WO2024034756A1 - 소켓형 pcr 카트리지, 이를 구비하는 회전형 실시간 pcr 디바이스 및 소켓형 pcr 카트리지를 구비하는 회전형 실시간 pcr 디바이스의 작동 방법 - Google Patents

소켓형 pcr 카트리지, 이를 구비하는 회전형 실시간 pcr 디바이스 및 소켓형 pcr 카트리지를 구비하는 회전형 실시간 pcr 디바이스의 작동 방법 Download PDF

Info

Publication number
WO2024034756A1
WO2024034756A1 PCT/KR2023/001105 KR2023001105W WO2024034756A1 WO 2024034756 A1 WO2024034756 A1 WO 2024034756A1 KR 2023001105 W KR2023001105 W KR 2023001105W WO 2024034756 A1 WO2024034756 A1 WO 2024034756A1
Authority
WO
WIPO (PCT)
Prior art keywords
cartridge
pcr
dna
socket
type
Prior art date
Application number
PCT/KR2023/001105
Other languages
English (en)
French (fr)
Inventor
마상배
Original Assignee
주식회사 에이아이바이오틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에이아이바이오틱스 filed Critical 주식회사 에이아이바이오틱스
Publication of WO2024034756A1 publication Critical patent/WO2024034756A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0663Stretching or orienting elongated molecules or particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts

Definitions

  • the present invention relates to a socket-type PCR cartridge, a rotary real-time PCR device having the same, and a method of operating a rotary real-time PCR device having the socket-type PCR cartridge.
  • the PCR cartridge is directed to the centrifugal force direction in which the interface module rotates. It is located so that the DNA mixture solution is easily injected by centrifugal force, and the shape of the PCR cartridge is hexahedral, so it is equipped with a socket-type PCR cartridge that can be closely attached to the heating block, a rotating real-time PCR device equipped with the same, and a socket-type PCR cartridge. It relates to a method of operating a rotating real-time PCR device.
  • PCR Polymerase Chain Reaction
  • the principle of the polymerase chain reaction is to amplify the desired DNA portion by continuously repeating the process. The first is denaturation of DNA, which separates double strand DNA into single strand DNA by heating to 94°C. The second is annealing of primers. When denatured DNA and primers are mixed and the temperature is lowered, the primers each bind to the complementary template DNA. The third is elongation, where DNA polymerase is activated to extend the primer.
  • PCR Polymerase Chain Reaction
  • a representative example of such application technology is reverse transcription PCR (Reverse Transcriptase Polymerase Chain Reaction), which directly amplifies RNA using reverse transcriptase. Additionally, PCR is performed by attaching a fluorescent substance, and the quantitative changes observed are used to determine the original DNA or RNA.
  • qPCR quantitative PCR
  • Real time PCR real time PCR
  • Real time PCR is a technology that monitors and interprets the increase in PCR amplification products in real time. Compared to the existing PCR method, which checks PCR amplification products at the endpoint, accurate quantification of DNA and RNA is possible, and it does not require electrophoresis, so it can be interpreted quickly and easily. There is a low risk of contamination, so it is currently used for gene expression analysis and SNP. It is becoming an essential technology in measurement methods, etc.
  • real-time PCR PCR amplification products are monitored in real time and quantified in the area where amplification occurs exponentially, so unlike the existing technology, reverse transcription PCR, accurate quantification is possible based on the amplification rate theory of PCR.
  • PCR cartridges according to conventional technology are shaped in a direction perpendicular to centrifugal force, so there is a possibility that micro voids may be formed when centrifugal force is applied. Voids inside the PCR cartridge are not good for PCR reactions because they can cause deformation of the fluid or scattering of light due to expansion of vapor pressure at high temperatures.
  • the PCR cartridge must be heated with a heating block, but the PCR cartridge according to the conventional technology was in the form of a conical tube and did not adhere closely to the rectangular heating block, so the thermal efficiency was not good. .
  • the present invention is intended to solve the above-described conventional problems, and provides a socket-type PCR cartridge in which the PCR cartridge is located in a direction parallel to the direction of the centrifugal force in which the interface module rotates, so that microvoids are not formed inside the PCR cartridge.
  • the purpose is to
  • Another object of the present invention is to provide a socket-type PCR cartridge in which the PCR cartridge has a hexahedral shape, so that the PCR cartridge is in close contact with the heating block, thereby increasing the contact area and improving thermal efficiency during heating.
  • the socket-type PCR cartridge of the present invention includes a cartridge connector that is connected to inject the DNA mixture solution by centrifugal force and is detachable from one or both of the waste module and the interface module; A cartridge body portion connected to one side of the cartridge connector and heated and cooled for polymerase chain reaction after the DNA mixture solution is injected; and a valve portion disposed on an upper part of the cartridge body portion and closing the cartridge body portion by blocking the cartridge connection portion to prevent the DNA mixture solution from flowing back when the DNA mixture solution is injected into the cartridge body portion by centrifugal force.
  • the cartridge body part includes a duct part that is a passage connected to the cartridge connection part, a blocking part that is a space that is connected to the duct part and allows the valve part to move downward to block the reverse flow of the DNA mixture solution to the cartridge connection part, and the It is connected to the blocking section and includes a reaction section where the DNA mixture solution is injected and heated by a heating block.
  • the piping of the cartridge connection portion and the piping of the cartridge main body are located on the same straight line, and the piping of the cartridge connecting portion and the piping of the cartridge main portion are located in a direction horizontal to the direction of centrifugal force through which the DNA mixture solution is injected.
  • the cartridge main body constituting the reaction unit has an inverted trapezoidal hexahedral shape for close contact with the heating auxiliary block of the heating block.
  • the cartridge connection part and the cartridge body part are made of polyethylene, and the valve part is made of polydimethylsiloxane (PDMS).
  • PDMS polydimethylsiloxane
  • the rotary real-time PCR device of the present invention includes a cartridge module for DNA extraction, a waste module located below the cartridge module for DNA extraction, an interface module located below the waste module, each side of the waste module and the interface module, and It includes a connected PCR cartridge and a heating block located at the bottom of the PCR cartridge.
  • the rotary real-time PCR device of the present invention includes a DNA extraction cartridge module, an interface module located below the DNA extraction cartridge module, a PCR cartridge connected to a side of the interface module, and a heating block located below the PCR cartridge. do.
  • a method of operating a rotary real-time PCR device equipped with a socket-type PCR cartridge of the present invention includes a first step of preparing a plurality of the PCR cartridges by connecting the cartridge connection portion and the cartridge body portion; A second step in which the plurality of PCR cartridges are mounted on the waste module and the interface module; A third step in which the DNA separated from the DNA extraction cartridge module is rotated in the interface module and a DNA mixture solution stirred by centrifugal force is injected into the PCR cartridge; A fourth step of closing the valve portion of the PCR cartridge when the rotation of the interface module is completed; And a fifth step in which the reaction part of the PCR cartridge is placed on a heating auxiliary block, the reaction part is repeatedly heated and cooled to amplify the DNA, and the target DNA is tested.
  • a method of operating a rotary real-time PCR device equipped with a socket-type PCR cartridge of the present invention includes a first step of preparing a plurality of the PCR cartridges by connecting the cartridge connection portion and the cartridge body portion; A second step in which the plurality of PCR cartridges are mounted on the interface module; A third step in which the DNA separated from the DNA extraction cartridge module is rotated in the interface module and a DNA mixture solution stirred by centrifugal force is injected into the PCR cartridge; A fourth step of closing the valve portion of the PCR cartridge when the rotation of the interface module is completed; And a fifth step in which the reaction part of the PCR cartridge is placed on a heating auxiliary block, the reaction part is repeatedly heated and cooled to amplify the DNA, and the target DNA is tested.
  • the present invention has the effect of preventing micro-voids from being created because the direction of the PCR cartridge is horizontal rather than perpendicular to the direction of centrifugal force caused by rotation of the interface module.
  • the shape of the PCR cartridge is hexahedral, so it is in close contact with the heating block and has a large contact area, which has the effect of increasing heat transfer efficiency.
  • the present invention has the effect of allowing the use of cartridge body parts of various sizes depending on the amount of PCR reaction because the PCR cartridge can be separated into a cartridge connection part and a cartridge body part.
  • Figure 1 is a schematic diagram of a rotating real-time PCR device according to an embodiment of the present invention.
  • Figure 2 is an exploded view of a rotating real-time PCR device according to an embodiment of the present invention.
  • Figure 3(a) shows a DNA solution being injected into an interface module according to an embodiment of the present invention
  • Figure 3(b) shows a discarded DNA solution being stored as a waste module according to an embodiment of the present invention. It indicates that something is happening.
  • Figure 4 is a schematic diagram of a heating block according to an embodiment of the present invention.
  • Figure 5 is a cross-sectional view of a PCR cartridge according to an embodiment of the present invention.
  • Figure 6 is a cross-sectional view of the cartridge body according to an embodiment of the present invention.
  • Figure 7(a) is a schematic diagram of a socket-type PCR cartridge according to an embodiment of the present invention
  • Figure 7(b) is a diagram showing a cartridge connection portion according to an embodiment of the present invention.
  • Figure 8 is an exploded view of a PCR cartridge according to another embodiment of the present invention.
  • Figure 9(a) is a view showing the cartridge body portion seated on a heating auxiliary block according to an embodiment of the present invention
  • Figure 9(b) is a view showing the cartridge body portion being seated on a heating auxiliary block according to another embodiment of the present invention. This is a drawing showing how it is seated.
  • Figure 10(a) is a cross-sectional view of a reaction unit according to an embodiment of the present invention
  • Figure 10(b) is a cross-sectional view of a reaction unit according to another embodiment of the present invention.
  • Figure 11 is a diagram showing the conduit of a socket-type PCR cartridge according to an embodiment of the present invention.
  • Figure 12 is an exploded view of the cartridge body portion and valve portion according to an embodiment of the present invention.
  • Figure 13(a) is a cross-sectional view showing the valve unit open according to an embodiment of the present invention
  • Figure 13(b) is a cross-sectional view showing the valve unit closed according to an embodiment of the present invention.
  • Figure 14(a) is a cross-sectional view showing the valve part closed according to an embodiment of the present invention
  • Figure 14(b) is a view showing the valve part closed according to an embodiment of the present invention as seen from the upper part of the valve part.
  • Figure 15 shows a valve unit and a blocking unit according to an embodiment of the present invention.
  • Figure 16 is a flowchart of a method of operating a rotary real-time PCR device equipped with a socket-type PCR cartridge according to an embodiment of the present invention.
  • a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention.
  • the term “and/or” includes any of a plurality of related stated items or a combination of a plurality of related stated items.
  • FIG. 1 is a schematic diagram of a rotating real-time PCR device according to an embodiment of the present invention
  • Figure 2 is an exploded view of a rotating real-time PCR device according to an embodiment of the present invention.
  • the rotary real-time PCR device of the present invention includes a cartridge module 10 for DNA extraction, a waste module 20 located below the cartridge module 10 for DNA extraction, and the waste module ( 20), an interface module 30 located at the bottom, a PCR cartridge 40 connected to each side of the waste module 20 and the interface module 30, and a heating block 50 located at the bottom of the PCR cartridge 40.
  • a cartridge module 10 for DNA extraction a waste module 20 located below the cartridge module 10 for DNA extraction
  • the waste module 20
  • an interface module 30 located at the bottom
  • a PCR cartridge 40 connected to each side of the waste module 20 and the interface module 30, and a heating block 50 located at the bottom of the PCR cartridge 40.
  • a heating block 50 located at the bottom of the PCR cartridge 40.
  • the rotating real-time PCR device which is another embodiment of the present invention, includes a cartridge module for DNA extraction, an interface module located below the cartridge module for DNA extraction, a PCR cartridge connected to a side of the interface module, and a lower portion of the PCR cartridge. It can be configured to include a heating block located at.
  • the DNA extraction cartridge module 10 extracts DNA from cells.
  • the extraction tube of the DNA cartridge module may include a lysis buffer tube, a magnetic bead tube, a washing tube, and an elution tube.
  • the Lysis Buffer tube can be treated with a solution containing a substance that dissolves cell walls
  • the Magnetic Bead tube is a magnetic, high-density particle that does not chemically break the cell wall. It uses magnetic materials that break down thick cell walls.
  • the Wash Buffer tube is washed with distilled water while the DNA chain inside the cell remains on the magnetic beads to remove foreign substances such as proteins. It can be removed.
  • the elution tube can be demagnetized so that the DNA is separated from the beads and separated into free particles in the solution.
  • Figure 3(a) shows that the DNA solution is injected into the interface module 30 according to an embodiment of the present invention
  • Figure 3(b) shows that the discarded DNA solution is sent to the waste according to an embodiment of the present invention. It indicates that it is saved as module 20.
  • impurities in the cartridge module 10 for DNA extraction move to the waste module 20, and the extracted DNA solution moves to the interface module 30. .
  • the solution does not flow into the interface module, but the DNA extraction cartridge
  • the waste module 20 connected to the elution tube of the module 10 is provided with a conduit connected to the interface module 30, so that the DNA solution flows into the PCR cartridge 40 through the interface module 30.
  • the master mix and the DNA solution stirred with mineral oil are divided into a plurality of channels through a separation rod and injected into individual PCR cartridges 40 through centrifugal force.
  • the PCR cartridge 40 according to the prior art is located in a direction perpendicular to the direction of the centrifugal force generated as the interface module 30 rotates, so that the solution is not completely filled inside due to the centrifugal force generated as the interface module 30 rotates.
  • Micro voids may be created. Microvoids created inside the PCR cartridge 40 can cause deformation of the fluid or scattering of light due to expansion of vapor pressure at high temperatures, so the spin down process must be performed by placing it in a centrifuge before loading the PCR.
  • Figure 4 is a schematic diagram of a heating block according to an embodiment of the present invention.
  • a heating auxiliary block (50A) is located on the upper part of the heating block 50 of the present invention, and when the heating block 50 is heated, heat is transferred to the heating auxiliary block (40A).
  • the heating auxiliary block 40A is formed to protrude from the heating block 50 and forms a space therein so that the cartridge body 200 can be inserted.
  • the heating auxiliary block 40A includes a block portion 50a in contact with the heating block 50, and a pair of block barrier portions 50b and 50c located above the block portion 50a and spaced apart from each other. This can be done, and the cartridge main body 200 can be heated in contact with the block part 50a and the block barrier parts 50b and 50c, so that the contact area of the cartridge main part 200 increases and heating efficiency is improved.
  • FIG. 5 is a cross-sectional view of the PCR cartridge 40 according to an embodiment of the present invention
  • Figure 6 is a cross-sectional view of the cartridge body according to an embodiment of the present invention
  • Figure 7(a) is a cross-sectional view of the PCR cartridge 40 according to an embodiment of the present invention.
  • This is a schematic diagram of the socket-type PCR cartridge 40
  • Figure 7(b) is a diagram showing the cartridge connection portion 100 according to an embodiment of the present invention.
  • the socket-type PCR cartridge 40 of the present invention may be composed of a cartridge connection part 100, a cartridge body part 200, and a valve part 300.
  • Figure 8 is an exploded view of a PCR cartridge according to another embodiment of the present invention.
  • the PCR cartridge 40 of the present invention may be composed of a valve unit 300, an upper cartridge 400, and a lower cartridge 500 as shown in FIG. 8.
  • the PCR cartridge 40 of the present invention includes an upper cartridge 400, a lower cartridge 500 detachably formed on the lower part of the upper cartridge 400, and a valve portion 300 formed to be insertable into the upper cartridge 400. ) is provided.
  • the upper cartridge 400 has an upper part of the cartridge connection part and an upper part of the cartridge body
  • the lower cartridge 500 has a lower part of the cartridge connection part and a lower part of the cartridge body part.
  • the cartridge connection part is formed by combining the upper part of the cartridge connection part and the lower part of the cartridge connection part
  • the cartridge main part is formed by combining the upper part of the cartridge main part and the lower part of the cartridge main part.
  • the PCR cartridge 40 has the following characteristics: connectivity of the joints of the assembled parts, maintenance of airtightness after connection, thickness stability of the side of the PCR cartridge 40, and optical characteristics of the front of the cartridge body 200 of the PCR cartridge 40. Considering this, you can decide how to manufacture and assemble the part.
  • the cartridge connection part 100 of the present invention is connected to the waste module 20 at the top and connected to the interface module 30 at the bottom so that the DNA mixture solution is injected by the centrifugal force of the interface module 30, and the waste module 20 And it is in the form of a socket that can be attached and detached from the interface module 30. Since the cartridge connection part 100 is in the form of a socket, the used PCR cartridge 40 can be separated and removed from the waste module 20 and the interface module 30, and a new PCR cartridge 40 can be attached.
  • the cartridge connection part 100 of the present invention has a socket-shaped detachable part 110 that is detachable from the waste module 20 and the interface module 30, and is connected to the detachable part 110 and connects the cartridge main body 200 and the conduit.
  • connection conduit portion 120 may include a connection conduit portion 120 to which is connected.
  • the detachable part 110 must have sufficient elasticity to be detachable from the waist module 20 and the interface module 30.
  • the detachable part 110 must be completely sealed and connected to the waste module 20 and the interface module 20 to prevent the DNA mixture solution from leaking.
  • the connection conduit portion 120 is provided with a funnel-shaped conduit.
  • the connection conduit portion 120 in the direction of the interface module 30 has a wide inlet, so that the DNA mixture solution injected by centrifugal force can collect at the wide inlet. let it be As the connection conduit portion 120 moves toward the cartridge main body 200, the entrance of the conduit becomes narrower and acceleration occurs, allowing the DNA mixture solution to move to the cartridge main portion 200 through the narrow conduit.
  • the cartridge body 200 of the present invention is connected on one side to the cartridge connection 100, and the DNA mixed solution is injected by the centrifugal force of the interface module 20, and a heating block is used for polymerase chain reaction of the injected DNA mixed solution. Heated or cooled by (50).
  • the cartridge body portion 200 of the present invention is connected to the conduit portion 210, which is a passage connected to the cartridge connection portion 100, and the valve portion 300 moves downward.
  • the DNA mixture solution is connected to the blocking portion 220 and the blocking portion 220, which is a space that can block the backflow to the cartridge connection portion 100, and the DNA mixture solution is injected and heated by the heating block 50. 230).
  • the DNA mixture solution injected through the connection conduit portion 120 passes through the conduit portion 210 and is injected into the reaction portion 230 through the blocking portion 220.
  • the blocking unit 220 is closed with the valve unit 300 to prevent the DNA mixture solution from flowing back into the conduit unit 210 and the connection conduit unit 120. .
  • the cartridge body portion 200 constituting the reaction portion 230 of the present invention is preferably in a hexahedral shape for close contact with the heating auxiliary block 50A of the heating block 50.
  • Figure 9(a) is a view showing the cartridge body 200 seated on the heating auxiliary block 50A according to an embodiment of the present invention
  • Figure 9(b) is a view showing another embodiment of the present invention. This is a drawing showing the cartridge main body 200 seated on the heating auxiliary block 50A. Referring to Figure 9(a) or Figure 9(b), it is assumed that the length of one side of the bottom of the cartridge body 200 is L, and the length of one side of the upper surface of the cartridge body 200 is assumed to be L', and L ⁇ L ' is desirable.
  • the cartridge body portion 200 of the present invention has a hexahedral shape, and preferably has an upper side. It can have the shape of an inverted trapezoid with a long, short lower side. Since the interior of the heating auxiliary block (50A) has a rectangular parallelepiped shape, in order for the cartridge main body 200 to be seated on the heating auxiliary block 50A, which has a rectangular parallelepiped shape, it is preferable that the cartridge main body 200 is a hexahedron with an inverted trapezoid shape.
  • the shape of the cartridge body 200 is not a rectangular parallelepiped but a hexahedron in the form of an inverted trapezoid is that the length of the lower side of the cartridge body 200 is shorter than the length of the upper side to assist in heating the cartridge body 200. This is because insertion into the block 50A can be facilitated.
  • the shape of the cartridge body 200 is a rectangular parallelepiped in which the length of the upper side of the cartridge body 200 and the length of the lower side of the cartridge body 200 are the same, the position of the cartridge body 200 is When it is slightly misaligned with the heating auxiliary block (40A), it may be difficult to insert and seat the cartridge main body 200 into the heating auxiliary block (50A).
  • the length of the upper side of the cartridge body 200 is made longer than the length of the lower surface of the cartridge body 200 to facilitate insertion of the cartridge body 200 into the heating auxiliary block 50A. and can be settled.
  • FIG 10(a) is a cross-sectional view of the reaction unit 230 according to one embodiment of the present invention
  • Figure 10(b) is a cross-sectional view of the reaction unit 230 according to another embodiment of the present invention.
  • the cartridge connector 100 and the cartridge body 200 can be connected and separated, and the cartridge body 200 can be used to change the reaction amount of PCR.
  • the reaction part 230 into which the DNA mixture solution is injected can be replaced with a cartridge body part 200 with a larger or smaller space and connected to the cartridge connection part 100.
  • Figure 10(a) shows the cartridge body 200 having a standard capacity cartridge reaction part 230
  • Figure 10(b) shows the cartridge body 200 having a large capacity cartridge reaction part 230. It is an advantage of the present invention that it is possible to use cartridge body parts 200 of various sizes according to the PCR reaction volume.
  • FIG. 11 is a diagram showing the conduit of the PCR cartridge 40 according to an embodiment of the present invention. As shown in FIG. 11, the conduits of the cartridge connection portion 100 and the cartridge body portion 200 through which the DNA mixed solution moves must be located on the same line so that the DNA mixed solution can move without being hindered.
  • the conduit of the cartridge connection part 100 and the cartridge main body part 200 must be located in the same horizontal direction as the direction of the centrifugal force through which the DNA mixture solution is injected, so that the DNA is mixed by the centrifugal force generated by the rotation of the interface module 30.
  • the solution can be easily injected into the PCR cartridge 40.
  • the DNA mixture solution injected into the PCR cartridge 40 by centrifugal force can be filled into the reaction unit 230 with strong force and speed by centrifugal force, and the PCR cartridge 40 is positioned in a direction perpendicular to the direction of centrifugal force. Micro voids that may occur in the PCR cartridge 40 are not created.
  • the PCR cartridge 40 is located in a direction parallel to the direction of the centrifugal force generated by the rotation of the interface module 30, so that the PCR cartridge 40 is filled with the DNA mixture solution by centrifugal force, so micro-voids are not generated.
  • the PCR cartridge 40 of the present invention does not require a separate spindown process to remove micro-voids.
  • the cartridge connection portion 100 and the cartridge body portion 200 of the present invention are preferably made of polyethylene resin. It is more preferable to use translucent and high-density high-density polyethylene for the cartridge connection portion 100 and cartridge body portion 200 of the present invention rather than transparent and soft low-density polyethylene. In particular, special care must be taken when making the outer surface of the reaction unit 230, where light is to be measured by a camera, from polyethylene because the surface must be even so that the light is not distorted.
  • the valve part 300 of the present invention is disposed on the upper part of the cartridge main part 200, and prevents the DNA mixed solution from flowing back when the DNA mixed solution is injected into the cartridge main part 200 by centrifugal force. Close it by blocking it from the cartridge connection part 100.
  • Figure 12 is an exploded view of the cartridge body and valve part according to an embodiment of the present invention
  • Figure 13(a) is a cross-sectional view showing the valve part opened according to an embodiment of the present invention
  • Figure 13(b) is a cross-sectional view showing a closed valve portion according to an embodiment of the present invention
  • Figure 14(a) is a cross-sectional view showing a closed valve portion according to an embodiment of the present invention
  • Figure 14(b) is a cross-sectional view showing a closed valve portion according to an embodiment of the present invention.
  • This is a view of the closed valve part according to the embodiment as seen from the upper part of the valve part.
  • the cartridge body portion 200 of the present invention has a valve hole 240 at the top into which the valve portion 300 is inserted, and the cartridge body portion 200 has the valve hole.
  • (240) It is provided with a protrusion 250 protruding inside.
  • the protrusion 250 is formed by contact with a horizontal protruding surface 251, which is the horizontal surface of the protruding surface, and an inclined protruding surface 252, which is an inclined surface of the protruding surface.
  • the valve unit 300 can be inserted into the valve hole 240, and the valve unit 300 has a first groove 310 on the inside of the side and a second groove 320 located on the top of the first groove 310. ) is provided.
  • the first groove portion 310 is formed by contact with a first horizontal groove surface 311, which is a horizontal surface of a surface entering the inside, and a first inclined groove surface 312, which is an inclined surface of the surface entering the interior.
  • the second groove portion 320 is formed by contacting a second horizontal groove surface 321, which is a horizontal surface of the inner surface, and a second inclined groove surface 322, which is an inclined surface of the inner surface.
  • the horizontal protruding surface 251 of the protrusion 250 contacts the first horizontal groove surface 311 of the first groove 310 or the second horizontal groove surface 321 of the second groove 320, and the protrusion 250
  • the inclined protruding surface 252 and the first inclined groove surface 312 of the first groove 310 or the second inclined groove surface 322 of the second groove 320 are in contact, and the valve unit 300 is formed in the cartridge body portion in this way. It is fixed at (200). Referring to FIG. 13(a), when the blocking portion of the cartridge body portion 200 is opened from the valve portion 300, the cartridge body portion 200 is positioned in the first groove portion 310 of the valve portion 300.
  • the protruding portion 250 of is coupled, and the valve portion 300 is fixed to the cartridge body portion 200 in an open state.
  • the horizontal protruding surface 251 of the protruding part 250 and the first horizontal groove surface 311 of the first groove 310 are in contact with each other, and the inclined protruding surface 252 of the protruding part 250 and the first groove part 310 are in contact with each other.
  • the first inclined groove surface 312 is in contact with.
  • a valve operating unit (not shown) that operates the valve unit 300 is located at the top of the valve unit 300 of the present invention.
  • the valve operating unit is a device that can implement up and down movement by the operation of a driving motor and a gear. When closing the valve unit 300, the driving motor is operated to apply downward pressure to the valve unit 300, causing the valve unit 300 to close.
  • valve unit 300 When the interface module 30 rotates and the DNA mixture solution is injected into the PCR cartridge 40 by centrifugal force, the valve unit 300 is not operated, and when the rotation of the interface module 30 is completed, it is transferred to the reaction unit 230.
  • the valve unit 300 is closed by operating the valve operation unit to prevent the injected DNA mixture solution from flowing back.
  • the valve unit 300 is kept closed even when the cartridge body unit 200 is heated and cooled for the polymerase chain reaction. It is preferable to use polydimethylsiloxane (PDMS) as the material for the valve part 300 of the present invention.
  • PDMS polydimethylsiloxane
  • Polydimethylsiloxane's inert properties and rubber-like properties at low temperatures make it suitable for use in the valve portion 300 of the present invention.
  • valve part 300 should not react with the DNA mixture solution and should have elastic properties suitable for closing and opening the blocking part 220, so it is preferable that it is manufactured using polydimethylsiloxane.
  • Figure 15 shows a valve unit and a blocking unit according to an embodiment of the present invention. Referring to FIG. 15, if the diameter of the valve of the valve part 300 is A and the diameter of the valve hole 240 is B, A > B, and more preferably, A is 0.1 to 0.15 times larger than B. mm can be large.
  • valve part 300 Since the valve part 300 is made of elastic polydimethylsiloxane, it can be inserted into the valve hole 240 by elasticity even if it is larger than the valve hole 240, and the valve diameter is larger than the valve hole 240, ensuring airtightness. It is possible to prevent the DNA mixture solution from flowing back by blocking the blocking portion 220.
  • FIG. 16 is a flowchart of a method of operating a rotary real-time PCR device equipped with a socket-type PCR cartridge 40 according to an embodiment of the present invention.
  • the operating method of the rotary real-time PCR device equipped with the socket-type PCR cartridge 40 of the present invention may include the following five steps.
  • First step (S10) A step in which a plurality of PCR cartridges 40 are prepared by connecting the cartridge connection portion 100 and the cartridge body portion 200.
  • Second step (S20) A step in which a plurality of PCR cartridges 40 are mounted on the waste module 20 and the interface module 30.
  • Third step (S30) A step in which the DNA separated from the DNA extraction cartridge module 10 rotates in the interface module 30 and the DNA mixed solution stirred by centrifugal force is injected into the PCR cartridge 40.
  • a method of operating a rotary real-time PCR device equipped with a socket-type PCR cartridge includes a first step of preparing a plurality of the PCR cartridges by connecting the cartridge connection portion and the cartridge body portion; A second step in which the plurality of PCR cartridges are mounted on the interface module; A third step in which the DNA separated from the DNA extraction cartridge module is rotated in the interface module and a DNA mixture solution stirred by centrifugal force is injected into the PCR cartridge; A fourth step of closing the valve portion of the PCR cartridge when the rotation of the interface module is completed; And a fifth step in which the reaction part of the PCR cartridge is placed on a heating auxiliary block, the reaction part is repeatedly heated and cooled to amplify the DNA, and the target DNA is tested.
  • the first step of the method of operating a real-time PCR device equipped with the socket-type PCR cartridge 40 of the present invention is to prepare a plurality of PCR cartridges 40 by connecting the cartridge connection portion 100 and the cartridge body portion 200. .
  • a cartridge body 200 having various capacities can be used depending on the amount of PCR reaction, and a plurality of PCR cartridges 40 are prepared by assembling the cartridge connection portion 100 and the cartridge body 200.
  • the second step of the method of operating a real-time PCR device equipped with the socket-type PCR cartridge 40 of the present invention is a step in which a plurality of PCR cartridges 40 are mounted on the waste module 20 and the interface module 30. Since the cartridge connection part 100 is in the form of a socket, the PCR cartridge 40 can be easily mounted on the waste module 20 and the interface module 30.
  • the third step of the method of operating a real-time PCR device equipped with the socket-type PCR cartridge 40 of the present invention is that the DNA separated from the DNA extraction cartridge module 10 is stirred by centrifugal force while rotating in the interface module 20.
  • the cells prepared in the DNA extraction cartridge module (10) are treated with a solution containing a substance that dissolves the cell wall using a lysis buffer tube, and the magnetic bead tube is used to break the cell wall with magnetic high-density particles and then washed. After the tube passes through the lysis buffer tube and the magnetic bead tube, the DNA chain inside the cell can be washed with distilled water while remaining on the magnetic bead to remove foreign substances such as proteins.
  • the elution tube can then be demagnetized to allow the DNA to separate from the beads and remain in solution as free particles. Impurities in the DNA extraction cartridge module 10 move to the waste module 20, and the extracted DNA solution moves to the interface module 30.
  • the DNA solution stirred with the master mix and mineral oil is divided into a plurality of channels through a separation rod and injected into individual PCR cartridges (40) through centrifugal force.
  • the fourth step of the method of operating a real-time PCR device equipped with the socket-type PCR cartridge 40 of the present invention is that the rotation of the interface module 30 is completed and the DNA mixture solution injected into the reaction unit 230 is directed to the interface module 30.
  • This is the step of closing the valve part 300 of the PCR cartridge 40 to prevent backflow. Since the conduit of the cartridge connection portion 100 and the cartridge body portion 200 is located in a direction parallel to the direction of the centrifugal force caused by the rotation of the interface module 30, the conduit of the cartridge connection portion 100 and the cartridge body portion 200 Through this, the DNA mixture solution can flow back.
  • a valve unit 300 is provided to close the valve unit 300 when the rotation of the interface module 30 is completed so that the injected DNA mixture solution can be stored in the reaction unit 230.
  • the fifth step of the method of operating a real-time PCR device equipped with the socket-type PCR cartridge 40 of the present invention is to seat the reaction unit 230 of the PCR cartridge 40 on the heating auxiliary block 50A, and place the reaction unit 230 on the heating auxiliary block 50A.
  • the reaction unit 230 is heated to 92°C to 95°C to separate double-stranded DNA into single-stranded DNA.
  • the primer is bound to DNA that has a base sequence complementary to its base sequence, and the target DNA is detected by amplifying the desired portion of the DNA.
  • the present invention is not limited to the above-mentioned embodiments, but can be manufactured in various different forms, and those skilled in the art will be able to form other specific forms without changing the technical idea or essential features of the present invention. You will be able to understand that this can be implemented. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 소켓형 PCR 카트리지, 이를 구비하는 회전형 실시간 PCR 디바이스 및 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법에 관한 것으로, 보다 상세하게는 PCR 카트리지가 인터페이스 모듈이 회전하는 원심력 방향으로 위치하여 DNA 혼합용액이 원심력에 의해 용이하게 주입되고, PCR 카트리지의 형태가 육면체여서 히팅블럭에 밀착될 수 있는 소켓형 PCR 카트리지, 이를 구비하는 회전형 실시간 PCR 디바이스 및 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법에 관한 것이다.

Description

소켓형 PCR 카트리지, 이를 구비하는 회전형 실시간 PCR 디바이스 및 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법
본 발명은 소켓형 PCR 카트리지, 이를 구비하는 회전형 실시간 PCR 디바이스 및 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법에 관한 것으로, 보다 상세하게는 PCR 카트리지가 인터페이스 모듈이 회전하는 원심력 방향으로 위치하여 DNA 혼합용액이 원심력에 의해 용이하게 주입되고, PCR 카트리지의 형태가 육면체여서 히팅블럭에 밀착될 수 있는 소켓형 PCR 카트리지, 이를 구비하는 회전형 실시간 PCR 디바이스 및 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법에 관한 것이다.
PCR(Polymerase Chain Reaction)은 중합효소 연쇄반응으로 DNA 서열 중 타겟하는 영역만을 목적으로 증폭시키는 기술이다. PCR의 과정은 다음과 같이 세 단계로 이루어지게 된다. 해당 과정이 계속 반복하여 진행되면서 원하는 DNA 부분을 증폭시키는 것이 중합효소 연쇄반응의 원리이다. 첫째는 DNA의 변성(denaturation)으로, 94°C로 가열하여 double strand DNA를 single strand DNA로 분리시킨다. 둘째는 프라이머의 결합(Annealing)으로, 변성된 DNA와 프라이머(primer)를 혼합하여 온도를 낮추면 프라이머가 각각 상보적인 주형 DNA에 결합한다. 셋째는 신장(Elongation)으로, DNA 중합효소를 작용시켜 프라이머를 신장시킨다. 현재는 PCR법도 더욱 다양한 응용 기술이 개발되었다. 이러한 응용 기술로는 역전사 효소를 이용해서 RNA를 직접 증폭시키는 역전사 PCR(Reverse Transcriptase Polymerase Chain Reaction)이 대표적이며, 이외에도 형광 물질을 붙여서 PCR을 진행하며 관측되는 정량적인 변화를 이용하여 원래 DNA나 RNA의 양을 정확히 측정하는 정량적 PCR(qPCR) 또는 실시간 PCR(Real time PCR), 한번에 수많은 PCR을 동시에 시행하는 대용량 PCR 같은 여러 방법이 있다.
실시간 PCR(Real time PCR)은 PCR 증폭산물의 증가를 실시간으로 모니터링하여 해석하는 기술이다. 엔드 포인트에서 PCR 증폭산물을 확인하는 기존의 PCR법에 비해서 DNA와 RNA의 정확한 정량이 가능하고, 전기영동이 필요없어 신속하고 간편하게 해석할 수 있으며, 오염의 위험성이 적어 현재는 유전자 발현해석과 SNP 측정법 등에 있어 필수적인 기술이 되고 있다. 실시간 PCR에서는 PCR 증폭산물을 리얼타임으로 모니터링하여 증폭이 지수적으로 일어나는 영역에서 정량하기 때문에 기존 기술인 역전사 PCR법과 달리 PCR의 증폭속도 이론을 기초로 정확한 정량이 가능하다.
종래의 기술에 의한 PCR 카트리지는 형상이 원심력과 직각 방향으로 구성되어 있어 원심력 적용시 마이크로 보이드(micro void)가 형성될 가능성이 있다. PCR 카트리지 내부의 보이드(void)는 고온에서 증기압의 팽창으로 유체의 변형 혹은 광의 산란을 유발할 수 있어 PCR 반응 시 좋지 않다. 또한, DNA 증폭을 위해 히팅블럭으로 PCR 카트리지를 가열을 하여야 하는데, 종래의 기술에 의한 PCR 카트리지는 코니칼 튜브(conical tube)의 형태여서 직육면체 형태인 히팅블럭과는 밀착이 되지 않아 열효율이 좋지 않았다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 것으로, PCR 카트리지가 인터페이스 모듈이 회전하는 원심력의 방향과 수평한 방향에 위치하여 PCR 카트리지 내부에 마이크로 보이드가 형성되지 않는 소켓형 PCR 카트리지를 제공하는 것을 목적으로 한다.
또한, 본 발명은 PCR 카트리지의 모양을 육면체로 하여 PCR 카트리지가 히팅블럭과 밀착이 되어 접촉 면적이 넓어져 가열시 열효율이 향상된 소켓형 PCR 카트리지를 제공하는 것을 또 다른 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 발명의 소켓형 PCR 카트리지는, 원심력에 의해 DNA 혼합용액이 주입되도록 연결되며, 웨이스트 모듈 및 인터페이스 모듈의 어느 하나 또는 둘에 탈부착이 가능한 카트리지 연결부; 상기 카드리지 연결부와 일측이 연결되며, DNA 혼합용액이 주입된 후 중합효소 연쇄반응을 위해 가열과 냉각이 이루어지는 카트리지 본체부; 및 상기 카트리지 본체부의 상부에 배치되며, 상기 카트리지 본체부에 DNA 혼합용액이 원심력에 의해 주입되면 DNA 혼합용액이 역류되지 않도록 상기 카트리지 본체부를 상기 카트리지 연결부로부터 차단하여 닫아주는 밸브부;를 포함한다.
상기 카트리지 본체부는, 상기 카트리지 연결부와 연결되는 통로인 관로부, 상기 관로부와 연결되며, 상기 밸브부가 하부로 이동하여 DNA 혼합용액이 상기 카트리지 연결부로의 역류를 차단할 수 있는 공간인 차단부 및 상기 차단부와 연결되며, DNA 혼합용액이 주입되어 히팅블럭에 의해 가열이 이루어지는 반응부를 포함한다.
상기 카트리지 연결부의 관로 및 카트리지 본체부의 관로는 동일한 직선 상에 위치하고 상기 카트리지 연결부의 관로 및 카트리지 본체부의 관로는 DNA 혼합용액이 주입되는 원심력의 방향과 수평한 방향에 위치한다.
상기 반응부를 구성하는 카트리지 본체부는 히팅블럭의 히팅보조블럭과의 밀착을 위해 역사다리꼴의 육면체 형태를 갖는다.
상기 카트리지 연결부 및 카트리지 본체부의 소재는 폴리에틸렌을 사용하고, 상기 밸브부의 소재는 폴리디메틸실록산(PDMS)를 사용한다.
본 발명의 회전형 실시간 PCR 디바이스는, DNA 추출용 카트리지 모듈, 상기 DNA 추출용 카트리지 모듈의 하부에 위치한 웨이스트 모듈, 상기 웨이스트 모듈의 하부에 위치한 인터페이스 모듈, 상기 웨이스트 모듈 및 인터페이스 모듈의 각각의 측면과 연결된 PCR 카트리지, 상기 PCR 카트리지의 하부에 위치한 히팅블럭을 포함한다.
본 발명의 회전형 실시간 PCR 디바이스는, DNA 추출용 카트리지 모듈, 상기 DNA 추출용 카트리지 모듈의 하부에 위치한 인터페이스 모듈, 상기 인터페이스 모듈의 측면과 연결된 PCR 카트리지, 상기 PCR 카트리지의 하부에 위치한 히팅블럭을 포함한다.
본 발명의 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법은, 상기 카트리지 연결부와 카트리지 본체부를 연결하여 복수의 상기 PCR 카트리지가 준비되는 제1 단계; 상기 복수의 PCR 카트리지가 상기 웨이스트 모듈 및 인터페이스 모듈에 장착되는 제2 단계; 상기 DNA 추출용 카트리지 모듈에서 분리된 DNA가 상기 인터페이스 모듈에서 회전하면서 원심력에 의해 교반된 DNA 혼합용액이 상기 PCR 카트리지로 주입되는 제3 단계; 상기 인터페이스 모듈의 회전이 끝나면 상기 PCR 카트리지의 밸브부가 닫히는 제4 단계; 및 상기 PCR 카트리지의 반응부가 히팅보조블럭에 안착되고, 상기 반응부를 가열과 냉각을 반복하여 DNA를 증폭시켜 타겟 DNA가 검사되는 제5 단계;를 포함한다.
본 발명의 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법은, 상기 카트리지 연결부와 카트리지 본체부를 연결하여 복수의 상기 PCR 카트리지가 준비되는 제1 단계; 상기 복수의 PCR 카트리지가 상기 인터페이스 모듈에 장착되는 제2 단계; 상기 DNA 추출용 카트리지 모듈에서 분리된 DNA가 상기 인터페이스 모듈에서 회전하면서 원심력에 의해 교반된 DNA 혼합용액이 상기 PCR 카트리지로 주입되는 제3 단계; 상기 인터페이스 모듈의 회전이 끝나면 상기 PCR 카트리지의 밸브부가 닫히는 제4 단계; 및 상기 PCR 카트리지의 반응부가 히팅보조블럭에 안착되고, 상기 반응부를 가열과 냉각을 반복하여 DNA를 증폭시켜 타겟 DNA가 검사되는 제5 단계;를 포함한다.
상술한 바와 같이 본 발명은 PCR 카트리지의 방향이 인터페이스 모듈의 회전에 의한 원심력의 방향과 수직이 아닌 수평의 방향이기 때문에 마이크로 보이드가 생성되지 않는 효과가 있다.
또한, 본 발명은 PCR 카트리지의 형태가 육면체여서 히팅블럭에 밀착되어 접촉 면적이 넓어 열전달 효율을 높이는 효과가 있다.
또한, 본 발명은 PCR 카트리지가 카트리지 연결부와 카트리지 본체부로 분리될 수 있기 때문에 PCR의 반응량에 따라 다양한 사이즈의 카트리지 본체부를 사용할 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 의한 회전형 실시간 PCR 디바이스의 개략도이다.
도 2는 본 발명의 일 실시예에 의한 회전형 실시간 PCR 디바이스의 분해도이다.
도 3(a)는 본 발명의 일 실시예에 의해 DNA 용액이 인터페이스 모듈로 주입되는 것을 나타내며, 도 3(b)는 본 발명의 일 실시예에 의해 DNA 용액의 버려지는 용액이 웨이스트 모듈로 저장되는 것을 나타낸다.
도 4는 본 발명의 일 실시예에 의한 히팅블럭의 개략도이다.
도 5는 본 발명의 일 실시예에 의한 PCR 카트리지의 단면도이다.
도 6은 본 발명의 일 실시예에 의한 카트리지 본체부의 단면도이다.
도 7(a)는 본 발명의 일 실시예의 의한 소켓형 PCR 카트리지의 개략도이며, 도 7(b)는 본 발명의 일 실시예의 의한 카트리지 연결부를 나타내는 도면이다.
도 8은 본 발명의 다른 일 실시예에 의한 PCR 카트리지의 분해도이다.
도 9(a)는 본 발명의 일 실시예에 의한 카트리지 본체부가 히팅보조블럭에 안착된 모습을 나타내는 도면이며, 도 9(b)는 본 발명의 다른 일 실시예에 의한 카트리지 본체부가 히팅보조블럭에 안착된 모습을 나타내는 도면이다.
도 10(a)는 본 발명의 일 실시예에 의한 반응부의 단면도이며, 도 10(b)는 본 발명의 다른 일 실시예에 의한 반응부의 단면도이다.
도 11은 본 발명의 일 실시예의 의한 소켓형 PCR 카트리지의 관로를 나타내는 도면이다.
도 12는 본 발명의 일 실시예에 의한 카트리지 본체부 및 밸브부를 분해한 분해도이다.
도 13(a)는 본 발명의 일 실시예에 의한 밸브부가 열린 모습을 나타내는 단면도이며, 도 13(b)는 본 발명의 일 실시예에 의한 밸브부가 닫힌 모습을 나타내는 단면도이다.
도 14(a)는 본 발명의 일 실시예의 의한 밸브부가 닫힌 모습을 나타내는 단면도이며, 도 14(b)는 본 발명의 일 실시예의 의한 밸브부가 닫힌 모습을 밸브부 상부에서 본 도면이다.
도 15는 본 발명의 일 실시예에 의한 밸브부와 차단부를 나타낸다.
도 16은 본 발명의 일 실시예에 의한 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법의 순서도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. "및/또는"이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하에서는 본 발명의 소켓형 PCR 카트리지(30)를 복수로 구비하는 회전형 실시간 PCR 디바이스에 대해 도면을 참조하여 설명한다. 도 1은 본 발명의 일 실시예에 의한 회전형 실시간 PCR 디바이스의 개략도이며, 도 2는 본 발명의 일 실시예에 의한 회전형 실시간 PCR 디바이스의 분해도이다. 도 1 또는 도 2를 참조하면, 본 발명의 회전형 실시간 PCR 디바이스는 DNA 추출용 카트리지 모듈(10), 상기 DNA 추출용 카트리지 모듈(10)의 하부에 위치한 웨이스트 모듈(20), 상기 웨이스트 모듈(20)의 하부에 위치한 인터페이스 모듈(30), 상기 웨이스트 모듈(20) 및 인터페이스 모듈(30)의 각각의 측면과 연결된 PCR 카트리지(40), 상기 PCR 카트리지(40)의 하부에 위치한 히팅블럭(50)을 포함하여 구성될 수 있다.
또한, 본 발명의 다른 실시형태인 회전형 실시간 PCR 디바이스는, DNA 추출용 카트리지 모듈, 상기 DNA 추출용 카트리지 모듈의 하부에 위치한 인터페이스 모듈, 상기 인터페이스 모듈의 측면과 연결된 PCR 카트리지, 상기 PCR 카트리지의 하부에 위치한 히팅블럭을 포함하여 구성될 수 있다.
DNA 추출용 카트리지 모듈(10)은 세포로부터 DNA의 추출 작업을 진행한다. DNA 카트리지 모듈의 추출 튜브에는 라이시스 버퍼용 튜브, 마그네틱 비드용 튜브, 세정용 튜브, 용리 튜브를 포함할 수 있다. 여기서, 라이시스 버퍼용(Lysis Buffer) 튜브는 세포벽을 녹이는 물질을 포함하는 용액으로 처리될 수 있고, 마그네틱 비드용(Magnetic Bead) 튜브는 자성을 띠는 고밀도의 입자로 화학적으로 세포벽이 깨어지지 않는 두터운 세포벽을 깨는 역할을 하는 자성물질을 사용한다. 세정용(Wash Buffer) 튜브는 라이시스 버퍼용(Lysis Buffer) 튜브 및 마그네틱 비드용(Magnetic Bead) 튜브를 거친 후, 세포 내부의 DNA 사슬을 마그네틱 비드에 뭍인 채로 증류수로 세정하여 단백질 등의 이물질을 제거할 수 있다. 용리(Elution) 튜브는 자성을 제거하여 DNA가 비드에서 분리되어 용액에 자유입자로 분리되게 할 수 있다. 도 3(a)는 본 발명의 일 실시예에 의해 DNA 용액이 인터페이스 모듈(30)로 주입되는 것을 나타내며, 도 3(b)는 본 발명의 일 실시예에 의해 DNA 용액의 버려지는 용액이 웨이스트 모듈(20)로 저장되는 것을 나타낸다. 도 3(a) 또는 또 3(b)에 도시된 바와 같이, DNA 추출용 카트리지 모듈(10)의 불순물은 웨이스트 모듈(20)로 이동하고, 추출된 DNA 용액은 인터페이스 모듈(30)로 이동한다. 예를 들어, DNA 추출용 카트리지 모듈(10)의 라이시스 버퍼용 튜브, 마그네틱 비드용 튜브, 세정용 튜브와 연결되는 웨이스트 모듈(20)에는 용액은 인터페이스 모듈로 흘러들어가지 않고, DNA 추출용 카트리지 모듈(10)의 용리 튜브와 연결되는 웨이스트 모듈(20)에는 인터페이스 모듈(30)과 연결되는 관로가 구비되어 DNA 용액은 인터페이스 모듈(30)을 통하여 PCR 카트리지(40)로 흘러들어가게 된다. 인터페이스 모듈(30)에서 마스터 믹스(master mix)와 미네럴 오일과 교반된 DNA 용액은 세퍼레이션 로드를 통해 복수의 채널로 나뉘어지고 원심력을 통해 개별의 PCR 카트리지(40)로 주입이 된다. 종래의 기술에 의한 PCR 카트리지(40)는 인터페이스 모듈(30)이 회전하면서 생기는 원심력의 방향과 수직 방향에 위치하여, 인터페이스 모듈(30)이 회전하면서 생기는 원심력에 의해 내부에 용액이 모두 채워지지 않는 마이크로 보이드(micro void)가 생성될 수 있다. PCR 카트리지(40) 내부에 생성되는 마이크로 보이드는 고온에서 증기압의 팽창으로 유체의 변형 혹은 광의 산란을 유발할 수 있어 반드시 PCR 로딩 전에 원심분리기에 넣어 스핀다운(spin down) 공정을 진행해야 한다. 도 4는 본 발명의 일 실시예에 의한 히팅블럭의 개략도이다. 도 4를 참조하면, 본 발명의 히팅블럭(50)의 상부에 히팅보조블럭(50A)가 위치하며, 히팅블럭(50)이 가열되면 열이 히팅보조블럭(40A)으로 전달된다. 히팅보조블럭(40A)은 히팅블럭(50)에서 돌출되어 형성되며, 카트리지 본체부(200)가 삽입될 수 있도록 내부에 공간을 형성한다. 예를 들어, 히팅보조블럭(40A)은 히팅블럭(50)과 접하는 블럭부(50a), 상기 블럭부(50a) 상부에 위치하며 서로 이격되어 형성된 한쌍의 블럭장벽부(50b,50c)를 포함할 수 있고, 카트리지 본체부(200)는 블럭부(50a) 및 블럭장벽부(50b,50c)와 접하여 가열될 수 있어 카트리지 본체부(200)의 접촉면적은 커져서 가열 효율은 향상된다.
다음으로 본 발명의 소켓형 PCR 카트리지(40)에 대해 도면을 참조하여 설명한다. 도 5는 본 발명의 일 실시예에 의한 PCR 카트리지(40)의 단면도이며, 도 6은 본 발명의 일 실시예에 의한 카트리지 본체부의 단면도이며, 도 7(a)는 본 발명의 일 실시예의 의한 소켓형 PCR 카트리지(40)의 개략도이며, 도 7(b)는 본 발명의 일 실시예의 의한 카트리지 연결부(100)를 나타내는 도면이다. 도 5 내지 도 7을 참조하면, 본 발명의 소켓형 PCR 카트리지(40)는 카트리지 연결부(100), 카트리지 본체부(200) 및 밸브부(300)로 구성될 수 있다.
도 8은 본 발명의 다른 일 실시예에 의한 PCR 카트리지의 분해도이다. 본 발명의 PCR 카트리지(40)는 다른 실시형태에 의하면 도 8과 같이 밸브부(300), 상부 카트리지(400) 및 하부 카트리지(500)로 구성될 수도 있다. 본 발명의 PCR 카트리지(40)는 상부 카트리지(400) 및 상기 상부 카트리지(400)의 하부에 탈착 가능하게 형성된 하부 카트리지(500), 상기 상부 카트리지(400)에 삽입 가능하게 형성되는 밸브부(300)를 구비한다. 상부 카트리지(400)는 카트리지 연결부의 상부, 카트리지 본체부의 상부를 구비하고, 하부 카트리지(500)는 카트리지 연결부의 하부, 카트리지 본체부의 하부를 구비한다. 여기서, 카트리지 연결부는 카트리지 연결부의 상부 및 카트리지 연결부의 하부의 결합으로 형성되고, 카트리지 본체부는 카트리지 본체부의 상부 및 카트리지 본체부의 하부의 결합으로 형성된다. PCR 카트리지(40)는 조립되는 파트의 이음새 부분의 연결성, 연결 후의 기밀성 유지, PCR 카트리지(40)의 측면의 두께 안정성, PCR 카트리지(40)의 카트리지 본체부(200)의 전면의 광학 특성 등을 고려하여 파트 제작과 조립의 방법을 결정할 수 있다.
본 발명의 카트리지 연결부(100)는 인터페이스 모듈(30)의 원심력에 의해 DNA 혼합용액이 주입되도록 상부는 웨이스트 모듈(20)과 연결되고 하부는 인터페이스 모듈(30)과 연결되며, 웨이스트 모듈(20) 및 인터페이스 모듈(30)로부터 탈부착이 가능한 소켓의 형태이다. 카트리지 연결부(100)가 소켓의 형태이기 때문에, 사용이 끝난 PCR 카트리지(40)는 웨이스트 모듈(20) 및 인터페이스 모듈(30)에서 분리하여 제거하고 새로운 PCR 카트리지(40)를 부착할 수 있다. 본 발명의 카트리지 연결부(100)는 웨이스트 모듈(20) 및 인터페이스 모듈(30)과 탈부착되는 소켓 형태의 탈부착부(110), 상기 탈부착부(110)와 연결되며 상기 카트리지 본체부(200)와 관로가 연결되는 연결 관로부(120)를 포함할 수 있다. 탈부착부(110)는 충분한 탄성을 가지고 웨이스트 모듈(20) 및 인터페이스 모듈(30)에 탈부착되어야 한다. 탈부착부(110)는 웨이스트 모듈(20) 및 인터페이스 모듈(20)에 완전히 밀폐되게 연결되어 DNA 혼합용액이 유출되지 않도록 해야한다. 한편, 연결 관로부(120)는 깔대기 모양의 관로를 구비하는데, 인터페이스 모듈(30) 방향의 연결 관로부(120)는 넓은 입구를 가지고 있어 원심력에 의해 주입되는 DNA 혼합용액이 넓은 입구로 모일 수 있게 한다. 연결 관로부(120)는 카트리지 본체부(200) 방향으로 갈수록 관로의 입구가 좁아지고 가속이 생기게 하여 좁은 관로를 통해 DNA 혼합용액이 카트리지 본체부(200)로 이동할 수 있게 한다.
본 발명의 카트리지 본체부(200)는 카트리지 연결부(100)와 일측이 연결되어 인터페이스 모듈(20)의 원심력에 의해 DNA 혼합용액이 주입되며, 주입된 DNA 혼합용액의 중합효소 연쇄반응을 위해 히팅블럭(50)에 의해 가열 또는 냉각된다. 도 6을 참조하면, 본 발명의 카트리지 본체부(200)는 카트리지 연결부(100)와 연결되는 통로인 관로부(210), 관로부(210)와 연결되며 밸브부(300)가 하부로 이동하여 DNA 혼합용액이 카트리지 연결부(100)로의 역류를 차단할 수 있는 공간인 차단부(220) 및 차단부(220)와 연결되며 DNA 혼합용액이 주입되어 히팅블럭(50)에 의해 가열이 이루어지는 반응부(230)를 구비한다. 연결 관로부(120)를 통해 주입된 DNA 혼합용액은 관로부(210)를 통과하고 차단부(220)를 거쳐 반응부(230)에 주입된다. 반응부(230)에 DNA 혼합용액의 주입이 완료되면, 차단부(220)를 밸브부(300)로 닫아 DNA 혼합용액이 역류하여 관로부(210) 및 연결 관로부(120)로 흐르지 않도록 한다.
본 발명의 반응부(230)를 구성하는 카트리지 본체부(200)는 히팅블럭(50)의 히팅보조블럭(50A)과의 밀착을 위해 육면체 형태인 것이 바람직하다. 도 9(a)는 본 발명의 일 실시예에 의한 카트리지 본체부(200)가 히팅보조블럭(50A)에 안착된 모습을 나타내는 도면이며, 도 9(b)는 본 발명의 다른 일 실시예에 의한 카트리지 본체부(200)가 히팅보조블럭(50A)에 안착된 모습을 나타내는 도면이다. 도 9(a) 또는 도 9(b)를 참조하면, 카트리지 본체부(200) 하면 일변의 길이를 L이라고 하고, 카트리지 본체부(200) 상면 일변의 길이를 L'라고 가정하며, L < L'인 것이 바람직하다. 카트리지 본체부(200)가 히팅블럭(50)에 의해 가열되기 위해서는 히팅보조블럭(50A)에 밀착되어 안착되어야 하는데, 이를 위해 본 발명의 카트리지 본체부(200)는 육면체 형태이며, 바람직하게는 윗변이 길고 아랫변이 짧은 역사다리꼴의 형태를 가질 수 있다. 히팅보조블럭(50A)은 내부가 직육면체 형태이기 때문에 직육면체 형태인 히팅보조블럭(50A)에 카트리지 본체부(200)가 안착되기 위해서는 카트리지 본체부(200)가 역사다리꼴 형태의 육면체인 것이 바람직하다. 카트리지 본체부(200)의 형태가 직육면체의 형태가 아니고 역사다리꼴 형태의 육면체인 이유는 카트리지 본체부(200)의 하부 일변의 길이를 상부 일변의 길이보다 짧게 하여 카트리지 본체부(200)의 히팅보조블럭(50A)에의 삽입을 용이하게 할 수 있기 때문이다. 예를 들어, 카트리지 본체부(200)의 형태가 카트리지 본체부(200)의 상부 일변의 길이와 카트리지 본체부(200)의 하부 일변의 길이가 동일한 직육면체라면, 카트리지 본체부(200)의 위치가 히팅보조블럭(40A)과 약간 어긋날 때 카트리지 본체부(200)를 히팅보조블럭(50A)에 삽입하고 안착시키기 어려울 경우가 생길 수 있다. 이러한 문제를 방지하기 위해여 카트리지 본체부(200)의 상면 일변의 길이를 카트리지 본체부(200)의 하면 일변의 길이보다 길게하여 카트리지 본체부(200)를 히팅보조블럭(50A)에 용이하게 삽입하고 안착시킬 수 있다.
본 발명의 카트리지 연결부(100)와 카트리지 본체부(200)는 연결과 분리가 가능하며, PCR의 반응량의 변경을 위해 카트리지 본체부(200)의 용량을 변경할 수 있다. 도 10(a)는 본 발명의 일 실시예에 의한 반응부(230)의 단면도이며, 도 10(b)는 본 발명의 다른 일 실시예에 의한 반응부(230)의 단면도이다. 도 10(a) 또는 도 10(b)를 참조하면, 카트리지 연결부(100)와 카트리지 본체부(200)는 연결 및 분리가 가능하며, 카트리지 본체부(200)는 PCR의 반응량의 변경을 위해 DNA 혼합용액이 주입되는 반응부(230)의 공간이 크거나 작은 카트리지 본체부(200)로 교체하여 카트리지 연결부(100)와 연결하여 사용할 수 있다. 도 10(a)는 표준 용량의 카트리지 반응부(230)를 구비하는 카트리지 본체부(200)이며, 도 10((b)는 대용량의 카트리지 반응부(230)를 구비하는 카트리지 본체부(200)이다. 이와 같이 PCR 반응량에 맞춰 다양한 사이즈의 카트리지 본체부(200)의 사용이 가능한 것이 본 발명의 장점이다.
본 발명의 카트리지 연결부(100) 및 카트리지 본체부(200)의 관로는 같은 선상에 위치하고, 카트리지 연결부(100) 및 카트리지 본체부(200)의 관로는 DNA 혼합용액이 주입되는 원심력의 방향과 수평한 방향에 위치한다. 도 11은 본 발명의 일 실시예의 의한 PCR 카트리지(40)의 관로를 나타내는 도면이다. 도 11에 도시된 바와 같이, DNA 혼합용액이 이동하는 카트리지 연결부(100) 및 카트리지 본체부(200)의 관로는 같은 선상에 위치해야 DNA 혼합용액이 이동에 지장을 받지 않고 이동할 수 있다. 또한, 카트리지 연결부(100) 및 카트리지 본체부(200)의 관로는 DNA 혼합용액이 주입되는 원심력의 방향과 같은 수평한 방향에 위치해야, 인터페이스 모듈(30)의 회전에 의해 발생한 원심력에 의해 DNA 혼합용액이 용이하게 PCR 카트리지(40)로 주입될 수 있다. 상기와 같이 원심력에 의해 PCR 카트리지(40)로 주입된 DNA 혼합용액은 원심력에 의해 강한 힘과 속도로 반응부(230)에 채워질 수 있고, PCR 카트리지(40)가 원심력 방향과 수직 방향으로 위치할 때 PCR 카트리지(40)에 생길 수 있는 마이크로 보이드가 생성되지 않는다. 본 발명은 PCR 카트리지(40)가 인터페이스 모듈(30)이 회전하여 발생하는 원심력의 방향과 수평한 방향에 위치하여 원심력에 의해 PCR 카트리지(40)에 DNA 혼합용액이 채워지기 때문에 마이크로 보이드가 생성되지 않는 장점이 있다. 따라서, 본 발명의 PCR 카트리지(40)는 별도의 마이크로 보이드를 제거하는 스핀다운 공정이 필요하지 않다.
본 발명의 카트리지 연결부(100) 및 카트리지 본체부(200)는 폴리에틸렌 수지로 제작되는 것이 바람직하다. 본 발명의 카트리지 연결부(100) 및 카트리지 본체부(200)는 투명하고 부드러운 저밀도 폴리에틸렌보다는 반투명하고 밀도가 높은 고밀도 폴리에틸렌을 사용하는 것이 더욱 바람직하다. 특히, 카메라에 의해 빛을 측정해야 하는 반응부(230)의 외부면은 면을 고르게 하여 빛이 왜곡되지 않게 해야 하기 때문에 폴리에틸렌으로 제작시 새심한 주의를 기울여야 한다.
본 발명의 밸브부(300)는 카트리지 본체부(200)의 상부에 배치되며, 카트리지 본체부(200)에 DNA 혼합용액이 원심력에 의해 주입되면 DNA 혼합용액이 역류되지 않도록 카트리지 본체부(200)를 카트리지 연결부(100)로부터 차단하여 닫아준다. 도 12는 본 발명의 일 실시예에 의한 카트리지 본체부 및 밸브부를 분해한 분해도이고, 도 13(a)는 본 발명의 일 실시예에 의한 밸브부가 열린 모습을 나타내는 단면도이며, 도 13(b)는 본 발명의 일 실시예에 의한 밸브부가 닫힌 모습을 나타내는 단면도이고, 도 14(a)는 본 발명의 일 실시예의 의한 밸브부가 닫힌 모습을 나타내는 단면도이며, 도 14(b)는 본 발명의 일 실시예의 의한 밸브부가 닫힌 모습을 밸브부 상부에서 본 도면이다. 도 12 내지 14를 참조하면, 본 발명의 카트리지 본체부(200)는 상부에 상기 밸브부(300)가 삽입되기 위한 밸브홀(240)을 구비하고, 상기 카트리지 본체부(200)는 상기 밸브홀(240) 내부로 돌출된 돌출부(250)를 구비한다. 상기 돌출부(250)는 돌출된 면의 수평면인 수평돌출면(251) 및 돌출된 면의 경사면인 경사돌출면(252)이 접하여 형성된다. 밸브부(300)는 밸브홀(240) 내부로 삽입가능하며, 상기 밸브부(300)는 측면 내부에 제1 홈부(310) 및 상기 제1 홈부(310) 상부에 위치하는 제2 홈부(320)를 구비한다. 상기 제1 홈부(310)는 내부로 들어간 면의 수평면인 제1 수평홈면(311) 및 내부로 들어간 면의 경사면인 제1 경사홈면(312)이 접하여 형성된다. 또한, 상기 제2 홈부(320)는 내부로 들어간 면의 수평면인 제2 수평홈면(321) 및 내부로 들어간 면의 경사면인 제2 경사홈면(322)이 접하여 형성된다. 상기 돌출부(250)의 수평돌출면(251)과 제1 홈부(310)의 제1 수평홈면(311) 또는 제2 홈부(320)의 제2 수평홈면(321)이 접하고, 상기 돌출부(250)의 경사돌출면(252)과 제1 홈부(310)의 제1 경사홈면(312) 또는 제2 홈부(320)의 제2 경사홈면(322)이 접하며, 밸브부(300)는 이렇게 카트리지 본체부(200)에 고정된다. 도 13(a)를 참조하면, 카트리지 본체부(200)의 차단부가 밸브부(300)로부터 개방된 상태에서는, 상기 밸브부(300)의 제1 홈부(310)에 상기 카트리지 본체부(200)의 돌출부(250)가 결합되어, 상기 카트리지 본체부(200)에 상기 밸브부(300)가 열린 상태로 고정된다. 이 때, 돌출부(250)의 수평 돌출면(251)과 제1 홈부(310)의 제1 수평홈면(311)이 접하고, 돌출부(250)의 경사돌출면(252)과 제1 홈부(310)의 제1 경사홈면(312)이 접한다. 도 13(b)를 참조하면, 카트리지 본체부(200)의 차단부가 밸브부(300)에 의하여 폐쇄된 상태에서는, 상기 밸브부(300)의 제2 홈부(320)에 상기 카트리지 본체부(200)의 돌출부(250)가 결합되어, 상기 카트리지 본체부(200)에 상기 밸브부(300)가 닫힌 상태로 고정된다. 이 때, 돌출부(250)의 수평 돌출면(251)과 제2 홈부(320)의 제2 수평홈면(321)이 접하고, 돌출부(250)의 경사돌출면(252)과 제2 홈부(320)의 제2 경사홈면(322)이 접한다. 본 발명의 밸브부(300)의 상부에는 밸브부(300)를 작동시키는 밸브 작동부(미도시)가 위치한다. 밸브 작동부는 구동 모터와 기어의 작동에 의해 상하 운동을 구현할 수 있는 장치로, 밸브부(300)를 닫을 때는 구동 모터를 작동시켜 밸브부(300)에 하부로 압력을 주어 밸브부(300)가 닫히게 한다. 인터페이스 모듈(30)이 회전하여 원심력에 의해 DNA 혼합용액이 PCR 카트리지(40)에 주입되고 있을 때는 밸브부(300)를 작동시키지 않고, 인터페이스 모듈(30)의 회전이 끝나면 반응부(230)로 주입된 DNA 혼합용액이 역류하지 않게 밸브 작동부를 작동시켜 밸브부(300)를 닫아준다. 중합효소 연쇄반응을 위해 카트리지 본체부(200)가 가열되고 냉각될 때에도 밸브부(300)를 닫아둔다. 본 발명의 밸브부(300)의 소재는 폴리디메틸실록산(PDMS)를 사용하는 것을 바람직하다. 폴리디메틸실록산의 불활성 특성과 저온에서의 고무와 같은 특성으로 본 발명의 밸브부(300)에 사용하기에 적합하다. 즉, 밸브부(300)는 DNA 혼합용액과 반응해서는 안 되며 탄성이 있어서 차단부(220)를 닫고 여는데 적합한 특성을 지녀야 하기 때문에 폴리디메틸실록산의 사용하여 제작되는 것이 바람직하다. 도 15는 본 발명의 일 실시예에 의한 밸브부와 차단부를 나타낸다. 도 15를 참조하면, 밸브부(300)의 밸브의 직경을 A라고 하고, 밸브홀(240)의 직경을 B라고 하면, A > B일 수 있고, 보다 바람직하게는 A는 B보다 0.1~0.15mm 클 수 있다. 밸브부(300)는 탄성이 있는 폴리디메틸실록산으로 제작되기 때문에 밸브홀(240)보다 크더라도 탄성에 의해 밸브홀(240)에 삽입이 가능하고, 밸브의 직경이 밸브홀(240)보다 커서 기밀성을 유지하며 차단부(220)를 차단하여 DNA 혼합용액이 역류하지 않도록 할 수 있다.
이하에서는 본 발명의 소켓형 PCR 카트리지(40)를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법에 대해 도면을 참조하여 설명한다. 도 16은 본 발명의 일 실시예에 의한 소켓형 PCR 카트리지(40)를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법의 순서도이다. 도 16을 참조하면, 본 발명의 소켓형 PCR 카트리지(40)를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법은 하기의 5 단계를 포함하여 구성될 수 있다.
제1 단계(S10) : 카트리지 연결부(100)와 카트리지 본체부(200)를 연결하여 복수의 PCR 카트리지(40)가 준비되는 단계
제2 단계(S20) : 복수의 PCR 카트리지(40)가 웨이스트 모듈(20) 및 인터페이스 모듈(30)에 장착되는 단계
제3 단계(S30) : DNA 추출용 카트리지 모듈(10)에서 분리된 DNA가 인터페이스 모듈(30)에서 회전하면서 원심력에 의해 교반된 DNA 혼합용액이 PCR 카트리지(40)로 주입되는 단계
제4 단계(S40) : 인터페이스 모듈(30)의 회전이 끝나면 PCR 카트리지(40)의 밸브부(300)가 닫히는 단계
제5 단계(S50) : PCR 카트리지(40)의 반응부(230)가 히팅보조블럭(50A)에 안착되고, 반응부(230)를 가열과 냉각을 반복하여 DNA를 증폭시켜 타겟 DNA가 검사되는 단계
또한, 본 발명의 다른 실시형태인 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법은, 상기 카트리지 연결부와 카트리지 본체부를 연결하여 복수의 상기 PCR 카트리지가 준비되는 제1 단계; 상기 복수의 PCR 카트리지가 상기 인터페이스 모듈에 장착되는 제2 단계; 상기 DNA 추출용 카트리지 모듈에서 분리된 DNA가 상기 인터페이스 모듈에서 회전하면서 원심력에 의해 교반된 DNA 혼합용액이 상기 PCR 카트리지로 주입되는 제3 단계; 상기 인터페이스 모듈의 회전이 끝나면 상기 PCR 카트리지의 밸브부가 닫히는 제4 단계; 및 상기 PCR 카트리지의 반응부가 히팅보조블럭에 안착되고, 상기 반응부를 가열과 냉각을 반복하여 DNA를 증폭시켜 타겟 DNA가 검사되는 제5 단계;를 포함한다.
본 발명의 소켓형 PCR 카트리지(40) 구비하는 실시간 PCR 디바이스의 작동 방법의 제1 단계는 카트리지 연결부(100)와 카트리지 본체부(200)를 연결하여 복수의 PCR 카트리지(40)를 준비시키는 단계이다. 일반적으로는 8개의 PCR 카트리지(40)가 준비될 수 있다. PCR의 반응량에 따라 다양한 용량을 가지는 카트리지 본체부(200)를 사용할 수 있고, 카트리지 연결부(100)와 카트리지 본체부(200)를 조립하여 복수의 PCR 카트리지(40)를 준비한다.
본 발명의 소켓형 PCR 카트리지(40) 구비하는 실시간 PCR 디바이스의 작동 방법의 제2 단계는 복수의 PCR 카트리지(40)가 웨이스트 모듈(20) 및 인터페이스 모듈(30)에 장착되는 단계이다. 카트리지 연결부(100)는 소켓의 형태이기 때문에 PCR 카트리지(40)를 웨이스트 모듈(20) 및 인터페이스 모듈(30)에 용이하게 장착할 수 있다.
본 발명의 소켓형 PCR 카트리지(40) 구비하는 실시간 PCR 디바이스의 작동 방법의 제3 단계는 DNA 추출용 카트리지 모듈(10)에서 분리된 DNA가 인터페이스 모듈(20)에서 회전하면서 원심력에 의해 교반된 DNA 혼합용액이 PCR 카트리지(40)로 주입되는 단계이다. DNA 추출용 카트리지 모듈(10)에서 준비된 세포를 라이시스 버퍼용 튜브로 세포벽을 녹이는 물질을 포함하는 용액으로 세포를 처리하고, 마그네틱 비드용 튜브는 자성을 띠는 고밀도의 입자로 세포벽을 깨고, 세정용 튜브는 라이시스 버퍼용 튜브 및 마그네틱 비드용 튜브를 거친 후, 세포 내부의 DNA 사슬을 마그네틱 비드에 뭍인 채로 증류수로 세정하여 단백질 등의 이물질을 제거할 수 있다. 그 후에 용리 튜브는 자성을 제거하여 DNA가 비드에서 분리되어 용액에 자유입자로 분리되게 할 수 있다. DNA 추출용 카트리지 모듈(10)의 불순물은 웨이스트 모듈(20)로 이동하고, 추출된 DNA 용액은 인터페이스 모듈(30)로 이동한다. 마스터 믹스와 미네럴 오일과 교반된 DNA 용액은 세퍼레이션 로드를 통해 복수의 채널로 나뉘어지고 원심력을 통해 개별의 PCR 카트리지(40)로 주입이 된다.
본 발명의 소켓형 PCR 카트리지(40) 구비하는 실시간 PCR 디바이스의 작동 방법의 제4 단계는 인터페이스 모듈(30)의 회전이 끝나고 반응부(230)에 주입된 DNA 혼합용액이 인터페이스 모듈(30) 방향으로 역류하지 않도록 PCR 카트리지(40)의 밸브부(300)를 닫는 단계이다. 카트리지 연결부(100) 및 카트리지 본체부(200)의 관로는 인터페이스 모듈(30)의 회전에 의한 원심력의 방향과 수평한 방향에 위치하기 때문에, 카트리지 연결부(100) 및 카트리지 본체부(200)의 관로를 통해 DNA 혼합용액이 역류할 수 있다. 이를 방지하기 위해 밸브부(300)를 두어 인터페이스 모듈(30)의 회전이 끝나면 밸브부(300)를 닫아 주입된 DNA 혼합용액이 반응부(230)에서 저장될 수 있도록 한다.
본 발명의 소켓형 PCR 카트리지(40) 구비하는 실시간 PCR 디바이스의 작동 방법의 제5 단계는 PCR 카트리지(40)의 반응부(230)을 히팅보조블럭(50A)에 안착시키고, 반응부(230)를 가열과 냉각을 반복하여 DNA를 증폭시켜 타겟 DNA를 검사하는 단계이다. 이 단계에서는 반응부(230)를 92℃~95℃로 가열하여 이중가닥의 DNA를 단일가닥의 DNA로 분리시킨다. 그 후에는 프라이머를 자신의 염기서열과 상보적인 염기서열를 갖고 있는 DNA에 결합시키고, DNA의 원하는 부분을 증폭시켜 타겟 DNA를 검출한다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (7)

  1. 원심력에 의해 DNA 혼합용액이 주입되도록 연결되며, 탈부착이 가능한 카트리지 연결부;
    상기 카드리지 연결부와 일측이 연결되며, DNA 혼합용액이 주입된 후 중합효소 연쇄반응을 위해 가열과 냉각이 이루어지는 카트리지 본체부; 및
    상기 카트리지 본체부의 상부에 배치되며, 상기 카트리지 본체부에 DNA 혼합용액이 원심력에 의해 주입되면 DNA 혼합용액이 역류되지 않도록 상기 카트리지 본체부를 상기 카트리지 연결부로부터 차단하여 닫아주는 밸브부;를 포함하는 것을 특징으로 하는 소켓형 PCR 카트리지.
  2. 청구항 1에 있어서,
    상기 카트리지 본체부는, 상기 카트리지 연결부와 연결되는 통로인 관로부, 상기 관로부와 연결되며, 상기 밸브부가 하부로 이동하여 DNA 혼합용액이 상기 카트리지 연결부로의 역류를 차단할 수 있는 공간인 차단부 및 상기 차단부와 연결되며, DNA 혼합용액이 주입되어 히팅블럭에 의해 가열이 이루어지는 반응부를 포함하는 것을 특징으로 하는 소켓형 PCR 카트리지.
  3. 청구항 1에 있어서,
    상기 카트리지 연결부의 관로 및 카트리지 본체부의 관로는 동일한 직선 상에 위치하고 상기 카트리지 연결부의 관로 및 카트리지 본체부의 관로는 DNA 혼합용액이 주입되는 원심력의 방향과 수평한 방향에 위치하는 것을 특징으로 하는 소켓형 PCR 카트리지.
  4. 청구항 1에 있어서,
    상기 반응부를 구성하는 카트리지 본체부는 히팅블럭의 히팅보조블럭과의 밀착을 위해 역사다리꼴의 육면체 형태인 것을 특징으로 하는 소켓형 PCR 카트리지.
  5. 청구항 1에 있어서,
    상기 카트리지 연결부 및 카트리지 본체부의 소재는 폴리에틸렌을 사용하고, 상기 밸브부의 소재는 폴리디메틸실록산(PDMS)를 사용하는 것을 특징으로 하는 소켓형 PCR 카트리지.
  6. 청구항 1 내지 청구항 5의 어느 한 항의 소켓형 PCR 카트리지를 복수로 구비하는 구비하는 회전형 실시간 PCR 디바이스이며,
    DNA 추출용 카트리지 모듈, 상기 DNA 추출용 카트리지 모듈의 하부에 위치한 웨이스트 모듈, 상기 웨이스트 모듈의 하부에 위치한 인터페이스 모듈, 상기 웨이스트 모듈 및 인터페이스 모듈의 각각의 측면과 연결된 PCR 카트리지, 상기 PCR 카트리지의 하부에 위치한 히팅블럭을 포함하는 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스.
  7. 청구항 6의 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법에 있어서,
    상기 카트리지 연결부와 카트리지 본체부를 연결하여 복수의 상기 PCR 카트리지가 준비되는 제1 단계;
    상기 복수의 PCR 카트리지가 상기 웨이스트 모듈 및 인터페이스 모듈에 장착되는 제2 단계;
    상기 DNA 추출용 카트리지 모듈에서 분리된 DNA가 상기 인터페이스 모듈에서 회전하면서 원심력에 의해 교반된 DNA 혼합용액이 상기 PCR 카트리지로 주입되는 제3 단계;
    상기 인터페이스 모듈의 회전이 끝나면 상기 PCR 카트리지의 밸브부가 닫히는 제4 단계; 및
    상기 PCR 카트리지의 반응부가 히팅보조블럭에 안착되고, 상기 반응부를 가열과 냉각을 반복하여 DNA를 증폭시켜 타겟 DNA가 검사되는 제5 단계;를 포함하는 것을 특징으로 하는 소켓형 PCR 카트리지를 구비하는 회전형 실시간 PCR 디바이스의 작동 방법.
PCT/KR2023/001105 2022-08-12 2023-01-25 소켓형 pcr 카트리지, 이를 구비하는 회전형 실시간 pcr 디바이스 및 소켓형 pcr 카트리지를 구비하는 회전형 실시간 pcr 디바이스의 작동 방법 WO2024034756A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220101060A KR20240022694A (ko) 2022-08-12 2022-08-12 소켓형 pcr 카트리지, 이를 구비하는 회전형 실시간 pcr 디바이스 및 소켓형 pcr 카트리지를 구비하는 회전형 실시간 pcr 디바이스의 작동 방법
KR10-2022-0101060 2022-08-12

Publications (1)

Publication Number Publication Date
WO2024034756A1 true WO2024034756A1 (ko) 2024-02-15

Family

ID=89851858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001105 WO2024034756A1 (ko) 2022-08-12 2023-01-25 소켓형 pcr 카트리지, 이를 구비하는 회전형 실시간 pcr 디바이스 및 소켓형 pcr 카트리지를 구비하는 회전형 실시간 pcr 디바이스의 작동 방법

Country Status (2)

Country Link
KR (1) KR20240022694A (ko)
WO (1) WO2024034756A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140092753A (ko) * 2012-12-27 2014-07-24 성균관대학교산학협력단 온도 민감 폴리머 합성체를 이용한 핵산 증폭 디스크 장치 및 이를 이용한 분석 방법
KR20150036618A (ko) * 2012-07-18 2015-04-07 테라노스, 인코포레이티드 소량 견본용 고속 압축 원심분리기
KR20150125336A (ko) * 2014-04-30 2015-11-09 국립대학법인 울산과학기술대학교 산학협력단 희소 세포 분리장치, 희소 세포 분리 방법 및 이를 이용한 희소 세포 검출 방법
US20200038864A1 (en) * 2016-03-24 2020-02-06 National Technology & Engineering Solutions Of Sandia, Llc Check valves for microfluidic systems and methods thereof
KR20220096444A (ko) * 2020-12-31 2022-07-07 주식회사 에이아이바이오틱스 Rt-pcr용 인터페이스 튜브 모듈 및 이를 사용한 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102403439B1 (ko) 2020-07-16 2022-06-02 주식회사 에이아이바이오틱스 올인원 rt-pcr 장치
KR102559634B1 (ko) 2020-08-26 2023-07-26 한국전자통신연구원 다파장 광원에 기반한 pcr 진단을 위한 장치 및 방법
KR102456309B1 (ko) 2020-10-19 2022-10-21 (주)레보스케치 카트리지형 디지털 pcr 장치
KR102277241B1 (ko) 2020-12-22 2021-07-15 순천향대학교 산학협력단 휴대용 rt-pcr 장치 및 이를 이용한 rt-pcr 측정 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036618A (ko) * 2012-07-18 2015-04-07 테라노스, 인코포레이티드 소량 견본용 고속 압축 원심분리기
KR20140092753A (ko) * 2012-12-27 2014-07-24 성균관대학교산학협력단 온도 민감 폴리머 합성체를 이용한 핵산 증폭 디스크 장치 및 이를 이용한 분석 방법
KR20150125336A (ko) * 2014-04-30 2015-11-09 국립대학법인 울산과학기술대학교 산학협력단 희소 세포 분리장치, 희소 세포 분리 방법 및 이를 이용한 희소 세포 검출 방법
US20200038864A1 (en) * 2016-03-24 2020-02-06 National Technology & Engineering Solutions Of Sandia, Llc Check valves for microfluidic systems and methods thereof
KR20220096444A (ko) * 2020-12-31 2022-07-07 주식회사 에이아이바이오틱스 Rt-pcr용 인터페이스 튜브 모듈 및 이를 사용한 장치

Also Published As

Publication number Publication date
KR20240022694A (ko) 2024-02-20

Similar Documents

Publication Publication Date Title
JP6698786B2 (ja) 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
CN111647498B (zh) 一种一体化自助式核酸检测装置及其使用方法
CN107398307B (zh) 一种集成化微流控芯片
CN110029052A (zh) 微流控芯片及分析系统
JP2016527511A (ja) 流体カートリッジおよび液体サンプルの処理方法
EP4001426A1 (en) Methods and systems for detecting biological components
CN108485912A (zh) 一种微型多仓室控制核酸检测装置
WO2011112023A2 (ko) 혈구 분리 칩
CN112391280B (zh) 生物反应芯片和生物反应设备
WO2014112671A1 (ko) 핵산 추출용 미세유동 칩, 이를 포함하는 핵산 추출 장치, 및 이를 이용하는 핵산 추출 방법
CN111909835A (zh) 一种封闭式微流控核酸检测卡盒
WO2020036435A1 (ko) 진단 스트립 점적 및 유전자 단편 추출용 튜브 조립체
WO2009151198A1 (ko) 뱃치형 화학분석장치
US20220410142A1 (en) Amplification module with gas moving passage and extract moving passage
WO2024034756A1 (ko) 소켓형 pcr 카트리지, 이를 구비하는 회전형 실시간 pcr 디바이스 및 소켓형 pcr 카트리지를 구비하는 회전형 실시간 pcr 디바이스의 작동 방법
WO2021066506A1 (ko) 원심 분리 장치용 챔버 및 이를 포함하는 원심 분리 장치
CN111321056B (zh) 用于核酸提取及分析的卡盒装置和方法
CN107523487A (zh) 一种集成化管状反应装置
WO2016076551A1 (ko) 미세유체 칩의 실링 장치 및 그 동작 방법
US20190309346A1 (en) Combined Extraction and PCR Systems
WO2022098064A1 (ko) 마이크로 칩 및 이의 실링 방법
CN115400806A (zh) 一体化核酸提取微流控芯片盒和核酸提取及检测方法
CN115651807A (zh) 核酸检测芯片和核酸检测方法
CN111939996B (zh) 一种试管内试剂存储方法及试剂存储反应检测一体化试管
WO2009149115A1 (en) Cartridge for conducting biochemical assays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852655

Country of ref document: EP

Kind code of ref document: A1