WO2024034552A1 - 模擬粘液被覆粘膜組織モデル - Google Patents

模擬粘液被覆粘膜組織モデル Download PDF

Info

Publication number
WO2024034552A1
WO2024034552A1 PCT/JP2023/028681 JP2023028681W WO2024034552A1 WO 2024034552 A1 WO2024034552 A1 WO 2024034552A1 JP 2023028681 W JP2023028681 W JP 2023028681W WO 2024034552 A1 WO2024034552 A1 WO 2024034552A1
Authority
WO
WIPO (PCT)
Prior art keywords
mucosal tissue
model
medical procedure
coated
simulated
Prior art date
Application number
PCT/JP2023/028681
Other languages
English (en)
French (fr)
Inventor
祐子 福田
武 菅野
悠太郎 荒田
淳 正宗
Original Assignee
デンカ株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社, 国立大学法人東北大学 filed Critical デンカ株式会社
Publication of WO2024034552A1 publication Critical patent/WO2024034552A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes

Definitions

  • the present invention relates to a simulated mucus-coated mucosal tissue model and an organ model, a method for training medical techniques using the model, a method for manufacturing the model, a kit and device including the model, and a lubricating composition for coating the mucosal tissue model.
  • a thermoplastic resin such as styrene elastomer, which is the base material of a medical procedure training model that imitates an organ or tissue, is melted by energization and heating. It was used as a guideline.
  • the present invention provides a simulation system that can reproduce the behavior of mucus during treatment of biological mucosal tissue using an energy device and/or reduce the risk of deformation or malfunction of the energy device during medical procedure training.
  • An object of the present invention is to provide a mucus-coated mucosal tissue model and an organ model, a method for training medical procedures using the model, a method for manufacturing the model, a kit and a device including the model, and a lubricating composition for coating the mucosal tissue model. .
  • the present inventors have determined that the surface of a mucosal tissue model that imitates the mucosal tissue of a living body has a volume resistivity of 1.0E+00 to 1.0E+05 (1.0E+00 to 1.0E+05).
  • the present invention relates to the following.
  • the surface of the mucosal tissue model that imitates at least a portion of the mucosal tissue of a living body has a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s.
  • a simulated mucus-coated mucosal tissue model for medical procedure training coated with a certain lubricating composition is
  • the simulated mucus-coated organ model according to [4] which includes a simulated blood vessel connected to a device capable of supplying simulated blood.
  • the surface of the mucosal tissue model that imitates at least a portion of the mucosal tissue of a living body has a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ).
  • the mucosal tissue model includes a simulated blood vessel connected to a device capable of supplying simulated blood.
  • the medical procedure is a treatment including incision of mucosal tissue or hemostasis using an energy device.
  • a surface imitating the mucosal surface of mucosal tissue of an organ model including a mucosal tissue model imitating at least a part of the mucosal tissue of a living body has a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ).
  • a method for producing a simulated mucus-coated organ model for medical procedure training comprising the step of coating with a lubricating composition having a lubricating composition of mPa ⁇ s.
  • the medical procedure is a treatment including incision of mucosal tissue or hemostasis using an energy device.
  • the volume resistivity is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm
  • the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s of a lubricating composition and a mucosal tissue model imitating at least a portion of a biological mucosal tissue, medical procedure training kit for.
  • the medical procedure training kit according to [16] wherein the mucosal tissue model includes a simulated blood vessel connected to a device capable of supplying simulated blood.
  • the medical procedure training kit according to [16] or [17], wherein the medical procedure is a treatment including incision of mucosal tissue or hemostasis using an energy device.
  • the volume resistivity is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm
  • the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s
  • an organ model including a mucosal tissue model imitating at least a portion of a living body's mucosal tissue.
  • a medical procedure training device comprising the simulated mucus-coated organ model according to any one of [4] to [6] and an organ model imitating one or more other types of organs.
  • the volume resistivity is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm
  • the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is A lubricating composition having a pressure of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s
  • a lubricating composition for coating a mucosal tissue model which is used to coat a surface imitating the mucosal surface of a mucosal tissue in a mucosal tissue model.
  • the volume resistivity is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm
  • the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s of a lubricating composition to coat a surface imitating the mucosal surface of mucosal tissue in a mucosal tissue model (preferably a surface for application to).
  • the present invention it is possible to reproduce the behavior of mucus during treatment of biological mucosal tissue using an energy device, and/or to reduce the risk of deformation or malfunction of the energy device during medical procedure training.
  • the present invention provides a simulated mucus-coated mucosal tissue model and organ model, a method for training medical techniques using the model, a method for manufacturing the model, a kit and device including the model, and a lubricating composition for coating the mucosal tissue model. can.
  • the surface of the mucosal tissue model that imitates at least a part of the mucosal tissue of a living body has a volume resistivity of 1.0E+00 to 1.0E+05 (1 .0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) is a simulated mucus-coated mucosal tissue model for medical procedure training coated with a lubricating composition having a lubricating composition of mPa ⁇ s.
  • a surface imitating the mucosal surface of the mucosal tissue of the mucosal tissue model is coated with a lubricating composition.
  • the coating of the lubricating composition on the surface simulating the mucosal surface of the mucosal tissue may be done by any application method, for example, spreading the lubricating composition on the surface simulating the mucosal surface of the mucosal tissue using fingers or a spatula.
  • Examples of methods include immersing a surface imitating the mucosal surface of mucosal tissue in a lubricating composition, and transferring the lubricating composition from a transfer material containing the lubricating composition to a surface imitating the mucosal surface of mucosal tissue.
  • the lubricating composition is applied to a surface imitating the mucosal surface of the mucosal tissue of the mucosal tissue model by spreading the lubricating composition.
  • the mucosal surface of mucosal tissue refers to the mucosal epithelial side of mucosal tissue, where cells capable of secreting mucus, such as mucus cells, exist in the intestinal tract of living tissue and are covered with mucous membrane.
  • mucosal tissue model refers to a model that imitates at least a portion of the mucosal tissue of a living body, in which the surface imitating the mucosal surface is not coated with a lubricating composition.
  • mucus-coated mucosal tissue model refers to a mucous tissue model coated with a lubricating composition.
  • the lubricating composition has a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and is measured by the measurement method specified in JIS Z8803.
  • the composition has a measured viscosity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s at 25°C.
  • the components and composition contained in the lubricating composition have a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and have a volume resistivity measured as specified in JIS Z8803. It is not limited as long as the viscosity at 25° C. measured by the method is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s.
  • Ingredients include, for example, water, sodium chloride, magnesium chloride, potassium chloride, sodium hydroxide, sodium dihydrogen phosphate, sodium phosphate, glycerin, propylene glycol, methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, Low molecular weight compounds such as butyl paraoxybenzoate, water-absorbing polymers such as hydrogenated castor oil, 12-hydroxystearic acid, glucono delta lactone, sodium polyacrylate, polyethylene glycol, polypropylene glycol, hyaluronic acid, alginic acid, carrageenan, dextrin , xanthan gum, guar gum, glycosaminoglycan, collagen, water-soluble vinyl polymers (including carboxyvinyl polymers and polyvinyl alcohol), hypromellose, methylcellulose, polyacrylic acid, polymethacrylic acid, hydroxyethylcellulose, etc.
  • Water-soluble vinyl polymers including carboxyvin
  • the lubricating composition also includes one or more electrolytes, carbon nanomaterials, conductive polymers, conductive materials such as metal fillers, preservatives, fragrances, pigments, narcotic ingredients, pH adjusters, dispersants, and additives. It may further contain a viscosity agent (including a thixotropic agent, an anti-settling agent, and an anti-sagging agent), a surfactant, an antioxidant, and the like.
  • a viscosity agent including a thixotropic agent, an anti-settling agent, and an anti-sagging agent
  • the volume resistivity is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measurement method specified in JIS Z8803 is 1.0E+00.
  • Lubricating compositions are prepared by adjusting the components contained in the composition and the content of each component, and adjusting the volume resistivity and viscosity. It can be prepared by measuring and confirming whether it falls within the above range.
  • the volume resistivity can be calculated at a measurement temperature of 25° C. by AC impedance measurement.
  • a measurement sample was placed in a liquid measurement cell with a diameter of 13 mm and a thickness of 5 mm, and metal terminals provided at both ends of the cell that were in contact with the measurement sample and an AC impedance measurement device (Solartron SI 1287 manufactured by Toyo Technica Co., Ltd.) were placed.
  • the terminals of a frequency response analyzer 1252A were connected.
  • Viscosity can be measured according to the measurement method specified in JIS Z8803 using a rheometer (MCR-92 manufactured by Anton Paar) using a cone plate with a diameter of 50 mm, a measurement temperature of 25 ° C, and a shear rate of 10 / s. can.
  • the lubricating composition may be an aqueous sodium chloride solution or an aqueous sodium polyacrylate solution.
  • the lubricating composition when it is an aqueous sodium chloride solution, it can be prepared by adding sodium chloride to distilled water and stirring. At this time, the volume resistivity is 1.0E+00 to 1.0E+05 (1.0 to 1 .0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s. can do.
  • the aqueous sodium chloride solution may be, for example, 1.7E+00 (1.7)M or 8.6E-06 (8.6 ⁇ 10 ⁇ 6 )M.
  • Aron registered trademark
  • A-20L manufactured by Toagosei Co., Ltd. is used without dilution, or it is prepared by adding distilled water to Aron A-20L and stirring. can do.
  • the volume resistivity is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm
  • the viscosity at 25°C measured by the measuring method specified in JIS Z8803 can be 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s.
  • the aqueous sodium polyacrylate solution may have a concentration of Aron A-20L in distilled water of 10 wt% or 100 wt%, for example.
  • various commercially available lubricating jelly for medical use and jelly for ultrasonic examination have a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm and comply with JIS Z8803.
  • the viscosity at 25° C. measured by the specified measurement method is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s, regardless of the component composition, this embodiment It can be used as a lubricating composition.
  • medical lubricating jelly examples include sterile lubricating jelly (catalog number SLT-612-10) manufactured by Boston Scientific, ultrasonic examination jelly ECHO JELLY MORE (registered trademark) manufactured by Fujifilm Healthcare Co., Ltd., etc. Can be mentioned.
  • the volume resistivity of the lubricating composition is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and 1.0E+00 to 8.0E+04 (1.0 to 8.0 ⁇ 10 4 ) ⁇ cm, preferably 5.0E+00 to 8.0E+04 (5.0 to 8.0 ⁇ 10 4 ) ⁇ cm, and more preferably 8.2E+00 to 8.0E+04 ( More preferably, it is 8.2 to 8.0 ⁇ 10 4 ) ⁇ cm.
  • the viscosity of the lubricating composition at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s, and 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s.
  • 0E+02 to 5.0E+04 (1.0 ⁇ 10 2 to 5.0 ⁇ 10 4 ) mPa ⁇ s, preferably 1.0E+03 to 5.0E+04 (1.0 ⁇ 10 3 to 5.0 ⁇ 10 4 ) mPa ⁇ s, and more preferably 5.0E+03 to 5.0E+04 (5.0 ⁇ 10 3 to 5.0 ⁇ 10 4 ) mPa ⁇ s.
  • the volume resistivity of the lubricating composition and the viscosity at 25°C measured by the measuring method specified in JIS Z8803 are 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, respectively. , and 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s, and 1.0E+00 to 8.0E+04 (1.0 to 8.0 ⁇ 10 4 ) ⁇ cm, and 1.0E+02 to 5.0E+04 (1.0 ⁇ 10 2 to 5.0 ⁇ 10 4 ) mPa ⁇ s. More preferable ranges of volume resistivity and viscosity are as described above, and any range of volume resistivity and viscosity may be combined.
  • the volume resistivity of the lubricating composition is in the range of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the measurement method specified in JIS Z8803 for lubricating compositions is used.
  • the measured viscosity at 25° C. is in the range of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s, so that in the simulated mucus-coated mucosal tissue model according to this embodiment, the mucous membrane A lubricating composition that coats a surface that mimics a surface facilitates reproducing the behavior of mucus during treatment of biological mucosal tissue with an energy device.
  • the applicability of the lubricating composition when applied to a mucosal tissue model tends to be good. Furthermore, according to the simulated mucus-coated mucosal tissue model according to the present embodiment, it is possible to reduce the risk of deformation or malfunction of energy devices due to energization and heating of thermoplastic resins, which have been used in conventional medical procedure training. can.
  • reproduction of the behavior of mucus during treatment of the mucosal tissue of a living body using an energy device means, for example, reproduction of continuous bubble generation.
  • the applicability is a property that when a lubricating composition is applied to a mucosal tissue model, there is no excessive viscosity (stickiness) and the composition tends to remain on the surface of the mucosal tissue model after application.
  • the thickness of the lubricating composition applied to the simulated mucus-coated mucosal tissue model is preferably 0.01 to 3.0 mm. , more preferably 0.05 to 2.5 mm, and even more preferably 0.05 to 1.0 mm. When it is 0.05 to 1.0 mm, it may be 0.1 mm, 0.5 mm, or 1.0 mm.
  • the thickness of the lubricating composition applied to the simulated mucus-coated mucosal tissue model is in the range of 0.01 to 3.0 mm, so that the simulated mucus tissue model in this embodiment
  • the lubricating composition facilitates reproducing the behavior of mucus during treatment of biological mucosal tissue with an energy device.
  • the "mucosal tissue” of the mucosal tissue model is not limited to any tissue that can secrete mucus in the living body of an animal, such as the digestive, urinary, reproductive, and respiratory organs. At least some tissue in an organ.
  • the digestive organs include the oral cavity, pharynx, esophagus, stomach, duodenum, small intestine, large intestine, rectum, and anus;
  • examples of the urinary organs include the ureter, bladder, and urethra; and examples of the reproductive organs.
  • respiratory organs include the fallopian tube, uterus, vagina, vas deferens, penis, and urethra.
  • the mucosal tissue model is not limited to a model that imitates the mucosal tissue of any animal species; for example, it may be a mucosal tissue model of any animal species such as mammals including humans, birds, reptiles, amphibians, and fish. A person skilled in the art can appropriately select one according to the necessity of medical procedure training.
  • the mucosal tissue model can be selected by those skilled in the art from known mucosal tissue models, and is not limited as long as it is a model that imitates mucosal tissue.
  • Various models made mainly from materials (dry materials), aqueous gels obtained from polyvinyl alcohol solutions, protein solutions, polysaccharide solutions (wet materials), etc. good.
  • dry materials dry materials
  • aqueous gels obtained from polyvinyl alcohol solutions
  • protein solutions protein solutions
  • polysaccharide solutions wet materials
  • it is not limited to a single layer structure or a multilayer structure made of one or more types of materials.
  • the shape of the mucosal tissue model can be selected depending on the type of medical procedure to be trained, and can have any shape selected from, for example, a circle, an ellipse, a polygon, or an irregular shape.
  • the mucosal tissue model can be molded by a known molding method, and may be molded integrally or separately. For example, when using an inner mold (core) and an outer mold and casting into the space between them, a cut may be made in the resin molding and the inner mold may be taken out from there. At that time, the incisions can be glued together to complete the mucosal tissue model.
  • a mucosal tissue model may be molded using a male mold and a female mold by heat press molding, vacuum press molding, etc., or by molding multiple mucosal tissue parts separately by injection molding etc. and then adhering them to form a mucosal tissue model. You can also complete the model.
  • the maximum width in the direction perpendicular to the thickness direction of the mucosal tissue model can be selected depending on the type of medical procedure to be trained, but may be in a range corresponding to the spread of a general ulcer, for example, in the range of 10 to 150 mm. Good too.
  • the thickness of the mucosal tissue model is not particularly limited, but may be about 1 to 30 mm or about 2 to 20 mm.
  • the mucosal tissue model includes 100 parts by mass of a hydrogenated styrene thermoplastic elastomer, 400 parts by mass of oil, 30 parts by mass of a copolymer of a hydrophobic polymer and a hydrophilic polymer, and 100 parts by mass of an ionic liquid. After adding it, it was stored for more than 12 hours to allow it to soak in thoroughly. Using a segment mixer (Laboplasto Mill KF70V2 type manufactured by Toyo Seiki Co., Ltd.), kneading was performed at 180°C for 15 minutes at a rotational speed of 100 times/min.
  • a segment mixer (Laboplasto Mill KF70V2 type manufactured by Toyo Seiki Co., Ltd.)
  • the sheet may be formed to have a width of 100 mm, a length of 100 mm, and a thickness of 2 mm.
  • each component may be as follows.
  • the mucosal tissue model may include a simulated blood vessel connected to a device capable of supplying simulated blood.
  • the simulated mucus-coated mucosal tissue model may include a simulated blood vessel connected to a device capable of supplying simulated blood.
  • the simulated blood vessel is a path for supplying simulated blood to the mucosal tissue-simulating surface of the mucosal tissue model when practicing hemostasis, and may penetrate the mucosal tissue model.
  • a tubular pump or a syringe can be used as any device capable of supplying simulated blood.
  • the simulated blood vessel may be a tubular structure that includes a tubular base material layer and a conductive layer disposed on the outer surface of the base material layer, and can be energized by an energy device.
  • the conductive layer does not need to be present on the entire surface of the base layer, but only needs to be present in the portion where electricity is applied.
  • the simulated blood vessel may have a surface resistivity of 1.0 ⁇ 10 0 ⁇ / ⁇ or more and 1.0 ⁇ 10 6 ⁇ / ⁇ or less at the location where the conductive layer is arranged.
  • the surface resistance value can be measured according to JIS C2139 using Lorester GX (MCP-T700) manufactured by Nitto Seiko Analytech Co., Ltd. at a temperature of 23 ⁇ 1°C.
  • MCP-T700 Lorester GX
  • a thermoplastic resin composition was press-molded at 160 to 200°C, processed into a 2.5 cm x 2.5 cm, 1.0 mm thick resin sheet, and a conductive layer was formed on the surface of the
  • the simulated mucus-coated mucosal tissue model according to the present embodiment can be used as a simulated mucus-coated tissue piece model alone for medical procedure training, or can be used for digestive organs, urinary organs, reproductive organs, etc. It may be used for medical procedure training while being attached to various organ models having mucosal tissues in living organisms such as respiratory organs.
  • the simulated mucus-coated mucosal tissue model may be fitted into the attachment part provided on the organ model, or the simulated mucus-coated mucosal tissue model may be attached to the inner wall of the organ model.
  • a tissue model may be pasted.
  • the attachment part provided on the organ model may be a frame or a recess formed by partially missing the wall, and the jig for attaching the simulated mucus-coated mucosal tissue model may be, for example, an organ model such as a digestive organ. It may be attached to the inner wall of the organ model.
  • the simulated mucus-coated mucosal tissue model can be attached to the inner wall of the organ model using an adhesive, adhesive, double-sided tape, or the like.
  • medical procedure training is training for improving the skills of doctors and medical students and improving the quality of medical practice, such as medical procedure training conducted under endoscopic observation and ultrasound observation. There will be medical procedure training, etc.
  • the medical procedure is treatment of mucosal tissue with an energy device.
  • energy devices include high-frequency hemostatic forceps, electric scalpels, ultrasonic scalpels, high-frequency radio frequency scalpels, heat probes, microwave scalpels, laser scalpels, and the like.
  • Preferred examples of medical procedures include treatments involving incision of mucosal tissue and/or hemostasis using an energy device, and more specifically, endoscopic mucosal resection, endoscopic submucosal dissection, Examples include endoscopic hemostasis.
  • the simulated mucus-coated mucosal tissue model includes a simulated blood vessel connected to a device capable of supplying simulated blood
  • the medical procedure may be hemostasis, assuming bleeding from the simulated blood vessel.
  • the organ model according to the present embodiment is a simulated mucus-coated organ model for medical procedure training, including the simulated mucus-coated mucosal tissue model of the first embodiment.
  • the simulated mucus-coated mucosal tissue model of the first embodiment can be used alone as a simulated mucus-coated tissue piece model for medical procedure training, or for digestive organs, urinary organs, reproductive organs, respiratory organs, etc. It may be used for medical procedure training while attached to organ models of various organs.
  • the simulated mucus-coated organ model according to the present embodiment can be used, for example, to transform the simulated mucus-coated mucosal tissue model of the first embodiment into various organ models that have mucous tissues in living bodies, such as digestive organs, urinary organs, reproductive organs, and respiratory organs. It may also be a mounted or integrally contained organ model. Preferably, the organ model has a shape that imitates each organ.
  • the organ model is not limited to a model that imitates the organs of any animal species, and may be, for example, an organ model of any animal species such as mammals including humans, birds, reptiles, amphibians, and fish. can be appropriately selected by those skilled in the art depending on the training needs of medical techniques.
  • the term ⁇ organ model'' refers to a model in which the surface simulating the mucosal surface is not coated with a lubricating composition
  • the term ⁇ simulated mucus-coated mucosal tissue model'' refers to the model simulating the mucosal surface. This refers to an organ model that includes a mucosal tissue model whose surface is coated with a lubricating composition.
  • the organ model can be molded by a known molding method, similar to the molding of the mucosal tissue model described in the first embodiment.
  • the organ model may be integrally molded as a mucosal tissue model and an organ model including the same, or the mucosal tissue model and the organ model may be molded separately, and the organ model may be molded as a first one before medical procedure training. It may be produced by attaching a mucosal tissue model to an organ model using the method described in the embodiment.
  • a mucous tissue model and an organ model are integrally molded, at least a portion of the mucosal tissue model can be coated with a lubricating composition after molding to complete a simulated mucus-coated organ model.
  • the mucous tissue model When molding a mucosal tissue model and an organ model separately, even if the mucous tissue model is coated with a lubricating composition to complete a simulated mucus-coated organ model before being attached to the organ model, the mucous tissue model cannot be molded onto the organ model. After mounting, the mucous tissue may be coated with a lubricating composition to complete a simulated mucus-coated organ model.
  • the simulated mucus-coated organ model may include a simulated blood vessel connected to a device capable of supplying simulated blood.
  • the simulated mucus-coated organ model may include a simulated blood vessel connected to a device capable of supplying simulated blood in a mucous tissue model attached to or integrally included therein.
  • the simulated mucus-coated organ model may include, in addition to the simulated blood vessel, a structure for reproducing the form, operation, function, etc. that the organ has in a living body.
  • the medical procedure training method according to the present embodiment is a medical procedure training method using the simulated mucus-coated mucosal tissue model of the first embodiment.
  • the mucosal tissue model is not limited by the animal species.
  • the medical technique training method according to the present embodiment may be a medical technique training method for humans or a medical technique training method for other animal species.
  • the simulated mucus-coated mucosal tissue model can be used alone as a simulated mucus-coated tissue piece model, for medical procedure training, or for digestive organs, urinary organs, reproductive organs, respiratory organs, etc. It may be used for medical procedure training while attached to various organ models having mucosal tissues in living organisms.
  • the tip of an energy device is brought into contact with the mucosal tissue and electricity is applied in order to incise the mucosal tissue and/or stop bleeding.
  • the tip of the energy device is brought into contact with the surface (mucosal surface) coated with the lubricating composition of the simulated mucus-coated mucosal tissue model, and energized. You may.
  • a simulated mucus which is coated with a 1 mm thick lubricating composition on a surface simulating the mucous membrane surface of a sheet mainly composed of a hydrogenated styrene thermoplastic elastomer, as exemplified in the first embodiment.
  • an electric scalpel (Elbe high-frequency surgical device: VIO100C, conditions: monopolar, coagulation mode FORCED, 30W, treatment tool: hemostatic forceps FD-410LR) is brought into contact with the mucosal surface of the coated mucosal tissue model and energized, good.
  • the mucus covering the mucous membrane is heated and vaporization occurs from within the mucus, which begins to form bubbles, and gradually continuous bubble generation is observed.
  • the size of bubbles, the number of bubbles, etc. that are the same as those actually observed when electricity is completed in the mucosal tissue that is the target of the medical procedure to be trained. It may be determined that energization is complete based on the behavior of the mucus.
  • the completion of energization may be determined by the generation of 5 or more bubbles with a diameter of 0.2 mm or more for a certain period of time (for example, 1 second).
  • a certain period of time for example, 1 second.
  • an energy device is brought into contact with the simulated mucus-coated mucosal tissue model and electricity is applied to create five or more bubbles with a diameter of 0.2 mm or more in a lubricating composition that simulates mucus.
  • the fact that the occurrence continues for a certain period of time (for example, 1 second) can be used as a guideline for completion of energization.
  • the volume resistivity of the lubricating composition is in the range of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the measurement method specified in JIS Z8803 for lubricating compositions is used. Since the measured viscosity at 25° C. is in the range of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s, the simulated mucus-coated mucosal tissue model according to the present embodiment can be lubricated.
  • the composition facilitates reproducing the behavior of mucus during treatment of biological mucosal tissue with an energy device.
  • the applicability of the lubricating composition when applied to a mucosal tissue model tends to be good. Furthermore, according to the medical procedure training method according to the present embodiment, it is possible to reduce the risk of deformation or malfunction of the energy device due to energization and heating of thermoplastic resin, which has been used in conventional medical procedure training. .
  • the medical procedure training method is a hemostasis training method assuming bleeding from the simulated blood vessel. Good too.
  • simulated blood may be supplied to a simulated blood vessel to reproduce bleeding in mucosal tissue.
  • the medical procedure training method it is possible to reproduce the behavior of mucus in the mucous membrane tissue of a living body when treating the mucosal tissue using an energy device. It is useful for learning the techniques of
  • the medical procedure training method according to the present embodiment is a medical procedure training method using the simulated mucus-coated organ model of the second embodiment.
  • the organ model is not limited by the animal species.
  • the medical technique training method according to the present embodiment may be a medical technique training method for humans or a medical technique training method for other animal species.
  • medical technique training is as described in the first embodiment
  • medical technique training method is as described in the third embodiment.
  • the medical procedure training method described in the third embodiment can be performed on the mucous membrane tissue model attached to or integrally included in the simulated mucus-coated organ model. can.
  • the medical procedure training method it is possible to reproduce the behavior of mucus in the mucous membrane tissue of a living body when treating the mucosal tissue using an energy device. It is useful for learning the techniques of
  • the surface of a mucosal tissue model that imitates at least a part of a living body's mucosal tissue has a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1 .0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa.
  • a method for producing a simulated mucus-coated mucosal tissue model for medical procedure training which includes the step of coating with a lubricating composition that is s.
  • the lubricating composition is as described in the "lubricating composition" section of the first embodiment.
  • the mucosal tissue model is as described in the "mucosal tissue model" of the first embodiment.
  • the manufacturing method includes the step of coating a surface of a mucosal tissue model that imitates at least a portion of a living body's mucosal tissue with a lubricating composition.
  • the lubricating composition does not necessarily need to cover the entire surface of the mucosal tissue, simulating the mucosal surface of the mucosal tissue, but may be coated so as to cover at least the area that the tip of the energy device contacts and where electricity is applied during medical procedure training. That's fine.
  • the mucosal tissue model may include a simulated blood vessel connected to a device capable of supplying simulated blood.
  • a mucosal tissue model for hemostasis training assuming bleeding from a simulated blood vessel using such a mucosal tissue model that includes a simulated blood vessel connected to a device capable of supplying simulated blood, at least the simulated blood vessel
  • the surrounding area may be coated with a lubricating composition.
  • the thickness of the lubricating composition in the step of coating the mucosal tissue model is preferably 0.01 to 3.0 mm, It is more preferably 0.01 to 2.5 mm, and even more preferably 0.05 to 1.0 mm. When it is 0.05 to 1.0 mm, it may be 0.1 mm, 0.5 mm, or 1.0 mm.
  • the application of the lubricating composition to a surface imitating the mucosal surface of mucosal tissue can be carried out as appropriate using fingers, a spatula, or the like.
  • the timing of the step of coating a surface imitating the mucosal surface of a mucosal tissue with a lubricating composition is such that when electricity is applied by an energy device in medical procedure training, It may be determined in a way that reproduces the state of mucus.
  • the simulated mucus-coated mucosal tissue model manufactured by the manufacturing method according to the present embodiment can reproduce the behavior of mucus in biological mucosal tissue when mucosal tissue is treated using an energy device, and therefore can be used in medical treatment. Useful for manual training.
  • the manufacturing method according to the present embodiment produces a surface simulating a mucosal surface of an organ model including a mucosal tissue model simulating at least a part of a living body's mucosal tissue, with a volume resistivity of 1.0E+00 to 1.0E+05 (1 .0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measuring method specified in JIS Z8803 is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 )
  • a method for producing a simulated mucus-coated organ model for medical procedure training which includes a step of coating with a lubricating composition having a lubricating composition of mPa ⁇ s.
  • the lubricating composition is as described in the "lubricating composition" section of the first embodiment.
  • the organ model including a mucosal tissue model imitating at least a portion of the mucosal tissue of a living body is as described in the second embodiment.
  • the manufacturing method according to the present embodiment includes a step of coating a surface imitating a mucous membrane surface of an organ model including a mucosal tissue model imitating at least a portion of a living body's mucosal tissue with a lubricating composition.
  • the step of coating the surface imitating the mucosal surface of the mucosal tissue of the mucosal tissue model with a lubricating composition can be performed as described in the fifth embodiment.
  • the organ model may be integrally molded as a mucosal tissue model and an organ model including the same, or the mucosal tissue model and the organ model may be molded separately, and the organ model may be molded separately and used for medical procedure training.
  • a mucous membrane tissue model may be attached to an organ model to create the organ model using the method described in the first embodiment.
  • a portion of the mucosal tissue model may be coated with a lubricating composition after molding to complete a simulated mucus-coated organ model.
  • the mucous tissue model cannot be molded onto the organ model.
  • the mucous tissue model may be coated with a lubricating composition to complete a simulated mucus-coated organ model.
  • the simulated mucus-coated mucosal tissue model manufactured by the manufacturing method according to the present embodiment can reproduce the behavior of mucus in biological mucosal tissue when mucosal tissue is treated using an energy device, and therefore can be used in medical treatment. Useful for manual training.
  • a lubricating composition having a viscosity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s at 25° C. and a mucosal tissue model imitating at least a portion of a biological mucosal tissue.
  • This is a medical procedure training kit that includes:
  • the lubricating composition is as described in the "lubricating composition" section of the first embodiment.
  • the mucosal tissue model imitating at least a portion of the mucosal tissue of a living body is as described in the "mucosal tissue model" of the first embodiment.
  • the kit according to the present embodiment may include, in addition to the lubricating composition and the mucosal tissue model, one or more types of devices necessary for medical procedure training, medical equipment, consumables for medical treatment, and the like.
  • the kit according to this embodiment may include, for example, a microscope used in medical treatment, an energy device, a recording camera, a computer, forceps, a clip, absorbent cotton for hemostasis, a sponge, an aqueous solution serving as a simulated blood, and the like.
  • a user or the like can create a simulated mucus-coated mucosal tissue model by coating a surface simulating the mucosal surface of the mucosal tissue of the mucosal tissue model with a lubricating composition. can be completed, and the completed simulated mucus-coated mucosal tissue model can be used for medical procedure training described in the third embodiment.
  • the step of coating the surface imitating the mucosal surface of the mucosal tissue of the mucosal tissue model with a lubricating composition can be performed as described in the fifth embodiment.
  • a lubricating composition having a viscosity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s at 25°C, and a mucosal tissue model imitating at least a portion of a living body's mucosal tissue.
  • This is a medical procedure training kit that includes an organ model.
  • the lubricating composition is as described in the "lubricating composition" section of the first embodiment.
  • the organ model is as described in the second embodiment.
  • the organ model may include a simulated blood vessel connected to a device capable of supplying simulated blood.
  • the kit according to the present embodiment may include one or more devices necessary for medical procedure training, medical equipment, consumables for medical treatment, and the like.
  • it may include a microscope used in medical treatment, an energy device, a recording camera, a computer, forceps, a clip, absorbent cotton for hemostasis, a sponge, an aqueous solution serving as a simulated blood, and the like.
  • a user or the like completes a simulated mucus-coated organ model by coating a surface simulating the mucosal surface of the mucosal tissue of the organ model with a lubricating composition prior to medical procedure training.
  • the completed simulated mucus-coated organ model can be used for medical procedure training described in the fourth embodiment.
  • the step of coating the surface imitating the mucosal surface of the mucosal tissue of the mucosal tissue model with the lubricating composition can be performed as described in the fifth embodiment.
  • the device according to the present embodiment is a medical technique training device that includes the simulated mucus-coated organ model of the second embodiment and an organ model imitating one or more other types of organs.
  • the device may include a plurality of simulated mucus-coated organ models.
  • Other types of organs are not limited as long as they are different from the organs of the simulated mucus-coated organ model.
  • the device may be a device in which a series of digestive organs such as the oral cavity, pharynx, esophagus, stomach, duodenum, small intestine, large intestine, rectum, and anus are connected to reproduce a living body.
  • the device may be a device that includes one or more types of simulated mucus-coated organ models as part of a human body model or animal model that is equipped with various organs regardless of the presence or absence of mucous tissue. .
  • the device according to this embodiment can be used for medical procedure training.
  • Medical technique training is as described in the first embodiment.
  • the lubricating composition according to the present embodiment has a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and is measured by the measurement method specified in JIS Z8803.
  • a lubricating composition having a measured viscosity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s at 25° C. This is a lubricating composition for coating a mucosal tissue model, which is used to coat a surface imitating the mucosal surface of a mucosal tissue in a mucosal tissue model.
  • the lubricating composition is as described in the "lubricating composition" section of the first embodiment.
  • the mucosal tissue model is as described in the section of "mucosal tissue model" in the first embodiment.
  • the lubricating composition according to this embodiment is a lubricating composition for coating a mucosal tissue model.
  • a simulated mucus-coated mucosal tissue model is produced by coating the mucosal tissue model with the lubricating composition.
  • the volume resistivity of the lubricating composition is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measuring method specified in JIS Z8803. is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s, so that in the simulated mucus-coated mucosal tissue model, the lubricating composition is This makes it easier to reproduce the behavior of mucus during treatment.
  • the applicability of the lubricating composition when applied to a mucosal tissue model tends to be good. Furthermore, according to the lubricating composition according to the present embodiment, it is possible to reduce the risk of deformation or malfunction of energy devices due to energization and heating of thermoplastic resins, which have been used in conventional medical procedure training. Therefore, the simulated mucus-coated mucosal tissue model according to this embodiment can be preferably used for medical procedure training.
  • the thickness of the lubricating composition coating the mucosal tissue model is preferably from 0.01 to 3.0 mm, more preferably from 0.05 to 2.5 mm, and more preferably from 0.05 to 2.5 mm. More preferably, it is 1.0 mm. When it is 0.05 to 1.0 mm, it may be 0.1 mm, 0.5 mm, or 1.0 mm.
  • the thickness of the lubricating composition that coats the simulated mucus-coated mucosal tissue model is in the range of 0.01 to 3.0 mm. It becomes easier to reproduce the behavior of mucus during tissue treatment.
  • the coating of the lubricating composition on the surface imitating the mucosal surface of the mucosal tissue of the mucosal tissue model can be performed as described in the fifth embodiment.
  • the material used in this embodiment has a volume resistivity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm and is measured using the measurement method specified in JIS Z8803.
  • a lubricating composition having a viscosity of 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s at 25° C. is coated on a surface imitating the mucosal surface of mucosal tissue in a mucosal tissue model. (preferably for surface application).
  • a simulated mucus-coated mucosal tissue model is manufactured by coating the mucosal tissue model with the lubricating composition.
  • the volume resistivity of the lubricating composition is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) ⁇ cm, and the viscosity at 25°C measured by the measuring method specified in JIS Z8803. is 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) mPa ⁇ s, so that in the simulated mucus-coated mucosal tissue model, the lubricating composition is This makes it easier to reproduce the behavior of mucus during treatment.
  • the applicability of the lubricating composition when applied to a mucosal tissue model tends to be good. Furthermore, by using the lubricating composition according to the present embodiment, it is possible to reduce the risk of deformation or malfunction of energy devices due to energization and heating of thermoplastic resins, which have been used in conventional medical procedure training. can. Therefore, by using the lubricating composition according to the present embodiment, a simulated mucus-coated mucous tissue model coated with the lubricating composition can be preferably used for medical procedure training.
  • the lubricating composition is as described in the "lubricating composition" section of the first embodiment.
  • the mucosal tissue model is as described in the section of "mucosal tissue model" in the first embodiment.
  • [Mucosal tissue model] A sample sheet as shown below was used as a mucosal tissue model for evaluation of lubricating compositions.
  • A Hydrogenated styrene thermoplastic elastomer/Hydrogenated styrene thermoplastic elastomer: SEEPS (SEPTON 4055, manufactured by Kuraray Co., Ltd.) (MFR (temperature 230°C, load 2.16 kg) 0.0 g/10 minutes (0.0 g /10 minutes means no flow), styrene content 30% by mass, hydrogenation rate 90% by mole or more)
  • B Oil/paraffin oil (Diana Process Oil PW90, manufactured by Idemitsu Kosan)
  • C Copolymer of hydrophobic polymer and hydrophilic polymer ⁇ C-1: Polyolefin/polyether copolymer (Pellectron PVL, manufactured by Sanyo Chemical Industries, Ltd.) (MFR (measured at 190°C and a load of 2.16 kg) 8
  • the mixture After adding 400 parts by mass of oil, 30 parts by mass of a copolymer of a hydrophobic polymer and a hydrophilic polymer, and 100 parts by mass of an ionic liquid to 100 parts by mass of a hydrogenated styrene thermoplastic elastomer, the mixture is stored for 12 hours or more. It was soaked in. Using a segment mixer (Laboplasto Mill KF70V2 type manufactured by Toyo Seiki Co., Ltd.), the mixture was kneaded at 180° C. and at a rotational speed of 100 times/min for 15 minutes. Next, a sample sheet was produced by a hot press method (180° C., time 5 minutes, pressure 50 kg/cm 2 ) to have a width of 100 mm, a length of 100 mm, and a thickness of 2 mm.
  • a hot press method 180° C., time 5 minutes, pressure 50 kg/cm 2
  • Example 2 The following compositions were used for evaluation.
  • Aqueous sodium polyacrylate solution (100 wt%): Aron A-20L manufactured by Toagosei Co., Ltd. was used as it was without dilution.
  • Aqueous sodium polyacrylate solution 100 g of Aron A-20L manufactured by Toagosei Co., Ltd. was heated at 80° C. for 30 minutes and concentrated until 100 g became 88 g.
  • Sterile lubricating jelly (Boston Scientific, catalog number SLT-612-10)
  • Echo Jelly ECHO JELLY MORE (registered trademark) (jelly for ultrasound examination) (manufactured by Fujifilm Healthcare Co., Ltd.)
  • volume resistivity was calculated by AC impedance measurement at a measurement temperature of 25°C. The experiment was carried out under the conditions that the DC voltage was 0 V, the amplitude of the AC waveform was 10 mV, and the frequency was 1.0E+00 to 1.0E+05 (1.0 to 1.0 ⁇ 10 5 ) Hz. Specifically, a measurement sample was placed in a liquid measurement cell with a diameter of 13 mm and a thickness of 5 mm, and metal terminals provided at both ends of the cell that were in contact with the measurement sample and an AC impedance measurement device (Solartron SI 1287 manufactured by Toyo Technica Co., Ltd.) were placed.
  • an AC impedance measurement device Solartron SI 1287 manufactured by Toyo Technica Co., Ltd.
  • the terminals of a frequency response analyzer 1252A were connected.
  • a small environmental tester manufactured by ESPEC Co., Ltd., model number: SU-241
  • the resistivity of the cell was measured in an environment at a temperature of 25° C., and the obtained result was divided by the thickness of 5 mm to calculate the volume resistivity.
  • viscosity The viscosity was measured according to the measurement method specified in JIS Z8803 using a rheometer (MCR-92 manufactured by Anton Paar) using a cone plate with a diameter of 50 mm, a measurement temperature of 25° C., and a shear rate of 10/s.
  • Lubricating compositions (1) to (12) were applied to a thickness of 1 mm on a sample sheet, and an electric scalpel (manufactured by Elbe, high frequency surgical device: VIO100C, conditions: monopolar, coagulation mode FORCED, 30W, treatment instrument: hemostatic forceps) FD-410LR) was applied to the sample sheet, electricity was applied, and the appearance of bubbles was observed.
  • an electric scalpel manufactured by Elbe, high frequency surgical device: VIO100C, conditions: monopolar, coagulation mode FORCED, 30W, treatment instrument: hemostatic forceps
  • Indicators Generation of bubbles in mucus in biological mucosal tissue
  • the volume resistivity and viscosity of mucus collected from adult human gastric mucosal tissue were measured as described in [Measurement] above.
  • the volume resistivity was 4.0E+01 (4.0 ⁇ 10 1 ) ⁇ cm, and the viscosity was 2.0E+2 (2.0 ⁇ 10 2 ) mPa ⁇ s.
  • the above gastric mucosal tissue was treated by applying electricity with an electric scalpel (high-frequency surgical device manufactured by Elbe: VIO100C, conditions: monopolar, coagulation mode FORCED, 30 W, treatment tool: hemostatic forceps FD-410LR).
  • the coating suitability was "excellent” for the lubricating compositions (4) to (7) of the examples, "good” for the lubricating compositions (1) to (3), and “good” for the lubricating compositions (8) to (11) of the comparative examples. ) was ⁇ good'', and (12) was ⁇ bad''.
  • the present invention provides a simulated mucus-coated mucosal tissue model and organ model, a method for training medical techniques using the model, a method for manufacturing the model, a kit and device including the model, and a lubricating composition for coating the mucosal tissue model. and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Business, Economics & Management (AREA)
  • Computational Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Instructional Devices (AREA)

Abstract

模擬粘液被覆粘膜組織モデル及び臓器モデル、該モデルを用いた医療手技訓練方法、該モデルの製造方法、該モデルを含むキット及び装置、並びに粘膜組織モデル被覆用潤滑組成物を提供する。 生体の粘膜組織の少なくとも一部を模した粘膜組織モデルの、粘膜組織の粘膜面を模した表面が、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物で被覆されている、医療手技訓練用の模擬粘液被覆粘膜組織モデルとする。

Description

模擬粘液被覆粘膜組織モデル
 本発明は、模擬粘液被覆粘膜組織モデル及び臓器モデル、該モデルを用いた医療手技訓練方法、該モデルの製造方法、該モデルを含むキット及び装置、並びに粘膜組織モデル被覆用潤滑組成物に関する。
 近年、人体に対する負担が少なく、早期の回復が期待できる低侵襲手術、たとえば内視鏡や腹腔鏡を用いた手術、に対する期待が高まり、その事例が増加している。例えば、臓器内部粘膜層に出来た腫瘍を内視鏡下で摘出する(内視鏡的粘膜下層剥離術)ことにより、通常の開腹手術と比較して小規模な傷口で手術を行うことができる。また、消化管内の出血を内視鏡下で止血する(内視鏡的止血術)ことにより、出血によるショックを防ぎ、緊急手術を避けることができる。そのため、患者にとって身体的負担が軽くなり、短い入院期間で早期の社会復帰が期待される。
 そのため、内視鏡や腹腔鏡を用いた手術に対応した、医師や医学生の手技練習モデルに対する需要が高くなってきており、これまでに技術向上および医療行為の品質向上のため、医療手技訓練用モデルの提案がされている(特許文献1、2、3)。
 また、使用される器具として、手術用エネルギーデバイスが用いられる事例が増えてきている。
特開2006-116206号公報 特開2008-197483号公報 特開2015-085017号公報
 生体の粘膜組織に対する電気メス等のエネルギーデバイスを用いた切開や止血等の処置の際、粘膜組織を被覆する粘液が熱せられて気泡が発生する様子を通電完了の目安として処置が行われている。
 従来は、そのような処置の訓練として、例えば臓器や組織を模した医療手技訓練モデルの基材であるスチレン系エラストマー等の熱可塑性樹脂が通電・加熱により溶融する様子をエネルギーデバイスの通電完了の目安の代用としていた。しかし、熱可塑性樹脂の溶融によっては粘液の気泡発生をはじめとする挙動を再現することはできないばかりか、加熱によるモデルの基材自体の変形も著しく、生体の粘膜組織におけるエネルギーデバイスを用いた処置の際の組織や臓器の様子、及び粘液の挙動を再現することはできていなかった。また、粘液の挙動を再現するために過加熱になることでエネルギーデバイス(特に鉗子などの処置具)の変形や不具合が生じる危険もあった。
 そこで、粘膜組織に対するエネルギーデバイスを用いた処置の訓練に用いることのできる、組織モデルや臓器モデルが求められている。
 本発明は、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現することのできる、かつ/または、医療手技訓練においてエネルギーデバイスの変形や不具合が生じる危険性を低減できる、模擬粘液被覆粘膜組織モデル及び臓器モデル、該モデルを用いた医療手技訓練方法、該モデルの製造方法、該モデルを含むキット及び装置、並びに粘膜組織モデル被覆用潤滑組成物を提供することを課題とする。
 本発明者は、様々な手段を検討した結果、生体の粘膜組織を模した粘膜組織モデルの、粘膜組織の粘膜面を模した表面を、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803(JIS Z8803:2011を意味する)で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物で被覆することで、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現することができることを見出し、本発明を完成するに至った。
 本発明は、以下に関するものである。
[1] 生体の粘膜組織の少なくとも一部を模した粘膜組織モデルの、粘膜組織の粘膜面を模した表面が、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物で被覆されている、医療手技訓練用の模擬粘液被覆粘膜組織モデル。
[2] 模擬血液を供給できる装置と接続された模擬血管を含む、[1]に記載の模擬粘液被覆粘膜組織モデル。
[3] 医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、[1]または[2]に記載の模擬粘液被覆粘膜組織モデル。
[4] [1]~[3]のいずれかに記載の模擬粘液被覆粘膜組織モデルを含む、医療手技訓練用の模擬粘液被覆臓器モデル。
[5] 模擬血液を供給できる装置と接続された模擬血管を含む、[4]に記載の模擬粘液被覆臓器モデル。
[6] 医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、[4]または[5]に記載の模擬粘液被覆臓器モデル。
[7] [1]~[3]のいずれかに記載の模擬粘液被覆粘膜組織モデルを用いた医療手技訓練方法。
[8] [4]~[6]のいずれかに記載の模擬粘液被覆臓器モデルを用いた医療手技訓練方法。
[9] 医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、[7]または[8]に記載の医療手技訓練方法。
[10] 生体の粘膜組織の少なくとも一部を模した粘膜組織モデルの、粘膜面を模した表面を、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物で被覆する工程を含む、医療手技訓練用の模擬粘液被覆粘膜組織モデルの製造方法。
[11] 粘膜組織モデルが、模擬血液を供給できる装置と接続された模擬血管を含む、[10]に記載の製造方法。
[12] 医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、[10]または[11]に記載の製造方法。
[13] 生体の粘膜組織の少なくとも一部を模した粘膜組織モデルを含む臓器モデルの、粘膜組織の粘膜面を模した表面を、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物で被覆する工程を含む、医療手技訓練用の模擬粘液被覆臓器モデルの製造方法。
[14] 模擬粘液被覆臓器モデルが、模擬血液を供給できる装置と接続された模擬血管を含む、[13]に記載の製造方法。
[15] 医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、[13]または[14]に記載の製造方法。
[16] 体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物と、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルとを含む、医療手技訓練用キット。
[17] 粘膜組織モデルが、模擬血液を供給できる装置と接続された模擬血管を含む、[16]に記載の医療手技訓練用キット。
[18] 医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、[16]または[17]に記載の医療手技訓練用キット。
[19] 体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物と、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルを含む臓器モデルとを含む、医療手技訓練用キット。
[20] 臓器モデルが、模擬血液を供給できる装置と接続された模擬血管を含む、[19]に記載の医療手技訓練用キット。
[21] 医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、[19]または[20]に記載の医療手技訓練用キット。
[22] [4]~[6]のいずれかに記載の模擬粘液被覆臓器モデルと、1または複数の他の種類の臓器を模した臓器モデルとを備える、医療手技訓練装置。
[23] 体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物であって、
 粘膜組織モデルにおいて粘膜組織の粘膜面を模した表面を被覆する用途である、粘膜組織モデル被覆用潤滑組成物。
[24] 粘膜組織モデルが模擬血液を供給できる装置と接続された模擬血管を含む、[23]に記載の粘膜組織モデル被覆用潤滑組成物。
[25] エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を、粘膜組織モデルにおいて再現するために使用される、[23]または[24]に記載の粘膜組織モデル被覆用潤滑組成物。
[26] エネルギーデバイスを用いた生体の粘膜組織の処置が、粘膜組織の切開または止血を含む処置である、[25]に記載の粘膜組織モデル被覆用潤滑組成物。
[27] 体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物の、粘膜組織モデルにおいて粘膜組織の粘膜面を模した表面を被覆するため(好ましくは表面への塗布のため)の使用。
 本発明によれば、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を、再現することのできる、かつ/または、医療手技訓練においてエネルギーデバイスの変形や不具合が生じる危険性を低減できる、模擬粘液被覆粘膜組織モデル及び臓器モデル、該モデルを用いた医療手技訓練方法、該モデルの製造方法、該モデルを含むキット及び装置、並びに粘膜組織モデル被覆用潤滑組成物を提供することができる。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。
 各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
 一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している場合がある。本開示において数値範囲についての「X~Y」との表現は、「X以上Y以下」であることを意味している。
==第1実施形態(模擬粘液被覆粘膜組織モデル)==
 本実施形態に係る粘膜組織モデルは、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルの、粘膜組織の粘膜面を模した表面が、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物で被覆されている、医療手技訓練用の模擬粘液被覆粘膜組織モデルである。
 本実施形態に係る模擬粘液被覆粘膜組織モデルでは、粘膜組織モデルの粘膜組織の粘膜面を模した表面が潤滑組成物で被覆されている。粘膜組織の粘膜面を模した表面の潤滑組成物による被覆は、いかなる塗布方法によってなされてもよく、例えば、粘膜組織の粘膜面を模した表面に手指やスパチュラを用いて潤滑組成物を塗り広げる、粘膜組織の粘膜面を模した表面を潤滑組成物に浸漬する、潤滑組成物を含む転写材料から粘膜組織の粘膜面を模した表面に潤滑組成物を転写するなどの方法が挙げられる。本実施形態に係る模擬粘液被覆粘膜組織モデルでは、潤滑組成物が塗り広げられることにより粘膜組織モデルの粘膜組織の粘膜面を模した表面に潤滑組成物が塗布されていることが好ましい。粘膜組織の粘膜面とは、粘膜組織の粘膜上皮側であって、生体組織の腸管等において粘液細胞等の粘液を分泌することのできる細胞が存在し、粘膜に被覆されている側を指す。
 ここで、本明細書において、単に「粘膜組織モデル」という場合、生体の粘膜組織の少なくとも一部を模した、粘膜面を模した表面が潤滑組成物で被覆されていないモデルを指し、「模擬粘液被覆粘膜組織モデル」という場合は潤滑組成物で被覆された状態の粘膜組織モデルを指す。
〔潤滑組成物〕
 本実施形態において、潤滑組成物は、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである組成物である。
 該潤滑組成物に含まれる成分及び組成は、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである範囲で限定されない。
 成分として、例えば、水、塩化ナトリウム、塩化マグネシウム、塩化カリウム、水酸化ナトリウム、リン酸二水素ナトリウム、リン酸ナトリウム、グリセリン、プロピレングリコール、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル等の低分子化合物、水添ひまし油、12-ヒドロキシステアリン酸、グルコノデルタラクトン、ポリアクリル酸ナトリウム等の吸水性高分子、ポリエチレングリコール、ポリプロピレングリコール、ヒアルロン酸、アルギン酸、カラギーナン、デキストリン、キサンタンガム、グアーガム、グリコサミノグリカン、コラーゲン、水溶性ビニルポリマー(カルボキシビニルポリマー、ポリビニルアルコールを包含する)、ヒプロメロース、メチルセルロース、ポリアクリル酸、ポリメタクリル酸、ヒドロキシエチルセルロース等の水溶性高分子等が例示でき、これらの1種または2種以上を含んでいてもよい。また、潤滑組成物は、1種または2種以上の電解質、カーボンナノ材料、導電性高分子、金属フィラー等の導電材、防腐剤、香料、色素、麻薬成分、pH調整剤、分散剤、増粘剤(チキソトロピック剤、沈降防止剤、タレ防止剤を包含する)、界面活性剤、酸化防止剤等をさらに含んでいてもよい。
 体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである範囲の潤滑組成物は、組成物に含まれる成分、各成分の含有量を調整し、体積抵抗率と粘度を測定し上記範囲に該当するか確認して、調製することができる。
 ここで、体積抵抗率は、交流インピーダンス測定により、測定温度25℃で算出することができる。
 具体的には、直径13mm、厚み5mmの液体測定用セルに測定試料を入れ、測定試料に接触しているセル両端に設けられた金属端子と交流インピーダンス測定装置(株式会社東陽テクニカ製Solartron SI 1287、周波数応答アナライザ1252A)の端子を接続した。小型環境試験器(エスペック株式会社製、型番:SU-241)を用い、温度25℃環境下でセルの抵抗率を測定し、得られた結果に厚み5mmで除算し体積抵抗率を算出することができる。
 粘度は、JIS Z8803で規定された測定方法によって、レオメーター(Anton Paar製MCR-92)を用い、治具は直径50mmのコーンプレート、測定温度25℃、せん断速度10/sで測定することができる。
 より具体的な例として、潤滑組成物は、塩化ナトリウム水溶液、ポリアクリル酸ナトリウム水溶液であってもよい。
 例えば、潤滑組成物が塩化ナトリウム水溶液である場合、蒸留水に塩化ナトリウムを添加後攪拌して作製することができる。このとき、5.0E-07~4.0E+00(5.0×10-7~4.0)Mの水溶液とすることで、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cm、かつJIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sとすることができる。塩化ナトリウム水溶液は、例えば、1.7E+00(1.7)Mであっても、8.6E-06(8.6×10-6)Mであってもよい。
 例えば、潤滑組成物がポリアクリル酸ナトリウム水溶液である場合、東亜合成社製アロン(登録商標)A-20Lを無希釈で使用するか、またはアロンA-20Lに蒸留水を添加後攪拌して作製することができる。このとき、蒸留水中のアロンA-20Lの濃度を1~100質量%(wt%)の水溶液とすることで、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cm、かつJIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sとすることができる。ポリアクリル酸ナトリウム水溶液は、例えば、蒸留水中のアロンA-20Lの濃度で、10wt%であっても、100wt%であってもよい。
 また、市販されている各種医療用潤滑ゼリー及び超音波検査用ゼリーも、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cm、かつJIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである範囲において、その成分組成に関わらず、本実施形態の潤滑組成物として使用することができる。そのような医療用潤滑ゼリーの例として、例えば、Boston Scientific社 sterile lubricating jelly(カタログ番号SLT-612-10)、富士フイルムヘルスケア株式会社製 超音波検査用ゼリー ECHO JELLY MORE(登録商標)等が挙げられる。
 潤滑組成物の体積抵抗率は、1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであって、1.0E+00~8.0E+04(1.0~8.0×10)Ω・cmであることが好ましく、5.0E+00~8.0E+04(5.0~8.0×10)Ω・cmであることがより好ましく、8.2E+00~8.0E+04(8.2~8.0×10)Ω・cmであることがさらに好ましい。8.2E+00~8.0E+04(8.2~8.0×10)Ω・cmである場合、8.2E+00Ω・cm以上8.0E+04Ω・cm未満(8.2Ω・cm以上8.0×10Ω・cm未満)であっても、8.2E+00~9.6E+02(8.2~9.6×10)Ω・cmであっても、1.9E+01~9.6E+02(1.9×10~9.6×10)Ω・cmであってもよい。
 潤滑組成物の、JIS Z8803で規定された測定方法で測定した25℃における粘度は、1.0E+00~1.0E+05(1.0~1.0×10)mPa・sであって、1.0E+02~5.0E+04(1.0×10~5.0×10)mPa・sであることが好ましく、1.0E+03~5.0E+04(1.0×10~5.0×10)mPa・sであることがより好ましく、5.0E+03~5.0E+04(5.0×10~5.0×10)mPa・sであることがさらに好ましい。5.0E+03~5.0E+04(5.0×10~5.0×10)mPa・sである場合、9.0E+03~8.0E+04(9.0×10~8.0×10)mPa・sであっても、9.0E+03~2.6E+04(9.0×10~2.6×10)mPa・sであってもよい。
 潤滑組成物の体積抵抗率、及びJIS Z8803で規定された測定方法で測定した25℃における粘度は、それぞれ、1.0E+00~1.0E+05(1.0~1.0×10)Ω・cm、及び1.0E+00~1.0E+05(1.0~1.0×10)mPa・sであり、1.0E+00~8.0E+04(1.0~8.0×10)Ω・cm、及び1.0E+02~5.0E+04(1.0×10~5.0×10)mPa・sであることが好ましい。体積抵抗率と粘度のより好ましい範囲等は、上記でそれぞれ記載したとおりであって、体積抵抗率と粘度のいずれの範囲を組み合わせてもよい。
 潤滑組成物の体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmの範囲であること、かつ潤滑組成物のJIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sの範囲であることで、本実施形態に係る模擬粘液被覆粘膜組織モデルにおいて、粘膜面を模した表面を被覆する潤滑組成物が、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現し易くなる。また、潤滑組成物を塗布することにより粘膜面を模した表面が潤滑組成物で被覆される場合、粘膜組織モデルに塗布する際の塗布適性が良好となり易い。さらに、本実施形態に係る模擬粘液被覆粘膜組織モデルによれば、従来の医療手技訓練に用いられてきた、熱可塑性樹脂の通電・加熱によるエネルギーデバイスの変形または不具合の危険性を低減することができる。
 ここで、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動の再現とは、例えば、連続的な気泡発生の再現である。
 また、塗布適性とは、潤滑組成物を粘膜組織モデルに塗布するときに、過度な粘性(べたつき)がなく、かつ塗布後に粘膜組織モデルの表面に残存し易い特性である。
 一実施形態において、模擬粘液被覆粘膜組織モデルに塗布されている潤滑組成物(粘膜面を模した表面を被覆する潤滑組成物)の厚さは、0.01~3.0mmであることが好ましく、0.05~2.5mmであることがより好ましく、0.05~1.0mmであることがさらに好ましい。0.05~1.0mmである場合、0.1mmであっても、0.5mmであっても、1.0mmであってもよい。
 模擬粘液被覆粘膜組織モデルに塗布されている潤滑組成物(粘膜面を模した表面を被覆する潤滑組成物)の厚さが0.01~3.0mm範囲であることで、本実施形態における模擬粘液被覆粘膜組織モデルにおいて、潤滑組成物が、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現し易くなる。
〔粘膜組織モデル〕
 本実施形態において、粘膜組織モデルの「粘膜組織」とは、動物の生体において、粘液を分泌することのできる組織であれば限定されず、例えば消化器官、泌尿器官、生殖器官、呼吸器官等の臓器中の少なくとも一部の組織である。ここで、消化器官としては、口腔、咽頭、食道、胃、十二指腸、小腸、大腸、直腸、肛門等が例示でき、泌尿器官としては、尿管、膀胱、尿道等が例示でき、生殖器官としては、卵管、子宮、膣、精管、陰茎、尿道等を例示でき、呼吸器官としては、鼻腔、気管、気管支等を例示できるが、これらに限定されない。
 粘膜組織モデルは、いずれの動物種の粘膜組織を模したモデルであっても制限されず、例えば、ヒトを含む哺乳類、鳥類、は虫類、両生類、魚類等のいずれの動物種の粘膜組織モデルであってもよく、医療手技の訓練の必要性に応じて当業者が適宜選択することができる。
 ここで、粘膜組織モデルは、公知の粘膜組織モデルから当業者が選択することができ、粘膜組織を模したモデルであれば制限されず、例えば、シリコーン、ウレタンエラストマー、スチレン系エラストマー等の軟質樹脂材料(ドライ系材料)を主材料として作製された各種モデル、ポリビニルアルコール溶液、タンパク質溶液、多糖類溶液から得られる水性ゲル(ウェット系材料)を主材料として作製された各種モデル等であってもよい。組織の種類によって、単層構造であっても、1種または2種以上の材料からなる複層構造であっても、制限されない。
 粘膜組織モデルの形状は、訓練する医療手技の種類によって選択できるが、例えば、円形、楕円形、多角形または不定形から選ばれる任意の形状を有することができる。
 粘膜組織モデルは、公知の成形方法により成形することができ、一体的に成形してもよく、または分割して成形してもよい。例えば、内型(中子)と外型を用い、その間の空間に注型し成形する場合など、内型を取り出す際に樹脂成形体に切り込みを入れてそこから内型を取り出すことがあるが、その際に、切り込みを接着し粘膜組織モデルを完成させることもできる。また、熱プレス成形、真空プレス成形等で雄型と雌型を用いて粘膜組織モデルを成形してもよく、射出成形等で複数の粘膜組織部分を別々に成形し、その後接着させて粘膜組織モデルを完成させることもできる。
 粘膜組織モデルの厚み方向に直角な方向における最大幅は、訓練する医療手技の種類によって選択できるが、例えば一般的な潰瘍の広がりに対応する範囲としてもよく、例えば10~150mmの範囲であってもよい。粘膜組織モデルの厚みは、特に制限されないが、1~30mm程度、または2~20mm程度であってもよい。
 一実施形態において、粘膜組織モデルは、水添スチレン系熱可塑性エラストマー100質量部に対し、オイル400質量部、疎水性ポリマーと親水性ポリマーとの共重合体30質量部、及びイオン液体100質量部を投入後、12時間以上保管し十分に染みこませた。セグメントミキサー(株式会社東洋精機製ラボプラストミルKF70V2型)を使用し、180℃、回転速度100回/分、15分間混練し、続いて加熱プレス法(180℃、時間5分、圧力50kg/cm2)により、幅100mm、長さ100mm、厚さ2mmに成形されたシートであってもよい。
 ここで、各成分は以下のとおりであってもよい。
(A)水添スチレン系熱可塑性エラストマー
・水添スチレン系熱可塑性エラストマー:SEEPS(SEPTON 4055、クラレ社製)(MFR(温度230℃、荷重2.16kg)0.0g/10分(0.0g/10分とは流動しないことをいう)、スチレン含有量30質量%、水添率90モル%以上)
(B)オイル
・パラフィンオイル(ダイアナプロセスオイルPW90、出光興産社製)
(C)疎水性ポリマーと親水性ポリマーとの共重合体
・C-1:ポリオレフィン/ポリエーテル共重合体(ペレクトロンPVL、三洋化成工業社製)(MFR(190℃、荷重2.16kgで測定)8~15g/10分)
・C-2:ポリエチレングリコール/ポリプロピレングリコール共重合体(プルロニック(登録商標)L-34、アデカ社製)(平均分子量1700、エチレンオキシド割合40%、25℃での粘度300mPa・s)
(D)イオン液体
・CIL-312(日本カーリット社製)
 一実施形態において、粘膜組織モデルは、模擬血液を供給できる装置と接続された模擬血管を含んでいてもよい。その場合、模擬粘液被覆粘膜組織モデルは、模擬血液を供給できる装置と接続された模擬血管を含んでいてもよい。
 例えば、模擬血管は、止血の練習に際して模擬血液を粘膜組織モデルの粘膜組織を模した表面に供給するための経路であって、粘膜組織モデルを貫通していてもよい。模擬血液を供給できる任意の装置としては、例えばチューブラーポンプや注射器を用いることができる。
 模擬血管は、管状の基材層と、基材層の外側表面に配置された導電層とを有し、エネルギーデバイスによる通電可能な管状の構造物であってもよい。導電層は基材層の全面に存在しなくてもよく、通電が行われる部分に存在すればよい。
 模擬血管は、導電層が配置された箇所において1.0×10Ω/□以上、1.0×10Ω/□以下の表面抵抗率を有していてもよい。表面抵抗値は、JIS C2139に従い、日東精工アナリテック株式会社製ロレスターGX(MCP―T700)を用いて、23±1℃の条件にて測定することができる。測定に際しては、熱可塑性樹脂組成物を160~200℃にてプレス成型し、2.5cm×2.5cm、厚さ1.0mmの樹脂シートに加工し、表面に導電層を形成した検体を用いて評価することができる。
 ここで、本実施形態に係る模擬粘液被覆粘膜組織モデルは、模擬粘液被覆組織片モデルとして、模擬粘液被覆粘膜組織モデル単独で医療手技訓練に用いても、または消化器官、泌尿器官、生殖器官、呼吸器官等の生体において粘膜組織を有する各種臓器モデルに装着された状態で医療手技訓練に用いてもよい。
 臓器モデルに装着して用いる場合、模擬粘液被覆粘膜組織モデルは、臓器モデルに設けられた装着部に模擬粘液被覆粘膜組織モデルが嵌め込まれていてもよいし、臓器モデルの内壁に模擬粘液被覆粘膜組織モデルが貼り付けられていてもよい。臓器モデルに設けられた装着部は、壁が一部欠損して形成された枠または凹みであってもよいし、模擬粘液被覆粘膜組織モデル装着用の冶具が、例えば消化器等である臓器モデルの内壁に取り付けられていてもよい。模擬粘液被覆粘膜組織モデルは、接着剤、粘着剤、両面テープ等を用いて臓器モデルの内壁に貼り付けることができる。
〔医療手技訓練〕
 本実施形態において、医療手技訓練とは、医師や医学生の技術向上および医療行為の品質向上のための訓練であり、例えば内視鏡観察下で行われる医療手技訓練や、超音波観測下で行われる医療手技訓練等がある。
 一実施形態において、医療手技は、エネルギーデバイスを用いた粘膜組織の処置である。エネルギーデバイスとしては、高周波止血鉗子、電気メス、超音波メス、高周波ラジオ波メス、ヒートプローブ、マイクロ波メス、レーザーメス等が挙げられる。
 医療手技の好ましい例として、エネルギーデバイスを用いた粘膜組織の切開及び/または止血を含む処置が例示でき、より具体的には、内視鏡的粘膜切除術、内視鏡的粘膜下層剥離術、内視鏡的止血術等が例示できる。
 一実施形態において、模擬粘液被覆粘膜組織モデルが模擬血液を供給できる装置と接続された模擬血管を含む場合、医療手技は、模擬血管からの出血を想定した、止血であってもよい。
==第2実施形態(模擬粘液被覆臓器モデル)==
 本実施形態に係る臓器モデルは、第1実施形態の模擬粘液被覆粘膜組織モデルを含む、医療手技訓練用の模擬粘液被覆臓器モデルである。
 第1実施形態の模擬粘液被覆粘膜組織モデルは、模擬粘液被覆組織片モデルとして、模擬粘液被覆粘膜組織モデル単独で医療手技訓練に用いても、または消化器官、泌尿器官、生殖器官、呼吸器官等の各種臓器の臓器モデルに装着された状態で医療手技訓練に用いてもよい。
 本実施形態に係る模擬粘液被覆臓器モデルは、例えば、第1実施形態の模擬粘液被覆粘膜組織モデルが消化器官、泌尿器官、生殖器官、呼吸器官等の、生体において粘膜組織を有する各種臓器モデルに装着された、または一体的に含まれる臓器モデルであってもよい。臓器モデルは、各臓器を模した形状をしていることが好ましい。
 臓器モデルは、いずれの動物種の臓器を模したモデルであっても制限されず、例えば、ヒトを含む哺乳類、鳥類、は虫類、両生類、魚類等のいずれの動物種の臓器モデルであってもよく、医療手技の訓練の必要性に応じて当業者が適宜選択することができる。
 ここで、本明細書において、単に「臓器モデル」という場合、粘膜面を模した表面が潤滑組成物で被覆されていないモデルを指し、「模擬粘液被覆粘膜組織モデル」という場合は粘膜面を模した表面が潤滑組成物で被覆された状態の粘膜組織モデルを含む臓器モデルを指す。
 臓器モデルは、第1実施形態で説明した粘膜組織モデルの成形と同様に、公知の成形方法により成形することができる。
 ここで、臓器モデルは、粘膜組織モデルと、それを備える臓器モデルとして一体的に成形してもよく、または粘膜組織モデルと臓器モデルとを別々に成形し、医療手技訓練の前に、第1実施形態で説明した方法で、臓器モデルに粘膜組織モデルを装着して作製してもよい。
 粘膜組織モデルと臓器モデルとを一体的に成形する場合、成形後に粘膜組織モデルの少なくとも一部を潤滑組成物で被覆し、模擬粘液被覆臓器モデルを完成させることができる。
 粘膜組織モデルと臓器モデルとを別々に成形する場合、臓器モデルに装着する前に粘膜組織モデルを潤滑組成物で被覆して模擬粘液被覆臓器モデルを完成させても、臓器モデルに粘膜組織モデルを装着した後に粘膜組織で潤滑組成物で被覆して模擬粘液被覆臓器モデルを完成させてもよい。
 一実施形態において、模擬粘液被覆臓器モデルは、模擬血液を供給できる装置と接続された模擬血管を含んでいてもよい。該模擬粘液被覆臓器モデルは、そこに装着された、または一体的に含まれる粘膜組織モデルにおいて、模擬血液を供給できる装置と接続された模擬血管を含んでいてもよい。
 一実施形態において、模擬粘液被覆臓器モデルは、模擬血管以外にも、該臓器が生体において有する形態、動作、機能等を再現するための構造を含んでいてもよい。
〔医療手技訓練〕
 本実施形態において、「医療手技訓練」は、第1実施形態で説明したとおりである。
==第3実施形態(模擬粘液被覆粘膜組織モデルを用いた医療手技訓練方法)==
 本実施形態に係る医療手技訓練方法は、第1実施形態の模擬粘液被覆粘膜組織モデルを用いた医療手技訓練方法である。
 第1実施形態で説明したとおり、粘膜組織モデルはその動物種により制限されない。本実施形態に係る医療手技訓練方法も、ヒトに対する医療手技訓練方法であっても、その他の動物種に対する医療手技訓練方法であってもよい。
 本実施形態において、模擬粘液被覆粘膜組織モデルは、模擬粘液被覆組織片モデルとして、模擬粘液被覆粘膜組織モデル単独で医療手技訓練に用いても、または消化器官、泌尿器官、生殖器官、呼吸器官等の生体において粘膜組織を有する各種臓器モデルに装着された状態で医療手技訓練に用いてもよい。
〔医療手技訓練〕
 本実施形態において、「医療手技訓練」は、第1実施形態で説明したとおりである。
〔医療手技訓練方法〕
 例えば、生体における粘膜組織の処置では、粘膜組織の切開及び/または止血のため、粘膜組織にエネルギーデバイスの先端を接触させ、通電を行う。
 本実施形態に係る医療手技訓練方法では、実際の生体での処置と同様に、エネルギーデバイスの先端を模擬粘液被覆粘膜組織モデルの潤滑組成物で被覆された面(粘膜面)に接触させ、通電してもよい。
 より具体的には、例えば、第1実施形態で例示した、水添スチレン系熱可塑性エラストマーを主成分とするシートの粘膜面を模した表面が1mm厚の潤滑組成物で被覆された、模擬粘液被覆粘膜組織モデルの粘膜面に対し、電気メス(エルベ社製 高周波手術装置:VIO100C、条件:モノポーラー、凝固モードFORCED、30W、処置具:止血鉗子FD-410LR)を接触させて通電してもよい。
 一般に、生体の粘膜組織に通電すると粘膜を覆う粘液が加熱されて粘液の内部から気化が生じることで気泡を形成し始め、次第に連続的な気泡発生が観察されるようになる。模擬粘液被覆粘膜組織モデルを用いた医療手技訓練方法では、訓練する医療手技の処置対象である粘膜組織において通電完了したときに実際に観察されるのと同じ気泡の大きさ、気泡の発生数等の粘液の挙動を目安にして通電完了と判断してもよい。
 例えば、生体でのエネルギーデバイスによる処置では、5個以上の、直径0.2mm以上の気泡の発生が一定時間(例えば、1秒間)継続していることを、通電完了の目安としている場合がある。
 この場合、模擬粘液被覆粘膜組織モデルにおいても、模擬粘液被覆粘膜組織モデルにエネルギーデバイスを接触させて通電し、粘液を模した潤滑組成物において、5個以上の、直径0.2mm以上の気泡の発生が一定時間(例えば、1秒間)継続していることを、通電完了の目安とすることができる。
 潤滑組成物の体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmの範囲であること、かつ潤滑組成物のJIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sの範囲であることで、本実施形態に係る模擬粘液被覆粘膜組織モデルにおいて、潤滑組成物が、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現し易くなる。また、潤滑組成物を塗布することにより粘膜面を模した表面が潤滑組成物で被覆される場合、粘膜組織モデルに塗布する際の塗布適性が良好となり易い。さらに、本実施形態に係る医療手技訓練方法によれば、従来の医療手技訓練に用いられてきた、熱可塑性樹脂の通電・加熱によるエネルギーデバイスの変形または不具合が生じる危険性を低減することができる。
 一実施形態において、模擬粘液被覆粘膜組織モデルが模擬血液を供給できる装置と接続された模擬血管を含む場合、医療手技訓練方法は、模擬血管からの出血を想定した、止血の訓練方法であってもよい。
 このような止血の訓練の場合、エネルギーデバイスを用いた医療手技訓練の前に、模擬血管に模擬血液を供給して粘膜組織における出血を再現してもよい。
 本実施形態に係る医療手技訓練方法によれば、エネルギーデバイスを用いた粘膜組織の処置の際の、生体の粘膜組織の粘液の挙動を再現することができ、従って、医療者が、生体に対する処置の手技を習得するために有用である。
==第4実施形態(模擬粘液被覆臓器モデルを用いた医療手技訓練方法)==
 本実施形態に係る医療手技訓練方法は、第2実施形態の模擬粘液被覆臓器モデルを用いた医療手技訓練方法である。
 第2実施形態で説明したとおり、臓器モデルはその動物種により制限されない。本実施形態に係る医療手技訓練方法も、ヒトに対する医療手技訓練方法であっても、その他の動物種に対する医療手技訓練方法であってもよい。
 本実施形態において、「医療手技訓練」は、第1実施形態で説明したとおりであり、「医療手技訓練方法」は、第3実施形態で説明したとおりである。本実施形態に係る医療手技訓練方法では、該模擬粘液被覆臓器モデルに装着された、または一体的に含まれる粘膜組織モデルに対して、第3実施形態で説明した医療手技訓練方法を行うことができる。
 本実施形態に係る医療手技訓練方法によれば、エネルギーデバイスを用いた粘膜組織の処置の際の、生体の粘膜組織の粘液の挙動を再現することができ、従って、医療者が、生体に対する処置の手技を習得するために有用である。
==第5実施形態(粘膜組織モデル製造方法)==
 本実施形態に係る製造方法は、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルの、粘膜面を模した表面を、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物で被覆する工程を含む、医療手技訓練用の模擬粘液被覆粘膜組織モデルの製造方法である。
〔潤滑組成物〕
 本実施形態において、潤滑組成物は、第1実施形態の「潤滑組成物」の項で説明したとおりである。
〔粘膜組織モデル〕
 本実施形態において、粘膜組織モデルは、第1実施形態の「粘膜組織モデル」で説明したとおりである。
〔医療手技訓練〕
 本実施形態において、「医療手技訓練」は、第1実施形態で説明したとおりである。
〔製造方法〕
 本実施形態に係る製造方法は、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルの、粘膜組織の粘膜面を模した表面を、潤滑組成物で被覆する工程を含む。潤滑組成物は、必ずしも粘膜組織の粘膜面を模した表面全体を被覆する必要はなく、少なくとも、医療手技訓練でエネルギーデバイスの先端が接触し、通電が行われる部分が被覆されるように被覆されればよい。
 第1実施形態に記載のとおり、一実施形態において、粘膜組織モデルは、模擬血液を供給できる装置と接続された模擬血管を含んでいてもよい。そのような、模擬血液を供給できる装置と接続された模擬血管を含む粘膜組織モデルを用いて模擬血管からの出血を想定した止血の訓練を行うための粘膜組織モデルを製造する場合、少なくとも模擬血管周辺を潤滑組成物で被覆すればよい。
 一実施形態において、粘膜組織モデルを被覆する工程における潤滑組成物の厚さ、好ましくは粘膜組織モデルに塗布される潤滑組成物の厚さは、0.01~3.0mmであることが好ましく、0.01~2.5mmであることがより好ましく、0.05~1.0mmであることがさらに好ましい。0.05~1.0mmである場合、0.1mmであっても、0.5mmであっても、1.0mmであってもよい。
 潤滑組成物の粘膜組織の粘膜面を模した表面への塗布は、手指やスパチュラ等を用いて適宜行うことができる。
 粘膜組織の粘膜面を模した表面を潤滑組成物で被覆する工程のタイミング、好ましくは潤滑組成物の塗布のタイミングは、医療手技訓練でエネルギーデバイスによる通電が行われるときに、生体の粘膜組織の粘液の状態を再現できるように決定すればよい。
 本実施形態に係る製造方法で製造された模擬粘液被覆粘膜組織モデルは、エネルギーデバイスを用いた粘膜組織の処置の際の、生体の粘膜組織の粘液の挙動を再現することができ、従って、医療手技訓練のために有用である。
==第6実施形態(臓器モデル製造方法)==
 本実施形態に係る製造方法は、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルを含む臓器モデルの、粘膜面を模した表面を、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物で被覆する工程を含む、医療手技訓練用の模擬粘液被覆臓器モデルの製造方法である。
〔潤滑組成物〕
 本実施形態において、潤滑組成物は、第1実施形態の「潤滑組成物」の項で説明したとおりである。
〔臓器モデル〕
 本実施形態において、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルを含む臓器モデルは、第2実施形態で説明したとおりである。
 本実施形態において、「医療手技訓練」は、第1実施形態で説明したとおりである。
〔製造方法〕
 本実施形態に係る製造方法は、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルを含む臓器モデルの、粘膜面を模した表面を潤滑組成物で被覆する工程を含む。
 粘膜組織モデルの粘膜組織の粘膜面を模した表面を潤滑組成物で被覆する工程は、第5実施形態で説明したとおりに行うことができる。
 第2実施形態で説明したとおり、臓器モデルは、粘膜組織モデルと、それを備える臓器モデルとして一体的に成形してもよく、または粘膜組織モデルと臓器モデルとを別々に成形し、医療手技訓練の前に、第1実施形態で説明した方法で、臓器モデルに粘膜組織モデルを装着して作製してもよい。
 粘膜組織モデルと臓器モデルとを一体的に成形する場合、成形後に粘膜組織モデルの部分を潤滑組成物で被覆し、模擬粘液被覆臓器モデルを完成させてもよい。
 粘膜組織モデルと臓器モデルとを別々に成形する場合、臓器モデルに装着する前に粘膜組織モデルに潤滑組成物を塗布して模擬粘液被覆臓器モデルを完成させても、臓器モデルに粘膜組織モデルを装着した後に粘膜組織モデルを潤滑組成物で被覆して模擬粘液被覆臓器モデルを完成させてもよい。
 本実施形態に係る製造方法で製造された模擬粘液被覆粘膜組織モデルは、エネルギーデバイスを用いた粘膜組織の処置の際の、生体の粘膜組織の粘液の挙動を再現することができ、従って、医療手技訓練のために有用である。
==第7実施形態(粘膜組織モデルを含むキット)==
 本実施形態に係るキットは、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物と、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルとを含む、医療手技訓練用キットである。
〔潤滑組成物〕
 本実施形態において、潤滑組成物は、第1実施形態の「潤滑組成物」の項で説明したとおりである。
〔粘膜組織モデル〕
 本実施形態において、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルは、第1実施形態の「粘膜組織モデル」で説明したとおりである。
〔キット〕
 本実施形態に係るキットは、潤滑組成物と粘膜組織モデル以外に医療手技訓練に必要な1種または2種以上の装置、医療機器、医療処置用消耗品等を含んでいてもよい。
 本実施形態に係るキットは、例えば、医療処置に用いられる顕微鏡、エネルギーデバイス、記録用カメラ、コンピューター、鉗子、クリップ、止血用脱脂綿、スポンジ、模擬血液となる水溶液等を含んでいてもよい。
 本実施例に係るキットを用い、医療手技訓練に先立って、使用者等が、粘膜組織モデルの粘膜組織の粘膜面を模した表面を潤滑組成物で被覆することによって、模擬粘液被覆粘膜組織モデルを完成させることができ、完成した模擬粘液被覆粘膜組織モデルは、第3実施形態に記載の医療手技訓練に用いることができる。
 粘膜組織モデルの粘膜組織の粘膜面を模した表面を潤滑組成物で被覆する工程は、第5実施形態で説明したとおりに行うことができる。
 「医療手技訓練」は第1実施形態で説明したとおりである。
==第8実施形態(臓器モデルを含むキット)==
 本実施形態に係るキットは、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物と、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルを含む臓器モデルとを含む、医療手技訓練用キットである。
〔潤滑組成物〕
 本実施形態において、潤滑組成物は、第1実施形態の「潤滑組成物」の項で説明したとおりである。
〔臓器モデル〕
 本実施形態において、臓器モデルは、第2実施形態で説明したとおりである。一実施形態において、臓器モデルは模擬血液を供給できる装置と接続された模擬血管を含んでいてもよい。
〔キット〕
 本実施形態に係るキットは、潤滑組成物と臓器モデル以外に医療手技訓練に必要な1または2以上の装置、医療機器、医療処置用消耗品等を含んでいてもよい。例えば、医療処置に用いられる顕微鏡、エネルギーデバイス、記録用カメラ、コンピューター、鉗子、クリップ、止血用脱脂綿、スポンジ、模擬血液となる水溶液等を含んでいてもよい。
 本実施例に係るキットを用い、医療手技訓練に先立って、使用者等が、臓器モデルの粘膜組織の粘膜面を模した表面を潤滑組成物で被覆することによって、模擬粘液被覆臓器モデルを完成させることができ、完成した模擬粘液被覆臓器モデルは、第4実施形態に記載の医療手技訓練に用いることができる。
 ここで、粘膜組織モデルの粘膜組織の粘膜面を模した表面を潤滑組成物で被覆する工程は、第5実施形態で説明したとおりに行うことができる。
 「医療手技訓練」は第1実施形態で説明したとおりである。
==第9実施形態(装置)==
 本実施形態に係る装置は、第2実施形態の模擬粘液被覆臓器モデルと、1種または2種以上の他の種類の臓器を模した臓器モデルとを備える、医療手技訓練装置である。
 ここで、本実施形態に係る装置は、複数の模擬粘液被覆臓器モデルを含んでいてもよい。他の種類の臓器は、模擬粘液被覆臓器モデルの臓器とは異なる臓器であれば限定されない。
 例えば、装置は、口腔、咽頭、食道、胃、十二指腸、小腸、大腸、直腸、肛門等の一連の消化器官が生体を再現するように連結された装置等であってもよい。また、装置は、粘膜組織の有無に関わらず様々な臓器が備えられた人体模型や動物模型の一部として、1種または2種以上の模擬粘液被覆臓器モデルを含む装置等であってもよい。
 本実施形態に係る装置は、医療手技訓練に用いることができる。「医療手技訓練」は第1実施形態で説明したとおりである。
==第10実施形態(粘膜組織モデル被覆用潤滑組成物)==
 本実施形態に係る潤滑組成物は、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物であって、
 粘膜組織モデルにおいて粘膜組織の粘膜面を模した表面を被覆する用途である、粘膜組織モデル被覆用潤滑組成物である。
〔潤滑組成物〕
 本実施形態において、潤滑組成物は、第1実施形態の「潤滑組成物」の項で説明したとおりである。
〔粘膜組織モデル〕
 本実施形態において、粘膜組織モデルは、第1実施形態の「粘膜組織モデル」の項で説明したとおりである。
 本実施形態に係る潤滑組成物は、粘膜組織モデルを被覆するための潤滑組成物である。
 潤滑組成物が粘膜組織モデルを被覆することによって、模擬粘液被覆粘膜組織モデルが製造される。
 潤滑組成物の体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sであることによって、模擬粘液被覆粘膜組織モデルにおいて、潤滑組成物が、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現し易くなる。また、被覆を塗布により行う場合、潤滑組成物を粘膜組織モデルに塗布する際の塗布適性が良好となり易い。さらに、本実施形態に係る潤滑組成物によれば、従来の医療手技訓練に用いられてきた、熱可塑性樹脂の通電・加熱によるエネルギーデバイスの変形または不具合が生じる危険性を低減することができる。よって、本実施形態に係る模擬粘液被覆粘膜組織モデルは、医療手技訓練に好ましく用いることができる。
 一実施形態において、粘膜組織モデルを被覆する潤滑組成物の厚さは、0.01~3.0mmであることが好ましく、0.05~2.5mmであることがより好ましく、0.05~1.0mmであることがさらに好ましい。0.05~1.0mmである場合、0.1mmであっても、0.5mmであっても、1.0mmであってもよい。
 模擬粘液被覆粘膜組織モデルを被覆する潤滑組成物の厚さが0.01~3.0mm範囲であることで、模擬粘液被覆粘膜組織モデルにおいて、潤滑組成物が、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現し易くなる。
 「医療手技訓練」は第1実施形態で説明したとおりである。
 粘膜組織モデルの粘膜組織の粘膜面を模した表面への潤滑組成物の被覆は、第5実施形態で説明したとおりに行うことができる。
==第11実施形態(使用)==
 本実施形態に係る使用は、体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sである潤滑組成物の、粘膜組織モデルにおいて粘膜組織の粘膜面を模した表面を被覆するため(好ましくは表面への塗布のため)の使用である。
 本実施形態に係る使用によって、潤滑組成物が粘膜組織モデルを被覆することによって、模擬粘液被覆粘膜組織モデルが製造される。
 潤滑組成物の体積抵抗率が1.0E+00~1.0E+05(1.0~1.0×10)Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0E+00~1.0E+05(1.0~1.0×10)mPa・sであることによって、模擬粘液被覆粘膜組織モデルにおいて、潤滑組成物が、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現し易くなる。また、被覆を塗布で行う場合、潤滑組成物を粘膜組織モデルに塗布する際の塗布適性が良好となり易い。さらに、本実施形態に係る潤滑組成物の使用によれば、従来の医療手技訓練に用いられてきた、熱可塑性樹脂の通電・加熱によるエネルギーデバイスの変形または不具合が生じる危険性を低減することができる。よって、本実施形態に係る潤滑組成物の使用によって、潤滑組成物で被覆された模擬粘液被覆粘膜組織モデルは、医療手技訓練に好ましく用いることができる。
 「医療手技訓練」は第1実施形態で説明したとおりである。
〔潤滑組成物〕
 本実施形態において、潤滑組成物は、第1実施形態の「潤滑組成物」の項で説明したとおりである。
〔粘膜組織モデル〕
 本実施形態において、粘膜組織モデルは、第1実施形態の「粘膜組織モデル」の項で説明したとおりである。
 以下に実施例を示して本発明をさらに具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。
 実施例等で用いた各種原料及び製造方法は以下の通りである。
〔粘膜組織モデル〕
 以下のようなサンプルシートを、潤滑組成物の評価のための粘膜組織モデルとして使用した。
(A)水添スチレン系熱可塑性エラストマー
・水添スチレン系熱可塑性エラストマー:SEEPS(SEPTON 4055、クラレ社製)(MFR(温度230℃、荷重2.16kg)0.0g/10分(0.0g/10分とは流動しないことをいう)、スチレン含有量30質量%、水添率90モル%以上)
(B)オイル
・パラフィンオイル(ダイアナプロセスオイルPW90、出光興産社製)
(C)疎水性ポリマーと親水性ポリマーとの共重合体
・C-1:ポリオレフィン/ポリエーテル共重合体(ペレクトロンPVL、三洋化成工業社製)(MFR(190℃、荷重2.16kgで測定)8~15g/10分)
・C-2:ポリエチレングリコール/ポリプロピレングリコール共重合体(プルロニック(登録商標)L-34、アデカ社製)(平均分子量1700、エチレンオキシド割合40%、25℃での粘度300mPa・s)
(D)イオン液体
・CIL-312(日本カーリット社製)
 水添スチレン系熱可塑性エラストマー100質量部に対し、オイル400質量部、疎水性ポリマーと親水性ポリマーとの共重合体30質量部、及びイオン液体100質量部を投入後、12時間以上保管し十分に染みこませた。セグメントミキサー(株式会社東洋精機製ラボプラストミルKF70V2型)を使用し、180℃、回転速度100回/分、15分間混練した。次に、加熱プレス法(180℃、時間5分、圧力50kg/cm)により、サンプルシートを作製し、幅100mm、長さ100mm、厚さ2mmに調製した。
〔潤滑組成物〕
(実施例)
 評価に用いたのは以下の組成物である。
(1)塩化ナトリウム水溶液(1.7E+00(1.7)M):蒸留水900gに塩化ナトリウムを100g添加後、攪拌して作製した。
(2)塩化ナトリウム水溶液(8.6E-06(8.6×10-6)M):蒸留水999.9995gに塩化ナトリウムを0.0005g添加後、攪拌して作製した。
(3)ポリアクリル酸ナトリウム水溶液(10wt%):東亜合成社製アロンA-20L 10gに蒸留水990gを添加後、攪拌し作製した。
(4)ポリアクリル酸ナトリウム水溶液(100wt%):東亜合成社製アロンA-20Lを希釈せずそのまま使用した。
(5)ポリアクリル酸ナトリウム水溶液:東亜合成社製アロンA-20L 100gを80℃で30分間加熱し、100gが88gになるまで濃縮した。
(6)潤滑ゼリー:Sterile lubricating jelly(Boston Scientific社、カタログ番号SLT-612-10)
(7)エコーゼリー:ECHO JELLY MORE(登録商標)(超音波検査用ゼリー)(富士フイルムヘルスケア株式会社製)
(比較例)
(8)蒸留水
(9)ポリエチレングリコール:ポリエチレングリコール400(富士フイルム和光純薬社製、製品番号69268―9001)
(10)グリセリン:グリセリン化粧品用(健栄製薬社製、製品番号2E15)
(11)塩化ナトリウム水溶液(8.6E-08(8.6×10-8)M):蒸留水1000gに塩化ナトリウムを5.0E-06(5.0×10-6)g添加後、攪拌して作製した。
(12)ポリアクリル酸ナトリウム水溶液:東亜合成社製アロンA-20L 100gを100℃で20分間加熱し、100gが53gになるまで濃縮した。
〔測定〕
(体積抵抗率)
 体積抵抗率は、交流インピーダンス測定により、測定温度25℃で、体積抵抗率を算出した。DC電圧は0V、AC波形の振幅は10mV、周波数は1.0E+00~1.0E+05(1.0~1.0×10)Hzの条件で行った。
 具体的には、直径13mm、厚み5mmの液体測定用セルに測定試料を入れ、測定試料に接触しているセル両端に設けられた金属端子と交流インピーダンス測定装置(株式会社東陽テクニカ製Solartron SI 1287、周波数応答アナライザ1252A)の端子を接続した。小型環境試験器(エスペック株式会社製、型番:SU-241)を用い、温度25℃環境下でセルの抵抗率を測定し、得られた結果に厚み5mmで除算し体積抵抗率を算出した。
(粘度)
 粘度は、JIS Z8803で規定された測定方法によって、レオメーター(Anton Paar製MCR-92)を用い、治具は直径50mmのコーンプレート、測定温度25℃、せん断速度10/sで測定した。
〔評価方法〕
 潤滑組成物(1)~(12)を、サンプルシート上に1mm厚に塗布し、電気メス(エルベ社製 高周波手術装置:VIO100C、条件:モノポーラー、凝固モードFORCED、30W、処置具:止血鉗子FD-410LR)をサンプルシートに当て通電し、気泡発生の様子を観察した。
(1)指標:生体粘膜組織における粘液の気泡発生
 ヒト成人胃粘膜組織から採取した粘液について、上記〔測定〕に記載のとおり、体積抵抗率及び粘度を測定した。体積抵抗率は4.0E+01(4.0×10)Ω・cm、粘度は2.0E+2(2.0×10)mPa・sであった。
 さらに、上記胃粘膜組織において、電気メス(エルベ社製 高周波手術装置:VIO100C、条件:モノポーラー、凝固モードFORCED、30W、処置具:止血鉗子FD-410LR)で通電し、処置を行った。通電完了時、14個の0.2mm以上の気泡発生が1秒間継続していた。
 生体における処置では、内視鏡のレンズに付着した体液等の汚れを内視鏡先端から水を流して洗浄するため、水によって体積抵抗率、粘度、気泡数が影響を受ける。これを考慮して、以下(2)では、5個以上の気泡の発生が1秒間継続していることにより、「生体における連続的な気泡発生の再現」がなされていると判断した。
(2)気泡数と連続的な気泡発生の再現
 通電中に気泡が連続して発生し始めた後の、1秒あたりの0.2mm以上気泡の数を計測し、気泡数とした。「連続的な気泡発生の再現」は、5個~15個の気泡の発生が1秒間継続している場合に、「良」と判定し、16個以上の気泡の発生が1秒間継続している場合に、「優」と判定した。4個以下の場合は「不良」とした。
 連続的な気泡発生の再現は、実施例の潤滑組成物(1)、(3)、(4)、(6)、(7)では「優」であり、(2)、(5)では「良」であり、比較例の潤滑組成物(8)~(12)では「不良」であった。
(3)塗布適性
 潤滑組成物(1)~(12)を、サンプルシート上に手指で塗布したときに、過度な粘性(べたつき)により糸引きが5mm以上ある場合を、「塗布適性」が「不良」(過度な粘性あり)、過度な粘性なく1mm厚での塗布が可能である場合を「良」、過度な粘性なく1mm厚での塗布が可能で、かつ塗布後10秒経過後にも当初の塗布面の90%以上が潤滑組成物により被覆された状態が維持される場合を「優」とした。
 塗布適性は、実施例の潤滑組成物(4)~(7)では「優」であり、(1)~(3)では「良」であり、比較例の潤滑組成物(8)~(11)では「良」であり、(12)では「不良」であった。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本実施形態によれば、エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を再現することのできる、及び/または、医療手技訓練においてエネルギーデバイスの変形や不具合が生じる危険性を低減できる、模擬粘液被覆粘膜組織モデル及び臓器モデル、該モデルを用いた医療手技訓練方法、該モデルの製造方法、該モデルを含むキット及び装置、並びに粘膜組織モデル被覆用潤滑組成物を提供することができ、産業上の利用可能性を有する。
 
 

Claims (26)

  1.  生体の粘膜組織の少なくとも一部を模した粘膜組織モデルの、粘膜組織の粘膜面を模した表面が、体積抵抗率が1.0~1.0×10Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0~1.0×10mPa・sである潤滑組成物で被覆されている、医療手技訓練用の模擬粘液被覆粘膜組織モデル。
  2.  模擬血液を供給できる装置と接続された模擬血管を含む、請求項1に記載の模擬粘液被覆粘膜組織モデル。
  3.  医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、請求項1または2に記載の模擬粘液被覆粘膜組織モデル。
  4.  請求項1に記載の模擬粘液被覆粘膜組織モデルを含む、医療手技訓練用の模擬粘液被覆臓器モデル。
  5.  模擬血液を供給できる装置と接続された模擬血管を含む、請求項4に記載の模擬粘液被覆臓器モデル。
  6.  医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、請求項4または5に記載の模擬粘液被覆臓器モデル。
  7.  請求項1に記載の模擬粘液被覆粘膜組織モデルを用いた医療手技訓練方法。
  8.  請求項4に記載の模擬粘液被覆臓器モデルを用いた医療手技訓練方法。
  9.  医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、請求項7または8に記載の医療手技訓練方法。
  10.  生体の粘膜組織の少なくとも一部を模した粘膜組織モデルの、粘膜面を模した表面を、体積抵抗率が1.0~1.0×10Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0~1.0×10mPa・sである潤滑組成物で被覆する工程を含む、医療手技訓練用の模擬粘液被覆粘膜組織モデルの製造方法。
  11.  粘膜組織モデルが、模擬血液を供給できる装置と接続された模擬血管を含む、請求項10に記載の製造方法。
  12.  医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、請求項10または11に記載の製造方法。
  13.  生体の粘膜組織の少なくとも一部を模した粘膜組織モデルを含む臓器モデルの、粘膜組織の粘膜面を模した表面を、体積抵抗率が1.0~1.0×10Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0~1.0×10mPa・sである潤滑組成物で被覆する工程を含む、医療手技訓練用の模擬粘液被覆臓器モデルの製造方法。
  14.  模擬粘液被覆臓器モデルが、模擬血液を供給できる装置と接続された模擬血管を含む、請求項13に記載の製造方法。
  15.  医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、請求項13または14に記載の製造方法。
  16.  体積抵抗率が1.0~1.0×10Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0~1.0×10mPa・sである潤滑組成物と、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルとを含む、医療手技訓練用キット。
  17.  粘膜組織モデルが、模擬血液を供給できる装置と接続された模擬血管を含む、請求項16に記載の医療手技訓練用キット。
  18.  医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、請求項16または17に記載の医療手技訓練用キット。
  19.  体積抵抗率が1.0~1.0×10Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0~1.0×10mPa・sである潤滑組成物と、生体の粘膜組織の少なくとも一部を模した粘膜組織モデルを含む臓器モデルとを含む、医療手技訓練用キット。
  20.  臓器モデルが、模擬血液を供給できる装置と接続された模擬血管を含む、請求項19に記載の医療手技訓練用キット。
  21.  医療手技が、エネルギーデバイスを用いた粘膜組織の切開または止血を含む処置である、請求項19または20に記載の医療手技訓練用キット。
  22.  請求項4または5に記載の模擬粘液被覆臓器モデルと、1または複数の他の種類の臓器を模した臓器モデルとを備える、医療手技訓練装置。
  23.  体積抵抗率が1.0~1.0×10Ω・cmであり、かつ、JIS Z8803で規定された測定方法で測定した25℃における粘度が1.0~1.0×10mPa・sである潤滑組成物であって、
     粘膜組織モデルにおいて粘膜組織の粘膜面を模した表面を被覆する用途である、粘膜組織モデル被覆用潤滑組成物。
  24.  粘膜組織モデルが模擬血液を供給できる装置と接続された模擬血管を含む、請求項23に記載の粘膜組織モデル被覆用潤滑組成物。
  25.  エネルギーデバイスを用いた生体の粘膜組織の処置中の粘液の挙動を、粘膜組織モデルにおいて再現するために使用される、請求項23または24に記載の粘膜組織モデル被覆用潤滑組成物。
  26.  エネルギーデバイスを用いた生体の粘膜組織の処置が、粘膜組織の切開または止血を含む処置である、請求項25に記載の粘膜組織モデル被覆用潤滑組成物。
PCT/JP2023/028681 2022-08-08 2023-08-07 模擬粘液被覆粘膜組織モデル WO2024034552A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126013 2022-08-08
JP2022-126013 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034552A1 true WO2024034552A1 (ja) 2024-02-15

Family

ID=89851761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028681 WO2024034552A1 (ja) 2022-08-08 2023-08-07 模擬粘液被覆粘膜組織モデル

Country Status (2)

Country Link
TW (1) TW202410849A (ja)
WO (1) WO2024034552A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128138A (ja) * 2003-10-22 2005-05-19 National Institute Of Advanced Industrial & Technology 皮膚、粘膜等の生体モデル作製用組成物
JP2015036809A (ja) * 2013-08-16 2015-02-23 有限会社 テクノ・キャスト 導電性臓器モデル
JP2020126216A (ja) * 2018-06-19 2020-08-20 イービーエム株式会社 手術手技訓練用の人工臓器モデル、その人工臓器モデルの製造方法、及びその人工臓器モデルを用いた手術手技訓練方法
WO2021132204A1 (ja) * 2019-12-23 2021-07-01 デンカ株式会社 粘膜組織モデル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128138A (ja) * 2003-10-22 2005-05-19 National Institute Of Advanced Industrial & Technology 皮膚、粘膜等の生体モデル作製用組成物
JP2015036809A (ja) * 2013-08-16 2015-02-23 有限会社 テクノ・キャスト 導電性臓器モデル
JP2020126216A (ja) * 2018-06-19 2020-08-20 イービーエム株式会社 手術手技訓練用の人工臓器モデル、その人工臓器モデルの製造方法、及びその人工臓器モデルを用いた手術手技訓練方法
WO2021132204A1 (ja) * 2019-12-23 2021-07-01 デンカ株式会社 粘膜組織モデル

Also Published As

Publication number Publication date
TW202410849A (zh) 2024-03-16

Similar Documents

Publication Publication Date Title
US11034831B2 (en) Synthetic tissue structures for electrosurgical training and simulation
US10847057B2 (en) Synthetic tissue structures for electrosurgical training and simulation
JP6055069B1 (ja) 臓器、組織又は器官モデル
US6474993B1 (en) Artificial tissue
JP5289714B2 (ja) Esdトレーニングモデル
US11847932B2 (en) Modified animal organs for use in surgical simulators
JP7492236B2 (ja) 粘膜組織モデル
JP6153222B2 (ja) 導電性臓器モデル
JP2022524380A (ja) 音響細胞外マトリックスヒドロゲルおよびそれらの使用
JP7107509B2 (ja) 止血を含む手技を練習するために用いられる潰瘍模型、及び、潰瘍模型の使用
WO2024034552A1 (ja) 模擬粘液被覆粘膜組織モデル
WO2018156544A1 (en) Synthetic tissue structures for electrosurgical training and simulation
JP6948207B2 (ja) 導電性樹脂組成物およびそれを用いた手技練習用モデル
EP3261683A1 (en) Topical composition for the treatment of mucosal lesions
US11056021B2 (en) Method for producing simulated animal organ and simulated animal organ
CN217955323U (zh) 一种可用于内镜黏膜下剥离术的水凝胶仿真模型结构
WO2024048477A1 (ja) 十二指腸乳頭モデル
CN115353860B (zh) 医用内窥镜防雾剂
EP4266291A1 (en) Regenerative artificial tissue for electrosurgical robotic assisted surgery training and testing
Altman Radiosurgery
CN116631276A (zh) 用于手术训练的颈部假体构造
CN115206166A (zh) 一种可用于内镜黏膜下剥离术的仿真模型制作及其操作方法
Neugebauer Christian W. Wallwiener, Susanna H. Junginger, Wolfgang Zubke, Sara Y. Brucker, Markus D. Enderle
TWM428452U (en) Artificial material mucosal lesion model for training endoscope submucosal dissection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852514

Country of ref document: EP

Kind code of ref document: A1