio network temporary identifier, C-RNTI).
  • the UE monitors the PDCCH(s) to find possible uplink grant(s) for UL transmission. Additionally, the BS can allocate uplink resources using the grant set to the UE.
  • Two types of established grants can be used: Type 1 and Type 2.
  • Type 1 the BS directly provides a configured uplink grant (including period) through RRC signaling.
  • the BS sets the period of the RRC-configured uplink grant through RRC signaling, and configures the configured scheduling RNTI (CS-RNTI) through PDCCH (PDCCH addressed to CS-RNTI).
  • the uplink grant can be signaled and activated or deactivated.
  • the PDCCH addressed to CS-RNTI indicates that the corresponding uplink grant can be implicitly reused according to the period set by RRC signaling until deactivated.
  • BS can dynamically allocate downlink resources to the UE through PDCCH(s) addressed with C-RNTI.
  • the UE monitors the PDCCH(s) to find possible downlink assignments.
  • the BS can allocate downlink resources to the UE using semi-static scheduling (SPS).
  • SPS semi-static scheduling
  • the BS sets the period of downlink assignments set through RRC signaling, and signals and activates or deactivates the set downlink assignments through PDCCH addressed to CS-RNTI.
  • the PDCCH addressed to CS-RNTI indicates that the corresponding downlink assignment can be implicitly reused according to the period set by RRC signaling until deactivated.
  • PUSCH carries uplink data (e.g., UL-SCH TB) and/or uplink control information (UCI) and uses Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM) waveforms or Discrete Fourier Transform (DFT-s-OFDM). -spread-OFDM) is transmitted based on the waveform.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform
  • -spread-OFDM is transmitted based on the waveform.
  • the UE transmits the PUSCH by applying transform precoding.
  • the UE transmits PUSCH based on the CP-OFDM waveform
  • the UE transmits CP-OFDM PUSCH can be transmitted based on the waveform or DFT-s-OFDM waveform.
  • PUSCH may be dynamically scheduled by PDCCH, or semi-statically scheduled based on higher layer (e.g., RRC) signaling (and/or Layer 1 (L1) signaling (e.g., PDCCH)).
  • Configured Scheduling CS.
  • PUSCH transmission is accompanied by PDCCH
  • CS includes Type-1 CG (Configured Grant) PUSCH transmission and Type-2 CG PUSCH transmission.
  • Type-1 CG all parameters for PUSCH transmission are signaled by the upper layer.
  • Type-2 CG some of the parameters for PUSCH transmission are signaled by the upper layer and others are signaled by the PDCCH.
  • CS PUSCH transmission is not accompanied by PDCCH.
  • Figure 6 illustrates physical channels used in a 3GPP-based communication system and a signal transmission/reception process using them.
  • Figure 6 illustrates physical channels used in a 3GPP-based communication system, which is an example of a wireless communication system, and a signal transmission/reception process using these.
  • a UE that is turned on again from a power-off state or has lost its connection to the wireless communication system first searches for an appropriate cell to camp on, synchronizes with the cell or the cell's BS, etc.
  • the initial cell search process is performed (S11).
  • the UE receives a synchronization signal block (SSB) (also called SSB/PBCH block) from the BS.
  • SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the UE synchronizes with the base station based on PSS/SSS and obtains information such as cell identifier (ID). Additionally, the UE can obtain intra-cell broadcast information based on the PBCH. Meanwhile, the UE can check the downlink channel status by receiving a downlink reference signal (DL RS) during the initial cell search process.
  • the UE can camp on the corresponding cell. After camping on a cell, the UE can monitor the PDCCH on the cell and receive PDSCH according to downlink control information (DCI) carried by the PDCCH to obtain more specific system information (S12).
  • DCI downlink control information
  • the UE may perform a random access procedure to complete access to the BS (S13 to S16). For example, during the random access process, the UE transmits a preamble through a physical random access channel (PRACH) (S13) and sends a random access response to the preamble through the PDCCH and the corresponding PDSCH ( A random access response (RAR) can be received (S14). If reception of the RAR for the UE fails, the UE may retry transmitting the preamble.
  • PRACH physical random access channel
  • RAR random access response
  • S15 contention resolution procedure including transmission of PUSCH (S15) based on UL resource allocation included in RAR, and reception of PDCCH and corresponding PDSCH ( S16) can be performed.
  • UCI uplink control information
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK) (also known as HARQ-ACK), scheduling request (SR), channel state information (CSI), etc.
  • CSI may include a channel quality indicator (CQI), a precoding matrix indicator (PMI), and/or a rank indicator.
  • UCI is generally transmitted through PUCCH, but when control information and traffic data must be transmitted simultaneously, it can be transmitted through PUSCH. Additionally, based on the network's request/instruction, the UE may aperiodically transmit UCI through PUSCH.
  • FIG. 7 illustrates a system information (SI) acquisition process.
  • the UE can acquire AS-/NAS-information through the SI acquisition process.
  • the SI acquisition process can be applied to UEs in RRC_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
  • RRC_CONNECTED is a state in which the UE has established an RRC connection with the network.
  • RRC_IDLE is a state in which the UE is not registered in a specific cell and has not received access stratum (AS) context and other information received from the network.
  • RRC_INACTIVE notifies the radio access network (RAN) (e.g.
  • RAN radio access network
  • CM_CONNECTED a state in which the UE has a signaling connection with the core network for connection management (CM)
  • CM_CONNECTED is a state in which the UE has a non-access stratum (NAS) signaling connection with the core network
  • NAS non-access stratum
  • CM_IDLE a state in which the UE has no NAS. It is in a state where there is no signaling.
  • SI can be divided into a master information block (MIB) and a plurality of system information blocks (SIB). MIB and multiple SIBs can be further divided into minimum SI (Minimum SI) and other SI.
  • the minimum SI may be composed of MIB and System Information Block 1 ((SystemInformationBlock1, SIB1), and includes information for obtaining a different SI from the basic information required for initial connection.
  • SIB1 is the minimum remaining system Information (remaining minimum system information, RMSI).
  • MIB Magnetic Ink-Fi Protected Access
  • MIB Magnetic Ink-Fi Protected Access
  • PBCH Packet Control Channel
  • the UE assumes that half-frames with SSB(s) repeat at a 20ms period.
  • the UE can check whether a control resource set (CORESET) for the Type0-PDCCH common search space exists based on the MIB.
  • CORESET control resource set
  • Type0-PDCCH common search space is a type of PDCCH search space and is used to transmit PDCCH for scheduling SI messages.
  • the UE determines (i) a plurality of contiguous RBs and one or more contiguous symbols constituting a CORESET based on information in the MIB (e.g., pdcch-ConfigSIB1) and (ii) a PDCCH timing. (i.e., time domain location for PDCCH reception) can be determined.
  • pdcch-ConfigSIB1 provides information about the frequency location where SSB/SIB1 exists and the frequency range where SSB/SIB1 does not exist.
  • the MIB may include the following field(s):
  • the subCarrierSpacingCommon field indicates SIB1, Msg2/4 for initial connection, and subcarrier spacing (SCS) for paging and broadcast SI messages. If the UE acquires the corresponding MIB at the FR1 carrier frequency, the scs15or60 value corresponds to 15 kHz. If the UE acquires the corresponding MIB at the FR2 carrier frequency, the scs30or120 value corresponds to 120 kHz.
  • the pdcch-ConfigSIB1 field determines common CORESET, common search space, and required PDCCH parameters. If the ssb-SubcarrierOffset field indicates that there is no SIB1, the pdcch-ConfigSIB1 field provides the frequency position where the UE can find the SS/PBCH block containing SIB1 or the network provides the SS/PBCH block containing SIB1. Indicates the frequency range that is not used.
  • the ssb-SubcarrierOffset field corresponds to k SSB , and k SSB represents the frequency domain offset between the SSB and the entire resource block grid as the number of subcarriers.
  • the range of the ssb-SubcarrierOffset field value may be extended by an additional most significant bit encoded within the PBCH as specified in 3GPP TS 38.213.
  • the ssb-SubcarrierOffset field may indicate that the corresponding cell does not provide SIB1 and therefore does not have CRESET#0 configured by MIB.
  • the dmrs-TypeA-Position field indicates the position of the (first) demodulation reference signal (DMRS) for DL (eg, PDSCH) and UL (eg, PUSCH).
  • DMRS demodulation reference signal
  • Pos2 represents the second symbol of the slot
  • pos2 represents the third symbol of the slot.
  • the UE may determine that a CORESET for the Type0-PDCCH common search space exists. If k SSB (for FR1) > 23 or (for FR2) k SSB > 11, the UE may determine that there is no CORESET for the Type0-PDCCH common search space.
  • SIB1 is transmitted on a downlink shared channel (DL-SCH) with a period of 160 ms and a transmission repetition period variable within 160 ms.
  • the default transmission repetition period of SIB1 is 20 ms, but the actual transmission repetition period may vary depending on network implementation.
  • SIB1 includes information related to the availability and scheduling (e.g., transmission period, SI-window size) of the remaining SIBs (hereinafter SIBx, x is an integer greater than or equal to 2). For example, SIB1 can inform whether SIBx is broadcast periodically or provided at the request of the UE in an on-demand manner. If SIBx is provided in an on-demand manner, SIB1 may contain information necessary for the UE to perform an SI request. SIB1 is a cell-specific SIB.
  • the PDCCH scheduling SIB1 is transmitted through the Type0-PDCCH common search space, and SIB1 is transmitted through the PDSCH indicated by the PDCCH.
  • SI-window is included in the SI message and transmitted through PDSCH.
  • Each SI message is transmitted within a periodically occurring time window (i.e., SI-window).
  • Figure 8 illustrates a random access process that can be applied to implementation(s) of this specification.
  • Figure 8(a) illustrates a 4-step random access process
  • Figure 8(b) illustrates a 2-stage random access process.
  • the random access process can be used for a variety of purposes, such as initial access, uplink synchronization adjustment, resource allocation, handover, wireless link reconfiguration after wireless link failure, and location measurement.
  • Random access processes are classified into contention-based processes and dedicated (i.e., non-contention-based) processes. Contention-based random access processes are commonly used, including for initial access, while dedicated random access processes are used for handover, when downlink data arrives in the network, and to re-establish uplink synchronization in the case of position measurement. .
  • the UE randomly selects a random access (RA) preamble. Therefore, it is possible for multiple UEs to transmit the same RA preamble at the same time, which requires a subsequent contention resolution process.
  • the dedicated random access process the UE uses the RA preamble uniquely assigned to the UE by the BS. Therefore, the UE can perform a random access process without collision with other UEs.
  • the contention-based random access process includes the following four steps.
  • messages transmitted in steps 1 to 4 may be referred to as Msg1 to Msg4, respectively.
  • Step 1 The UE transmits the RA preamble through PRACH.
  • Step 2 The UE receives a random access response (RAR) from the BS through PDSCH.
  • RAR random access response
  • Step 3 UE transmits UL data to BS through PUSCH based on RAR.
  • UL data includes Layer 2 and/or Layer 3 messages.
  • Step 4 The UE receives a contention resolution message from the BS through PDSCH.
  • the UE can receive information about random access from the BS through system information. For example, information regarding RACH timings associated with SSBs on a cell may be provided through system information. Among the SSBs received on the cell, the UE selects an SSB whose reference signal received power (RSRP) measured based on the SSB exceeds the threshold, and transmits an RA preamble through the PRACH associated with the selected SSB. . For example, if random access is required, the UE transmits Msg1 (eg, preamble) to the BS on PRACH.
  • RSRP reference signal received power
  • the BS can distinguish each random access preamble through the time/frequency resource (RA Occasion, RO) at which the random access preamble was transmitted and the random access preamble index (Preamble Index, PI).
  • RA Occasion, RO time/frequency resource
  • Preamble Index, PI the random access preamble index
  • the BS transmits a RAR message to the UE on the PDSCH.
  • the UE sends a CRC masked L1/L1/L1 signal with Random Access-RNTI (RA-RNTI), containing scheduling information for the RAR message, within a preset time window (e.g., ra-ResponseWindow).
  • RA-RNTI Random Access-RNTI
  • the UE can receive an RAR message from the PDSCH indicated by the scheduling information. Afterwards, the UE determines whether there is a RAR for it in the RAR message. Whether a RAR exists for the user can be confirmed by whether a random access preamble ID (RAPID) exists for the preamble transmitted by the UE.
  • RAPID random access preamble ID
  • the index and RAPID of the preamble transmitted by the UE may be the same.
  • the RAR includes the corresponding random access preamble index, timing offset information for UL synchronization (e.g., timing advance command (TAC), UL scheduling information for Msg3 transmission (e.g., UL grant), and UE temporary identification information (e.g., (e.g., Temporary-C-RNTI, TC-RNTI).
  • TAC timing advance command
  • Msg3 transmission e.g., UL grant
  • UE temporary identification information e.g., (e.g., Temporary-C-RNTI, TC-RNTI).
  • the UE that has received the RAR transmits Msg3 through PUSCH according to the UL scheduling information and timing offset value in the RAR.
  • the UE's ID (or UE's global ID) may be included.
  • Msg3 may include RRC connection request-related information (e.g., RRCSetupRequest message) for initial connection to the network.
  • Msg4 is sent to the UE.
  • the TC-RNTI is changed to C-RNTI.
  • the UE's ID and/or RRC connection-related information (e.g., RRCSetup message) may be included. If the information transmitted through Msg3 and the information received through Msg4 do not match, or if Msg4 is not received for a certain period of time, the UE may consider contention resolution to have failed and retransmit Msg3.
  • the dedicated random access process includes the following three steps.
  • messages transmitted in steps 0 to 2 may be referred to as Msg0 to Msg2, respectively.
  • the dedicated random access process can be triggered in the UE by the BS using the PDCCH (hereinafter referred to as PDCCH order) for commanding RA preamble transmission.
  • PDCCH order the PDCCH
  • Step 0 BS allocates the RA preamble to the UE through dedicated signaling.
  • Step 1 The UE transmits the RA preamble through PRACH.
  • Step 2 UE receives RAR through PDSCH from BS.
  • steps 1 to 2 of the dedicated random access process may be the same as steps 1 to 2 of the contention-based random access process.
  • NR systems may require lower latency than existing systems. Additionally, the 4-step random access process may not be desirable, especially for services that are vulnerable to latency, such as URLLC. A low-latency random access process may be necessary within various scenarios of an NR system.
  • the implementation(s) of this specification may be performed with the following two-stage random access process. .
  • the two-step random access process may consist of two steps: MsgA transmission from the UE to the BS and MsgB transmission from the BS to the UE.
  • MsgA transmission may include transmission of the RA preamble through PRACH and transmission of UL payload through PUSCH.
  • PRACH and PUSCH can be transmitted through time division multiplexing (TDM).
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • the BS that received MsgA can transmit MsgB to the UE.
  • MsgB may contain RAR for the UE.
  • An RRC connection request-related message (e.g., RRCSetupRequest message) requesting to establish a connection between the RRC layer of the BS and the RRC layer of the UE may be transmitted and included in the payload of MsgA.
  • MsgB can be used to transmit RRC connection-related information (e.g., RRCSetup message).
  • RRC connection request-related message (e.g., RRCSetupRequest message) may be transmitted through PUSCH, which is transmitted based on the UL grant in MsgB.
  • RRC connection-related information (e.g., RRCSetup message) related to the RRC connection request may be transmitted through the PDSCH associated with the PUSCH transmission after MsgB-based PUSCH transmission.
  • Figure 9 illustrates SSB and CORESET multiplexing patterns.
  • Figure 9(a) is SSB and CORESET multiplexing pattern 1
  • Figure 9(b) is SSB and CORESET multiplexing pattern 2
  • Figure 9(c) is SSB and CORESET multiplexing pattern 3.
  • SSB and CORSET multiplexing patterns can be predefined according to the frequency range (FR) to which the corresponding cell belongs or the subcarrier spacing of SSB or PDCCH.
  • SSB and CORESET may be multiplexed in the time domain, may be multiplexed in the time and frequency domains, and may be multiplexed in the frequency domain.
  • the set of PDCCH candidates monitored by the UE is defined in terms of PDCCH search space sets.
  • the search space set may be a common search space (CSS) set or a UE-specific search space (UE-specific search space (USS)) set.
  • CCS common search space
  • USS UE-specific search space
  • Each CORESET setting is associated with one or more search space sets, and each search space set is associated with one CORESET setting.
  • a set of PDCCH candidates may be monitored in one or more CORESETs on an active DL BWP on each activated serving cell for which PDCCH monitoring is configured, where monitoring includes receiving each PDCCH candidate and decoding it according to the monitored DCI formats. It implies.
  • Figure 10 illustrates Discontinuous Reception (DRX) operation.
  • Figure 10 illustrates a DRX cycle for a UE in RRC_CONNECTED state.
  • the UE may perform a DRX operation while performing a process and/or method according to several implementations of the present specification.
  • a UE with DRX configured can reduce power consumption by discontinuously receiving DL signals.
  • DRX operation can be performed in RRC_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
  • RRC_IDLE state and RRC_INACTIVE state DRX is used to receive paging signals discontinuously.
  • DRX RRC_CONNECTED DRX
  • the DRX cycle is configured with an ON period and an opportunity for DRX.
  • the DRX cycle defines the time interval in which the ON section is periodically repeated.
  • the ON section represents the time section that the UE monitors to receive the PDCCH.
  • the UE performs PDCCH monitoring during the ON period. If there is a PDCCH successfully detected while monitoring the PDCCH, the UE starts an Inactivity timer and remains awake. On the other hand, if no PDCCH is successfully detected while monitoring the PDCCH, the UE enters a sleep state after the ON period ends.
  • PDCCH monitoring/reception may be performed discontinuously in the time domain when performing methods and/or procedures according to some implementations of the present specification.
  • the PDCCH reception occasion eg, slot with PDCCH search space
  • the PDCCH monitoring/reception may be performed continuously in the time domain when performing methods and/or procedures according to some implementations of the present specification.
  • the PDCCH reception time eg, slot with PDCCH search space
  • PDCCH monitoring may be limited in the time section set as the measurement gap.
  • the following table illustrates the UE's process related to DRX.
  • DRX configuration information is received through upper layer (eg, RRC) signaling, and DRX ON/OFF is controlled by the DRX command of the MAC layer.
  • RRC Radio Resource Control
  • MAC-CellGroupConfig includes configuration information necessary to set MAC (Medium Access Control) parameters for the cell group.
  • MAC-CellGroupConfig may also include configuration information about DRX.
  • MAC-CellGroupConfig defines DRX and may include the following parameter information.
  • - drx-InactivityTimer Length of the time period in which the UE is awake after the PDCCH period in which the PDCCH indicating initial UL or DL data is detected, also referred to as the inactivity timer in this specification.
  • the value in multiple units of a short DRX cycle can be set by drx-CylceTimer.
  • the value of n may correspond to n* drx-ShortCycle .
  • the UE can perform PDCCH monitoring on serving cells within the DRX group when the DRX group is active.
  • the DRX group is a group of serving cells set by RRC and having the same DRX activation time.
  • the active time for serving cells in the DRX group is i) drx-onDurationTimer or drx-InactivityTimer set for the DRX group is running; or ii) drx-RetransmissionTimerDL or drx-RetransmissionTimerUL is running on any serving cell in the DRX group; or ra-ContentionResoultionTimer or msgB-RsponseWindow is running; or the PDCCH indicating new transmission addressed to the C-RNTI addressed to the MAC entity of the UE is not received after successful reception of a random access response to a random access preamble that was not selected by the MAC entity among contention-based random access preambles. It may include unused time.
  • Figure 11 illustrates a case where a long DRX cycle and a short DRX cycle are set. In detail, Figure 11 illustrates the case where drx-ShortCycleTimer is set to 2.
  • the BS may configure a long DRX cycle and an additional short DRX cycle that is shorter than the long DRX cycle. If the short DRX cycle is not set, the UE can follow the long DRX cycle. When setting a short DRX cycle, the BS sets the period of the long DRX cycle to be a positive integer multiple of the short DRX cycle. If there is no data activity during the ON period of the long DRX cycle, the UE follows the long DRX cycle as if the short DRX cycle was not set. If there is data activity during the ON period of the long DRX cycle, e.g.
  • the UE switches to the short DRX cycle and follows the short DRX cycle for a period of time (e.g. while drx-ShortCycleTimer is running).
  • a period of time e.g. while drx-ShortCycleTimer is running.
  • the UE will perform drx-ShortCycleTimer short DRX cycles. Switch to a long DRX cycle.
  • Figure 12 illustrates transmission of SIB1 in a 3GPP based system.
  • P SIB1 represents the transmission period (periodicity) or transmission repetition period of SIB1
  • SIB1 PDSCH represents a PDSCH carrying SIB1
  • SIB1 PDCCH represents a PDCCH carrying a DCI format for scheduling SIB1 PDSCH.
  • SIB1 which is part of the minimum system information required for cell access, is transmitted on the DL-SCH with a period of 160 ms and a transmission repetition period that is variable within 160 ms.
  • the default transmission repetition period for SIB1 is 20 ms, but the actual transmission repetition period depends on the network implementation.
  • the SIB1 transmission repetition period is 20ms.
  • the SIB1 transmission repetition interval is the same as the SSBI interval.
  • the PDCCH monitoring timing when the UE attempts to decode the SIB1 PDCCH may be determined based on information in the MIB, for example, pdcch-ConfigSIB1 .
  • the UE determines that a Type0-PDCCH CSS set exists based on the MIB, the UE selects a contiguous resource block for CORESET of the Type0-PDCCH CSS set from controlResourceSetZero in pdcch-ConfigSIB1
  • the number of symbols and the number of consecutive symbols can be determined, and the PDCCH monitoring times can be determined from searchSpaceZero in pdcch-ConfigSIB1 .
  • the system frame number (SFN) of the frame of the associated CORESET is SFN C
  • the combination of parameter values required to determine the index of the first symbol of the corresponding CORESET in the slot n 0 may be indicated by searchSpaceZero .
  • the UE can detect the SIB1 PDCCH by monitoring the Type0-PDCCH CSS set at the PDCCH monitoring time.
  • the UE may determine the frequency resource allocation and time resource allocation of the SIB1 PDSCH from the DCI carried by the SIB1 PDCCH, and receive/decode SIB1 based on the frequency resource allocation and time resource allocation.
  • the UE enters RRC_IDLE or RRC_INACTIVE to save power.
  • the network sends a paging message at the paging occasion (PO) to trigger the RRC setup procedure, RRC Connection Resume procedure, etc.
  • PO is a set of PDCCH monitoring times, and may consist of multiple time slots (e.g., subframes or OFDM symbols), and a DCI with a scrambled CRC may be transmitted from the PO to the P-RNTI.
  • the UE assumes that the same paging message is repeated on all transmitted beams.
  • the paging message is applicable to both radio access network (RAN) initiated paging and core network (CN) initiated paging.
  • RAN radio access network
  • CN core network
  • One paging frame (PF) is one radio frame and may include one or multiple PO(s) or the starting point of a PO.
  • the UE monitors one PO per DRX cycle.
  • PF and PO for paging can be determined by predefined formulas.
  • N is the total number of paging frames in T
  • Ns is the number of paging times for PF
  • PF_offset is the offset used for PF determination
  • UE_ID is based on 5G-S-TMSI. It is a determined value.
  • Ns for the number of paging times per paging frame nAndPagingFrameOffset , a parameter used to derive the total number of paging frames in T, nrofPDCCH-MonitoringOccasionsPerSSB-InPO , a parameter for the number of PDCCH monitoring times corresponding to the SSB in the paging time, and
  • the length of the default DRX cycle can be signaled by SIB1, and the values of N and PF_offset are derived from the parameter nAndPagingFrameOffset .
  • PDCCH monitoring times for paging can be determined based on the parameter firstPDCCH-MonitoringOccasionOfPO , which indicates the first PDCCH monitoring time for paging of each PO in the PF, and the parameter nrofPDCCH-MonitoringOccasionsPerSSB-InPO .
  • the parameter firstPDCCH-MonitoringOccasionOfPO may be signaled by SIB1 for paging in the initial downlink BWP, and may be signaled in the corresponding BWP setting for paging in a DL BWP other than the initial downlink BWP.
  • the UE can use Paging Early Indication (PEI) in RRC_IDLE and RRC_INACTIVE states. If PEI settings are provided in system information, a UE in RRC_IDLE or RRC_INACTIVE state that supports PEI can monitor PEI using PEI parameters in system information. The UE monitors one PEI per DRX cycle.
  • a PEI period (PEI-O) is a set of PDCCH monitoring periods and may consist of a number of time slots (e.g., subframes or OFDM symbols) in which PEI may be sent. In multi-beam operations, the UE assumes that the same PEI is repeated in all transmitted beams.
  • the temporal position of the PEI-O relative to the UE's PO is determined by a reference point and an offset, the reference point being that of the first PF(s) associated with the PEI-O, provided by pei-FrameOffset in SIB1.
  • the start of the reference frame determined by the frame-level offset from the start, where the offset is from the reference point to the start of the first PDCCH monitoring occupancy of this PEI-O, provided by firstPDCCH-MonitoringOccasionOfPEI-O in SIB1. This is a symbol-level offset. If one PEI-O is associated with the POs of two PFs, the two PFs are consecutive PFs calculated by the parameters PF_offset, T, Ns, and N.
  • PF_offset T, Ns, and N.
  • Paging DRX is defined where a UE with RRC_IDLE or RRC_INACTIVE is only required to monitor paging channels for one PO per DRX cycle.
  • the following paging DRX cycles may be set by the network: i) for core network-initiated paging (CN-initiated paging), the default cycle is broadcast as system information, and ii) for CN-initiated paging, the UE-specific UE-specific cycles can be established via non-access stratum (NAS) signaling, and iii) UE-specific cycles for radio access network (RAN) initiated paging. This can be set through RRC signaling.
  • the UE uses the shortest of the applicable DRX cycles. For example, a UE with RRC_IDLE can use the shortest of the first two DRX cycles among the three DRX cycles, and a UE with RRC_INACTIVE can use the shortest of the three DRX cycles.
  • the BS can save energy through symbol muting when there is no data to transmit.
  • common signals/channel(s) such as SSB, SIB, etc. are always-on signals/channel(s) that must always be transmitted, it is difficult to achieve energy saving effects through symbol muting in the corresponding symbols.
  • SSB/SIB can be transmitted by beam sweeping through a specific subcarrier spacing (SCS) and multiple beams for each frequency range (FR), and as FR increases, the number of beams increases. Therefore, the amount of time resources used for transmission of common signals/channel(s) such as SSB, SIB, etc. in FR2 becomes relatively larger compared to FR1, which may increase the proportion of BS in terms of energy consumption.
  • the period of SSB, SIB, etc. can be set to be long, but in this case, the time it takes for the UE to access the cell may be longer. And problems such as the legacy UE not being able to properly discover cells may occur. Therefore, in some scenarios where the UE can receive common signals/channel(s) such as SSB, SIB, etc. from a specific carrier, other carriers may receive common signals/channel(s) such as SSB, SIB, etc. in very long periods. Energy generated by transmission of common signals/channel(s) such as SSB, SIB, etc.
  • the UE transmits or not transmitting at all and transmitting only the minimum signal (e.g. discovery signal) sufficient to discover the cell While saving consumption, when the UE transmits a specific signal (e.g., wake up signal (WUS)) to access the corresponding carrier, SSB, SIB1, etc. can be transmitted to enable access.
  • a specific signal e.g., wake up signal (WUS)
  • the anchor CC can transmit system information (SI) of the non-anchor CC instead, and if the UE needs to access the non-anchor CC based on the help information, it can do so in an on-demand manner through signals such as WUS. SI can be received. At this time, the BS can save energy by not always transmitting SSB/SIB from the non-anchor CC.
  • SI system information
  • the BS operating in NES (network energy saving) mode to save energy means, for example, that the BS turns off the transmission of a specific DL signal for a specific time period in advance, a plurality of OFF period(s) (the BS's Operates to reduce power consumption of the BS and UE by setting the DTX section(s) and dynamically indicating the OFF section of one of them to indicate that the corresponding DL signal will not be transmitted during a predefined time section. It can mean doing.
  • BWP switching dynamic resource block (RB) adaptation not only in the time domain but also in the frequency domain, and in the spatial domain, for example, in the BS
  • RB dynamic resource block
  • the BS does not transmit and/or receive through that antenna port, thereby reducing power consumption of the BS and UE. It may also mean an operation mode that obtains .
  • ⁇ Method 1> A method of informing the UE that the BS is transmitting in an on-demand manner without transmitting a common signal/channel(s) such as SIB1 through a specific SSB or PBCH, and at this time, the UE transmits on-demand through UL WUS. How to request transmission of common signals/channel(s) such as SIB1 in a -demand manner
  • the BS can notify that it is operating on-demand SIB1 while transmitting a specific SSB through a specific bit of the PBCH, a specific PSS and/or SSS sequence, or a PBCH DMRS sequence.
  • SIB1 scheduling information pdcch-ConfigSIB1 of controlResourceSetZero and searchSpaceZero
  • SIB1 scheduling information pdcch-ConfigSIB1 of controlResourceSetZero and searchSpaceZero
  • controlResourceSetZero or searchSpaceZero Some of the reserved states can be used to indicate that on-demand SIB1 is in operation.
  • the UE can monitor SI-RNII when the BS transmits an ACK for the SIB1 request through CORESET0 and successfully receives it after transmitting the RACH for the SIB1 request.
  • the SIB1 transmitted by the BS after receiving the UE's SIB1 request is SIB1 linked to a specific SSB index corresponding to the RACH transmitted by the UE or SIB1 linked to all transmitting SSB indexes. It can mean.
  • the UE receives an ACK with pre-defined CORESET0/SS0 (i.e. search space set index 0) after RACH transmission, or receives a valid ACK without receiving an ACK. ) controlResourceSetZero or searchSpaceZero After confirming the information, you can also receive SIB1.
  • the BS can transmit a specific SSB and notify that it is operating on-demand SIB1 through specific information in the SSB or ssb-SubcarrierOffset k SSB in the MIB , and transmit SIB1 based on the UE's request. At this time, there may be no configuration for the CRESET#0/Type0-PDCCH CSS set in the corresponding SSB.
  • the UE interprets that SIB1 is being operated in an on-demand manner, and can request SIB1 transmission to the BS through pre-set or pre-defined PRCH transmission in the corresponding state.
  • the advanced UE may interpret that the BS is operating SIB1 in an on-demand manner and transmit a RACH for a SIB1 request.
  • the UE may interpret that the BS is operating SIB1 in an on-demand manner and perform operations such as RACH transmission for a SIB1 request.
  • advanced UE may refer to a UE that has the ability to interpret when the BS notifies that it is a cell operating in NES mode, and that can connect to the cell and operate according to the BS's NES operation instructions/settings. there is.
  • the UE can transmit WUS using UL WUS resources defined in the standard document or resources set in (CD-)SSB to request SIB1 transmission from the BS.
  • UL WUS can be used by pre-arranged/promised resources such as RACH, etc.
  • a set specific UL signal/channel may be used.
  • Methods and/or procedures according to the present specification allow an idle/inactive UE to request SIB1 when the BS transmits CD-SSB, but SIB1 is not actually transmitted because it is operating on-demand SIB1. It can be applied to a scenario transmitting UL WUS (eg, RACH).
  • UL WUS eg, RACH
  • CD-SSB cell-defining SSB
  • NCD-SSB non CD-SSB
  • multiple SSBs may be transmitted within the frequency range of the carrier.
  • the PCIs Physical Cell Identifiers
  • different SSBs in the frequency domain may have different PCIs.
  • the SSB is called CD-SSB.
  • a Pcell is always associated with a CD-SSB in the synchronization raster.
  • CD-SSB is an SSB associated with SIB1 with the cell's NCGC (NR Cell Clobal Identifier) and is always in the initial BWP, and the UE can know the location of the CD-SSB through cell search in the synchronization raster.
  • NCD-SSB is not associated with SIB1, and can be used in the case of EN-DC, and the UE can know the location of the NCD-SSB through RRC reconfiguration, and one or more SSB types are the same BWP can exist in
  • the BS may require a minimum amount of SSB transmission to enable the UE to discover and access a cell, and also transmits a SIB to the UE to save current network energy.
  • UL WUS is transmitted to the BS, it can be notified that SIB1 can be transmitted in an on-demand manner.
  • the BS can inform this through a specific bit in the PBCH payload, a specific PSS and/or SSS sequence, or a DMRS sequence in the PBCH.
  • the BS sets all or part of the 24 bits that make up the MIB in the PBCH payload, which consists of a total of 56 bits, to all '1' or all '0' in a specific bit configuration promised in advance or defined in the standard.
  • RMSI CORSET/search SIB1 can be transmitted in an on-demand manner by configuring the bits constituting all or some of the fields related to search space and initial active DL BWP with specific bits promised in advance or defined in the standard. It can tell you that it is in a state.
  • the BS may transmit SIB1 in an on-demand manner through a specific PSS sequence defined/promised in the standard in advance, a specific SSS sequence, or a combination of the two (or through a specific PBCH DMRS sequence). It may also let you know that it is in a state where it can be done.
  • the scheduling information for SIB1 ( controlResourceSetZero and searchSpaceZero of pdcch-ConfigSIB1 ) is transmitted, some of the reserved states of controlResourceSetZero or searchSpaceZero
  • the UE can transmit UL WUS using resources defined in the standard or set as (CD-)SSB to request SIB1 from the BS.
  • UL WUS may use a pre-arranged specific UL signal/channel such as RACH.
  • SIB1 transmitted by the BS after receiving the UE's SIB1 request may mean SIB1 linked to a specific SSB index corresponding to the RACH transmitted by the UE or SIB1 linked to all SSB indexes being transmitted.
  • the UE receives an ACK with pre-defined CORESET0/SS0 (i.e., search space set index 0) after transmitting WUS (e.g., RACH), or receives valid controlResourceSetZero or searchSpaceZero information without receiving an ACK. After confirmation, you can also receive SIB1.
  • the BS can indicate that it is operating on-demand SIB1 while transmitting a specific SSB through specific information in the SSB and through a reserved state.
  • the SSB may not have a configuration for the CORESET#0/Type0-PDCCH CSS set, and if the reserved state is indicated, the UE determines its type/capability ( Yes, depending on the legacy UE (or advanced UE supporting Rel-18 NES), determine whether the cell is operating on-demand SIB1 and request SIB1 transmission, or another cell transmitting CD-SSB You can also perform a search procedure.
  • Specific information within a specific SSB may be indicated as a reserved state, which may be a part of the SSB PBCH payload, for example, 1 reserved bit, and can be used in the legacy UE. can determine this to be NCD-SSB and move to another cell transmitting CD-SSB, but in the case of an advanced UE that supports Rel-18 NES, the state is changed to "It is actually a CD-SSB, but SIB1 is It can be interpreted as "operating on-demand" and request SIB1 transmission from the BS through RACH transmission preset or predefined in the corresponding state.
  • the scheduling information for SIB1 ( controlResourceSetZero and searchSpaceZero of pdcch-ConfigSIB1 ) is transmitted, some of the reserved states of controlResourceSetZero or searchSpaceZero
  • the UE can transmit UL WUS using resources defined in the standard or set as (CD-)SSB to request SIB1 from the BS.
  • UL WUS may use a pre-arranged specific UL signal/channel such as RACH.
  • SIB1 transmitted by the BS after receiving the UE's SIB1 request may mean SIB1 linked to a specific SSB index corresponding to the RACH transmitted by the UE or SIB1 linked to all SSB indexes being transmitted.
  • the UE receives an ACK with pre-defined CORESET0/SS0 (i.e., search space set index 0) after transmitting WUS (e.g., RACH), or confirms valid controlResourceSetZero or searchSpaceZero information without receiving an ACK. SIB1 may be received later.
  • the BS can indicate that it is operating on-demand SIB1 while transmitting a specific SSB through specific information in the SSB and through a reserved state.
  • the SSB may not have a configuration for the CORESET#0/Type0-PDCCH CSS set, and if the reserved state is indicated, the UE determines its type/capability ( For example, depending on the legacy UE or advanced UE supporting Rel-18 NES, it determines whether the cell is operating on-demand SIB1 and requests SIB1 transmission or transmits CD-SSB. You can also perform procedures to find other cells.
  • Specific information within a specific SSB may be indicated as a reserved state, which may be a part of the SSB PBCH payload, for example, 1 reserved bit, and can be used in the legacy UE. can determine this to be NCD-SSB and move to another cell transmitting CD-SSB, but in the case of an advanced UE that supports Rel-18 NES, the state is changed to "It is actually a CD-SSB, but SIB1 is It can be interpreted as "operating on-demand" and request SIB1 transmission from the BS through RACH transmission preset or predefined in the corresponding state.
  • the UE determines the number of consecutive RBs and the number of consecutive symbols for CORESET of the Type0-PDCCH CSS set from controlResourceSetZero of pdcch-ConfigSIB1 . Additionally, the UE determines PDCCH monitoring occasions from searchSpaceZero of pdcch-ConfigSIB1 in the MIB. In some implementations of this specification, the BS sets on-demand SIB1 by setting some of the reserved bit values or reserved states of controlResourceSetZero , searchSpaceZero , or ssb-SubcarrierOffset of pdcch-ConfigSIB1 to a specific value. The UE can be notified whether it is in operation or not.
  • the BS is reserved through k SSB with a value of 30 in FR1, or through k SSB with a value of 14 in FR2. state), the legacy UE determines that it is an NCD-SSB, but the Rel-18 UE may interpret that it is a CD-SSB but is operating SIB1 in an on-demand manner and transmit a RACH for a SIB1 request.
  • Table 13-16 shows the mapping of the combination of k SSB and controlResourceSetZero and searchSpaceZero of pdcch-ConfigSIB1 to N Offset GSCN for FR1.
  • Table 13-17 shows the mapping of the combination of k SSB and controlResourceSetZero and searchSpaceZero of pdcch-ConfigSIB1 to N Offset GSCN for FR2.
  • the UE determines that the detected SS/PBCH block does not have information about the second SS/PBCH block with a CORESET for the associated Type0-PDCCH CSS set.
  • CORESET0/SS0 i.e. search space set index 0
  • on-demand SIB1 e.g., pre-defined
  • the Rel-18 UE may determine that the BS is operating on-demand SIB1 and request SIB1 by transmitting UL WUS (eg, RACH).
  • UL WUS e.g, RACH
  • a specific carrier/cell may provide information about the carrier/cell operating in NES mode (e.g., DL/UL BWP, RACH).
  • (RO) resources for UL WUS transmission can be set much sparsely in the time domain compared to the dense RO for (existing) SIB-based full-scale RACH transmission and reception. .
  • UL WUS e.g., RACH
  • RACH resource
  • SIB1 and Carriers/cells operating in NES mode via the same cell-specific RRC signaling
  • other nearby carriers/cells may provide this, where the UE wakes up the BS operating in NES mode.
  • Both sparse RACH settings for RACH and legacy RACH settings for general RACH procedures may be included.
  • a specific UL signal/channel, such as RACH may be used as the UL WUS signal.
  • the methods and/or procedures according to the present specification allow the UE to move to the target cell in a connected mode when the UE is operating in a conditional handover (HO) situation and the target cell is operating in NES mode. It can be applied to a scenario transmitting WUS or a scenario adding a conditional secondary cell group (SCG).
  • SCG conditional secondary cell group
  • the BS does not transmit common signals/channels such as MIB and/or SIB, or operates in NES mode, which transmits only at very long periods, and then the UE transmits to the pre-arranged/configured UL WUS (e.g. RACH).
  • the pre-arranged/configured UL WUS e.g. RACH.
  • Energy can be saved by performing MIB and/or SIB1 transmission and RACH procedures only when requested.
  • the UE receives information (e.g., DL/UL BWP, RACH) about the carrier/cell operating in NES mode from a specific carrier/cell and transmits UL WUS to the carrier/cell operating in NES mode to transmit SSB/SIB1, etc. You can request and perform procedures to access the corresponding cell.
  • information about UL WUS e.g., RACH
  • resources e.g., SIB1
  • All RACH settings may be included.
  • the carrier/cell operating in NES mode may only perform UL WUS detection from the UE and turn off other reception, and when the UE transmits UL WUS, only after receiving it does the target cell begin full-scale SSB transmission and its own. Energy can be saved by starting full-scale RACH reception based on SI.
  • (RO) resources for UL WUS transmission can be set much sparsely in the time domain compared to dense RO for SIB-based full-scale RACH transmission and reception to save energy of the BS.
  • the UE After transmitting UL WUS, the UE begins full-scale RACH reception based on SSB and SI transmitted from a carrier/cell operating in NES mode, or receives a signal from the target cell (configured from a source cell or target cell) without a separate ACK from the BS.
  • the connection procedure can be performed by attempting RACH transmission based on SIB1 (transmitted by the target cell).
  • Methods and/or procedures according to the present specification include a connected mode scenario in which a UE receives a conditional HO to a target cell operating in NES mode or a cell operating in NES mode (e.g. , It can be applied to a scenario of conditional SCG addition (PScell and/or Scell belonging to the SCG).
  • the methods and/or procedures according to the present specification provide a target cell to a source cell near a cell operating in NES mode to a connected mode UE. ) with a conditional HO command to transmit UL WUS (e.g., RACH) when a specific condition (e.g., RSRP becomes above/below a preset threshold) is satisfied.
  • UL WUS e.g., RACH
  • the methods and/or procedures according to the present specification set a conditional SCG addition to a cell operating in NES mode for dual connectivity in a cell belonging to a master cell group (MCG).
  • MCG master cell group
  • a cell e.g., PScell
  • the UE performs DL reception (reference signal (RS) measurement) through a configured SCell and detects a condition (e.g., RSRP is below/above a certain threshold set in advance). If this is satisfied, how to transmit WUS for Scell activation through the WUS/RACH resource set by the PCell
  • RS reference signal
  • the cell If the BS sets up a Scell but is not in an activation state, the cell operates in NES mode, transmitting only the minimum RS and not transmitting common signals/channels such as SSB/SI, or transmitting in very long periods.
  • the UE When it receives WUS/RACH transmitted by the UE, it can operate in normal mode (non-NES mode).
  • the UE performs DL reception (RS measurement) through the configured SCell, and when a specific condition is met (for example, when RSRP is below/above a certain preset threshold), the UE receives the data set by the PCell.
  • WUS for Scell activation can be transmitted through WUS/RACH resources.
  • the UL WUS resource for requesting SIB1 transmission from the BS is defined in the standard document, or the WUS can be transmitted using resources set by the PCell.
  • the UL WUS can be used to transmit a specific UL signal/configuration in advance, such as RACH. Channels may be used.
  • Methods and/or procedures according to the present specification allow the BS to reduce SSB transmission to the SCell for the NES (e.g., set the period to be long), or when the BS turns off SSB transmission, the terminal activates the SCell through WUS ( It can be applied to scenarios such as activation.
  • the BS transmits SSB/SI/paging/RACH in a time section other than the on duration (or active time) of the UE with C-DRX configured. How to transmit by turning off or reducing reception (for example, making the cycle very long)
  • Each UL WUS (resource) can be set in advance in conjunction with a specific signal/channel, and can increase the chances of transmitting/receiving all or some signals/channels through one UL WUS.
  • the BS sends a response to the received UL WUS and increases transmission opportunities at a specific time or during a specific time period when transmission of a specific signal/channel will begin through a pre-arranged or group-common (GC) DCI. I can give it.
  • GC group-common
  • the BS transmits SSB or TRS for time/frequency synchronization (synchronization raster) before the on duration (or active time) to alleviate the RS shortage problem when SSB/TRS is transmitted only in the on duration (or active time). You can set a section where transmission is guaranteed.
  • SSB or RS transmission is limited outside of the on-duration section (or active time section), so the BS periodically transmits and measures RSs necessary for measurement in the on-duration section (or active time section). Requirements can be relaxed.
  • the BS sets a UE-common on duration (or activation time) for RS reception in addition to the UE-specific on duration (or activation time) or sets a UE-common on duration (or activation time) for RS reception using GC-DCI, etc.
  • the UE-common on duration (or active time) or window can be indicated.
  • the above methods also turn off SSB/SI/paging/RACH transmission/reception in a time section other than the on duration (or active time) in a situation where the BS sets up DRX to save network energy, or when transmitting with extremely reduced density, the UE Can be applied to a scenario where WUS is transmitted.
  • the active time is the time period in which the on duration timer operates when the UE is configured and operates C-DRX, the time period in which the inactive timer operates when PDCCH is received, or the timer for retransmission. It may refer to a (union) section that is the sum of all the times the UE must remain active while operating.
  • the BS sets the UE to a time period (on duration) in which PDCCH monitoring must be performed and an off duration (OFF duration) in which PDCCH monitoring is not required, thereby providing a C-DRX (connected mode) effect that achieves a power saving effect for the UE. You can set up discontinuous reception.
  • the UE performs PDCCH monitoring on periodic on duration to check whether there is DL/UL to transmit/receive, and when the PDCCH is received, performs DL reception or UL transmission according to instructions.
  • PDCCH monitoring on periodic on duration to check whether there is DL/UL to transmit/receive, and when the PDCCH is received, performs DL reception or UL transmission according to instructions.
  • the UE's UL regardless of C-DRX, if there is data to send in the UL buffer, it can wake up from sleep mode and transmit an SR (Scheduling Request).
  • SR Service Request
  • paging is performed periodically. By performing paging monitoring, if it is not the target UE, it can operate in idle mode DRX (I-DRX), which goes back to sleep.
  • the meaning of the UE operating in sleep mode is “irrespective of the active time determined by C-DRX” or “operating in sleep mode even in sections other than the active time determined by C-DRX” This can mean that it can be done.
  • the repetition of the time interval configured as on duration and off duration is called a DRX cycle, and the DRX cycle length is from the start point of the on duration to the next It is defined as before the on duration, and there are long DRX cycles and short DRX cycles. If the DRX cycle length becomes longer, if the BS has a PDSCH to send immediately after the UE's specific on duration ends, the UE's next on duration Latency may increase because you have to wait until the duration is reached.
  • the UE since the UE does not transmit P-CSI or SRS during the off-duration, it can increase resource utilization by allocating the resources to other UEs.
  • the BS can also operate by switching to an energy saving mode to save power during the UE's off-duration.
  • C- Transmission/reception of SSB/SI/paging/RACH can also be turned off or reduced (for example, with a very long period) in a time section other than the on duration (or time section other than the active time) of the UE with DRX configured.
  • the UE can transmit UL WUS for measurement through SSB, acquisition of SI information, and RACH transmission to increase the opportunity for transmission/reception of a specific signal/channel.
  • each WUS can be set in advance in conjunction with a specific signal/channel, and it is also possible to increase the chances of transmitting/receiving all or some signals/channels through one WUS.
  • a specific RACH index e.g. RO (RACH occasion) and/or preamble index
  • SSB e.g. SSB
  • other specific RACH indices are linked to SI. Therefore, the opportunity for transmission/reception of interlocked signals/channels can be increased according to the RACH index of UL WUS transmitted by the UE.
  • the transmission/reception of SSB/SI/paging/RACH can also be turned off or reduced and returned to normal operation (operating in non-NES mode). For example, after the UE requests an increase in the transmission opportunity of a specific common signal/channel based on information set in advance using the RACH index of UL WUS, the original expectation of signal reception in the Xms period is reduced to Y( ⁇ Signal reception can be expected with a period of X)ms.
  • the BS may send a response to the received UL WUS and increase transmission opportunities at a specific point in time or during a specific time period when transmission of a specific signal/channel will begin through pre-arranged or (GC-)DCI.
  • the UE sets up a WUS of a specific RACH index linked to SIB1 in advance, and wants to receive SIB1 more frequently than the current cycle during a specific time period, it transmits the corresponding RACH index through WUS and responds through the RAR of the BS. After receiving the (response), you can expect to receive SIB1 at a specific point in time or during a specific time period (for example, after 2 slots) as promised in advance or indicated through (GC-)DCI.
  • the BS sets a section in which SSB or TRS transmission for time/frequency synchronization is guaranteed before the on duration (or active time). It may be possible.
  • the UE can make up for insufficient RS by receiving additional SSB or TRS in a configured section in addition to the on duration (or active time).
  • the BS transmits RSs required for measurement periodically during the on-duration (or active time) and relaxes the measurement request (measurement requirement0). (relaxation).
  • a UE-common on duration (or activation time) for RS reception in addition to the UE-specific on duration (or activation time), or RS reception through GC-DCI, etc.
  • the UE-common on duration (or activation time) or window may be indicated for UE.
  • Cells to be activated when load occurs for each UE tracking area can be set in advance.
  • the BS may allocate a specific UL WUS signal targeting a cell to be activated based on assist information periodically transmitted by the UE.
  • the BS can additionally set up a capacity booster cell (Cell B) in addition to the PCell (Cell A) to increase the capacity, such as throughput, of the UE.
  • the capacity booster cell may be an SCell located within the coverage of Cell A and having a higher FR than Cell A. Since the UE may not always need high throughput, Cell B operates in NES mode, and when the UE requires high throughput or a load occurs, it can be activated for capacity boosting and transmit data to the terminal. However, since it is unknown whether the UE with load among the UEs in Cell A coverage is an area covered by Cell B, it is difficult to activate Cell B based on the load. It can be inefficient. For example, if Cell B wakes up from NES mode (sleep) due to the load of the UE outside of Cell B's coverage, energy may be wasted because there is actually no need to wake up.
  • the UE needs capacity boosting, it can be activated by transmitting UL WUS to Cell B. Additionally, considering the coverage of Cell B, cells to be activated when load occurs for each UE tracking area from Cell A can be set in advance.
  • the BS can allocate a specific UL WUS signal targeting the cell to be activated (based on assist information periodically transmitted by the UE) and provide the UE with different UL WUS signals for each cell in advance (e.g. For example, when targeting and activating a specific cell (when a load occurs) by setting different time/frequency/sequence resources, etc., activating the cell (when a load occurs) by transmitting the UL WUS signal set for that cell
  • activation may mean activating the SCell or requesting transmission of SSB and/or SI (system information), etc. in the corresponding cell.
  • the cell may be expanded by replacing it with a carrier, frequency, or physical cell ID. That is, as an example, when UL WUS signal #1 corresponding to frequency #A is set and UL WUS signal #2 corresponding to frequency #B is set, the UE activates frequency #A. ), UL WUS signal #1 can be transmitted.
  • the UE may power ramp the UL WUS signal and retransmit it.
  • the UE When the UE transmits UL WUS to request a common signal/channel such as SIB from the BS or perform SCell activation, etc., if the power of UL WUS is too low, the BS may not receive it properly. Alternatively, when transmitting at too high a power, it may not be efficient in terms of interference or UE energy consumption. Therefore, in the methods and/or procedures according to the present specification, the power of UL WUS can be appropriately adjusted by considering the distance between the BS and the UE that wants to transmit UL WUS, etc.
  • the power of UL WUS may be adjusted according to the location within the cell based on the power level of the DL signal (e.g., SSB, TRS, discovery signal) received by the UE. If WUS is transmitted to a specific cell based on the received RS power and no response is received, the UL WUS signal may be power ramped up and retransmitted.
  • the DL signal e.g., SSB, TRS, discovery signal
  • the UE if the BS is not transmitting a common signal/channel such as SSB/SIB1 to save energy, the UE cannot receive SSB and cannot know the SSB power, so PL (path-loss) for WUS transmission Estimation may be impossible.
  • the power value of the SSB transmitted by the BS is pre-set to a fixed value (e.g., the minimum or maximum value of the configurable SSB power range). It can be set or notified in a specific field of the MIB or a combination of specific fields so that the UE can perform power settings for WUS transmission based on the information. Additionally, if the UE does not hear a response (e.g.
  • the power of the WUS is gradually ramped up by a pre-arranged step size and transmitted. If the UE's maximum power is reached or no response is heard, the number of repeated WUS transmissions (pre-defined or MIB-signaled or RRC-signaled) is reduced. If the number of RRC-signaled (RRC-signaled)) exceeds
  • the C-DRX configuration for saving network energy of the BS may be the same as the existing UE C-DRX/I-DRX, or may be configured as a pre-arranged (plural) )
  • L1 e.g., GC-DCI
  • L2 e.g., MAC-CE
  • DRX configuration for the purpose of network energy saving (NES) refers to DRX configuration during a pre-arranged/set time period (e.g., in standard documents, etc.) for the purpose of saving energy in the BS.
  • a (cell-specific) DTX/DRX pattern or active/inactive pattern in which the BS transmits/receives to a minimum or is completely turned off and the time period during which it operates normally are periodically repeated. It can mean. More specifically, as an example of DRX setup for NES purposes, the UE may not perform PDCCH monitoring even during the active time within the DRX cycle, and may receive common signals/channels such as SSB/SIB1 even in time sections other than the active time. You can omit it or receive it only at very long intervals.
  • the resources of the signal/channel(s) Transmission may not be performed.
  • the NES mode/state may be defined. When the NES mode/state is set/indicated, transmission/transmission of some or all DL/UL signals during a specific time period operating in NES mode It can be preset to save energy by turning off reception, reducing the amount of frequency resources transmitted/received, reducing the number of antenna ports used for transmission, or lowering transmission power.
  • Figure 13 illustrates a downlink signal reception flow in a UE according to some implementations of the present specification.
  • the UE uses a synchronization signal block (synchronization signal block) including a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH) on the cell.
  • SSB can be detected (S1301). Additionally, the UE can obtain information about whether system information block 1 (SIB1) is on-demand system information (SI) from the SSB (S1302). The UE may transmit a SIB1 request based on the fact that the SIB1 is an on-demand SI (S1303).
  • a physical downlink control channel (PDCCH) related to the SIB1 is monitored, and based on detecting the PDCCH, a physical downlink shared channel (physical downlink) carrying the SIB1 is monitored.
  • shared channel (PDSCH) can be received (S1304).
  • Figure 14 illustrates a downlink signal transmission flow in a BS according to some implementations of the present specification.
  • BS contains information about whether SIB1 is on-demand SI on the cell, and includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel. , PBCH) can be transmitted (S1401).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • BS can receive a SIB1 request based on the fact that SIB1 is an on-demand SI (S1402).
  • the BS may transmit a physical downlink control channel (PDCCH) related to SIB1 (S1403).
  • the BS may transmit a physical downlink shared channel (PDSCH) carrying the SIB1 (S1404).
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the UE may perform operations according to several implementations of this specification in relation to reception of a downlink signal.
  • the UE has at least one transceiver; at least one processor; and at least one computer operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations in accordance with some implementations of the present specification.
  • a processing device for a UE includes at least one processor; and at least one computer operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations in accordance with some implementations of the present specification. May contain memory.
  • a computer-readable (non-volatile) storage medium may store at least one computer program that, when executed by at least one processor, includes instructions that cause the at least one processor to perform operations according to some implementations of the present specification. You can.
  • a computer program or computer program product is recorded on at least one computer-readable (non-volatile) storage medium and includes instructions that, when executed, cause (at least one processor) to perform operations in accordance with some implementations of the present specification. can do.
  • the operations include: generating a primary synchronization signal (PSS) on a cell, a secondary synchronization signal (Detect synchronization signal block (SSB) including secondary synchronization signal (SSS) and physical broadcast channel (PBCH); Obtain information about whether system information block 1 (SIB1) is on-demand system information (SI) from the SSB; Based on the SIB1 being an on-demand SI, sending a SIB1 request; Based on the SIB1 request, monitoring a physical downlink control channel (PDCCH) related to the SIB1; And based on detecting the PDCCH, it may include receiving a physical downlink shared channel (PDSCH) carrying the SIB1.
  • PSS primary synchronization signal
  • SSB secondary synchronization signal
  • PBCH physical broadcast channel
  • the information about whether the SIB1 is an on-demand SI includes at least one of a specific bit in the PBCH, a synchronization signal sequence, or a demodulation reference signal (DMRS) sequence for the PBCH. It can be obtained based on
  • information about whether the SIB1 is an on-demand SI can be obtained based on the SIB1-related PDCCH configuration field in the master information block (MIB) carried by the PBCH.
  • MIB master information block
  • determining whether the SIB1 is an on-demand SI based on the SIB1-related PDCCH configuration field value being a predetermined value; And it may include transmitting the SIB1 request based on determining that the SIB1 is an on-demand SI.
  • information about whether the SIB1 is an on-demand SI can be obtained based on the SSB subcarrier offset field in a master information block (MIB) carried by the PBCH.
  • MIB master information block
  • transmitting the SIB1 request is transmitting a random access channel (RACH) associated with the SSB, and the SIB1 has a predetermined SSB index corresponding to the RACH and It may be the associated SIB1.
  • RACH random access channel
  • transmitting the SIB1 request is transmitting a random access channel (RACH) associated with the SSB
  • RACH random access channel
  • the SIB1 may be SIB1 associated with all SSB indices being transmitted.
  • the BS may perform operations according to several implementations of this specification with respect to transmission of downlink signals.
  • BS has at least one transceiver; at least one processor; and at least one computer operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations in accordance with some implementations of the present specification.
  • the processing device for the BS includes at least one processor; and at least one computer operably connectable to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations in accordance with some implementations of the present specification. May contain memory.
  • a computer-readable (non-volatile) storage medium may store at least one computer program that, when executed by at least one processor, includes instructions that cause the at least one processor to perform operations according to some implementations of the present specification. You can.
  • a computer program or computer program product is recorded on at least one computer-readable (non-volatile) storage medium and includes instructions that, when executed, cause (at least one processor) to perform operations in accordance with some implementations of the present specification. can do.
  • the operations include: generating a primary synchronization signal (PSS) on a cell, a secondary synchronization signal ( Transmit a synchronization signal block (SSB) including a secondary synchronization signal (SSS) and a physical broadcast channel (PBCH);
  • the SSB includes information on whether system information block 1 (SIB1) is on-demand system information (SI), and is based on the fact that SIB1 is on-demand SI.
  • SIB1 receives the request; Based on the SIB1 request, transmitting a physical downlink control channel (PDCCH) related to the SIB1; And it may include transmitting a physical downlink shared channel (PDSCH) carrying the SIB1.
  • the information about whether the SIB1 is an on-demand SI includes at least one of a specific bit in the PBCH, a synchronization signal sequence, or a demodulation reference signal (DMRS) sequence for the PBCH. It can be transmitted based on
  • information about whether the SIB1 is an on-demand SI may be transmitted based on the SIB1-related PDCCH configuration field in the master information block (MIB) carried by the PBCH.
  • MIB master information block
  • information about whether the SIB1 is an on-demand SI may be transmitted based on the SSB subcarrier offset field in a master information block (MIB) carried by the PBCH.
  • MIB master information block
  • receiving the SIB1 request means receiving a random access channel (RACH) associated with the SSB, and the SIB1 has a predetermined SSB index corresponding to the RACH and It may be the associated SIB1.
  • RACH random access channel
  • receiving the SIB1 request means receiving a random access channel (RACH) associated with the SSB
  • RACH random access channel
  • the SIB1 may be the SIB1 associated with all SSB indices being transmitted.
  • Implementations of this specification can be used in a wireless communication system, a BS or user equipment, or other equipment.
  • Implementations of this specification can be used in wireless communication systems, base stations, user devices, and other equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

UE는 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출; 상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득; 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및 상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함할 수 있다.

Description

하향링크 신호를 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 신호를 전송하는 방법 및 기지국
본 명세는 무선 통신 시스템에 관한 것이다.
기기간(machine-to-machine, M2M) 통신, 기계 타입 통신(machine type communication, MTC) 등과, 높은 데이터 전송량을 요구하는 스마트 폰, 태블릿 PC(Personal Computer) 등의 다양한 기기 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망(cellular network)에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation) 기술, 인지 무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다.
더 많은 통신 기기가 더 큰 통신 용량을 요구함에 따라, 레거시 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 광대역(enhanced mobile broadband, eMBB) 통신에 대한 필요성이 대두되고 있다. 또한, 복수의 기기 및 객체(object)를 서로 연결하여 언제 어디서나 다양한 서비스를 제공하기 위한 대규모 기계 타입 통신(massive machine type communication, mMTC)는 차세대 통신에서 고려해야 할 주요 쟁점 중 하나이다.
또한, 신뢰도 및 대기 시간에 민감한 서비스/사용자기기(user equipment, UE)를 고려하여 설계될 통신 시스템에 대한 논의가 진행 중이다. 차세대(next generation) 무선 접속 기술의 도입은 eMBB 통신, mMTC, 초 신뢰도 및 저 지연 시간 통신(ultra-reliable and low latency communication, URLLC) 등을 고려하여 논의되고 있다.
본 명세의 일 기술적 과제는 BS가 공통 신호/채널(들)을 전송하는 방법들 및/또는 절차들을 제공하는 것이다.
본 명세의 다른 기술적 과제는 BS가 UL(uplink) WUS(wake up signal) 검출을 기반으로 특정 신호/채널의 전송/수신을 수행함으로써 네트워크 에너지 절약(Network Energy Saving, NES) 목적으로 동작하는 방법들 및/또는 절차들을 제공하는 것이다.
본 명세의 또 다른 기술적 과제는 UE의 SCell(secondary cell) 활성화(activation) 방법들 및/또는 절차들을 제공하는 것이다.
본 명세의 또 다른 기술적 과제는 로드 기반 셀 활성화(load based cell activation) 방식을 보완하는 방법들 및/또는 절차들을 제공하는 것이다.
본 명세의 또 다른 기술적 과제는 UE가 UL WUS의 전력(power)을 조절하는 방법들 및/또는 절차들을 제공하는 것이다.
본 명세가 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 상세한 설명으로부터 본 명세와 관련된 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세의 일 양상으로, 무선 통신 시스템에서 사용자 기기가 하향링크 신호를 수신하는 방법이 제공된다. 상기 방법은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출; 상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득; 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및 상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함한다.
본 명세의 다른 양상으로, 무선 통신 시스템에서 하향링크 신호를 수신하는 사용자기기가 제공된다. 상기 사용자기기는: 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다. 상기 동작들은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출; 상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득; 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및 상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함한다.
본 명세의 또 다른 양상으로, 프로세싱 장치가 제공된다. 상기 프로세싱 장치는: 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다. 상기 동작들은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출; 상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득; 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및 상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함한다.
본 명세의 또 다른 양상으로, 컴퓨터 판독가능한 저장 매체가 제공된다. 상기 컴퓨터 판독가능한 비휘발성 저장 매체는: 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서로 하여금 사용자기기를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장한다. 상기 동작들은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출; 상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득; 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및 상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함한다.
본 명세의 또 다른 양상으로, 컴퓨터 프로그램 판독가능한 저장 매체에 저장된 컴퓨터 프로그램이 제공된다. 상기 컴퓨터 프로그램은 실행될 때 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 프로그램 코드를 포함한다. 상기 동작들은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출; 상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득; 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및 상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함한다.
본 명세의 또 다른 양상으로, 무선 통신 시스템에서 기지국이 하향링크 신호를 전송하는 방법이 제공된다. 상기 방법은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 전송; 상기 SSB는 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 포함하고, 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 수신; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 전송; 및 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 전송하는 것을 포함한다.
본 명세의 또 다른 양상으로, 무선 통신 시스템에서 하향링크 신호를 전송하는 기지국이 제공된다. 상기 기지국은: 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다. 상기 동작들은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 전송; 상기 SSB는 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 포함하고, 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 수신; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 전송; 및 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 전송하는 것을 포함한다.
본 명세의 각 양상에 있어서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH 내 특정 비트, 동기 신호 시퀀스, 또는 상기 PBCH를 위한 복조 참조 신호(demodulation reference signal, DMRS) 시퀀스 중 적어도 하나를 기반으로 획득될 수 있다.
본 명세의 각 양상에 있어서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH에 의해 운반된 마스터 정보 블록(master information block, MIB) 내 SIB1 관련 PDCCH 설정 필드를 기반으로 획득될 수 있다.
본 명세의 각 양상에 있어서, 상기 SIB1 관련 PDCCH 설정 필드 값이 기결정된 값인 것을 기반으로, 상기 SIB1이 온-디맨드 SI인지 판단; 및 상기 SIB1이 온-디맨드 SI라고 판단한 것을 기반으로, 상기 SIB1 요청을 전송하는 것을 포함할 수 있다.
본 명세의 각 양상에 있어서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH에 의해 운반된 마스터 정보 블록(master information block, MIB) 내 SSB 서브캐리어 오프셋 필드를 기반으로 획득될 수 있다.
본 명세의 각 양상에 있어서, 상기 MIB 내 SSB 서브캐리어 오프셋 필드 값이 기결정된 값인 것을 기반으로, 상기 SIB1이 온-디맨드 SI인지 판단; 및 상기 SIB1이 온-디맨드 SI라고 판단한 것을 기반으로, 상기 SIB1 요청을 전송하는 것을 포함할 수 있다.
본 명세의 각 양상에 있어서, 상기 SIB1 요청을 전송하는 것은 상기 SSB와 연관된 임의 접속 채널(random access channel, RACH)을 전송하는 것이고, 상기 SIB1은 상기 RACH에 대응되는 기결정된 SSB 인덱스(index)와 연관된 SIB1일 수 있다.
본 명세의 각 양상에 있어서, 상기 SIB1 요청을 전송하는 것은 상기 SSB와 연관된 임의 접속 채널(random access channel, RACH)을 전송하는 것이고, 상기 SIB1은 전송 중인 모든 SSB 인덱스와 연관된 SIB1일 수 있다.
상기 과제 해결방법들은 본 명세의 예들 중 일부에 불과하며, 본 명세의 기술적 특징들이 반영된 다양한 예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 명세의 구현(들)에 의하면, 기지국 및 사용자기기의 에너지 절약 방법들 및/또는 절차들이 제공될 수 있다.
본 명세의 구현(들)에 의하면, BS가 공통 신호/채널(들)을 전송하는 방법들 및/또는 절차들이 제공될 수 있다.
본 명세의 구현(들)에 의하면, BS가 UL(uplink) WUS(wake up signal) 검출을 기반으로 특정 신호/채널의 전송/수신을 수행함으로써 네트워크 에너지 절약(Network Energy Saving, NES) 목적으로 동작하는 방법들 및/또는 절차들이 제공될 수 있다.
본 명세의 구현(들)에 의하면, UE의 SCell(secondary cell) 활성화(activation) 방법들 및/또는 절차들이 제공될 수 있다.
본 명세의 구현(들)에 의하면, 로드 기반 셀 활성화(load based cell activation) 방식을 보완하는 방법들 및/또는 절차들이 제공될 수 있다.
본 명세의 구현(들)에 의하면, UE가 UL WUS의 전력(power)을 조절하는 방법들 및/또는 절차들이 제공될 수 있다.
본 명세의 구현(들)에 의하면, 기지국 및 사용자기기의 전력 소모가 감소될 수 있다.
본 명세에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 상세한 설명으로부터 본 명세와 관련된 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 명세의 구현(들)이 적용되는 통신 시스템 1의 예를 도시한 것이다.
도 2는 본 명세에 따른 방법을 수행할 수 있는 통신 기기들의 예를 도시한 블록도이다.
도 3은 본 명세의 구현(들)을 수행할 수 있는 무선 기기의 다른 예를 도시한 것이다.
도 4는 무선 통신 시스템의 일례인 3세대 파트너쉽 프로젝트(3rd generation partnership project, 3GPP)기반 무선 통신 시스템에서 이용가능한 프레임 구조의 예를 도시한 것이다.
도 5는 슬롯의 자원 격자(resource grid)를 예시한다.
도 6은 3GPP 기반 통신 시스템에 이용되는 물리 채널들 및 이들을 이용한 신호 전송/수신 과정을 예시한다.
도 7은 시스템 정보(system information, SI) 획득 과정을 예시한다.
도 8은 본 명세의 구현(들)에 적용될 수 있는 임의 접속 과정을 예시한다.
도 9는 SSB 및 CORESET 다중화 패턴들을 예시한다.
도 10은 DRX(Discontinuous Reception) 동작을 설명한다.
도 11은 긴(long) DRX 사이클과 짧은(short) DRX 사이클이 설정된 경우를 예시한다.
도 12는 3GPP 기반 시스템에서 SIB1의 전송을 예시한다.
도 13은 본 명세의 몇몇 구현들에 따른 UE에서의 하향링크 신호 수신 흐름을 예시한다.
도 14는 본 명세의 몇몇 구현들에 따른 BS에서의 하향링크 신호 전송 흐름을 예시한다.
이하, 본 명세에 따른 구현들을 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 명세의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나 당업자는 본 명세가 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 명세의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 도일한 도면 부호를 사용하여 설명한다.
이하에서 설명되는 기법(technique) 및 기기, 시스템은 다양한 무선 다중 접속 시스템에 적용될 수 있다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)에서 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술에서 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술에서 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이며, 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이다. 3GPP LTE는 하향링크(downlink, DL)에서는 OFDMA를 채택하고, 상향링크(uplink, UL)에서는 SC-FDMA를 채택하고 있다. LTE-A(Advanced)는 3GPP LTE의 진화된 형태이고, 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 형태이다.
설명의 편의를 위하여, 이하에서는 본 명세가 3GPP 기반 통신 시스템, 예를 들어, LTE, NR에 적용되는 경우를 가정하여 설명한다. 그러나 본 명세의 기술적 특징이 이에 제한되는 것은 아니다. 예를 들어, 이하의 상세한 설명이 이동통신 시스템이 3GPP LTE/NR 시스템에 대응하는 이동통신 시스템을 기초로 설명되더라도, 3GPP LTE/NR에 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
본 명세에서 사용되는 용어 및 기술 중 구체적으로 설명되지 않은 용어 및 기술에 대해서는 3GPP 기반 표준 문서들, 예를 들어, 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321, 3GPP TS 36.300, 3GPP TS 36.331, 3GPP TS 37.213, 3GPP TS 38.211, 3GPP TS 38.212, 3GPP TS 38.213, 3GPP TS 38.214, 3GPP TS 38.300, 3GPP TS 38.321, 3GPP TS 38.331 등을 참조할 수 있다.
후술하는 본 명세의 예들에서 기기가 “가정한다”는 표현은 채널을 전송하는 주체가 해당 “가정”에 부합하도록 상기 채널을 전송함을 의미할 수 있다. 상기 채널을 수신하는 주체는 상기 채널이 해당 “가정”에 부합하도록 전송되었다는 전제 하에, 해당 “가정”에 부합하는 형태로 상기 채널을 수신 혹은 디코딩하는 것임을 의미할 수 있다.
본 명세에서, UE는 고정되거나 이동성을 가질 수 있으며, 기지국(base station, BS)과 통신하여 사용자데이터 및/또는 각종 제어정보를 전송 및/또는 수신하는 각종 기기들이 이에 속한다. UE는 (Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(subscribe Station), 무선기기(wireless device), PDA(Personal digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 명세에 있어서, BS는 일반적으로 UE 및/또는 다른 BS와 통신하는 고정국(fixed station)을 말하며, UE 및 타 BS와 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 접속 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다. 특히, UTRAN의 BS는 Node-B로, E-UTRAN의 BS는 eNB로, 새로운 무선 접속 기술 네트워크(new radio access technology network)의 BS는 gNB로 불린다. 이하에서는 설명의 편의를 위해, 통신 기술의 종류 혹은 버전에 관계 없이 기지국을 BS로 통칭한다.
본 명세에서 노드(node)라 함은 UE와 통신하여 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 다양한 형태의 BS들이 그 명칭에 관계없이 노드로서 이용될 수 있다. 예를 들어, BS, NB, eNB, 피코-셀 eNB(PeNB), 홈 eNB(HeNB), 릴레이(relay), 리피터(repeater) 등이 노드가 될 수 있다. 또한, 노드는 BS가 아니어도 될 수 있다. 예를 들어, 무선 리모트 헤드(radio remote head, RRH), 무선 리모트 유닛(radio remote unit, RRU)가 될 수 있다. RRH, RRU 등은 일반적으로 BS의 전력 레벨(power level) 더욱 낮은 전력 레벨을 갖는다. RRH 혹은 RRU 이하, RRH/RRU)는 일반적으로 광 케이블 등의 전용 회선(dedicated line)으로 BS에 연결되어 있기 때문에, 일반적으로 무선 회선으로 연결된 BS들에 의한 협력 통신에 비해, RRH/RRU 와 BS에 의한 협력 통신이 원활하게 수행될 수 있다. 일 노드에는 최소 하나의 안테나가 설치된다. 상기 안테나는 물리 안테나를 의미할 수도 있으며, 안테나 포트, 가상 안테나, 또는 안테나 그룹을 의미할 수도 있다. 노드는 포인트(point)라고 불리기도 한다.
본 명세에서 셀(cell)이라 함은 하나 이상(one or more)의 노드가 통신 서비스를 제공하는 일정 지리적 영역을 말한다. 따라서, 본 명세에서 특정 셀과 통신한다고 함은 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드와 통신하는 것을 의미할 수 있다. 또한, 특정 셀의 하향링크/상향링크 신호는 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드로부터의/로의 하향링크/상향링크 신호를 의미한다. UE에게 상/하향링크 통신 서비스를 제공하는 셀을 특히 서빙 셀(serving cell)이라고 한다. 또한, 특정 셀의 채널 상태/품질은 상기 특정 셀에 통신 서비스를 제공하는 BS 혹은 노드와 UE 사이에 형성된 채널 혹은 통신 링크의 채널 상태/품질을 의미한다. 3GPP 기반 통신 시스템에서, UE는 특정 노드로부터의 하향링크 채널 상태를 상기 특정 노드의 안테나 포트(들)이 상기 특정 노드에 할당된 CRS (Cell-specific Reference Signal) 자원 상에서 전송되는 CRS(들) 및/또는 CSI-RS(Channel State Information Reference Signal) 자원 상에서 전송하는 CSI-RS(들)을 이용하여 측정할 수 있다.
한편, 3GPP 기반 통신 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용하고 있는데, 무선 자원과 연관된 셀(cell)은 지리적 영역의 셀(cell)과 구분된다.
지리적 영역의 "셀"은 노드가 반송파를 이용하여 서비스를 제공할 수 있는 커버리지(coverage)라고 이해될 수 있으며, 무선 자원의 "셀"은 상기 반송파에 의해 설정(configure)되는 주파수 범위인 대역폭(bandwidth, BW)와 연관된다. 노드가 유효한 신호를 전송할 수 있는 범위인 하향링크 커버리지와 UE로부터 유효한 신호를 수신할 수 있는 범위인 상향링크 커버리지는 해당 신호를 운반(carry)하는 반송파에 의해 의존하므로 노드의 커버리지는 상기 노드가 사용하는 무선 자원의 "셀"의 커버리지와 연관되기도 한다. 따라서 "셀"이라는 용어는 때로는 노드에 의한 서비스의 커버리지를, 때로는 무선 자원을, 때로는 상기 무선 자원을 이용한 신호가 유효한 세기로 도달할 수 있는 범위를 의미하는 데 사용될 수 있다.
한편, 3GPP 통신 표준은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 무선 자원과 연관된 "셀"이라 함은 하향링크 자원들(DL resources)와 상향링크 자원들(UL resources)의 조합, 즉, DL 컴포턴트 반송파(component carrier, CC) 와 UL CC의 조합으로 정의된다. 셀은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 설정될(configured) 수 있다. 반송파 집성이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 예를 들어, 시스템 정보 블록 타입 2(System Information Block Type2, SIB2) 링키지(linkage)에 의해서 DL 자원과 UL 자원의 조합이 지시될 수 있다. 여기서, 반송파 주파수는 각 셀 혹은 CC의 중심 주파수(center frequency)와 같거나 다를 수 있다. 반송파 집성(carrier aggregation, CA)가 설정될 때 UE는 네트워크와 하나의 무선 자원 제어(radio resource control, RRC) 연결만을 갖는다. 하나의 서빙 셀이 RRC 연결 수립(establishment)/재수립(re-establishment)/핸드오버 시에 비-접속 층(non-access stratum, NAS) 이동성(mobility) 정보를 제공하며, 하나의 서빙 셀이 RRC 연결 재수립/핸드오버 시에 보안(security) 입력을 제공한다. 이러한 셀을 1차 셀(primary cell, Pcell)이라 한다. Pcell은 UE가 초기 연결 수립 절차를 수행하거나 연결 재-수립 절차를 개시(initiate)하는 1차 주파수(primary frequency) 상에서 동작하는 셀이며. UE 능력(capability)에 따라, 2차 셀(secondary cell, Scell)들이 설정되어 Pcell과 함께 서빙 셀들의 세트를 형성(form)할 수 있다. Scell은 RRC(Radio Resource Control) 연결 수립(connection establishment)이 이루어진 이후에 설정 가능하고, 특별 셀(special cell, SpCell)의 자원들 외에 추가적인 무선 자원을 제공하는 셀이다. 하향링크에서 Pcell에 대응하는 반송파는 하향링크 1차 CC(DL PCC)라고 하며, 상향링크에서 Pcell에 대응하는 반송파는 UL 1차 CC(DL PCC)라고 한다. 하향링크에서 Scell에 대응하는 반송파는 DL 2차 CC(DL SCC)라 하며, 상향링크에서 상기 Scell에 대응하는 반송파는 UL 2차 CC(UL SCC)라 한다.
이중 연결성(dual connectivity, DC) 동작의 경우, PSCell(Primary SCG Cell)이라는 용어는 RRC 재설정(reconfiguration)과 동기화 과정을 수행할 때 UE가 임의 접속(random access)을 수행하는 SCG(secondary Cell Group) 셀을 칭한다.
이중 연결성(dual connectivity, DC) 동작의 경우, SpCell이라는 용어는 마스터 셀 그룹(master cell group, MCG)의 Pcell 또는 2차 셀 그룹(secondary cell group, SCG)의 Pcell을 칭한다. SpCell은 PUCCH 전송 및 경쟁-기반 임의 접속을 지원하고, 항상 활성화(activate)된다. MCG는 마스터 노드(예, BS)와 연관된 서빙 셀들의 그룹이며 SpCell (Pcell) 및 선택적으로(Optionally) 하나 이상의 Scell들로 이루어진다. DC로 설정된 UE의 경우, SCG는 2차 노드와 연관된 서빙 셀들의 서브셋이며, PSCell 및 0개 이상의 Scell들로 이루어진다. CA 또는 DC로 설정되지 않은, RRC_CONNECTED 상태의 UE의 경우, Pcell로만 이루어진 하나의 서빙 셀만 존재한다. CA 또는 DC로 설정된 RRC_CONNECTED 상태의 UE의 경우, 서빙 셀들이라는 용어는 SpCell(들) 및 모든 Scell(들)로 이루어진 셀들의 세트를 지칭한다. DC에서는, MCG를 위한 매체 접속 제어(medium access control, MAC) 엔티티 하나와 SCG를 위한 MAC 엔티티 하나의 2개 MAC 엔티티들이 UE에 설정된다.
CA가 설정되고 DC는 설정되지 않은 UE에는 Pcell 및 0개 이상의 Scell로 이루어진 Pcell PUCCH 그룹과 Scell(들)로만 이루어진 Scell PUCCH 그룹이 설정된 수 있다. Scell의 경우, 해당 셀과 연관된 PUCCH가 전송되는 Scell(이하 PUCCH cell)이 설정될 수 있다. PUCCH Scell이 지시된 Scell은 Scell PUCCH 그룹에 속하며 상기 PUCCH Scell 상에서 관련 UCI의 PUCCH 전송이 수행되며, PUCCH Scell이 지시되지 않거나 PUCCH 전송용 셀로서 지시된 셀이 Pcell인 Scell은 Pcell PUCCH 그룹에 속하며 상기 Pcell 상에서 관련 UCI의 PUCCH 전송이 수행된다.
무선 통신 시스템에서 UE는 BS로부터 하향링크(downlink, DL)를 통해 정보를 수신하고, UE는 BS로 상향링크(uplink, UL)를 통해 정보를 전송한다. BS와 UE가 전송 및/또는 수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 전송 및/또는 수신하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 운반하는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 운반하지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 등이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호(synchronization signal)가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 BS와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미한다. 예를 들어, 복조 참조 신호(demodulation reference signal, DMRS), 채널 상태 정보 RS(channel state information RS, CSI-RS) 등이 하향링크 참조 신호로서 정의된다. 3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 운반하는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 운반하지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS), 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS) 등이 정의된다.
본 명세에서 PDCCH(Physical Downlink Control CHannel)는 DCI(Downlink Control Information)를 운반하는 시간-주파수 자원들(예, 자원요소들)의 집합을 의미하고, PDSCH(Physical Downlink Shared CHannel)는 하향링크 데이터를 운반하는 시간-주파수 자원들의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel), PUSCH(Physical Uplink Shared CHannel), PRACH(Physical Random Access CHannel)는 각각(respectively) UCI(Uplink Control Information), 상향링크 데이터, 임의 접속 신호를 운반하는 시간-주파수 자원들의 집합을 의미한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송/수신한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/임의 접속 신호를 전송/수신한다는 것과 동등한 의미로 사용된다. 또한, BS가 PBCH/PDCCH/PDSCH를 전송/수신한다는 표현은, 각각, PBCH/PDCCH/PDSCH 상에서 혹은 통해서 브로드캐스트 정보/하향링크 데이터/하향링크 제어정보를 전송한다는 것과 동일한 의미로 사용된다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology, RAT)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 아울러 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/UE를 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 진보된 모바일 브로드밴드 통신, 매시브 MTC, URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있다. 현재 3GPP에서는 EPC 이후의 차세대 이동 통신 시스템에 대한 스터디를 진행 중에 있다. 본 명세에서는 편의상 해당 기술을 새 RAT (new RAT, NR) 혹은 5G RAT라고 칭하며, NR을 사용 혹은 지원하는 시스템을 NR 시스템이라 칭한다.
도 1은 본 명세의 구현(들)이 적용되는 통신 시스템 1의 예를 도시한 것이다.
도 1을 참조하면, 본 명세에 적용되는 통신 시스템(1)은 무선 기기, BS 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(예, E-UTRA))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, BS, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 BS/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 BS(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 BS(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, BS/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/BS(200)-BS(200)/무선 기기(100a~100f) 간에는 무선 통신/연결(150a, 150b)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신)은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b)을 통해 무선 기기와 BS/무선 기기는 서로 무선 신호를 전송/수신할 수 있다. 이를 위해, 본 명세의 다양한 제안들에 기반하여, 무선 신호의 전송/수신을 위한 다양한 설정 정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조(modulation)/복조(demodulation), 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 2는 본 명세에 따른 방법을 수행할 수 있는 통신 기기들의 예를 도시한 블록도이다.
도 2를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 전송 및/또는 수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 1의 {무선 기기(100x), BS(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 앞에서 설명/제안한 기능, 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 전송 및/또는 수신할 수 있다. 송수신기(106)는 전송이기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 명세에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 앞에서 설명/제안한 기능, 절차 및/또는 방법들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 전송 및/또는 수신할 수 있다. 송수신기(206)는 전송기 및/또는 수신기를 포함할 수 있다. 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 명세에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, 물리(physical, PHY) 계층, 매체 접속 제어(medium access control, MAC) 계층, 무선 링크 제어(radio link control, RLC) 계층, 패킷 데이터 수렵 프로토콜(packet data convergence protocol, PDCP) 계층, 무선 자원 제어(radio resource control, RRC) 계층, 서비스 데이터 적응 프로토콜(service data adaption protocol, SDAP)와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 하나 이상의 프로토콜 데이터 유닛(protocol data unit, PDU) 및/또는 하나 이상의 서비스 데이터 유닛(service data unit, SDU)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 기저대역(baseband) 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 기저대역 신호)를 수신할 수 있고, 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 기능, 절차, 제안 및/또는 방법들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 기능, 절차, 제안 및/또는 방법을 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 기능, 절차, 제안 및 또는 방법들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 전송 및/또는 수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송 및/또는 수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 3은 본 명세의 구현(들)을 수행할 수 있는 무선 기기의 다른 예를 도시한 것이다.
도 3을 참조하면, 무선 기기(100, 200)는 도 2의 무선 기기(100, 200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 2의 하나 이상의 프로세서(102, 202) 및/또는 하나 이상의 메모리(104, 204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 2의 하나 이상의 송수신기(106, 206) 및/또는 하나 이상의 안테나(108, 208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 1, 100a), 차량(도 1, 100b-1, 100b-2), XR 기기(도 1, 100c), 휴대 기기(도 1, 100d), 가전(도 1, 100e), IoT 기기(도 1, 100f), 디지털 방송용 UE, 홀로그램 기기, 공공 안전 기기, MTC 기기, 의료 장치, 핀테크 기기(또는 금융 기기), 보안 기기, 기후/환경 기기, AI 서버/기기(도 1, 400), BS(도 1, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 3에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
본 명세에서, 적어도 하나의 메모리(예, 104 또는 204)는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세에서, 컴퓨터 판독가능한(readable) 저장(storage) 매체(medium)은 적어도 하나의 지시 또는 컴퓨터 프로그램을 저장할 수 있으며, 상기 적어도 하나의 지시 또는 컴퓨터 프로그램은 적어도 하나의 프로세서에 의해 실행될 때 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세에서, 프로세싱 기기(device) 또는 장치(apparatus)는 적어도 하나의 프로세서와 상기 적어도 하나의 프로세서여 연결 가능한 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. 상기 적어도 하나의 컴퓨터 메모리는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세의 통신 장치는 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 후술하는 본 명세의 예(들)에 따른 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함한다.
도 4는 무선 통신 시스템의 일례인 3세대 파트너쉽 프로젝트(3rd generation partnership project, 3GPP)기반 무선 통신 시스템에서 이용가능한 프레임 구조의 예를 도시한 것이다.
도 4의 프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다. NR 시스템에서는 하나의 UE에게 집성(aggregate)되는 복수의 셀들간에 OFDM 뉴머롤러지(numerology)(예, 부반송파 간격(subcarrier spacing, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 전송 시간 간격(transmission time interval, TTI))의 (절대 시간) 기간(duration)은 집성된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, 순환 프리픽스 - 직교 주파수 분할 다중화(cyclic prefix - orthogonal frequency division multiplexing, CP-OFDM) 심볼), SC-FDMA 심볼 (혹은, 이산 푸리에 변환-확산-OFDM(discrete Fourier transform-spread-OFDM, DFT-s-OFDM) 심볼)을 포함할 수 있다. 본 명세에서 심볼, OFDM-기반 심볼, OFDM 심볼, CP-OFDM 심볼 및 DFT-s-OFDM 심볼은 서로 대체될 수 있다.
도 4를 참조하면, NR 시스템에서 상향링크 및 하향링크 전송들은 프레임들로 조직화(organize)된다. 각 프레임은 Tf = (△fmax*Nf/100)*Tc = 10 ms 기간(duration)을 가지며, 각각 5ms의 기간인 2개 하프-프레임(half-frame)들로 나뉜다. 여기서 NR용 기본 시간 단위(basic time unit)인 Tc = 1/(△fmax*Nf)이고, △fmax = 480*103 Hz이며, Nf=4096이다. 참고로, LTE용 기본 시간 단위인 Ts = 1/(△fref*Nf,ref)이고, △fref = 15*103 Hz이며, Nf,ref=2048이다. Tc와 Tf는 상수 κ = Tc/Tf = 64의 관계를 가진다. 각 하프-프레임은 5개의 서브프레임들로 구성되며, 단일 서브프레임의 기간 Tsf는 1ms이다. 서브프레임들은 슬롯들로 더 나뉘고, 서브프레임 내 슬롯의 개수는 부반송파 간격에 의존한다. 각 슬롯은 순환 프리픽스를 기초로 14개 혹은 12개 OFDM 심볼들로 구성된다. 정규(normal) 순환 프리픽스(cyclic prefix, CP)에는 각 슬롯은 14개 OFDM 심볼들로 구성되며, 확장(extended) CP의 경우에는 각 슬롯은 12개 OFDM 심볼들로 구성된다. 상기 뉴머롤러지(numerology)는 지수적으로(exponentially) 스케일가능한 부반송파 간격 △f = 2u*15 kHz에 의존한다. 다음 표는 정규 CP에 대한 부반송파 간격 △f = 2u*15 kHz에 따른 슬롯별 OFDM 심볼들의 개수(N slot symb), 프레임별 슬롯의 개수(N frame,u slot) 및 서브프레임별 슬롯의 개수(N subframe,u slot)를 나타낸 것이다.
Figure PCTKR2023011515-appb-img-000001
다음 표는 확장 CP에 대한 부반송파 간격 △f = 2u*15 kHz에 따른 슬롯 당 OFDM 심볼들의 개수, 프레임당 슬롯의 개수 및 서브프레임당 슬롯의 개수를 나타낸 것이다.
Figure PCTKR2023011515-appb-img-000002
부반송파 간격 설정 u에 대해, 슬롯들은 서브프레임 내에서 증가 순으로 nu s ∈ {0, ..., nsubframe,u slot - 1}로 그리고 프레임 내에서 증가 순으로 nu s,f ∈ {0, ..., nframe,u slot - 1}로 번호 매겨진다.
NR 주파수 대역들은 2가지 타입의 주파수 범위들, FR1 및 FR2로 정의되며, FR2는 밀리미터 파(millimeter wave, mmW)로도 불린다. 다음 표는 NR이 동작할 수 있는 주파수 범위들을 예시한다.
Figure PCTKR2023011515-appb-img-000003
도 5는 슬롯의 자원 격자(resource grid)를 예시한다.
슬롯은 시간 도메인에서 복수(예, 14개 또는 12개)의 심볼들을 포함한다. 각 뉴머롤러지(예, 부반송파 간격) 및 반송파에 대해, 상위 계층 시그널링(예, 무선 자원 제어(radio resource control, RRC) 시그널링)에 의해 지시되는 공통 자원 블록(common resource block, CRB) N start,u grid에서 시작하는, N size,u grid,x*N RB sc개 부반송파들 및 N subframe,u symb개 OFDM 심볼들의 자원 격자(grid)가 정의된다. 여기서 N size,u grid,x은 자원 격자 내 자원 블록(resource block, RB)들의 개수이고, 밑첨자 x는 하향링크에 대해서는 DL이고 상향링크에 대해서는 UL이다. N RB sc는 RB당 부반송파의 개수이며, 3GPP 기반 무선 통신 시스템에서 N RB sc는 통상 12이다. 주어진 안테나 포트 p, 부반송파 간격 설정(configuration) u 및 전송 방향 (DL 또는 UL)에 대해 하나의 자원 격자가 있다. 부반송파 간격 설정 u에 대한 반송파 대역폭 N size,u grid는 네트워크로부터의 상위 계층 파라미터(예, RRC 파라미터)에 의해 UE에게 주어진다. 안테나 포트 p 및 부반송파 간격 설정 u에 대한 자원 격자 내 각각의 요소는 자원 요소(resource element, RE)로 칭해지며, 각 자원 요소에는 하나의 복소 심볼이 매핑될 수 있다. 자원 격자 내 각 자원 요소는 주파수 도메인 내 인덱스 k 및 시간 도메인에서 참조 포인트에 대해 상대적으로 심볼 위치를 표시하는 인덱스 l에 의해 고유하게 식별된다. NR 시스템에서 RB는 주파수 도메인에서 12개의 연속한(consecutive) 부반송파에 의해 정의된다. NR 시스템에서 RB들은 공통 자원 블록(CRB)들과 물리 자원 블록(physical resource block, PRB)들로 분류될 수 있다. CRB들은 부반송파 간격 설정 u에 대한 주파수 도메인에서 위쪽으로(upwards) 0부터 넘버링된다. 부반송파 간격 설정 u에 대한 CRB 0의 부반송파 0의 중심은 자원 블록 격자들을 위한 공통 참조 포인트인 '포인트 A'와 일치한다. PRB들은 대역폭 파트(bandwidth part, BWP) 내에서 정의되고, 0부터 N size BWP,i-1까지 넘버링되며, 여기서 i는 상기 대역폭 파트의 번호이다. 공통 자원 블록 nCRB와 대역폭 파트 i 내 물리 자원 블록 nPRB 간 관계는 다음과 같다: nPRB = nCRB + N size BWP,i, 여기서 N size BWP,i는 상기 대역폭 파트가 CRB 0에 상대적으로 시작하는 공통 자원 블록이다. BWP는 주파수 도메인에서 복수의 연속한 RB를 포함한다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. UE는 주어진 컴포넌트 반송파 상에서 하나 이상의 BWP를 갖도록 설정될 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, UE에게 설정된 BWP들 중 기결정된 개수(예, 1개)의 BWP만이 해당 반송파 상에서 활성화될 수 있다.
DL BWP들 또는 UL BWP들의 세트 내 각 서빙 셀에 대해 네트워크는 적어도 초기(initial) DL BWP 및 (서빙 설이 상향링크를 가지고 설정되면) 1개 또는 (보조(supplementary) 상향링크)를 사용하면) 2개 초기 UL BWP를 설정한다. 네트워크는 서빙 셀에 대해 추가 UL 및 DL BWP들을 설정할 수도 있다. 각 DL BWP 또는 UL BWP에 대해 UE는 서빙 셀을 위한 다음 파라미터들을 제공 받는다: i) 부반송파 간격, ii) 순환 프리픽스, iii) N start BWP = 275라는 가정을 가지고 오프셋 RB set 및 길이 L RB를 자원 지시자 값(resource indicator value, RIV)로서 지시하는 RRC 파라미터 locationAndBandwidth에 의해 제공되는, CRB N start BWP = O carrier + RB start 및 연속(contiguous) RB들의 개수 N size BWP = L RB, 그리고 부반송파 간격에 대해 RRC 파라미터 offsetToCarrier에 의해 제공되는 O carrier; 상기 DL BWP들의 또는 UL BWP들의 세트 내 인덱스; BWP-공통 파라미터들의 세트 및 BWP-전용 파라미터들의 세트.
가상 자원 블록(virtual resource block, VRB)들이 대역폭 파트 내에서 정의되고 0부터 N size,u BWP,i-1까지 넘버링되며, 여기서 i는 상기 대역폭 파트의 번호이다. VRB들은 인터리빙된 매핑(interleaved mapping) 또는 비-인터리빙된 매핑(non-interleaved mapping)에 따라 물리 자원 블록(physical resource block, PRB)들에 매핑된다. 몇몇 구현들에서, 비-인터리빙된 VRB-to-PRB 매핑의 경우, VRB n은 PRB n에 매핑될 수 있다.
이하, 3GPP 기반 무선 통신 시스템에서 사용될 수 있는 물리 채널들에 대해 보다 자세히 설명한다.
PDCCH는 DCI를 운반한다. 예를 들어, PDCCH(즉, DCI)는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당, 상향링크 공유 채널(uplink shared channel, UL-SCH)에 대한 자원 할당 정보, 페이징 채널(paging channel, PCH)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 임의 접속 응답(random access response, RAR)과 같이 UE/BS의 프로토콜 스택들 중 물리 계층보다 위에 위치하는 계층(이하, 상위 계층)의 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, 설정된 스케줄링(configured scheduling, CS)의 활성화/해제 등을 운반한다. DL-SCH에 대한 자원 할당 정보를 포함하는 DCI를 PDSCH 스케줄링 DCI라고도 하며, UL-SCH에 대한 자원 할당 정보를 포함하는 DCI를 PUSCH 스케줄링 DCI라고도 한다. DCI는 순환 리던던시 검사(cyclic redundancy check, CRC)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, 무선 네트워크 임시 식별자(radio network temporary identifier, RNTI)로 마스킹/스크램블된다. 예를 들어, PDCCH가 특정 UE를 위한 것이면, CRC는 UE 식별자(예, 셀 RNTI(C-RNTI))로 마스킹된다. PDCCH가 페이징에 관한 것이면, CRC는 페이징 RNTI(P-RNTI)로 마스킹된다. PDCCH가 시스템 정보(예, 시스템 정보 블록(system information block, SIB)에 관한 것이면, CRC는 시스템 정보 RNTI(system information RNTI, SI-RNTI)로 마스킹된다. PDCCH가 임의 접속 응답에 관한 것이면, CRC는 임의 접속 RNTI(random access RNTI, RA-RATI)로 마스킹된다.
일 서빙 셀 상의 PDCCH가 다른 서빙 셀의 PDSCH 혹은 PUSCH를 스케줄링하는 것을 크로스-반송파 스케줄링이라 한다. 반송파 지시자 필드(carrier indicator field, CIF)를 이용한 크로스-반송파 스케줄링이 서빙 셀의 PDCCH가 다른 서빙 셀 상의 자원들을 스케줄하는 것을 허용할 수 있다. 한편, 서빙 셀 상의 PDSCH가 상기 서빙 셀에 PDSCH 또는 PUSCH를 스케줄링하는 것을 셀프-반송파 스케줄링이라 한다. BS는 크로스-반송파 스케줄링이 셀에서 사용되는 경우, 상기 셀을 스케줄링하는 셀에 관한 정보를 UE에게 제공할 수 있다. 예를 들어, BS는 UE에게 서빙 셀이 다른 (스케줄링) 셀 상의 PDCCH에 의해 스케줄링되는지 혹은 상기 서빙 셀에 의해 스케줄링되는지와, 상기 서빙 셀이 다른 (스케줄링) 셀에 의해 스케줄링되는 경우에는 어떤 셀이 상기 서빙 셀을 위한 하향링크 배정들 및 상향링크 그랜트들를 시그널하는지를 제공할 수 있다. 본 명세에서 PDCCH를 운반(carry)하는 셀을 스케줄링 셀이라 칭하고, 상기 PDCCH에 포함된 DCI에 의해 PUSCH 혹은 PDSCH의 전송이 스케줄링된 셀, 즉, 상기 PDCCH에 의해 스케줄링된 PUSCH 혹은 PDSCH를 운반하는 셀을 피스케줄링(scheduled) 셀이라 칭한다.
PDCCH는 제어 자원 세트(control resource set, CORESET)를 통해 전송된다. 하나 이상의 CORESET이 UE에게 설정될 수 있다. CORESET은 다음의 파라미터들에 기반하여 결정된다.
- controlResourceSetId: CORESET의 ID.
- frequencyDomainResources: CORESET의 주파수 영역 자원. CORESET의 주파수 영역 자원은 비트맵을 통해 지시되며, 각 비트는 RB 그룹(6개 연속된 RB)에 대응한다. 예를 들어, 비트맵의 MSB(Most Significant Bit)는 BWP 내 첫 번째 RB 그룹에 대응한다. 비트 값이 1인 비트에 대응되는 RB 그룹이 CORESET의 주파수 영역 자원으로 할당된다.
- duration: CORESET의 시간 영역 자원. CORESET의 시간 영역 자원은 CORESET를 구성하는 연속된 OFDMA 심볼 개수를 나타낸다. 예를 들어, duration은 1~3의 값을 가진다.
- cce-REG-MappingType: CCE-to-REG 매핑 타입. Interleaved 타입과 non-interleaved 타입이 지원된다.
- precoderGranularity: 주파수 도메인에서 프리코더 입도(granularity).
- tci-StatesPDCCH: PDCCH에 대한 TCI(Transmission Configuration Indication) 상태(state)를 지시하는 정보(예, TCI-StateID). TCI 상태는 RS 세트(TCI-상태) 내의 DL RS(들)와 PDCCH DMRS 포트의 QCL(Quasi-Co-Location) 관계를 제공하는데 사용된다.
- tci-PresentInDCI: DCI 내의 TCI 필드가 포함되는지 여부.
- pdcch-DMRS-ScramblingID: PDCCH DMRS 스크램블링 시퀀스의 초기화에 사용되는 정보.
CORESET은 1개 내지 3개 OFDM 심볼들의 시간 기간(duration)을 가지고 물리 자원 블록(physical resource block, PRB)들의 세트로 구성된다. CORESET을 구성하는 PRB들과 CORESET 기간(duration)이 상위 계층(예, RRC) 시그널링을 통해 UE에게 제공될 수 있다. 설정된 CORESET(들) 내에서 PDCCH 후보들의 세트를 해당 검색 공간 세트들에 따라 모니터링한다. 본 명세에서 모니터링은 모니터되는 DCI 포맷들에 따라 각 PDCCH 후보를 디코딩(일명, 블라인드 디코딩)하는 의미(imply)한다. PBCH 상의 마스터 정보 블록(master information block, MIB)이 시스템 정보 블록 1(system information block, SIB1)을 나르는 PDSCH를 스케줄링하기 위한 PDCCH의 모니터링을 위한 파라미터들(예, CORESET#0 설정)을 UE에게 제공한다. PBCH는 또한 연관된 SIB1이 없다고 지시할 수도 있으며, 이 경우, UE는 SSB1과 연관된 SSB가 없다고 가정할 수 있는 주파수 범위뿐만 아니라 SIB1과 연관된 SSB를 탐색할 다른 주파수가 지시 받을 수 있다. 적어도 SIB1을 스케줄링하기 위한 CORESET인 CORESET#0는 MIB 아니면 전용 RRC 시그널링을 통해 설정될 수 있다.
UE가 모니터링하는 PDCCH 후보들의 세트는 PDCCH 검색 공간(search space) 세트들의 면에서 정의된다. 검색 공간 세트는 공통 검색 공간 (common search space, CSS) 세트 또는 UE-특정 검색 공간 (UE-specific search space, USS) 세트일 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 CORESET 설정과 연관된다. 검색 공간 세트는 BS에 의해 UE에게 제공되는 다음의 파라미터들에 기반하여 결정된다.
- serachSpaceId: SS 세트를 식별하는 SS세트 식별자.
- controlResourceSetId: 검색 공간 세트와 관련된 CORESET를 식별하는 식별자.
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링을 위한 슬롯들을 설정하기 위한, PDCCH 모니터링 주기(periodicity) 및 PDCCH 모니터링 오프셋.
- duration: 검색 공간이 매 시기(occasion)에서, 즉, monitoringSlotPeriodicityAndOffset으로 주어진 대로 매 주기(period)에서, 지속(last)하는 연속 슬롯들의 개수.
- monitoringSymbolsWithinSlot: PDCCH 모니터링을 위한 슬롯 내 CORESET의 첫 번째 심볼(들)을 나타내는, 슬롯 내 PDCCH 모니터링 패턴.
- nrofCandidates: CCE 집성 레벨별 PDCCH 후보의 개수.
UE는 PDCCH 모니터링 시기(occasion)들에서만 PDCCH 후보들을 모니터한다. UE는 PDCCH 모니터링 주기(PDCCH monitoring periodicity), PDCCH 모니터링 오프셋, 및 슬롯 내 PDCCH 모니터링 패턴으로부터 PDCCH 모니터링 시기를 결정한다. 파라미터 monitoringSymbolsWithinSlot는, 예를 들어, PDCCH 모니터링을 위해 설정된 슬롯들(예, 파라미터들 monitoringSlotPeriodicityAndOffsetduration 참조) 내 PDCCH 모니터링을 위한 첫 번째 심볼(들)을 나타낸다. 예를 들어, monitoringSymbolsWithinSlot가 14-비트라면, 최상위(most significant) (왼쪽) 비트는 슬롯 내 첫 번째 OFDM 심볼을 상징(represent)하고, 두 번째 최상위 (왼쪽) 비트는 슬롯 내 두 번째 OFDM 심볼을 상징하는 식으로, monitoringSymbolsWithinSlot가 비트들이 슬롯의 14개 OFDM 심볼들을 각각(respectively) 상징할 수 있다. 예를 들어, monitoringSymbolsWithinSlot 내 비트들 중 1로 세팅된 비트(들)이 슬롯 내 CORESET의 첫 번째 심볼(들)을 식별한다.
다음 표는 검색 공간 세트들과 관련 RNTI, 사용 예를 예시한다.
Figure PCTKR2023011515-appb-img-000004
다음 표는 PDCCH가 나를 수 있는 DCI 포맷을 예시한다.
Figure PCTKR2023011515-appb-img-000005
DCI 포맷 0_0은 수송 블록(transport block, TB) 기반 (또는 TB-레벨) PUSCH를 스케줄링하기 위해 사용되고, DCI 포맷 0_1은 TB-기반 (또는 TB-레벨) PUSCH 또는 코드 블록 그룹(code block group, CBG) 기반 (또는 CBG-레벨) PUSCH를 스케줄링하기 위해 사용될 수 있다. DCI 포맷 1_0은 TB-기반 (또는 TB-레벨) PDSCH를 스케줄링하기 위해 사용되고, DCI 포맷 1_1은 TB-기반 (또는 TB-레벨) PDSCH 또는 CBG-기반 (또는 CBG-레벨) PDSCH를 스케줄링하기 위해 사용될 수 있다. CSS의 경우, DCI 포맷 0_0 및 DCI 포맷 1_0은 BWP 크기가 RRC에 의해 초기에 주어진 후부터 고정된 크기를 가진다. USS의 경우, DCI 포맷 0_0 및 DCI 포맷 1_0은 주파수 도메인 자원 배정(frequency domain resource assignment, FDRA) 필드의 크기를 제외한 나머지 필드들의 크기는 고정된 크기를 갖지만 FDRA 필드의 크기는 BS에 의한 관련 파리미터의 설정을 통해 변경될 수 있다. DCI 포맷 0_1 및 DCI 포맷 1_1은 BS에 의한 다양한 RRC 재설정(reconfiguration)을 통해 DCI 필드의 크기가 변경될 수 있다. DCI 포맷 2_0은 동적 슬롯 포맷 정보(예, SFI DCI)를 UE에게 전달하기 위해 사용될 수 있고, DCI 포맷 2_1은 하향링크 선취(pre-Emption) 정보를 UE에게 전달하기 위해 사용될 수 있다. DCI 포맷 2_0 및/또는 DCI 포맷 2_1은 하나의 그룹으로 정의된 UE들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 UE에게 전달될 수 있다.
PDSCH는 하향링크 데이터(예, DL-SCH 수송 블록)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. 수송 블록(transport block, TB)를 인코딩하여 코드워드(codeword)를 생성한다. PDSCH는 최대 2개의 코드워드를 운반할 수 있다. 코드워드별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑될 수 있다. 각 레이어는 DMRS와 함께 무선 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다. PDSCH는 PDCCH에 의해 동적으로 스케줄링 되거나(dynamic scheduling), 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적(semi-static)으로 스케줄링 될 수 있다(Configured Scheduling, CS). 따라서, 동적 스케줄링에서는 PDSCH 전송에 PDCCH가 수반되지만, CS에서는 PDSCH 전송에 PDCCH가 수반되지 않는다. CS는 SPS(semi-persistent scheduling)를 포함한다.
PUCCH는 UCI 전송을 위한 물리 계층 UL 채널을 의미한다. PUCCH는 UCI(Uplink Control Information)를 운반한다. UCI는 다음을 포함한다.
- 스케줄링 요청(scheduling request, SR): UL-SCH 자원을 요청하는 데 사용되는 정보이다.
- 하이브리드 자동 반복 요청(hybrid automatic repeat request, HARQ)-확인(acknowledgement, ACK): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 통신 기기에 의해 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK라는 용어는 HARQ ACK/NACK, ACK/NACK, 또는 A/N과 혼용된다.
- 채널 상태 정보(channel state information, CSI): 하향링크 채널에 대한 피드백 정보이다. CSI는 채널 품질 정보(channel quality information, CQI), 랭크 지시자(rank indicator, RI), 프리코딩 행렬 지시자(precoding matrix indicator, PMI), CSI-RS 자원 지시자(CSI-RS resource indicator, CRI), SS/PBCH 자원 블록 지시자, SSBRI), 레이어 지시자(layer indicator, LI) 등을 포함할 수 있다. CSI는 상기 CSI에 포함되는 UCI 타입에 따라 CSI 파트 1과 CSI 파트 2로 구분될 수 있다. 예를 들어, CRI, RI, 및/또는 첫 번째 코드워드에 대한 CQI는 CSI 파트 1에 포함되고, LI, PMI, 두 번째 코드워드에 대한 CQI는 CSI 파트 2에 포함될 수 있다.
본 명세에서는, 편의상, BS가 HARQ-ACK, SR, CSI 전송을 위해 UE에게 설정한 및/또는 지시한 PUCCH 자원을 각각 HARQ-ACK PUCCH 자원, SR PUCCH 자원, CSI PUCCH 자원으로 칭한다.
PUCCH 포맷은 UCI 페이로드 크기 및/또는 전송 길이(예, PUCCH 자원을 구성하는 심볼 개수)에 따라 다음과 같이 구분될 수 있다. PUCCH 포맷에 관한 사항은 표 6을 함께 참조할 수 있다.
(0) PUCCH 포맷 0 (PF0, F0)
- 지원 가능한 UCI 페이로드 크기: up to K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: 1 ~ X 심볼(예, X = 2)
- 전송 구조: PUCCH 포맷 0는 DMRS 없이 UCI 신호만으로 이루어지고, UE는 복수의 시퀀스들 중 하나를 선택 및 전송함으로써, UCI 상태를 전송한다. 예를 들어, UE는 복수 개의 시퀀스들 중 하나의 시퀀스를 PUCCH 포맷 0인 PUCCH을 통해 전송하여 특정 UCI를 BS에게 전송한다. UE는 긍정(positive) SR을 전송하는 경우에만 대응하는 SR 설정을 위한 PUCCH 자원 내에서 PUCCH 포맷 0인 PUCCH를 전송한다.
- PUCCH 포맷 0에 대한 설정은 해당 PUCCH 자원에 대한 다음 파라미터들을 포함한다: 초기 순환 천이를 위한 인덱스, PUCCH 전송을 위한 심볼들의 개수, 상기 PUCCH 전송을 위한 첫 번째 심볼.
(1) PUCCH 포맷 1 (PF1, F1)
- 지원 가능한 UCI 페이로드 크기: up to K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼(예, Y = 4, Z = 14)
- 전송 구조: DMRS와 UCI가 상이한 OFDM 심볼에 TDM 형태로 설정/매핑된다. 즉, DMRS는 변조 심볼이 전송되지 않는 심볼에서 전송된다. UCI는 특정 시퀀스(예, 직교 커버 코드(orthogonal cover code, OCC)에 변조(예, QPSK) 심볼을 곱함으로써 표현된다. UCI와 DMRS에 모두 순환 쉬프트(cyclic shift, CS)/OCC를 적용하여 (동일 RB 내에서) (PUCCH 포맷 1을 따르는) 복수 PUCCH 자원들 간에 코드 분할 다중화(code division multiplexing, CDM)가 지원된다. PUCCH 포맷 1은 최대 2 비트 크기의 UCI를 운반하고, 변조 심볼은 시간 영역에서 (주파수 호핑 여부에 따라 달리 설정되는) 직교 커버 코드(orthogonal cover code, OCC)에 의해 확산된다.
- PUCCH 포맷 1에 대한 설정은 해당 PUCCH 자원에 대한 다음 파라미터들을 포함한다: 초기 순환 천이를 위한 인덱스, PUCCH 전송을 위한 심볼들의 개수, 상기 PUCCH 전송을 위한 첫 번째 심볼, 직교 커버 코드(orthogonal cover code)를 위한 인덱스.
(2) PUCCH 포맷 2 (PF2, F2)
- 지원 가능한 UCI 페이로드 크기: more than K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: 1 ~ X 심볼(예, X = 2)
- 전송 구조: DMRS와 UCI가 동일 심볼 내에서 주파수 분할 다중화(frequency division multiplex, FDM) 형태로 설정/매핑된다. UE는 코딩된 UCI 비트에 DFT없이 IFFT만을 적용하여 전송한다. PUCCH 포맷 2는 K 비트보다 큰 비트 크기의 UCI를 운반하고, 변조 심볼은 DMRS와 FDM되어 전송된다. 예를 들어, DMRS는 1/3의 밀도로 주어진 자원 블록 내 심볼 인덱스 #1, #4, #7 및 #10에 위치한다. 의사 잡음(pseudo noise, PN) 시퀀스가 DMRS 시퀀스를 위해 사용된다. 2-심볼 PUCCH 포맷 2를 위해 주파수 호핑이 활성화될 수 있다.
- PUCCH 포맷 2에 대한 설정은 해당 PUCCH 자원에 대한 다음 파라미터들을 포함한다: PRB의 개수, PUCCH 전송을 위한 심볼들의 개수, 상기 PUCCH 전송을 위한 첫 번째 심볼.
(3) PUCCH 포맷 3 (PF3, F3)
- 지원 가능한 UCI 페이로드 크기: more than K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼(예, Y = 4, Z = 14)
- 전송 구조: DMRS와 UCI가 상이한 심볼에 TDM 형태로 설정/매핑된다. UE는 코딩된 UCI 비트에 DFT를 적용하여 전송한다. PUCCH 포맷 3는 동일 시간-주파수 자원(예, 동일 PRB)에 대한 UE 다중화를 지원하지 않는다.
- PUCCH 포맷 3에 대한 설정은 해당 PUCCH 자원에 대한 다음 파라미터들을 포함한다: PRB의 개수, PUCCH 전송을 위한 심볼들의 개수, 상기 PUCCH 전송을 위한 첫 번째 심볼.
(4) PUCCH 포맷 4 (PF4, F4)
- 지원 가능한 UCI 페이로드 크기: more than K 비트(예, K = 2)
- 단일 PUCCH를 구성하는 OFDM 심볼 수: Y ~ Z 심볼(예, Y = 4, Z = 14)
- 전송 구조: DMRS와 UCI가 상이한 심볼에 TDM 형태로 설정/매핑된다. PUCCH 포맷 4는 DFT 전단에서 OCC를 적용하고 DMRS에 대해 CS (또는 인터리브 FDM(interleaved FDM, IFDM) 매핑)을 적용함으로써, 동일 PRB 내에 최대 4개 UE까지 다중화할 수 있다. 다시 말해, UCI의 변조 심볼은 DMRS와 TDM(Time Division Multiplexing)되어 전송된다.
- PUCCH 포맷 4에 대한 설정은 해당 PUCCH 자원에 대한 다음 파라미터들을 포함한다: PUCCH 전송을 위한 심볼들의 개수, 직교 커버 코드를 위한 길이, 직교 커버 코드를 위한 인덱스, 상기 PUCCH 전송을 위한 첫 번째 심볼.
다음 표는 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 짧은(short) PUCCH (포맷 0, 2) 및 긴(long) PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
Figure PCTKR2023011515-appb-img-000006
UCI 타입(예, A/N, SR, CSI)별로 PUCCH 자원이 결정될 수 있다. UCI 전송에 사용되는 PUCCH 자원은 UCI (페이로드) 크기에 기반하여 결정될 수 있다. 예를 들어, BS는 UE에게 복수의 PUCCH 자원 세트들을 설정하고, UE는 UCI (페이로드) 크기(예, UCI 비트 수)의 범위에 따라 특정 범위에 대응되는 특정 PUCCH 자원 세트를 선택할 수 있다. 예를 들어, UE는 UCI 비트 수(NUCI)에 따라 다음 중 하나의 PUCCH 자원 세트를 선택할 수 있다.
- PUCCH 자원 세트 #0, if UCI 비트 수 =< 2
- PUCCH 자원 세트 #1, if 2< UCI 비트 수 =< N1
...
- PUCCH 자원 세트 #(K-1), if NK-2 < UCI 비트 수 =< NK-1
여기서, K는 PUCCH 자원 세트의 개수이고(K>1), Ni는 PUCCH 자원 세트 #i가 지원하는 최대 UCI 비트 수이다. 예를 들어, PUCCH 자원 세트 #1은 PUCCH 포맷 0~1의 자원으로 구성될 수 있고, 그 외의 PUCCH 자원 세트는 PUCCH 포맷 2~4의 자원으로 구성될 수 있다.
각 PUCCH 자원에 대한 설정은 PUCCH 자원 인덱스, 시작 PRB의 인덱스, PUCCH 포맷 0 ~ PUCCH 4 중 하나에 대한 설정 등을 포함한다. UE는 PUCCH 포맷 2, PUCCH 포맷 3, 또는 PUCCH 포맷 4를 사용한 PUCCH 전송 내에 HARQ-ACK, SR 및 CSI 보고(들)을 다중화하기 위한 코드 레이트가 상위 계층 파라미터 maxCodeRate를 통해 BS에 의해 UE에게 설정된다. 상기 상위 계층 파라미터 maxCodeRate은 PUCCH 포맷 2, 3 또는 4를 위한 PUCCH 자원 상에서 UCI를 어떻게 피드백할 것인지를 결정하기 위해 사용된다.
UCI 타입이 SR, CSI인 경우, PUCCH 자원 세트 내에서 UCI 전송에 사용될 PUCCH 자원은 상위 계층 시그널링(예, RRC 시그널링)을 통해 네트워크에 의해 UE에게 설정될 수 있다. UCI 타입이 SPS(Semi-Persistent Scheduling) PDSCH에 대한 HARQ-ACK인 경우, PUCCH 자원 세트 내에서 UCI 전송에 활용할 PUCCH 자원은 상위 계층 시그널링(예, RRC 시그널링)을 통해 네트워크에 의해 UE에게 설정될 수 있다. 반면, UCI 타입이 DCI에 의해 스케줄링된 PDSCH에 대한 HARQ-ACK인 경우, PUCCH 자원 세트 내에서 UCI 전송에 사용될 PUCCH 자원은 DCI에 기반하여 스케줄링될 수 있다.
DCI-기반 PUCCH 자원 스케줄링의 경우, BS는 UE에게 PDCCH를 통해 DCI를 전송하며, DCI 내의 ACK/NACK 자원 지시자(ACK/NACK resource indicator, ARI)를 통해 특정 PUCCH 자원 세트 내에서 UCI 전송에 사용될 PUCCH 자원을 지시할 수 있다. ARI는 ACK/NACK 전송을 위한 PUCCH 자원을 지시하는 데 사용되며, PUCCH 자원 지시자(PUCCH resource indicator, PRI)로 지칭될 수도 있다. 여기서, DCI는 PDSCH 스케줄링에 사용되는 DCI이고, UCI는 PDSCH에 대한 HARQ-ACK을 포함할 수 있다. 한편, BS는 ARI가 표현할 수 있는 상태(state) 수보다 많은 PUCCH 자원들로 구성된 PUCCH 자원 세트를 (UE-특정) 상위 계층(예, RRC) 신호를 이용하여 UE에게 설정할 수 있다. 이때, ARI는 PUCCH 자원 세트 내 PUCCH 자원 서브-세트를 지시하고, 지시된 PUCCH 자원 서브-세트 내에서 어떤 PUCCH 자원을 사용할지는 PDCCH에 대한 전송 자원 정보(예, PDCCH의 시작 제어 채널 요소(control channel element, CCE) 인덱스 등)에 기반한 암묵적 규칙(implicit rule)에 따라 결정될 수 있다.
UE는 UL-SCH 데이터 전송을 위해서는 상기 UE에게 이용가능한 상향링크 자원들을 가져야 하며, DL-SCH 데이터 수신을 위해서는 상기 UE에게 이용가능한 하향링크 자원들을 가져야 한다. 상향링크 자원들과 하향링크 자원들은 BS에 의한 자원 할당(resource allocation)을 통해 UE에게 배정(assign)된다. 자원 할당은 시간 도메인 자원 할당(time domain resource allocation, TDRA)과 주파수 도메인 자원 할당(frequency domain resource allocation, FDRA)을 포함할 수 있다. 본 명세에서 상향링크 자원 할당은 상향링크 그랜트로도 지칭되며, 하향링크 자원 할당은 하향링크 배정으로도 지칭된다. 상향링크 그랜트는 UE에 의해 PDCCH 상에서 혹은 RAR 내에서 동적으로 수신되거나, BS로부터의 RRC 시그널링에 의해 UE에게 준-지속적(semi-persistently)으로 설정된다. 하향링크 배정은 UE에 의해 PDCCH 상에서 동적으로 수신되거나, BS로부터의 RRC 시그널링에 의해 UE에게 준-지속적으로 설정된다.
UL에서, BS는 임시 식별자(cell radio network temporary Identifier, C-RNTI)에 어드레스된 PDCCH(들)를 통해 UE에게 상향링크 자원들을 동적으로 할당할 수 있다. UE는 UL 전송을 위한 가능성 있는 상향링크 그랜트(들)을 찾아내기 위해 PDCCH(들)을 모니터한다. 또한, BS는 UE에게 설정된 그랜트를 이용하여 상향링크 자원들을 할당할 수 있다. 타입 1 및 타입 2의 2가지 타입의 설정된 그랜트가 사용될 수 있다. 타입 1의 경우, BS는 (주기(periodicity)를 포함하는) 설정된 상향링크 그랜트를 RRC 시그널링을 통해 직접적으로 제공한다. 타입 2의 경우, BS는 RRC 설정된 상향링크 그랜트의 주기를 RRC 시그널링을 통해 설정하고, 설정된 스케줄링 RNTI(configured scheduling RNTI, CS-RNTI)로 어드레스된 PDCCH(PDCCH addressed to CS-RNTI)를 통해 상기 설정된 상향링크 그랜트를 시그널링 및 활성화거나 이를 활성해제(deactivate)할 수 있다. 예를 들어, 타입 2의 경우, CS-RNTI로 어드레스된 PDCCH는 해당 상향링크 그랜트가, 활성해제될 때까지, RRC 시그널링에 의해 설정된 주기에 따라 암묵적으로(implicitly) 재사용될 수 있음을 지시한다.
DL에서, BS는 C-RNTI로 어드레스된 PDCCH(들)을 통해 UE에게 하향링크 자원들을 동적으로 할당할 수 있다. UE는 가능성 있는 하향링크 배정들을 찾아내기 위해 PDCCH(들)을 모니터한다. 또한, BS는 준-지속적 스케줄링(semi-static scheduling, SPS)을 이용하여 하향링크 자원들을 UE에게 할당할 수 있다. BS는 RRC 시그널링을 통해 설정된 하향링크 배정들의 주기를 설정하고, CS-RNTI로 어드레스된 PDCCH를 통해 상기 설정된 하향링크 배정을 시그널링 및 활성화거나 이를 활성해제할 수 있다. 예를 들어, CS-RNTI로 어드레스된 PDCCH는 해당 하향링크 배정이, 활성해제될 때까지, RRC 시그널링에 의해 설정된 주기에 따라 암묵적으로 재사용될 수 있음을 지시한다.
PUSCH는 상향링크 데이터(예, UL-SCH TB) 및/또는 상향링크 제어 정보(UCI)를 운반하고, CP-OFDM(Cyclic Prefix-Orthogonal Frequency Division Multiplexing) 파형 또는 DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM) 파형에 기초하여 전송된다. PUSCH가 DFT-s-OFDM 파형에 기초하여 전송되는 경우, UE는 변환 프리코딩(transform precoding)을 적용하여 PUSCH를 전송한다. 일 예로, 변환 프리코딩이 불가능한 경우(예, transform precoding is disabled) UE는 CP-OFDM 파형에 기초하여 PUSCH를 전송하고, 변환 프리코딩이 가능한 경우(예, transform precoding is enabled) UE는 CP-OFDM 파형 또는 DFT-s-OFDM 파형에 기초하여 PUSCH를 전송할 수 있다. PUSCH는 PDCCH에 의해 동적으로 스케줄링 되거나(dynamic scheduling), 상위 계층(예, RRC) 시그널링 (및/또는 Layer 1(L1) 시그널링(예, PDCCH))에 기초하여 반-정적으로 스케줄링 될 수 있다(Configured Scheduling, CS). 따라서, 동적 스케줄링에서는 PUSCH 전송에 PDCCH가 수반되지만, CS에서는 PUSCH 전송에 PDCCH가 수반되지 않는다. CS는 Type-1 CG(Configured Grant) PUSCH 전송과 Type-2 CG PUSCH 전송을 포함한다. Type-1 CG에서 PUSCH 전송을 위한 모든 파라미터가 상위 계층에 의해 시그널링 된다. Type-2 CG에서 PUSCH 전송을 위한 파라미터 중 일부는 상위 계층에 의해 시그널링되고 나머지는 PDCCH에 의해 시그널링 된다. 기본적으로, CS에서는 PUSCH 전송에 PDCCH가 수반되지 않는다.
도 6은 3GPP 기반 통신 시스템에 이용되는 물리 채널들 및 이들을 이용한 신호 전송/수신 과정을 예시한다.
도 6은 무선 통신 시스템의 일례인 3GPP 기반 통신 시스템에 이용되는 물리 채널들 및 이들을 이용한 신호 전송/수신 과정을 예시한다.
전원이 꺼진 상태에서 다시 전원이 켜지거나 무선 통신 시스템과의 연결이 끊겼던 UE는 먼저 캠프 온(camp on)할 적절한 셀을 탐색(search cell)하고, 상기 셀 또는 상기 셀의 BS와 동기를 맞추는 등의 초기 셀 탐색(initial cell search) 과정을 수행한다(S11). 초기 셀 탐색 과정에서 UE는 BS로부터 동기 신호 블록(synchronization signal block, SSB)(SSB/PBCH 블록이라고도 함)를 수신한다. SSB는 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함한다. UE는 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 식별자(identity, ID) 등의 정보를 획득한다. 또한, UE는 PBCH에 기반하여 셀 내 브로드캐스트 정보를 획득할 수 있다. 한편, UE는 초기 셀 탐색 과정에서 하향링크 참조 신호(downlink reference signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 UE는 해당 셀 상에 캠프 온할 수 있다. 셀에 캠프 온 한 후에 UE는 상기 셀 상에서 PDCCH를 모니터링하고, 상기 PDCCH가 나르는 하향링크 제어 정보(downlink control information, DCI)에 따른 PDSCH를 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다(S12).
이후, UE는 BS에 접속(access)을 완료하기 위해 임의 접속 과정(random access procedure)을 수행할 수 있다(S13 ~ S16). 예를 들어, 임의 접속 과정에서 UE는 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S13), PDCCH 및 이에 대응하는 PDSCH 통해 상기 프리앰블에 대한 임의 접속 응답(random access response, RAR)를 수신할 수 있다(S14). 상기 UE를 위한 RAR의 수신에 실패한 경우, 상기 UE는 프리앰블의 전송을 다시 시도할 수 있다. 경쟁 기반 임의 접속(contention based random access)의 경우, RAR에포함된 UL 자원 할당에 기반한 PUSCH의 전송(S15), 그리고 PDCCH 및 이에 대응하는 PDSCH의 수신을 포함하는 충돌 해결 절차(contention resolution procedure)(S16)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 UE는 이후 일반적인 상향링크/하향링크 신호 전송 과정으로서 PDCCH/PDSCH의 수신(S17) 및 PUSCH/PUCCH의 전송(S18)을 수행할 수 있다. UE가 BS로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(uplink control information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK)(HARQ-ACK이라고도 함), 스케줄링 요청(scheduling request, SR), 채널 상태 정보(channel state information, CSI) 등을 포함한다. CSI는 채널 상태 지시자(channel quality indicator, CQI), 프리코딩 행렬 지시자(precoding matrix indicator, PMI), 및/또는 랭크 지시자(rank indicator) 등을 포함할 수 있다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 기반하여 UE는 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 7은 시스템 정보(system information, SI) 획득 과정을 예시한다.
UE는 SI 획득 과정을 통해 AS-/NAS-정보를 획득할 수 있다. SI 획득 과정은 RRC_IDLE 상태, RRC_INACTIVE 상태, 및 RRC_CONNECTED 상태의 UE에게 적용될 수 있다. RRC_CONNECTED는 UE가 네트워크와의 RRC 연결을 수립한 상태이다. RRC_IDLE은 UE가 특정 셀에 등록되지 않아 접속 층(access stratum, AS) 컨텍스트 및 네트워크로부터 수신된 다른 정보를 수신하지 않은 상태이다. RRC_INACTIVE는 UE가 연결 관리(connection management, CM)를 위해 코어 네트워크와의 시그널링 연결을 가진 상태인 CM-CONNECTED로 남아 있으면서 무선 접속 네트워크(radio access network, RAN(예, BS(들))에 통지함 없이 RAN에 의해 설정된 영역(area) 내에서 움직일 수 있는 상태다. CM_CONNECTED는 UE가 코어 네트워크와의 비-접속 층(non-access stratum, NAS) 시그널링 연결을 가진 상태이며, CM_IDLE은 UE가 아무런 NAS 시그널링을 갖지 않은 상태이다.
3GPP 기반 시스템에서 SI는 마스터 정보 블록(master information block, MIB)와 복수의 시스템 정보 블록(system information block, SIB)들로 나눠질 수 있다. MIB와 복수의 SIB들은 다시 최소(minimum) SI (Minimum SI)와 다른(other) SI)로 구분될 수 있다. 여기서, 최소 SI는 MIB와 시스템정보블록1((SystemInformationBlock1, SIB1)으로 구성될 수 있으며, 초기 접속을 위해 요구되는 기본 정보와 다른 SI를 획득하기 위한 정보를 포함한다. 여기서, SIB1은 남은 최소 시스템 정보(remaining minimum system information, RMSI)로 지칭될 수 있다. 자세한 사항은 다음을 참조할 수 있다.
- MIB는 80 ms의 주기(periodicity) 그리고 80 ms 내에 만들어진 반복들을 가진 BCH 상에서 항상 전송된다. MIB는 SIB1 수신과 관련된 정보/파라미터를 포함하며 SSB의 PBCH를 통해 전송된다. 초기 셀 선택 시, UE는 SSB(들)을 갖는 하프-프레임이 20ms 주기로 반복된다고 가정한다. UE는 MIB에 기반하여 Type0-PDCCH 공통 검색 공간(common search space)을 위한 제어 자원 세트(control resource set, CORESET)이 존재하는지 확인할 수 있다. Type0-PDCCH 공통 검색 공간은 PDCCH 검색 공간의 일종이며, SI 메세지를 스케줄링하는 PDCCH를 전송하는 데 사용된다. Type0-PDCCH 공통 검색 공간이 존재하는 경우, UE는 MIB 내의 정보(예, pdcch-ConfigSIB1)에 기반하여 (i) CORESET을 구성하는 복수의 연속된 RB와 하나 이상의 연속된 심볼과 (ii) PDCCH 시기(즉, PDCCH 수신을 위한 시간 도메인 위치)를 결정할 수 있다. Type0-PDCCH 공통 검색 공간이 존재하지 않는 경우, pdcch-ConfigSIB1은 SSB/SIB1이 존재하는 주파수 위치와 SSB/SIB1이 존재하지 않는 주파수 범위에 관한 정보를 제공한다.
MIB은 다음 필드(들)을 포함할 수 있다.
- subCarrierSpacingCommon ENUMERATED {scs15or60, scs30or120},
- ssb-SubcarrierOffset INTEGER (0..15),
- pdcch-ConfigSIB1 INTEGER (0..255),
...
- dmrs-TypeA-Position ENUMERATED {pos2, pos3},
subCarrierSpacingCommon 필드는 SIB1, 초기 접속을 위한 Msg2/4, 페이징 및 브로드캐스트 SI 메시지들을 위한 SCS(subcarrier spacing)을 나타낸다. UE가 FR1 반송파 주파수에서 해당 MIB을 획득하면(acquire) scs15or60 값은 15 kHz에 해당한다. UE가 FR2 반송파 주파수에서 해당 MIB을 획득하면(acquire) scs30or120 값은 120 kHz에 해당한다.
pdcch-ConfigSIB1 필드는 공통(common) CORESET, 공통 검색 공간(common search space) 및 필요한 PDCCH 파라미터들을 결정한다. 만약 ssb-SubcarrierOffset 필드가 SIB1이 없음을 나타내는 경우, pdcch-ConfigSIB1 필드는 UE가 SIB1을 포함하는 SS/PBCH 블록을 찾을 수 있는 주파수 위치(position) 또는 네트워크가 SIB1을 포함하는 SS/PBCH 블록을 제공하지 않는 주파수 범위(range)를 나타낸다.
ssb-SubcarrierOffset 필드는 kSSB에 해당하고, kSSB는 SSB와 전체 리소스 블록 그리드(resource block grid) 간의 주파수 도메인 오프셋을 부반송파(subcarrier)들의 수로 나타낸다. ssb-SubcarrierOffset 필드 값의 범위는 3GPP TS 38.213에 명시된 바와 같이 PBCH 내 인코딩된 추가적인 최상위 비트에 의해 확장될 수 있다. ssb-SubcarrierOffset 필드는 해당 셀이 SIB1을 제공하지 않고, 따라서 MIB에 의해 설정된(configured) CRESET#0이 없음을 나타낼 수 있다.
dmrs-TypeA-Position 필드는 DL(예, PDSCH) 및 UL(예, PUSCH)에 대한 (제1) DMRS(demodulation reference signal)의 위치를 나타낸다. Pos2는 슬롯의 두 번째 심볼을 나타내고, pos2는 슬롯의 세 번째 심볼을 나타낸다.
(FR1에 대한) kSSB <= 23 또는 (FR2에 대한) kSSB <= 11 인 경우, UE는 Type0-PDCCH 공통 검색 공간을 위한 CORESET이 존재한다고 판단할 수 있다. 만약, (FR1에 대한) kSSB > 23 또는 (FR2에 대한) kSSB > 11인 경우, UE는 Type0-PDCCH 공통 검색 공간을 위한 CORESET이 없다고 판단할 수 있다.
- SIB1은 160 ms의 주기(periodicity) 및 160 ms 내에서 변하는(variable) 전송 반복 주기를 갖는 하향링크 공유 채널(downlink shared channel, DL-SCH) 상에서 전송된다. SIB1의 디폴트 전송 반복 주기는 20 ms이지만 실제(actual) 전송 반복 주기는 네트워크 구현에 따라 달라질 수 있다. SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성 및 스케줄링(예, 전송 주기, SI-윈도우 사이즈)과 관련된 정보를 포함한다. 예를 들어, SIB1은 SIBx가 주기적으로 브로드캐스트되는지 on-demand 방식에 의해 UE의 요청에 의해 제공되는지 여부를 알려줄 수 있다. SIBx가 on-demand 방식에 의해 제공되는 경우, SIB1은 UE가 SI 요청을 수행하는 데 필요한 정보를 포함할 수 있다. SIB1은 셀-특정적 SIB이다. SIB1을 스케줄링하는 PDCCH는 Type0-PDCCH 공통 검색 공간을 통해 전송되며, SIB1은 상기 PDCCH에 의해 지시되는 PDSCH를 통해 전송된다.
- SIBx는 SI 메세지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메세지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
도 8은 본 명세의 구현(들)에 적용될 수 있는 임의 접속 과정을 예시한다. 특히 도 8(a)는 4-단계 임의 접속 과정을 예시하며, 도 8(b)는 2-단계 임의 접속 과정을 예시한다.
임의 접속 과정은 초기 접속, 상향링크 동기 조정(adjustment), 자원 할당, 핸드오버, 무선 링크 실패 이후 무선 링크 재설정(reconfiguration), 위치 측정 등의 용도로 다양하게 사용될 수 있다. 임의 접속 과정은 경쟁-기반(contention-based) 과정과, 전용(dedicated)(즉, 비-경쟁-기반) 과정으로 분류된다. 경쟁-기반 임의 접속 과정은 초기 접속을 포함하여 일반적으로 사용되며, 전용 임의 접속 과정은 핸드오버, 네트워크에 하향링크 데이터가 도달한 경우, 위치 측정의 경우에 상향링크 동기를 재설정하는 경우 등에 사용된다. 경쟁-기반 임의 접속 과정에서 UE는 임의 접속(random access, RA) 프리앰블을 임의로(randomly) 선택한다. 따라서, 복수의 UE들이 동시에 동일한 RA 프리앰블을 전송하는 것이 가능하며, 이로 인해 이후 경쟁 해결 과정이 필요하다. 반면, 전용 임의 접속 과정에서 UE는 BS가 해당 UE에게 고유하게 할당한 RA 프리앰블을 사용한다. 따라서, UE는 다른 UE와의 충돌 없이 임의 접속 과정을 수행할 수 있다.
도 8(a)를 참조하면, 경쟁-기반 임의 접속 과정은 다음의 4 단계를 포함한다. 이하, 단계 1 ~ 단계 4에서 전송되는 메시지는 각각 Msg1 ~ Msg4로 지칭될 수 있다.
- 단계 1: UE는 PRACH를 통해 RA 프리앰블을 전송한다.
- 단계 2: UE는 BS로부터 PDSCH를 통해 임의 접속 응답(random access response, RAR)을 수신한다.
- 단계 3: UE는 RAR을 기반으로 PUSCH를 통해 UL 데이터를 BS로 전송한다. 여기서, UL 데이터는 레이어 2 및/또는 레이어 3 메시지를 포함한다.
- 단계 4: UE는 PDSCH를 통해 경쟁 해결(contention resolution) 메시지를 BS로부터 수신한다.
UE는 시스템 정보를 통해 BS로부터 임의 접속에 관한 정보를 수신할 수 있다. 예를 들어, 셀 상의 SSB들과 연관된 RACH 시기들에 관한 정보가 시스템 정보를 통해 제공될 수 있다. UE는 셀 상에서 수신한 SSB들 중 SSB를 기반으로 측정된 참조 신호 수신 전력(reference signal received power, RSRP)가 임계치를 넘는 SSB를 선택하고, 상기 선택된 SSB와 연관된 PRACH를 통해 RA 프리앰블을 전송할 수 있다. 예를 들어, 임의 접속이 필요하면, UE는 PRACH 상에서 Msg1(예, preamble)을 BS로 전송한다. BS는 임의 접속 프리앰블이 전송된 시간/주파수 자원(RA Occasion, RO) 및 임의 접속 프리앰블 인덱스(Preamble Index, PI)를 통해, 각각의 임의 접속 프리앰블들을 구별할 수 있다. BS가 UE부터 임의 접속 프리앰블을 수신하면, BS는 PDSCH 상에서 RAR 메시지를 UE에게 전송한다. RAR 메시지의 수신을 위해, UE는 미리 설정된 시간 윈도우(예를 들어, ra-ResponseWindow) 내에서, RAR 메시지에 대한 스케줄링 정보를 포함하는, RA-RNTI(Random Access-RNTI)로 CRC 마스킹된 L1/L2 제어 채널(PDCCH)을 모니터링한다. RA-RNTI로 마스킹된 PDCCH를 통해 스케줄링 정보를 수신한 경우, UE는 상기 스케줄링 정보가 지시하는 PDSCH로부터 RAR 메시지를 수신할 수 있다. 그 후, UE는 상기 RAR 메시지에 자신을 위한 RAR이 있는지 판단한다. 자신을 위한 RAR이 존재하는지 여부는 UE가 전송한 프리앰블에 대한 RAPID(Random Access preamble ID)가 존재하는지 여부로 확인될 수 있다. UE가 전송한 프리앰블의 인덱스와 RAPID는 동일할 수 있다. RAR은, 대응하는 임의 접속 프리앰블 인덱스, UL 동기화를 위한 타이밍 오프셋 정보(예, 타이밍 어드밴스 명령(timing advance command, TAC), Msg3 전송을 위한 UL 스케줄링 정보(예, UL 그랜트) 및 UE 임시 식별 정보(예, Temporary-C-RNTI, TC-RNTI)를 포함한다. RAR을 수신한 UE는 상기 RAR 내 UL 스케줄링 정보 및 타이밍 오프셋 값에 따라 PUSCH를 통해 Msg3를 전송한다. Msg3에는, UE의 ID (또는 UE의 글로벌 ID)가 포함될 수 있다. 또한 Msg3에는 네트워크로의 초기 접속을 위한 RRC 연결 요청 관련 정보(예, RRCSetupRequest 메시지)가 포함될 수 있다. Msg3 수신 후, BS는 경쟁 해결(contention resolution) 메시지인 Msg4를 UE에게 전송한다. UE가 경쟁 해결 메시지를 수신하고 경쟁이 해결에 성공하면, TC-RNTI는 C-RNTI로 변경된다. Msg4에는, UE의 ID 및/또는 RRC 연결 관련 정보(예, RRCSetup 메시지)가 포함될 수 있다. Msg3를 통해 전송한 정보와 Msg4를 통해 수신한 정보가 일치하지 않거나, 일정 시간 동안 Msg4를 수신하지 못하면, UE는 경쟁 해결에 실패한 것으로 보고 Msg3를 재전송할 수 있다.
한편, 전용 임의 접속 과정은 다음의 3 단계를 포함한다. 이하, 단계 0 ~ 단계 2에서 전송되는 메시지는 각각 Msg0 ~ Msg2로 지칭될 수 있다. 전용 임의 접속 과정은 RA 프리앰블 전송을 명령하는 용도의 PDCCH(이하, PDCCH 오더(order))를 이용하여 BS에 의해 UE에서 트리거될 수 있다.
- 단계 0: BS는 전용 시그널링을 통해 RA 프리앰블을 UE에 할당한다.
- 단계 1: UE는 PRACH를 통해 RA 프리앰블을 전송한다.
- 단계 2: UE는 BS로부터의 PDSCH를 통해 RAR을 수신한다.
전용 임의 접속 과정의 단계 1 ~ 단계 2의 동작은 경쟁 기반 임의 접속 과정의 단계 1 ~ 단계 2와 동일할 수 있다.
NR 시스템에서는 기존 시스템보다 더 낮은 레이턴시(latency)가 필요할 수 있다. 또한, 특히 URLLC와 같이 레이턴시에 취약한 서비스에 대해 4-단계의 임의 접속 과정은 바람직하지 않을 수 있다. NR 시스템의 다양한 시나리오 내에서 낮은 레이턴시의 임의 접속 과정이 필요할 수 있다. 본 명세의 구현(들)이 임의 접속 과정과 함께 수행되는 경우, 임의 접속 과정에서의 레이턴시를 감소시키기 위해, 본 명세의 구현(들)은 다음의 2-단계 임의 접속 과정과 함께 수행될 수 있다.
도 8(b)를 참조하면, 2-단계 임의 접속 과정은 UE로부터 BS로의 MsgA 전송과 상기 BS로부터 상기 UE로의 MsgB 전송의 2 단계로 구성될 수 있다. MsgA 전송은 PRACH를 통한 RA 프리앰블의 전송과 PUSCH를 통한 UL 페이로드의 전송을 포함할 수 있다. MsgA 전송에 있어서 PRACH와 PUSCH는 시간 분할 다중화(time division multiplexing, TDM)되어 전송될 수 있다. 이와 달리(alternatively), MsgA 전송에 있어서 PRACH와 PUSCH는 주파수 분할 다중화(frequency division multiplexing, FDM)되어 전송될 수도 있다.
MsgA를 수신한 BS는 UE에게 MsgB를 전송할 수 있다. MsgB는 상기 UE를 위한 RAR을 포함할 수 있다.
BS의 RRC 계층과 UE의 RRC 계층 간의 연결을 수립(establish)할 것을 요청하는 RRC 연결 요청 관련 메시지(예, RRCSetupRequest 메시지)는 MsgA의 페이로드에 포함되어 전송될 수 있다. 이 경우, MsgB가 RRC 연결 관련 정보(예, RRCSetup 메시지)의 전송에 사용될 수 있다. 이와 달리, RRC 연결 요청 관련 메시지(예, RRCSetupRequest 메시지)는 MsgB 내 UL 그랜트에 기반하여 전송되는 PUSCH를 통해 전송될 수도 있다. 이 경우, RRC 연결 요청과 관련된 RRC 연결 관련 정보(예, RRCSetup 메시지)는 MsgB에 기반한 PUSCH 전송에 후에 상기 PUSCH 전송과 연관된 PDSCH를 통해 전송될 수 있다.
도 9는 SSB 및 CORESET 다중화 패턴들을 예시한다. 특히, 도 9(a)는 SSB 및 CORESET 다중화 패턴 1이고, 도 9(b)는 SSB 및 CORESET 다중화 패턴 2이고, 도 9(c)는 SSB 및 CORESET 다중화 패턴 3이다. SSB 및 CORSET 다중화 패턴은 해당 셀이 속한 주파수 범위(frequency range, FR) 또는 SSB 또는 PDCCH의 부반송파 간격에 따라 기정의될 수 있다.
도 9에 예시된 바와 같이, SSB와 CORESET은 시간 도메인에서 다중화될 수도 있고, 시간 및 주파수 도메인에서 다중화될 수도 있으며, 주파수 도메인에서 다중화 될 수도 있다.
UE가 모니터링하는 PDCCH 후보들의 세트는 PDCCH 검색 공간(search space) 세트들의 면에서 정의된다. 검색 공간 세트는 공통 검색 공간 (common search space, CSS) 세트 또는 UE-특정 검색 공간 (UE-specific search space, USS) 세트일 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 CORESET 설정과 연관된다.
PDCCH 모니터링이 설정된 각 활성화된 서빙 셀 상의 활성 DL BWP 상의 하나 이상의 CORESET들에서 PDCCH 후보들의 세트를 모니터할 수 있으며, 여기서 모니터링은 각 PDCCH 후보를 수신하는 것 및 모니터되는 DCI 포맷들에 따라 디코딩하는 것을 의미(imply)한다.
도 10은 DRX(Discontinuous Reception) 동작을 예시한다. 특히, 도 10은 RRC_CONNECTED 상태인 UE를 위한 DRX 사이클을 예시한다.
UE는 본 명세의 몇몇 구현들에 따른 과정 및/또는 방법을 수행하면서 DRX 동작을 수행할 수 있다. DRX가 설정된(configured) UE는 DL 신호를 불연속적으로 수신함으로써 전력 소모를 감소시킬 수 있다. DRX 동작은 RRC_IDLE 상태, RRC_INACTIVE 상태, RRC_CONNECTED 상태에서 수행될 수 있다. RRC_IDLE 상태와 RRC_INACTIVE 상태에서 DRX는 페이징 신호를 불연속 수신하는데 사용된다. 이하, RRC_CONNECTED 상태에서 수행되는 DRX(RRC_CONNECTED DRX)에 관해 설명한다.
도 10을 참조하면, DRX 사이클은 ON 구간과 DRX를 위한 기회(Opportunity for DRX)로 설정(configure)된다. DRX 사이클은 ON 구간이 주기적으로 반복되는 시간 간격을 정의한다. ON 구간은 UE가 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정(configure)되면, UE는 ON 구간 동안 PDCCH 모니터링을 수행한다. PDCCH를 모니터링하는 동안에 성공적으로 검출된 PDCCH가 있는 경우, UE는 비활성(Inactivity) 타이머를 시작(starting)시키고 깬(awake) 상태를 유지한다. 반면, PDCCH를 모니터링하는 동안에 성공적으로 검출된 PDCCH가 없는 경우, UE는 ON 구간이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 본 명세의 몇몇 구현들에 따른 방법 및/또는 절차를 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, PDCCH 수신 시기(occasion)(예, PDCCH 검색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 본 명세의 몇몇 구현들에 따른 방법 및/또는 절차를 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, PDCCH 수신 시기(예, PDCCH 검색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
다음 표는 DRX와 관련된 UE의 과정을 예시한다. 다음 표를 참조하면, DRX 설정(configuration) 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 명령(command)에 의해 제어된다. DRX가 설정되면 UE는 도 10에 예시된 바와 같이 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
Figure PCTKR2023011515-appb-img-000007
여기서, MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 설정(configuration) 정보를 포함한다. MAC-CellGroupConfig는 DRX에 관한 설정 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 다음과 같은 파라미터 정보를 포함할 수 있다.
- drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이
- drx-SlotOffset: drx-OnDurationTimer 시작 전 슬롯의 지연 지시
- drx-StartOffset: DRX 사이클이 시작되는 서브프레임 지정
- drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 시기 이후에 UE가 깬 상태로 있는 시간 구간의 길이, 본 명세에서 비활성(Inactivity) 타이머라고도 함
- drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이
- drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이
- drx-RetransmissionTimerDL(DL HARQ 프로세스별): DL 재전송이 수신될 때까지의 최대 시간 구간의 길이
- drx-RetransmissionTimerUL(UL HARQ 프로세스별): UL 재전송을 위한 그랜트가 수신될 때까지의 최대 시간 구간 길이
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작점
- drx-ShortCycle (optional): 짧은(short) DRX 사이클의 시간 길이
- drx-ShortCycleTimer (optional): 짧은(short) DRX 사이클 동작 기간
예를 들어, 짧은(Short) DRX 사이클의 배수 단위의 값이 drx-CylceTimer에 의해 설정될 수 있다. 예를 들어, n의 값은 n*drx-ShortCycle에 대응할 수 있다.
UE는 DRX 그룹이 활성 시간 내이면 상기 DRX 그룹 내 서빙 셀들 상에서 PDCCH 모니터링을 수행할 수 있다. 여기서 DRX 그룹은 RRC에 의해 설정되는 그리고 동일 DRX 활성 시간을 갖는 서빙 셀들의 그룹이다. DRX가 설정되면, DRX 그룹 내 서빙 셀들에 대한 활성 시간(active time)은 i) 상기 DRX 그룹에 대해 설정된 drx-onDurationTimer 또는 drx-InactivityTimer가 구동 중; 또는 ii) drx-RetransmissionTimerDL 또는 drx-RetransmissionTimerUL이 상기 DRX 그룹 내 임의(any) 서빙 셀 상에서 구동 중; 또는 ra-ContentionResoultionTimer 또는 msgB-RsponseWindow가 구동 중; 또는 UE의 MAC 엔티티에게 어드레스된 C-RNTI로 어드레스된 새로운 전송을 지시하는 PDCCH가 경쟁-기반 임의 접속 프리앰블 중 상기 MAC 엔터티에 의해 선택되지 않은 임의 접속 프리앰블에 대한 임의 접속 응답의 성공적 수신 후에 수신되지 않은 시간을 포함할 수 있다.
도 11은 긴(long) DRX 사이클과 짧은(short) DRX 사이클이 설정된 경우를 예시한다. 상세하게, 도 11은 drx-ShortCycleTimer가 2로 설정된 경우를 예시한다.
BS는 긴(long) DRX 사이클과 상기 긴 DRX 사이클보다는 짧은 추가적인 짧은(short) DRX 사이클을 설정할 수 있다. 짧은 DRX 사이클이 설정되지 않으면 UE는 긴 DRX 사이클을 따르면 된다. 짧은 DRX 사이클을 설정할 때 BS는 긴 DRX 사이클의 기간이 짧은 DRX 사이클의 양의 정수 배가 되도록 설정한다. 긴 DRX 사이클의 ON 구간 동안 데이터 활동(data activity)이 없으면 UE는 짧은 DRX 사이클이 설정되지 않은 것처럼 긴 DRX 사이클을 따른다. 긴 DRX 사이클의 ON 구간 동안, 예를 들어, drx-onDurationTimer가 구동 중인 동안 데이터 활동이 있으면 UE는 짧은 DRX 사이클로 전환하고 일정 시간 동안(예, drx-ShortCycleTimer가 구동 중인 동안) 짧은 DRX 사이클을 따른다. 도 11을 참조하면, 짧은 DRX 사이클을 따르는 시간 동안 데이터 활동이 없으면, 예를 들어, drx-ShortCycleTimer * drx-ShortCycle에 의해 정의된 구간 동안 데이터 뢀동이 없으면, UE는 drx-ShortCycleTimer 개의 짧은 DRX 사이클들에 긴 DRX 사이클로 전환한다.
도 12는 3GPP 기반 시스템에서 SIB1의 전송을 예시한다. 도 12에서 PSIB1은 SIB1의 전송 주기(periodicity) 혹은 전송 반복 주기를 나타내며, SIB1 PDSCH은 SIB1을 나르는 PDSCH를 나타내고, SIB1 PDCCH는 SIB1 PDSCH를 스케줄링하는 DCI 포맷을 운반하는 PDCCH를 나타낸다.
도 12를 참조하면, 현재 5G 표준에 의하면, 셀 접속에 필요한 최소 시스템 정보의 일부인 SIB1은 160 ms의 주기 그리고 160 ms 내에서 가변하는(variable) 전송 반복 주기로 DL-SCH 상에서 전송된다. SIB1의 디폴트 전송 반복 주기는 20 ms이지만 실질(actual) 전송 반복 주기는 네트워크 구현에 달려 있다. SSB 및 CORESET 다중화 패턴 1의 경우. SIB1 전송 반복 구간(transmission repetition period)는 20ms이다. SSB 및 CORESET 다중화 패턴 2/3의 경우, SIB1 전송 반복 구간은 SSBI 구간과 동일하다.
UE가 SIB1 PDCCH의 디코딩을 시도하는 PDCCH 모니터링 시기는 MIB 내 정보, 예를 들어, pdcch-ConfigSIB1를 기반으로 결정될 수 있다. 예를 들어, 셀 탐색 동안 UE가 MIB를 기반으로 Type0-PDCCH CSS 세트가 존재한다고 결정하면, 상기 UE는 pdcch-ConfigSIB1controlResourceSetZero로부터 상기 Type0-PDCCH CSS 세트의 CORESET을 위한 연속한(consecutive) 자원 블록들의 개수와 연속한 심볼들의 개수를 결정할 수 있으며, pdcch-ConfigSIB1searchSpaceZero로부터 PDCCH 모니터링 시기들을 결정할 수 있다. 예를 들어, 인덱스 i인 SSB에 대해, 연관된 CORESET의 프레임의 시스템 프레임 번호(system frame number, SFN) SFNC, SFNC인 프레임 내 Type-0 모니터링 시기(들)을 포함하는 첫 번째 슬롯 n0, 상기 슬롯 n0 내 해당 CORESET의 첫 번째 심볼의 인덱스를 결정하는 데 필요한 파라미터 값들의 조합이 searchSpaceZero에 의해 지시될 수 있다.
UE는 PDCCH 모니터링 시기에 Type0-PDCCH CSS 세트에 대한 모니터링을 수행하여, SIB1 PDCCH를 검출할 수 있다. 상기 UE는 상기 SIB1 PDCCH가 운반하는 DCI로부터 SIB1 PDSCH의 주파수 자원 할당 및 시간 자원 할당을 결정하고, 상기 주파수 자원 할당 및 시간 자원 할당을 기반으로 SIB1을 수신/디코딩할 수 있다.
한편, UE가 진행 중인 데이터 전송들/수신들을 가지고 있지 않으면, 상기 UE는 전력 절약을 위해 RRC_IDLE 혹은 RRC_INACTIVE에 진입한다. 네트워크에 상기 UE를 위한 DL 데이터가 도착하면, 상기 네트워크는 페이징 시기(paging occasion, PO)에 페이징 메시지를 보내 RRC 셋업 절차, RRC 연결 재개(RRC Connection Resume) 절차 등을 트리거한다. PO는 PDCCH 모니터링 시기들의 세트이고, 다수의 시간 슬롯들(예, 서브프레임 또는 OFDM 심볼)들로 구성될 수 있으며, PO에서 P-RNTI로 스크램블링된 CRC를 갖는 DCI가 전송될 수 있다. 다중-빔(multi-beam) 동작들에서, UE는 동일 페이징 메시지가 모든 전송되는 빔들에서 반복된다고 가정한다. 페이징 메시지는 무선 접속 네트워크(radio access network, RAN) 개시 페이징과 코어 네트워크(core network, CN) 개시 페이징 둘 다에 대해 도일하다. 하나의 페이징 프레임(paging frame, PF)는 하나의 무선 프레임(radio frame)이며 하나 또는 다수의 PO(들)을 포함하거나 PO의 시작점(starting point)를 포함할 수 있다. UE는 DRX 사이클당 하나의 PO를 모니터한다. 페이징을 위한 PF 및 PO는 기정의된 수식들에 의해 결정될 수 있다. 예를 들어, 몇몇 구현들에서, PF에 대한 시스템 프레임 번호(system frame number, SFN)은(SFN + PF_offset) mod T = (T div N)*(UE_ID mod N)에 의해 결정될 수 있고, PO의 인덱스를 지시하는 인덱스 i_s는 i_s = floor(UE_ID) mod Ns에 의해 결정될 수 있으며, 여기서 T는 UE의 DRX 사이클로서 UE-특정 DRX 값(들) 및/또는 시스템 정보로 브로드캐스트된 디폴트 DRX 값의 최소 값에 의해 결정되고, N은 T 내 총 페이징 프레임들의 개수이며, Ns는 PF에 대한 페이징 시기들의 개수이고, PF_offset은 PF 결정을 위해 사용되는 오프셋이며, UE_ID는 5G-S-TMSI를 기반으로 결정되는 값이다. 페이징 프레임당 페이징 시기들의 개수에 관한 파라미터 Ns, T 내 총 페이징 프레임의 개수를 유도하는 데 사용되는 파라미터 nAndPagingFrameOffset, 페이징 시기 내 SSB에 대응하는 PDCCH 모니터링 시기들의 개수에 관한 파라미터 nrofPDCCH-MonitoringOccasionsPerSSB-InPO, 및 디폴트 DRX 사이클의 길이가 SIB1에 의해 시그널링될 수 있으며, N과 PF_offset의 값들은 상기 파리미터 nAndPagingFrameOffset로부터 유도된다. 페이징을 위한 PDCCH 모니터링 시기들은 PF의 각 PO의 페이징을 위한 첫 번째 PDCCH 모니터링 시기를 가리키는 파라미터 firstPDCCH-MonitoringOccasionOfPO, 그리고 상기 파라미터 nrofPDCCH-MonitoringOccasionsPerSSB-InPO를 기반으로 결정될 수 있다. 상기 파라미터 firstPDCCH-MonitoringOccasionOfPO는 초기 하향링크 BWP에서의 페이징에 대해서는 SIB1에 의해 시그널링되고, 상기 초기 하향링크 BWP가 아닌 다른 DL BWP에서의 페이징에 대해서는 해당 BWP 설정으로 시그널링될 수 있다.
전력 소모를 줄이기 위해 UE는 RRC_IDLE 및 RRC_INACTIVE 상태에서 PEI(Paging Early Indication)을 사용할 수 있다. PEI 설정이 시스템 정보에서 제공되면, PEI를 지원하는 RRC_IDLE 또는 RRC_INACTIVE 상태의 UE는 시스템 정보 내 PEI 파라미터들을 사용하여 PEI를 모니터할 수 있다. 상기 UE는 DRX 사이클당 하나의 PEI를 모니터한다. PEI 시기(PEI-O)는 PDCCH 모니터링 시기들의 세트이며, PEI가 보내질 수 있는 다수의 시간 슬롯들(예, 서브프레임들 또는 OFDM 심볼들)로 구성될 수 있다. 다중-빔(multi-beam) 동작들에서, UE는 동일 PEI가 모든 전송되는 빔들에서 반복된다고 가정한다. UE의 PO에 대한 PEI-O의 시간 위치는 참조 포인트와 오프셋에 의해 결정되며, 상기 참조 포인트는 SIB1 내 pei-FrameOffset에 의해 제공되는, 상기 PEI-O와 연관된 PF(들) 중 첫 번째 PF의 시작으로부터의 프레임-레벨 오프셋에 의해 결정되는 참조 프레임의 시작이며, 상기 오프셋은 상기 참조 포인트로부터 SIB1 내 firstPDCCH-MonitoringOccasionOfPEI-O에 의해 제공되는, 이 PEI-O의 첫 번째 PDCCH 모니터링 시기의 시작까지의 심볼-레벨 오프셋이다. 하나의 PEI-O는 2개 PF들의 PO들과 연관되면, 상기 2개 PF들은 파라미터들 PF_offset, T, Ns, 및 N에 의해 계산되는 연속 PF들이다. PEI에 대한 좀 더 자세한 사항들은 3GPP TS 38.304 및 3GPP TS 38.213을 참조할 수 있다.
RRC_IDLE 또는 RRC_INACTIVE인 UE가 DRX 사이클당 하나의 PO 동안 페이징 채널들을 모니터하는 것만 요구되는 페이징 DRX가 정의된다. 다음 페이징 DRX 사이클들이 네트워크에 의해 설정될 수 있다: i) 코어 네트워크 개시 페이징(CN-initiated paging)을 위해, 디폴트 사이클이 시스템 정보로 브로드캐스트되고, ii) CN-개시 페이징을 위해, UE-특정적 사이클이 비-접속 층(non-access stratum, NAS) 시그널링을 통해 설정될 수 있으며, iii) 무선 접속 네트워크(radio access network, RAN) 개시 페이징(RAN-initiated paging)으 위해 UE-특정적 사이클이 RRC 시그널링을 통해 설정될 수 있다. UE는 적용 가능한 DRX 사이클들 중 가장 짧은 것을 사용한다. 예를 들어, RRC_IDLE인 UE는 상기 3개 DRX 사이클들 중 첫 2개 DRX 사이클들 중 짧은 것을 사용할 수 있고, RRC_INACTIVE인 UE는 상기 3개 DRX 사이클들 중 가장 짧은 것을 사용할 수 있다.
BS는 전송할 데이터가 없는 경우 심볼 침묵(symbol muting)을 통해 에너지 절약을 할 수 있다. 하지만, SSB, SIB 등과 같은 공통 신호/채널(들)은 항상 전송되어야 하는 always-on 신호/채널(들)이기 때문에 해당 심볼에서는 심볼 침묵(symbol muting)을 통한 에너지 절약 효과를 얻기 힘들다. NR에서 SSB/SIB는 주파수 범위(frequency range, FR) 별로 특정 SCS(subcarrier spacing) 및 복수의 빔들을 통해서 빔 스위핑(sweeping)되며 전송될 수 있고, FR이 높아질수록 빔의 개수가 증가하게 된다. 따라서 FR2에서 SSB, SIB 등과 같은 공통 신호/채널(들)의 전송에 사용되는 시간 자원의 양은 FR1에 비해서 상대적으로 많아지게 되어 BS의 에너지 소모 측면에서 차지하는 비율이 높아질 수 있다.
BS의 SSB, SIB 등과 같은 always-on 신호/채널(들)의 전송으로 인한 에너지를 감소시키기 위해서는 SSB, SIB 등의 주기를 길게 설정할 수 있지만, 이 경우 UE가 셀에 접속할 때 걸리는 시간이 길어질 수 있고 legacy UE가 셀을 제대로 발견하지 못하는 등의 문제가 발생할 수 있다. 따라서 UE가 특정 반송파(carrier)로부터 SSB, SIB 등과 같은 공통 신호/채널(들)을 수신할 수 있는 몇몇 시나리오에 있어서, 다른 반송파에서는 SSB, SIB 등과 같은 공통 신호/채널(들)을 아주 긴 주기로 전송하거나 혹은 아예 전송하지 않고 셀을 발견할 수 있을 정도의 최소한의 신호 (예, 디스커버리 신호(discovery signal))만을 전송하여 SSB, SIB 등의 공통 신호/채널(들)의 전송으로 인하여 발생하는 에너지 소모를 절약하다가 UE가 해당 반송파에 접속하기 위해 특정 신호(예, WUS(wake up signal))를 전송하면 SSB, SIB1 등을 전송하여 접속할 수 있도록 할 수 있다. 즉, SSB/SIB가 주기적으로 전송되는 앵커(anchor) CC(component carrier)와 SSB/SIB가 아주 긴 주기로 전송되거나 디스커버리 신호만 전송되는 비-앵커(non-anchor) CC를 모두 가진 UE의 경우, 앵커 CC가 비-앵커 CC의 시스템 정보(system information, SI)를 대신 전송할 수 있고, UE는 해당 도움 정보를 기반으로 비-앵커 CC에 접속이 필요한 경우 WUS 등과 같은 신호를 통해서 on-demand 방식으로 SI를 수신할 수 있다. 이때, BS는 비-앵커 CC에서 SSB/SIB을 항상 전송하지 않음으로써 에너지를 절약할 수 있다.
본 명세에서, BS가 에너지 절약을 위해 NES(network energy saving) 모드로 동작한다는 것은, 예를 들어 BS가 사전에 특정 시간 구간 동안 특정 DL신호의 전송을 끄는 복수의 OFF 구간(들)(BS의 DTX 구간(들))을 설정해놓고 동적으로 그 중 하나의 OFF 구간을 지시하여 해당 DL 신호가 사전에 정의딘 시간 구간 동안은 전송되지 않을 것임을 지시함으로써 BS 및 UE의 전력 소모 절감을 얻을 수 있도록 동작하는 것을 의미할 수 있다. 또한, 시간 도메인(time domain) 뿐만 아니라 주파수 도메인(frequency domain)에서 BWP 스위칭(switching), 동적 자원 블록(resource block, RB) 적응(adaptation), 그리고 공간(spatial) 도메인에서, 예를 들어 BS의 특정 수신 안테나 포트(antenna port)를 준정적(semi-static) 또는 동적(dynamic)으로 끌 때, 해당 안테나 포트를 통해 BS가 전송 및/또는 수신을 수행하지 않음으로써 BS 및 UE의 전력 소모 절감 효과를 얻는 동작 모드를 의미할 수도 있다.
<방법 1> BS가 특정 SSB 또는 PBCH 등으로 SIB1과 같은 공통 신호/채널(들)을 전송하지 않고 on-demand 방식으로 전송되고 있음을 UE에게 알려주는 방법과, 이때 UE가 UL WUS를 통해 on-demand 방식으로 SIB1과 같은 공통 신호/채널(들)의 전송을 요청하는 방법
> (1-1) BS는 특정 SSB를 전송하면서 on-demand SIB1을 운용 중임을 PBCH의 특정 비트 혹은 특정 PSS 및/또는 SSS 시퀀스, 혹은 PBCH DMRS 시퀀스를 통해서 알릴 수 있다.
> (1-2) BS는 SIB1을 전송하지 않은 상태지만 MIB을 통해 SIB1 스케줄링 정보( pdcch-ConfigSIB1 controlResourceSetZero searchSpaceZero )는 여전히 계속 전송하는 경우, controlResourceSetZero 또는 searchSpaceZero 의 유보된 상태들(reserved states) 중 일부를 on-demand SIB1을 운용 중임을 지시하는 데 사용할 수 있다.
>> i. 몇몇 구현들에서, UE는 SIB1 요청을 위한 RACH 전송 후에 BS가 CORESET0을 통해서 SIB1 요청에 대한 ACK를 전송하여 이를 성공적으로 수신하면 SI-RNII를 모니터링할 수 있다.
>> ii. 이때, 몇몇 구현들에서, UE의 SIB1 요청을 수신한 후 BS가 전송하는 SIB1은 UE가 전송한 RACH에 대응되는 특정 SSB 인덱스(index)에 연동된 SIB1 혹은 모든 전송 중인 SSB 인덱스에 연동된 SIB1을 의미할 수 있다.
>> iii. 몇몇 구현들에서, UE는 RACH 전송 후 사전에 정의된(pre-defined) CORESET0/SS0(즉, 검색 공간 세트 인덱스 0(search space set index 0))으로 ACK를 수신하거나, ACK 수신 없이 유효한(valid) controlResourceSetZero 또는 searchSpaceZero 정보를 확인한 후, SIB1을 수신할 수도 있다.
> (1-3) BS는 특정 SSB를 전송하면서 on-demand SIB1을 운용 중임을 SSB 내 특정 정보 혹은 MIB 내 ssb-SubcarrierOffset kSSB 를 통해서 알려주고, UE의 요청을 기반으로 SIB1을 전송할 수 있다. 이때, 해당 SSB에는 CRESET#0/Type0-PDCCH CSS 세트에 대한 설정(configuration)이 없을 수 있다.
>> i. 몇몇 구현들에서, BS가 SSB 내 특정 정보를 유보된 상태(reserved state)로 지시하면(SSB PBCH 페이로드(payload)의 일부, 예를 들어 유보된(reserved 1 비트가 사용될 수 있음), UE는 BS가 SIB1을 on-demand 방식으로 운용 중인 것으로 해석하고, 해당 상태에 사전에 설정된 혹은 사전에 정의된(pre-defined) PRCH 전송을 통해 BS에게 SIB1 전송 요청을 할 수 있다.
>> ii. 몇몇 구현들에서, BS가 특정 kSSB 값을 통해 유보된 상태를 지시하면, 어드밴스드(advanced) UE는 BS가 SIB1을 on-demand 방식으로 운용 중이라고 해석하여 SIB1 요청을 위한 RACH를 전송할 수 있다.
>> iii. 몇몇 구현들에서, On-demand SIB1 수신을 위해 CORESET0/SS0 정보를 전송하지 않아도 된다면, (예를 들어 사전에 정의된(pre-defined))정보가 없는 케이스(no information case)에 대해서 어드밴스드(advanced) UE는 BS가 SIB1을 on-demand 방식으로 운용 중인 것으로 해석하고 SIB1 요청을 위한 RACH 전송 등의 동작을 수행할 수도 있다.
단, 어드밴스드(advanced) UE는 BS가 NES 모드로 동작하는 셀임을 알려주었을 때 그것을 해석할 수 있는 능력 및 해당 셀에 접속하여 BS의 NES 동작 지시/설정에 따라 동작할 수 있는 UE를 의미할 수 있다. 또한 UE는 BS에게 SIB1 전송을 요청하기 위한 UL WUS 자원은 표준 문서에 정의되어 있거나 혹은 (CD-)SSB에서 설정된 자원을 활용하여 WUS를 전송할 수 있고, 이때 UL WUS로는 RACH 등과 같이 사전에 약속/설정된 특정 UL 신호/채널이 사용될 수 있다. 본 명세에 따른 방법들 및/또는 절차들은 BS가 CD-SSB를 전송하지만, on-demand SIB1을 운용 중이라 SIB1이 실제로 전송되지 않는 경우에 대기/비활성(idle/inactive) UE가 SIB1을 요청하기 위해서 UL WUS(예를 들어, RACH)를 전송하는 시나리오에 적용할 수 있다.
이하에서는 위 (1-1) 내지 (1-3)의 방법들을 구체적으로 설명한다.
반송파(carrier) 내 SSB에는 CD-SSB(cell-defining SSB)와 NCD-SSB(non CD-SSB)와 같이 두 가지 종류가 있을 수 있다. 3GPP TS 38.300 섹션(section) 5.2.4을 참조하면, 반송파의 주파수 범위 내에서 복수 SSB들이 전송될 수 있다. 서로 다른 주파수 위치(location)에서 전송되는 복수 SSB들의 PCI(Physical Cell Identifier)들은 고유할 필요가 없다. 다시 말해, 주파수 도메인에서 서로 다른 SSB들은 서로 다른 PCI들을 가질 수 있다. 그러나, SSB가 RMSI와 연관되는 경우 해당 SSB를 CD-SSB라고 한다. Pcell은 항상 동기 래스터(synchronization raster)에 있는 CD-SSB와 연관된다. CD-SSB는 셀의 NCGC(NR Cell Clobal Identifier)를 갖는 SIB1과 연관된 SSB로 항상 초기(initial) BWP에 있고 UE는 동기 래스터에서 셀 검색(search)를 통해서 CD-SSB의 위치를 알 수 있다. 반면, NCD-SSB는 SIB1과 연관되어 있지 않고, EN-DC의 경우에 사용될 수 있으며 UE가 RRC 재설정(reconfiguration)을 통해서 NCD-SSB의 위치를 알 수 있는데, 하나 혹은 하나 이상의 SSB 종류가 동일한 BWP에 존재할 수 있다.
구체적으로, BS는 에너지를 절약하기 위해 SIB를 전송하지 않는 경우에도 UE가 셀을 발견하고 접속할 수 있게 하기 위해서 최소한의 SSB 전송이 필요할 수 있고, 또한 UE에게 현재 네트워크 에너지 절약을 위해서 SIB을 전송하고 있지 않지만 BS에게 UL WUS를 전송하면 on-demand 방식으로 SIB1이 전송될 수 있는 상태임을 알려줄 수 있다. BS는 이것을 PBCH 페이로드(payload) 내 특정 비트 혹은 특정 PSS 및/또는 SSS 시퀀스, 혹은 PBCH의 DMRS 시퀀스를 통해서 알려줄 수 있다. 예를 들어 BS는 총 56 비트들로 구성되는 PBCH 페이로드(payload) 내 MIB를 구성하는 24 비트들 전체 혹은 일부를 사전에 약속되거나 표준에 정의된 특정 비트 구성으로 모두 '1' 또는 모두 '0'과 같이 설정하거나, 타이밍(timing) 관련된 PBCH 페이로드(payload) 8 비트들 전체 혹은 일부를 사전에 약속되거나 표준에 정의된 특정 bit로 구성하거나, 혹은 부반송파 간격(subcarrier spacing), RMSI CORSET/검색 공간(Search space) 및 초기 활성(initial active) DL BWP 관련된 필드들 전체 혹은 그 중 일부 필드를 구성하는 bit를 사전에 약속되거나 표준에 정의된 특정 비트로 구성하여 on-demand 방식으로 SIB1이 전송될 수 있는 상태임을 알려줄 수 있다. 혹은 사전에 표준에 정의된/약속된 특정 PSS 시퀀스, 특정 SSS 시퀀스 혹은 그 둘의 조합을 통해서 (혹은 특정 PBCH DMRS 시퀀스를 통해) 현재 BS가 SIB1을 전송하고 있지 않지만 on-demand 방식으로 SIB1을 전송할 수 있는 상태임을 알려줄 수도 있다.
다음으로, BS가 NES 모드로 동작하여 SIB1을 전송하지 않는 경우에도 SIB1에 대한 스케줄링 정보(pdcch-ConfigSIB1controlResourceSetZerosearchSpaceZero)는 전송하는 경우, controlResourceSetZero 또는 searchSpaceZero의 유보된 상태들(reserved states) 중 일부를 활용해서 현재 BS가 SIB1을 전송하고 있지 않지만 on-demand 방식으로 SIB1을 전송할 수 있는 상태임을 알려줄 수 있다. UE는 BS에게 SIB1을 요청하기 위해서 표준에 정의된 혹은 (CD-)SSB로 설정된 자원을 활용하여 UL WUS를 전송할 수 있다. 이때 UL WUS는 RACH 등과 같은 사전에 약속된 특정 UL 신호/채널이 사용될 수 있는데, 만약 UE가 SIB1 요청을 위해 RACH를 전송하였다면, UE는 BS가 CORESET0를 통해서 전송한 SIB1 요청에 대한 ACK을 확인한 후 SI-RNTI 모니터링을 수행할 수 있다. 이때 UE의 SIB1 요청을 수신한 이후 BS가 전송하는 SIB1은 UE가 전송한 RACH에 대응되는 특정 SSB 인덱스에 연동된 SIB1 혹은 모든 전송 중인 SSB 인덱스에 연동된 SIB1을 의미할 수 있다. 혹은 UE는 WUS(예, RACH) 전송 후에 사전에 정의된(pre-defined) CORESET0/SS0 (즉, 검색 공간 세트 인덱스 0)으로 ACK를 수신하거나, ACK 수신 없이 유효한(valid) controlResourceSetZero 또는 searchSpaceZero 정보를 확인한 후에 SIB1을 수신할 수도 있다.
한편, BS는 특정 SSB를 전송하면서 on-demand SIB1을 운용하고 있다는 사실을 SSB 내 특정 정보를 통해서, 그리고 유보된 상태(reserved state)를 통해서 지시 할 수 있다. 이때 해당 SSB에는 CORESET#0/Type0-PDCCH CSS 세트에 대한 설정(configuration)이 없을 수 있고, 만일 해당 유보된 상태(reserved state)가 지시되면 UE는 자신의 타입(type)/능력(capability)(예, 레거시(legacy) UE 혹은 Rel-18 NES를 지원하는 어드밴스드(advanced) UE)에 따라서 on-demand SIB1을 운용 중인 셀인지 여부를 판단하여 SIB1 전송을 요청하거나 혹은 CD-SSB를 전송하는 다른 셀을 찾는 절차를 수행할 수도 있다. 특정 SSB 내 특정 정보는 유보된 상태(reserved state)로 지시될 수 있는데 이것은 해당 SSB PBCH 페이로드(payload)의 일부, 예를 들어 유보된(reserved) 1 비트가 사용될 수 있고, 레거시(legacy) UE는 이것을 NCD-SSB로 판단하여 CD-SSB를 전송하는 다른 셀로 이동할 수 있지만, Rel-18 NES를 지원하는 어드밴스드(advanced) UE의 경우에는 해당 상태(state)를 "사실은 CD-SSB인데 SIB1을 on-demand로 운용 중"이라고 해석하고, 해당 상태(state)에 사전에 설정된 혹은 사전에 정의된(pre-defined) RACH 전송을 통해 BS에게 SIB1 전송을 요청할 수 있다.
다음으로, BS가 NES 모드로 동작하여 SIB1을 전송하지 않는 경우에도 SIB1에 대한 스케줄링 정보(pdcch-ConfigSIB1controlResourceSetZerosearchSpaceZero)는 전송하는 경우, controlResourceSetZero 또는 searchSpaceZero의 유보된 상태들(reserved states) 중 일부를 활용해서 현재 BS이 SIB1을 전송하고 있지 않지만 on-demand 방식으로 SIB1을 전송할 수 있는 상태임을 알려줄 수 있다. UE는 BS에게 SIB1을 요청하기 위해서 표준에 정의된 혹은 (CD-)SSB로 설정된 자원을 활용하여 UL WUS를 전송할 수 있다. 이때 UL WUS는 RACH 등과 같은 사전에 약속된 특정 UL 신호/채널이 사용될 수 있는데, 만약 UE가 SIB1 요청을 위해 RACH를 전송하였다면, UE는 BS가 CORESET0를 통해서 전송한 SIB1 요청에 대한 ACK을 확인한 후 SI-RNTI 모니터링을 수행 할 수 있다. 이때 UE의 SIB1 요청을 수신한 이후 BS가 전송하는 SIB1은 UE가 전송한 RACH에 대응되는 특정 SSB 인덱스에 연동된 SIB1 혹은 모든 전송 중인 SSB 인덱스에 연동된 SIB1을 의미할 수 있다. 혹은 UE는 WUS(예, RACH) 전송 후에 사전에 설정된(pre-defined) CORESET0/SS0 (즉, 검색 공간 세트 인덱스 0)로 ACK을 수신하거나, ACK 수신 없이 유효한(valid) controlResourceSetZero 또는 searchSpaceZero 정보를 확인한 후에 SIB1을 수신할 수도 있다.
한편, BS는 특정 SSB를 전송하면서 on-demand SIB1을 운용하고 있다는 사실을 SSB 내 특정 정보를 통해서, 그리고 유보된 상태(reserved state)를 통해서 지시 할 수 있다. 이때 해당 SSB에는 CORESET#0/Type0-PDCCH CSS 세트에 대한 설정(configuration)이 없을 수 있고, 만일 해당 유보된 상태(reserved state)가 지시되면 UE는 자신의 타입(type)/능력(capability)(예를 들어, 레거시(legacy) UE 혹은 Rel-18 NES를 지원하는 어드밴스드(advanced) UE)에 따라서 on-demand SIB1을 운용 중인 셀인지 여부를 판단하여 SIB1 전송을 요청하거나 혹은 CD-SSB를 전송하는 다른 셀을 찾는 절차를 수행할 수도 있다. 특정 SSB 내 특정 정보는 유보된 상태(reserved state)로 지시될 수 있는데 이것은 해당 SSB PBCH 페이로드(payload)의 일부, 예를 들어 유보된(reserved) 1 비트가 사용될 수 있고, 레거시(legacy) UE는 이것을 NCD-SSB로 판단하여 CD-SSB를 전송하는 다른 셀로 이동할 수 있지만, Rel-18 NES를 지원하는 어드밴스드(advanced) UE의 경우에는 해당 상태(state)를 "사실은 CD-SSB인데 SIB1을 on-demand로 운용 중"이라고 해석하고, 해당 상태(state)에 사전에 설정된 혹은 사전에 정의된(pre-defined) RACH 전송을 통해 BS에게 SIB1 전송을 요청할 수 있다.
UE는 pdcch-ConfigSIB1controlResourceSetZero로부터 Type0-PDCCH CSS 세트의 CORESET에 대한 연속한(consecutive) RB들의 수 및 연속한 심볼들의 수를 결정한다. 또한, UE는 MIB 내 pdcch-ConfigSIB1searchSpaceZero로부터 PDCCH 모니터링 시기(occasion)들을 결정한다. 본 명세의 몇몇 구현들에서, BS는 pdcch-ConfigSIB1controlResourceSetZero, searchSpaceZero 또는 ssb-SubcarrierOffset의 유보된(reserved) 비트 값들 또는 유보된 상태(state)들 중 일부를 특정 값으로 설정함으로써 on-demand SIB1을 운용 중인지 여부를 UE에게 알릴 수 있다.
3GPP TS 38.213 섹션(section) 13 표 13-16 또는 표 13-17을 참조하면, BS가 FR1 에서는 값이 30인 kSSB를 통해, 혹은 FR2에서는 값이 14인 kSSB를 통해 유보된 상태(reserved state)를 지시하면, 레거시(legacy) UE는 NCD-SSB라고 판단하지만, Rel-18 UE는 CD-SSB 인데 SIB1을 on-demand 방식으로 운용 중이라고 해석하여 SIB1 요청을 위한 RACH를 전송할 수도 있다.
다음 표는 3GPP TS 38.213 표 13-16로, kSSBpdcch-ConfigSIB1controlResourceSetZerosearchSpaceZero의 조합을 FR1에 대한 NOffset GSCN에 매핑하는 것을 나타낸 것이다.
Figure PCTKR2023011515-appb-img-000008
다음 표는 TS 38.213 표 13-17로, kSSBpdcch-ConfigSIB1controlResourceSetZerosearchSpaceZero의 조합을 FR2에 대한 NOffset GSCN에 매핑하는 것을 나타낸 것이다.
Figure PCTKR2023011515-appb-img-000009
3GPP TS 38.213를 참조하면, 만약 UE가 SS/PBCH 블록을 검출(detect)하고 Type0-PDCCH CSS 세트에 대한 CORESET가 존재하지 않는다고 결정하고, FR1에 대해 kSSB = 31 또는 FR2에 대해 kSSB = 15인 경우, UE는 GSCN 범위[NReference GSCN - NStart GSCN, NReference GSCN + NEnd GSCN] 내 관련 Type0-PDCCH CSS 세트를 가지는 SS/PBCH 블록이 없다고 결정한다. NStart GSCN NEnd GSCN 는 각각 pdcch-ConfigSIB1controlResourceSetZerosearchSpaceZero에 의해 결정된다. GSCN 범위가 [NReference GSCN, NReference GSCN]인 경우, UE는 검출된 SS/PBCH 블록에 관련 Type0-PDCCH CSS 세트에 대한 CORESET이 있는 두번째 SS/PBCH 블록에 대한 정보가 없다고 결정한다.
만약 on-demand SIB1 수신을 위해서 CORESET0/SS0(즉, 검색 공간 세트 인덱스 0) 정보를 주지 않아도 된다면, (e.g., 사전에 정의된(pre-defined)), 3GPP TS 38.213를 참조하면, 정보가 없는 케이스(no information case)에 대해서 Rel-18 UE는 BS가 on-demand SIB1을 운용중인 것으로 판단하고 UL WUS(예, RACH)를 전송하여 SIB1을 요청할 수도 있다.
<방법 2> BS가 NES 모드로 동작하는 경우 희소한(sparse) RO(RACH occasion) 자원에서 UL WUS 검출(저전력(low power) WUS와 같은 수신 전력이 현저히 낮은 신호일 수 있음)만 수행하고 다른 수신은 꺼버리는 방법
> (2-1) 특정 반송파/셀에서 NES 모드로 동작하는 반송파/셀에 대한 정보를 (예를 들어, DL/UL BWP, RACH)를 제공할 수 있다.
> (2-2) UL WUS 전송을 위한 (RO)자원은 (기존의)SIB 기반의 본격적인 RACH 송수신을 위한 밀집한(dense) RO에 비해 시간 도메인(domain)에서 훨씬 희소하게(sparsely) 설정할 수 있다.
> (2-3) NES 모드로 동작하는 반송파/셀은 UE의 UL WUS를 검출하면 SSB 전송 및 SI에 기반한 본격적인 RACH 수신을 시작할 수 있다.
단, 상기에서 NES 모드로 동작하는 반송파/셀에 초기 접속 및 SSB/SIB1 등과 같은 공통 신호/채널의 전송을 요청하기 위한 UL WUS(예, RACH) 자원에 대한 정보를 (예를 들어, SIB1과 같은 셀-특정(specific) RRC 시그널링(signaling) 에 의해)NES 모드로 동작하는 반송파/셀 및/또는 주변의 다른 반송파/셀이 제공해줄 수 있는데, 여기에는 UE가 NES 모드로 동작하는 BS를 깨우기 위한 희소한(sparse) RACH 설정과 일반적인 RACH 절차를 위한 레거시(legacy) RACH 설정이 모두 포함될 수 있다. 여기서 UL WUS 신호로는 RACH와 같이 사전에 약속/설정된 특정 UL 신호/채널이 사용될 수 있다. 또한 본 명세에 따른 방법들 및/또는 절차들은 연결 모드(connected mode) UE가 조건적(conditional) 핸드오버(handover, HO) 상황에서 타겟(target) 셀은 NES 모드로 동작 중일 때 UE이 타겟 셀로 WUS를 전송하는 시나리오 혹은 조건적(conditional) SCG(secondary cell group) 부가(addition)하는 시나리오 등에 적용할 수 있다.
이하에서는 위 (2-1) 내지 (2-3)의 방법들을 구체적으로 설명한다.
BS는 에너지 절감을 목적으로 MIB 및/또는 SIB 등과 같은 공통 신호/채널을 전송하고 있지 않거나 혹은 매우 긴 주기로만 전송하는 NES 모드로 동작하다가 UE가 사전에 약속/설정된 UL WUS(예, RACH)로 요청할 때만 MIB 및/또는 SIB1 전송 및 RACH 절차를 수행함으로써 에너지를 절약할 수 있다.
UE는 특정 반송파/셀에서 NES 모드로 동작하는 반송파/셀에 대한 정보(예를 들어, DL/UL BWP, RACH)를 제공 받아서 NES 모드로 동작하는 반송파/셀로 UL WUS를 전송하여 SSB/SIB1 등을 요청하고 해당 셀에 접속하기 위한 절차를 수행할 수 있다. 이때 특정 반송파/셀이 제공하는 UL WUS(예, RACH) 자원에 대한 정보(예, SIB1)는 NES 모드로 동작하는 반송파/셀을 깨우기 위한 희소한(sparse) RACH 설정과 일반적인 RACH 절차를 위한 레거시(legacy) RACH 설정이 모두 포함될 수 있다. 여기서 NES 모드로 동작하는 반송파/셀은 UE로부터의 UL WUS 검출만 수행하고 다른 수신은 꺼버린 상태일 수 있고, UE가 UL WUS를 전송하면 이를 수신하고 나서야 비로소 타겟 셀이 본격적인 SSB 전송 및 자신의 SI에 기반한 본격적인 RACH 수신을 시작하여 에너지를 절감할 수 있다.
따라서 UL WUS 전송을 위한 (RO)자원은 BS의 에너지 절감을 위해서 SIB 기반의 본격적인 RACH 송수신을 위한 밀집한(dense) RO에 비해 시간 도메인에서 훨씬 희소하게(sparsely) 설정될 수 있다. UE는 UL WUS 전송 이후에 NES 모드로 동작하는 반송파/셀로부터 전송되는 SSB 및 SI에 기반한 본격적인 RACH 수신을 시작하거나 혹은 BS로부터의 별도의 ACK 없이도 (소스 셀(source cell)로부터 설정 받은 혹은 타겟 셀(target cell)이 전송해주는)SIB1을 기반으로 RACH 전송을 시도하여 접속 절차를 수행할 수 있다.
본 명세에 따른 방법들 및/또는 절차들은, 연결 모드(connected mode) UE가 NES 모드로 동작하는 타겟 셀(target cell)로의 조건적 HO를 설정 받는 시나리오 혹은 NES 모드로 동작하는 셀(예를 들어, PScell 및/또는 SCG에 속한 Scell)을 조건적 SCG 부가(addition)하는 시나리오에 적용될 수 있다. 예를 들어, 본 명세에 따른 방법들 및/또는 절차들은 NES 모드로 동작하는 셀 근처의 소스 셀(source cell)이 연결 모드(connected mode) UE에게 NES 모드로 동작하는 셀을 타겟 셀(tartget cell)로 특정 조건(예를 들어, RSRP가 사전에 설정 받은 임계값(threshold) 이상/이하가 된 경우)을 만족할 시에 UL WUS(예, RACH)를 전송하도록 조건적 HO 명령(command)과 함께 타겟 셀을 깨우기 위한 UL WUS 자원으로 희소한(sparse) RACH 설정을 함께 제공해주는 시나리오에 적용될 수 있다. UE는 특정 조건을 만족하면 타겟 셀을 향해 (설정된 자원을 통해)UL WUS를 전송하고 기존의 HO 절차를 수행할 수 있다. 또 다른 예로, 본 명세에 따른 방법들 및/또는 절차들은 MCG(master cell group)에 속한 셀에서 이중 연결성(dual connectivity)을 위해서 NES 모드로 동작하는 셀을 조건적 SCG 부가(addition)를 설정하면서 WUS 자원을 함께 설정해주고 사전에 설정한 조건(예를 들어, RSRP가 사전에 설정 받은 임계값(threshold) 이상/이하가 된 경우)을 만족할 시에 WUS를 전송하여 SCG 부가(addition을)를 수행하도록 하는 시나리오에 적용될 수 있다. UE는 특정 조건을 만족하면 SCG에 속한 셀(예, PScell)을 향해 (설정된 자원을 통해)UL WUS를 전송하고 기존의 SCG 부가(addition) 절차를 수행할 수 있다.
<방법 3> UE는 설정된(configured) SCell을 통한 DL 수신 (참조 신호(reference signal, RS) 측정)을 하다가 특정 조건(예를 들어, RSRP가 사전에 설정 받은 특정 임계값(threshold) 이하/이상이 된 경우)을 만족하면 PCell이 설정해준 WUS/RACH 자원을 통해서 Scell 활성화(activation)를 위한 WUS를 전송하는 방법
BS가 Scell을 설정해주었지만 활성화(activation) 상태는 아닐 경우, 해당 셀은 NES 모드로 동작하여 최소한의 RS만 전송하고 SSB/SI 등과 같은 공통 신호/채널은 전송하지 않거나 혹은 아주 긴 주기로 전송하고 있다가 UE가 전송한 WUS/RACH를 수신하면 노멀(normal) 모드(비 NES 모드(non-NES mode))로 동작할 수 있다. UE는 설정된(configured) SCell을 통한 DL 수신(RS 측정)을 하다가 특정 조건 (예를 들어, RSRP가 사전에 설정 받은 특정 임계값(threshold) 이하/이상이 된 경우)을 만족 하면 PCell이 설정해준 WUS/RACH 자원을 통해서 Scell 활성화(activation)를 위한 WUS를 전송할 수 있다. 이때 BS게 SIB1 전송을 요청하기 위한 UL WUS 자원은 표준 문서에 정의되어 있거나 혹은 PCell이 설정해준 자원을 활용하여 WUS를 전송할 수 있고, 이때 UL WUS로는 RACH와 같이 사전에 약속/설정된 특정 UL 신호/채널이 사용될 수 있다. 본 명세에 따른 방법들 및/또는 절차들은 BS가 NES를 위해서 SCell에 대한 SSB 전송을 줄이거나(예를 들어, 주기를 길게 설정), SSB 전송을 OFF 했을 때 단말이 WUS를 통해서 SCell을 활성화(activation)하는 시나리오에 적용할 수 있다.
<방법 4> BS가 네트워크 에너지 절약을 위해 C-DRX가 설정된 UE의 온 듀레이션(on duration)(혹은 활성 시간(active time)) 외의 시간 구간에서 SSB/SI/페이징(paging)/RACH의 전송/수신도 OFF하거나 줄여서(예를 들어, 주기를 매우 길게) 전송하는 방법
> (4-1) 본 명세의 몇몇 구현들에 따르면, SSB/SI/페이징(paging)/RACH 전송/수신을 하려는 UE가 UL WUS를 전송하면 특정 신호/채널의 전송/수신 기회를 높여줄 수 있다.
>> i. 사전에 UL WUS (자원)별로 특정 신호/채널과 연동되어 설정될 수 있고, 하나의 UL WUS를 통해서 전체 혹은 일부 신호/채널들의 전송/수신의 기회를 높여줄 수 있다.
BS는 수신한 UL WUS에 대한 응답(response)를 보내고 사전에 약속된 혹은 그룹 공통(group-common, GC) DCI를 통해서 특정 신호/채널의 전송이 시작될 특정 시점 혹은 특정 시간 구간 동안 전송 기회를 높여줄 수 있다.
>> ii. 몇몇 구현들에서 BS는 온 듀레이션(혹은 활성 시간)에서만 SSB/TRS가 전송될 때 RS 부족문제를 완화하기 위해서 온 듀레이션(혹은 활성 시간) 이전에 시간/주파수 동기(synchronization raster)를 위한 SSB나 TRS 전송이 보장되는 구간을 설정할 수 있다.
>> iii. 몇몇 구현들에서, 온 듀레이션 구간(혹은 활성 시간 구간) 외에서 SSB나 RS 전송이 제한되므로 BS는 종래의 주기적으로 측정(measurement)에 필요한 RS들을 온 듀레이션 구간(혹은 활성 시간 구간)에 몰아서 전송하고 측정 요청(requirement)을 완화(relaxation)할 수 있다.
>> iv. 몇몇 구현들에서, BS는 UE-특정(specific) 온 듀레이션(혹은 활성 시간)에 추가로 RS 수신을 위한 UE-공통 온 듀레이션(혹은 활성 시간)을 설정하거나 혹은 GC-DCI 등으로 RS 수신을 위한 UE-공통 온 듀레이션(혹은 활성 시간) 혹은 윈도우(window)를 지시할 수 있다.
위 방법들은 BS가 네트워크 에너지 절약을 위해 DRX 설정하는 상황에서 온 듀레이션(혹은 활성 시간) 외의 시간 구간에서 SSB/SI/페이징(paging)/RACH 전송/수신도 OFF하거나 밀도를 극단적으로 줄여서 전송할 때 UE가 WUS를 전송하는 시나리오에 적용될 수 있다. 이때 활성 시간은 UE가 C-DRX를 설정 받아 동작할 때, 온 듀레이션 타이머(on duration timer)가 동작하는 시간 구간 혹은 PDCCH 수신 시 비활성 타이머(inactive timer)가 동작하는 시간 구간 혹은 재전송을 위한 타이머가 동작하고 있어서 UE가 활성(active) 상태를 유지해야 하는 시간을 모두 합한 (union)구간을 의미할 수 있다.
이하에서는 위 (4-1)의 방법을 구체적으로 설명한다.
UE는 BS에 초기 접속 후 연결 모드(connected mode)가 되면 설정 받은 검색 공간(search space, SS) 마다 자신에게 스케줄링 되는 전송이 있는지 확인하기 위해서 계속 PDCCH 모니터링을 수행해야 한다. 그런데 이러한 스케줄링이 항상 있는 것이 아니라면 매번 불필요하게 PDCCH 모니터링을 수행함으로 인하여 UE의 배터리는 금방 소모될 수 있다. 따라서 BS는 UE에게 PDCCH 모니터링을 수행해야 하는 시간 구간(온 듀레이션)과 PDCCH 모니터링을 하지 않아도 되는 오프 듀레이션(OFF duration)을 설정해주어 UE의 전력 절약(power saving) 효과를 얻는 C-DRX(connected mode discontinuous reception)을 설정해줄 수 있다. UE는 전송/수신할 DL/UL가 있는지 확인을 위해 주기적인 온 듀레이션에서 PDCCH 모니터링을 수행하고 PDCCH가 수신되면 지시에 따라서 DL 수신 혹은 UL 전송을 수행한다. UE의 UL의 경우에는 C-DRX와 무관하게 UL 버퍼에 보낼 데이터가 있으면 슬립 모드(sleep mode)여도 깨어나서 SR(Scheduling Request)을 전송할 수 있고, 대기 모드(idle mode) UE의 경우에는 주기적으로 페이징(paging) 모니터링을 수행하여 타겟 UE가 아닌 경우 다시 슬립에 들어가는 대기 모드(Idle mode) DRX(I-DRX)로 동작할 수 있다. 여기서 UE가 슬립 모드(sleep mode)로 동작한다는 말의 의미는 “C-DRX에 의하여 결정되는 활성 시간과 무관하게" 또는 "C-DRX에 의하여 결정되는 활성 시간 이외의 구간에서도" 슬립 모드로 동작할 수 있다는 것을 의미할 수 있다. C-DRX 동작에서 온 듀레이션과 오프 듀레이션으로 설정된(configurated) 시간 구간이 반복되는 것을 DRX 사이클(cycle)이라하는데, DRX 사이클 길이(length)는 온 듀레이션 시작점부터 다음 온 듀레이션 전까지로 정의되며 긴(long) DRX 사이클과 짧은(short) DRX 사이클이 있다. 만약 DRX 사이클 길이가 길어지게 되면 BS가 UE의 특정 온 듀레이션이 끝난 직후에 보낼 PDSCH가 생긴 경우 UE의 다음 온 듀레이션이 되기 전까지 기다려야하므로 지연(latency)이 증가할 수 있다. BS 입장에서는 UE가 오프 듀레이션 동안 P-CSI나 SRS전송을 하지 않기 때문에 그 자원을 다른 UE에게 할당 하여 자원 활용(Resource utilization)을 높일 수 있고, BS 또한 UE의 오프 듀레이션 동안 전력 절약(power saving)을 위해 에너지 절약 모드로 전환하여 동작할 수 있다.
한편 앞서 설명함 바와 같이, UE의 C-DRX 동작을 고려하여 UE가 슬립 상태인 시간 구간을 BS의 DTX 구간(즉, NES 모드로 동작)으로 최대한 활용함으로써 에너지 절약 효과를 기대할 수 있는데, C-DRX가 설정된 UE의 온 듀레이션 외의 시간 구간 (혹은 활성 시간 외의 시간 구간)에서 SSB/SI/페이징(paging)/RACH의 전송/수신도 OFF하거나 줄여서(예를 들어, 주기를 매우 길게) 전송할 수 있다. 이 경우 UE가 SSB를 통한 측정(measurement)이나 혹은 SI 정보 획득 및 RACH전송을 위해서는 UL WUS를 전송하여 특정 신호/채널의 전송/수신 기회를 높여줄 수 있다.
이때 사전에 WUS (자원)별로 특정 신호/채널과 연동되어 설정될 수 있고, 하나의 WUS를 통해서 전체 혹은 일부 신호/채널들의 전송/수신의 기회를 높여주는 것도 가능하다. 예를 들어 RACH를 UL WUS로 사용하는 경우, 특정 RACH 인덱스(예, RO(RACH occasion) 및/또는 프리엠블 인덱스(preamble index))와 SSB가 연동되어 있고, 다른 특정 RACH 인덱스는 SI와 연동되어 있어, UE가 전송하는 UL WUS 의 RACH 인덱스에 따라서 연동된 신호/채널의 전송/수신 기회를 높여 줄 수 있다. 혹은 특정 WUS를 전송하면 SSB/SI/페이징(paging)/RACH의 전송/수신도 OFF하거나 줄였던 것을 다시 원래대로 복귀하여 노멀 작동(normal operation)(비 NES 모드로 동작)하도록 할 수도 있다. 예를 들어, UE는 사전에 설정 받은 정보를 기반으로 특정 공통 신호/채널의 전송 기회 증가를 UL WUS의 RACH 인덱스로 요청한 후에, 원래 Xms 주기의 신호 수신을 기대했던 것을 UL WUS 전송 이후 Y(<X)ms 주기의 신호 수신을 기대할 수 있다.
한편, BS는 수신한 UL WUS에 대한 응답(response)을 보내고 사전에 약속된 혹은 (GC-)DCI를 통해서 특정 신호/채널의 전송이 시작될 특정 시점 혹은 특정 시간 구간 동안 전송 기회를 높여줄 수도 있다. 예를 들어, UE가 사전에 SIB1과 연동된 특정 RACH 인덱스의 WUS를 설정 받고, 특정 시간 구간 동안 SIB1 수신을 현재 주기보다 더 빈번하게 받고 싶다면 WUS로 해당 RACH 인덱스를 전송하고 BS의 RAR을 통해 응답(response)을 수신하고 사전에 약속된 혹은 (GC-)DCI를 통해서 지시된 특정 시점 혹은 특정 시간 구간 동안(예를 들어, 2 슬롯(slots) 이후)에서 SIB1 수신을 기대할 수 있다.
또한 BS는 온 듀레이션(혹은 활성 시간)에서만 SSB/TRS가 전송될 때 RS 부족 문제를 완화하기 위해서 온 듀레이션(혹은 활성 시간)이전에 시간/주파수 동기를 위한 SSB나 TRS 전송이 보장되는 구간을 설정할 수도 있다. UE는 온 듀레이션(혹은 활성 시간) 외에 설정 받은 구간에서 추가적인 SSB나 TRS를 수신하여 부족한 RS를 보충할 수 있다. 그리고 온 듀레이션 구간(혹은 활성 시간 구간) 외에서 SSB나 RS 전송이 제한되므로 BS는 종래의 주기적으로 측정(measurement)에 필요한 RS들을 온 듀레이션(혹은 활성 시간)에 몰아서 전송하고 측정 요청(measurement requirement0을 완화(relaxation)할 수 있다. 혹은 UE-특정(specific) 온 듀레이션 (혹은 활성 시간)에 추가로 RS 수신을 위한 UE-공통 온 듀레이션(혹은 활성 시간)을 설정하거나 혹은 GC-DCI 등으로 RS 수신을 위한 UE- 공통 온 듀레이션(혹은 활성 시간) 혹은 윈도우(window)를 지시할 수도 있다.
<방법 5> 로드 기반 셀 활성화(Load based cell activation) 방식을 보완하기 위해서 셀 별로 특정 UL WUS 신호를 할당하는 방법
> (5-1) UE 트래킹 영역(tracking area) 별로 로드(load)가 발생했을 때 활성화(activation)할 셀을 사전에 설정할 수 있다.
> (5-2) BS가 UE가 주기적으로 전송하는 보조(assist) 정보를 기반으로 활성화(activation)할 셀을 타겟하는 특정 UL WUS 신호를 할당할 수 있다.
> (5-3) UE에게 사전에 복수의 UL WUS 신호(예를 들어, 서로 다른 시퀀스(sequence))를 설정하여 로드(load)가 생겼을 때 특정 셀을 타겟하여 활성화(activation)시킬 수 있다.
이하에서는 위 (5-1) 내지 (5-3)의 방법들을 구체적으로 설명한다.
BS는 UE의 처리량(throughput) 등의 능력(capacity)을 높여주기 위해서 PCell(Cell A)외에 능력 부스터 셀(capacity booster cell)(Cell B)을 추가로 설정해줄 수 있다. 이때 능력 부스터 셀(capacity booster cell)은 Cell A의 커버리지(coverage) 내에 위치하고 FR이 Cell A보다 높은 SCell일 수 있다. UE가 항상 높은 처리량(throughput)이 필요하지 않을 수도 있으므로, Cell B는 NES 모드로 동작하다가 UE가 높은 처리량을 필요하거나 load가 발생한 경우 capacity boosting을 위해서 activation되어 단말에게 데이터를 전송해줄 수 있다. 그런데 Cell A 커버리지(coverage) 내의 UE들 중 로드(load)가 발생한 UE가 Cell B가 커버(cover)하는 영역인지 아닌지 알 수 없기 때문에 로드(load)를 기반으로 Cell B를 활성화(activation) 시키는 것은 비효율적일 수 있다. 예를 들어, Cell B의 커버리지 밖에 UE의 로드(load)로 인하여 Cell B가 NES 모드(슬립)에서 깨어나게 되면 실제로는 깨어날 필요가 없었기 때문에 에너지가 낭비될 수 있다.
이러한 로드 기반 셀 활성화(load based cell activation) 방식의 문제점을 해결하기 위해 UE가 능력 부스팅(capacity boosting)이 필요한 경우 Cell B에 UL WUS를 전송하여 활성화(activation)시킬 수 있다. 또한 Cell B의 커버리지를 고려하여 사전에 Cell A로부터 UE 트래킹 영역 별로 로드가 발생했을 때 활성화할 셀을 사전에 설정받을 수도 있다.
한편, BS는 (UE가 주기적으로 전송하는 보조(assist) 정보를 기반으로)활성화할 셀을 타겟하는 특정 UL WUS 신호를 할당할 수 있고, UE에게 사전에 셀 별로 서로 다른 UL WUS 신호(예를 들어, 서로 다른 시간/주파수/시퀀스(sequence) 자원 등)를 설정하여 (로드가 생겼을 때)특정 셀을 타겟하여 활성화시킬 경우, 해당 셀에 대해 설정된 UL WUS 신호를 전송함으로써 그 셀에 대한 활성화(여기서, 활성화(activation)라 함은 SCell 활성화를 의미할 수도 있고 해당 셀 에서의 SSB 및/또는 SI(system information) 등의 전송을 요청하는 것을 의미할 수 도 있음)를 수행할 수도 있다.
본 명세에 따른 몇몇 실시들에서, 셀은 반송파 혹은 주파수 혹은 물리적 셀(physical cell) ID 등으로 대체되어 확장될 수 있다. 즉, 일 예로, 주파수(frequency)#A 에 대응되는 UL WUS 신호#1 이 설정되고 주파수(frequency)#B 에 대응되는 UL WUS 신호#2 가 설정될 때, UE가 주파수#A의 활성화(activation)를 요청하는 경우 UL WUS 신호#1 을 전송할 수 있다.
<방법 6> UE가 수신한 DL 신호 디스커버리 신호(discovery signal)의 전력 레벨(power level)을 기반으로 셀 내의 위치에 따라서 UE UL WUS의 전력(power)를 조절하는 방법
> (6-1) UE는 수신된(received) RS 전력을 기반으로 특정 셀에 UL WUS 전송을 했는데 응답을 못 받았을 경우에 UL WUS 신호를 파워 램핑(power ramping)하여 재전송할 수 있다.
UE가 UL WUS를 전송하여 BS로부터 SIB와 같은 공통 신호/채널을 요청하거나 혹은 SCell 활성화(activation) 등을 수행할 때, UL WUS의 전력(power)이 너무 낮으면 BS가 제대로 수신하지 못할 수도 있고 혹은 너무 높은 전력(power)으로 전송하는 경우에는 간섭이나 UE의 에너지 소모 측면에서 효율적이지 못할 수 있다. 따라서 본 명세에 따른 방법들 및/또는 절차들에서 BS로부터 UL WUS를 전송하려는 UE 간의 거리 등을 고려하여 UL WUS의 전력(power)을 적절히 조절할 수 있다,
한가지 방법으로 UE가 수신한 DL 신호(예, SSB, TRS, 디스커버리 신호(discovery signal))의 전력 레벨(power level)을 기반으로 셀 내의 위치에 따라서 UL WUS의 전력(power)을 조절할 수도 있다. 만약 수신된(received) RS 전력(power)을 기반으로 특정 셀에 WUS 전송을 했는데 응답을 못 받았을 경우에 UL WUS 신호를 파워 램핑 업(power ramping up)하여 재전송할 수도 있다.
특징적으로 BS가 에너지 절약을 위해 SSB/SIB1과 같은 공통 신호/채널을 전송하고 있지 않은 경우, UE는 SSB를 수신하지 못하여 SSB 전력(power)를 알 수 없으므로 WUS 전송을 위한 PL(path-loss) 추정(estimation)이 불가능할 수 있다. 이를 대비해 BS가 전송하는 SSB의 전력(power) 값을 고정된 값(fixed value)(예를 들어, 설정 가능한 SSB 전력 범위(power range)의 최소값 혹은 최대값)으로 사전에 설정(pre-define) 해놓거나 MIB의 특정 필드 혹은 특정 필드들의 조합으로 알려주어 UE가 해당 정보를 기반으로 WUS 전송을 위한 전력(power) 설정을 수행할 수 있도록 할 수 있다. 또한 UE가 WUS 전송 후 BS로부터 WUS에 대한 응답(예를 들어 RAR)을 듣지 못한 경우에 WUS의 전력(power)를 사전에 약속된 스텝(step) 크기 만큼씩 점점 램핑 업(Ramping up)하여 전송하다가 UE의 최대 전력(max power)에 도달했을 경우 혹은 응답을 듣지 못하여 반복 전송한 WUS 전송 횟수가 (사전 정의된(pre-defined) 또는 MIB-시그널드(MIB-signaled) 또는 RRC-시그널드(RRC-signaled)) X번을 초과한 경우 해당 셀에 (일정 시간) 제외(barring) 하거나 셀 (재)선택((re)selection)을 수행할 수도 있다.
본 명세에 따른 방법들 및/또는 절차들에서, BS의 네트워크 에너지 절약을 위한 C-DRX 설정(configuration)은 기존의 UE C-DRX/I-DRX과 동일한 것일 수도 있고, 사전에 약속된 (복수의) DL/UL 신호 및 채널의 시간 도메인 ON/OFF 패턴이 동적으로(dynamically) L1(예, GC-DCI)/L2(예, MAC-CE) 시그널링(signaling) 등을 통해서 지시되는 것을 의미할 수도 있다. 즉, 네트워크 에너지 절약(NES) 목적의 DRX 설정(configuration) (혹은 셀-특정(specific) DRX 설정)이란 BS의 에너지 절약을 목적으로 사전에 (예, 표준 문서 등에) 약속된/설정된 시간 구간 동안 BS가 전송/수신을 최소한으로만 하거나 혹은 아예 OFF하는 구간과 노멀(normal) 동작을 하는 시간 구간이 주기적으로 반복되는 (셀-특정) DTX/DRX 패턴 혹은 활성/비활성(active/inactive) 패턴을 의미할 수 있다. 조금 더 구체적으로, NES 목적의 DRX 설정의 예시로 DRX 사이클 내 활성 시간(active time)에서도 UE가 PDCCH 모니터링을 수행하지 않을 수 있고 활성 시간 외의 시간 구간에서도 SSB/SIB1과 같은 공통 신호/채널들의 수신을 생략하거나 아주 긴 주기로만 수신 할 수 있다. 또한 활성 시간 외의 시간에 PDCCH/PDSCH/CSI-RS/PRS/PUCCH/PUSCH/SRS 등의 신호/채널(들)이 반복 전송/수신되도록 설정되어 있는 경우에도 해당 신호/채널(들)의 자원에서 전송을 수행하지 않을 수 있다. 또한 셀-특정 DTX/DRX가 설정되거나 적용될 때 NES 모드/상태가 정의될 수 있는데, NES 모드/상태가 설정/지시되면 NES 모드로 동작하는 특정 시간 구간 동안 일부 또는 모든 DL/UL 신호의 전송/수신을 OFF하거나 전송/수신하는 주파수 자원의 양을 줄이거나 혹은 전송에 사용되는 안테나 포트(antenna port) 개수를 줄이거나 혹은 전송 전력(power)을 낮추어 에너지를 절약하도록 사전에 설정될 수 있다. 또한 NES 목적의 BWP는 NES 모드에 대한 ON(NES 모드 = ON)이 지시되면 스위칭(switching)되는 특정 BWP를 의미할 수 있는데, 이 BWP는 UE에게 설정된 BWP들 중에서 주파수 자원의 양인 BW, 즉 매우 적은 RB만으로 구성되는 BWP를 의미할 수 있다. 만약 BS가 비-NES 모드로 동작하는 경우(즉, NES 모드에 대한 OF(NES 모드 = OFF)를 셀 내 UE들에게 지시/설정한 경우)에는 일반적인 BS 동작과 동일한 DL/UL 신호의 전송/수신을 기대할 수 있다.
도 13은 본 명세의 몇몇 구현들에 따른 UE에서의 하향링크 신호 수신 흐름을 예시한다.
UE는 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출할 수 있다(S1301). 또한, UE는 상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득할 수 있다(S1302). UE는 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송할 수 있다(S1303). 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링하고, 상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신할 수 있다(S1304).
도 14는 본 명세의 몇몇 구현들에 따른 BS에서의 하향링크 신호 전송 흐름을 예시한다.
BS는 셀 상에서 SIB1이 on-demand SI인지에 대한 정보를 포함하고, 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 전송할 수 있다(S1401). BS는 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 수신할 수 있다(S1402). BS는 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 전송할 수 있다(S1403). 또한, BS는 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 전송할 수 있다(S1404).
UE는 하향링크 신호의 수신과 관련하여 본 명세의 몇몇 구현들에 따른 동작들을 수행할 수 있다. UE는 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 구현들에 따른 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. UE를 위한 프로세싱 장치는 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 구현들에 따른 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. 컴퓨터 판독 가능한 (비휘발성)저장 매체는 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 구현들에 따른 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장할 수 있다. 컴퓨터 프로그램 또는 컴퓨터 프로그램 제품은 적어도 하나의 컴퓨터 판독가능한 (비휘발성)저장 매체에 기록되며, 실행될 때, (적어도 하나의 프로세서로 하여금)본 명세의 몇몇 구현들에 따른 동작들을 수행하도록 하는 지시들을 포함할 수 있다.
상기 UE, 상기 프로세싱 장치, 상기 컴퓨터 판독 가능한 (비휘발성)저장 매체, 및/또는 상기 컴퓨터 프로그램 제품에서, 상기 동작들은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출; 상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득; 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및 상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함할 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH 내 특정 비트, 동기 신호 시퀀스, 또는 상기 PBCH를 위한 복조 참조 신호(demodulation reference signal, DMRS) 시퀀스 중 적어도 하나를 기반으로 획득될 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH에 의해 운반된 마스터 정보 블록(master information block, MIB) 내 SIB1 관련 PDCCH 설정 필드를 기반으로 획득될 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1 관련 PDCCH 설정 필드 값이 기결정된 값인 것을 기반으로, 상기 SIB1이 온-디맨드 SI인지 판단; 및 상기 SIB1이 온-디맨드 SI라고 판단한 것을 기반으로, 상기 SIB1 요청을 전송하는 것을 포함할 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH에 의해 운반된 마스터 정보 블록(master information block, MIB) 내 SSB 서브캐리어 오프셋 필드를 기반으로 획득될 수 있다.
본 명세의 몇몇 구현들에서, 상기 MIB 내 SSB 서브캐리어 오프셋 필드 값이 기결정된 값인 것을 기반으로, 상기 SIB1이 온-디맨드 SI인지 판단; 및
상기 SIB1이 온-디맨드 SI라고 판단한 것을 기반으로, 상기 SIB1 요청을 전송하는 것을 포함할 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1 요청을 전송하는 것은 상기 SSB와 연관된 임의 접속 채널(random access channel, RACH)을 전송하는 것이고, 상기 SIB1은 상기 RACH에 대응되는 기결정된 SSB 인덱스(index)와 연관된 SIB1일 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1 요청을 전송하는 것은 상기 SSB와 연관된 임의 접속 채널(random access channel, RACH)을 전송하는 것이고, 상기 SIB1은 전송 중인 모든 SSB 인덱스와 연관된 SIB1일 수 있다.
BS는 하향링크 신호의 전송과 관련하여 본 명세의 몇몇 구현들에 따른 동작들을 수행할 수 있다. BS는 적어도 하나의 송수신기; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 구현들에 따른 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. BS를 위한 프로세싱 장치는 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 구현들에 따른 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. 컴퓨터 판독 가능한 (비휘발성)저장 매체는 적어도 하나의 프로세서에 의해 실행될 때, 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 구현들에 따른 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장할 수 있다. 컴퓨터 프로그램 또는 컴퓨터 프로그램 제품은 적어도 하나의 컴퓨터 판독가능한 (비휘발성)저장 매체에 기록되며, 실행될 때, (적어도 하나의 프로세서로 하여금)본 명세의 몇몇 구현들에 따른 동작들을 수행하도록 하는 지시들을 포함할 수 있다.
상기 BS, 상기 프로세싱 장치, 상기 컴퓨터 판독 가능한 (비휘발성)저장 매체, 및/또는 상기 컴퓨터 프로그램 제품에서, 상기 동작들은: 셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 전송; 상기 SSB는 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 포함하고, 상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 수신; 상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 전송; 및 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 전송하는 것을 포함할 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH 내 특정 비트, 동기 신호 시퀀스, 또는 상기 PBCH를 위한 복조 참조 신호(demodulation reference signal, DMRS) 시퀀스 중 적어도 하나를 기반으로 전송될 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH에 의해 운반된 마스터 정보 블록(master information block, MIB) 내 SIB1 관련 PDCCH 설정 필드를 기반으로 전송될 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH에 의해 운반된 마스터 정보 블록(master information block, MIB) 내 SSB 서브캐리어 오프셋 필드를 기반으로 전송될 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1 요청을 수신하는 것은 상기 SSB와 연관된 임의 접속 채널(random access channel, RACH)을 수신하는 것이고, 상기 SIB1은 상기 RACH에 대응되는 기결정된 SSB 인덱스(index)와 연관된 SIB1일 수 있다.
본 명세의 몇몇 구현들에서, 상기 SIB1 요청을 수신하는 것은 상기 SSB와 연관된 임의 접속 채널(random access channel, RACH)을 수신하는 것이고, 상기 SIB1은 전송 중인 모든 SSB 인덱스와 연관된 SIB1일 수 있다.
상술한 바와 같이 개시된 본 명세의 예들은 본 명세와 관련된 기술분야의 통상의 기술자가 본 명세를 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 명세의 예들을 참조하여 설명하였지만, 해당 기술 분야의 통상의 기술자는 본 명세의 예들을 다양하게 수정 및 변경시킬 수 있다. 따라서, 본 명세는 여기에 기재된 예들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 명세의 구현들은 무선 통신 시스템에서, BS 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.
본 명세의 구현들은 무선 통신 시스템에서, 기지국 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.

Claims (14)

  1. 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법에 있어서,
    셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출;
    상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득;
    상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송;
    상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및
    상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함하는,
    하향링크 신호 수신 방법.
  2. 제 1항에 있어서,
    상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH 내 특정 비트, 동기 신호 시퀀스, 또는 상기 PBCH를 위한 복조 참조 신호(demodulation reference signal, DMRS) 시퀀스 중 적어도 하나를 기반으로 획득되는,
    하향링크 신호 수신 방법.
  3. 제 1항에 있어서,
    상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH에 의해 운반된 마스터 정보 블록(master information block, MIB) 내 SIB1 관련 PDCCH 설정 필드를 기반으로 획득되는,
    하향링크 신호 수신 방법.
  4. 제 3항에 있어서,
    상기 SIB1 관련 PDCCH 설정 필드 값이 기결정된 값인 것을 기반으로, 상기 SIB1이 온-디맨드 SI인지 판단; 및
    상기 SIB1이 온-디맨드 SI라고 판단한 것을 기반으로, 상기 SIB1 요청을 전송하는 것을 포함하는,
    하향링크 신호 수신 방법.
  5. 제1항에 있어서,
    상기 SIB1이 온-디맨드 SI인지에 대한 정보는 상기 PBCH에 의해 운반된 마스터 정보 블록(master information block, MIB) 내 SSB 서브캐리어 오프셋 필드를 기반으로 획득되는,
  6. 제 5항에 있어서,
    상기 MIB 내 SSB 서브캐리어 오프셋 필드 값이 기결정된 값인 것을 기반으로, 상기 SIB1이 온-디맨드 SI인지 판단; 및
    상기 SIB1이 온-디맨드 SI라고 판단한 것을 기반으로, 상기 SIB1 요청을 전송하는 것을 포함하는,
    하향링크 신호 수신 방법.
  7. 제 1항에 있어서,
    상기 SIB1 요청을 전송하는 것은 상기 SSB와 연관된 임의 접속 채널(random access channel, RACH)을 전송하는 것이고,
    상기 SIB1은 상기 RACH에 대응되는 기결정된 SSB 인덱스(index)와 연관된 SIB1인,
    하향링크 신호 수신 방법.
  8. 제 1항에 있어서,
    상기 SIB1 요청을 전송하는 것은 상기 SSB와 연관된 임의 접속 채널(random access channel, RACH)을 전송하는 것이고,
    상기 SIB1은 전송 중인 모든 SSB 인덱스와 연관된 SIB1인,
    하향링크 신호 수신 방법.
  9. 무선 통신 시스템에서 하향링크 신호를 수신하는 사용자기기에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은:
    셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출;
    상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득;
    상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송;
    상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및
    상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함하는,
    사용자기기.
  10. 무선 통신 시스템에서 프로세싱 장치에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은:
    셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출;
    상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득;
    상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송;
    상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및
    상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함하는,
    프로세싱 장치.
  11. 컴퓨터 판독가능한 저장 매체에 있어서,
    상기 컴퓨터 판독가능한 비휘발성 저장 매체는, 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서로 하여금 사용자기기를 위한 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하며, 상기 동작들은:
    셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출;
    상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득;
    상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송;
    상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및
    상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함하는,
    컴퓨터 판독가능한 저장 매체.
  12. 컴퓨터 프로그램 판독가능한 저장 매체에 저장된 컴퓨터 프로그램에 있어서,
    상기 컴퓨터 프로그램은 실행될 때 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 지시들을 포함하는 적어도 하나의 프로그램 코드를 포함하며, 상기 동작들은:
    셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 검출;
    상기 SSB로부터 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 획득;
    상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 전송;
    상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 모니터링; 및
    상기 PDCCH를 검출한 것을 기반으로, 상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 수신하는 것을 포함하는,
    컴퓨터 프로그램.
  13. 무선 통신 시스템에서 기지국이 사용자기기에게 하향링크 신호를 전송함에 있어서,
    셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 전송;
    상기 SSB는 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 포함하고,
    상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 수신;
    상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 전송; 및
    상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 전송하는 것을 포함하는,
    하향링크 채널 전송 방법.
  14. 무선 통신 시스템에서 사용자기기에게 하향링크 신호를 전송하는 기지국에 있어서,
    적어도 하나의 송수신기;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결 가능한, 그리고, 실행될 때, 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하도록 하는 명령(instruction)들을 저장한, 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은:
    셀 상에서 1차 동기 신호(primary synchronization signal, PSS), 2차 동기 신호(secondary synchronization signal, SSS) 및 물리 브로드캐스트 채널(physical broadcast channel, PBCH)를 포함하는 동기 신호 블록(synchronization signal block, SSB)을 전송;
    상기 SSB는 시스템 정보 블록 1(system information block 1, SIB1)이 온-디맨드(on-demand) 시스템 정보(system information, SI)인지에 대한 정보를 포함하고,
    상기 SIB1이 온-디맨드 SI인 것을 기반으로, SIB1 요청을 수신;
    상기 SIB1 요청을 기반으로, 상기 SIB1에 관련된 물리 하향링크 제어 채널(physical downlink control channel, PDCCH)를 전송; 및
    상기 SIB1을 운반하는 물리 하항링크 공유 채널(physical downlink shared channel, PDSCH)를 전송하는 것을 포함하는,
    기지국.
PCT/KR2023/011515 2022-08-08 2023-08-04 하향링크 신호를 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 신호를 전송하는 방법 및 기지국 WO2024035018A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263396192P 2022-08-08 2022-08-08
US63/396,192 2022-08-08
KR10-2022-0146414 2022-11-04
KR20220146414 2022-11-04

Publications (1)

Publication Number Publication Date
WO2024035018A1 true WO2024035018A1 (ko) 2024-02-15

Family

ID=89852138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011515 WO2024035018A1 (ko) 2022-08-08 2023-08-04 하향링크 신호를 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 신호를 전송하는 방법 및 기지국

Country Status (1)

Country Link
WO (1) WO2024035018A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210030338A (ko) * 2018-08-07 2021-03-17 삼성전자주식회사 시스템 정보 요청을 위한 rach 오케이전들을 선택하는 시스템 및 방법
KR102398947B1 (ko) * 2016-07-27 2022-05-17 샤프 가부시키가이샤 무선 전기통신들을 위한 온디맨드 시스템 정보

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102398947B1 (ko) * 2016-07-27 2022-05-17 샤프 가부시키가이샤 무선 전기통신들을 위한 온디맨드 시스템 정보
KR20210030338A (ko) * 2018-08-07 2021-03-17 삼성전자주식회사 시스템 정보 요청을 위한 rach 오케이전들을 선택하는 시스템 및 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on network energy saving techniques", 3GPP DRAFT; R1-2203173, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052143990 *
MODERATOR (INTEL CORPORATION): "Summary #1 for email discussion on energy saving techniques of NW energy saving SI", 3GPP DRAFT; R1-2205141, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 20 May 2022 (2022-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191786 *
QUALCOMM INCORPORATED: "Network energy saving techniques", 3GPP DRAFT; R1-2205046, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191708 *

Similar Documents

Publication Publication Date Title
WO2020166899A1 (en) Method and apparatus for handling msga retransmissions during 2 step random access procedures in wireless communication system
WO2020204486A1 (ko) 하향링크 제어 정보를 전송하는 방법 및 기지국, 그리고 하향링크 제어 정보를 수신하는 방법, 사용자기기 및 저장 매체
WO2016018079A1 (ko) 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
WO2019147061A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2020167014A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2021066590A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020141963A1 (en) Method and apparatus for signaling multiple resources for message 3 (msg3) transmissions
WO2021194301A1 (ko) Harq-ack 전송 방법, 사용자기기 및 저장 매체, 그리고 harq-ack 수신 방법 및 기지국
WO2021125807A1 (en) Method and apparatus for handling switching between 2-step and 4-step random access
WO2021029708A1 (ko) 비면허 대역에서 수송 블록을 전송하는, 방법, 전송 기기 및 기록 매체
WO2020091546A1 (en) Configuration coordination for power efficient operation for nr
WO2021125725A1 (en) Method and apparatus for handling system information request in wireless communication system
WO2022031102A1 (ko) 상향링크 채널을 전송하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 상향링크 채널을 수신하는 방법 및 기지국
WO2020204541A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2020204533A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2020197358A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2020096436A1 (ko) 무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치
WO2020060355A1 (ko) 무선 통신 시스템에서 측정 시 전력 소모를 감소시키는 방법 및 장치
WO2022031152A1 (ko) 무선 통신 시스템에 있어서 상향링크 채널을 전송하는 방법 및 이를 위한 장치
WO2021221431A1 (ko) 하향링크 채널을 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 채널을 전송하는 방법 및 기지국
WO2020204521A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 저장 매체, 그리고 상향링크 수신을 수행하는 방법 및 기지국
WO2022240182A1 (ko) 무선 통신 시스템에서 그룹 공통 전송을 위한 공통 주파수 자원 기반 통신 방법 및 장치
WO2020167091A1 (ko) 무선 통신 시스템에서 무선 신호를 송수신하는 방법 및 장치
WO2021034016A1 (ko) 상향링크 전송을 수행하는 방법, 사용자기기, 장치, 및 컴퓨터 판독 가능 저장 매체, 그리고 상향링크 전송을 수신하는 방법 및 기지국
WO2021230640A1 (ko) 무선 통신 시스템에서 csi-rs 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852898

Country of ref document: EP

Kind code of ref document: A1