WO2024034544A1 - Structural body and method for producing structural body - Google Patents

Structural body and method for producing structural body Download PDF

Info

Publication number
WO2024034544A1
WO2024034544A1 PCT/JP2023/028643 JP2023028643W WO2024034544A1 WO 2024034544 A1 WO2024034544 A1 WO 2024034544A1 JP 2023028643 W JP2023028643 W JP 2023028643W WO 2024034544 A1 WO2024034544 A1 WO 2024034544A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal member
resin
resin member
metal
average
Prior art date
Application number
PCT/JP2023/028643
Other languages
French (fr)
Japanese (ja)
Inventor
和樹 木村
啓介 宍戸
太一 大久保
翔太 新蔵
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2024034544A1 publication Critical patent/WO2024034544A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs

Definitions

  • the present disclosure relates to a structure and a method for manufacturing the structure.
  • Patent Document 1 describes an ethylene/ ⁇ -olefin copolymer having an ethylene unit and an ⁇ -olefin unit having 3 or more carbon atoms. It has been proposed to use a rubber composition containing a sulfur-containing silane coupling agent, and a sulfur-containing vulcanizing agent.
  • Patent Document 1 International Publication No. 2018/212180
  • an object of an embodiment of the present disclosure is to provide a structure with excellent versatility in the materials used, and a method for manufacturing the same.
  • Means for solving the above problems include the following embodiments. ⁇ 1> A metal member having a surface on which at least one microstructure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed; a resin member bonded to the surface of the metal member on which the fine structure is formed; The resin member is a structure having a tensile modulus of elasticity of 500 MPa or less at 23°C.
  • a metal member having a surface on which at least one or more microstructures selected from a dendritic structure, a needle-like structure, and a particulate structure are formed; a resin member bonded to the surface of the metal member on which the fine structure is formed; A structure in which the resin member includes a thermosetting elastomer.
  • the fine structure has an average thickness of 1 nm to 1000 nm.
  • the surface has an average ten-point roughness (Rzjis) of 2 ⁇ m to 100 ⁇ m.
  • ⁇ 5> The structure according to any one of ⁇ 1> to ⁇ 4>, wherein the average value of the average length (RSm) of the surface roughness curve element is 10 ⁇ m to 500 ⁇ m.
  • RSm average length
  • ⁇ 6> The absorbance A 1 of the absorption peak at 3400 cm ⁇ 1 observed by Fourier transform infrared spectroscopy of the surface, and the absorbance A 0 at 3400 cm ⁇ 1 of the straight line connecting the absorbance at 3800 cm ⁇ 1 and the absorbance at 2500 cm ⁇ 1
  • ⁇ 7> The structure according to claim 1, wherein the resin member includes a thermosetting elastomer or a thermoplastic elastomer.
  • a structure with excellent versatility in the materials used and a method for manufacturing the same are provided.
  • FIG. 1 It is a cross-sectional SEM image of a sample produced in an example. 2 is a partially enlarged image of the cross-sectional SEM image shown in FIG. 1.
  • a numerical range indicated using " ⁇ " indicates a range that includes the numerical values written before and after " ⁇ " as the minimum value and maximum value, respectively.
  • the upper or lower limit stated in one numerical range may be replaced by the upper or lower limit of another numerical range described step by step, and , may be replaced with the values shown in the examples.
  • the amount of each component in the material means the total amount of the multiple substances present in the material, unless otherwise specified.
  • a first embodiment of the structure of the present disclosure includes: A metal member having a surface on which at least one or more microstructures selected from a dendritic structure, a needle-like structure, and a particulate structure are formed; a resin member bonded to the surface of the metal member on which the fine structure is formed; The resin member is a structure having a tensile modulus of elasticity of 500 MPa or less at 23°C.
  • the structure of this embodiment includes a relatively soft resin member having a tensile modulus of 500 MPa or less at 23°C. Furthermore, in the structure of this embodiment, at least one fine structure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed on the surface of the metal member that is bonded to the resin member.
  • a fine structure is formed on the surface of a metal member that is bonded to a resin member, compared to a case where a fine structure is not formed on the surface of a metal member that is bonded to a resin member, It was found that the bonding strength between the resin member and the metal member was significantly improved.
  • a second embodiment of the structure of the present disclosure includes: A metal member having a surface on which at least one microstructure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed; a resin member bonded to the surface of the metal member on which the fine structure is formed; The resin member is a structure containing a thermosetting elastomer.
  • the resin member includes a thermosetting elastomer. Furthermore, in the structure of this embodiment, at least one fine structure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed on the surface of the metal member that is bonded to the resin member.
  • a fine structure is formed on the surface of a metal member that is bonded to a resin member, compared to a case where a fine structure is not formed on the surface of a metal member that is bonded to a resin member, It was found that the bonding strength between the resin member and the metal member was significantly improved.
  • thermosetting elastomer contained in the resin member enters the gaps in the microstructure of the surface of the metal member and is adsorbed at the molecular chain level, the microscopic bonding between the resin member and the metal member may occur. It is conceivable that a sufficient contact area is ensured, making it difficult for the resin member to separate from the metal member.
  • the structure of the present disclosure achieves excellent bonding strength with the resin member by forming a fine structure on the surface of the metal member. Therefore, there is a wide selection range of materials for the metal members and resin members to be used, and the device has excellent versatility. Furthermore, in the structure of this embodiment, the resin member is joined to the metal member without using an adhesive or the like. Therefore, processes such as applying adhesive can be omitted, resulting in excellent productivity.
  • the material of the metal member included in the structure is not particularly limited as long as a fine structure can be formed on the surface.
  • the material of the metal member is a metal selected from iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, and manganese, and a metal selected from the above metals. Examples include alloys containing at least one of the following.
  • the metal member may have a main body and a plating layer formed on the surface of the main body. In this case, a fine structure may be formed on the surface of the plating layer.
  • the structure is at least one selected from a dendritic structure, a needle-like structure, and a particulate structure formed on the surface of the metal member.
  • the fine structure may consist only of a needle-like structure, a dendritic structure, or a particulate structure, or may be a mixture of two or more of these structures. Alternatively, fine structures other than these may be included.
  • the microstructure may include an oxide of a metal component contained in the metal member. For example, if the metal member includes aluminum, the microstructure may include aluminum oxide.
  • a "dendritic structure” refers to a structure in which fine irregularities are formed on the surface of the metal member by branched protrusions that allow the resin constituting the resin member to enter the surface of the metal member. means a structure in a state of The branched protrusions include, for example, a trunk rising from the surface of the metal member (main trunk), a branch branching from the main trunk (main branch), a branch branching from the main branch (side branch), and the like.
  • the average number density of the protrusions constituting the dendritic structure is preferably 3 protrusions/ ⁇ m or more, more preferably 5 protrusions/ ⁇ m or more, and even more preferably 10 protrusions/ ⁇ m or more.
  • the average number density of the protrusions constituting the dendritic structure is preferably 100 protrusions/ ⁇ m or less, more preferably 80 protrusions/ ⁇ m or less, and even more preferably 60 protrusions/ ⁇ m or less.
  • the average height of the protrusions constituting the dendritic structure is preferably 1 nm to 1000 nm, more preferably 30 nm to 900 nm, and even more preferably 50 nm to 800 nm.
  • the height of the protrusions is adjusted to an optimal height for the resin contained in the resin member to enter.
  • the average number density and average height of the protrusions constituting the dendritic structure are calculated from the cross-sectional profile of the metal member taken by a scanning electron microscope (SEM). Specifically, it is an arithmetic mean value of values measured at ten arbitrary points.
  • the method of forming the dendritic structure on the surface of the metal member is not particularly limited.
  • a method of contacting a metal member with an oxidizing acidic aqueous solution containing a metal cation having a standard electrode potential E 0 at 25° C. of more than ⁇ 0.2 and less than 0.8, preferably more than 0 and less than 0.5 can be mentioned.
  • the oxidizing acidic aqueous solution does not contain a metal cation with E 0 of -0.2 or less. Examples of metal cations whose standard electrode potential E 0 at 25° C.
  • Cu 2+ is more than ⁇ 0.2 and less than 0.8 include Pb 2+ , Sn 2+ , Ag + , Hg 2+ , Cu 2+ and the like.
  • Cu 2+ is preferable from the viewpoint of the rarity of the metal and the safety and toxicity of the corresponding metal salt.
  • Compounds that generate Cu 2+ include inorganic compounds such as copper hydroxide, cupric oxide, cupric chloride, cupric bromide, copper sulfate, and copper nitrate. Copper oxide is preferable from the viewpoint of the efficiency of forming a layer.
  • the oxidizing acidic aqueous solution examples include nitric acid or an acid obtained by mixing nitric acid with any one of hydrochloric acid, hydrofluoric acid, and sulfuric acid. Furthermore, an aqueous percarboxylic acid solution such as peracetic acid and performic acid may be used.
  • the nitric acid concentration constituting the aqueous solution is, for example, 10% by mass to 40% by mass, preferably 15% to 38% by mass, or more. Preferably it is 20% by mass to 35% by mass.
  • the concentration of copper ions constituting the aqueous solution is, for example, 1% by mass to 15% by mass, preferably 2% by mass to 12% by mass, and more preferably 2% by mass to 8% by mass.
  • the temperature at which the metal member is brought into contact with the oxidizing acidic aqueous solution is not particularly limited, but in order to complete the roughening at an economical speed while controlling the exothermic reaction, the temperature is, for example, room temperature to 60°C, preferably 30°C to 50°C. A processing temperature of °C is adopted.
  • the treatment time at this time is, for example, in the range of 1 minute to 15 minutes, preferably 2 minutes to 10 minutes.
  • the term “acicular structure” refers to fine irregularities that allow the resin constituting the resin member to enter the surface of the metal member due to unbranched protrusions on the surface of the metal member. It means a structure in a formed state.
  • the average number density of the protrusions constituting the needle-like structure is preferably 3 protrusions/ ⁇ m or more, more preferably 5 protrusions/ ⁇ m or more, and even more preferably 10 protrusions/ ⁇ m or more.
  • the average number density of the protrusions constituting the needle-like structure is preferably 100 protrusions/ ⁇ m or less, more preferably 80 protrusions/ ⁇ m or less, and even more preferably 60 protrusions/ ⁇ m or less.
  • the average height of the protrusions constituting the needle-like structure is preferably from 1 nm to 1000 nm, more preferably from 30 nm to 900 nm, and even more preferably from 50 nm to 800 nm.
  • the height of the protrusions is adjusted to an optimal height for the resin contained in the resin member to enter.
  • the average number density and average height of the protrusions constituting the needle-like structure are calculated from the cross-sectional profile of the metal member taken by a scanning electron microscope (SEM). Specifically, it is an arithmetic mean value of values measured at ten arbitrary points.
  • the method of forming the needle-like structure on the surface of the metal member is not particularly limited.
  • the method for forming a dendritic structure described above may be used.
  • Particulate structure refers to a state in which fine irregularities are formed on the surface of the metal member by particles present on the surface of the metal member for the resin constituting the resin member to enter. means structure.
  • the type of particles constituting the particulate structure is not particularly limited, but examples include silica particles, tin oxide particles, nanodiamond particles, zirconia particles, niobium oxide particles, iron oxide particles, alumina particles, carbon nanofibers, and the like. Among these, silica particles are preferred.
  • the size of the particles constituting the particulate structure is not particularly limited, but the average particle diameter is preferably 1 nm or more and 100 nm or less, more preferably 1 nm or more and 70 nm or less, still more preferably 1 nm or more and 50 nm or less, and More preferably, it is 1 nm or more and 30 nm or less, particularly preferably more than 1 nm and less than 20 nm.
  • the particles constituting the particulate structure may be in the form of secondary particles in which a plurality of primary particles are aggregated. In this case, the average particle diameter is the average particle diameter of primary particles constituting the secondary particles.
  • the interval between the particles is adjusted to the optimum interval for the resin contained in the resin member to enter.
  • the average particle diameter of the particles constituting the particulate structure can be determined by observing a cross section of a metal member or structure using a transmission electron microscope (TEM), a scanning electron microscope (SEM), or the like. Specifically, the particle size of the particles constituting the particulate structure observed in the cross section of the metal member or structure is measured, and the average value of the measured values of 100 particles is taken as the average particle size.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • the method of forming the particulate structure on the surface of the metal member is not particularly limited.
  • the surface of the metal member may be immersed in a dispersion of particles to form a particulate structure, or a dispersion of particles to form a particulate structure may be spray applied to the metal surface. .
  • the average thickness of the fine structure formed by the particulate structure is preferably from 1 nm to 1000 nm, more preferably from 10 nm to 500 nm, even more preferably from 30 nm to 200 nm, and even more preferably from 50 nm to 100 nm. is most preferable.
  • the average thickness of the microstructure is calculated from the cross-sectional profile of the metal member using a scanning electron microscope (SEM). Specifically, it is the arithmetic mean value of the values measured at ten arbitrary points on the cross-sectional profile of a portion of the metal member having an uneven structure on its surface.
  • SEM scanning electron microscope
  • the surface of the metal member on which the fine structure is formed satisfies at least one of the following (1) and (2).
  • the average value of ten-point average roughness (Rzjis) is 2 ⁇ m to 100 ⁇ m.
  • the average value of the average length (RSm) of the roughness curve elements is 10 ⁇ m to 500 ⁇ m.
  • the surface of the metal member When the surface of the metal member satisfies at least either (1) or (2), the surface of the metal member has a nanometer-order fine structure (hereinafter also referred to as a fine rough surface) and a micrometer-order uneven structure ( It can be determined that this is a state in which a base rough surface (hereinafter also referred to as a base rough surface) is formed (hereinafter also referred to as a double rough surface).
  • a base rough surface hereinafter also referred to as a base rough surface
  • the ten-point average roughness (Rzjis) of the surface of a metal member is measured in accordance with JIS B0601:2001 (corresponding international standard: ISO4287).
  • the average length (RSm) of the surface roughness curve element of a metal member is measured in accordance with JIS B0601:2001 (corresponding international standard: ISO4287).
  • the average value of the ten-point average roughness (Rzjis) on the surface of the metal member is preferably in the range of 5 ⁇ m to 80 ⁇ m, more preferably 8 ⁇ m to 60 ⁇ m, and even more preferably 10 ⁇ m to 50 ⁇ m.
  • the average value of the ten-point average roughness (Rzjis) on the surface of the metal member is the arithmetic mean value of the values measured at arbitrary ten points on the surface of the metal member having an uneven structure.
  • the average value of the average length (RSm) of the roughness curve elements on the surface of the metal member is preferably in the range of 50 ⁇ m to 450 ⁇ m, more preferably 70 ⁇ m to 400 ⁇ m, still more preferably 70 ⁇ m to 350 ⁇ m, even more preferably 70 ⁇ m to 300 ⁇ m. It is in.
  • the average value of the average length (RSm) of the roughness curve elements on the surface of the metal member is the arithmetic mean value of the values measured at ten arbitrary points on the surface of the metal member having an uneven structure.
  • a metal member having a base roughened surface formed on the surface can be obtained by, for example, performing a roughening treatment on the surface of the metal member.
  • a method for roughening a metal member a method using a laser as disclosed in Japanese Patent No. 4020957 ; A method of immersion; a method of treating the surface of a metal member by anodic oxidation as disclosed in Japanese Patent No. 4541153; an acid-based etching agent (preferably , an inorganic acid, ferric ion or cupric ion) and, if necessary, an acid-based etching agent aqueous solution containing manganese ion, aluminum chloride hexahydrate, sodium chloride, etc.; International Publication No.
  • a method of immersing the surface of a metal member in one or more aqueous solutions selected from hydrated hydrazine, ammonia, and water-soluble amine compounds as disclosed in 2009/31632 (NMT method); JP 2008-162115 Examples include a hot water treatment method as disclosed in the above publication; and roughening treatment such as blasting treatment.
  • the roughening treatment of the metal member may include forming a porous plating layer on the surface of the metal member as described in Japanese Patent No. 5366076.
  • treatment with an acid-based etching agent is preferred from the viewpoint of increasing the bonding strength of the metal member to the resin member.
  • Examples of the treatment with an acidic etching agent include a method in which the following steps (1) to (4) are performed in this order.
  • Pre-treatment step A pre-treatment is performed to remove the film made of oxide film, hydroxide, etc. present on the surface of the metal member. Usually, mechanical polishing or chemical polishing treatment is performed. If the surface of the metal member is heavily contaminated with machine oil or the like, treatment with an alkaline aqueous solution such as a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution, or degreasing may be performed.
  • an alkaline aqueous solution such as a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution, or degreasing may be performed.
  • step (3) Treatment step with acid-based etching agent After step (2), the metal member is treated with an acid-based etching agent containing at least one of ferric ions and cupric ions, and an acid.
  • the zinc-containing film on the surface is eluted and a fine uneven shape on the order of micrometers is formed.
  • the metal member is cleaned. It usually consists of washing with water and drying operations. Ultrasonic cleaning operations may be included for smut removal.
  • the roughening treatment of the metal member may be performed two or more times.
  • a metal member having a double rough surface structure by forming a base rough surface on the surface of the metal member and then forming a fine structure (fine rough surface) on the surface of the metal member on which the base rough surface has been formed. Can be done.
  • the absorbance A 1 of the absorption peak at 3400 cm -1 observed by Fourier transform infrared spectroscopy of the surface of the metal member, the absorbance at 3800 cm -1 and the absorbance at 2500 cm -1 are It is preferable that the difference between the connecting straight line and the absorbance A 0 at 3400 cm ⁇ 1 (A 1 ⁇ A 0 ) is 0.03 or less.
  • the broad absorption peak with a peak top at 3400 cm ⁇ 1 observed in the FTIR measurement is estimated to be a peak resulting from aluminum hydroxide or aluminum hydrated oxide. Therefore, the absorbance difference (A 1 - A 0 ) is an index indicating the degree of retention of hydroxyl groups on the surface of the metal member, and the smaller the value of the absorbance difference (A 1 - A 0 ), the more hydroxyl groups exist on the surface of the metal member. The amount of hydroxyl groups is small. The reason why good bonding strength is maintained when the absorbance difference is 0.03 or less is not necessarily clear, but the present inventors think as follows.
  • the larger the amount of hydroxyl groups present on the surface of a metal member that is, the larger the value of the absorbance difference (A 1 - A 0 )), the easier it is for the metal member to adsorb moisture in the surrounding environment, forming a layer of water molecules on the surface. It becomes easier to form. This water molecule layer causes a decrease in the bonding strength of the metal member to the resin member.
  • the value of the absorbance difference (A 1 -A 0 ) is 0.03 the amount of moisture adsorbed on the surface of the metal member on which the fine structure is formed is sufficiently small, and good bonding strength is achieved.
  • the absorbance difference (A 1 ⁇ A 0 ) may be 0.02 or less, or 0.015 or less.
  • the absorbance difference (A 1 -A 0 ) may be 0.005 or more, or 0.01 or more.
  • the absorbance difference (A 1 -A 0 ) is determined from an FTIR chart obtained by employing a high-sensitivity reflection method (RAS method) and setting the incident angle of infrared light to 85°.
  • RAS method high-sensitivity reflection method
  • the tensile modulus of elasticity at 23°C of a resin member is measured using a tensile tester in accordance with JIS K6254 (2016) at a measurement temperature of 23°C, 50% RH, and a tensile speed of 50 mm/min. do.
  • the resin member having a tensile modulus at 23° C. of 500 MPa or less include resin members containing a thermoplastic elastomer or a thermosetting elastomer as a resin.
  • thermoplastic elastomers examples include styrene elastomers, polyolefin elastomers, polyurethane elastomers, polyester elastomers, and polyamide elastomers. Furthermore, a blend of two or more elastomers selected from these can also be used.
  • thermosetting elastomers examples include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), chloroprene rubber (CR), and acrylonitrile-butadiene copolymer rubber ( Non-diene rubbers such as NBR), butyl rubber (IIR), ethylene/propylene rubber (EPM), ethylene/ ⁇ -olefin/non-conjugated polyene copolymers, urethane rubber, silicone rubber, acrylic rubber, etc. Can be mentioned. Furthermore, a blend of two or more elastomers selected from these can also be used.
  • thermosetting elastomers ethylene/ ⁇ -olefin/nonconjugated polyene copolymers are preferred because their raw material costs are relatively low, they exhibit excellent mechanical properties, and molded products with good rubber elasticity can be obtained. preferable.
  • an ethylene/ ⁇ -olefin/non-conjugated polyene copolymer (hereinafter also referred to as “copolymer (A)”) refers to a structural unit derived from ethylene, a structural unit derived from an ⁇ -olefin, and a non-conjugated polyene copolymer. It means a copolymer containing a structural unit derived from a conjugated polyene.
  • Examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, Examples include ⁇ -olefins having 3 to 20 carbon atoms such as 1-hexadecene and 1-eicosene. Among these, ⁇ -olefins having 3 to 10 carbon atoms such as propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene are preferred, and propylene and 1-butene are more preferred.
  • the copolymer (A) may contain structural units derived from one or more ⁇ -olefins.
  • non-conjugated polyene examples include cyclic or chain-shaped non-conjugated polyenes.
  • examples of the cyclic non-conjugated polyene include 5-ethylidene-2-norbornene (ENB), dicyclopentadiene, 5-vinyl-2-norbornene (VNB), norbornadiene, and methyltetrahydroindene.
  • Examples of the linear nonconjugated polyene include 1,4-hexadiene, 7-methyl-1,6-octadiene, 8-methyl-4-ethylidene-1,7-nonadiene, and 4-ethylidene-1,7-undecadiene. can be mentioned.
  • the copolymer (A) may contain structural units derived from one or more non-conjugated polyenes.
  • copolymer (A) examples include ethylene/propylene/non-conjugated polyene copolymers (ethylene/propylene/diene rubber, etc.) and ethylene/1-butene/non-conjugated polyene copolymers.
  • the thermosetting elastomer may contain a crosslinking agent (vulcanizing agent).
  • a crosslinking agent vulcanizing agent
  • examples of the crosslinking agent include sulfur-based crosslinking agents, peroxide-based crosslinking agents, resin-based crosslinking agents, amine-based crosslinking agents, polyol-based crosslinking agents, etc., and can be selected depending on the type of thermosetting elastomer.
  • thermosetting elastomer may contain a crosslinking aid (vulcanization aid).
  • vulcanization aid vulcanization aid
  • Thiazole compounds and sulfenamide compounds are used as crosslinking aids. Examples include thiuram compounds, dithiocarbamates, guanidine compounds, and allyl compounds, which can be selected depending on the type of thermosetting elastomer.
  • the resin member may contain components other than those mentioned above.
  • Ingredients other than those mentioned above include oil, fatty acids such as stearic acid, fillers such as glass fiber, carbon fiber, and inorganic powder, heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, and dispersions. agent, lubricant, mold release agent, antistatic agent, etc.
  • the proportion of the resin in the entire resin member is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more. preferable.
  • a method for manufacturing a structure according to the present disclosure includes a step of preparing a metal member having a surface on which at least one microstructure selected from a dendritic structure, an acicular structure, and a particulate structure is formed; The method includes the step of applying heat and pressure to the resin member while the resin member is in contact with the surface of the metal member on which the fine structure is formed.
  • a structure with excellent bonding strength can be manufactured even if the resin member has a tensile modulus of elasticity at 23° C. of 500 MPa or less or contains a thermosetting elastomer.
  • the above method is particularly suitable when the resin member includes a thermosetting elastomer. Specifically, by applying heat while a resin member containing an uncured thermosetting elastomer is in contact with a surface of a metal member on which a fine structure is formed, a curing reaction of the thermosetting elastomer occurs. In addition, by applying pressure while the resin member containing the uncured thermosetting elastomer is in contact with the surface of the metal member on which the microstructure has been formed, the uncured thermosetting elastomer is made to have a microstructure. By penetrating into gaps and adsorbing at the molecular chain level, it exhibits an excellent anchoring effect.
  • the method of applying heat and pressure to the resin member in contact with the metal member is not particularly limited, and can be carried out by known methods such as press molding, injection molding, and compression molding.
  • the resin member may or may not have fluidity before applying heat and pressure while in contact with the metal member.
  • sealing members such as waterproof packing, oil-proof packing, liquid-proof packing, vacuum packing, packing for pressure equipment, vibration-absorbing members, vibration-suppressing members, stress relaxation members, members for mobile devices, solar cell members, and lithium ion batteries.
  • sealing members such as waterproof packing, oil-proof packing, liquid-proof packing, vacuum packing, packing for pressure equipment, vibration-absorbing members, vibration-suppressing members, stress relaxation members, members for mobile devices, solar cell members, and lithium ion batteries.
  • Examples include parts for industrial use, parts for housing and construction, parts for automobiles, and parts for aerospace.
  • the aluminum alloy plate was treated with an acid-based etching aqueous solution (40% by mass) containing 6.3% by mass of cupric oxide (5.0% by mass as Cu2+) and 30.0% by mass of nitric acid.
  • the sample was immersed for 5 minutes in a treatment tank 3 filled with a temperature of 30.degree. C.) and agitated.
  • the above processing steps are referred to as "processing 2.”
  • the aluminum alloy plate was washed with running water and dried at 80° C. for 15 minutes.
  • the standard electrode potential E0 of Cu2+ used in Process 2 is +0.337 (V vs. SHE).
  • the aluminum alloy plate after processing 2 was designated as metal member A.
  • the surface roughness of the metal member A is determined by the ten-point average roughness (Rzjis) and The average length (RSm) of each roughness curve element was measured. As a result, the average value of Rzjis was 18 ⁇ m, and the average value of RSm was 139 ⁇ m.
  • ⁇ Measurement speed 0.06mm/sec
  • a sample for cross-sectional observation was prepared by injection molding polypropylene on one side of metal member A, and the cross-section of the sample was observed using a SEM.
  • FIG. 1 an uneven structure on the order of micrometers was formed on the surface of the metal member A.
  • FIG. 2 a fine structure containing dendritic or acicular projections made of aluminum oxide with a height of 100 nm and an interval of about 20 nm was formed on the surface of the uneven structure.
  • the FT-IR spectrum of the surface of metal member A was measured using a device that combines a Shimadzu Fourier transform infrared spectrophotometer (FTIR) and a high-sensitivity reflectance measuring device (RAS-8000). Measurements were made with the angle set at 85°. The absorbance difference ( A 1 _ -A 0 ) was 0.01.
  • Metal member B In the production of metal member A, an aluminum alloy plate that was not subjected to treatment 2 after treatment 1 was used as metal member B.
  • the surface roughness of the metal member B is determined by the ten-point average roughness (Rzjis) and The average length (RSm) of each roughness curve element was measured. As a result, the average value of Rzjis was 19 ⁇ m, and the average value of RSm was 142 ⁇ m.
  • a sample for cross-sectional observation was prepared by injection molding polypropylene on one side of metal member B, and the cross-section of the sample was observed using a SEM.
  • an uneven structure on the order of micrometers as shown in FIG. 1 was formed on the surface of the metal member B, but a fine structure as shown in FIG. 2 was not formed.
  • the absorbance difference (A 1 ⁇ A 0 ) calculated from the FT-IR spectrum of the surface of metal member B was 4.
  • ⁇ Metal member C> An aluminum alloy plate (thickness: 2.0 mm) having alloy number A5052 specified in JIS H4000 was cut into a length of 45 mm and a width of 18 mm, and degreased. The same treatment 1 and treatment 2 as for metal member A were performed on the degreased aluminum alloy plate.
  • the surface roughness was measured in the same manner as for metal member A. As a result, the average value of R zjis was 18 ⁇ m, and the average value of RS m was 139 ⁇ m.
  • a sample for cross-sectional observation was prepared by injection molding polypropylene on one side of the metal member C, and the cross-section of the sample was observed using a SEM.
  • an uneven structure on the order of micrometers as observed on the metal member A was formed on the surface of the metal member C.
  • a fine structure including dendritic or acicular projections made of aluminum oxide with a height of about 100 nm and an interval of about 20 nm was formed on the surface of the uneven structure.
  • the FT-IR spectrum of the surface of metal member C was measured using a device that combines a Shimadzu Fourier transform infrared spectrophotometer (FTIR) and a high-sensitivity reflectance measuring device (RAS-8000). Measurements were made with the angle set at 85°. The absorbance difference ( A 1 _ -A 0 ) was 0.01.
  • Example 1 Uncured ethylene propylene diene rubber (product name: Mitsui EPT, grade name: A rectangular resin test piece was created by pressing using a mold. This resin test piece was further made in contact with one side of metal member A (both the masking area and the non-masking area) so that the shape of the resin part was 220 mm in length, 25 mm in width, and 2.0 mm in thickness.
  • the sample of Example 1 was prepared by inserting the sample into another mold and press-molding it at 160° C. for 30 minutes at 15 MPa. In the sample after press molding, the thermoset rubber layer was bonded only to the surface of the metal member A corresponding to the non-masking area. A 90° peel test was performed on the sample using a peel tester.
  • the rubber layer that is not bonded to the metal member A in the masking area is grabbed with the grip of the testing machine, and the rubber layer is pulled at a speed of 50 mm/s in a direction 90 degrees from the surface of the metal member.
  • the strength (N/cm) and the state of peeling when peeled off from metal member A were investigated. The results are shown in Table 1.
  • Example 2 A sample was prepared in the same manner as in Example 1, except that ethylene propylene diene rubber (trade name: Mitsui EPT, grade name: X4010M, manufactured by Mitsui Chemicals, Inc.) compounded with oil (10% by mass) was used. Then, a 90° peel test was conducted. The results are shown in Table 1.
  • ethylene propylene diene rubber trade name: Mitsui EPT, grade name: X4010M, manufactured by Mitsui Chemicals, Inc.
  • Example 3 A sample was prepared in the same manner as in Example 1, except that ethylene propylene diene rubber (trade name: Mitsui EPT, grade name: X4010M, manufactured by Mitsui Chemicals, Inc.) compounded with stearic acid (2% by mass) was used. A 90° peel test was conducted. The results are shown in Table 1.
  • ethylene propylene diene rubber trade name: Mitsui EPT, grade name: X4010M, manufactured by Mitsui Chemicals, Inc.
  • Example 4 A layer of polyolefin thermoplastic elastomer (trade name: Milastomer S650BS, manufactured by Mitsui Chemicals, Inc.) was formed on one side of metal member C by insert molding, and a sample for a shear test having a shape specified in ISO-19095 was prepared. . Using the obtained sample, the metal part was fixed horizontally on a pedestal, and the tip of the resin part was chucked using a tensile testing machine so that the distance between the chucks (distance between the metal part and the chuck part) was 20 mm. A peel test was conducted by pulling the resin part up at a speed of 10 mm/sec in a direction of 90° to the bonding surface. The strength (N/cm) and the state of peeling when the olefin thermoplastic elastomer layer was peeled off from the metal member C were examined. The results are shown in Table 1.
  • Example 5 A sample was prepared in the same manner as in Example 4, except that a polyolefin thermoplastic elastomer (trade name: Milastomer S450B, manufactured by Mitsui Chemicals, Inc.) was used, and a 90° peel test was conducted. The results are shown in Table 1.
  • a polyolefin thermoplastic elastomer trade name: Milastomer S450B, manufactured by Mitsui Chemicals, Inc.
  • Example 6 A sample was prepared in the same manner as in Example 4 except that a polyurethane thermoplastic elastomer (trade name: Elastran C70A11FG, manufactured by BASF) was used, and a 90° peel test was conducted. The results are shown in Table 1. The reason why the 90° peel test showed interfacial peeling is because the strength of the resin itself was high and material failure did not occur, and it can be evaluated that sufficient bonding strength was achieved.
  • a polyurethane thermoplastic elastomer trade name: Elastran C70A11FG, manufactured by BASF
  • Example 7 A sample was prepared in the same manner as in Example 4, except that a polyamide thermoplastic elastomer (trade name: Pebax 2533, manufactured by Arkema) was used, and a 90° peel test was conducted. The results are shown in Table 1. The reason why the 90° peel test showed interfacial peeling is because the strength of the resin itself was high and material failure did not occur, and it can be evaluated that sufficient bonding strength was achieved.
  • a polyamide thermoplastic elastomer trade name: Pebax 2533, manufactured by Arkema
  • the samples of the example fabricated using metal member A and metal member C with microstructures formed on their surfaces showed material failure in the peel test and exhibited excellent bonding strength. was confirmed.
  • the samples of Examples 1 to 3 that used thermosetting elastomer as the resin member had higher bonding strength than the samples of Comparative Examples 1 to 3 that were fabricated using metal member B on which no microstructure was formed. has improved markedly.
  • the bonding strength to the resin member can be improved by physical means of forming a fine structure on the surface of the metal member. Therefore, the present disclosure is applicable not only to specific types of metal members or resin members.

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A structural body comprising: a metallic member having a surface in which at least one fine structure selected from among dendritic structures, acicular structures, and particular structures has been formed; and a resinous member bonded to the surface of the metallic member in which the fine structure has been formed. The resinous member has a tensile modulus at 23°C of 500 MPa or less or includes a heat-curable elastomer.

Description

構造体及び構造体の製造方法Structure and method for manufacturing the structure
 本開示は、構造体及び構造体の製造方法に関する。 The present disclosure relates to a structure and a method for manufacturing the structure.
 金属部材と熱硬化性エラストマーであるゴム部材とからなる構造体の製造方法としては、例えば、金属部材と未加硫ゴムとを接触させた状態で未加硫ゴムを加硫する方法が種々知られている。これらの方法では一般に、ゴム部材に対する接着性を高めるために金属部材の表面処理を行ったり、接着剤を塗布したりするための作業工程が煩雑であり、生産効率の点で改善の余地がある。
 接着剤を介さずに金属部材とゴム部材とを直接接着する方法としては、例えば、特許文献1にはエチレン単位及び炭素数3以上のα-オレフィン単位を有するエチレン・α-オレフィン系共重合体と、硫黄原子を含むシランカップリング剤と、硫黄を含む加硫剤と、を含有するゴム組成物を用いることが提案されている。
As a method for manufacturing a structure consisting of a metal member and a rubber member made of a thermosetting elastomer, various methods are known, such as a method of vulcanizing unvulcanized rubber while the metal member is in contact with the unvulcanized rubber. It is being These methods generally require complicated work processes such as surface treatment of metal parts and application of adhesive to improve adhesion to rubber parts, and there is room for improvement in terms of production efficiency. .
As a method for directly bonding a metal member and a rubber member without using an adhesive, for example, Patent Document 1 describes an ethylene/α-olefin copolymer having an ethylene unit and an α-olefin unit having 3 or more carbon atoms. It has been proposed to use a rubber composition containing a sulfur-containing silane coupling agent, and a sulfur-containing vulcanizing agent.
 特許文献1:国際公開第2018/212180号 Patent Document 1: International Publication No. 2018/212180
 特許文献1に記載された方法では、硫黄原子を含むシランカップリング剤をゴム組成物に配合することで金属部材に対する接着力を高めているが、その用途は特定の種類のエラストマーを用いる場合に限定される。このため、エラストマーの種類を問わずに金属部材に対して優れた接着性を示す複合体の製造方法が望まれている。 In the method described in Patent Document 1, a silane coupling agent containing a sulfur atom is blended into a rubber composition to increase adhesive strength to metal members, but its use is limited to cases where a specific type of elastomer is used. Limited. Therefore, there is a need for a method for producing a composite that exhibits excellent adhesion to metal members regardless of the type of elastomer.
 上記事情に鑑み、本開示の一実施形態は、使用する材料の汎用性に優れる構造体及びその製造方法を提供することを課題とする。 In view of the above circumstances, an object of an embodiment of the present disclosure is to provide a structure with excellent versatility in the materials used, and a method for manufacturing the same.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材と、
 前記金属部材の前記微細構造が形成された表面と接合している樹脂部材と、を備え、
 前記樹脂部材は23℃での引張弾性率が500MPa以下である、構造体。
<2>樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材と、
 前記金属部材の前記微細構造が形成された表面と接合している樹脂部材と、を備え、
 前記樹脂部材は熱硬化性エラストマーを含む、構造体。
<3>前記微細構造の平均厚みが1nm~1000nmである、<1>又は<2>に記載の構造体。
<4>前記表面の十点平均粗さ(Rzjis)の平均値が2μm~100μmである、<1>~<3>のいずれか1項に記載の構造体。
<5>前記表面の粗さ曲線要素の平均長さ(RSm)の平均値が10μm~500μmである、<1>~<4>のいずれか1項に記載の構造体。
<6>前記表面のフーリエ変換赤外線分光法で観測される3400cm-1における吸収ピークの吸光度Aと、3800cm-1における吸光度と2500cm-1における吸光度とを結ぶ直線の3400cm-1における吸光度Aとの差(A-A)が0.03以下である、<1>~<5>のいずれか1項に記載の構造体。
<7>前記樹脂部材は熱硬化性エラストマー又は熱可塑性エラストマーを含む、請求項1に記載の構造体。
<8>樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材を準備する工程と、
 前記金属部材の前記微細構造が形成された表面に樹脂部材を接触させた状態で前記樹脂部材に熱及び圧力を加える工程と、を有する<1>~<7>のいずれか1項に記載の構造体の製造方法。
Means for solving the above problems include the following embodiments.
<1> A metal member having a surface on which at least one microstructure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed;
a resin member bonded to the surface of the metal member on which the fine structure is formed;
The resin member is a structure having a tensile modulus of elasticity of 500 MPa or less at 23°C.
<2> A metal member having a surface on which at least one or more microstructures selected from a dendritic structure, a needle-like structure, and a particulate structure are formed;
a resin member bonded to the surface of the metal member on which the fine structure is formed;
A structure in which the resin member includes a thermosetting elastomer.
<3> The structure according to <1> or <2>, wherein the fine structure has an average thickness of 1 nm to 1000 nm.
<4> The structure according to any one of <1> to <3>, wherein the surface has an average ten-point roughness (Rzjis) of 2 μm to 100 μm.
<5> The structure according to any one of <1> to <4>, wherein the average value of the average length (RSm) of the surface roughness curve element is 10 μm to 500 μm.
<6> The absorbance A 1 of the absorption peak at 3400 cm −1 observed by Fourier transform infrared spectroscopy of the surface, and the absorbance A 0 at 3400 cm −1 of the straight line connecting the absorbance at 3800 cm −1 and the absorbance at 2500 cm −1 The structure according to any one of <1> to <5>, wherein the difference (A 1 - A 0 ) between the structure and the structure is 0.03 or less.
<7> The structure according to claim 1, wherein the resin member includes a thermosetting elastomer or a thermoplastic elastomer.
<8> A step of preparing a metal member having a surface on which at least one microstructure selected from a dendritic structure, an acicular structure, and a particulate structure is formed;
The method according to any one of <1> to <7>, comprising the step of applying heat and pressure to the resin member while the resin member is in contact with the surface on which the fine structure of the metal member is formed. Method of manufacturing the structure.
 本開示の一実施形態によれば、使用する材料の汎用性に優れる構造体及びその製造方法が提供される。 According to one embodiment of the present disclosure, a structure with excellent versatility in the materials used and a method for manufacturing the same are provided.
実施例で作製したサンプルの断面SEM画像である。It is a cross-sectional SEM image of a sample produced in an example. 図1に示す断面SEM画像の部分拡大画像である。2 is a partially enlarged image of the cross-sectional SEM image shown in FIG. 1.
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値または下限値は、他の段階的な記載の数値範囲の上限値または下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
 本開示において、材料中の各成分の量は、材料中の各成分に該当する物質が複数存在する場合は、特に断らない限り、材料中に存在する複数の物質の合計量を意味する。
In the present disclosure, a numerical range indicated using "~" indicates a range that includes the numerical values written before and after "~" as the minimum value and maximum value, respectively.
In the numerical ranges described step by step in this disclosure, the upper or lower limit stated in one numerical range may be replaced by the upper or lower limit of another numerical range described step by step, and , may be replaced with the values shown in the examples.
In the present disclosure, if there are multiple substances corresponding to each component in the material, the amount of each component in the material means the total amount of the multiple substances present in the material, unless otherwise specified.
<構造体>
(第1実施形態)
 本開示の構造体の第1実施形態は、
 樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材と、
 前記金属部材の前記微細構造が形成された表面と接合している樹脂部材と、を備え、
 前記樹脂部材は23℃での引張弾性率が500MPa以下である、構造体である。
<Structure>
(First embodiment)
A first embodiment of the structure of the present disclosure includes:
A metal member having a surface on which at least one or more microstructures selected from a dendritic structure, a needle-like structure, and a particulate structure are formed;
a resin member bonded to the surface of the metal member on which the fine structure is formed;
The resin member is a structure having a tensile modulus of elasticity of 500 MPa or less at 23°C.
 本実施形態の構造体は、23℃での引張弾性率が500MPa以下という比較的軟質の樹脂部材を含む。
 さらに、本実施形態の構造体では、金属部材の樹脂部材と接合する表面に樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成されている。
 本発明者らの検討の結果、金属部材の樹脂部材と接合する表面に微細構造が形成されている場合は、金属部材の樹脂部材と接合する表面に微細構造が形成されていない場合に比べ、樹脂部材と金属部材との接合強度が顕著に向上することがわかった。この理由としては、例えば、23℃での引張弾性率が500MPa以下である樹脂部材が金属部材の表面の微細構造の隙間に入り込み、分子鎖レベルで吸着した状態であると樹脂部材と金属部材との微視的な接触面積が充分に確保され、樹脂部材が金属部材から分離しにくくなることが考えられる。
The structure of this embodiment includes a relatively soft resin member having a tensile modulus of 500 MPa or less at 23°C.
Furthermore, in the structure of this embodiment, at least one fine structure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed on the surface of the metal member that is bonded to the resin member.
As a result of the inventors' studies, when a fine structure is formed on the surface of a metal member that is bonded to a resin member, compared to a case where a fine structure is not formed on the surface of a metal member that is bonded to a resin member, It was found that the bonding strength between the resin member and the metal member was significantly improved. The reason for this is, for example, that a resin member with a tensile modulus of elasticity of 500 MPa or less at 23°C enters the gaps in the microstructure of the surface of a metal member, and if it is adsorbed at the molecular chain level, the resin member and metal member will be separated. It is conceivable that a sufficient microscopic contact area is ensured, making it difficult for the resin member to separate from the metal member.
(第2実施形態)
 本開示の構造体の第2実施形態は、
 樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材と、
 前記金属部材の前記微細構造が形成された表面と接合している樹脂部材と、を備え、
 前記樹脂部材は熱硬化性エラストマーを含む、構造体である。
(Second embodiment)
A second embodiment of the structure of the present disclosure includes:
A metal member having a surface on which at least one microstructure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed;
a resin member bonded to the surface of the metal member on which the fine structure is formed;
The resin member is a structure containing a thermosetting elastomer.
 本実施形態の構造体は、樹脂部材が熱硬化性エラストマーを含む。
 さらに、本実施形態の構造体では、金属部材の樹脂部材と接合する表面に樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成されている。
 本発明者らの検討の結果、金属部材の樹脂部材と接合する表面に微細構造が形成されている場合は、金属部材の樹脂部材と接合する表面に微細構造が形成されていない場合に比べ、樹脂部材と金属部材との接合強度が顕著に向上することがわかった。この理由としては、例えば、樹脂部材に含まれる熱硬化性エラストマーが金属部材の表面の微細構造の隙間に入り込み、分子鎖レベルで吸着した状態であると樹脂部材と金属部材との微視的な接触面積が充分に確保され、樹脂部材が金属部材から分離しにくくなることが考えられる。
In the structure of this embodiment, the resin member includes a thermosetting elastomer.
Furthermore, in the structure of this embodiment, at least one fine structure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed on the surface of the metal member that is bonded to the resin member.
As a result of the inventors' studies, when a fine structure is formed on the surface of a metal member that is bonded to a resin member, compared to a case where a fine structure is not formed on the surface of a metal member that is bonded to a resin member, It was found that the bonding strength between the resin member and the metal member was significantly improved. The reason for this is, for example, that if the thermosetting elastomer contained in the resin member enters the gaps in the microstructure of the surface of the metal member and is adsorbed at the molecular chain level, the microscopic bonding between the resin member and the metal member may occur. It is conceivable that a sufficient contact area is ensured, making it difficult for the resin member to separate from the metal member.
 本開示の構造体は、金属部材の表面に微細構造を形成することで樹脂部材との優れた接合強度を達成している。このため、使用する金属部材及び樹脂部材の材料の選択幅が大きく、汎用性に優れている。
 さらに、本実施形態の構造体では接着剤などを用いずに樹脂部材を金属部材に接合する。このため、接着剤の塗布などの工程を省略でき生産性に優れている。
The structure of the present disclosure achieves excellent bonding strength with the resin member by forming a fine structure on the surface of the metal member. Therefore, there is a wide selection range of materials for the metal members and resin members to be used, and the device has excellent versatility.
Furthermore, in the structure of this embodiment, the resin member is joined to the metal member without using an adhesive or the like. Therefore, processes such as applying adhesive can be omitted, resulting in excellent productivity.
(金属部材)
 構造体に含まれる金属部材の材質は、表面に微細構造を形成可能であれば特に制限されない。金属部材の材質として具体的には、鉄、銅、ニッケル、金、銀、プラチナ、コバルト、亜鉛、鉛、スズ、チタン、クロム、アルミニウム、マグネシウム及びマンガンから選択される金属、並びに前記金属から選択される少なくとも1種を含む合金が挙げられる。
(metal parts)
The material of the metal member included in the structure is not particularly limited as long as a fine structure can be formed on the surface. Specifically, the material of the metal member is a metal selected from iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, and manganese, and a metal selected from the above metals. Examples include alloys containing at least one of the following.
 金属部材は、本体と、本体の表面に形成されるめっき層とを有するものであってもよい。この場合、めっき層の表面に微細構造が形成されていてもよい。 The metal member may have a main body and a plating layer formed on the surface of the main body. In this case, a fine structure may be formed on the surface of the plating layer.
 金属部材の表面に形成される樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上である。
 微細構造は、針状構造、樹枝状構造又は粒子状構造のいずれかのみからなっても、これらのうちの2つ以上が混在した状態であってもよい。あるいは、これら以外の微細構造を含んでもよい。
 微細構造は、金属部材に含まれる金属成分の酸化物を含んでいてもよい。例えば、金属部材がアルミニウムを含む場合、微細構造は酸化アルミニウムを含んでいてもよい。
The structure is at least one selected from a dendritic structure, a needle-like structure, and a particulate structure formed on the surface of the metal member.
The fine structure may consist only of a needle-like structure, a dendritic structure, or a particulate structure, or may be a mixture of two or more of these structures. Alternatively, fine structures other than these may be included.
The microstructure may include an oxide of a metal component contained in the metal member. For example, if the metal member includes aluminum, the microstructure may include aluminum oxide.
(1)樹枝状構造
 本開示において「樹枝状構造」とは、金属部材の表面に存在する枝分かれした突起物によって金属部材の表面に樹脂部材を構成する樹脂が入り込むための微細な凹凸が形成された状態の構造を意味する。
 枝分かれした突起物は、例えば、金属部材の表面から立ち上がる幹(主幹)、主幹から分かれた枝(主枝)、主枝から分かれた枝(側枝)等から構成される。
(1) Dendritic structure In the present disclosure, a "dendritic structure" refers to a structure in which fine irregularities are formed on the surface of the metal member by branched protrusions that allow the resin constituting the resin member to enter the surface of the metal member. means a structure in a state of
The branched protrusions include, for example, a trunk rising from the surface of the metal member (main trunk), a branch branching from the main trunk (main branch), a branch branching from the main branch (side branch), and the like.
 樹枝状構造を構成する突起物の平均本数密度は、3本/μm以上であることが好ましく、5本/μm以上であることがより好ましく、10本/μm以上であることがさらに好ましい。
 樹枝状構造を構成する突起物の平均本数密度は、100本/μm以下であることが好ましく、80本/μm以下であることがより好ましく、60本/μm以下であることがさらに好ましい。
 樹枝状構造を構成する突起物の平均本数密度が上記範囲内であると、突起物の間隔が樹脂部材に含まれる樹脂が入り込むために最適な間隔に調整される。
The average number density of the protrusions constituting the dendritic structure is preferably 3 protrusions/μm or more, more preferably 5 protrusions/μm or more, and even more preferably 10 protrusions/μm or more.
The average number density of the protrusions constituting the dendritic structure is preferably 100 protrusions/μm or less, more preferably 80 protrusions/μm or less, and even more preferably 60 protrusions/μm or less.
When the average number density of the protrusions constituting the dendritic structure is within the above range, the interval between the protrusions is adjusted to the optimum interval for entry of the resin contained in the resin member.
 樹枝状構造を構成する突起物の平均高さは、1nm~1000nmであることが好ましく、30nm~900nmであることがより好ましく、50nm以上800nm以下であることがさらに好ましい。
 樹枝状構造を構成する突起物の平均高さが上記範囲内であると、突起物の高さが樹脂部材に含まれる樹脂が入り込むために最適な高さに調整される。
The average height of the protrusions constituting the dendritic structure is preferably 1 nm to 1000 nm, more preferably 30 nm to 900 nm, and even more preferably 50 nm to 800 nm.
When the average height of the protrusions constituting the dendritic structure is within the above range, the height of the protrusions is adjusted to an optimal height for the resin contained in the resin member to enter.
 樹枝状構造を構成する突起物の平均本数密度及び平均高さは、金属部材の走査型電子顕微鏡(SEM)による断面プロファイルから算出される。具体的には、任意の10点で測定した値の算術平均値とする。 The average number density and average height of the protrusions constituting the dendritic structure are calculated from the cross-sectional profile of the metal member taken by a scanning electron microscope (SEM). Specifically, it is an arithmetic mean value of values measured at ten arbitrary points.
 金属部材の表面に樹枝状構造を形成する方法は、特に制限されない。
 例えば、金属部材を25℃における標準電極電位Eが-0.2超え0.8以下、好ましくは0超え0.5以下の金属カチオンを含む酸化性酸性水溶液と接触させる方法が挙げられる。
 上記酸化性酸性水溶液は、上記Eが-0.2以下の金属カチオンを含まないことが好ましい。
 25℃における標準電極電位Eが-0.2超え0.8以下である金属カチオンとしては、Pb2+、Sn2+、Ag、Hg2+、Cu2+等が挙げられる。これらの中では、金属の希少性の視点、対応金属塩の安全性・毒性の視点からは、Cu2+が好ましい。
 Cu2+を発生させる化合物としては、水酸化銅、酸化第二銅、塩化第二銅、臭化第二銅、硫酸銅、硝酸銅などの無機化合物が挙げられ、安全性、毒性の視点、樹枝状層の付与効率の視点からは、酸化銅が好ましい。
The method of forming the dendritic structure on the surface of the metal member is not particularly limited.
For example, a method of contacting a metal member with an oxidizing acidic aqueous solution containing a metal cation having a standard electrode potential E 0 at 25° C. of more than −0.2 and less than 0.8, preferably more than 0 and less than 0.5 can be mentioned.
It is preferable that the oxidizing acidic aqueous solution does not contain a metal cation with E 0 of -0.2 or less.
Examples of metal cations whose standard electrode potential E 0 at 25° C. is more than −0.2 and less than 0.8 include Pb 2+ , Sn 2+ , Ag + , Hg 2+ , Cu 2+ and the like. Among these, Cu 2+ is preferable from the viewpoint of the rarity of the metal and the safety and toxicity of the corresponding metal salt.
Compounds that generate Cu 2+ include inorganic compounds such as copper hydroxide, cupric oxide, cupric chloride, cupric bromide, copper sulfate, and copper nitrate. Copper oxide is preferable from the viewpoint of the efficiency of forming a layer.
 酸化性酸性水溶液としては、硝酸または硝酸に対し塩酸、弗酸、硫酸のいずれかを混合した酸を例示することができる。さらに、過酢酸、過ギ酸に代表される過カルボン酸水溶液を用いてもよい。酸化性酸性水溶液として硝酸を用い、金属カチオン発生化合物として酸化第二銅を用いる場合、水溶液を構成する硝酸濃度は、例えば10質量%~40質量%、好ましくは15質量%~38質量%、より好ましくは20質量%~35質量%である。また、水溶液を構成する銅イオン濃度は、例えば1質量%~15質量%、好ましくは2質量%~12質量%、より好ましくは2質量%~8質量%である。 Examples of the oxidizing acidic aqueous solution include nitric acid or an acid obtained by mixing nitric acid with any one of hydrochloric acid, hydrofluoric acid, and sulfuric acid. Furthermore, an aqueous percarboxylic acid solution such as peracetic acid and performic acid may be used. When nitric acid is used as the oxidizing acidic aqueous solution and cupric oxide is used as the metal cation generating compound, the nitric acid concentration constituting the aqueous solution is, for example, 10% by mass to 40% by mass, preferably 15% to 38% by mass, or more. Preferably it is 20% by mass to 35% by mass. Further, the concentration of copper ions constituting the aqueous solution is, for example, 1% by mass to 15% by mass, preferably 2% by mass to 12% by mass, and more preferably 2% by mass to 8% by mass.
 金属部材を酸化性酸性水溶液と接触させる際の温度は特に制限されないが、発熱反応を制御しつつ経済的なスピードで粗化を完結するために、例えば常温~60℃、好ましくは30℃~50℃の処理温度が採用される。この際の処理時間は、例えば1分~15分、好ましくは2分~10分の範囲にある。 The temperature at which the metal member is brought into contact with the oxidizing acidic aqueous solution is not particularly limited, but in order to complete the roughening at an economical speed while controlling the exothermic reaction, the temperature is, for example, room temperature to 60°C, preferably 30°C to 50°C. A processing temperature of °C is adopted. The treatment time at this time is, for example, in the range of 1 minute to 15 minutes, preferably 2 minutes to 10 minutes.
(2)針状構造
 本開示において「針状構造」とは、金属部材の表面に存在する枝分かれしていない突起物によって金属部材の表面に樹脂部材を構成する樹脂が入り込むための微細な凹凸が形成された状態の構造を意味する。
(2) Acicular structure In the present disclosure, the term "acicular structure" refers to fine irregularities that allow the resin constituting the resin member to enter the surface of the metal member due to unbranched protrusions on the surface of the metal member. It means a structure in a formed state.
 針状構造を構成する突起物の平均本数密度は、3本/μm以上であることが好ましく、5本/μm以上であることがより好ましく、10本/μm以上であることがさらに好ましい。
 針状状構造を構成する突起物の平均本数密度は、100本/μm以下であることが好ましく、80本/μm以下であることがより好ましく、60本/μm以下であることがさらに好ましい。
 針状状構造を構成する突起物の平均本数密度が上記範囲内であると、突起物の間隔が樹脂部材に含まれる樹脂が入り込むために最適な間隔に調整される。
The average number density of the protrusions constituting the needle-like structure is preferably 3 protrusions/μm or more, more preferably 5 protrusions/μm or more, and even more preferably 10 protrusions/μm or more.
The average number density of the protrusions constituting the needle-like structure is preferably 100 protrusions/μm or less, more preferably 80 protrusions/μm or less, and even more preferably 60 protrusions/μm or less.
When the average number density of the protrusions constituting the acicular structure is within the above range, the interval between the protrusions is adjusted to the optimum interval for the resin contained in the resin member to enter.
 針状構造を構成する突起物の平均高さは、1nm~1000nmであることが好ましく、30nm~900nmであることがより好ましく、50nm以上800nm以下であることがさらに好ましい。
 針状構造を構成する突起物の平均高さが上記範囲内であると、突起物の高さが樹脂部材に含まれる樹脂が入り込むために最適な高さに調整される。
The average height of the protrusions constituting the needle-like structure is preferably from 1 nm to 1000 nm, more preferably from 30 nm to 900 nm, and even more preferably from 50 nm to 800 nm.
When the average height of the protrusions constituting the needle-like structure is within the above range, the height of the protrusions is adjusted to an optimal height for the resin contained in the resin member to enter.
 針状構造を構成する突起物の平均本数密度及び平均高さは、金属部材の走査型電子顕微鏡(SEM)による断面プロファイルから算出される。具体的には、任意の10点で測定した値の算術平均値とする。 The average number density and average height of the protrusions constituting the needle-like structure are calculated from the cross-sectional profile of the metal member taken by a scanning electron microscope (SEM). Specifically, it is an arithmetic mean value of values measured at ten arbitrary points.
 金属部材の表面に針状構造を形成する方法は、特に制限されない。
 例えば、上述した樹枝状構造を形成する方法により行ってもよい。
The method of forming the needle-like structure on the surface of the metal member is not particularly limited.
For example, the method for forming a dendritic structure described above may be used.
(3)粒子状構造
 本開示において「粒子状構造」とは、金属部材の表面に存在する粒子によって金属部材の表面に樹脂部材を構成する樹脂が入り込むための微細な凹凸が形成された状態の構造を意味する。
(3) Particulate structure In the present disclosure, "particulate structure" refers to a state in which fine irregularities are formed on the surface of the metal member by particles present on the surface of the metal member for the resin constituting the resin member to enter. means structure.
 粒子状構造を構成する粒子の種類は特に制限されないが、シリカ粒子、酸化スズ粒子、ナノダイヤ粒子、ジルコニア粒子、酸化ニオブ粒子、酸化鉄粒子、アルミナ粒子、カーボンナノファイバー等が挙げられる。これらの中でもシリカ粒子が好ましい。 The type of particles constituting the particulate structure is not particularly limited, but examples include silica particles, tin oxide particles, nanodiamond particles, zirconia particles, niobium oxide particles, iron oxide particles, alumina particles, carbon nanofibers, and the like. Among these, silica particles are preferred.
 粒子状構造を構成する粒子の大きさは特に制限されないが、平均粒子径が好ましくは1nm以上100nm以下であり、より好ましくは1nm以上70nm以下であり、さらに好ましくは1nm以上50nm以下であり、さらにより好ましくは1nm以上30nm以下であり、特に好ましくは1nm超え20nm未満である。
 粒子状構造を構成する粒子は、複数の一次粒子が凝集した二次粒子の状態であってもよい。この場合、上記平均粒子径は二次粒子を構成する一次粒子の平均粒子径である。
The size of the particles constituting the particulate structure is not particularly limited, but the average particle diameter is preferably 1 nm or more and 100 nm or less, more preferably 1 nm or more and 70 nm or less, still more preferably 1 nm or more and 50 nm or less, and More preferably, it is 1 nm or more and 30 nm or less, particularly preferably more than 1 nm and less than 20 nm.
The particles constituting the particulate structure may be in the form of secondary particles in which a plurality of primary particles are aggregated. In this case, the average particle diameter is the average particle diameter of primary particles constituting the secondary particles.
 粒子状構造を構成する粒子の平均粒子径が上記範囲内であると、粒子の間隔が樹脂部材に含まれる樹脂が入り込むために最適な間隔に調整される。 When the average particle diameter of the particles constituting the particulate structure is within the above range, the interval between the particles is adjusted to the optimum interval for the resin contained in the resin member to enter.
 粒子状構造を構成する粒子の平均粒子径は、金属部材又は構造体の断面を透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)等で観察して調べることができる。
 具体的には、金属部材又は構造体の断面に観察される粒子状構造を構成する粒子の粒子径を測定し、100個の粒子の測定値の平均値を平均粒子径とする。
The average particle diameter of the particles constituting the particulate structure can be determined by observing a cross section of a metal member or structure using a transmission electron microscope (TEM), a scanning electron microscope (SEM), or the like.
Specifically, the particle size of the particles constituting the particulate structure observed in the cross section of the metal member or structure is measured, and the average value of the measured values of 100 particles is taken as the average particle size.
 金属部材の表面に粒子状構造を形成する方法は、特に制限されない。
 例えば、粒子状構造を形成するための粒子の分散液に金属部材の表面を浸漬させる方法、粒子状構造を形成するための粒子の分散液を金属表面にスプレー塗布する方法等により行ってもよい。
The method of forming the particulate structure on the surface of the metal member is not particularly limited.
For example, the surface of the metal member may be immersed in a dispersion of particles to form a particulate structure, or a dispersion of particles to form a particulate structure may be spray applied to the metal surface. .
 粒子状構造で形成される微細構造の平均厚みは、1nm~1000nmであることが好ましく、10nm~500nmであることがより好ましく、30nm以上200nm以下であることがさらに好ましく、50nm以上100nm以下であることが最も好ましい。 The average thickness of the fine structure formed by the particulate structure is preferably from 1 nm to 1000 nm, more preferably from 10 nm to 500 nm, even more preferably from 30 nm to 200 nm, and even more preferably from 50 nm to 100 nm. is most preferable.
 微細構造の平均厚みは、金属部材の走査型電子顕微鏡(SEM)による断面プロファイルから算出される。具体的には、金属部材が表面に凹凸構造を有する部分の断面プロファイルの任意の10点で測定した値の算術平均値とする。 The average thickness of the microstructure is calculated from the cross-sectional profile of the metal member using a scanning electron microscope (SEM). Specifically, it is the arithmetic mean value of the values measured at ten arbitrary points on the cross-sectional profile of a portion of the metal member having an uneven structure on its surface.
 樹脂部材との接合強度を高める観点からは、金属部材の微細構造が形成された表面は、下記(1)及び(2)の少なくともいずれかを満たすことが好ましい。
(1)十点平均粗さ(Rzjis)の平均値が2μm~100μmである。
(2)粗さ曲線要素の平均長さ(RSm)の平均値が10μm~500μmである。
From the viewpoint of increasing the bonding strength with the resin member, it is preferable that the surface of the metal member on which the fine structure is formed satisfies at least one of the following (1) and (2).
(1) The average value of ten-point average roughness (Rzjis) is 2 μm to 100 μm.
(2) The average value of the average length (RSm) of the roughness curve elements is 10 μm to 500 μm.
 金属部材の表面が(1)及び(2)の少なくともいずれかを満たしていると、金属部材の表面がナノメートルオーダーの微細構造(以下、ファイン粗面ともいう)とマイクロメートルオーダーの凹凸構造(以下、ベース粗面ともいう)とが形成された状態(以下、ダブル粗面ともいう)であると判断できる。 When the surface of the metal member satisfies at least either (1) or (2), the surface of the metal member has a nanometer-order fine structure (hereinafter also referred to as a fine rough surface) and a micrometer-order uneven structure ( It can be determined that this is a state in which a base rough surface (hereinafter also referred to as a base rough surface) is formed (hereinafter also referred to as a double rough surface).
 本開示において、金属部材の表面の十点平均粗さ(Rzjis)はJIS B0601:2001(対応国際規格:ISO4287)に準拠して測定される。
 本開示において、金属部材の表面の粗さ曲線要素の平均長さ(RSm)はJIS B0601:2001(対応国際規格:ISO4287)に準拠して測定される。
In the present disclosure, the ten-point average roughness (Rzjis) of the surface of a metal member is measured in accordance with JIS B0601:2001 (corresponding international standard: ISO4287).
In the present disclosure, the average length (RSm) of the surface roughness curve element of a metal member is measured in accordance with JIS B0601:2001 (corresponding international standard: ISO4287).
 金属部材の表面における十点平均粗さ(Rzjis)の平均値は、好ましくは5μm~80μm、より好ましくは8μm~60μm、さらに好ましくは10μm~50μmの範囲にある。
 金属部材の表面における十点平均粗さ(Rzjis)の平均値は、金属部材の凹凸構造を有する表面の任意の10点で測定した値の算術平均値とする。
The average value of the ten-point average roughness (Rzjis) on the surface of the metal member is preferably in the range of 5 μm to 80 μm, more preferably 8 μm to 60 μm, and even more preferably 10 μm to 50 μm.
The average value of the ten-point average roughness (Rzjis) on the surface of the metal member is the arithmetic mean value of the values measured at arbitrary ten points on the surface of the metal member having an uneven structure.
 金属部材の表面における粗さ曲線要素の平均長さ(RSm)の平均値は、好ましくは50μm~450μm、より好ましくは70μm~400μm、さらに好ましくは70μm~350μm、さらにより好ましくは70μm~300μmの範囲にある。
 金属部材の表面における粗さ曲線要素の平均長さ(RSm)の平均値は、金属部材の凹凸構造を有する表面の任意の10点で測定した値の算術平均値とする。
The average value of the average length (RSm) of the roughness curve elements on the surface of the metal member is preferably in the range of 50 μm to 450 μm, more preferably 70 μm to 400 μm, still more preferably 70 μm to 350 μm, even more preferably 70 μm to 300 μm. It is in.
The average value of the average length (RSm) of the roughness curve elements on the surface of the metal member is the arithmetic mean value of the values measured at ten arbitrary points on the surface of the metal member having an uneven structure.
 表面にベース粗面が形成された金属部材は、例えば、金属部材の表面に対して粗化処理を行うことで得られる。
 金属部材の粗化処理の方法としては、特許第4020957号に開示されているようなレーザーを用いる方法;NaOH等の無機塩基、またはHCl、HNO等の無機酸の水溶液に金属部材の表面を浸漬する方法;特許第4541153号に開示されているような、陽極酸化により金属部材の表面を処理する方法;国際公開第2015-8847号に開示されているような、酸系エッチング剤(好ましくは、無機酸、第二鉄イオンまたは第二銅イオン)および必要に応じてマンガンイオン、塩化アルミニウム六水和物、塩化ナトリウム等を含む酸系エッチング剤水溶液によってエッチングする置換晶析法;国際公開第2009/31632号に開示されているような、水和ヒドラジン、アンモニア、および水溶性アミン化合物から選ばれる1種以上の水溶液に金属部材の表面を浸漬する方法(NMT法);特開2008-162115号公報に開示されているような温水処理法;ブラスト処理等の粗化処理が挙げられる。
A metal member having a base roughened surface formed on the surface can be obtained by, for example, performing a roughening treatment on the surface of the metal member.
As a method for roughening a metal member, a method using a laser as disclosed in Japanese Patent No. 4020957 ; A method of immersion; a method of treating the surface of a metal member by anodic oxidation as disclosed in Japanese Patent No. 4541153; an acid-based etching agent (preferably , an inorganic acid, ferric ion or cupric ion) and, if necessary, an acid-based etching agent aqueous solution containing manganese ion, aluminum chloride hexahydrate, sodium chloride, etc.; International Publication No. A method of immersing the surface of a metal member in one or more aqueous solutions selected from hydrated hydrazine, ammonia, and water-soluble amine compounds as disclosed in 2009/31632 (NMT method); JP 2008-162115 Examples include a hot water treatment method as disclosed in the above publication; and roughening treatment such as blasting treatment.
 金属部材の粗化処理は、特許第5366076号に記載されているような多孔質のめっき層を金属部材の表面に形成するものであってもよい。 The roughening treatment of the metal member may include forming a porous plating layer on the surface of the metal member as described in Japanese Patent No. 5366076.
 上記方法の中でも、金属部材の樹脂部材に対する接合強度を高める観点からは酸系エッチング剤による処理が好ましい。
 酸系エッチング剤による処理としては、例えば、下記工程(1)~(4)をこの順に実施する方法が挙げられる。
Among the above methods, treatment with an acid-based etching agent is preferred from the viewpoint of increasing the bonding strength of the metal member to the resin member.
Examples of the treatment with an acidic etching agent include a method in which the following steps (1) to (4) are performed in this order.
(1)前処理工程
 金属部材の表面に存在する酸化膜や水酸化物等からなる被膜を除去するための前処理を行う。通常、機械研磨や化学研磨処理が行われる。金属部材の表面に機械油等の著しい汚染がある場合は、水酸化ナトリウム水溶液や水酸化カリウム水溶液等のアルカリ性水溶液による処理や、脱脂を行ってもよい。
(1) Pre-treatment step A pre-treatment is performed to remove the film made of oxide film, hydroxide, etc. present on the surface of the metal member. Usually, mechanical polishing or chemical polishing treatment is performed. If the surface of the metal member is heavily contaminated with machine oil or the like, treatment with an alkaline aqueous solution such as a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution, or degreasing may be performed.
(2)亜鉛イオン含有アルカリ水溶液による処理工程
 水酸化アルカリ(MOH)と亜鉛イオン(Zn2+)とを質量比(MOH/Zn2+)1~100の割合で含む亜鉛イオン含有アルカリ水溶液中に、前処理後の金属部材を浸漬し、表面に亜鉛含有被膜を形成する。なお、前記MOHのMはアルカリ金属またはアルカリ土類金属である。
(2) Treatment step with a zinc ion-containing alkaline aqueous solution In a zinc ion-containing alkaline aqueous solution containing alkali hydroxide (MOH) and zinc ions (Zn 2+ ) at a mass ratio (MOH/Zn 2+ ) of 1 to 100, The treated metal member is immersed to form a zinc-containing film on the surface. Note that M in the MOH is an alkali metal or an alkaline earth metal.
(3)酸系エッチング剤による処理工程
 工程(2)の後に、金属部材を、第二鉄イオンと第二銅イオンの少なくとも一方と、酸を含む酸系エッチング剤により処理して、金属部材の表面上の亜鉛含有被膜を溶離させると共に、マイクロメートルオーダーの微細凹凸形状を形成させる。
(3) Treatment step with acid-based etching agent After step (2), the metal member is treated with an acid-based etching agent containing at least one of ferric ions and cupric ions, and an acid. The zinc-containing film on the surface is eluted and a fine uneven shape on the order of micrometers is formed.
(4)後処理工程
 上記工程(3)の後に、金属部材を洗浄する。通常は、水洗および乾燥操作からなる。スマット除去のために超音波洗浄操作を含めてもよい。
(4) Post-treatment step After the above step (3), the metal member is cleaned. It usually consists of washing with water and drying operations. Ultrasonic cleaning operations may be included for smut removal.
 必要に応じ、金属部材の粗化処理は、2回以上行ってもよい。 If necessary, the roughening treatment of the metal member may be performed two or more times.
 金属部材の表面にベース粗面を形成し、次いで、ベース粗面が形成された金属部材の表面に微細構造(ファイン粗面)を形成することで、ダブル粗面構造を持つ金属部材を得ることができる。 To obtain a metal member having a double rough surface structure by forming a base rough surface on the surface of the metal member and then forming a fine structure (fine rough surface) on the surface of the metal member on which the base rough surface has been formed. Can be done.
 良好な接合強度を達成する観点からは、金属部材の表面のフーリエ変換赤外線分光法で観測される3400cm-1における吸収ピークの吸光度Aと、3800cm-1における吸光度と2500cm-1における吸光度とを結ぶ直線の3400cm-1における吸光度Aとの差(A-A)が0.03以下であることが好ましい。 From the viewpoint of achieving good bonding strength, the absorbance A 1 of the absorption peak at 3400 cm -1 observed by Fourier transform infrared spectroscopy of the surface of the metal member, the absorbance at 3800 cm -1 and the absorbance at 2500 cm -1 are It is preferable that the difference between the connecting straight line and the absorbance A 0 at 3400 cm −1 (A 1 −A 0 ) is 0.03 or less.
 FTIR測定で観測される、3400cm-1にピークトップを持つブロードな吸収ピークは、アルミニウム水酸化物またはアルミニウム水和酸化物に起因するピークと推定される。
 したがって、吸光度差(A-A)は、金属部材の表面の水酸基の保有程度を示す指標であり、吸光度差(A-A)の値が小さいほど、金属部材の表面に存在する水酸基の量が少ない。
 吸光度差が0.03以下であると良好な接合強度が保持される理由は必ずしも明らかではないが、本発明者らは以下のように考えている。
 金属部材の表面に存在する水酸基の量が多い(すなわち、吸光度差(A-A)の値が大きい)ほど、金属部材は周囲環境中の水分を吸着しやすくなり、表面に水分子層を形成し易くなる。この水分子層が金属部材の樹脂部材に対する接合強度の低下の原因となる。吸光度差(A-A)の値が0.03であると、金属部材の微細構造が形成された表面の水分の吸着量が充分に少なく、良好な接合強度が達成される。
 吸光度差(A-A)は0.02以下であってもよく、0.015以下であってもよい。吸光度差(A-A)は0.005以上であってもよく、0.01以上であってもよい。
 吸光度差(A-A)は、高感度反射法(RAS法)を採用し、赤外光の入射角を85°として得られるFTIRチャートから求める。
The broad absorption peak with a peak top at 3400 cm −1 observed in the FTIR measurement is estimated to be a peak resulting from aluminum hydroxide or aluminum hydrated oxide.
Therefore, the absorbance difference (A 1 - A 0 ) is an index indicating the degree of retention of hydroxyl groups on the surface of the metal member, and the smaller the value of the absorbance difference (A 1 - A 0 ), the more hydroxyl groups exist on the surface of the metal member. The amount of hydroxyl groups is small.
The reason why good bonding strength is maintained when the absorbance difference is 0.03 or less is not necessarily clear, but the present inventors think as follows.
The larger the amount of hydroxyl groups present on the surface of a metal member (that is, the larger the value of the absorbance difference (A 1 - A 0 )), the easier it is for the metal member to adsorb moisture in the surrounding environment, forming a layer of water molecules on the surface. It becomes easier to form. This water molecule layer causes a decrease in the bonding strength of the metal member to the resin member. When the value of the absorbance difference (A 1 -A 0 ) is 0.03, the amount of moisture adsorbed on the surface of the metal member on which the fine structure is formed is sufficiently small, and good bonding strength is achieved.
The absorbance difference (A 1 −A 0 ) may be 0.02 or less, or 0.015 or less. The absorbance difference (A 1 -A 0 ) may be 0.005 or more, or 0.01 or more.
The absorbance difference (A 1 -A 0 ) is determined from an FTIR chart obtained by employing a high-sensitivity reflection method (RAS method) and setting the incident angle of infrared light to 85°.
(樹脂部材)
 本開示において、樹脂部材の23℃での引張弾性率は、引張試験機を用いて、JIS K6254(2016)に準拠し、測定温度23℃、50%RH、引張速度50mm/minの条件で測定する。
 23℃での引張弾性率が500MPa以下である樹脂部材としては、熱可塑性エラストマー又は熱硬化性エラストマーを樹脂として含む樹脂部材が挙げられる。
(Resin member)
In the present disclosure, the tensile modulus of elasticity at 23°C of a resin member is measured using a tensile tester in accordance with JIS K6254 (2016) at a measurement temperature of 23°C, 50% RH, and a tensile speed of 50 mm/min. do.
Examples of the resin member having a tensile modulus at 23° C. of 500 MPa or less include resin members containing a thermoplastic elastomer or a thermosetting elastomer as a resin.
 熱可塑性エラストマーとしてはスチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー等が挙げられる。また、これらから選択されるエラストマーのうち2種類以上をブレンドした状態でも使用することができる。 Examples of thermoplastic elastomers include styrene elastomers, polyolefin elastomers, polyurethane elastomers, polyester elastomers, and polyamide elastomers. Furthermore, a blend of two or more elastomers selected from these can also be used.
 熱硬化性エラストマーとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)等のジエン系ゴム、ブチルゴム(IIR)、エチレン・プロピレンゴム(EPM)、エチレン・α-オレフィン・非共役ポリエン共重合体、ウレタンゴム、シリコーンゴム、アクリルゴム等の非ジエン系ゴムなどが挙げられる。また、これらから選択されるエラストマーのうち2種類以上をブレンドした状態でも使用することができる。 Examples of thermosetting elastomers include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), chloroprene rubber (CR), and acrylonitrile-butadiene copolymer rubber ( Non-diene rubbers such as NBR), butyl rubber (IIR), ethylene/propylene rubber (EPM), ethylene/α-olefin/non-conjugated polyene copolymers, urethane rubber, silicone rubber, acrylic rubber, etc. Can be mentioned. Furthermore, a blend of two or more elastomers selected from these can also be used.
 原料コストが比較的安価であり、優れた機械的性質を示し、良好なゴム弾性を持つ成形体が得られる観点から、熱硬化性エラストマーの中でもエチレン・α-オレフィン・非共役ポリエン共重合体が好ましい。
 本開示においてエチレン・α-オレフィン・非共役ポリエン共重合体(以下「共重合体(A)」ともいう)とは、エチレンに由来する構造単位と、α-オレフィンに由来する構造単位と、非共役ポリエンに由来する構造単位とを含む共重合体を意味する。
Among thermosetting elastomers, ethylene/α-olefin/nonconjugated polyene copolymers are preferred because their raw material costs are relatively low, they exhibit excellent mechanical properties, and molded products with good rubber elasticity can be obtained. preferable.
In the present disclosure, an ethylene/α-olefin/non-conjugated polyene copolymer (hereinafter also referred to as “copolymer (A)”) refers to a structural unit derived from ethylene, a structural unit derived from an α-olefin, and a non-conjugated polyene copolymer. It means a copolymer containing a structural unit derived from a conjugated polyene.
 α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-エイコセンなどの炭素数3~20のα-オレフィンが挙げられる。これらのうち、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどの炭素数3~10のα-オレフィンが好ましく、プロピレン及び1-ブテンがより好ましい。共重合体(A)は、1種又は2種以上のα-オレフィンに由来する構造単位を含んでいてもよい。 Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, Examples include α-olefins having 3 to 20 carbon atoms such as 1-hexadecene and 1-eicosene. Among these, α-olefins having 3 to 10 carbon atoms such as propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-octene are preferred, and propylene and 1-butene are more preferred. The copolymer (A) may contain structural units derived from one or more α-olefins.
 非共役ポリエンとしては、環状又は鎖状の非共役ポリエンが挙げられる。環状の非共役ポリエンとしては、例えば、5-エチリデン-2-ノルボルネン(ENB)、ジシクロペンタジエン、5-ビニル-2-ノルボルネン(VNB)、ノルボルナジエン、メチルテトラヒドロインデンが挙げられる。鎖状の非共役ポリエンとしては、例えば、1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、8-メチル-4-エチリデン-1,7-ノナジエン及び4-エチリデン-1,7-ウンデカジエンが挙げられる。入手容易性及び得られる成形体の耐熱性の観点からは、非共役ポリエンとしてはENB及びVNBが好ましい。共重合体(A)は、1種又は2種以上の非共役ポリエンに由来する構造単位を含んでいてもよい。 Examples of the non-conjugated polyene include cyclic or chain-shaped non-conjugated polyenes. Examples of the cyclic non-conjugated polyene include 5-ethylidene-2-norbornene (ENB), dicyclopentadiene, 5-vinyl-2-norbornene (VNB), norbornadiene, and methyltetrahydroindene. Examples of the linear nonconjugated polyene include 1,4-hexadiene, 7-methyl-1,6-octadiene, 8-methyl-4-ethylidene-1,7-nonadiene, and 4-ethylidene-1,7-undecadiene. can be mentioned. From the viewpoint of availability and heat resistance of the resulting molded product, ENB and VNB are preferred as the non-conjugated polyene. The copolymer (A) may contain structural units derived from one or more non-conjugated polyenes.
 共重合体(A)の具体例としては、エチレン・プロピレン・非共役ポリエン共重合体(エチレン・プロピレン・ジエンゴムなど)、及びエチレン・1-ブテン・非共役ポリエン共重合体が挙げられる。 Specific examples of the copolymer (A) include ethylene/propylene/non-conjugated polyene copolymers (ethylene/propylene/diene rubber, etc.) and ethylene/1-butene/non-conjugated polyene copolymers.
 熱硬化性エラストマーは、架橋剤(加硫剤)を含んでもよい。架橋剤としては硫黄系架橋剤、過酸化物系架橋剤、樹脂系架橋剤、アミン系架橋剤、ポリオール系架橋剤等が挙げられ、熱硬化性エラストマーの種類等に応じて選択できる。 The thermosetting elastomer may contain a crosslinking agent (vulcanizing agent). Examples of the crosslinking agent include sulfur-based crosslinking agents, peroxide-based crosslinking agents, resin-based crosslinking agents, amine-based crosslinking agents, polyol-based crosslinking agents, etc., and can be selected depending on the type of thermosetting elastomer.
 熱硬化性エラストマーは、架橋助剤(加硫助剤)を含んでもよい。架橋助剤としてはチアゾール化合物、スルフェンアミド化合物。チウラム化合物、ジチオカルバミン酸塩、グアニジン化合物、アリル化合物等が挙げられ、熱硬化性エラストマーの種類等に応じて選択できる。 The thermosetting elastomer may contain a crosslinking aid (vulcanization aid). Thiazole compounds and sulfenamide compounds are used as crosslinking aids. Examples include thiuram compounds, dithiocarbamates, guanidine compounds, and allyl compounds, which can be selected depending on the type of thermosetting elastomer.
 樹脂部材は、上述した成分以外の成分を含んでもよい。上述した成分以外の成分としては、オイル、ステアリン酸等の脂肪酸、ガラス繊維、カーボン繊維、無機粉末等の充填材、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。 The resin member may contain components other than those mentioned above. Ingredients other than those mentioned above include oil, fatty acids such as stearic acid, fillers such as glass fiber, carbon fiber, and inorganic powder, heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, and dispersions. agent, lubricant, mold release agent, antistatic agent, etc.
 樹脂部材が樹脂以外の成分を含む場合、樹脂部材全体に占める樹脂の割合は10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。 When the resin member contains components other than resin, the proportion of the resin in the entire resin member is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more. preferable.
<構造体の製造方法>
 本開示の構造体の製造方法は、樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材を準備する工程と、
 前記金属部材の前記微細構造が形成された表面に樹脂部材を接触させた状態で前記樹脂部材に熱及び圧力を加える工程と、を有する。
<Method for manufacturing structure>
A method for manufacturing a structure according to the present disclosure includes a step of preparing a metal member having a surface on which at least one microstructure selected from a dendritic structure, an acicular structure, and a particulate structure is formed;
The method includes the step of applying heat and pressure to the resin member while the resin member is in contact with the surface of the metal member on which the fine structure is formed.
 上記方法によれば、樹脂部材の23℃での引張弾性率が500MPa以下であるか、樹脂部材が熱硬化性エラストマーを含む場合であっても接合強度に優れる構造体を製造することができる。 According to the above method, a structure with excellent bonding strength can be manufactured even if the resin member has a tensile modulus of elasticity at 23° C. of 500 MPa or less or contains a thermosetting elastomer.
 上記方法は、樹脂部材が熱硬化性エラストマーを含む場合に特に好適である。具体的には、未硬化状態の熱硬化性エラストマーを含む樹脂部材を金属部材の微細構造が形成された表面に接触させた状態で熱を加えることで、熱硬化性エラストマーの硬化反応が生じる。あわせて、未硬化状態の熱硬化性エラストマーを含む樹脂部材を金属部材の微細構造が形成された表面に接触させた状態で圧力を加えることで、未硬化状態の熱硬化性エラストマーが微細構造の隙間に入り込み分子鎖レベルで吸着することで、優れたアンカー効果を発現する。 The above method is particularly suitable when the resin member includes a thermosetting elastomer. Specifically, by applying heat while a resin member containing an uncured thermosetting elastomer is in contact with a surface of a metal member on which a fine structure is formed, a curing reaction of the thermosetting elastomer occurs. In addition, by applying pressure while the resin member containing the uncured thermosetting elastomer is in contact with the surface of the metal member on which the microstructure has been formed, the uncured thermosetting elastomer is made to have a microstructure. By penetrating into gaps and adsorbing at the molecular chain level, it exhibits an excellent anchoring effect.
 金属部材に接触させた状態の樹脂部材に熱及び圧力を加える方法は特に制限されず、プレス成型、射出成形、圧縮成形等の公知の方法で実施できる。
 金属部材に接触させた状態で熱及び圧力を加える前の樹脂部材は、流動性を有していても流動性を有していなくてもよい。
The method of applying heat and pressure to the resin member in contact with the metal member is not particularly limited, and can be carried out by known methods such as press molding, injection molding, and compression molding.
The resin member may or may not have fluidity before applying heat and pressure while in contact with the metal member.
(構造体の用途)
 本開示の構造体の用途は特に制限されない。
 例えば、防水パッキン、防油パッキン、防液パッキン、真空パッキン、圧力機器用パッキンなどのシール部材、振動吸収部材、振動抑制部材、応力緩和部材、携帯機器用部材、太陽電池用部材、リチウムイオン電池用部材、住建設用部材、自動車用部材、航空宇宙用部材などが挙げられる。
(Usage of structure)
The use of the structure of the present disclosure is not particularly limited.
For example, sealing members such as waterproof packing, oil-proof packing, liquid-proof packing, vacuum packing, packing for pressure equipment, vibration-absorbing members, vibration-suppressing members, stress relaxation members, members for mobile devices, solar cell members, and lithium ion batteries. Examples include parts for industrial use, parts for housing and construction, parts for automobiles, and parts for aerospace.
 以下、本開示に係る実施形態を、実施例を参照して説明する。なお本開示は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, embodiments according to the present disclosure will be described with reference to Examples. Note that the present disclosure is in no way limited to the description of these examples.
<金属部材A>
 JIS H4000に規定された合金番号A5052のアルミニウム合金板(厚み:2.0mm)を、長さ220mm、幅25mmに切断し、脱脂処理した。その後、片端から60mmの領域をマスキングテープでマスキングした。
 マスキングしたアルミニウム合金板を、水酸化ナトリウムを19.0質量%と酸化亜鉛を3.2質量%とを含有するアルカリ系エッチング剤(30℃)が充填された処理槽1に2分間浸漬し、水洗した。次いで、得られたアルミニウム合金板を、塩化第二鉄を3.9質量%と、塩化第二銅を0.2質量%と、硫酸を4.1質量%とを含有する酸系エッチング水溶液(30℃)が充填された処理槽2に6分間浸漬し、搖動させた。以上の処理工程を「処理1」と称する。次いで、流水で超音波洗浄(水中、1分)を行った。
<Metal member A>
An aluminum alloy plate (thickness: 2.0 mm) having alloy number A5052 specified in JIS H4000 was cut into a length of 220 mm and a width of 25 mm, and degreased. Thereafter, an area of 60 mm from one end was masked with masking tape.
The masked aluminum alloy plate was immersed for 2 minutes in a treatment tank 1 filled with an alkaline etching agent (30°C) containing 19.0% by mass of sodium hydroxide and 3.2% by mass of zinc oxide, Washed with water. Next, the obtained aluminum alloy plate was treated with an acid-based etching aqueous solution ( The sample was immersed for 6 minutes in a treatment tank 2 filled with a temperature of 30° C., and then agitated. The above processing steps are referred to as "processing 1." Next, ultrasonic cleaning was performed under running water (in water for 1 minute).
 処理1を行った後のアルミニウム合金板を、酸化第二銅を6.3質量%(Cu2+として5.0質量%)と、硝酸を30.0質量%とを含有する酸系エッチング水溶液(40℃)が充填された処理槽3に5分間浸漬し、搖動させた。以上の処理工程を「処理2」と称する。次いで、アルミニウム合金板を流水で洗浄し、80℃で15分間乾燥させた。処理2で用いたCu2+の標準電極電位E0は、+0.337(Vvs. SHE)である。処理2を行った後のアルミニウム合金板を金属部材Aとした。 After treatment 1, the aluminum alloy plate was treated with an acid-based etching aqueous solution (40% by mass) containing 6.3% by mass of cupric oxide (5.0% by mass as Cu2+) and 30.0% by mass of nitric acid. The sample was immersed for 5 minutes in a treatment tank 3 filled with a temperature of 30.degree. C.) and agitated. The above processing steps are referred to as "processing 2." Next, the aluminum alloy plate was washed with running water and dried at 80° C. for 15 minutes. The standard electrode potential E0 of Cu2+ used in Process 2 is +0.337 (V vs. SHE). The aluminum alloy plate after processing 2 was designated as metal member A.
 金属部材Aの表面粗さを、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601(対応ISO4287)に準拠して測定される十点平均粗さ(Rzjis)および粗さ曲線要素の平均長さ(RSm)をそれぞれ測定した。その結果、Rzjisの平均値は18μm、RSmの平均値は139μmであった。
・触針先端半径:5μm
・基準長さ:0.8mm
・評価長さ:4mm
・測定速度:0.06mm/sec
The surface roughness of the metal member A is determined by the ten-point average roughness (Rzjis) and The average length (RSm) of each roughness curve element was measured. As a result, the average value of Rzjis was 18 μm, and the average value of RSm was 139 μm.
・Stylus tip radius: 5μm
・Standard length: 0.8mm
・Evaluation length: 4mm
・Measurement speed: 0.06mm/sec
 金属部材Aの片面にポリプロピレンを射出成形して断面観察用のサンプルを作製し、サンプルの断面をSEMで観察した。その結果、図1に示すようにマイクロメートルオーダーの凹凸構造が金属部材Aの表面に形成されていた。さらに、図2に示すように凹凸構造の表面に高さ100nm、間隔20nm程度の酸化アルミニウムからなる樹枝状又は針状の突起物を含む微細構造が形成されていた。 A sample for cross-sectional observation was prepared by injection molding polypropylene on one side of metal member A, and the cross-section of the sample was observed using a SEM. As a result, as shown in FIG. 1, an uneven structure on the order of micrometers was formed on the surface of the metal member A. Further, as shown in FIG. 2, a fine structure containing dendritic or acicular projections made of aluminum oxide with a height of 100 nm and an interval of about 20 nm was formed on the surface of the uneven structure.
 金属部材Aの表面のFT-IRスペクトルを、島津製作所製のフーリエ変換赤外分光光度計(FTIR)と高感度反射測定装置(RAS-8000)を組み合わせた装置を用いて、赤外光の入射角を85°として測定した。3400cm-1に観測される吸収ピークの吸光度をA、3800cm-1の吸光度と2500cm-1の吸光度とを結んだ直線の3400cm-1における仮想吸光度をAとしたときの吸光度差(A-A)は、0.01であった。 The FT-IR spectrum of the surface of metal member A was measured using a device that combines a Shimadzu Fourier transform infrared spectrophotometer (FTIR) and a high-sensitivity reflectance measuring device (RAS-8000). Measurements were made with the angle set at 85°. The absorbance difference ( A 1 _ -A 0 ) was 0.01.
<金属部材B>
 金属部材Aの作製において、処理1の後に処理2を実施しなかったアルミニウム合金板を金属部材Bとした。
<Metal member B>
In the production of metal member A, an aluminum alloy plate that was not subjected to treatment 2 after treatment 1 was used as metal member B.
 金属部材Bの表面粗さを、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601(対応ISO4287)に準拠して測定される十点平均粗さ(Rzjis)および粗さ曲線要素の平均長さ(RSm)をそれぞれ測定した。その結果、Rzjisの平均値は19μm、RSmの平均値は142μmであった。 The surface roughness of the metal member B is determined by the ten-point average roughness (Rzjis) and The average length (RSm) of each roughness curve element was measured. As a result, the average value of Rzjis was 19 μm, and the average value of RSm was 142 μm.
 金属部材Bの片面にポリプロピレンを射出成形して断面観察用のサンプルを作製し、サンプルの断面をSEMで観察した。その結果、図1に示すようなマイクロメートルオーダーの凹凸構造が金属部材Bの表面に形成されていたが、図2に示すような微細構造は形成されていなかった。
 金属部材Bの表面のFT-IRスペクトルから算出される吸光度差(A-A)は、4であった。
A sample for cross-sectional observation was prepared by injection molding polypropylene on one side of metal member B, and the cross-section of the sample was observed using a SEM. As a result, an uneven structure on the order of micrometers as shown in FIG. 1 was formed on the surface of the metal member B, but a fine structure as shown in FIG. 2 was not formed.
The absorbance difference (A 1 −A 0 ) calculated from the FT-IR spectrum of the surface of metal member B was 4.
<金属部材C>
 JIS H4000に規定された合金番号A5052のアルミニウム合金板(厚み:2.0mm)を、長さ45mm、幅18mmに切断し、脱脂処理した。
 脱脂処理したアルミニウム合金板に対し、金属部材Aと同様の処理1及び処理2を行った。
<Metal member C>
An aluminum alloy plate (thickness: 2.0 mm) having alloy number A5052 specified in JIS H4000 was cut into a length of 45 mm and a width of 18 mm, and degreased.
The same treatment 1 and treatment 2 as for metal member A were performed on the degreased aluminum alloy plate.
 金属部材Aと同様に表面粗さを測定した。その結果、Rzjisの平均値は18μm、RSの平均値は139μmであった。 The surface roughness was measured in the same manner as for metal member A. As a result, the average value of R zjis was 18 μm, and the average value of RS m was 139 μm.
 金属部材Cの片面にポリプロピレンを射出成形して断面観察用のサンプルを作製し、サンプルの断面をSEMで観察した。その結果、金属部材Aに観察されたようなマイクロメートルオーダーの凹凸構造が金属部材Cの表面に形成されていた。さらに、凹凸構造の表面に高さ100nm、間隔20nm程度の酸化アルミニウムからなる樹枝状又は針状の突起物を含む微細構造が形成されていた。 A sample for cross-sectional observation was prepared by injection molding polypropylene on one side of the metal member C, and the cross-section of the sample was observed using a SEM. As a result, an uneven structure on the order of micrometers as observed on the metal member A was formed on the surface of the metal member C. Further, a fine structure including dendritic or acicular projections made of aluminum oxide with a height of about 100 nm and an interval of about 20 nm was formed on the surface of the uneven structure.
 金属部材Cの表面のFT-IRスペクトルを、島津製作所製のフーリエ変換赤外分光光度計(FTIR)と高感度反射測定装置(RAS-8000)を組み合わせた装置を用いて、赤外光の入射角を85°として測定した。3400cm-1に観測される吸収ピークの吸光度をA、3800cm-1の吸光度と2500cm-1の吸光度とを結んだ直線の3400cm-1における仮想吸光度をAとしたときの吸光度差(A-A)は、0.01であった。 The FT-IR spectrum of the surface of metal member C was measured using a device that combines a Shimadzu Fourier transform infrared spectrophotometer (FTIR) and a high-sensitivity reflectance measuring device (RAS-8000). Measurements were made with the angle set at 85°. The absorbance difference ( A 1 _ -A 0 ) was 0.01.
<実施例1>
 あらかじめ未硬化のエチレン・プロピレン・ジエンゴム(商品名:三井EPT、グレード名:X4010、三井化学株式会社製)を長さ220mm、幅25mm、厚み2.5mmとなるように室温(25℃)で金型を用いてプレスし、短冊状の樹脂試験片を作成した。この樹脂試験片を、さらに金属部材Aの片面(マスキング領域と非マスキング領域の両方)に接触させた状態で、樹脂部分の形状が長さ220mm、幅25mm、厚み2.0mmとなるように作製した別の金型にインサートし、160℃、30分、15MPaの条件でプレス成型を行い、実施例1のサンプルを作製した。
 プレス成型後のサンプルは、熱硬化した状態のゴム層が金属部材Aの非マスキング領域に相当する表面にのみ接合した状態であった。
 ピール試験機を用いて90°ピール試験をサンプルに対して実施した。具体的には、マスキング領域の金属部材Aに接合していないゴム層を試験機の掴み具で掴み、金属部材の表面から90°の方向に50mm/sの速度でゴム層を引っ張り、ゴム層が金属部材Aから剥離したときの強度(N/cm)と剥離の状態を調べた。結果を表1に示す。
<Example 1>
Uncured ethylene propylene diene rubber (product name: Mitsui EPT, grade name: A rectangular resin test piece was created by pressing using a mold. This resin test piece was further made in contact with one side of metal member A (both the masking area and the non-masking area) so that the shape of the resin part was 220 mm in length, 25 mm in width, and 2.0 mm in thickness. The sample of Example 1 was prepared by inserting the sample into another mold and press-molding it at 160° C. for 30 minutes at 15 MPa.
In the sample after press molding, the thermoset rubber layer was bonded only to the surface of the metal member A corresponding to the non-masking area.
A 90° peel test was performed on the sample using a peel tester. Specifically, the rubber layer that is not bonded to the metal member A in the masking area is grabbed with the grip of the testing machine, and the rubber layer is pulled at a speed of 50 mm/s in a direction 90 degrees from the surface of the metal member. The strength (N/cm) and the state of peeling when peeled off from metal member A were investigated. The results are shown in Table 1.
<実施例2>
 エチレン・プロピレン・ジエンゴム(商品名:三井EPT、グレード名:X4010M、三井化学株式会社製)にオイル(10質量%)をコンパウンドしたものを使用したこと以外は実施例1と同様にしてサンプルを作製し、90°ピール試験を実施した。結果を表1に示す。
<Example 2>
A sample was prepared in the same manner as in Example 1, except that ethylene propylene diene rubber (trade name: Mitsui EPT, grade name: X4010M, manufactured by Mitsui Chemicals, Inc.) compounded with oil (10% by mass) was used. Then, a 90° peel test was conducted. The results are shown in Table 1.
<実施例3>
 エチレン・プロピレン・ジエンゴム(商品名:三井EPT、グレード名:X4010M、三井化学株式会社製)にステアリン酸(2質量%)をコンパウンドしたものを使用したこと以外は実施例1と同様にしてサンプルを作製し、90°ピール試験を実施した。結果を表1に示す。
<Example 3>
A sample was prepared in the same manner as in Example 1, except that ethylene propylene diene rubber (trade name: Mitsui EPT, grade name: X4010M, manufactured by Mitsui Chemicals, Inc.) compounded with stearic acid (2% by mass) was used. A 90° peel test was conducted. The results are shown in Table 1.
<実施例4>
 金属部材Cの片面に、ポリオレフィン系熱可塑性エラストマー(商品名:ミラストマーS650BS、三井化学株式会社製)の層をインサート成形により形成し、ISO-19095に規定する形状のせん断試験用のサンプルを作製した。
 得られたサンプルを用いて、金属部分を台座に水平に固定し、引張試験機を用いて樹脂部分の先端をチャック間距離(金属部分とチャック部の距離)が20mmとなるようにチャックし、接合面に対して90°方向となるように樹脂部分を10mm/秒の速度で引張上げる事で、ピール試験を実施した。オレフィン系熱可塑性エラストマー層が金属部材Cから剥離したときの強度(N/cm)と剥離の状態を調べた。結果を表1に示す。
<Example 4>
A layer of polyolefin thermoplastic elastomer (trade name: Milastomer S650BS, manufactured by Mitsui Chemicals, Inc.) was formed on one side of metal member C by insert molding, and a sample for a shear test having a shape specified in ISO-19095 was prepared. .
Using the obtained sample, the metal part was fixed horizontally on a pedestal, and the tip of the resin part was chucked using a tensile testing machine so that the distance between the chucks (distance between the metal part and the chuck part) was 20 mm. A peel test was conducted by pulling the resin part up at a speed of 10 mm/sec in a direction of 90° to the bonding surface. The strength (N/cm) and the state of peeling when the olefin thermoplastic elastomer layer was peeled off from the metal member C were examined. The results are shown in Table 1.
<実施例5>
 ポリオレフィン系熱可塑性エラストマー(商品名:ミラストマーS450B、三井化学株式会社製)を使用したこと以外は実施例4と同様にしてサンプルを作製し、90°ピール試験を実施した。結果を表1に示す。
<Example 5>
A sample was prepared in the same manner as in Example 4, except that a polyolefin thermoplastic elastomer (trade name: Milastomer S450B, manufactured by Mitsui Chemicals, Inc.) was used, and a 90° peel test was conducted. The results are shown in Table 1.
<実施例6>
 ポリウレタン系熱可塑性エラストマー(商品名:エラストランC70A11FG、BASF社製)を使用したこと以外は実施例4と同様にしてサンプルを作製し、90°ピール試験を実施した。結果を表1に示す。
 90°ピール試験の結果が界面剥離となっているのは樹脂自体の強度が大きく材料破壊に至らなかったためであり、充分な接合強度が達成されていると評価できる。
<Example 6>
A sample was prepared in the same manner as in Example 4 except that a polyurethane thermoplastic elastomer (trade name: Elastran C70A11FG, manufactured by BASF) was used, and a 90° peel test was conducted. The results are shown in Table 1.
The reason why the 90° peel test showed interfacial peeling is because the strength of the resin itself was high and material failure did not occur, and it can be evaluated that sufficient bonding strength was achieved.
<実施例7>
 ポリアミド系熱可塑性エラストマー(商品名:ぺバックス2533、アルケマ社製)を使用したこと以外は実施例4と同様にしてサンプルを作製し、90°ピール試験を実施した。結果を表1に示す。
 90°ピール試験の結果が界面剥離となっているのは樹脂自体の強度が大きく材料破壊に至らなかったためであり、充分な接合強度が達成されていると評価できる。
<Example 7>
A sample was prepared in the same manner as in Example 4, except that a polyamide thermoplastic elastomer (trade name: Pebax 2533, manufactured by Arkema) was used, and a 90° peel test was conducted. The results are shown in Table 1.
The reason why the 90° peel test showed interfacial peeling is because the strength of the resin itself was high and material failure did not occur, and it can be evaluated that sufficient bonding strength was achieved.
<比較例1>
 金属部材Aに代えて金属部材Bを使用したこと以外は実施例1と同様にしてサンプルを作製し、90°ピール試験を実施した。結果を表1に示す。
<Comparative example 1>
A sample was prepared in the same manner as in Example 1 except that metal member B was used instead of metal member A, and a 90° peel test was conducted. The results are shown in Table 1.
<比較例2>
 金属部材Aに代えて金属部材Bを使用したこと以外は実施例2と同様にしてサンプルを作製し、90°ピール試験を実施した。結果を表1に示す。
<Comparative example 2>
A sample was prepared in the same manner as in Example 2 except that metal member B was used instead of metal member A, and a 90° peel test was conducted. The results are shown in Table 1.
<比較例3>
 金属部材Aに代えて金属部材Bを使用したこと以外は実施例3と同様にしてサンプルを作製し、90°ピール試験を実施した。結果を表1に示す。
 
<Comparative example 3>
A sample was prepared in the same manner as in Example 3 except that metal member B was used instead of metal member A, and a 90° peel test was conducted. The results are shown in Table 1.

 

 
 表1に示すように、表面に微細構造が形成された金属部材A及び金属部材Cを用いて作製した実施例のサンプルは、ピール試験の結果が材料破壊であり、優れた接合強度を示すことが確認された。特に、樹脂部材として熱硬化性エラストマーを用いた実施例1~3のサンプルは、表面に微細構造が形成されていない金属部材Bを用いて作製した比較例1~3のサンプルに比べて接合強度が顕著に向上した。
 表1に示すように、本開示によれば、金属部材の表面に微細構造を形成するという物理的な手段によって樹脂部材に対する接合強度の向上が達成される。このため、本開示は特定の種類の金属部材や樹脂部材に限らず適用できる。
As shown in Table 1, the samples of the example fabricated using metal member A and metal member C with microstructures formed on their surfaces showed material failure in the peel test and exhibited excellent bonding strength. was confirmed. In particular, the samples of Examples 1 to 3 that used thermosetting elastomer as the resin member had higher bonding strength than the samples of Comparative Examples 1 to 3 that were fabricated using metal member B on which no microstructure was formed. has improved markedly.
As shown in Table 1, according to the present disclosure, the bonding strength to the resin member can be improved by physical means of forming a fine structure on the surface of the metal member. Therefore, the present disclosure is applicable not only to specific types of metal members or resin members.
 特願2022-128431号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。 The disclosure of Japanese Patent Application No. 2022-128431 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材と、
     前記金属部材の前記微細構造が形成された表面と接合している樹脂部材と、を備え、
     前記樹脂部材は23℃での引張弾性率が500MPa以下である、構造体。
    A metal member having a surface on which at least one or more microstructures selected from a dendritic structure, a needle-like structure, and a particulate structure are formed;
    a resin member bonded to the surface of the metal member on which the fine structure is formed;
    The resin member is a structure having a tensile modulus of elasticity of 500 MPa or less at 23°C.
  2.  樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材と、
     前記金属部材の前記微細構造が形成された表面と接合している樹脂部材と、を備え、
     前記樹脂部材は熱硬化性エラストマーを含む、構造体。
    A metal member having a surface on which at least one or more microstructures selected from a dendritic structure, a needle-like structure, and a particulate structure are formed;
    a resin member bonded to the surface of the metal member on which the fine structure is formed;
    A structure in which the resin member includes a thermosetting elastomer.
  3.  前記微細構造の平均厚みが1nm~1000nmである、請求項1又は請求項2に記載の構造体。 The structure according to claim 1 or 2, wherein the average thickness of the fine structure is 1 nm to 1000 nm.
  4.  前記表面の十点平均粗さ(Rzjis)の平均値が2μm~100μmである、請求項1又は請求項2に記載の構造体。 The structure according to claim 1 or 2, wherein the surface has an average ten-point roughness (Rzjis) of 2 μm to 100 μm.
  5.  前記表面の粗さ曲線要素の平均長さ(RSm)の平均値が10μm~500μmである、請求項1又は請求項2に記載の構造体。 The structure according to claim 1 or 2, wherein the average value of the average length (RSm) of the surface roughness curve element is 10 μm to 500 μm.
  6.  前記表面のフーリエ変換赤外線分光法で観測される3400cm-1における吸収ピークの吸光度Aと、3800cm-1における吸光度と2500cm-1における吸光度とを結ぶ直線の3400cm-1における吸光度Aとの差(A-A)が0.03以下である、請求項1又は請求項2に記載の構造体。 The difference between the absorbance A 1 of the absorption peak at 3400 cm −1 observed by Fourier transform infrared spectroscopy of the surface and the absorbance A 0 at 3400 cm −1 of the straight line connecting the absorbance at 3800 cm −1 and the absorbance at 2500 cm −1 The structure according to claim 1 or 2, wherein (A 1 -A 0 ) is 0.03 or less.
  7.  前記樹脂部材は熱硬化性エラストマー又は熱可塑性エラストマーを含む、請求項1に記載の構造体。 The structure according to claim 1, wherein the resin member includes a thermosetting elastomer or a thermoplastic elastomer.
  8.  樹枝状構造、針状構造及び粒子状構造から選ばれる少なくとも一つ以上の微細構造が形成された表面を有する金属部材を準備する工程と、
     前記金属部材の前記微細構造が形成された表面に樹脂部材を接触させた状態で前記樹脂部材に熱及び圧力を加える工程と、を有する請求項1又は請求項2に記載の構造体の製造方法。
    preparing a metal member having a surface on which at least one microstructure selected from a dendritic structure, a needle-like structure, and a particulate structure is formed;
    The method for manufacturing a structure according to claim 1 or 2, comprising the step of applying heat and pressure to the resin member while the resin member is in contact with the surface of the metal member on which the fine structure is formed. .
PCT/JP2023/028643 2022-08-10 2023-08-04 Structural body and method for producing structural body WO2024034544A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-128431 2022-08-10
JP2022128431 2022-08-10

Publications (1)

Publication Number Publication Date
WO2024034544A1 true WO2024034544A1 (en) 2024-02-15

Family

ID=89851769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028643 WO2024034544A1 (en) 2022-08-10 2023-08-04 Structural body and method for producing structural body

Country Status (1)

Country Link
WO (1) WO2024034544A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087722A1 (en) * 2013-12-13 2015-06-18 住友ベークライト株式会社 Metal-resin composite body
JP2016002654A (en) * 2014-06-13 2016-01-12 パナソニックIpマネジメント株式会社 Resin-metal composite
JP2018129197A (en) * 2017-02-08 2018-08-16 三井化学株式会社 Waterproof connector
JP2019018547A (en) * 2017-07-14 2019-02-07 三井化学株式会社 Metal/resin composite structure, and manufacturing method of metal/resin composite structure
WO2022019339A1 (en) * 2020-07-22 2022-01-27 三井化学株式会社 Metal member, metal-resin composite, and method for producing metal member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087722A1 (en) * 2013-12-13 2015-06-18 住友ベークライト株式会社 Metal-resin composite body
JP2016002654A (en) * 2014-06-13 2016-01-12 パナソニックIpマネジメント株式会社 Resin-metal composite
JP2018129197A (en) * 2017-02-08 2018-08-16 三井化学株式会社 Waterproof connector
JP2019018547A (en) * 2017-07-14 2019-02-07 三井化学株式会社 Metal/resin composite structure, and manufacturing method of metal/resin composite structure
WO2022019339A1 (en) * 2020-07-22 2022-01-27 三井化学株式会社 Metal member, metal-resin composite, and method for producing metal member

Similar Documents

Publication Publication Date Title
KR101574475B1 (en) Surface-treated copper foil, and copper-clad laminate obtained using surface-treated copper foil
KR101920976B1 (en) Copper foil, copper foil with carrier foil, and copper-clad laminate
JP5604244B2 (en) Manufacturing method of rubber-metal composite, rubber-metal composite, tire, rubber bearing for seismic isolation, industrial belt, and crawler
Tian et al. Superhydrophobic nickel films fabricated by electro/electroless deposition
JPH0198632A (en) Rubber reinforcing material
JPWO2014192811A1 (en) Metal cord-rubber composite
WO2011030547A1 (en) Brass-plated steel cord and steel cord-rubber composite, and tire using the same
EP3148301B1 (en) Printed wiring board and method for producing printed wiring board
JP6001573B2 (en) Surface-treated aluminum material, method for producing the same, and resin-coated surface-treated aluminum material
WO1989003901A1 (en) Metal and composite thereof with rubber
CN106029366A (en) Mobile electronic parts
CN104103432B (en) Switch contact containing molybdenum alloy coating and preparation method thereof
WO2024034544A1 (en) Structural body and method for producing structural body
JP2008063687A (en) Brass plated steel wire for reinforcing rubber article and method for producing the same
JP5887171B2 (en) Method for producing rubber-metal composite
JP2003231992A (en) Brass-plated material for rubber-bonding and composite thereof
KR100546918B1 (en) Rubber bonded brass composite material
EP1564311A1 (en) Stabilized aluminum laminate having aluminum and stabilizing layer laminated thereon
Ajibola Evaluation of electroless-nickel plated polypropylene under thermal cycling and mechanical tests
JP2009215674A (en) Steel cord-rubber composite material
KR20170092210A (en) Integrally injection-molded aluminum/resin article and process for producing the same
WO2023157628A1 (en) Metal member, metal-resin composite body, and method for producing metal member
JP7453846B2 (en) Manufacturing method and mold for metal-resin joint
CN114318461B (en) Surface treatment method for realizing local lubrication of aluminum alloy part
KR102342218B1 (en) Removal solution and plating method of injection product using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852506

Country of ref document: EP

Kind code of ref document: A1