WO2020096436A1 - 무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치 - Google Patents

무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치 Download PDF

Info

Publication number
WO2020096436A1
WO2020096436A1 PCT/KR2019/015271 KR2019015271W WO2020096436A1 WO 2020096436 A1 WO2020096436 A1 WO 2020096436A1 KR 2019015271 W KR2019015271 W KR 2019015271W WO 2020096436 A1 WO2020096436 A1 WO 2020096436A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
terminal
setting
configuration
parameters
Prior art date
Application number
PCT/KR2019/015271
Other languages
English (en)
French (fr)
Inventor
서인권
황대성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/291,300 priority Critical patent/US20220007289A1/en
Publication of WO2020096436A1 publication Critical patent/WO2020096436A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to wireless communication, and more particularly, to a method for discontinuous reception of a terminal in a wireless communication system and an apparatus using the method.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a Code Division Multiple Access (CDMA) system, a Frequency Division Multiple Access (FDMA) system, a Time Division Multiple Access (TDMA) system, an Orthogonal Frequency Division Multiple Access (OFDMA) system, and a Single Carrier Frequency (SC-FDMA). Division Multiple Access) system.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • next-generation wireless access technology which provides various services anytime, anywhere by connecting multiple devices and objects, is also one of the major issues to be considered in next-generation communication.
  • next-generation wireless access technology in consideration of such extended mobile broadband communication, massive MTC, and ultra-reliable and low latency communication (URLLC) is discussed, and in the present disclosure, for convenience, the corresponding technology (technology) Is called new RAT or NR.
  • a discontinuous reception (DRX) operation may be introduced to reduce power consumption of the terminal.
  • the DRX operation has been provided to the terminal through the upper layer signal, and when the existing DRX setting is to be changed, a new DRX setting has been provided through resetting through the upper layer signal.
  • a conventional method it is difficult to adaptive DRX operation according to the terminal situation change.
  • a technical problem to be solved by the present disclosure is to provide a method for discontinuous reception of a terminal in a wireless communication system and an apparatus using the method.
  • a method of operating a discontinuous reception (DRX) of a terminal in a wireless communication system receives a plurality of DRX settings from the base station, and performs the DRX operation based on one selected DRX setting among the plurality of DRX settings, wherein the one DRX setting includes a plurality of parameters, the plurality It is characterized in that a specific parameter among the parameters of has a plurality of setting values and the other parameters have a setting value.
  • a terminal provided in another aspect includes a transceiver that transmits and receives a radio signal and a processor that operates in combination with the transceiver, wherein the processor receives a plurality of discontinuous reception (DRX) settings from a base station, A DRX operation is performed based on a selected DRX configuration among the plurality of DRX configurations.
  • the one DRX setting includes a plurality of parameters, and a specific parameter among the plurality of parameters has a plurality of setting values, and the other parameters have a setting value.
  • a processor for a wireless communication device controls the wireless communication device to receive a plurality of discontinuous reception (DRX) settings from a base station, and is based on a selected DRX setting among the plurality of DRX settings
  • DRX discontinuous reception
  • the one DRX configuration includes a plurality of parameters, and a specific parameter among the plurality of parameters has a plurality of setting values and the other parameters have a setting value.
  • the NR which uses a broadband and the types of services provided by the terminal are very diverse, it is possible to perform DRX operation adaptively according to the situation of each terminal. Therefore, the effect of reducing the power consumption of the terminal is excellent.
  • FIG. 1 illustrates a wireless communication system to which the present disclosure can be applied.
  • FIG. 2 is a block diagram showing a radio protocol architecture for a user plane.
  • 3 is a block diagram showing a radio protocol structure for a control plane.
  • FIG. 4 shows another example of a wireless communication system to which the technical features of the present disclosure can be applied.
  • 5 illustrates functional division between NG-RAN and 5GC.
  • FIG. 6 illustrates a frame structure that can be applied in NR.
  • 9 is a view showing a difference between a conventional control region and CORESET in NR.
  • FIG. 10 shows an example of a frame structure for a new radio access technology.
  • FIG. 11 illustrates the structure of a self-contained slot.
  • FIG. 12 is an abstract diagram of a hybrid beamforming structure from the perspective of the TXRU and the physical antenna.
  • FIG. 13 shows a synchronization signal and a PBCH (SS / PBCH) block.
  • 15 shows an example of a system information acquisition process of a terminal.
  • 17 is for explaining a power ramping car circle.
  • 19 is a flowchart illustrating an example of performing an idle mode DRX operation.
  • 21 is an example of a DRX operation.
  • 22 illustrates a method of DRX operation of a terminal.
  • FIG. 23 illustrates a DRX operation method of a terminal according to an implicit instruction.
  • FIG. 24 illustrates a DRX operation method of a terminal according to an explicit instruction.
  • Fig. 25 illustrates the time relationship in receiving the setting change signal and its application.
  • 26 illustrates a wireless device that can be applied to the present disclosure.
  • FIG. 27 illustrates a signal processing circuit for a transmission signal.
  • the wireless device 29 shows another example of a wireless device applied to the present disclosure.
  • the wireless device may be implemented in various forms according to use-example / service.
  • FIG. 30 illustrates a communication system 1 applied to the present disclosure.
  • a / B may mean “A and / or B”.
  • A, B may mean “A and / or B”.
  • a / B / C may mean “at least one of A, B, and / or C”.
  • A, B, C may mean “at least one of A, B, and / or C”.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) that provides a control plane and a user plane to a user equipment (UE) 10.
  • the terminal 10 may be fixed or mobile, and may be called other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), or a wireless device.
  • the base station 20 refers to a fixed station communicating with the terminal 10, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to an EPC (Evolved Packet Core, 30) through an S1 interface, and more specifically, a mobility management entity (MME) through an S1-MME and a serving gateway (S-GW) through an S1-U.
  • EPC Evolved Packet Core, 30
  • MME mobility management entity
  • S-GW serving gateway
  • EPC 30 is composed of MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has information about the access information of the terminal or the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway with E-UTRAN as an endpoint
  • P-GW is a gateway with PDN as an endpoint.
  • the layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems, L1 (first layer), It can be divided into L2 (second layer) and L3 (third layer).
  • OSI Open System Interconnection
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel.
  • the radio resource control (RRC) layer located in the third layer serves to control radio resources between the terminal and the network. To this end, the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 2 is a block diagram showing a radio protocol architecture for a user plane
  • FIG. 3 is a block diagram showing a radio protocol architecture for a control plane.
  • the user plane is a protocol stack for transmitting user data
  • the control plane is a protocol stack for transmitting control signals.
  • a physical layer provides an information transfer service (information transfer service) to the upper layer by using a physical channel (physical channel).
  • the physical layer is connected to the upper layer of the MAC (Medium Access Control) layer through a transport channel. Data moves between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted through a wireless interface.
  • the physical channel can be modulated by an orthogonal frequency division multiplexing (OFDM) method, and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • the functions of the RLC layer include concatenation, segmentation and reassembly of RLC SDUs.
  • the RLC layer includes a transparent mode (TM), an unacknowledged mode (UM), and an acknowledgment mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledgment mode
  • AM AM RLC provides error correction through automatic repeat request (ARQ).
  • RRC Radio Resource Control
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include the transfer of user data, header compression, and ciphering.
  • the functions of the Packet Data Convergence Protocol (PDCP) layer in the control plane include transmission of control plane data and encryption / integrity protection.
  • Setting RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB can be further divided into two types: SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a channel for transmitting RRC messages in the control plane
  • DRB is used as a channel for transmitting user data in the user plane.
  • the UE When an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • BCH broadcast channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • MCH downlink multicast channel
  • an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RACH random access channel
  • Logical channels that are above the transport channel and are mapped to the transport channel include BCCH (Broadcast Control Channel), PCCH (Paging Control Channel), CCCH (Common Control Channel), MCCH (Multicast Control Channel), and MTCH (Multicast Traffic). Channel).
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic. Channel
  • a physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame is composed of a plurality of OFDM symbols in the time domain.
  • the resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of sub-carriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for a physical downlink control channel (PDCCH), that is, an L1 / L2 control channel.
  • PDCCH physical downlink control channel
  • TTI Transmission Time Interval
  • new radio access technology new RAT, NR
  • next-generation wireless access technology As more communication devices require a larger communication capacity, there is a need for improved mobile broadband communication compared to a conventional radio access technology (RAT).
  • Massive Machine Type Communications (MTC) which provides various services anytime, anywhere by connecting multiple devices and objects, is also one of the major issues to be considered in next-generation communication.
  • communication system design considering services / terminals that are sensitive to reliability and latency is being discussed.
  • next-generation wireless access technology in consideration of such extended mobile broadband communication, massive MTC, and ultra-reliable and low latency communication (URLLC) is discussed, and in the present disclosure, for convenience, the corresponding technology (technology) Is called new RAT or NR.
  • FIG. 4 shows another example of a wireless communication system to which the technical features of the present disclosure can be applied.
  • FIG. 4 shows a system architecture based on a 5G new radio access technology (NR) system.
  • the entity used in the 5G NR system may absorb some or all functions of the entity introduced in FIG. 1 (eg, eNB, MME, S-GW).
  • the entity used in the NR system can be identified by the name "NG" to distinguish it from LTE.
  • the wireless communication system includes one or more UE 11, a next-generation RAN (NG-RAN), and a 5G core network (5GC).
  • the NG-RAN is composed of at least one NG-RAN node.
  • the NG-RAN node is an entity corresponding to BS 20 shown in FIG. 1.
  • the NG-RAN node consists of at least one gNB 21 and / or at least one ng-eNB 22.
  • the gNB 21 provides termination of the NR user plane and control plane protocols towards the UE 11.
  • Ng-eNB 22 provides termination of the E-UTRA user plane and control plane protocol towards UE 11.
  • 5GC includes access and mobility management function (AMF), user plane function (UPF) and session management function (SMF).
  • AMF hosts functions such as NAS security and idle state mobility processing.
  • AMF is an entity that includes the functions of a conventional MME.
  • UPF hosts functions such as mobility anchoring and protocol data unit (PDU) processing.
  • PDU protocol data unit
  • UPF is an entity that includes the functions of a conventional S-GW.
  • the SMF hosts functions such as UE IP address allocation and PDU session control.
  • the gNB and ng-eNB are interconnected through an Xn interface. gNB and ng-eNB are also connected to 5GC through the NG interface. More specifically, it is connected to the AMF through the NG-C interface and to the UPF through the NG-U interface.
  • 5 illustrates functional division between NG-RAN and 5GC.
  • gNB is an inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control (Connection Mobility Control), radio admission control (Radio Admission Control), measurement settings and provision Functions such as (Measurement configuration & Provision) and dynamic resource allocation may be provided.
  • AMF can provide functions such as NAS security and idle state mobility processing.
  • UPF may provide functions such as mobility anchoring and PDU processing.
  • the Session Management Function (SMF) can provide functions such as terminal IP address allocation and PDU session control.
  • FIG. 6 illustrates a frame structure that can be applied in NR.
  • a frame may be composed of 10 milliseconds (ms), and may include 10 subframes composed of 1 ms.
  • uplink and downlink transmission may be composed of frames.
  • the radio frame has a length of 10 ms and may be defined as two 5 ms half-frames (HFs).
  • a half-frame may be defined as five 1ms subframes (Subframe, SF).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on SCS (Subcarrier Spacing).
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot includes 14 symbols. When an extended CP is used, each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • One or a plurality of slots may be included in a subframe according to subcarrier spacing.
  • Table 1 below illustrates the subcarrier spacing configuration ⁇ .
  • Table 2 shows the number of slots in a frame (N frame, ⁇ slot ), the number of slots in a subframe (N subframe, ⁇ slot ), and the number of symbols in a slot (N slot symb ) according to subcarrier spacing configuration ⁇ . And the like.
  • Table 2-1 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe (SF) according to the SCS when an extended CP is used.
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • a (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot may include 12 symbols. Alternatively, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot may include 6 symbols.
  • the carrier wave includes a plurality of subcarriers in the frequency domain.
  • Resource block (RB) may be defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • a BWP (Bandwidth Part) may be defined as a plurality of consecutive (P) RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg, 5) BWPs. Data communication can be performed through an activated BWP.
  • Each element may be referred to as a resource element (RE) in the resource grid, and one complex symbol may be mapped.
  • RE resource element
  • a physical downlink control channel may be composed of one or more control channel elements (CCEs) as shown in Table 3 below.
  • CCEs control channel elements
  • the PDCCH may be transmitted through a resource composed of 1, 2, 4, 8 or 16 CCEs.
  • the CCE is composed of six resource element groups (REGs), and one REG is composed of one resource block in the frequency domain and one orthogonal frequency division multiplexing (OFDM) symbol in the time domain.
  • REGs resource element groups
  • OFDM orthogonal frequency division multiplexing
  • a new unit called a control resource set can be introduced.
  • the terminal may receive the PDCCH in CORESET.
  • CORESET is composed of N CORESET RB resource blocks in the frequency domain and N CORESET symb ⁇ ⁇ 1, 2, 3 ⁇ symbols in the time domain.
  • N CORESET RB and N CORESET symb may be provided by a base station through a higher layer signal.
  • a plurality of CCEs (or REGs) may be included in CORESET.
  • the UE may attempt to detect PDCCH in units of 1, 2, 4, 8 or 16 CCEs in CORESET.
  • PDCCH candidates One or a plurality of CCEs capable of attempting PDCCH detection may be referred to as PDCCH candidates.
  • the terminal may receive a plurality of CORESETs.
  • 9 is a view showing a difference between a conventional control region and CORESET in NR.
  • the control area 300 in a conventional wireless communication system (eg, LTE / LTE-A) is configured over the entire system band used by a base station. All terminals, except for some terminals (for example, eMTC / NB-IoT terminals) supporting only a narrow band, receive radio signals in the entire system band of the base station in order to properly receive / decode control information transmitted by the base station. I should be able to.
  • CORESET (301, 302, 303) may be referred to as a radio resource for control information that the terminal should receive, and may use only a part of the entire system band instead.
  • the base station can allocate CORESET to each terminal, and can transmit control information through the assigned CORESET.
  • the first CORESET 301 may be allocated to the terminal 1
  • the second CORESET 302 may be allocated to the second terminal
  • the third CORESET 303 may be allocated to the terminal 3.
  • the terminal in the NR can receive control information of the base station even if it does not necessarily receive the entire system band.
  • the CORESET there may be a terminal-specific CORESET for transmitting terminal-specific control information and a common CORESET for transmitting control information common to all terminals.
  • DCI downlink control information
  • a downlink control channel eg, a physical downlink control channel: PDCCH
  • the target block error rate (BLER) for) may be significantly lower than in the prior art.
  • the amount of content included in DCI may be reduced, and / or the amount of resources used for DCI transmission may be increased.
  • the resource may include at least one of resources in the time domain, resources in the frequency domain, resources in the code domain, and resources in the spatial domain.
  • FIG. 10 shows an example of a frame structure for a new radio access technology.
  • a structure in which a control channel and a data channel are time-division multiplexed (TDM) within one TTI is considered as one of the frame structures for the purpose of minimizing latency. Can be.
  • the hatched area indicates a downlink control area, and the black part indicates an uplink control area.
  • the unmarked area may be used for downlink data (DL data) transmission, or may be used for uplink data (UL data) transmission.
  • the characteristic of this structure is that downlink (DL) transmission and uplink (UL) transmission are sequentially performed in one subframe, DL data is transmitted in a subframe, and UL ACK / NACK (Acknowledgement / Not-acknowledgement) is also available. As a result, when a data transmission error occurs, it takes less time to retransmit the data, thereby minimizing latency of the final data transmission.
  • a type gap for a base station and a UE to switch from a transmission mode to a receiving mode or a switching process from a receiving mode to a transmitting mode ) Is required.
  • some OFDM symbols at a time point of switching from DL to UL may be set as a guard period (GP).
  • one slot may have a self-contained structure in which a DL control channel, DL or UL data, UL control channel, and the like can all be included.
  • the first N symbols in the slot are used to transmit the DL control channel (hereinafter, DL control region), and the last M symbols in the slot can be used to transmit the UL control channel (hereinafter, UL control region).
  • N and M are each an integer of 0 or more.
  • the resource region (hereinafter, the data region) between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
  • the following configuration may be considered. Each section was listed in chronological order.
  • the DL area may be (i) a DL data area, (ii) a DL control area + a DL data area.
  • the UL region may be (i) UL data region, (ii) UL data region + UL control region.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • DCI downlink control information
  • DL data scheduling information for example, DL data scheduling information, UL data scheduling information, and the like
  • uplink control information for example, ACK / NACK (Positive Acknowledgement / Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, and SR (Scheduling Request) may be transmitted.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or the process from the reception mode to the transmission mode.
  • some symbols at a time point of switching from DL to UL may be set as GP.
  • the wavelength is shortened, so that it is possible to install multiple antenna elements in the same area. That is, in the 30 GHz band, the wavelength is 1 cm, and a total of 100 antenna elements can be installed in a two-dimensional arrangement at 0.5 wavelength intervals on a 5 by 5 cm panel. Therefore, in mmW, a plurality of antenna elements are used to increase beamforming (BF) gain to increase coverage or increase throughput.
  • BF beamforming
  • TXRU Transceiver Unit
  • hybrid beamforming having B TXRUs, which are fewer than Q antenna elements, as an intermediate form of digital beamforming (analog BF) and digital beamforming (analog BF).
  • analog BF digital beamforming
  • analog BF digital beamforming
  • the analog beamforming (or RF beamforming) performs precoding (or combining) at the RF stage, which results in the number of RF chains and the number of D / A (or A / D) converters. It has the advantage of being able to achieve a performance close to digital beamforming while reducing.
  • the hybrid beamforming structure may be represented by N TXRUs and M physical antennas.
  • digital beamforming for the L data layers to be transmitted by the transmitting end can be represented by an N by L matrix, and the converted N digital signals are then converted into analog signals through TXRU. After conversion, analog beamforming represented by an M by N matrix is applied.
  • FIG. 12 is an abstract diagram of a hybrid beamforming structure from the perspective of the TXRU and the physical antenna.
  • the number of digital beams is L
  • the number of analog beams is N.
  • the base station is designed to change the analog beamforming on a symbol-by-symbol basis, and considers a direction for supporting more efficient beamforming to terminals located in a specific region. Further, when defining a specific N TXRU and M RF antennas as one antenna panel in FIG. 11, the NR system considers a method of introducing a plurality of antenna panels to which hybrid beamforming independent of each other is applicable. Is becoming.
  • a specific subframe is at least for a synchronization signal, system information, and paging.
  • a beam sweeping operation is being considered in which a plurality of analog beams to be applied by a base station is changed for each symbol so that all terminals have a reception opportunity.
  • FIG. 13 shows a synchronization signal and a PBCH (SS / PBCH) block.
  • the SS / PBCH block spans PSS and SSS, each occupying 1 symbol and 127 subcarriers, and 3 OFDM symbols and 240 subcarriers, but an unused portion for SSS is interposed on one symbol. It consists of the remaining PBCH.
  • the periodicity of the SS / PBCH block can be set by the network, and the time position at which the SS / PBCH block can be transmitted can be determined by the subcarrier spacing.
  • polar coding may be used.
  • the UE may assume a band-specific subcarrier interval for the SS / PBCH block unless the network sets the UE to assume a different subcarrier interval.
  • PBCH symbols carry their frequency-multiplexed DMRS.
  • QPSK modulation can be used for PBCH.
  • 1008 unique physical layer cell IDs may be given.
  • the first symbol indices for candidate SS / PBCH blocks are determined according to the subcarrier spacing of SS / PBCH blocks described later.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • n 0.
  • n 0 and 1.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the candidate SS / PBCH blocks in the half frame are indexed in ascending order from 0 to L-1 on the time axis.
  • an index of SS / PBCH blocks in which the UE cannot receive other signals or channels in REs overlapping REs corresponding to SS / PBCH blocks is set. Can be.
  • the SS / PBCH blocks have an index of SS / PBCH blocks per serving cell in which the UE cannot receive other signals or channels in REs overlapping the REs corresponding to the SS / PBCH blocks. Can be set.
  • the setting by 'SSB-transmitted' may take priority over the setting by 'SSB-transmitted-SIB1'.
  • the periodicity of the half frame for reception of SS / PBCH blocks per serving cell may be set by the upper layer parameter 'SSB-periodicityServingCell'. If the UE does not receive the periodicity of the half frame for reception of SS / PBCH blocks, the UE should assume the periodicity of the half frame. The UE may assume that periodicity is the same for all SS / PBCH blocks in the serving cell.
  • the terminal may obtain 6-bit SFN information through a Master Information Block (MIB) received in the PBCH.
  • MIB Master Information Block
  • the terminal can obtain a 1-bit half frame indicator as part of the PBCH payload.
  • the terminal can obtain the SS / PBCH block index by DMRS sequence and PBCH payload. That is, the LSB 3 bits of the SS block index can be obtained by the DMRS sequence during a 5 ms period. Also, MSB 3 bits of timing information are explicitly carried in the PBCH payload (for more than 6 GHz).
  • the UE may assume that a half frame with SS / PBCH blocks occurs with a periodicity of 2 frames. If it detects the SS / PBCH block, the terminal, and if the k for the FR1 and SSB ⁇ 23 ⁇ 11 SSB and k for FR2, Type0-PDCCH common search space (common search space) is determined that the present controlled set of resources for do. The terminal determines that if k SSB > 23 for FR1 and k SSB > 11 for FR2, there is no control resource set for the Type0-PDCCH common search space.
  • the terminal For a serving cell without transmission of SS / PBCH blocks, the terminal acquires time and frequency synchronization of the serving cell based on reception of SS / PBCH blocks on the primary cell or PSCell of the cell group for the serving cell.
  • SI System information
  • MIB MasterInformationBlock
  • SIBs SystemInformationBlocks
  • -MIB has a period of 80ms and is always transmitted on the BCH and repeated within 80ms, and includes parameters necessary to obtain SystemInformationBlockType1 (SIB1) from the cell;
  • SIB1 is transmitted on a DL-SCH with periodicity and repetition.
  • SIB1 includes information about availability and scheduling of other SIBs (eg, periodicity, SI-window size). It also indicates whether these (ie, other SIBs) are provided on a periodic broadcast basis or on demand. If other SIBs are provided by request, SIB1 includes information for the UE to perform SI request;
  • SIBs other than SIB1 are carried as a SystemInformation (SI) message transmitted on the DL-SCH.
  • SI SystemInformation
  • Each SI message is transmitted within a periodic time domain window (called an SI-window);
  • the RAN provides the necessary SI by dedicated signaling. Nevertheless, the UE must acquire the MIB of the PSCell to obtain the SFN timing of the SCH (which may be different from the MCG). When the related SI for the secondary cell is changed, the RAN releases and adds the relevant secondary cell. For PSCell, SI can only be changed with Reconfiguration with Sync.
  • 15 shows an example of a system information acquisition process of a terminal.
  • the terminal may receive MIB from the network, and then receive SIB1. Thereafter, the terminal may transmit a system information request to the network, and receive a 'SystemInformation message' from the network in response thereto.
  • the terminal may apply a system information acquisition procedure for acquiring AS (access stratum) and NAS (non-access stratum) information.
  • UEs in the RRC_IDLE and RRC_INACTIVE states must ensure (at least) MIB, SIB1 and SystemInformationBlockTypeX of valid versions (according to the relevant RAT support for mobility controlled by the terminal).
  • the UE in the RRC_CONNECTED state must ensure a valid version of MIB, SIB1, and SystemInformationBlockTypeX (according to mobility support for the relevant RAT).
  • the terminal should store the related SI obtained from the current camped / serving cell.
  • the version of SI acquired and stored by the terminal is valid only for a certain period of time.
  • the terminal may use this stored version of SI after, for example, cell reselection, return from out of coverage, or after system information change instruction.
  • the random access procedure of the terminal can be summarized as in Table 4 below.
  • the UE may transmit a PRACH preamble in uplink as message (Msg) 1 of a random access procedure.
  • Random access preamble sequences having two different lengths are supported.
  • Long sequences of length 839 apply to subcarrier spacing of 1.25 kHz and 5 kHz, and short sequences of length 139 apply to subcarrier spacing of 15, 30, 60, and 120 kHz.
  • Long sequences support an unrestricted set and limited sets of type A and type B, while short sequences support only an unrestricted set.
  • the multiple RACH preamble formats are defined by one or more RACH OFDM symbols, different cyclic prefix (CP), and guard time.
  • the PRACH preamble setting to be used is provided to the terminal as system information.
  • the UE may retransmit the power ramped PRACH preamble within a prescribed number of times.
  • the UE calculates the PRACH transmission power for retransmission of the preamble based on the most recent estimated path loss and power ramping counter. If the terminal performs beam switching, the power ramping counter does not change.
  • 17 is for explaining a power ramping car circle.
  • the UE may perform power ramping for retransmission of the random access preamble based on the power ramping counter.
  • the power ramping counter does not change when the terminal performs beam switching during PRACH retransmission.
  • the UE when the UE retransmits the random access preamble for the same beam, such as when the power ramping counter is increased from 1 to 2 and 3 to 4, the UE increments the power ramping counter by one. However, when the beam is changed, the power ramping counter does not change when the PRACH is retransmitted.
  • the system information informs the UE of the relationship between SS blocks and RACH resources.
  • the threshold of the SS block for the RACH resource relationship is based on RSRP and network configuration.
  • the transmission or retransmission of the RACH preamble is based on an SS block that satisfies the threshold. Therefore, in the example of FIG. 18, since the SS block m exceeds the threshold of the received power, the RACH preamble is transmitted or retransmitted based on the SS block m.
  • the DL-SCH may provide timing arrangement information, RA-preamble ID, initial uplink grant, and temporary C-RNTI.
  • the UE may perform uplink transmission on UL-SCH as Msg3 of the random access procedure.
  • Msg3 may include an RRC connection request and a UE identifier.
  • the network may transmit Msg4, which can be treated as a contention resolution message, in a downlink.
  • Msg4 can be treated as a contention resolution message
  • a terminal operating in such a wideband CC can be supported. If a terminal operating in such a wideband CC always operates with RF on the entire CC, the battery consumption of the terminal may increase. Or, considering various use cases (eg, eMBB, URLLC, mMTC, etc.) operating in one broadband CC, different numerology for each frequency band in the CC (eg, subcarrier spacing (sub -carrier spacing (SCS)) may be supported. Or, capacities for the maximum bandwidth may be different for each terminal.
  • SCS subcarrier spacing
  • the base station may instruct the terminal to operate only in a partial bandwidth, not the entire bandwidth of the broadband CC, and is intended to define the corresponding partial bandwidth as a bandwidth part (BWP) for convenience.
  • the BWP may be composed of consecutive resource blocks (RBs) on a frequency axis, and one neurology (eg, subcarrier spacing, cyclic prefix (CP) length, slot / mini-slot) Duration, etc.).
  • the base station can set multiple BWPs even within one CC set for the terminal. For example, in a PDCCH monitoring slot, a BWP occupying a relatively small frequency domain is set, and a PDSCH indicated by the PDCCH can be scheduled on a larger BWP.
  • some terminals may be set as different BWPs for load balancing.
  • some spectrums of the entire bandwidth may be excluded and both BWPs may be set in the same slot in consideration of frequency domain inter-cell interference cancellation between neighboring cells.
  • the base station may set at least one DL / UL BWP to a terminal associated with a wideband CC, and set at least one DL / UL BWP among DL / UL BWP (s) set at a specific time.
  • Activation by L1 signaling or MAC CE or RRC signaling, etc.
  • switching to another set DL / UL BWP by L1 signaling or MAC CE or RRC signaling, etc.
  • timer based timer When the value expires, it may be switched to a predetermined DL / UL BWP.
  • the activated DL / UL BWP is defined as an active DL / UL BWP.
  • DRX Discontinuous reception
  • UE user equipment
  • the DRX operation is performed within a DRX cycle indicating a time interval in which the On Duration is periodically repeated.
  • the DRX cycle includes on- and sleep periods (or chances of DRX).
  • the on-interval indicates a time interval during which the UE monitors the PDCCH to receive the PDCCH.
  • DRX may be performed in a Radio Resource Control (RRC) _IDLE state (or mode), RRC_INACTIVE state (or mode), or RRC_CONNECTED state (or mode).
  • RRC Radio Resource Control
  • DRX can be used to discontinuously receive the paging signal.
  • -RRC_IDLE state a state in which a radio connection (RRC connection) between a base station and a terminal is not established (established).
  • -RRC_INACTIVE state a radio connection (RRC connection) between the base station and the terminal is established, but the radio connection is deactivated.
  • -RRC_CONNECTED state A state in which a radio connection (RRC connection) is established between a base station and a terminal.
  • DRX can be basically divided into an idle mode DRX, a connected DRX (C-DRX), and an extended DRX.
  • DRX applied in the IDLE state may be referred to as an idle mode DRX, and DRX applied in a CONNECTED state may be referred to as a connected mode DRX (C-DRX).
  • C-DRX connected mode DRX
  • eDRX Extended / Enhanced DRX
  • eDRX Extended / Enhanced DRX
  • SIB1 system information
  • SIB1 may include an eDRX-allowed parameter.
  • the eDRX-allowed parameter is a parameter indicating whether idle mode extended DRX is allowed.
  • paging occasion is a PDCCH (Physical Downlink Control Channel) or PDCCH (MTC PDCCH) in which a Paging-Radio Network Temporary Identifier (P-RNTI) addresses a paging message for NB-IoT. ) Or a subframe that can be transmitted through a narrowband PDCCH (NPDCCH).
  • PDCCH Physical Downlink Control Channel
  • MTC PDCCH PDCCH
  • P-RNTI Paging-Radio Network Temporary Identifier
  • NPDCCH narrowband PDCCH
  • PO may indicate a start subframe of MPDCCH repetition.
  • the PO may indicate the start subframe of the NPDCCH repetition. Therefore, the first valid NB-IoT downlink subframe after PO is the start subframe of NPDCCH repetition.
  • One paging frame is one radio frame that may include one or more paging opportunities. When DRX is used, the UE only needs to monitor one PO per DRX cycle.
  • One paging narrow band is one narrow band in which the UE performs paging message reception. PF, PO and PNB may be determined based on DRX parameters provided in system information.
  • 19 is a flowchart illustrating an example of performing an idle mode DRX operation.
  • the UE may receive idle mode DRX configuration information from the base station through higher layer signaling (eg, system information) (S21).
  • higher layer signaling eg, system information
  • the UE may determine a Paging Frame (PF) and a Paging Occasion (PO) to monitor the PDCCH in the paging DRX cycle based on the idle mode DRX configuration information (S22).
  • the DRX cycle may include on- and sleep intervals (or DRX opportunities).
  • the UE may monitor the PDCCH in the PO of the determined PF (S23).
  • the UE monitors only one subframe (PO) per paging DRX cycle.
  • the terminal when the terminal receives the PDCCH scrambled by the P-RNTI during the on-section (ie, when paging is detected), the terminal can transition to the connection mode and transmit and receive data with the base station.
  • C-DRX means DRX applied in an RRC connected state.
  • the DRX cycle of C-DRX may consist of a short DRX cycle and / or a long DRX cycle.
  • a short DRX cycle may be an option.
  • the UE may perform PDCCH monitoring for the on-section. If the PDCCH is successfully detected during PDCCH monitoring, the UE may operate (or run) an inactive timer and maintain an awake state. Conversely, if the PDCCH is not successfully detected during the PDCCH monitoring, the UE may enter a sleep state after the on-interval ends.
  • a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be set discontinuously based on the C-DRX setting.
  • a PDCCH reception opportunity (eg, a slot having a PDCCH search space) may be continuously set in the present disclosure.
  • PDCCH monitoring may be limited to a time interval set as a measurement gap regardless of C-DRX setting.
  • the DRX cycle is composed of 'On Duration' and 'Opportunity for DRX'.
  • the DRX cycle defines a time interval in which the 'on-period' is periodically repeated.
  • the 'on-period' indicates a time period that the terminal monitors to receive the PDCCH.
  • the UE performs PDCCH monitoring during 'on-period'. If there is a successfully detected PDCCH during PDCCH monitoring, the terminal operates an inactivity timer and maintains an awake state. On the other hand, if there is no PDCCH successfully detected during PDCCH monitoring, the UE enters a sleep state after the 'on-period' ends.
  • PDCCH monitoring / reception may be discontinuously performed in the time domain in performing the above-described / suggested procedures and / or methods.
  • a PDCCH reception opportunity eg, a slot having a PDCCH search space
  • PDCCH monitoring / reception may be continuously performed in the time domain in performing the above-described / suggested procedures and / or methods.
  • the PDCCH reception opportunity eg, a slot having a PDCCH search space
  • PDCCH monitoring may be limited in a time interval set as a measurement gap.
  • Table 5 shows the process of the terminal related to DRX (RRC_CONNECTED state).
  • DRX configuration information is received through higher layer (eg, RRC) signaling, and whether DRX ON / OFF is controlled by the DRX command of the MAC layer.
  • RRC Radio Resource Control
  • the MAC-CellGroupConfig may include configuration information necessary to set a medium access control (MAC) parameter for a cell group.
  • MAC-CellGroupConfig may also include configuration information about DRX.
  • MAC-CellGroupConfig defines DRX and may include information as follows.
  • -Value of drx-InactivityTimer Defines the length of the time period in which the UE remains awake after the PDCCH opportunity where the PDCCH indicating the initial UL or DL data is detected.
  • -Value of drx-HARQ-RTT-TimerDL Defines the length of the maximum time interval from receiving the DL initial transmission to receiving the DL retransmission.
  • the terminal maintains awake state and performs PDCCH monitoring at every PDCCH opportunity.
  • DRX operation in a wireless communication system is introduced to reduce power consumption of a terminal by providing an interval in which the terminal does not perform DL / UL transmission.
  • the parameters signaled for the DRX operation have already been described, and if necessary, will be described again below.
  • 21 is an example of a DRX operation.
  • the UE is configured with a DRX configuration starting point of a DRX cycle, a duration of a DRX cycle (duration, duration), and an on-duration timer.
  • the start point and the interval of the on-section timer can be known.
  • the UE attempts reception / detection of scheduling information within the on-period of each DRX cycle (this may be expressed as monitoring scheduling information).
  • an inactivity timer When scheduling information is detected in the on-period of the DRX cycle, an inactivity timer is activated and attempts to detect another scheduling information during a given deactivation timer period (time period in which the deactivation timer operates). .
  • the on-period and the deactivation timer period, in which the terminal performs a signal reception / detection operation may be referred to as an active time. If scheduling information is not detected in the on-section, only the on-section may be an activation time.
  • the terminal sleeps from the time the deactivation timer ends until the on-interval (DRX on duration) of the next DRX cycle begins (sleep in FIG. 21). (Time interval indicated by sleep) The scheduling information and the corresponding DL reception / UL transmission are not performed.
  • the section adjustment of the DRX cycle, section adjustment of the on-section timer / deactivation timer, etc. play an important role in determining whether the UE sleeps.
  • the network may be set to sleep the terminal frequently or to continuously perform monitoring for scheduling information. This may act as an element for determining whether the terminal is saving power.
  • the DRX configuration for the DRX operation may be delivered to the terminal through RRC signaling, etc., and a new configuration may be applied through reconfiguration through RRC signaling.
  • RRC signaling etc.
  • a new configuration may be applied through reconfiguration through RRC signaling.
  • dynamic adaptation of DRX configuration according to the situation of the terminal may be difficult. Accordingly, an additional method for dynamically adjusting power consumption of the terminal to support various services may be needed.
  • This disclosure proposes to dynamically change / apply the DRX configuration, and proposes a method for operating an adaptive DRX operation.
  • the network may signal multiple (multiple) DRX settings in advance to the terminal and instruct to apply a specific one of the plurality of DRX settings at a specific time.
  • the parameters included in the DRX configuration may include, for example, at least one of the following parameters. For some or all of the following parameters, multiple settings, that is, a plurality of settings may be indicated to the terminal.
  • 22 illustrates a method of DRX operation of a terminal.
  • the terminal receives a plurality of DRX settings from the base station (S1210).
  • the terminal performs the DRX operation based on one DRX setting selected from the plurality of DRX settings (S1220).
  • the one DRX configuration includes a plurality of parameters, and a specific parameter among the plurality of parameters may have a plurality of configuration values and other parameters may have a configuration value.
  • the state of the terminal may be either a power saving state or a normal state. At this time, the terminal may select a set value determined according to the state of the terminal from among the plurality of set values as the value of the specific parameter.
  • the specific parameter may be a parameter indicating a timer value related to DRX on-duration or a parameter indicating a deactivation timer value.
  • the deactivation timer may be a timer that is activated when the scheduling information is detected in the DRX on-interval and operates during the deactivation time interval.
  • the terminal may monitor another scheduling information in the inactive time interval.
  • the terminal may further receive a signal indicating which of the plurality of setting values to use.
  • a first DRX setting among the plurality of DRX settings is applied to a first DRX cycle including an active time and a sleep time, wherein the activation time is a DRX on-section and an inactivity timer ).
  • DRX configuration may have the following parameters, and the base station may control the DRX operation by setting the following parameters through the RRC signal.
  • 'drx-InactivityTimer' the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission to a MAC entity (the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission for the MAC entity ).
  • 'drx-RetransmissionTimerDL' (per DL HARQ process): the maximum duration until a DL retransmission is received (the maximum duration until a DL retransmission is received).
  • 'drx-RetransmissionTimerUL' (per UL HARQ process): the maximum duration until a grant for UL retransmission is received (the maximum duration until a grant for UL retransmission is received).
  • 'drx-LongCycleStartOffset' which defines a subframe in which a long DRX cycle, a long DRX cycle, and a short DRX cycle start.
  • 'drx-HARQ-RTT-TimerUL' (per UL HARQ process): the minimum duration before a UL HARQ retransmission grant is expected by the MAC entity .
  • a parameter indicating a timer value related to DRX on-duration or a parameter indicating a deactivation timer value for example, 'drx-onDurationTimer', 'drx-InactivityTimer', etc. It is also possible to apply multiple settings only.
  • a network (or a base station, an evolved NodeB (eNB), a next generation eNode B (ng-eNB), a next generation NodeB (gNB), etc., hereinafter simply referred to as a “network”) is referred to as 'drx-' It is possible to set a plurality of values for onDurationTimer 'and instruct the terminal to apply a specific value according to the situation of the terminal.
  • eNB evolved NodeB
  • ng-eNB next generation eNode B
  • gNB next generation NodeB
  • the network can shorten the PDCCH monitoring by setting a short period and maintain a relatively long sleep operation.
  • the network may set a plurality of values for the deactivation timer for the terminal, and instruct the terminal to apply a specific value. Accordingly, as in the on-period timer, it is possible to increase / decrease the PDCCH monitoring and decrease / increase the sleep period in a situation where the deactivation timer operates.
  • the network may set a plurality of DRX cycles for the terminal, adjust the period of the on-section, or adjust the sleep period.
  • values defined in the standard for a specific parameter may be regarded as multiple settings.
  • 'drx-InactivityTimer' among DRX settings may have values indicated in Table 6. Therefore, among the values shown in Table 6, valid values (eg, ms0 to ms2560) can be regarded as multiple settings and instructed to apply specific values by the method suggested below.
  • the network signaling multiple settings for the DRX operation may instruct the terminal to apply a specific setting among the settings in the following manner.
  • the DRX configuration may have an independent configuration for each terminal situation.
  • the terminal may follow the settings defined in the corresponding situation without additional signaling (eg, indicating a specific setting index) in each situation.
  • the state of the terminal may be divided into a power saving state and a normal state according to whether power is saved.
  • a setting for maintaining a long sleep period in a power saving state may be defined as a default setting
  • the on-period timer / deactivation timer can be kept long, or a setting with a short DRX cycle can be defined as a default setting.
  • the terminal may perform the DRX operation according to the default setting as described above. That is, the multiple DRX settings proposed by the present disclosure may be associated with a specific terminal state (eg, power saving state / mode, normal state / mode) for each setting.
  • a specific terminal state eg, power saving state / mode, normal state / mode
  • FIG. 23 illustrates a DRX operation method of a terminal according to an implicit instruction.
  • the base station provides / sets a plurality of DRX settings to the terminal (S301).
  • Each of the plurality of DRX settings may include a plurality of parameters, and at least one parameter may have a plurality of setting values.
  • the base station may inform the DRX settings (specific parameter values) that can be applied according to each state of the terminal.
  • the plurality of DRX settings may be set by an upper layer signal such as an RRC signal.
  • the terminal may select one of the plurality of DRX settings based on its own state (S302).
  • the terminal selects a first setting that maintains a long sleep period in a power saving state, and maintains an on-period timer / deactivation timer long in a normal state in which data transmission and reception of the terminal is frequent or a DRX cycle is set to be short.
  • 2 Settings can be selected.
  • the first setting and the second setting may be settings that differ only in the value of a specific parameter among a plurality of parameters.
  • the second setting is a setting date in which only the specific parameter in the first setting (eg, a parameter related to an on-period or an inactive period, but this is only an example and other parameters, for example, parameters related to retransmission can also be used) It might be.
  • This is a first setting in which a value of a specific parameter is applied as a first value in a DRX setting including a plurality of parameters, and a second in which the value of the specific parameter is changed from the first value to a second value in the DRX setting. It can be considered as a setting.
  • the terminal performs a DRX operation based on the one DRX configuration (S303).
  • S303 the state of the terminal is changed, it is possible to select and apply an appropriate DRX setting without waiting for the explicit signaling of the base station, so dynamic and adaptive DRX operation is possible.
  • a specific parameter of the DRX configuration can be applied after changing to an appropriate value according to the state of the terminal, dynamic and adaptive DRX operation is possible.
  • the network may instruct the UE to apply a specific configuration among predefined or signaled DRX configurations using explicit signaling (eg, RRC, DCI, MAC CE).
  • explicit signaling eg, RRC, DCI, MAC CE.
  • the network may indicate the DRX configuration by using L1 / L2 signaling with relatively low decoding latency for the UE.
  • FIG. 24 illustrates a DRX operation method of a terminal according to an explicit instruction.
  • the base station provides / sets a plurality of DRX settings to the terminal (S301).
  • Each of the plurality of DRX settings may include a plurality of parameters, and at least one parameter may have a plurality of setting values.
  • the base station transmits a signal indicating one of the plurality of DRX settings through a lower layer signal (for example, a physical layer signal) having relatively little decoding delay (S402).
  • a lower layer signal for example, a physical layer signal
  • the terminal may select one DRX configuration from among a plurality of DRX configurations based on the signal (S403).
  • the terminal performs a DRX operation based on the one DRX configuration (S404). Since this method dynamically changes the DRX configuration according to the explicit instruction of the base station, there is little room for misunderstanding or ambiguity regarding DRX configuration between the base station and the terminal.
  • the terminal proposes to determine a time point at which the setting is applied as follows.
  • Fig. 25 illustrates the time relationship in receiving the setting change signal and its application.
  • a point “A” denotes a time point when a terminal completes decoding a setting change signal informing whether or not the setting is changed.
  • it may mean a point in time after a specific time has elapsed since signaling of the configuration change signal, and may be considered for rapid DRX configuration change and application. That is, the DRX setting of the terminal may be changed at the point “A”. Until the point “A” for the terminal, the DRX setting before the change can be used.
  • the second DRX starts from a time when decoding of the DRX setting change signal is completed or a specific time has elapsed from the time of receiving the DRX setting change signal.
  • Settings can be applied.
  • point “B” it means that the existing setting is maintained during the on-section, and it may be useful when additional control signaling other than the setting change signal is possible in the corresponding section. That is, the DRX setting of the terminal may be changed at point “B”, and the DRX setting before the change may be used up to point “B” for the terminal.
  • the second DRX setting may be applied from a point in time during which the DRX on-duration ends during the activation time.
  • point “C” it may mean that signal transmission / reception within a corresponding DRX cycle is completed using an existing setting. That is, the DRX setting of the terminal may be changed at the point “C”. Until the point “C” for the terminal, the DRX setting before the change can be used.
  • the second DRX configuration may be applied from the time when the activation time ends.
  • points “A”, “B”, and “C” it may mean that the starting position of the DRX cycle of the new setting is changed to the corresponding point. That is, when the DRX setting of the terminal is changed at the points “A”, “B” or “C”, the point “A”, “B” or “C” for each starts the DRX cycle of the new DRX setting.
  • next DRX cycle may be determined by the first DRX configuration or parameter set previously set, or may be determined by the second DRX configuration or parameter set indicated by the base station or reported by the UE through the configuration change signal. Can be.
  • the second DRX configuration may be applied from the second DRX cycle following the first DRX cycle.
  • the time point of applying the new setting may be determined according to whether the DRX cycle (start time point and interval) and on-section timer related parameters can be changed.
  • the terminal can follow the previous DRX parameter until the current DRX On and apply the new DRX setting from the next DRX On of the new DRX parameter. ii) DRX Off from the point of application. Some or all timers can all be stopped.
  • the timer may include 'drx-OnDurationTimer' and / or 'drx-InactivityTimer'.
  • the deactivation timer is not running in the previous DRX On, i) Until the current DRX On, the previous DRX parameter can be followed and the new DRX setting can be applied from the next DRX On of the new DRX parameter. ii) DRX Off from the point of application. Some or all timers can all be stopped.
  • the timer may include 'drx-OnDurationTimer' and / or 'drx-InactivityTimer'.
  • the terminal can follow the previous DRX parameter until the current DRX On and apply the new DRX configuration from the next DRX On of the new DRX parameter.
  • the terminal can apply new DRX parameters from the current DRX On.
  • the on-interval timer may restart after a predetermined change reset.
  • the on-interval timer can only change the threshold value without resetting.
  • the deactivation timer can be restarted after resetting the specified change. Or iv) the deactivation timer can be changed without resetting.
  • DRX On may mean a section in which 'drx-OnDurationTimer' is operating. Alternatively, it may be a DRX activation time (a time period in which the terminal can monitor the PDCCH).
  • DRX Off may mean a portion excluding the DRX On region within the DRX cycle. For example, if DRX On corresponds to an active time in FIG. 21, DRX Off may mean a sleep period.
  • Signaling for DRX adaptation may be desirable for a UE to expect only at a time when DRX On is guaranteed before / after change.
  • terminal is a general term, and is used interchangeably with a mobile device such as a mobile station (MS), a user equipment (UE), or a mobile terminal.
  • MS mobile station
  • UE user equipment
  • Network is a general term, and a base station (BS).
  • eNB evolved NodeB
  • ng-eNB node B
  • gNB nodeB
  • examples of the proposed method may be included as one of implementation methods of the present disclosure, and thus may be regarded as a kind of proposed methods.
  • the proposed schemes may be implemented independently, but may be implemented in a combination (or merge) form of some proposal schemes.
  • the rule may be defined such that information on whether to apply the proposed methods (or information on the rules of the proposed methods) is provided to the base station through a predefined signal (e.g., physical layer signal or higher layer signal).
  • a predefined signal e.g., physical layer signal or higher layer signal.
  • the proposed method described in the embodiments of the present disclosure and methods that can be extended from the method may be implemented as an apparatus, and the present disclosure also includes information about an apparatus implementing the proposed method. The description of the device will be described later.
  • 26 illustrates a wireless device that can be applied to the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • various wireless access technologies eg, LTE and NR.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and / or one or more antennas 108.
  • the processor 102 controls the memory 104 and / or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate the first information / signal, and then transmit the wireless signal including the first information / signal through the transceiver 106.
  • the processor 102 may receive the wireless signal including the second information / signal through the transceiver 106 and store the information obtained from the signal processing of the second information / signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 is an instruction to perform some or all of the processes controlled by the processor 102, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 102 and the memory 104 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 can be coupled to the processor 102 and can transmit and / or receive wireless signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and / or receiver.
  • the transceiver 106 may be mixed with a radio frequency (RF) unit.
  • the wireless device may mean a communication modem / circuit / chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and / or one or more antennas 208.
  • the processor 202 controls the memory 204 and / or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information / signal, and then transmit a wireless signal including the third information / signal through the transceiver 206.
  • the processor 202 may receive the wireless signal including the fourth information / signal through the transceiver 206 and store the information obtained from the signal processing of the fourth information / signal in the memory 204.
  • the memory 204 may be connected to the processor 202, and may store various information related to the operation of the processor 202.
  • the memory 204 is an instruction to perform some or all of the processes controlled by the processor 202, or to perform the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. You can store software code that includes
  • the processor 202 and the memory 204 may be part of a communication modem / circuit / chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 can be coupled to the processor 202 and can transmit and / or receive wireless signals through one or more antennas 208.
  • Transceiver 206 may include a transmitter and / or receiver.
  • Transceiver 206 may be mixed with an RF unit.
  • the wireless device may mean a communication modem / circuit / chip.
  • one or more protocol layers may be implemented by one or more processors 102 and 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102 and 202 may include one or more Protocol Data Units (PDUs) and / or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein. Can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • the one or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein.
  • the one or more processors 102, 202 generate signals (eg, baseband signals) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, suggestions and / or methods disclosed herein. , To one or more transceivers 106, 206.
  • One or more processors 102, 202 may receive signals (eg, baseband signals) from one or more transceivers 106, 206, and descriptions, functions, procedures, suggestions, methods and / or operational flow diagrams disclosed herein Depending on the field, PDU, SDU, message, control information, data or information may be acquired.
  • signals eg, baseband signals
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • the one or more processors 102, 202 can be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • Descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein are either firmware or software set to perform or are stored in one or more processors 102, 202 or stored in one or more memories 104, 204. It can be driven by the above processors (102, 202).
  • the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein can be implemented using firmware or software in the form of code, instructions and / or instructions.
  • the one or more memories 104, 204 may be coupled to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions, and / or instructions.
  • the one or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and / or combinations thereof.
  • the one or more memories 104, 204 may be located inside and / or outside of the one or more processors 102, 202. Also, the one or more memories 104 and 204 may be connected to the one or more processors 102 and 202 through various technologies such as a wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals / channels, and the like referred to in the methods and / or operational flowcharts of this document to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals / channels, and the like referred to in the descriptions, functions, procedures, suggestions, methods and / or operational flowcharts disclosed herein from one or more other devices. have.
  • one or more transceivers 106, 206 may be connected to one or more processors 102, 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and one or more transceivers 106, 206 may be described, functions described herein through one or more antennas 108, 208.
  • the one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106 and 206 use the received radio signal / channel and the like in the RF band signal to process the received user data, control information, radio signal / channel, and the like using one or more processors 102 and 202. It can be converted to a baseband signal.
  • the one or more transceivers 106 and 206 may convert user data, control information, and radio signals / channels processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • the one or more transceivers 106, 206 may include (analog) oscillators and / or filters.
  • FIG. 27 illustrates a signal processing circuit for a transmission signal.
  • the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060.
  • the operations / functions of FIG. 27 may be performed in processors 102, 202 and / or transceivers 106, 206 of FIG.
  • the hardware elements of FIG. 27 can be implemented in the processors 102, 202 and / or transceivers 106, 206 of FIG. 26.
  • blocks 1010 to 1060 may be implemented in processors 102 and 202 of FIG. 26.
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 26, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 26.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 27.
  • the codeword is an encoded bit sequence of an information block.
  • the information block may include a transport block (eg, UL-SCH transport block, DL-SCH transport block).
  • the wireless signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010.
  • the scramble sequence used for scramble is generated based on the initialization value, and the initialization value may include ID information of a wireless device.
  • the scrambled bit sequence may be modulated by a modulator 1020 into a modulation symbol sequence.
  • the modulation scheme may include pi / 2-Binary Phase Shift Keying (pi / 2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030.
  • the modulation symbols of each transport layer may be mapped to the corresponding antenna port (s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N * M.
  • N is the number of antenna ports and M is the number of transport layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transformation) on complex modulation symbols.
  • the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to time-frequency resources.
  • the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbol, DFT-s-OFDMA symbol) in the time domain and a plurality of subcarriers in the frequency domain.
  • the signal generator 1060 generates a radio signal from the mapped modulation symbols, and the generated radio signal can be transmitted to other devices through each antenna.
  • the signal generator 1060 may include an Inverse Fast Fourier Transform (IFFT) module and a Cyclic Prefix (CP) inserter, a Digital-to-Analog Converter (DAC), a frequency uplink converter, etc. .
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured as the inverse of the signal processing processes 1010 to 1060 of FIG. 27.
  • the wireless device eg, 100 and 200 in FIG. 26
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal recoverer may include a frequency downlink converter (ADC), an analog-to-digital converter (ADC), a CP remover, and a Fast Fourier Transform (FFT) module.
  • ADC frequency downlink converter
  • ADC analog-to-digital converter
  • CP remover a CP remover
  • FFT Fast Fourier Transform
  • the baseband signal may be restored to a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
  • the codeword can be restored to the original information block through decoding.
  • the signal processing circuit (not shown) for the received signal may include a signal restorer, a resource de-mapper, a post coder, a demodulator, a de-scrambler and a decoder.
  • the portable device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), and a portable computer (eg, a notebook, etc.).
  • the mobile device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input / output unit 140c. ).
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • Blocks 110 to 130 / 140a to 140c correspond to blocks 110 to 130/140 in FIG. 29, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling the components of the mobile device 100.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data / parameters / programs / codes / commands necessary for driving the portable device 100. Also, the memory unit 130 may store input / output data / information.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired / wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support the connection between the mobile device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input / output ports, video input / output ports) for connection with external devices.
  • the input / output unit 140c may receive or output image information / signal, audio information / signal, data, and / or information input from a user.
  • the input / output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and / or a haptic module.
  • the input / output unit 140c acquires information / signal (eg, touch, text, voice, image, video) input from the user, and the obtained information / signal is transmitted to the memory unit 130 Can be saved.
  • the communication unit 110 may convert information / signals stored in the memory into wireless signals, and transmit the converted wireless signals directly to other wireless devices or to a base station.
  • the communication unit 110 may restore the received radio signal to original information / signal.
  • the restored information / signal is stored in the memory unit 130, it can be output in various forms (eg, text, voice, image, video, heptic) through the input / output unit 140c.
  • various components such as a camera and a Universal Serial Bus (USB) port may be additionally included in the terminal.
  • the camera can be connected to a processor.
  • the terminal may perform a network access process to perform the above-described / suggested procedures and / or methods.
  • the terminal may receive and store system information and configuration information necessary to perform the above-described / suggested procedures and / or methods while accessing a network (eg, a base station) and store it in a memory.
  • Configuration information necessary for the present disclosure may be received through higher layer (eg, RRC layer; Medium Access Control, MAC, layer, etc.) signaling.
  • the wireless device 29 shows another example of a wireless device applied to the present disclosure.
  • the wireless device may be implemented in various forms according to use-example / service.
  • the wireless devices 100 and 200 may be composed of various elements.
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and additional elements 140.
  • the communication unit may include a communication circuit 112 and a transceiver (s) 114.
  • the communication circuit 112 can include one or more processors 102,202 and / or one or more memories 104,204.
  • the transceiver (s) 114 may include one or more transceivers 106,206 and / or one or more antennas 108,208.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140, and controls various operations of the wireless device.
  • the controller 120 may control the electrical / mechanical operation of the wireless device based on the program / code / command / information stored in the memory unit 130.
  • the control unit 120 transmits information stored in the memory unit 130 to the outside (eg, another communication device) through the wireless / wired interface through the communication unit 110 or externally (eg, through the communication unit 110). Information received through a wireless / wired interface from another communication device) may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit / battery, an input / output unit (I / O unit), a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 30, 100A), vehicles (FIGS. 30, 100B-1, 100B-2), XR devices (FIGS. 30, 100C), portable devices (FIGS. 30, 100D), and household appliances. (Fig. 30, 100e), IoT device (Fig.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate / environment device
  • It may be implemented in the form of an AI server / device (FIGS. 30 and 400), a base station (FIGS. 30 and 200), and a network node.
  • the wireless device may be mobile or may be used in a fixed place depending on use-example / service.
  • various elements, components, units / parts, and / or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least some of them may be connected wirelessly through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140) are connected through the communication unit 110. It can be connected wirelessly.
  • each element, component, unit / unit, and / or module in the wireless devices 100 and 200 may further include one or more elements.
  • the controller 120 may be composed of one or more processor sets.
  • control unit 120 may include a set of communication control processor, application processor, electronic control unit (ECU), graphic processing processor, and memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory (non- volatile memory) and / or combinations thereof.
  • FIG. 30 illustrates a communication system 1 applied to the present disclosure.
  • the communication system 1 applied to the present disclosure includes a wireless device, a base station and a network.
  • the wireless device means a device that performs communication using a radio access technology (eg, 5G NR (New RAT), Long Term Evolution (LTE)), and may be referred to as a communication / wireless / 5G device.
  • a radio access technology eg, 5G NR (New RAT), Long Term Evolution (LTE)
  • LTE Long Term Evolution
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an XR (eXtended Reality) device 100c, a hand-held device 100d, and a home appliance 100e. ), Internet of Thing (IoT) devices 100f, and AI devices / servers 400.
  • IoT Internet of Thing
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include a UAV (Unmanned Aerial Vehicle) (eg, a drone).
  • XR devices include Augmented Reality (AR) / Virtual Reality (VR) / Mixed Reality (MR) devices, Head-Mounted Device (HMD), Head-Up Display (HUD) provided in vehicles, televisions, smartphones, It may be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, or the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a notebook, etc.).
  • Household appliances may include a TV, a refrigerator, and a washing machine.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may also be implemented as wireless devices, and the specific wireless device 200a may operate as a base station / network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may directly communicate (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may communicate directly (e.g. Vehicle to Vehicle (V2V) / Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication / connections 150a, 150b, and 150c may be achieved between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication / connection is various wireless access such as uplink / downlink communication 150a and sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, IAB (Integrated Access Backhaul)). It can be achieved through technology (eg, 5G NR).
  • wireless communication / connections 150a, 150b, 150c wireless devices and base stations / wireless devices, base stations and base stations can transmit / receive radio signals to each other.
  • wireless communication / connections 150a, 150b, 150c may transmit / receive signals over various physical channels.
  • various signal processing processes eg, channel encoding / decoding, modulation / demodulation, resource mapping / demapping, etc.
  • resource allocation processes e.g., resource allocation processes, and the like.
  • NR supports a number of numerology (or subcarrier spacing (SCS)) to support various 5G services.
  • numerology or subcarrier spacing (SCS)
  • SCS subcarrier spacing
  • the SCS when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz / 60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • the NR frequency band may be defined as a frequency range of two types (FR1, FR2).
  • the numerical value of the frequency range may be changed, for example, the frequency range of the two types (FR1, FR2) may be as shown in Table 7 below.
  • FR1 of the frequency range used in the NR system may mean “sub 6 GHz range”
  • FR2 may mean “above 6 GHz range” and may be referred to as millimeter wave (mmW). .
  • FR1 may include a band of 410MHz to 7125MHz as shown in Table 8 below. That is, FR1 may include a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or higher. For example, a frequency band of 6 GHz (or 5850, 5900, 5925 MHz, etc.) or more included in FR1 may include an unlicensed band. The unlicensed band may be used for various purposes, for example, for communication for a vehicle (eg, autonomous driving).

Abstract

무선통신 시스템에서 단말의 DRX(discontinuous reception) 동작 방법 및 상기 방법을 이용하는 장치를 제공한다. 단말은 기지국으로부터 복수의 DRX 설정들을 수신하고, 상기 복수의 DRX 설정들 중 선택한 하나의 DRX 설정에 기반하여 상기 DRX 동작을 수행하되, 상기 하나의 DRX 설정은 복수의 파라미터들을 포함하고, 상기 복수의 파라미터들 중 특정 파라미터는 복수의 설정 값들을 가지고 그 이외의 파라미터들은 하나의 설정 값을 가지는 것을 특징으로 한다.

Description

무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치
본 개시는 무선 통신에 관한 것으로서, 보다 상세하게는, 무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치에 관한 것이다.
음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 무선 통신 시스템이 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(Code Division Multiple Access) 시스템, FDMA(Frequency Division Multiple Access) 시스템, TDMA(Time Division Multiple Access) 시스템, OFDMA(Orthogonal Frequency Division Multiple Access) 시스템, SC-FDMA(Single Carrier Frequency Division Multiple Access) 시스템 등이 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 확장된 모바일 브로드밴드 커뮤니케이션(enhanced mobile broadband communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술(technology)을 new RAT 또는 NR이라고 부른다.
NR에서도, 단말의 전력 소모를 줄이기 위하여, 비연속적 수신(discontinuous reception: DRX) 동작이 도입될 수 있다. 종래, DRX 동작의 설정은 상위 계층 신호를 통해 단말에게 제공되었고, 기존 DRX 설정을 변경하고자 할 경우 상위 계층 신호를 통한 재설정을 통해 새로운 DRX 설정이 제공되었다. 그러나, 이러한 종래의 방식은, 단말 상황 변화에 따른 적응적 DRX 동작이 어렵다.
본 개시가 해결하고자 하는 기술적 과제는 무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치를 제공하는 것이다.
일 측면에서, 무선통신 시스템에서 단말의 DRX(discontinuous reception) 동작 방법을 제공한다. 상기 방법은 기지국으로부터 복수의 DRX 설정들을 수신하고, 상기 복수의 DRX 설정들 중 선택한 하나의 DRX 설정에 기반하여 상기 DRX 동작을 수행하되, 상기 하나의 DRX 설정은 복수의 파라미터들을 포함하고, 상기 복수의 파라미터들 중 특정 파라미터는 복수의 설정 값들을 가지고 그 이외의 파라미터들은 하나의 설정 값을 가지는 것을 특징으로 한다.
다른 측면에서 제공되는 단말은, 무선 신호를 송신 및 수신하는 송수신기(Transceiver) 및 상기 송수신기와 결합하여 동작하는 프로세서를 포함하되, 상기 프로세서는, 기지국으로부터 복수의 DRX(discontinuous reception) 설정들을 수신하고, 상기 복수의 DRX 설정들 중 선택한 하나의 DRX 설정에 기반하여 DRX 동작을 수행한다. 상기 하나의 DRX 설정은 복수의 파라미터들을 포함하고, 상기 복수의 파라미터들 중 특정 파라미터는 복수의 설정 값들을 가지고 그 이외의 파라미터들은 하나의 설정 값을 가지는 것을 특징으로 한다.
또 다른 측면에서 제공되는 무선 통신 장치를 위한 프로세서는, 상기 무선 통신 장치를 제어하여, 기지국으로부터 복수의 DRX(discontinuous reception) 설정들을 수신하고, 상기 복수의 DRX 설정들 중 선택한 하나의 DRX 설정에 기반하여 DRX 동작을 수행하되, 상기 하나의 DRX 설정은 복수의 파라미터들을 포함하고, 상기 복수의 파라미터들 중 특정 파라미터는 복수의 설정 값들을 가지고 그 이외의 파라미터들은 하나의 설정 값을 가지는 것을 특징으로 한다.
광대역을 사용하고 단말이 제공하는 서비스의 종류가 매우 다양한 NR에서, 각 단말의 상황에 따라 적응적으로 DRX 동작을 수행할 수 있게 한다. 따라서, 단말의 전력 소모 절감 효과가 뛰어나다.
도 1은 본 개시가 적용될 수 있는 무선통신 시스템을 예시한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이다.
도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다.
도 4는 본 개시의 기술적 특징이 적용될 수 있는 무선 통신 시스템의 다른 예를 나타낸다.
도 5는 NG-RAN과 5GC 간의 기능적 분할을 예시한다.
도 6은 NR에서 적용될 수 있는 프레임 구조를 예시한다.
도 7은 슬롯 구조를 나타낸다.
도 8은 CORESET을 예시한다.
도 9는 종래의 제어 영역과 NR에서의 CORESET의 차이점을 나타내는 도면이다.
도 10은 새로운 무선 접속 기술에 대한 프레임 구조의 일례를 도시한 것이다.
도 11은 자기-완비(self-contained) 슬롯의 구조를 예시한다.
도 12는 상기 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍(Hybrid beamforming) 구조를 추상적으로 도식화한 것이다.
도 13은 동기화 신호 및 PBCH(SS/PBCH) 블록을 도시한 것이다.
도 14는 단말이 타이밍 정보를 획득하는 방법을 설명하기 위한 것이다.
도 15는 단말의 시스템 정보 획득 과정의 일례를 도시한 것이다.
도 16은 랜덤 접속 절차를 설명하기 위한 것이다.
도 17은 파워 램핑 카원터를 설명하기 위한 것이다.
도 18은 RACH 자원 관계에 대한 SS 블록의 문턱치 개념을 설명하기 위한 것이다.
도 19은 유휴 모드 DRX 동작을 수행하는 일례를 도식한 순서도다.
도 20는 DRX 사이클을 예시한다.
도 21은 DRX 동작의 일 예이다.
도 22는 단말의 DRX 동작 방법을 예시한다.
도 23은, 묵시적 지시에 의한 단말의 DRX 동작 방법을 예시한다.
도 24는, 명시적 지시에 의한 단말의 DRX 동작 방법을 예시한다.
도 25는 설정 변경 신호의 수신과 그 적용에 있어서의 시간 관계를 예시한다.
도 26는 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 27은 전송 신호를 위한 신호 처리 회로를 예시한다.
도 28는 본 개시에 적용되는 휴대 기기를 예시한다.
도 29은 본 개시에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다.
도 30는 본 개시에 적용되는 통신 시스템(1)을 예시한다.
이하 명세서에서, “/” 및 “,”는 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. “A, B”는 “A 및/또는 B”를 의미할 수 있다. “A/B/C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다. “A, B, C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다.
이하 명세서에서, “또는”은 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A 또는 B”는 “오직 A”, “오직 B”, 및/또는 “A 및 B 모두”를 포함할 수 있다. 다시 말해, 이하 명세서에서 “또는”은 “부가적으로 또는 대안적으로”를 나타내는 것으로 해석될 수 있다.
도 1은 본 개시가 적용될 수 있는 무선통신 시스템을 예시한다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.
E-UTRAN은 단말(10: User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20: Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), UT(User Terminal), SS(Subscriber Station), MT(mobile terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜 (Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection: OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이고, 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 2 및 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer: RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫 번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 전송의 단위 시간으로, 예를 들어, 서브프레임 또는 슬롯이 될 수 있다.
이하, 새로운 무선 접속 기술(new radio access technology: new RAT, NR)에 대해 설명한다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 무선 접속 기술(radio access technology; RAT)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브 MTC (massive Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 확장된 모바일 브로드밴드 커뮤니케이션(enhanced mobile broadband communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술(technology)을 new RAT 또는 NR이라고 부른다.
도 4는 본 개시의 기술적 특징이 적용될 수 있는 무선 통신 시스템의 다른 예를 나타낸다.
구체적으로, 도 4는 5G NR(new radio access technology) 시스템에 기초한 시스템 아키텍처를 도시한다. 5G NR 시스템(이하, 간단히 "NR"이라 칭함)에서 사용되는 개체는 도 1에서 소개된 개체(예를 들어, eNB, MME, S-GW)의 일부 또는 모든 기능을 흡수할 수 있다. NR 시스템에서 사용되는 개체는 LTE와 구별하기 위해 "NG"라는 이름으로 식별될 수 있다.
도 4를 참조하면, 무선 통신 시스템은 하나 이상의 UE(11), NG-RAN(next-generation RAN) 및 5세대 코어 네트워크(5GC)를 포함한다. NG-RAN은 적어도 하나의 NG-RAN 노드로 구성된다. NG-RAN 노드는 도 1에 도시된 BS(20)에 대응하는 개체이다. NG-RAN 노드는 적어도 하나의 gNB(21) 및/또는 적어도 하나의 ng-eNB (22)로 구성된다. gNB(21)는 UE(11)를 향한 NR 사용자 평면 및 제어 평면 프로토콜의 종단을 제공한다. Ng-eNB(22)는 UE(11)를 향한 E-UTRA 사용자 평면 및 제어 평면 프로토콜의 종단을 제공한다.
5GC는 AMF(access and mobility management function), UPF(user plane function) 및 SMF(session management function)을 포함한다. AMF는 NAS 보안, 아이들 상태 이동성 처리 등과 같은 기능을 호스트 한다. AMF는 종래 MME의 기능을 포함하는 개체이다. UPF는 이동성 앵커링, PDU(protocol data unit) 처리와 같은 기능을 호스트 한다. UPF는 종래의 S-GW의 기능을 포함하는 개체이다. SMF는 UE IP 주소 할당, PDU 세션 제어와 같은 기능을 호스트 한다.
gNB와 ng-eNB는 Xn 인터페이스를 통해 상호 연결된다. gNB 및 ng-eNB는 또한 NG 인터페이스를 통해 5GC에 연결된다. 보다 구체적으로는, NG-C 인터페이스를 통해 AMF에, 그리고 NG-U 인터페이스를 통해 UPF에 연결된다.
도 5는 NG-RAN과 5GC 간의 기능적 분할을 예시한다.
도 5를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
도 6은 NR에서 적용될 수 있는 프레임 구조를 예시한다.
도 6을 참조하면, 프레임은 10 ms(millisecond)로 구성될 수 있고, 1 ms로 구성된 서브프레임 10개를 포함할 수 있다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성될 수 있다. 무선 프레임은 10 ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의될 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
서브프레임 내에는 부반송파 간격(subcarrier spacing)에 따라 하나 또는 복수의 슬롯(slot)들이 포함될 수 있다.
다음 표 1은 부반송파 간격 설정(subcarrier spacing configuration) μ를 예시한다.
[표 1]
Figure PCTKR2019015271-appb-I000001
다음 표 2는 부반송파 간격 설정(subcarrier spacing configuration) μ에 따라, 프레임 내 슬롯 개수(Nframe,μ slot), 서브프레임 내 슬롯 개수(Nsubframe,μ slot), 슬롯 내 심볼 개수(Nslot symb) 등을 예시한다.
[표 2]
Figure PCTKR2019015271-appb-I000002
표 2-1은 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임(SF) 별 슬롯의 개수를 예시한다.
[표 2-1]
Figure PCTKR2019015271-appb-I000003
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
도 7은 슬롯 구조를 나타낸다.
도 7을 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
PDCCH(physical downlink control channel)은 다음 표 3과 같이 하나 또는 그 이상의 CCE(control channel element)들로 구성될 수 있다.
[표 3]
Figure PCTKR2019015271-appb-I000004
즉, PDCCH는 1, 2, 4, 8 또는 16개의 CCE들로 구성되는 자원을 통해 전송될 수 있다. 여기서, CCE는 6개의 REG(resource element group)로 구성되며, 하나의 REG는 주파수 영역에서 하나의 자원 블록, 시간 영역에서 하나의 OFDM(orthogonal frequency division multiplexing) 심볼로 구성된다.
한편, NR에서는, 제어 자원 집합(control resource set: CORESET)이라는 새로운 단위를 도입할 수 있다. 단말은 CORESET에서 PDCCH를 수신할 수 있다.
도 8는 CORESET을 예시한다.
도 8를 참조하면, CORESET은 주파수 영역에서 NCORESET RB 개의 자원 블록들로 구성되고, 시간 영역에서 NCORESET symb ∈ {1, 2, 3}개의 심볼로 구성될 수 있다. NCORESET RB, NCORESET symb 는 상위 계층 신호를 통해 기지국에 의하여 제공될 수 있다. 도 8에 도시한 바와 같이 CORESET 내에는 복수의 CCE들(또는 REG들)이 포함될 수 있다.
단말은 CORESET 내에서, 1, 2, 4, 8 또는 16개의 CCE들을 단위로 PDCCH 검출을 시도할 수 있다. PDCCH 검출을 시도할 수 있는 하나 또는 복수 개의 CCE들을 PDCCH 후보라 할 수 있다.
단말은 복수의 CORESET들을 설정 받을 수 있다.
도 9은 종래의 제어 영역과 NR에서의 CORESET의 차이점을 나타내는 도면이다.
도 9을 참조하면, 종래의 무선통신 시스템(예컨대, LTE/LTE-A)에서의 제어 영역(300)은 기지국이 사용하는 시스템 대역 전체에 걸쳐 구성되었다. 좁은 대역만을 지원하는 일부 단말(예를 들어, eMTC/NB-IoT 단말)을 제외한 모든 단말은, 기지국이 전송하는 제어 정보를 제대로 수신/디코딩하기 위해서는 상기 기지국의 시스템 대역 전체의 무선 신호를 수신할 수 있어야 했다.
반면, NR에서는, 전술한 CORESET을 도입하였다. CORESET(301, 302, 303)은 단말이 수신해야 하는 제어정보를 위한 무선 자원이라 할 수 있으며, 시스템 대역 전체 대신 일부만을 사용할 수 있다. 기지국은 각 단말에게 CORESET을 할당할 수 있으며, 할당한 CORESET을 통해 제어 정보를 전송할 수 있다. 예를 들어, 도 9에서 제1 CORESET(301)은 단말 1에게 할당하고, 제2 CORESET(302)는 제2 단말에게 할당하고, 제3 CORESET(303)은 단말 3에게 할당할 수 있다. NR에서의 단말은 시스템 대역 전체를 반드시 수신하지 않더라도 기지국의 제어 정보를 수신할 수 있다.
CORESET에는, 단말 특정적 제어 정보를 전송하기 위한 단말 특정적 CORESET과 모든 단말에게 공통적인 제어 정보를 전송하기 위한 공통적 CORESET이 있을 수 있다.
한편, NR에서는, 응용(Application) 분야에 따라서는 높은 신뢰성(high reliability)를 요구할 수 있고, 이러한 상황에서 하향링크 제어 채널(예컨대, physical downlink control channel: PDCCH)을 통해 전송되는 DCI(downlink control information)에 대한 목표 BLER(block error rate)은 종래 기술보다 현저히 낮아질 수 있다. 이처럼 높은 신뢰성을 요구하는 요건(requirement)을 만족시키기 위한 방법의 일례로는, DCI에 포함되는 내용(contents)양을 줄이거나, 그리고/혹은 DCI 전송 시에 사용하는 자원의 양을 증가시킬 수 있다. 이 때 자원은, 시간 영역에서의 자원, 주파수 영역에서의 자원, 코드 영역에서의 자원, 공간 영역에서의 자원 중 적어도 하나를 포함할 수 있다.
한편, NR에서는 다음 기술/특징이 적용될 수 있다.
<셀프 컨테인드 서브프레임 구조(Self-contained subframe structure)>
도 10는 새로운 무선 접속 기술에 대한 프레임 구조의 일례를 도시한 것이다.
NR에서는 레이턴시(latency)를 최소화 하기 위한 목적으로 도 10과 같이, 하나의 TTI내에, 제어 채널과 데이터 채널이 시분할 다중화(Time Division Multiplexing: TDM) 되는 구조가 프레임 구조(frame structure)의 한가지로서 고려될 수 있다.
도 10에서 빗금 친 영역은 하향링크 제어(downlink control) 영역을 나타내고, 검정색 부분은 상향링크 제어(uplink control) 영역을 나타낸다. 표시가 없는 영역은 하향링크 데이터(downlink data; DL data) 전송을 위해 사용될 수도 있고, 상향링크 데이터(uplink data; UL data) 전송을 위해 사용될 수도 있다. 이러한 구조의 특징은 한 개의 서브프레임(subframe) 내에서 하향링크(DL) 전송과 상향링크(uplink; UL) 전송이 순차적으로 진행되어, 서브프레임(subframe) 내에서 DL data를 보내고, UL ACK/NACK(Acknowledgement/Not-acknowledgement)도 받을 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 레이턴시(latency)를 최소화할 수 있다.
이러한 데이터 및 제어 영역이 TDM된 서브프레임 구조(data and control TDMed subframe structure)에서 기지국과 단말이 송신 모드에서 수신 모드로의 전환 과정 또는 수신 모드에서 송신 모드로의 전환 과정을 위한 타입 갭(time gap)이 필요하다. 이를 위하여 셀프 컨테인드 서브프레임 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 보호 구간(guard period: GP)로 설정될 수 있다.
도 11은 셀프 컨테인드 슬롯 구조의 예이다.
도 11을 참조하면, 하나의 슬롯은 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 가질 수 있다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
여기서, DL 영역은 (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역일 수 있다. UL 영역은 (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역일 수 있다.
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
<아날로그 빔포밍 #1(Analog beamforming #1)>
밀리미터 웨이브(Millimeter Wave: mmW)에서는 파장이 짧아져서 동일 면적에 다수개의 안테나 엘리먼트(element)의 설치가 가능해 진다. 즉 30GHz 대역에서 파장은 1cm로써 5 by 5 cm의 패널(panel)에 0.5 파장(lambda) 간격으로 2-차원(dimension) 배열 형태로 총 100개의 안테나 엘리먼트(element) 설치가 가능하다. 그러므로 mmW에서는 다수개의 안테나 엘리먼트(element)를 사용하여 빔포밍(beamforming: BF) 이득을 높여 커버리지를 증가시키거나, 처리량(throughput)을 높이려고 한다.
이 경우에 안테나 엘리먼트(element) 별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(Transceiver Unit: TXRU)을 가지면 주파수 자원 별로 독립적인 빔포밍(beamforming)이 가능하다. 그러나 100여개의 안테나 엘리먼트(element) 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다. 그러므로 하나의 TXRU에 다수개의 안테나 엘리먼트(element)를 맵핑(mapping)하고 아날로그 페이즈 쉬프터(analog phase shifter)로 빔(beam)의 방향을 조절하는 방식이 고려되고 있다. 이러한 아날로그 빔포밍(analog beamforming) 방식은 전 대역에 있어서 하나의 빔(beam) 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming)을 해줄 수 없는 단점을 갖는다.
디지털 빔포밍(Digital BF)과 아날로그 빔포밍(analog BF)의 중간 형태로 Q개의 안테나 엘리먼트(element)보다 적은 개수인 B개의 TXRU를 갖는 하이브리드 빔포밍(hybrid BF)을 고려할 수 있다. 이 경우에 B개의 TXRU와 Q개의 안테나 엘리먼트(element)의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
<아날로그 빔포밍 #2(Analog beamforming #2)>
NR 시스템에서는 다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법이 대두되고 있다. 이 때, 아날로그 빔포밍(또는 RF 빔포밍)은 RF 단에서 프리코딩(Precoding) (또는 컴바이닝(Combining))을 수행하며, 이로 인해 RF 체인 수와 D/A (또는 A/D) 컨버터 수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다. 편의상 상기 하이브리드 빔포밍 구조는 N개의 TXRU와 M개의 물리적 안테나로 표현될 수 있다. 그러면 송신단에서 전송할 L개의 데이터 계층(data layer)에 대한 디지털 빔포밍은 N by L 행렬로 표현될 수 있고, 이후 변환된 N개의 디지털 신호(digital signal)는 TXRU를 거쳐 아날로그 신호(analog signal)로 변환된 다음 M by N 행렬로 표현되는 아날로그 빔포밍이 적용된다.
도 12는 상기 TXRU 및 물리적 안테나 관점에서 하이브리드 빔포밍(Hybrid beamforming) 구조를 추상적으로 도식화한 것이다.
도 12에서 디지털 빔(digital beam)의 개수는 L개 이며, 아날로그 빔(analog beam)의 개수는 N개이다. 더 나아가서 NR 시스템에서는 기지국이 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 설계하여 특정한 지역에 위치한 단말에게 보다 효율적인 빔포밍을 지원하는 방향을 고려하고 있다. 더 나아가서 도 11에서 특정 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로 정의할 때, 상기 NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다.
상기와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, 단말 별로 신호 수신에 유리한 아날로그 빔이 다를 수 있으므로 적어도 동기화 신호(synchronization signal), 시스템 정보(system information), 페이징(paging) 등에 대해서는 특정 서브프레임에서 기지국이 적용할 복수 아날로그 빔들을 심볼 별로 바꾸어 모든 단말이 수신 기회를 가질 수 있도록 하는 빔 스위핑(beam sweeping) 동작이 고려되고 있다.
도 13은 동기화 신호 및 PBCH(SS/PBCH) 블록을 도시한 것이다.
도 13에 따르면, SS/PBCH 블록은 각각 1개의 심볼 및 127개의 부반송파들을 차지하는 PSS 및 SSS, 및 3개의 OFDM 심볼들 및 240개의 부반송파들에 걸쳐 있으나 하나의 심볼 상에는 SSS를 위한 미사용 부분이 중간에 남겨진 PBCH로 구성된다. SS/PBCH 블록의 주기성은 네트워크에 의해 설정될 수 있고 SS/PBCH 블록이 전송될 수 있는 시간 위치는 부반송파 간격(subcarrier spacing)에 의해 결정될 수 있다.
PBCH에 대해서는 폴라 코딩(Polar Coding)이 사용될 수 있다. 단말은 네트워크가 상이한 부반송파 간격을 단말이 가정하도록 설정하지 않는 한 SS/PBCH 블록에 대해 밴드-특정적인 부반송파 간격을 가정할 수 있다.
PBCH 심볼들은 자신의 주파수-다중화된 DMRS를 운반한다. PBCH에 대해 QPSK 변조가 사용될 수 있다. 1008개의 고유한 물리 계층 셀 ID가 주어질 수 있다.
SS/PBCH 블록들을 갖는 하프 프레임에 대하여, 후보 SS/PBCH 블록들에 대한 첫 번째 심볼 인덱스들은 후술하는 SS/PBCH 블록들의 부반송파 간격에 따라 결정된다.
- 케이스(case) A - 부반송파 간격 15kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {2, 8}+14*n의 인덱스를 갖는다. 3GHz 이하의 반송파 주파수에 대하여, n=0, 1이다. 3GHz 초과 6GHz 이하의 반송파 주파수에 대하여, n=0, 1, 2, 3이다.
- 케이스 B - 부반송파 간격 30kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {4, 8, 16, 20}+28*n의 인덱스를 갖는다. 3GHz 이하의 반송파 주파수에 대하여, n=0이다. 3GHz 초과 6GHz 이하의 반송파 주파수에 대하여, n=0, 1이다.
- 케이스 C - 부반송파 간격 30kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {2, 8}+14*n의 인덱스를 갖는다. 3GHz 이하의 반송파 주파수에 대하여, n=0, 1이다. 3GHz 초과 6GHz 이하의 반송파 주파수에 대하여, n=0, 1, 2, 3이다.
- 케이스 D - 부반송파 간격 120kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {4, 8, 16, 20}+28*n의 인덱스를 갖는다. 6GHz 초과의 반송파 주파수에 대하여, n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- 케이스 E - 부반송파 간격 240kHz: 후보 SS/PBCH 블록들의 첫 번째 심볼들은 {8, 12, 16, 20, 32, 36, 40, 44}+56*n의 인덱스를 갖는다. 6GHz 초과의 반송파 주파수에 대하여, n=0, 1, 2, 3, 5, 6, 7, 8이다.
하프 프레임 내 후보 SS/PBCH 블록들은 시간 축에서 0부터 L-1까지 오름차순으로 인덱싱된다. 단말은 PBCH 내에서 전송된 DM-RS 시퀀스의 인덱스와의 일 대 일 맵핑으로부터 하프 프레임 당 SS/PBCH 블록 인덱스의 L=4에 대한 2 LSB 비트를, L>4에 대한 3 LSB 비트를 결정해야 한다. L=64에 대하여, 단말은 PBCH 페이로드 비트들에 의한 하프 프레임 당 SS/PBCH 블록 인덱스의 3 MSB 비트를 결정해야 한다.
상위 계층 파라미터 'SSB-transmitted-SIB1'에 의하여, 단말이 SS/PBCH 블록들에 대응하는 RE들과 오버렙되는 RE들 내에서 다른 신호 또는 채널들을 수신할 수 없는 SS/PBCH 블록들의 인덱스가 설정될 수 있다. 또한 상위 계층 파라미터 'SSB-transmitted'에 의하여, SS/PBCH 블록들과 대응하는 RE들에 오버랩되는 RE들 내에서 단말이 다른 신호 또는 채널들을 수신할 수 없는 서빙 셀 당 SS/PBCH 블록들의 인덱스가 설정될 수 있다. 'SSB-transmitted'에 의한 설정은 'SSB-transmitted-SIB1'에 의한 설정에 우선할 수 있다. 상위 계층 파라미터 'SSB-periodicityServingCell'에 의해 서빙 셀 당 SS/PBCH 블록들의 수신에 대한 하프 프레임의 주기성이 설정될 수 있다. 만약 단말이 SS/PBCH 블록들의 수신에 대한 하프 프레임의 주기성을 설정받지 못하면, 단말은 하프 프레임의 주기성을 가정해야 한다. 단말은 서빙 셀 내 모든 SS/PBCH 블록들에 대해 주기성이 동일하다고 가정할 수 있다.
도 14는 단말이 타이밍 정보를 획득하는 방법을 설명하기 위한 것이다.
우선, 단말은 PBCH 내에서 수신한 MIB(MasterInformationBlock)를 통하여 6비트의 SFN 정보를 얻을 수 있다. 또한, PBCH 전송 블록 내에서 SFN 4 비트를 획득할 수 있다.
두 번째로, 단말은 PBCH 페이로드의 일부로서 1 비트 하프 프레임 지시자를 얻을 수 있다. 3GHz 미만에서, 하프 프레임 지시자는 Lmax=4에 대한 PBCH DMRS의 일부로서 암묵적으로 시그널링될 수 있다.
마지막으로, 단말은 DMRS 시퀀스 및 PBCH 페이로드에 의해 SS/PBCH 블록 인덱스를 획득할 수 있다. 즉, 5ms 주기 동안 DMRS 시퀀스에 의하여 SS 블록 인덱스의 LSB 3 비트를 얻을 수 있다. 또한, (6GHz 초과에 대해) PBCH 페이로드 내에서 타이밍 정보의 MSB 3 비트가 명시적으로 운반된다.
초기 셀 선택에서, 단말은 SS/PBCH 블록들을 갖는 하프 프레임이 2 프레임의 주기성을 갖고 발생한다고 가정할 수 있다. SS/PBCH 블록을 감지하면, 단말은, 만약 FR1에 대해 kSSB≤23이고 및 FR2에 대해 kSSB≤11이면, Type0-PDCCH 공통 검색 공간(common search space)에 대한 제어 자원 집합이 존재한다고 결정한다. 단말은, 만약 FR1에 대해 kSSB>23이고 및 FR2에 대해 kSSB>11이면, Type0-PDCCH 공통 검색 공간(common search space)에 대한 제어 자원 집합이 존재하지 않는다고 결정한다.
SS/PBCH 블록들의 전송이 없는 서빙 셀에 대해, 단말은 서빙 셀에 대한 셀 그룹의 프라이머리 셀 또는 PSCell 상에서의 SS/PBCH 블록들의 수신에 기반하여 서빙 셀의 시간 및 주파수 동기를 획득한다.
이하에서는, 시스템 정보 획득에 대해 설명한다.
시스템 정보(system information: SI)는 MasterInformationBlock (MIB) 및 복수의 SystemInformationBlocks (SIBs)로 나뉘어진다. 여기서,
- MIB는 80ms 주기를 갖고 항상 BCH 상에서 전송되고 80ms 이내에서 반복되며, 셀로부터 SystemInformationBlockType1 (SIB1)을 획득하기 위해 필요한 파라미터들을 포함한다;
- SIB1은 DL-SCH 상에서 주기성 및 반복을 갖고 전송된다. SIB1은 다른 SIB들의 이용 가능성 및 스케줄링(예를 들어, 주기성, SI-윈도우 크기)에 대한 정보를 포함한다. 또한, 이들(즉, 다른 SIB들)이 주기적인 방송 기반으로 제공되는지 또는 요구에 의해 제공되는지 여부를 지시한다. 만약 다른 SIB들이 요구에 의해 제공되면 SIB1은 단말이 SI 요청을 수행하기 위한 정보를 포함한다;
- SIB1 이외의 SIB들은 DL-SCH 상에서 전송되는 SystemInformation (SI) 메시지로 운반된다. 각 SI 메시지는 주기적으로 발생하는 시간 영역 윈도우(SI-윈도우라고 부른다.) 내에서 전송된다;
- PSCell 및 세컨더리 셀들에 대해, RAN은 전용 시그널링에 의해 필요한 SI를 제공한다. 그럼에도 불구하고, 단말은 SCH의 SFN 타이밍(MCG와 다를 수 있음.)을 얻기 위해 PSCell의 MIB를 획득해야 한다. 세컨더리 셀에 대한 관련 SI가 변경되면, RAN은 관련 세컨더리 셀을 해제 및 추가한다. PSCell에 대해, SI는 동기화를 통한 재설정(Reconfiguration with Sync)으로만 변경 가능하다.
도 15는 단말의 시스템 정보 획득 과정의 일례를 도시한 것이다.
도 15에 따르면, 단말은 네트워크로부터 MIB를 수신하고, 이후 SIB1을 수신할 수 있다. 이후, 단말은 네트워크로 시스템 정보 요청을 전송할 수 있고, 그에 대한 응답으로 'SystemInformation message'를 네트워크로부터 수신할 수 있다.
단말은 AS(access stratum) 및 NAS(non-access stratum) 정보 획득을 위한 시스템 정보 획득 절차를 적용할 수 있다.
RRC_IDLE 및 RRC_INACTIVE 상태의 단말은 (단말이 제어하는 이동성에 대한 관련 RAT 지원에 따라) 유효한 버전의 (적어도) MIB, SIB1 및 SystemInformationBlockTypeX을 보장해야 한다.
RRC_CONNECTED 상태의 단말은 (관련 RAT에 대한 이동성 지원에 따라) MIB, SIB1, 및 SystemInformationBlockTypeX의 유효한 버전을 보장해야 한다.
단말은 현재 캠프한/서빙 셀로부터 획득한 관련 SI를 저장해야 한다. 단말이 획득하고 저장한 SI의 버전은 일정 시간 동안만 유효하다. 단말은 예를 들어, 셀 재선택 이후, 커버리지 밖으로부터의 복귀, 또는 시스템 정보 변경 지시 이후에 이러한 저장된 버전의 SI를 사용할 수 있다.
이하에서는, 랜덤 접속(random access)에 대해 설명한다.
단말의 랜덤 접속 절차는 다음 표 4와 같이 요약할 수 있다.
[표 4]
Figure PCTKR2019015271-appb-I000005
도 16은 랜덤 접속 절차를 설명하기 위한 것이다.
도 16에 따르면, 먼저, 단말은 랜덤 접속 절차의 message(Msg) 1로서 상향링크로 PRACH 프리앰블을 전송할 수 있다.
2 개의 서로 다른 길이를 갖는 랜덤 접속 프리앰블 시퀀스가 지원된다. 길이 839의 긴 시퀀스는 1.25kHz 및 5kHz의 부반송파 간격에 적용되고, 길이 139의 짧은 시퀀스는 15, 30, 60, 및 120kHz의 부반송파 간격에 적용된다. 긴 시퀀스는 한정되지 않은 집합(inrestricted set) 및 타입 A 및 타입 B의 한정된 집합을 지원하고, 반면 짧은 시퀀스는 오직 한정되지 않은 집합만을 지원한다.
복수의 RACH 프리앰블 포맷들은 하나 이상의 RACH OFDM 심볼들, 상이한 CP(cyclic prefix), 및 보호 시간(guard time)으로 정의된다. 사용할 PRACH 프리앰블 설정은 시스템 정보로 단말에게 제공된다.
Msg1에 대한 응답이 없는 경우, 단말은 규정된 횟수 내에서 파워 램핑된 PRACH 프리앰블을 재전송할 수 있다. 단말은 가장 최근의 추정 경로 손실 및 파워 램핑 카운터에 기반하여 프리앰블의 재전송에 대한 PRACH 전송 전력을 계산한다. 만약 단말이 빔 스위칭을 수행하면, 파워 램핑 카운터는 변하지 않는다.
도 17은 파워 램핑 카원터를 설명하기 위한 것이다.
단말은 파워 램핑 카운터에 기반하여 랜덤 접속 프리앰블의 재전송에 대한 파워 램핑을 수행할 수 있다. 여기서, 전술한 바와 같이, 파워 램핑 카운터는 단말이 PRACH 재전송 시 빔 스위칭을 수행하는 경우 변하지 않는다.
도 17에 따르면, 파워 램핑 카운터가 1에서 2로, 3에서 4로 증가하는 경우와 같이, 단말이 동일한 빔에 대해 랜덤 접속 프리앰블을 재전송할 경우에는 단말은 파워 램핑 카운터를 1씩 증가시킨다. 그러나 빔이 변경된 경우에는 PRACH 재전송 시 파워 램핑 카운터가 변하지 않는다.
도 18은 RACH 자원 관계에 대한 SS 블록의 문턱치 개념을 설명하기 위한 것이다.
시스템 정보는 SS 블록들과 RACH 자원들 사이의 관계를 단말에게 알려준다. RACH 자원 관계에 대한 SS 블록의 문턱치는 RSRP 및 네트워크 설정에 기반한다. RACH 프리앰블의 전송 또는 재전송은 문턱치를 만족하는 SS 블록에 기반한다. 따라서, 도 18의 예에서는, SS 블록 m이 수신 전력의 문턱치를 넘으므로, SS 블록 m에 기반하여 RACH 프리앰블이 전송 또는 재전송된다.
이후, 단말이 DL-SCH 상에서 랜덤 접속 응답(random access response)을 수신하면, DL-SCH는 타이밍 배열 정보, RA-프리앰블 ID, 초기 상향링크 그랜트 및 임시 C-RNTI를 제공할 수 있다.
상기 정보에 기반하여, 단말은 랜덤 접속 절차의 Msg3로서 UL-SCH 상에서 상향링크 전송을 할 수 있다. Msg3은 RRC 연결 요청 및 UE 식별자를 포함할 수 있다.
이에 대한 응답으로, 네트워크는 경쟁 해소 메시지로 취급될 수 있는 Msg4를 하향링크로 전송할 수 있다. 이를 수신함으로써 단말은 RRC 연결 상태로 진입할 수 있다.
<대역폭 파트(bandwidth part: BWP)>
NR 시스템에서는 하나의 요소 반송파(component carrier: CC) 당 최대 400 메가헤르츠(megahertz: MHz)까지 지원될 수 있다. 이러한 광대역(wideband) CC에서 동작하는 단말이 항상 CC 전체에 대한 RF를 켜둔 채로 동작한다면 단말 배터리 소모가 커질 수 있다. 혹은 하나의 광대역 CC 내에 동작하는 여러 유스 케이스(use case)들(예, eMBB, URLLC, mMTC 등)을 고려할 때 해당 CC 내에 주파수 대역 별로 서로 다른 뉴머롤로지(numerology) (예, 부반송파 간격(sub-carrier spacing: SCS))가 지원될 수 있다. 혹은 단말 별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 기지국은 광대역 CC의 전체 대역폭이 아닌 일부 대역폭에서만 동작하도록 단말에게 지시할 수 있으며, 해당 일부 대역폭을 편의상 대역폭 파트(bandwidth part: BWP)로 정의하고자 한다. BWP는 주파수 축 상에서 연속한 자원 블록(resource block: RB)들로 구성될 수 있으며, 하나의 뉴머롤로지 (예, 부반송파 간격, CP(cyclic prefix) 길이, 슬롯/미니-슬롯(mini-slot) 기간(duration) 등)에 대응될 수 있다.
한편, 기지국은 단말에게 설정된 하나의 CC 내에서도 다수의 BWP를 설정할 수 있다. 일 예로, PDCCH 모니터링 슬롯(PDCCH monitoring slot)에서는 상대적으로 작은 주파수 영역을 차지하는 BWP를 설정하고, PDCCH에서 지시하는 PDSCH는 그보다 큰 BWP 상에 스케줄링될 수 있다. 혹은, 특정 BWP에 단말들이 몰리는 경우 부하 밸런싱(load balancing)을 위해 일부 단말들을 다른 BWP로 설정할 수 있다. 혹은, 이웃 셀 간의 주파수 영역 인터-셀 간섭 해제(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 대역폭 중 가운데 일부 스펙트럼을 배제하고 양쪽 BWP들을 동일 슬롯 내에서도 설정할 수 있다. 즉, 기지국은 광대역(wideband) CC 와 관련(association)된 단말에게 적어도 하나의 DL/UL BWP를 설정해 줄 수 있으며, 특정 시점에 설정된 DL/UL BWP(s) 중 적어도 하나의 DL/UL BWP를 (L1 시그널링 또는 MAC CE 또는 RRC 시그널링 등에 의해) 활성화(activation)시킬 수 있고, 다른 설정된 DL/UL BWP로 스위칭이 (L1 시그널링 또는 MAC CE 또는 RRC 시그널링 등에 의해) 지시될 수 있거나, 타이머 기반으로 타이머 값이 만료되면 정해진 DL/UL BWP로 스위칭될 수도 있다. 이 때, 활성화된 DL/UL BWP를 활성(active) DL/UL BWP로 정의한다. 그런데 단말이 초기 접속(initial access) 과정에 있거나, 혹은 RRC 연결이 셋업(set up)되기 전 등의 상황에서는 DL/UL BWP에 대한 설정을 수신하지 못할 수 있는데, 이러한 상황에서 단말이 가정하는 DL/UL BWP는 초기 활성(initial active) DL/UL BWP라고 정의한다.
<DRX(Discontinuous Reception)>
DRX(Discontinuous Reception)는 UE(User Equipment)가 배터리 소비를 감소시켜 단말이 다운 링크 채널을 불연속적으로 수신할 수 있게 하는 동작 모드를 의미한다. 즉, DRX로 설정된 단말은 DL 시그널을 불연속적으로 수신함으로써 전력 소비를 줄일 수 있다.
DRX 동작은 온 구간(On Duration)이 주기적으로 반복되는 시간 간격을 나타내는 DRX 사이클 내에서 수행된다. DRX 사이클은 온-구간 및 수면 구간(Sleep Duration)(혹은, DRX의 기회)을 포함한다. 온-구간은 단말이 PDCCH를 수신하기 위해 PDCCH를 모니터링하는 시간 간격을 나타낸다.
DRX는 RRC(Radio Resource Control)_IDLE 상태(또는 모드), RRC_INACTIVE 상태(또는 모드) 또는 RRC_CONNECTED 상태(또는 모드)에서 수행될 수 있다. RRC_IDLE 상태 및 RRC_INACTIVE 상태에서, DRX는 페이징 신호를 불연속적으로 수신하는데 사용될 수 있다.
- RRC_IDLE 상태: 기지국과 단말 사이에 무선 연결(RRC 연결)이 확립(establish)되지 않은 상태.
- RRC_INACTIVE 상태: 기지국과 단말 사이에 무선 연결(RRC 연결)이 확립되었지만, 무선 연결은 비활성화된 상태.
- RRC_CONNECTED 상태: 기지국과 단말 사이에 무선 연결(RRC 연결)이 확립된 상태.
DRX는 기본적으로 유휴(idle) 모드 DRX, 연결된(Connected) DRX (C-DRX) 및 확장(extended) DRX로 구분될 수 있다.
IDLE 상태에서 적용된 DRX는 유휴 모드 DRX라고 명명될 수 있으며, CONNECTED 상태에서 적용된 DRX는 연결 모드 DRX(C-DRX)라고 명명될 수 있다.
eDRX(Extended/Enhanced DRX)는 유휴 모드 DRX 및 C-DRX의 사이클을 확장할 수 있는 메커니즘으로, eDRX(Extended/Enhanced DRX)는 주로 (매시브) IoT의 적용에 사용될 수 있다. 유휴 모드 DRX에서, eDRX를 허용할 것인지 여부는 시스템 정보(예컨대, SIB1)에 기반하여 설정될 수 있다. SIB1은 eDRX-허용(allowed) 파라미터를 포함할 수 있다. eDRX-허용 파라미터는 유휴 모드 확장 DRX가 허용되는지 여부를 나타내는 파라미터다.
<유휴(idle) 모드 DRX>
유휴 모드에서, 단말은 전력 소비를 감소시키기 위해 DRX를 사용할 수 있다. 하나의 페이징 기회(paging occasion; PO)는 P-RNTI(Paging-Radio Network Temporary Identifier)가 (NB-IoT에 대한 페이징 메시지를 어드레스(address)하는) PDCCH(Physical Downlink Control Channel) 또는 MPDCCH(MTC PDCCH) 또는 NPDCCH(Narrowband PDCCH)를 통해 전송될 수 있는 서브 프레임이다.
MPDCCH를 통해 전송된 P-RNTI에서 PO는 MPDCCH 반복의 시작 서브 프레임을 나타낼 수 있다. NPDCCH를 통해 전송된 P-RNTI의 케이스에서, PO에 의해 결정된 서브프레임이 유효한 NB-IoT 다운링크 서브 프레임이 아닌 경우, PO는 NPDCCH 반복의 시작 서브 프레임을 나타낼 수 있다. 따라서, PO 이후의 첫 번째 유효 NB-IoT 다운 링크 서브 프레임은 NPDCCH 반복의 시작 서브 프레임이다.
하나의 페이징 프레임(paging frame; PF)은 하나 또는 복수의 페이징 기회를 포함할 수 있는 하나의 무선 프레임이다. DRX가 사용될 때, 단말은 DRX 사이클 당 하나의 PO만을 모니터링하면 된다. 하나의 페이징 협대역(paging narrow band; PNB)은 단말이 페이징 메시지 수신을 수행하는 하나의 협대역이다. PF, PO 및 PNB는 시스템 정보에서 제공되는 DRX 파라미터에 기초하여 결정될 수 있다.
도 19은 유휴 모드 DRX 동작을 수행하는 일례를 도식한 순서도다.
도 19에 따르면, 단말은 상위 계층 시그널링(예컨대,: 시스템 정보)을 통해 유휴 모드 DRX 설정 정보를 기지국으로부터 수신할 수 있다(S21).
단말은 유휴 모드 DRX 설정 정보에 기반하여 페이징 DRX 사이클에서 PDCCH를 모니터링하기 위해 PF(Paging Frame) 및 PO(Paging Occasion)를 결정할 수 있다(S22). 이 경우 DRX 사이클에는 온-구간 및 수면 구간(또는 DRX의 기회)이 포함될 수 있다..
단말은 결정된 PF의 PO에서 PDCCH를 모니터링할 수 있다(S23). 여기서 예컨대, 단말은 페이징 DRX 사이클 당 하나의 서브 프레임(PO)만을 모니터링한다. 또한, 단말이 온-구간 동안 P-RNTI에 의해 스크램블링된 PDCCH를 수신하면(즉, 페이징이 검출되는 경우), 단말은 연결 모드로 천이하고 기지국과 데이터를 송수신할 수 있다.
<연결 모드 DRX(Connected mode DRX(C-DRX))>
C-DRX는 RRC 연결 상태에서 적용되는 DRX를 의미한다. C-DRX의 DRX 사이클은 짧은 DRX 사이클 및/또는 긴 DRX 사이클로 구성될 수 있다. 여기서, 짧은 DRX 사이클은 선택 사항에 해당할 수 있다.
C-DRX가 설정된 경우, 단말은 온-구간에 대한 PDCCH 모니터링을 수행할 수 있다. PDCCH 모니터링 동안 PDCCH가 성공적으로 검출되면, 단말은 인액티브(inactive) 타이머를 동작(또는 실행)하고 어웨이크(awake) 상태를 유지할 수 있다. 반대로, PDCCH 모니터링 동안 PDCCH가 성공적으로 검출되지 않으면, 단말은 온-구간이 종료된 후 슬립 상태로 진입할 수 있다.
C-DRX가 설정된 경우, PDCCH 수신 기회(예컨대, PDCCH 서치 스페이스를 가지는 슬롯)는 C-DRX 설정에 기반하여 비연속적으로 설정될 수 있다. 대조적으로, C-DRX가 설정되지 않으면, 본 개시에서 PDCCH 수신 기회(예컨대, PDCCH 서치 스페이스를 갖는 슬롯)가 연속적으로 설정될 수 있다.
한편, PDCCH 모니터링은 C-DRX 설정에 관계없이 측정 갭(gap)으로 설정된 시간 간격으로 제한될 수 있다.
도 20는 DRX 사이클을 예시한다.
도 20를 참조하면, DRX 사이클은 'On Duration(온-구간)'과 'Opportunity for DRX(DRX를 위한 기회)'로 구성된다. DRX 사이클은 '온-구간'이 주기적으로 반복되는 시간 간격을 정의한다. '온-구간'은 단말이 PDCCH를 수신하기 위해 모니터링 하는 시간 구간을 나타낸다. DRX가 설정되면, 단말은 '온-구간' 동안 PDCCH 모니터링을 수행한다. PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 있는 경우, 단말은 inactivity 타이머를 동작시키고 깬(awake) 상태를 유지한다. 반면, PDCCH 모니터링 동안에 성공적으로 검출된 PDCCH가 없는 경우, 단말은 '온-구간'이 끝난 뒤 슬립(sleep) 상태로 들어간다. 따라서, DRX가 설정된 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 불연속적으로 수행될 수 있다. 예를 들어, DRX가 설정된 경우, 본 개시에서 PDCCH 수신 기회(occasion)(예, PDCCH 탐색 공간을 갖는 슬롯)는 DRX 설정에 따라 불연속적으로 설정될 수 있다. 반면, DRX가 설정되지 않은 경우, 앞에서 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링/수신이 시간 도메인에서 연속적으로 수행될 수 있다. 예를 들어, DRX가 설정되지 않은 경우, 본 개시에서 PDCCH 수신 기회(예, PDCCH 탐색 공간을 갖는 슬롯)는 연속적으로 설정될 수 있다. 한편, DRX 설정 여부와 관계 없이, 측정 갭으로 설정된 시간 구간에서는 PDCCH 모니터링이 제한될 수 있다.
표 5는 DRX와 관련된 단말의 과정을 나타낸다(RRC_CONNECTED 상태). 표 5를 참조하면, DRX 구성 정보는 상위 계층(예, RRC) 시그널링을 통해 수신되고, DRX ON/OFF 여부는 MAC 계층의 DRX 커맨드에 의해 제어된다. DRX가 설정되면, 본 개시에 설명/제안한 절차 및/또는 방법을 수행함에 있어서 PDCCH 모니터링을 불연속적으로 수행할 수 있다.
[표 5]
Figure PCTKR2019015271-appb-I000006
상기 MAC-CellGroupConfig는 셀 그룹을 위한 MAC(Medium Access Control) 파라미터를 설정하는데 필요한 구성 정보를 포함할 수 있다. MAC-CellGroupConfig는 DRX에 관한 구성 정보도 포함할 수 있다. 예를 들어, MAC-CellGroupConfig는 DRX를 정의하는데 정보를 다음과 같이 포함할 수 있다.
- Value of drx-OnDurationTimer: DRX 사이클의 시작 구간의 길이를 정의
- Value of drx-InactivityTimer: 초기 UL 또는 DL 데이터를 지시하는 PDCCH가 검출된 PDCCH 기회 이후에 단말이 깬 상태로 있는 시간 구간의 길이를 정의
- Value of drx-HARQ-RTT-TimerDL: DL 초기 전송이 수신된 후, DL 재전송이 수신될 때까지의 최대 시간 구간의 길이를 정의.
- Value of drx-HARQ-RTT-TimerDL: UL 초기 전송에 대한 그랜트가 수신된 후, UL 재전송에 대한 그랜트가 수신될 때까지의 최대 시간 구간의 길이를 정의.
- drx-LongCycleStartOffset: DRX 사이클의 시간 길이와 시작 시점을 정의
- drx-ShortCycle (optional): short DRX 사이클의 시간 길이를 정의
여기서, drx-OnDurationTimer, drx-InactivityTimer, drx-HARQ-RTT-TimerDL, drx-HARQ-RTT-TimerDL 중 어느 하나라도 동작 중이면 단말은 깬 상태를 유지하면서 매 PDCCH 기회마다 PDCCH 모니터링을 수행한다.
무선통신 시스템 예컨대, LTE와 NR 등에서 DRX 동작은, 단말이 DL/UL 전송을 수행하지 않는 구간을 제공하여 단말의 전력 소모(power consumption)를 줄이기 위해 도입되었다. DRX 동작을 위해 시그널링 되는 파라미터(parameter)는 이미 설명한 바 있고, 필요한 경우 이하에서 다시 설명한다.
도 21은 DRX 동작의 일 예이다.
도 21을 참조하면, 단말은 DRX 설정(configuration)에 의해 DRX 사이클(cycle)의 시작 지점(starting point), DRX 사이클의 구간(duration, 지속 시간), 온-구간 타이머(on-duration timer)의 시작 지점 및 온-구간 타이머의 구간을 알 수 있다. 이후 단말은 각 DRX 사이클의 온-구간 내에서 스케줄링 정보(scheduling information)에 대한 수신(reception)/검출(detection)을 시도(이를 스케줄링 정보를 모니터링한다고 표현할 수도 있음)한다.
DRX 사이클의 온-구간 내에서 스케줄링 정보가 검출될 경우, 비활성화 타이머(inactivity timer)가 활성화되고, 주어진 비활성화 타이머 구간(비활성화 타이머가 동작하는 시간 구간) 동안 또 다른 스케줄링 정보에 대한 검출을 시도하게 된다. 이러한 경우, 단말이 신호 수신/검출 동작을 수행하는, 상기 온-구간과 상기 비활성화 타이머 구간을 합하여 활성화 시간(active time)이라 칭할 수 있다. 만약, 상기 온-구간 내에서 스케줄링 정보가 검출되지 않은 경우에는 상기 온-구간만이 활성화 시간이 될 수 있다.
추가적인 신호(제어 신호 또는 데이터)의 수신/검출 없이 비활성화 타이머가 종료될 경우, 단말은 비활성화 타이머가 종료된 시점부터 다음 DRX 사이클의 온-구간(DRX on duration)이 시작될 때까지(도 21에서 수면(sleep)으로 표시된 시간 구간) 스케줄링 정보 및 그에 대응하는 DL 수신/UL 전송을 수행하지 않게 된다.
DRX 사이클의 구간 조절, 온-구간 타이머/비활성화 타이머의 구간 조절 등은 단말의 수면(sleep) 여부를 결정하는데 중요한 역할을 한다. 해당 파라미터에 대한 셋팅(setting)에 따라 네트워크는 단말을 자주 수면(sleep)하도록 하거나, 스케줄링 정보에 대한 모니터링을 끊임없이 수행하도록 설정할 수 있다. 이는 단말의 전력 절감 여부를 결정하는 요소로 작용할 수 있다.
DRX 동작을 위한 DRX 설정은, RRC 시그널링 등을 통하여 단말에게 전달될 수 있으며, RRC 시그널링을 통한 재설정(reconfiguration) 등을 통해 새로운 설정을 적용할 수 있다. 그러나, 이러한 방법에 의할 때, 단말의 상황에 따른 DRX 설정의 동적인 적응(adaptation)이 어려울 수 있다. 따라서, 다양한 서비스를 지원하기 위한 단말의 전력 소모를 동적으로 조절하기 위한 추가적인 방법이 필요할 수 있다.
본 개시(disclosure)에서는 DRX 설정을 동적으로 변경/적용할 것을 제안하며, 적응적(adaptive) DRX 동작을 운용하는 방법을 제안한다.
<다중 DRX 설정들(Multiple DRX configurations>
네트워크는 다중(복수의) DRX 설정들을 단말에게 미리 시그널링하고, 특정 시점에 상기 복수의 DRX 설정들 중 특정 설정을 적용하도록 지시할 수 있다. DRX 설정에 포함된 파라미터는 예를 들어, 아래 파라미터들 중 적어도 하나를 포함할 수 있다. 아래 파라미터들 중 일부 혹은 전부에 대하여 다중 설정들, 즉 복수개의 설정들이 단말에게 지시될 수 있다.
도 22는 단말의 DRX 동작 방법을 예시한다.
도 22를 참조하면, 단말은 기지국으로부터 복수의 DRX 설정들을 수신한다(S1210).
단말은 상기 복수의 DRX 설정들 중 선택한 하나의 DRX 설정에 기반하여 상기 DRX 동작을 수행한다(S1220). 상기 하나의 DRX 설정은 복수의 파라미터들을 포함하고, 상기 복수의 파라미터들 중 특정 파라미터는 복수의 설정 값들을 가지고 그 이외의 파라미터들은 하나의 설정 값을 가질 수 있다.
상기 단말의 상태는 전력 절감 상태 또는 노멀 상태 중 어느 하나일 수 있다. 이 때, 상기 단말은 상기 복수의 설정 값들 중에서 상기 단말의 상태에 따라 정해진 설정 값을 상기 특정 파라미터의 값으로 선택할 수 있다.
상기 특정 파라미터는 DRX 온-구간(on-duration)에 관련된 타이머 값을 알려주는 파라미터 또는 비활성화 타이머 값을 알려주는 파라미터일 수 있다. 상기 비활성화 타이머는 상기 DRX 온-구간에서 스케줄링 정보를 검출하면 활성화되어 비활성화 시간 구간 동안 동작하는 타이머일 수 있다. 상기 단말은 상기 비활성화 시간 구간에서 또 다른 스케줄링 정보를 모니터링할 수 있다.
또는, 단말은 상기 복수의 설정 값들 중에서 어느 설정 값을 사용할 것인지를 알려주는 신호를 더 수신할 수도 있다.
활성화 시간(active time) 및 수면 시간(sleep time)을 포함하는 제1 DRX 사이클에 상기 복수의 DRX 설정들 중 제1 DRX 설정을 적용하되, 상기 활성화 시간은 DRX 온-구간 및 비활성화 타이머(inactivity timer)가 동작하는 시간을 포함할 수 있다.
이제, 도 22의 각 단계에 대해 보다 상세히 설명한다.
DRX 설정은 다음과 같은 파라미터들을 가질 수 있는데, 기지국은 RRC 신호를 통해 다음 파라미터들을 설정함으로써 DRX 동작을 제어할 수 있다.
1) 'drx-onDurationTimer': DRX 사이클의 시작에서 지속 시간(the duration at the beginning of a DRX cycle).
2) 'drx-SlotOffset': 'drx-onDurationTimer'가 시작되기 전의 지연(the delay before starting the drx-onDurationTimer).
3) 'drx-InactivityTimer': PDCCH가 MAC 엔티티에 대한 새로운 UL 또는 DL 전송을 지시한 PDCCH 기회 이후의 지속 기간(the duration after the PDCCH occasion in which a PDCCH indicates a new UL or DL transmission for the MAC entity).
4) 'drx-RetransmissionTimerDL' (per DL HARQ process): DL 재전송이 수신될 때까지의 최대 구간(the maximum duration until a DL retransmission is received).
5) 'drx-RetransmissionTimerUL' (per UL HARQ process): UL 재전송을 위한 그랜트가 수신될 때까지의 최대 구간(the maximum duration until a grant for UL retransmission is received).
6) 'drx-LongCycleStartOffset': 긴 DRX의 사이클, 긴 DRX 및 짧은 DRX 사이클이 시작되는 서브프레임을 정의하는 'drx-StartOffset'.
7) 'drx-ShortCycle' (선택적): 짧은 DRX 사이클(Short DRX cycle).
8) 'drx-ShortCycleTimer' (선택적): 단말이 짧은 DRX 사이클을 따라야 하는 구간(the duration the UE shall follow the Short DRX cycle).
9) 'drx-HARQ-RTT-TimerDL' (per DL HARQ process): HARQ 재전송을 위한 DL 할당이 MAC 엔티티에 의해 기대되기 전의 최소 지속 기간(the minimum duration before a DL assignment for HARQ retransmission is expected by the MAC entity).
10) 'drx-HARQ-RTT-TimerUL' (per UL HARQ process): UL HARQ 재전송 그랜트가 MAC 엔티티에 의해 기대되기 전 최소 지속 기간(the minimum duration before a UL HARQ retransmission grant is expected by the MAC entity).
상기 파라미터들 중에서, 특정 파라미터(DRX 온-구간(on-duration)에 관련된 타이머 값을 알려주는 파라미터 또는 비활성화 타이머 값을 알려주는 파라미터, 예컨대, 'drx-onDurationTimer', 'drx-InactivityTimer' 등)에 대해서만 다중 설정을 적용할 수도 있다. 일례로, 네트워크(또는 기지국, eNB(evolved NodeB), ng-eNB(next generation eNode B), gNB(next generation NodeB) 등을 포함하고, 이하 간략히 “네트워크”라 지칭함)는 단말을 위해 'drx-onDurationTimer'에 대하여 복수의 값들을 설정하고, 단말의 상황에 따라 특정 값을 적용하도록 상기 단말에게 지시할 수 있다.
네트워크는 단말을 위해 온-구간(On duration)의 경우, 구간을 짧게 설정하여 PDCCH 모니터링을 줄이고, 상대적으로 수면(sleep) 동작을 길게 유지할 수 있다.
또 다른 예로, 네트워크는 단말을 위해 비활성화 타이머에 대한 값을 복수 개 설정하고, 단말에게 특정 값을 적용하도록 지시할 수 있다. 이에 따라 온-구간 타이머와 마찬가지로, 비활성화 타이머가 동작하는 상황에서 PDCCH 모니터링을 증가/감소시키고, 수면(sleep) 구간을 감소/증가시키는 역할을 할 수 있다. 또는, 네트워크는 단말을 위해 DRX 사이클을 다수 개 설정하여, 온-구간의 주기를 조절하거나, 수면(sleep) 구간을 조절할 수도 있다.
다수의 파라미터들(예를 들어, 타이머 관련 파라미터들)에 대하여 다중 설정들이 적용될 경우, 네트워크 또는 단말은(다중 설정이 적용된) 해당 파라미터들을 제외한 나머지 파라미터(예를 들어, 오프셋 관련 파라미터들)는 각 설정에 공통적으로 적용됨을 가정할 수 있다.
특정 파라미터에 대해서만 다중 설정을 적용하는 방법 중 하나로, 특정 파라미터에 대하여 표준에서 정의된 값들을 다중 설정으로 간주할 수도 있다. 예를 들어, DRX 설정 중 'drx-InactivityTimer'는 표 6에서 표시한 값들을 가질 수 있다. 따라서 표 6에 표시한 값들 중 유효한 값(예를 들어, ms0 ~ ms2560)을 다중 설정으로 간주하고 아래에서 제안되는 방법에 의해 특정 값을 적용하도록 지시할 수 있다.
[표 6]
Figure PCTKR2019015271-appb-I000007
<DRX 설정 선택>
DRX 동작에 대하여 다중 설정들을 시그널링한 네트워크는 아래와 같은 방법으로 단말에게 해당 설정들 중 특정 설정의 적용을 지시할 수 있다.
1. 묵시적 지시(Implicit indication)
A. DRX 설정은 단말의 상황 별로 독립적인 설정이 있을 수 있다. 이 경우, 단말은 각 상황에서는 추가적인 시그널링(예를 들어, 특정 설정 인덱스를 지시) 없이 해당 상황에 정의된 설정을 따를 수 있다.
B. 예를 들어, 전력 절감 여부에 따라 단말의 상태가 전력 절감 상태(power saving state)와 노멀(normal) 상태로 구분될 수 있다. 단말의 보고에 의해 혹은 네트워크의 지시에 의해, 상태 천이(transition)가 이루어질 경우, 전력 절감 상태에서는 수면(sleep) 구간을 길게 유지하기 위한 설정을 기본(default) 설정으로 정의할 수 있고, 단말의 데이터 송수신이 빈번한 노멀 상태에서는 온-구간 타이머/비활성화 타이머를 길게 유지하거나, DRX 사이클이 짧은 설정을 기본(default) 설정으로 정의할 수 있다.
단말은 위와 같은 기본(default) 설정에 따라 DRX 동작을 수행할 수 있다. 즉, 본 개시에 의해 제안되는 다중 DRX 설정은 각 설정 별로 특정 단말 상태(예컨대, 전력 절감 상태/모드, 노멀 상태/모드)와 연계될 수도 있다.
도 23은, 묵시적 지시에 의한 단말의 DRX 동작 방법을 예시한다.
도 23을 참조하면, 기지국은 단말에게 복수의 DRX 설정들을 제공/설정한다(S301). 상기 복수의 DRX 설정들 각각은 복수의 파라미터들을 포함할 수 있으며, 적어도 하나의 파라미터는 복수 개의 설정 값들을 가질 수 있다.
이 때, 기지국은 단말의 각 상태에 따라 적용될 수 있는 DRX 설정(특정 파라미터 값)을 알려줄 수도 있다. 상기 복수의 DRX 설정들은 RRC 신호와 같은 상위 계층 신호에 의하여 설정될 수 있다.
단말은, 자신의 상태에 기반하여, 상기 복수의 DRX 설정들 중 하나의 DRX 설정을 선택할 수 있다(S302).
예컨대, 단말은 전력 절감 상태에서는 수면(sleep) 구간을 길게 유지하는 제1 설정을 선택하고, 단말의 데이터 송수신이 빈번한 노멀 상태에서는 온-구간 타이머/비활성화 타이머를 길게 유지하거나 DRX 사이클이 짧게 설정된 제2 설정을 선택할 수 있다.
여기서, 제1 설정과 제2 설정은 복수의 파라미터들 중에서 특정 파라미터의 값만 다른 설정들일 수 있다. 예컨대, 제2 설정은 제1 설정에서 상기 특정 파라미터(예컨대, 온-구간이나 비활성 구간에 관련된 파라미터, 다만 이는 예시일 뿐이고 다른 파라미터들 예컨대, 재전송에 관련된 파라미터들도 당연히 사용될 수 있음)만 변경된 설정일 수도 있다. 이것은, 복수의 파라미터들을 포함하는 DRX 설정에서 특정 파라미터의 값을 제1 값으로 적용한 것을 제1 설정, 상기 DRX 설정에서 상기 특정 파라미터의 값을 상기 제1 값에서 제2 값으로 변경한 것을 제2 설정이라고 볼 수도 있다.
단말은 상기 하나의 DRX 설정에 기반한 DRX 동작을 수행한다(S303). 단말의 상태가 변경될 때, 기지국의 명시적 시그널링을 기다리지 않고, 적절한 DRX 설정을 선택하여 적용할 수 있으므로, 동적이며 적응적 DRX 동작이 가능하다. 또한, DRX 설정의 특정 파라미터에 대해, 상기 단말의 상태에 따라 적절한 값으로 변경 후 적용할 수 있으므로, 동적이며 적응적 DRX 동작이 가능하다.
2. 명시적 지시(Explicit indication)
A. 네트워크는 단말을 위해 명시적 시그널링(예를 들어, RRC, DCI, MAC CE)을 이용하여 사전에 정의된 혹은 시그널링된 DRX 설정들 중 특정 설정을 적용하도록 지시할 수 있다.
B. 네트워크는 단말을 위해 상대적으로 디코딩 지연(decoding latency)이 적은 L1/L2 시그널링을 이용하여, DRX 설정을 지시(indication)할 수 있다.
도 24는, 명시적 지시에 의한 단말의 DRX 동작 방법을 예시한다.
도 24를 참조하면, 기지국은 단말에게 복수의 DRX 설정들을 제공/설정한다(S301). 상기 복수의 DRX 설정들 각각은 복수의 파라미터들을 포함할 수 있으며, 적어도 하나의 파라미터는 복수 개의 설정 값들을 가질 수 있다.
기지국은 상대적으로 디코딩 지연이 적은 하위 계층 신호(예컨대, 물리 계층 신호)를 통해 상기 복수의 DRX 설정들 중 하나를 지시하는 신호를 전송한다(S402).
단말은, 상기 신호에 기반하여, 복수의 DRX 설정들 중 하나의 DRX 설정 선택할 수 있다(S403).
단말은 상기 하나의 DRX 설정에 기반한 DRX 동작을 수행한다(S404). 이 방법은 기지국의 명시적 지시에 의하여 동적으로 DRX 설정을 변경하는 것이므로, 기지국과 단말 간에 DRX 설정에 관한 오해나 모호성이 발생할 여지가 적다.
<선택된 설정에 의한 DRX 동작>
전술한 방법에 의해 특정 DRX 설정이 결정될 경우, 단말은 해당 설정이 적용되는 시점을 아래와 같이 결정할 것을 제안한다.
도 25는 설정 변경 신호의 수신과 그 적용에 있어서의 시간 관계를 예시한다.
도 25를 참조하면, 포인트 “A”는 설정 변경 여부를 알려주는 설정 변경 신호를 단말이 디코딩 완료한 시점을 의미한다. 또는 네트워크와의 동일한 이해(same understanding)를 위해 상기 설정 변경 신호 시그널링 이후 특정 시간이 지난 시점을 의미할 수 있으며, 빠른 DRX 설정 변경 및 적용을 위해 고려될 수 있다. 즉, 포인트 “A”에서 단말의 DRX 설정의 변경이 이루어질 수 있다. 상기 단말을 위해 포인트 “A”까지는 변경 전의 DRX 설정이 사용될 수 있다.
즉, DRX 설정의 변경을 지시하는 DRX 설정 변경 신호를 활성화 시간 내에서 수신한 경우, 상기 DRX 설정 변경 신호의 디코딩이 완료된 시점 또는 상기 DRX 설정 변경 신호 수신 시점으로부터 특정 시간이 지난 시점부터 제2 DRX 설정을 적용할 수 있다.
포인트 “B”의 경우, 기존 설정을 온-구간 동안은 유지함을 의미하며, 해당 구간 내에 설정 변경 신호 이외의 추가적인 제어 시그널링이 가능할 경우 유용할 수 있다. 즉, 포인트 “B”에서 단말의 DRX 설정의 변경이 이루어질 수도 있으며, 상기 단말을 위해 포인트 “B”까지는 변경 전의 DRX 설정이 사용될 수 있다.
즉, DRX 설정의 변경을 지시하는 DRX 설정 변경 신호를 활성화 시간 내에서 수신한 경우, 상기 활성화 시간 중 DRX 온-구간(on-duration)이 끝나는 시점부터 제2 DRX 설정을 적용할 수도 있다.
포인트 “C”의 경우, 기존 설정을 이용하여 해당 DRX 사이클 내에서의 신호 전송/수신을 완료함을 의미할 수 있다. 즉, 포인트 “C”에서 단말의 DRX 설정의 변경이 이루어질 수 있다. 상기 단말을 위해 포인트 “C”까지는 변경 전의 DRX 설정이 사용될 수 있다.
즉, DRX 설정의 변경을 지시하는 DRX 설정 변경 신호를 활성화 시간 내에서 수신한 경우, 상기 활성화 시간이 끝나는 시점부터 제2 DRX 설정을 적용할 수도 있다.
포인트 “A”, “B”, “C”의 경우, 새로운 설정의 DRX 사이클의 시작 위치(starting position)가 해당 포인트로 변경됨을 의미할 수도 있다. 즉, 단말의 DRX 설정의 변경이 포인트 “A”, “B” 또는 “C”에서 이루어지는 경우, 각각에 대해 포인트 “A”, “B” 또는 “C”이 새로운 DRX 설정의 DRX 사이클의 시작 시점이 될 수 있다.
포인트 “D”의 경우, 기존 설정이 해당 DRX 사이클까지 유지되고, 다음 DRX 사이클부터 새로운 설정이 적용됨을 의미할 수 있다. 여기서, 다음 DRX 사이클이란 이전에 설정된 제1 DRX 설정 또는 파라미터 집합에 의하여 결정된 것일 수도 있고, 또는 설정 변경 신호를 통해서 기지국이 지시한 혹은 단말이 보고한 제2 DRX 설정 또는 파라미터 집합에 의하여 결정되는 것일 수 있다.
즉, DRX 설정의 변경을 지시하는 DRX 설정 변경 신호를 제1 DRX 사이클의 활성화 시간 내에서 수신한 경우, 상기 제1 DRX 사이클 다음의 제2 DRX 사이클부터 제2 DRX 설정을 적용할 수 있다.
새로운 설정의 적용 시점은 DRX 사이클(시작 시점 및 구간), 온-구간 타이머 관련 파라미터가 변경될 수 있는지 여부에 따라 결정될 수도 있다.
일례로 아래와 같이 동작할 수도 있다.
1. DRX On에서 DRX 설정이 변경되고, 상기 변경 이후 DRX Off로 변경되는 경우.
1) 이전 DRX On에서 비활성화 타이머가 동작 중인 경우, i) 단말은 현재 DRX On까지는 이전 DRX 파라미터를 따르고 새로운 DRX 파라미터의 다음 DRX On부터 새로운 DRX 설정을 적용할 수 있다. ii) 정해진 적용 시점부터 DRX Off. 일부 혹은 전체 타이머는 모두 중단(stop)할 수 있다. 상기 타이머는 'drx-OnDurationTimer' 및/또는 'drx-InactivityTimer'를 포함할 수 있다.
2) 이전 DRX On에서 비활성화 타이머가 동작 중이지 않은 경우, i) 현재 DRX On까지는 이전 DRX 파라미터를 따르고 새로운 DRX 파라미터의 다음 DRX On부터 새로운 DRX 설정을 적용할 수 있다. ii) 정해진 적용 시점부터 DRX Off. 일부 혹은 전체 타이머는 모두 중단(stop)할 수 있다. 상기 타이머는 'drx-OnDurationTimer' 및/또는 'drx-InactivityTimer'를 포함할 수 있다.
3) 비활성화 타이머 동작 시에는 DRX On을 유지하고 비활성화 타이머가 미동작하거나 혹은 온-구간 타이머만 동작할 경우에는 DRX Off로 할 수 있다.
2. DRX On에서 DRX 설정이 변경되고, 상기 변경 이후에도 DRX On인 경우.
1) 단말은 현재 DRX On까지는 이전 DRX 파라미터를 따르고 새로운 DRX 파라미터의 다음 DRX On부터 새로운 DRX 설정을 적용할 수 있다.
2) 단말은 현재 DRX On부터 새로운 DRX 파라미터를 적용할 수 있다. 이 때, i) 온-구간 타이머는 정해진 변경 리셋 후 재시작(restart)할 수 있다. ii) 온-구간 타이머는 리셋(reset)하지 않고 문턱치(threshold)값만 변경할 수 있다. iii) 비활성화 타이머는 정해진 변경 리셋 후 재시작할 수 있다. 또는 iv) 비활성화 타이머는 리셋하지 않고 문턱치 값만 변경할 수 있다.
상기 실시 예들에서 DRX On은 'drx-OnDurationTimer'가 동작 중인 구간을 의미할 수도 있다. 또는 DRX 활성화 시간(단말이 PDCCH 모니터링을 할 수 있는 시간 구간)일 수도 있다.
DRX Off는 DRX 사이클 내에서 DRX On 영역을 제외한 부분을 의미할 수 있다. 예를 들어, DRX On이 도 21에서 활성화 시간(active time)에 해당한다면, DRX Off는 수면(sleep) 구간을 의미할 수 있다.
DRX 적응(adaptation)을 위한 시그널링은 변경 전/후 DRX On이 보장되는 시점에서만 단말이 기대하는 것이 바람직할 수 있다.
전술한 제안 또는 개시의 동작은, “단말” 또는 “네트워크”의 관점으로 서술하였으나, “단말” 및 “네트워크” 대신 후술되는 송신 또는 수신 장치, (디지털 신호) 프로세서, 마이크로 프로세서 등에 의해 수행되거나 구현될 수 있다. 또한, “단말”은 일반적인 용어로서, MS(mobile station), UE(user equipment), 이동 단말 등 이동성을 갖는 장치와 상호 교환 가능하게 사용되며, “네트워크”는 일반적인 용어로서, BS(base station), eNB(evolved NodeB), ng-eNB(next generation eNode B), gNB(next generation NodeB) 등의 장치와 상호 교환가능하게 사용될 수 있다.
설명한 제안 방식에 대한 일례들 또한 본 개시의 구현 방법들 중 하나로 포함될 수 있으므로, 일종의 제안 방식들로 간주될 수 있음은 명백하다. 또한, 설명한 제안 방식들은 독립적으로 구현될 수도 있지만, 일부 제안 방식들의 조합 (혹은 병합) 형태로 구현될 수도 있다. 제안 방법들의 적용 여부 정보(혹은 상기 제안 방법들의 규칙들에 대한 정보)는 기지국이 단말에게 사전에 정의된 시그널 (e.g., 물리 계층 시그널 혹은 상위 계층 시그널)을 통해서 알려주도록 규칙이 정의될 수 있다. 또한, 본 개시의 실시 예에서 설명한 제안 방법 및 그 방법으로부터 확장 가능한 방법들은 장치로써 구현될 수도 있으며, 본 개시는 제안 방법을 구현하는 장치에 대한 내용도 포함한다. 해당 장치에 대한 설명은 후술된다.
도 26은 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 26을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
도 27은 전송 신호를 위한 신호 처리 회로를 예시한다.
도 27을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 27의 동작/기능은 도 26의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 27의 하드웨어 요소는 도 26의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 26의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 26의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 26의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 27의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 27의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 26의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
도 28은 본 개시에 적용되는 휴대 기기를 예시한다.
휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 28을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 29의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
도 28에 도시되어 있지는 않지만, 카메라, USB(Universal Serial Bus) 포트 등 다양한 구성 요소가 단말에 추가적으로 포함될 수 있다. 예를 들어, 카메라는 프로세서와 연결될 수 있다.
단말은 앞에서 설명/제안한 절차 및/또는 방법들을 수행하기 위해 네트워크 접속 과정을 수행할 수 있다. 예를 들어, 단말은 네트워크(예, 기지국)에 접속을 수행하면서, 앞에서 설명/제안한 절차 및/또는 방법들을 수행하는데 필요한 시스템 정보와 구성 정보들을 수신하여 메모리에 저장할 수 있다. 본 개시에 필요한 구성 정보들은 상위 계층(예, RRC layer; Medium Access Control, MAC, layer 등) 시그널링을 통해 수신될 수 있다.
도 29은 본 개시에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다.
도 29을 참조하면, 무선 기기(100, 200)는 다양한 요소(element)들로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 30, 100a), 차량(도 30, 100b-1, 100b-2), XR 기기(도 30, 100c), 휴대 기기(도 30, 100d), 가전(도 30, 100e), IoT 기기(도 30, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 30, 400), 기지국(도 30, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 29에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
도 30는 본 개시에 적용되는 통신 시스템(1)을 예시한다.
도 30를 참조하면, 본 개시에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
한편, NR은 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머롤로지(numerology)(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 타입(type)(FR1, FR2)의 주파수 범위(frequency range)로 정의될 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 2가지 type(FR1, FR2)의 주파수 범위는 하기 표 7과 같을 수 있다. 설명의 편의를 위해 NR 시스템에서 사용되는 주파수 범위 중 FR1은 “sub 6GHz range”를 의미할 수 있고, FR2는 “above 6GHz range”를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
[표 7]
Figure PCTKR2019015271-appb-I000008
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 8와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
[표 8]
Figure PCTKR2019015271-appb-I000009
본 명세서에 기재된 청구항들은 다양한 방식으로 조합될 수 있다. 예를 들어, 본 명세서의 방법 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다. 또한, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 장치로 구현될 수 있고, 본 명세서의 방법 청구항의 기술적 특징과 장치 청구항의 기술적 특징이 조합되어 방법으로 구현될 수 있다.

Claims (14)

  1. 무선통신 시스템에서 단말의 DRX(discontinuous reception) 동작 방법에 있어서,
    기지국으로부터 복수의 DRX 설정들을 수신하고, 및
    상기 복수의 DRX 설정들 중 선택한 하나의 DRX 설정에 기반하여 상기 DRX 동작을 수행하되,
    상기 하나의 DRX 설정은 복수의 파라미터들을 포함하고, 상기 복수의 파라미터들 중 특정 파라미터는 복수의 설정 값들을 가지고 그 이외의 파라미터들은 하나의 설정 값을 가지는 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서, 상기 단말의 상태는 전력 절감 상태 또는 노멀 상태 중 어느 하나이고,
    상기 복수의 설정 값들 중에서 상기 단말의 상태에 따라 정해진 설정 값을 상기 특정 파라미터의 값으로 선택하는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서, 상기 복수의 설정 값들 중에서 어느 설정 값을 사용할 것인지를 알려주는 신호를 더 수신하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서, 활성화 시간(active time) 및 수면 시간(sleep time)을 포함하는 제1 DRX 사이클에 상기 복수의 DRX 설정들 중 제1 DRX 설정을 적용하되, 상기 활성화 시간은 DRX 온-구간 및 비활성화 타이머(inactivity timer)가 동작하는 시간을 포함하는 것을 특징으로 하는 방법.
  5. 제 4 항에 있어서, DRX 설정의 변경을 지시하는 DRX 설정 변경 신호를 상기 활성화 시간 내에서 수신한 경우, 상기 DRX 설정 변경 신호의 디코딩이 완료된 시점 또는 상기 DRX 설정 변경 신호 수신 시점으로부터 특정 시간이 지난 시점부터 제2 DRX 설정을 적용하는 것을 특징으로 하는 방법.
  6. 제 4 항에 있어서, DRX 설정의 변경을 지시하는 DRX 설정 변경 신호를 상기 활성화 시간 내에서 수신한 경우, 상기 활성화 시간 중 상기 DRX 온-구간(on-duration)이 끝나는 시점부터 제2 DRX 설정을 적용하는 것을 특징으로 하는 방법.
  7. 제 4 항에 있어서, DRX 설정의 변경을 지시하는 DRX 설정 변경 신호를 상기 활성화 시간 내에서 수신한 경우, 상기 활성화 시간이 끝나는 시점부터 제2 DRX 설정을 적용하는 것을 특징으로 하는 방법.
  8. 제 4 항에 있어서, DRX 설정의 변경을 지시하는 DRX 설정 변경 신호를 상기 활성화 시간 내에서 수신한 경우, 상기 제1 DRX 사이클 다음의 제2 DRX 사이클부터 제2 DRX 설정을 적용하는 것을 특징으로 하는 방법.
  9. 제 1 항에 있어서, 상기 특정 파라미터는 DRX 온-구간(on-duration)에 관련된 타이머 값을 알려주는 파라미터 또는 비활성화 타이머 값을 알려주는 파라미터인 것을 특징으로 하는 방법.
  10. 제 9 항에 있어서, 상기 비활성화 타이머는 상기 DRX 온-구간에서 스케줄링 정보를 검출하면 활성화되어 비활성화 시간 구간 동안 동작하는 타이머인 것을 특징으로 하는 방법.
  11. 제 10 항에 있어서, 상기 단말은 상기 비활성화 시간 구간에서 또 다른 스케줄링 정보를 모니터링하는 것을 특징으로 하는 방법.
  12. 제 1 항에 있어서, 상기 복수의 파라미터들은,
    1) DRX 사이클의 시작에서 지속 시간을 나타내는 'drx-onDurationTimer', 2) 상기 'drx-onDurationTimer'가 시작되기 전의 지연을 나타내는 'drx-SlotOffset', 3) 비활성화 구간에 관련된 'drx-InactivityTimer', 4) 하향링크 재전송이 수신될 때까지의 최대 구간을 나타내는 'drx-RetransmissionTimerDL' , 5) 상향링크 재전송을 위한 그랜트가 수신될 때까지의 최대 구간을 나타내는 'drx-RetransmissionTimerUL' , 6) 긴 DRX 사이클 및 짧은 DRX 사이클이 시작되는 서브프레임을 정하는데 관련된 'drx-LongCycleStartOffset', 7) HARQ(Hybrid automatic repeat request) 재전송에 관련된 'drx-HARQ-RTT-TimerDL', 및 8) 상향링크 HARQ 재전송 그랜트 수신 전의 최소 구간에 관련된 'drx-HARQ-RTT-TimerUL' 중 적어도 2개를 포함하는 것을 특징으로 하는 방법.
  13. 단말은,
    무선 신호를 송신 및 수신하는 송수신기(Transceiver); 및
    상기 송수신기와 결합하여 동작하는 프로세서;를 포함하되, 상기 프로세서는,
    기지국으로부터 복수의 DRX(discontinuous reception) 설정들을 수신하고, 및
    상기 복수의 DRX 설정들 중 선택한 하나의 DRX 설정에 기반하여 DRX 동작을 수행하되,
    상기 하나의 DRX 설정은 복수의 파라미터들을 포함하고, 상기 복수의 파라미터들 중 특정 파라미터는 복수의 설정 값들을 가지고 그 이외의 파라미터들은 하나의 설정 값을 가지는 것을 특징으로 하는 단말.
  14. 무선 통신 장치를 위한 프로세서는,
    상기 무선 통신 장치를 제어하여,
    기지국으로부터 복수의 DRX(discontinuous reception) 설정들을 수신하고, 상기 복수의 DRX 설정들 중 선택한 하나의 DRX 설정에 기반하여 DRX 동작을 수행하되,
    상기 하나의 DRX 설정은 복수의 파라미터들을 포함하고, 상기 복수의 파라미터들 중 특정 파라미터는 복수의 설정 값들을 가지고 그 이외의 파라미터들은 하나의 설정 값을 가지는 것을 특징으로 하는 프로세서.
PCT/KR2019/015271 2018-11-09 2019-11-11 무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치 WO2020096436A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/291,300 US20220007289A1 (en) 2018-11-09 2019-11-11 Method for operating discontinuous reception of terminal in wireless communication system, and apparatus using same method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180137589 2018-11-09
KR10-2018-0137589 2018-11-09
KR10-2018-0137583 2018-11-09
KR20180137583 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020096436A1 true WO2020096436A1 (ko) 2020-05-14

Family

ID=70611052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015271 WO2020096436A1 (ko) 2018-11-09 2019-11-11 무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치

Country Status (2)

Country Link
US (1) US20220007289A1 (ko)
WO (1) WO2020096436A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029911A1 (ko) * 2022-08-02 2024-02-08 엘지전자 주식회사 하향링크 채널을 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 채널을 전송하는 방법 및 기지국
WO2024029899A1 (ko) * 2022-08-02 2024-02-08 엘지전자 주식회사 하향링크 채널을 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 채널을 전송하는 방법 및 기지국

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11924906B2 (en) * 2020-01-15 2024-03-05 Qualcomm Incorporated Aligning DRX cycles using system level configuration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170251521A1 (en) * 2010-09-30 2017-08-31 Sony Corporation Discountinuous reception method, mobile station, base station and wireless communication system
KR20180018455A (ko) * 2016-08-11 2018-02-21 삼성전자주식회사 저전력 rrc 운용 방법 및 장치
KR20180080967A (ko) * 2017-01-05 2018-07-13 삼성전자주식회사 RRC INACTIVE 상태 Data 전송을 위한 QoS 결정과 지원 방법 및 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172306A2 (en) * 2013-04-15 2014-10-23 Interdigital Patent Holdings, Inc. Discontinuous reception (drx) schemes for millimeter wavelength (mmw) dual connectivity
TWI678125B (zh) * 2017-09-28 2019-11-21 香港商鴻穎創新有限公司 控制新無線電之非連續接收的裝置及方法
US11523457B2 (en) * 2018-07-31 2022-12-06 Qualcomm Incorporated DRX groups for carrier aggregation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170251521A1 (en) * 2010-09-30 2017-08-31 Sony Corporation Discountinuous reception method, mobile station, base station and wireless communication system
KR20180018455A (ko) * 2016-08-11 2018-02-21 삼성전자주식회사 저전력 rrc 운용 방법 및 장치
KR20180080967A (ko) * 2017-01-05 2018-07-13 삼성전자주식회사 RRC INACTIVE 상태 Data 전송을 위한 QoS 결정과 지원 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On DRX for NTN", R2-1817750. 3GPP TSG-RAN WG2 #104, 2 November 2018 (2018-11-02), Spokane, US, XP051481643 *
NOKIA ET AL.: "On UE Power Saving Triggering Mechanisms for Rel-16 NR", R1-1811480. 3GPP TSG RAN WG1 MEETING #94-BIS, 28 September 2018 (2018-09-28), Chengdu, People's Republic of China, XP051518883 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029911A1 (ko) * 2022-08-02 2024-02-08 엘지전자 주식회사 하향링크 채널을 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 채널을 전송하는 방법 및 기지국
WO2024029899A1 (ko) * 2022-08-02 2024-02-08 엘지전자 주식회사 하향링크 채널을 수신하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 하향링크 채널을 전송하는 방법 및 기지국

Also Published As

Publication number Publication date
US20220007289A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2020204488A1 (ko) 무선 통신 시스템에서 물리 하향링크 제어채널 모니터링
WO2020204484A1 (ko) 물리 하향링크 제어채널 모니터링 방법 및 상기 방법을 이용하는 장치
WO2021020838A1 (ko) 무선통신 시스템에서 단말의 물리 하향링크 제어채널 모니터링 방법 및 상기 방법을 이용하는 장치
WO2021020840A1 (ko) 제어채널 모니터링 방법 및 상기 방법을 이용하는 장치
WO2021145745A1 (ko) Nr v2x에서 사이드링크 harq 피드백 정보를 기반으로 사이드링크 통신을 수행하는 방법 및 장치
WO2020145784A1 (ko) 비면허 대역에서 장치의 채널 접속 절차
WO2021010747A1 (ko) 불연속 수신이 설정된 단말의 물리 하향링크 제어채널 모니터링 방법 및 상기 방법을 이용하는 장치
WO2020166925A1 (ko) 전력 절약 신호 및 물리 하향링크 제어 채널 모니터링
WO2021091179A1 (ko) 최소 스케줄링 오프셋 제한의 적용 지연 값 결정
WO2021075704A1 (ko) 대역폭 파트 운용 방법
WO2021010746A1 (ko) 무선 통신 시스템에서 물리 하향링크 제어채널 모니터링 방법 및 상기 방법을 이용하는 장치
WO2021091177A1 (ko) 무선 통신 시스템에서 변경된 최소 스케줄링 오프셋을 적용하는 시점을 결정하는 방법 및 상기 방법을 적용하는 장치
WO2021029724A1 (ko) 물리 하향링크 제어채널 모니터링 방법 및 상기 방법을 이용하는 장치
WO2021091221A1 (ko) Dci 미검출 시 단말의 동작 방법
WO2020091546A1 (en) Configuration coordination for power efficient operation for nr
WO2022149821A1 (ko) Nr v2x에서 자원 할당 정보를 기반으로 drx 동작을 수행하는 방법 및 장치
WO2020096436A1 (ko) 무선통신 시스템에서 단말의 비연속적 수신 동작 방법 및 상기 방법을 이용하는 장치
WO2021020837A1 (ko) 단말의 하향링크 제어채널 모니터링 방법 및 상기 방법을 이용하는 장치
WO2020145788A1 (ko) 비면허 대역에서 기지국의 채널 접속 절차 수행
WO2020060355A1 (ko) 무선 통신 시스템에서 측정 시 전력 소모를 감소시키는 방법 및 장치
WO2022060118A1 (ko) Nr v2x에서 sl drx를 기반으로 통신을 수행하는 방법 및 장치
WO2021091180A1 (ko) 단말의 하향링크 제어 정보 수신 방법 및 상기 방법을 적용하는 장치
WO2021029729A1 (ko) 무선통신 시스템에서 불연속 수신 동작
WO2023090938A1 (ko) 무선 통신 시스템에서 사이드링크 데이터를 송수신하기 위한 방법 및 그 장치
WO2022060119A1 (ko) Nr v2x에서 sl drx를 기반으로 통신을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883104

Country of ref document: EP

Kind code of ref document: A1