WO2024034427A1 - Vehicular drive device - Google Patents

Vehicular drive device Download PDF

Info

Publication number
WO2024034427A1
WO2024034427A1 PCT/JP2023/027688 JP2023027688W WO2024034427A1 WO 2024034427 A1 WO2024034427 A1 WO 2024034427A1 JP 2023027688 W JP2023027688 W JP 2023027688W WO 2024034427 A1 WO2024034427 A1 WO 2024034427A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
locking member
lock
detected
drive device
Prior art date
Application number
PCT/JP2023/027688
Other languages
French (fr)
Japanese (ja)
Inventor
尾関舞里菜
渡辺忠明
林純輝
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Publication of WO2024034427A1 publication Critical patent/WO2024034427A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/06Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels acting otherwise than on tread, e.g. employing rim, drum, disc, or transmission or on double wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/34Locking or disabling mechanisms

Definitions

  • the present invention relates to a vehicle drive device that includes a rotating electric machine as a driving force source for wheels, and a parking lock mechanism that selectively restricts rotation of a target rotating member that rotates in conjunction with the wheels.
  • Patent Document 1 An example of such a vehicle drive device is disclosed in Patent Document 1 below.
  • the reference numerals in Patent Document 1 will be cited in parentheses.
  • the parking lock mechanism (40) includes a parking lock gear ( 12), a parking pole (14) that restricts rotation of the parking lock gear, and a parking rod (16) that is driven by an actuator to selectively engage the parking pole with the parking lock gear.
  • the load required to reduce the load acting on the engagement portion between the parking lock gear (12) and the parking pole (14) to zero is determined based on the detection values of various sensors. Calculate the torque of the rotating electric machine (112). Then, by outputting the calculated torque to the rotating electric machine (112), the engagement of the parking pole (14) with the parking lock gear (12) is released by the driving force of the actuator for the parking rod (16). It has been realized.
  • Patent Document 1 discloses that the parking lock is activated based on the rotational position of the parking lock gear (12) detected using a rotational position sensor (42), the tilt angle of the vehicle detected using a tilt angle sensor (52), etc. It is disclosed that the torque of the rotating electrical machine (112) required to zero the load acting on the engagement portion between the gear (12) and the parking pole (14) is calculated.
  • the characteristic configuration of the vehicle drive device is as follows: A rotating electric machine as a driving force source for the wheels, a parking lock mechanism that selectively restricts rotation of a target rotating member that rotates in conjunction with the wheel; A vehicle drive device comprising: a control device for controlling the rotating electric machine and the parking lock mechanism; The parking lock mechanism has a lock position in which it engages with the target rotation member to restrict rotation of the target rotation member, and an unlocked position in which it is separated from the target rotation member and allows rotation of the target rotation member.
  • the control device is configured to detect a case where movement of the lock member is not detected by the position detection device when the drive device is generating a driving force for moving the lock member from the lock position to the unlocked position.
  • the lock release auxiliary process includes gradually increasing the absolute value of the torque of the rotating electrical machine so as to weaken the engagement force between the locking member and the target rotating member until movement of the locking member is detected. be.
  • the locking member and the target rotating member are moved using the torque of the rotating electric machine. Since the engaging force of the parking lock mechanism can be weakened, the parking lock mechanism can be brought into an unlocked state by the driving force of the driving device. At this time, since the torque of the rotating electrical machine is gradually increased until movement of the locking member is detected, it becomes easy to set the torque of the rotating electrical machine to an appropriate value for unlocking the parking lock mechanism. This makes it possible to eliminate the need for various sensors for calculating the torque of the rotating electric machine required to weaken the engagement force between the lock member and the target rotating member. Therefore, in the configuration provided with the parking lock mechanism, it is easy to simplify the configuration and reduce the cost of the vehicle drive device.
  • Skeleton diagram of a vehicle drive device according to an embodiment Control block diagram of a vehicle drive device according to an embodiment
  • a sectional view showing the engagement between the lock member and the target rotating member Flowchart showing an example of control processing of the control device Time chart showing an example of control processing of the control device Time chart showing an example of control processing of the control device
  • the vehicle drive device 100 includes a rotating electric machine 1 and a parking lock mechanism 10.
  • the rotating electric machine 1 functions as a driving force source for wheels W (see FIG. 2) included in the vehicle.
  • the rotating electric machine 1 has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power.
  • the rotating electrical machine 1 is electrically connected to a power storage device (not shown) such as a battery or a capacitor. Then, the rotating electric machine 1 performs power running using the electric power stored in the power storage device to generate driving force. Further, the rotating electric machine 1 generates power using the driving force transmitted from the wheel W side, and charges the power storage device.
  • the rotating electric machine 1 includes a stator 11 and a rotor 12.
  • the stator 11 includes a cylindrical stator core 11a.
  • Stator core 11a is fixed to non-rotating member NR.
  • the rotor 12 includes a cylindrical rotor core 12a.
  • Rotor core 12a is rotatably supported by stator core 11a.
  • the rotor 12 further includes a rotor shaft 12b connected to rotate integrally with the rotor core 12a.
  • the direction along the rotational axis of the rotor 12 will be referred to as the "axial direction L.”
  • One side in the axial direction L is defined as the “first axial side L1”
  • the other side in the axial direction L is defined as the “second axial side L2”.
  • a direction perpendicular to the axial direction L is referred to as a "radial direction R.”
  • the radial direction R is defined with each rotational axis of a rotating member such as the rotor 12 as a reference. Note that when there is no need to distinguish which rotational axis is used as a reference or when it is clear which rotational axis is used as a reference, it may be simply written as "radial direction R.”
  • the rotating electrical machine 1 is an inner rotor type rotating electrical machine. Therefore, the rotor core 12a is arranged inside the stator core 11a in the radial direction R. Further, the rotor shaft 12b is arranged inside the rotor core 12a in the radial direction R.
  • the rotating electrical machine 1 is a rotating field type rotating electrical machine. Therefore, a stator coil is wound around the stator core 11a.
  • the stator coil is wound around the stator core 11a so that a coil end portion 11b protruding in the axial direction L with respect to the stator core 11a is formed.
  • the rotor core 12a is provided with a permanent magnet.
  • the parking lock mechanism 10 selectively restricts the rotation of the target rotating member T that rotates in conjunction with the wheels W (see FIG. 2).
  • the target rotating member T is the rotor shaft 12b. Note that the detailed configuration of the parking lock mechanism 10 will be described later.
  • the vehicle drive device 100 further includes a power transmission mechanism 2, a differential gear mechanism 3, and a case 9.
  • the power transmission mechanism 2 transmits the rotation of the rotor 12 to the differential gear mechanism 3.
  • the power transmission mechanism 2 includes a planetary gear mechanism 21, a first gear 22, and a second gear 23.
  • the planetary gear mechanism 21 and the first gear 22 are arranged on the first axis X1, which is the rotation axis of the rotor 12.
  • the second gear 23 is arranged on a second axis X2 different from the first axis X1.
  • the planetary gear mechanism 21 is configured to reduce the rotation speed of the rotor 12 and transmit it to the first gear 22.
  • the planetary gear mechanism 21 includes a sun gear SG, a carrier CR, and a ring gear RG.
  • the sun gear SG is connected to the rotor 12 so as to rotate integrally with the rotor 12. That is, the sun gear SG is an input element of the planetary gear mechanism 21.
  • sun gear SG is connected to rotor shaft 12b via input shaft I so as to rotate integrally with rotor shaft 12b.
  • the input shaft I is formed to extend along the axial direction L. In this embodiment, the input shaft I is formed to extend from the sun gear SG toward the first axial side L1.
  • the carrier CR rotatably supports a first pinion gear PG1 and a second pinion gear PG2 that rotate integrally with each other.
  • Each of the first pinion gear PG1 and the second pinion gear PG2 rotates (rotates) around its own axis, and also rotates (revolutions) around the sun gear SG together with the carrier CR.
  • a plurality of first pinion gears PG1 and second pinion gears PG2 are provided at intervals along their own orbits.
  • the first pinion gear PG1 is meshed with the sun gear SG.
  • the second pinion gear PG2 meshes with the ring gear RG.
  • the second pinion gear PG2 is formed to have a smaller diameter than the first pinion gear PG1.
  • the second pinion gear PG2 is arranged closer to the first axial side L1 than the first pinion gear PG1.
  • the carrier CR is connected to the first gear 22 so as to rotate integrally therewith. That is, the carrier CR is an output element of the planetary gear mechanism 21.
  • the first gear 22 is arranged on the second axial side L2 with respect to the planetary gear mechanism 21.
  • Ring gear RG is fixed to non-rotating member NR.
  • ring gear RG is fixed to case 9 as non-rotating member NR.
  • the first gear 22 and the second gear 23 mesh with each other.
  • the second gear 23 is formed to have a larger diameter than the first gear 22. Therefore, in this embodiment, the rotation of the carrier CR of the planetary gear mechanism 21 is reduced in speed between the first gear 22 and the second gear 23 and transmitted to the differential gear mechanism 3.
  • the differential gear mechanism 3 distributes the rotation transmitted from the power transmission mechanism 2 to the pair of wheels W.
  • the differential gear mechanism 3 is arranged on the second axis X2.
  • the differential gear mechanism 3 is a bevel gear type differential gear mechanism.
  • the differential gear mechanism 3 includes a pair of pinion gears, a first side gear and a second side gear that mesh with the pair of pinion gears, and a differential case that accommodates these gears.
  • the differential case is connected to the second gear 23 so as to rotate integrally therewith. Further, the differential case is connected to rotate integrally with a pinion shaft that rotatably supports a pair of pinion gears.
  • the first side gear rotates integrally with the first drive shaft DS1 that is drivingly connected to the wheel W on the first axial side L1 via the transmission shaft 35 extending along the axial direction L. are connected so that Further, the second side gear is connected to rotate integrally with a second drive shaft DS2 that is drivingly connected to the wheel W on the second axial side L2.
  • the case 9 houses the rotating electrical machine 1, the power transmission mechanism 2, the differential gear mechanism 3, and the parking lock mechanism 10. As shown in FIG. 1, in this embodiment, the case 9 includes a first cylindrical part 91, a second cylindrical part 92, a first side wall part 93, and a second side wall part 94. .
  • Each of the first cylindrical part 91 and the second cylindrical part 92 is formed into a cylindrical shape concentric with the rotor 12.
  • the rotor shaft 12b is formed into a cylindrical shape having an axis along the axial direction L.
  • the first cylindrical portion 91 is disposed outside the rotor shaft 12b in the radial direction R.
  • the second cylindrical portion 92 is arranged inside the rotor shaft 12b in the radial direction R.
  • the rotor shaft 12b is rotatably supported with respect to the case 9 via a rotor bearing B1 disposed between the rotor shaft 12b and the first cylindrical portion 91 in the radial direction R. There is.
  • the first side wall portion 93 is formed to extend outward in the radial direction R from the first cylindrical portion 91.
  • the first side wall portion 93 is arranged to cover the first axial side L1 of the rotating electrical machine 1.
  • the second side wall portion 94 is formed to extend inward in the radial direction R from the first cylindrical portion 91 .
  • the second side wall portion 94 is disposed closer to the first side L1 in the axial direction than the first side wall portion 93 is.
  • the second side wall portion 94 is connected to the end of the first cylindrical portion 91 on the first axial side L1 so as to cover the first cylindrical portion 91 from the first axial side L1.
  • the second cylindrical portion 92 is formed to extend from the second side wall portion 94 toward the second axial side L2.
  • the parking lock mechanism 10 includes a lock member 4 and a drive device 5.
  • the locking member 4 has a locking position P1 in which it engages with the target rotating member T to restrict rotation of the target rotating member T, and a non-locking position P2 in which it is separated from the target rotating member T and allows rotation of the target rotating member T. It is configured to be movable.
  • the locking member 4 is supported so as not to rotate relative to the non-rotating member NR.
  • the lock member 4 includes a cylindrical portion 41 that is concentric with the rotor 12 .
  • the cylindrical portion 41 is disposed on the outside of the second cylindrical portion 92 of the case 9 in the radial direction R.
  • An engaging portion 411 is formed on the inner peripheral surface of the cylindrical portion 41 .
  • An engaged portion 921 is formed on the outer peripheral surface of the second cylindrical portion 92 .
  • the engaging portion 411 is movable in the axial direction L and is engaged with the engaged portion 921 so as not to be relatively rotatable.
  • the engaging portion 411 is an unevenness formed along the circumferential direction on the inner circumferential surface of the cylindrical portion 41, and is continuously formed along the axial direction L.
  • the engaged portion 921 is a concavity and convexity formed along the circumferential direction on the outer circumferential surface of the second cylindrical portion 92, and is continuously formed along the axial direction L.
  • the end portion of the outer peripheral surface of the cylindrical portion 41 on the second axial side L2 is engaged with the locked portion Ta of the target rotating member T from the first axial side L1, and A locking portion 412 that restricts rotation of the rotating member T is formed.
  • the locking portion 412 is an unevenness formed along the circumferential direction on the outer peripheral surface of the cylindrical portion 41, and extends from the end surface of the axially second side L2 of the cylindrical portion 41 to the axially first side L1. It is formed continuously.
  • the locked portion Ta is an unevenness formed along the circumferential direction on the inner peripheral surface of the rotor shaft 12b, and is directed from the end surface of the first axial side L1 of the rotor shaft 12b toward the second axial side L2. It is formed continuously.
  • the locking part 412 when the locking member 4 is within a predetermined range from the position of the first axial side L1 to the second axial side L2 in the movable region, the locking part 412 is located at the locked part. When the locking member 4 moves from that range to the second axial side L2 without engaging with the locked portion Ta, the locking portion 412 engages with the locked portion Ta.
  • the drive device 5 is a device that drives the lock member 4.
  • the drive device 5 includes a position holding section 6 and an electromagnetic drive section 7.
  • the position holding section 6 includes a permanent magnet 61 supported by the locking member 4.
  • the position holding section 6 holds the locking member 4 at each of the locked position P1 and the unlocked position P2 by the magnetic force of the permanent magnet 61.
  • the permanent magnet 61 may be configured by joining a plurality of divided magnets.
  • the permanent magnet 61 is a permanent magnet having an N pole and an S pole.
  • the permanent magnet 61 is arranged so that the north pole and the south pole are lined up in the axial direction L.
  • the permanent magnet 61 is arranged so that its north pole and south pole are aligned in the axial direction L on the side of the electromagnetic drive unit 7 (in this embodiment, on the outside in the radial direction R).
  • one permanent magnet 61 is arranged such that the N pole and S pole of the permanent magnet 61 are aligned in the axial direction L on the side of the electromagnetic drive unit 7, or two permanent magnets 6 are arranged such that one permanent magnet 61
  • the north pole of the magnet 61 and the south pole of the other permanent magnet 61 are arranged so as to be lined up in the axial direction L on the electromagnetic drive unit 7 side.
  • one of the N and S poles of the permanent magnet 61 will be referred to as a "first pole 61A”, and the other will be referred to as a "second pole 61B".
  • the permanent magnets 61 are arranged so that the first pole 61A and the second pole 61B are lined up in this order from the first axial side L1 to the second axial side L2.
  • the permanent magnet 61 is formed into a cylindrical shape concentric with the rotor 12.
  • the permanent magnet 61 is fixed to the cylindrical portion 41 of the lock member 4.
  • the permanent magnet 61 is fixed to a portion of the outer peripheral surface of the cylindrical portion 41 that is closer to the first axial side L1 than the locking portion 412.
  • the electromagnetic drive unit 7 moves the locking member 4 from the unlocked position P2 to the locked position P1 and from the locked position P1 to the unlocked position by electromagnetic force generated by electric power from a power source (not shown). Move to lock position P2.
  • the electromagnetic drive unit 7 is formed in a cylindrical shape concentric with the permanent magnet 61.
  • the electromagnetic drive section 7 includes a fixed section 70, a first magnetic section 71, a second magnetic section 72, a third magnetic section 73, and a coil 74. .
  • the fixed part 70 is fixed to the non-rotating member NR.
  • the fixing part 70 is formed into a cylindrical shape concentric with the first cylindrical part 91 of the case 9 .
  • the fixing part 70 is fixed to the inner circumferential surface of the first cylindrical part 91.
  • Each of the first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 is made of a magnetic body.
  • the first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 are arranged at intervals in the axial direction L in the stated order.
  • the first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 are formed to protrude inward in the radial direction R from the fixed part 70.
  • the first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 are arranged in the stated order from the first axial side L1 to the second axial side L2. ing.
  • the coil 74 is configured to generate magnetic flux passing through the first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 when energized.
  • the coil 74 is located between the first magnetic body part 71 and the second magnetic body part 72 in the axial direction L on the inner circumferential surface of the fixed part 70, and between the second magnetic body part 72 and the third magnetic body part 72. It is wound in each direction between the magnetic body portion 73 and the axial direction L.
  • the vehicle drive device 100 includes a control device 20 that controls the rotating electrical machine 1 and the parking lock mechanism 10.
  • the vehicle drive device 100 further includes a rotational position sensor 13 that detects the rotational position of the rotor 12 of the rotating electric machine 1.
  • the control device 20 controls the rotating electrical machine 1 based on the rotational position of the rotor 12 detected by the rotational position sensor 13.
  • a resolver can be used as the rotational position sensor 13.
  • the stator of the resolver can be fixed to the case 9, and the rotor of the resolver can be connected to the rotor shaft 12b.
  • the rotational position sensor 13 is not limited to a resolver, and various sensors such as a Hall element sensor, an encoder, and a magnetic rotation sensor can be used, for example.
  • the parking lock mechanism 10 further includes a position detection device 8 that detects the position of the lock member 4 (here, the position in the axial direction L).
  • a position detection device 8 that detects the position of the lock member 4 (here, the position in the axial direction L).
  • various sensors such as a displacement sensor and a potentiometer can be used, for example.
  • the control device 20 controls the parking lock mechanism 10 based on the position of the lock member 4 detected by the position detection device 8.
  • the control device 20 controls the operation of the locking member 4 by controlling the current flowing through the coil 74.
  • the first pole 61A attracts the first magnetic body part 71
  • the second pole 61B attracts the first magnetic body part 71. 2 magnetic material portion 72 is attracted.
  • the control device 20 moves the locking member 4 from the non-locking position P2 to the locking position P1
  • the first magnetic body part 71 becomes a pole that repels the first pole 61A
  • the second magnetic body part 72 becomes a second pole.
  • a current is passed through the coil 74 so that the third magnetic body portion 73 becomes a pole that repels the pole 61B and attracts the second pole 61B. Further, when the control device 20 does not apply current to the coil 74 and the lock member 4 is in the lock position P1, the first pole 61A attracts the second magnetic body part 72, and the second pole 61B attracts the third magnetic body part 73 is in a state of being sucked. When the control device 20 moves the lock member 4 from the lock position P1 to the unlocked position P2, the second magnetic body part 72 becomes a pole that repels the first pole 61A, and the third magnetic body part 73 becomes a second pole. A current is passed through the coil 74 so that the first magnetic body part 71 becomes a pole that repels the pole 61B and attracts the first pole 61A.
  • the locked portion Ta of the target rotating member T is locked so as to strengthen the engagement force between the locking portion 412 of the locking member 4 and the locked portion Ta of the target rotating member T. It comes into contact with the locking portion 412 of the locking member 4 at position P1.
  • load torque the torque transmitted to the target rotating member T, which acts to strengthen the engagement force between the locking portion 412 and the locked portion Ta, will be referred to as “load torque”.
  • the direction of the load torque can be determined based on the rotational position of the rotor 12 detected by the rotational position sensor 13, for example. If the vehicle is provided with a tilt angle sensor, the direction of the load torque may be determined by the tilt angle sensor. Alternatively, the direction of the load torque may be determined based on the slope of the road surface based on map information.
  • the driving force (here, electromagnetic force) of the drive device 5 may not be able to release the engagement of the locking portion 412 with the locked portion Ta. Therefore, in the vehicle drive device 100, the rotating electrical machine 1 is caused to output torque so as to weaken the engagement force between the locking portion 412 and the locked portion Ta, that is, to cancel the load torque.
  • load cancellation torque the absolute value of the torque output by the rotating electrical machine 1 to cancel out the load torque.
  • FIG. 5 is a flowchart illustrating an example of control processing by the control device 20.
  • the control device 20 first responds to a request from the vehicle driver to unlock the parking lock mechanism 10, that is, from the parking range (P range) to the other ranges (for example, the forward driving range (D range). It is determined whether a change in the shift position to range)) has been detected (step #1).
  • step #1: No If the request to unlock the parking lock mechanism 10 by the vehicle driver is not detected (step #1: No), the control device 20 executes the above step #1 again. That is, the control device 20 executes step #1 described above until a request to unlock the parking lock mechanism 10 by the driver of the vehicle is detected.
  • the control device 20 controls a drive for moving the lock member 4 from the lock position P1 to the unlocked position P2.
  • a force is generated in the drive device 5 (step #2).
  • the control device 20 causes the drive device 5 to generate an electromagnetic force for moving the lock member 4 from the lock position P1 to the unlocked position P2 by passing a current through the coil 74.
  • the control device 20 determines whether movement of the lock member 4 is detected by the position detection device 8 as the driving force of the drive device 5 is generated (step #3). When the position detection device 8 detects movement of the locking member 4 with the generation of the driving force of the drive device 5 (step #3: Yes), the control device 20 ends the control process.
  • step #3: No if the position detection device 8 does not detect movement of the locking member 4 even after a predetermined period of time has passed after the drive force of the drive device 5 is generated (step #3: No), the control device 20 generates a load canceling torque. (Step #4). Then, the control device 20 determines whether movement of the locking member 4 is detected by the position detection device 8 as the load canceling torque increases (step #5).
  • step #5 If the position detection device 8 does not detect movement of the locking member 4 even if the load canceling torque increases (step #5: No), the control device 20 returns to step #4 and continues the control process. That is, after the control device 20 gradually increases the load canceling torque, the control device 20 executes steps #4 and #5 described above until the movement of the locking member 4 is detected by the position detection device 8.
  • Step #5 When the position detection device 8 detects movement of the locking member 4 as the load canceling torque increases (Step #5: Yes), the control device 20 maintains the load canceling torque constant (Step #6).
  • control device 20 determines whether movement of the locking member 4 is detected by the position detection device 8 (step #7).
  • step #7 If the position detection device 8 does not detect movement of the locking member 4 while maintaining the load cancellation torque constant (step #7: No), that is, from the locking position P1 to the non-locking position P2, the control device 20 When it is detected that the lock member 4 that was moving towards the target has stopped, the load canceling torque is gradually increased (step #8). Then, the control device 20 determines whether movement of the locking member 4 is detected by the position detection device 8 as the load canceling torque increases (step #9).
  • step #9 No
  • the control device 20 returns to step #8 and continues the control process. That is, after the control device 20 gradually increases the load canceling torque, the control device 20 executes steps #8 and #9 described above until the movement of the locking member 4 is detected by the position detection device 8.
  • Step #9 When the position detection device 8 detects movement of the locking member 4 as the load canceling torque increases (Step #9: Yes), the control device 20 maintains the load canceling torque constant (Step #10).
  • control device 20 determines whether rotation of the rotating electrical machine 1 (specifically, the rotor 12) has been detected, and whether the position detection device 8 has detected that the lock member 4 has reached the unlocked position P2. It is determined whether or not (step #11). In this embodiment, the control device 20 determines whether or not the rotation of the rotating electrical machine 1 is detected based on the rotational position of the rotor 12 detected by the rotational position sensor 13.
  • control device 20 When the control device 20 detects the rotation of the rotating electrical machine 1 or when the position detection device 8 detects that the locking member 4 has reached the unlocked position P2 (step #11: Yes), the control device 20 calculates the load cancel torque. is gradually decreased (step #12), and the control process is ended.
  • step #11: No if the rotation of the rotating electric machine 1 is not detected and the position detection device 8 also does not detect that the locking member 4 has reached the unlocked position P2 (step #11: No), the control device 20 performs the above-mentioned The process returns to step #7 to continue the control process.
  • step #7 if the movement of the locking member 4 is detected by the position detection device 8 (step #7: Yes), the above steps #8 to #10 are not executed, and the above step #11 is executed. Execute.
  • the vehicle drive device 100 is A rotating electrical machine 1 as a driving force source for wheels W, a parking lock mechanism 10 that selectively restricts rotation of a target rotating member T that rotates in conjunction with wheels W;
  • the parking lock mechanism 10 has a lock position P1 where it engages with the target rotating member T to restrict rotation of the target rotating member T, and an unlocked position P2 where it is separated from the target rotating member T and allows rotation of the target rotating member T.
  • the control device 20 determines whether movement of the lock member 4 is not detected by the position detection device 8 when the drive device 5 is generating a driving force for moving the lock member 4 from the lock position P1 to the unlocked position P2.
  • a lock release assisting process is executed in which the absolute value of the torque of the rotating electric machine 1 is gradually increased so as to weaken the engagement force between the lock member 4 and the target rotating member T until the movement of the lock member 4 is detected. Note that in the flowchart shown in FIG. 5, steps #3 and #4 correspond to the unlock assisting process.
  • the lock member 4 is moved using the torque of the rotating electric machine 1. Since the engagement force between the target rotating member T and the target rotating member T can be weakened, the parking lock mechanism 10 can be brought into the unlocked state by the driving force of the driving device 5. At this time, the torque of the rotating electric machine 1 is gradually increased until the movement of the locking member 4 is detected, so that it is easy to set the torque of the rotating electric machine 1 to an appropriate value for unlocking the parking lock mechanism 10. .
  • This makes it possible to eliminate the need for various sensors for calculating the torque of the rotating electric machine 1 required to weaken the engagement force between the lock member 4 and the target rotating member T. Therefore, in a configuration including the parking lock mechanism 10, it is easy to simplify the configuration and reduce the cost of the vehicle drive device 100.
  • the control device 20 If movement of the locking member 4 is detected by the position detection device 8 during execution of the lock release auxiliary process, a torque maintenance process is executed to maintain the torque of the rotating electric machine 1 constant, When the rotation of the rotating electric machine 1 is detected during the execution of the torque maintenance process, or when the position detection device 8 detects that the locking member 4 has reached the unlocked position P2, the torque of the rotating electric machine 1 is Execute termination processing to gradually decrease the absolute value of . Note that in the flowchart shown in FIG. 5, steps #5 and #6 correspond to torque maintenance processing. Furthermore, steps #11 and #12 correspond to termination processing.
  • the absolute value of the torque of the rotating electrical machine 1 increases excessively in the lock release auxiliary process, and the engagement force between the locking member 4 and the target rotating member T increases, so that the movement of the locking member 4 is prevented. You can avoid being blocked. Furthermore, by continuing to output the torque of the rotating electric machine 1 even after the parking lock mechanism 10 is unlocked, it is possible to avoid transmitting unnecessary torque to the wheels W.
  • the control device 20 locks the locking member 4 until the movement of the locking member 4 is detected. Additional auxiliary processing is performed to gradually increase the absolute value of the torque of the rotating electric machine 1 so as to weaken the engagement force between the member 4 and the target rotating member T. Note that in the flowchart shown in FIG. 5, steps #7 and #8 correspond to additional auxiliary processing.
  • the drive device 5 is configured to move the lock member 4 from the lock position P1 to the unlocked position P2 by electromagnetic force.
  • the drive device 5 configured in this way can suppress power consumption to a low level, the driving force for driving the lock member 4 is often insufficient. However, as described above, even if the lock member 4 cannot be moved from the lock position P1 to the unlocked position P2 by the driving force of the drive device 5, the lock member 4 is Since the engagement force between the target rotating member T and the target rotating member T can be weakened, the drive device 5 having this configuration can be used.
  • FIG. 6 is a time chart showing an example of the control process of the control device 20 when the parking lock mechanism 10 is unlocked.
  • control device 20 when the control device 20 detects a request to unlock the parking lock mechanism 10 by the driver of the vehicle, it supplies current to the coil 74 at time t1 to move the lock member 4 from the lock position P1 to the unlocked state.
  • the drive device 5 generates an electromagnetic force for moving to the position P2.
  • the control device 20 detects that the lock member 4 does not move from the first position PA, which is the lock position P1, and gradually reduces the torque of the rotating electric machine 1 from zero. (Lock release auxiliary processing).
  • the first position PA is the position closest to the second axial side L2 in the movable region of the locking member 4.
  • the rate of increase in the absolute value of the torque (load canceling torque) of the rotating electrical machine 1 during the execution of the lock release auxiliary process is determined by the rotation of the rotating electrical machine immediately after the rotation of the rotating electrical machine is detected by the rotation sensor of the rotating electrical machine.
  • the speed is set to the highest within a range in which the driver does not sense the rotation of the wheels W when the wheels W are stopped. According to this, it is possible to both increase the speed of the unlock assistance process and suppress the discomfort felt by the driver.
  • the torque value of the rotating electric machine 1 becomes T1 (T1 ⁇ 0 in this example) at time t3.
  • the control device 20 maintains the torque of the rotating electrical machine 1 constant (torque maintenance process). .
  • the locking member 4 reaches the second position PB as the unlocked position P2 at time t4.
  • the second position PB is a position on the second axial side L2 of the movable region of the locking member 4, rather than the position furthest on the first axial side L1.
  • the rotational position of the rotor 12, which has been maintained at ⁇ 1 reaches ⁇ 2 at time t4.
  • the control device 20 detects that the rotational position of the rotor 12 has reached ⁇ 2, determines that the rotor 12 has rotated, and determines that the locking member 4 has reached the unlocked position P2, and stops rotating.
  • the torque of the electric machine 1 is gradually increased (termination process).
  • the control device 20 sets the torque of the rotating electrical machine 1 to zero at time t5.
  • the control device 20 stops energizing the coil 74 at time t5.
  • the rate of decrease in the absolute value of the torque of the rotating electrical machine 1 (load canceling torque) during the execution of the termination process is the same as the decreasing speed of the absolute value of the torque of the rotating electrical machine 1 (load canceling torque) during the execution of the lock release auxiliary process. higher than the rate of increase.
  • FIG. 7 is a time chart showing an example of the control process of the control device 20 when the parking lock mechanism 10 is unlocked.
  • the time chart in FIG. 7 differs from that in FIG. 6 in that additional auxiliary processing is executed. Note that in the time chart of FIG. 7, description of the same parts as in FIG. 6 will be omitted.
  • the rate of increase in the absolute value of the torque of the rotating electric machine 1 (load canceling torque) during the execution of the additional auxiliary process is the absolute value of the torque of the rotating electric machine 1 (load canceling torque) during the execution of the unlocking auxiliary process. is lower than the rate of increase.
  • the absolute value of the torque of the rotating electrical machine 1 increases excessively in the additional auxiliary processing, and the engagement force between the locking member 4 and the target rotating member T increases on the contrary, thereby hindering the movement of the locking member 4. You can avoid being caught.
  • the torque value of the rotating electric machine 1 becomes T2 (T2 ⁇ T1 in this example) at time t32.
  • the control device 20 maintains the torque of the rotating electric machine 1 constant (torque maintenance process). .
  • torque maintenance process the control device 20 maintains the torque of the rotating electric machine 1 constant even when the position detection device 8 detects movement of the lock member 4 during execution of the additional auxiliary process. Execute maintenance processing.
  • the target rotating member T is the rotor shaft 12b
  • the target rotating member T may be a carrier CR.
  • the target rotating member T may be a parking gear connected to the rotating member.
  • the rate of increase in the absolute value of the torque of the rotating electrical machine 1 (load canceling torque) during the execution of the additional auxiliary process is the absolute value of the torque of the rotating electrical machine 1 during the execution of the unlocking auxiliary process.
  • An example of a configuration that is lower than the increase rate of (load canceling torque) has been explained.
  • the rate of increase in the absolute value of the torque (load canceling torque) of the rotating electric machine 1 during execution of the additional auxiliary process is the same as the increase rate of the absolute value of the torque (load canceling torque) of the rotating electric machine 1 during the execution of the unlocking auxiliary process. It may be greater than or equal to the rate of increase in the absolute value of torque (load canceling torque).
  • the vehicle drive device (100) includes: A rotating electric machine (1) as a driving force source for the wheels (W), a parking lock mechanism (10) that selectively restricts rotation of a target rotating member (T) that rotates in conjunction with the wheel (W); A vehicle drive device (100) comprising: a control device (20) that controls the rotating electric machine (1) and the parking lock mechanism (10);
  • the parking lock mechanism (10) has a lock position (P1) that engages with the target rotation member (T) to restrict rotation of the target rotation member (T), and a lock position (P1) that is spaced apart from the target rotation member (T).
  • the control device (20) is configured such that when the drive device (5) generates a driving force for moving the lock member (4) from the lock position (P1) to the unlocked position (P2), , when movement of the locking member (4) is not detected by the position detecting device (8), the locking member (4) and the target rotating member (T ) is executed to gradually increase the absolute value of the torque of the rotating electric machine (1) so as to weaken the engagement force with the rotary electric machine (1).
  • the parking lock mechanism (10) can be brought into the unlocked state by the driving force of the driving device (5). can do.
  • the torque of the rotating electrical machine (1) is adjusted to an appropriate level for unlocking the parking lock mechanism (10). It becomes easy to set it as a value.
  • control device (20) If movement of the lock member (4) is detected by the position detection device (8) during execution of the lock release auxiliary process, a torque maintenance process of maintaining the torque of the rotating electric machine (1) constant; Run When the rotation of the rotating electric machine (1) is detected during execution of the torque maintenance process, or when the locking member (4) reaches the unlocked position (P2) by the position detection device (8). If detected, it is preferable to execute a termination process in which the absolute value of the torque of the rotating electric machine (1) is gradually reduced.
  • the absolute value of the torque of the rotating electrical machine (1) increases excessively in the lock release assisting process, and the engagement force between the locking member (4) and the target rotating member (T) increases instead. It is possible to prevent the movement of the lock member (4) from being hindered. Furthermore, since the rotating electric machine (1) continues to output torque even after the parking lock mechanism (10) is unlocked, it is possible to avoid transmitting unnecessary torque to the wheels (W).
  • control device (20) controls the movement of the lock member (4) when the position detection device (8) no longer detects movement of the lock member (4) during execution of the torque maintenance process. It is preferable to perform an additional auxiliary process of gradually increasing the absolute value of the torque of the rotating electrical machine (1) so as to weaken the engagement force between the locking member (4) and the target rotating member (T) until the locking member (4) and the target rotating member (T) are detected. be.
  • the rotating electrical machine (1) can be It becomes easy to set the torque to an appropriate value for the movement of the locking member (4).
  • the rate of increase in the absolute value of the torque of the rotating electrical machine (1) during the execution of the additional auxiliary process is lower than the rate of increase in the absolute value of the torque of the rotating electrical machine (1) during the execution of the unlocking auxiliary process. and is suitable.
  • the absolute value of the torque of the rotating electrical machine (1) increases excessively in the additional auxiliary process, and the engagement force between the locking member (4) and the target rotating member (T) increases, which causes the locking This prevents the movement of the member (4) from being hindered.
  • the drive device (5) includes: A permanent magnet (61) supported by the locking member (4) is provided, and the locking member (4) is moved between the locked position (P1) and the unlocked position (P2) by the magnetic force of the permanent magnet (61). a position holding part (6) that holds the position in each position;
  • the electromagnetic force generated by the power from the power source causes the locking member (4) to move from the unlocked position (P2) to the locked position (P1), and to move the locking member (4) to the locked position ( It is preferable to include an electromagnetic drive unit (7) that moves from the unlocked position (P1) to the unlocked position (P2).
  • the drive device (5) configured in this way can suppress power consumption to a low level, the driving force for driving the locking member (4) is often insufficient.
  • the rotating electric machine Since the engagement force between the lock member (4) and the target rotating member (T) can be weakened using the torque of 1), the drive device (5) having this configuration can be used.
  • the technology according to the present disclosure can be used in a vehicle drive device that includes a rotating electric machine as a driving force source for wheels and a parking lock mechanism that selectively restricts rotation of a target rotating member that rotates in conjunction with the wheels. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This parking lock mechanism comprises: a locking member that is capable of moving between a locked position, at which the locking member engages with a target rotating member that rotates in conjunction with vehicle wheels to restrict the rotation of the target rotating member, and an unlocked position, at which the locking member is separated from the target rotating member to allow the target rotating member to rotate; a drive device that drives the locking member; and a position detection device that detects the position of the locking member. When the drive device generates driving force for moving the locking member from the locked position to the unlocked position, if movement of the locking member is not detected by the position detection device, a control device executes an unlock assist process in which the absolute value of the torque of a rotary electrical machine is gradually increased so as to weaken the engaging force between the locking member and the target rotating member until movement of the locking member is detected.

Description

車両用駆動装置Vehicle drive system
 本発明は、車輪の駆動力源としての回転電機と、車輪と連動して回転する対象回転部材の回転を選択的に規制するパーキングロック機構と、を備えた車両用駆動装置に関する。 The present invention relates to a vehicle drive device that includes a rotating electric machine as a driving force source for wheels, and a parking lock mechanism that selectively restricts rotation of a target rotating member that rotates in conjunction with the wheels.
 このような車両用駆動装置の一例が、下記の特許文献1に開示されている。以下、背景技術の説明では、特許文献1における符号を括弧内に引用する。 An example of such a vehicle drive device is disclosed in Patent Document 1 below. Hereinafter, in the description of the background art, the reference numerals in Patent Document 1 will be cited in parentheses.
 特許文献1に開示された車両用駆動装置(110)では、パーキングロック機構(40)は、回転電機(112)と車輪(126L,126R)とを結ぶ動力伝達経路に配置されたパーキングロックギヤ(12)と、当該パーキングロックギヤの回転を規制するパーキングポール(14)と、アクチュエータにより駆動されてパーキングポールをパーキングロックギヤに選択的に係合させるパーキングロッド(16)と、を備えている。 In the vehicle drive device (110) disclosed in Patent Document 1, the parking lock mechanism (40) includes a parking lock gear ( 12), a parking pole (14) that restricts rotation of the parking lock gear, and a parking rod (16) that is driven by an actuator to selectively engage the parking pole with the parking lock gear.
特開平9-286312号公報Japanese Patent Application Publication No. 9-286312
 ところで、傾斜した路面に車両が停車している場合、当該車両の自重により車輪(126L,126R)からパーキングロックギヤ(12)にトルクが伝達されるため、パーキングロックギヤ(12)とパーキングポール(14)との係合部分に荷重が作用する。その結果、パーキングロッド(16)用のアクチュエータの駆動力では、パーキングロックギヤ(12)に対するパーキングポール(14)の係合を解除できない場合がある。 By the way, when a vehicle is stopped on a sloped road surface, torque is transmitted from the wheels (126L, 126R) to the parking lock gear (12) due to the vehicle's own weight, so that the parking lock gear (12) and the parking pole ( 14) A load acts on the engaging portion. As a result, the driving force of the actuator for the parking rod (16) may not be able to release the parking pole (14) from the parking lock gear (12).
 上記の車両用駆動装置(110)では、各種センサの検出値に基づいて、パーキングロックギヤ(12)とパーキングポール(14)との係合部分に作用している荷重をゼロとするのに要する回転電機(112)のトルクを算出する。そして、算出したトルクを回転電機(112)に出力させることで、パーキングロッド(16)用のアクチュエータの駆動力によって、パーキングロックギヤ(12)に対するパーキングポール(14)の係合を解除することを実現している。特許文献1には、回転位置センサ(42)を用いて検出したパーキングロックギヤ(12)の回転位置や、傾斜角センサ(52)を用いて検出した車両の傾斜角等に基づいて、パーキングロックギヤ(12)とパーキングポール(14)との係合部分に作用している荷重をゼロとするのに要する回転電機(112)のトルクを算出することが開示されている。 In the vehicle drive device (110) described above, the load required to reduce the load acting on the engagement portion between the parking lock gear (12) and the parking pole (14) to zero is determined based on the detection values of various sensors. Calculate the torque of the rotating electric machine (112). Then, by outputting the calculated torque to the rotating electric machine (112), the engagement of the parking pole (14) with the parking lock gear (12) is released by the driving force of the actuator for the parking rod (16). It has been realized. Patent Document 1 discloses that the parking lock is activated based on the rotational position of the parking lock gear (12) detected using a rotational position sensor (42), the tilt angle of the vehicle detected using a tilt angle sensor (52), etc. It is disclosed that the torque of the rotating electrical machine (112) required to zero the load acting on the engagement portion between the gear (12) and the parking pole (14) is calculated.
 しかしながら、上記の車両用駆動装置(110)では、パーキングロックギヤ(12)に対するパーキングポール(14)の係合を解除する場合に、各種センサを用いて回転電機(112)のトルクを算出する必要があるため、構成の複雑化、及び高コスト化を招いていた。 However, in the vehicle drive device (110) described above, when disengaging the parking pole (14) from the parking lock gear (12), it is necessary to calculate the torque of the rotating electric machine (112) using various sensors. This has led to a complicated configuration and increased costs.
 そこで、パーキングロック機構を備えた構成において、構成の簡素化、及び低コスト化を図り易い車両用駆動装置の実現が望まれる。 Therefore, in a configuration including a parking lock mechanism, it is desired to realize a vehicle drive device that is easy to simplify the configuration and reduce costs.
 上記に鑑みた、車両用駆動装置の特徴構成は、
 車輪の駆動力源としての回転電機と、
 前記車輪と連動して回転する対象回転部材の回転を選択的に規制するパーキングロック機構と、
 前記回転電機及び前記パーキングロック機構を制御する制御装置と、を備えた車両用駆動装置であって、
 前記パーキングロック機構は、前記対象回転部材に係合して前記対象回転部材の回転を規制するロック位置と、前記対象回転部材から離間して前記対象回転部材の回転を許容する非ロック位置とに移動可能であるロック部材と、前記ロック部材を駆動する駆動装置と、前記ロック部材の位置を検出する位置検出装置と、を備え、
 前記制御装置は、前記駆動装置が前記ロック部材を前記ロック位置から前記非ロック位置に移動させるための駆動力を発生させている場合において、前記位置検出装置により前記ロック部材の移動が検出されない場合には、前記ロック部材の移動が検出されるまで前記ロック部材と前記対象回転部材との係合力を弱めるように前記回転電機のトルクの絶対値を次第に増加させるロック解除補助処理を実行する点にある。
In view of the above, the characteristic configuration of the vehicle drive device is as follows:
A rotating electric machine as a driving force source for the wheels,
a parking lock mechanism that selectively restricts rotation of a target rotating member that rotates in conjunction with the wheel;
A vehicle drive device comprising: a control device for controlling the rotating electric machine and the parking lock mechanism;
The parking lock mechanism has a lock position in which it engages with the target rotation member to restrict rotation of the target rotation member, and an unlocked position in which it is separated from the target rotation member and allows rotation of the target rotation member. comprising a movable lock member, a drive device that drives the lock member, and a position detection device that detects the position of the lock member,
The control device is configured to detect a case where movement of the lock member is not detected by the position detection device when the drive device is generating a driving force for moving the lock member from the lock position to the unlocked position. The lock release auxiliary process includes gradually increasing the absolute value of the torque of the rotating electrical machine so as to weaken the engagement force between the locking member and the target rotating member until movement of the locking member is detected. be.
 この特徴構成によれば、駆動装置の駆動力によってロック部材をロック位置から非ロック位置の側へ移動させることができない場合であっても、回転電機のトルクを用いてロック部材と対象回転部材との係合力を弱めることができるため、駆動装置の駆動力によってパーキングロック機構をロック解除状態とすることができる。このとき、ロック部材の移動が検出されるまで回転電機のトルクを次第に増加させるため、回転電機のトルクをパーキングロック機構のロック解除のための適切な値とすることが容易となる。これにより、ロック部材と対象回転部材との係合力を弱めるのに要する回転電機のトルクを算出するための各種センサを不要とすることができる。したがって、パーキングロック機構を備えた構成において、車両用駆動装置の構成の簡素化、及び低コスト化を図り易い。 According to this characteristic configuration, even if the locking member cannot be moved from the locked position to the unlocked position by the driving force of the drive device, the locking member and the target rotating member are moved using the torque of the rotating electric machine. Since the engaging force of the parking lock mechanism can be weakened, the parking lock mechanism can be brought into an unlocked state by the driving force of the driving device. At this time, since the torque of the rotating electrical machine is gradually increased until movement of the locking member is detected, it becomes easy to set the torque of the rotating electrical machine to an appropriate value for unlocking the parking lock mechanism. This makes it possible to eliminate the need for various sensors for calculating the torque of the rotating electric machine required to weaken the engagement force between the lock member and the target rotating member. Therefore, in the configuration provided with the parking lock mechanism, it is easy to simplify the configuration and reduce the cost of the vehicle drive device.
実施形態に係る車両用駆動装置の一部を示す断面図A cross-sectional view showing a part of a vehicle drive device according to an embodiment. 実施形態に係る車両用駆動装置のスケルトン図Skeleton diagram of a vehicle drive device according to an embodiment 実施形態に係る車両用駆動装置の制御ブロック図Control block diagram of a vehicle drive device according to an embodiment ロック部材と対象回転部材との係合を示す断面図A sectional view showing the engagement between the lock member and the target rotating member 制御装置の制御処理の一例を示すフローチャートFlowchart showing an example of control processing of the control device 制御装置の制御処理の一例を示すタイムチャートTime chart showing an example of control processing of the control device 制御装置の制御処理の一例を示すタイムチャートTime chart showing an example of control processing of the control device
 以下では、実施形態に係る車両用駆動装置100について、図面を参照して説明する。図1に示すように、車両用駆動装置100は、回転電機1と、パーキングロック機構10と、を備えている。 Below, a vehicle drive device 100 according to an embodiment will be described with reference to the drawings. As shown in FIG. 1, the vehicle drive device 100 includes a rotating electric machine 1 and a parking lock mechanism 10.
 回転電機1は、車両が備える車輪W(図2参照)の駆動力源として機能する。回転電機1は、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能とを有している。具体的には、回転電機1は、バッテリやキャパシタ等の蓄電装置(図示を省略)と電気的に接続されている。そして、回転電機1は、蓄電装置に蓄えられた電力により力行して駆動力を発生する。また、回転電機1は、車輪Wの側から伝達される駆動力により発電を行って蓄電装置を充電する。 The rotating electric machine 1 functions as a driving force source for wheels W (see FIG. 2) included in the vehicle. The rotating electric machine 1 has a function as a motor (electric motor) that receives power supply and generates power, and a function as a generator (generator) that receives power supply and generates power. Specifically, the rotating electrical machine 1 is electrically connected to a power storage device (not shown) such as a battery or a capacitor. Then, the rotating electric machine 1 performs power running using the electric power stored in the power storage device to generate driving force. Further, the rotating electric machine 1 generates power using the driving force transmitted from the wheel W side, and charges the power storage device.
 回転電機1は、ステータ11及びロータ12を備えている。ステータ11は、円筒状のステータコア11aを備えている。ステータコア11aは、非回転部材NRに固定されている。ロータ12は、円筒状のロータコア12aを備えている。ロータコア12aは、ステータコア11aに対して回転自在に支持されている。本実施形態では、ロータ12は、ロータコア12aと一体的に回転するように連結されたロータ軸12bを更に備えている。 The rotating electric machine 1 includes a stator 11 and a rotor 12. The stator 11 includes a cylindrical stator core 11a. Stator core 11a is fixed to non-rotating member NR. The rotor 12 includes a cylindrical rotor core 12a. Rotor core 12a is rotatably supported by stator core 11a. In this embodiment, the rotor 12 further includes a rotor shaft 12b connected to rotate integrally with the rotor core 12a.
 以下の説明では、ロータ12の回転軸心に沿う方向を「軸方向L」とする。そして、軸方向Lの一方側を「軸方向第1側L1」とし、軸方向Lの他方側を「軸方向第2側L2」とする。また、軸方向Lに直交する方向を「径方向R」とする。径方向Rは、ロータ12等の回転部材の各回転軸心を基準として定義される。なお、どの回転軸心を基準とするかを区別する必要がない場合やどの回転軸心を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。 In the following description, the direction along the rotational axis of the rotor 12 will be referred to as the "axial direction L." One side in the axial direction L is defined as the "first axial side L1", and the other side in the axial direction L is defined as the "second axial side L2". Further, a direction perpendicular to the axial direction L is referred to as a "radial direction R." The radial direction R is defined with each rotational axis of a rotating member such as the rotor 12 as a reference. Note that when there is no need to distinguish which rotational axis is used as a reference or when it is clear which rotational axis is used as a reference, it may be simply written as "radial direction R."
 本実施形態では、回転電機1はインナロータ型の回転電機である。そのため、ロータコア12aが、ステータコア11aに対して径方向Rの内側に配置されている。また、ロータ軸12bが、ロータコア12aに対して径方向Rの内側に配置されている。 In this embodiment, the rotating electrical machine 1 is an inner rotor type rotating electrical machine. Therefore, the rotor core 12a is arranged inside the stator core 11a in the radial direction R. Further, the rotor shaft 12b is arranged inside the rotor core 12a in the radial direction R.
 また、本実施形態では、回転電機1は回転界磁型の回転電機である。そのため、ステータコア11aには、ステータコイルが巻装されている。本実施形態では、ステータコイルは、ステータコア11aに対して軸方向Lに突出したコイルエンド部11bが形成されるように、ステータコア11aに巻装されている。また、図示は省略するが、ロータコア12aには、永久磁石が設けられている。 Furthermore, in this embodiment, the rotating electrical machine 1 is a rotating field type rotating electrical machine. Therefore, a stator coil is wound around the stator core 11a. In this embodiment, the stator coil is wound around the stator core 11a so that a coil end portion 11b protruding in the axial direction L with respect to the stator core 11a is formed. Although not shown, the rotor core 12a is provided with a permanent magnet.
 パーキングロック機構10は、車輪W(図2参照)と連動して回転する対象回転部材Tの回転を選択的に規制する。本実施形態では、対象回転部材Tは、ロータ軸12bである。なお、パーキングロック機構10の詳細な構成については後述する。 The parking lock mechanism 10 selectively restricts the rotation of the target rotating member T that rotates in conjunction with the wheels W (see FIG. 2). In this embodiment, the target rotating member T is the rotor shaft 12b. Note that the detailed configuration of the parking lock mechanism 10 will be described later.
 図2に示すように、本実施形態では、車両用駆動装置100は、動力伝達機構2と、差動歯車機構3と、ケース9と、を更に備えている。 As shown in FIG. 2, in this embodiment, the vehicle drive device 100 further includes a power transmission mechanism 2, a differential gear mechanism 3, and a case 9.
 動力伝達機構2は、ロータ12の回転を差動歯車機構3に伝達する。本実施形態では、動力伝達機構2は、遊星歯車機構21と、第1ギヤ22と、第2ギヤ23と、を備えている。本実施形態では、遊星歯車機構21及び第1ギヤ22は、ロータ12の回転軸心である第1軸X1上に配置されている。そして、第2ギヤ23は、第1軸X1とは異なる第2軸X2上に配置されている。 The power transmission mechanism 2 transmits the rotation of the rotor 12 to the differential gear mechanism 3. In this embodiment, the power transmission mechanism 2 includes a planetary gear mechanism 21, a first gear 22, and a second gear 23. In this embodiment, the planetary gear mechanism 21 and the first gear 22 are arranged on the first axis X1, which is the rotation axis of the rotor 12. The second gear 23 is arranged on a second axis X2 different from the first axis X1.
 遊星歯車機構21は、ロータ12の回転を減速して、第1ギヤ22に伝達するように構成されている。遊星歯車機構21は、サンギヤSGと、キャリヤCRと、リングギヤRGと、を備えている。 The planetary gear mechanism 21 is configured to reduce the rotation speed of the rotor 12 and transmit it to the first gear 22. The planetary gear mechanism 21 includes a sun gear SG, a carrier CR, and a ring gear RG.
 サンギヤSGは、ロータ12と一体的に回転するように連結されている。つまり、サンギヤSGは、遊星歯車機構21の入力要素である。本実施形態では、サンギヤSGは、入力軸Iを介して、ロータ軸12bと一体的に回転するように連結されている。入力軸Iは、軸方向Lに沿って延在するように形成されている。本実施形態では、入力軸Iは、サンギヤSGから軸方向第1側L1に延出するように形成されている。 The sun gear SG is connected to the rotor 12 so as to rotate integrally with the rotor 12. That is, the sun gear SG is an input element of the planetary gear mechanism 21. In this embodiment, sun gear SG is connected to rotor shaft 12b via input shaft I so as to rotate integrally with rotor shaft 12b. The input shaft I is formed to extend along the axial direction L. In this embodiment, the input shaft I is formed to extend from the sun gear SG toward the first axial side L1.
 キャリヤCRは、互いに一体的に回転する第1ピニオンギヤPG1と第2ピニオンギヤPG2とを回転自在に支持している。第1ピニオンギヤPG1及び第2ピニオンギヤPG2のそれぞれは、自己の軸心回りに回転(自転)すると共に、キャリヤCRと共にサンギヤSGを中心として回転(公転)する。第1ピニオンギヤPG1及び第2ピニオンギヤPG2のそれぞれは、自己の公転軌跡に沿って、互いに間隔を空けて複数設けられている。 The carrier CR rotatably supports a first pinion gear PG1 and a second pinion gear PG2 that rotate integrally with each other. Each of the first pinion gear PG1 and the second pinion gear PG2 rotates (rotates) around its own axis, and also rotates (revolutions) around the sun gear SG together with the carrier CR. A plurality of first pinion gears PG1 and second pinion gears PG2 are provided at intervals along their own orbits.
 第1ピニオンギヤPG1は、サンギヤSGに噛み合っている。第2ピニオンギヤPG2は、リングギヤRGに噛み合っている。第2ピニオンギヤPG2は、第1ピニオンギヤPG1よりも小径に形成されている。本実施形態では、第2ピニオンギヤPG2は、第1ピニオンギヤPG1よりも軸方向第1側L1に配置されている。 The first pinion gear PG1 is meshed with the sun gear SG. The second pinion gear PG2 meshes with the ring gear RG. The second pinion gear PG2 is formed to have a smaller diameter than the first pinion gear PG1. In this embodiment, the second pinion gear PG2 is arranged closer to the first axial side L1 than the first pinion gear PG1.
 キャリヤCRは、第1ギヤ22と一体的に回転するように連結されている。つまり、キャリヤCRは、遊星歯車機構21の出力要素である。本実施形態では、第1ギヤ22は、遊星歯車機構21に対して軸方向第2側L2に配置されている。 The carrier CR is connected to the first gear 22 so as to rotate integrally therewith. That is, the carrier CR is an output element of the planetary gear mechanism 21. In this embodiment, the first gear 22 is arranged on the second axial side L2 with respect to the planetary gear mechanism 21.
 リングギヤRGは、非回転部材NRに対して固定されている。本実施形態では、リングギヤRGは、非回転部材NRとしてのケース9に固定されている。 Ring gear RG is fixed to non-rotating member NR. In this embodiment, ring gear RG is fixed to case 9 as non-rotating member NR.
 第1ギヤ22と第2ギヤ23とは、互いに噛み合っている。本実施形態では、第2ギヤ23は、第1ギヤ22よりも大径に形成されている。そのため、本実施形態では、遊星歯車機構21のキャリヤCRの回転が、第1ギヤ22と第2ギヤ23との間で減速されて差動歯車機構3に伝達される。 The first gear 22 and the second gear 23 mesh with each other. In this embodiment, the second gear 23 is formed to have a larger diameter than the first gear 22. Therefore, in this embodiment, the rotation of the carrier CR of the planetary gear mechanism 21 is reduced in speed between the first gear 22 and the second gear 23 and transmitted to the differential gear mechanism 3.
 差動歯車機構3は、動力伝達機構2から伝達された回転を一対の車輪Wに分配する。本実施形態では、差動歯車機構3は、第2軸X2上に配置されている。 The differential gear mechanism 3 distributes the rotation transmitted from the power transmission mechanism 2 to the pair of wheels W. In this embodiment, the differential gear mechanism 3 is arranged on the second axis X2.
 本実施形態では、差動歯車機構3は、傘歯車式の差動歯車機構である。具体的には、差動歯車機構3は、一対のピニオンギヤと、当該一対のピニオンギヤに噛み合う第1サイドギヤ及び第2サイドギヤと、それらのギヤを収容する差動ケースと、を備えている。 In this embodiment, the differential gear mechanism 3 is a bevel gear type differential gear mechanism. Specifically, the differential gear mechanism 3 includes a pair of pinion gears, a first side gear and a second side gear that mesh with the pair of pinion gears, and a differential case that accommodates these gears.
 本実施形態では、差動ケースは、第2ギヤ23と一体的に回転するように連結されている。また、差動ケースは、一対のピニオンギヤを回転自在に支持するピニオンシャフトと一体的に回転するように連結されている。本実施形態では、第1サイドギヤは、軸方向Lに沿って延在する伝達軸35を介して、軸方向第1側L1の車輪Wに駆動連結された第1ドライブシャフトDS1と一体的に回転するように連結されている。また、第2サイドギヤは、軸方向第2側L2の車輪Wに駆動連結された第2ドライブシャフトDS2と一体的に回転するように連結されている。 In this embodiment, the differential case is connected to the second gear 23 so as to rotate integrally therewith. Further, the differential case is connected to rotate integrally with a pinion shaft that rotatably supports a pair of pinion gears. In the present embodiment, the first side gear rotates integrally with the first drive shaft DS1 that is drivingly connected to the wheel W on the first axial side L1 via the transmission shaft 35 extending along the axial direction L. are connected so that Further, the second side gear is connected to rotate integrally with a second drive shaft DS2 that is drivingly connected to the wheel W on the second axial side L2.
 ケース9は、回転電機1、動力伝達機構2、差動歯車機構3、及びパーキングロック機構10を収容している。図1に示すように、本実施形態では、ケース9は、第1筒状部91と、第2筒状部92と、第1側壁部93と、第2側壁部94と、を備えている。 The case 9 houses the rotating electrical machine 1, the power transmission mechanism 2, the differential gear mechanism 3, and the parking lock mechanism 10. As shown in FIG. 1, in this embodiment, the case 9 includes a first cylindrical part 91, a second cylindrical part 92, a first side wall part 93, and a second side wall part 94. .
 第1筒状部91及び第2筒状部92のそれぞれは、ロータ12と同心の筒状に形成されている。本実施形態では、ロータ軸12bは、軸方向Lに沿う軸心を有する筒状に形成されている。そして、第1筒状部91は、ロータ軸12bよりも径方向Rの外側に配置されている。また、第2筒状部92は、ロータ軸12bよりも径方向Rの内側に配置されている。本実施形態では、ロータ軸12bは、当該ロータ軸12bと第1筒状部91との径方向Rの間に配置されたロータ軸受B1を介して、ケース9に対して回転自在に支持されている。 Each of the first cylindrical part 91 and the second cylindrical part 92 is formed into a cylindrical shape concentric with the rotor 12. In this embodiment, the rotor shaft 12b is formed into a cylindrical shape having an axis along the axial direction L. The first cylindrical portion 91 is disposed outside the rotor shaft 12b in the radial direction R. Further, the second cylindrical portion 92 is arranged inside the rotor shaft 12b in the radial direction R. In this embodiment, the rotor shaft 12b is rotatably supported with respect to the case 9 via a rotor bearing B1 disposed between the rotor shaft 12b and the first cylindrical portion 91 in the radial direction R. There is.
 第1側壁部93は、第1筒状部91から径方向Rの外側に延出するように形成されている。第1側壁部93は、回転電機1の軸方向第1側L1を覆うように配置されている。第2側壁部94は、第1筒状部91から径方向Rの内側に延出するように形成されている。第2側壁部94は、第1側壁部93よりも軸方向第1側L1に配置されている。本実施形態では、第2側壁部94は、第1筒状部91を軸方向第1側L1から覆うように、第1筒状部91の軸方向第1側L1の端部に連結されている。また、本実施形態では、第2筒状部92が、第2側壁部94から軸方向第2側L2に延出するように形成されている。 The first side wall portion 93 is formed to extend outward in the radial direction R from the first cylindrical portion 91. The first side wall portion 93 is arranged to cover the first axial side L1 of the rotating electrical machine 1. The second side wall portion 94 is formed to extend inward in the radial direction R from the first cylindrical portion 91 . The second side wall portion 94 is disposed closer to the first side L1 in the axial direction than the first side wall portion 93 is. In the present embodiment, the second side wall portion 94 is connected to the end of the first cylindrical portion 91 on the first axial side L1 so as to cover the first cylindrical portion 91 from the first axial side L1. There is. Further, in this embodiment, the second cylindrical portion 92 is formed to extend from the second side wall portion 94 toward the second axial side L2.
 図1に示すように、パーキングロック機構10は、ロック部材4と、駆動装置5と、を備えている。 As shown in FIG. 1, the parking lock mechanism 10 includes a lock member 4 and a drive device 5.
 ロック部材4は、対象回転部材Tに係合して対象回転部材Tの回転を規制するロック位置P1と、対象回転部材Tから離間して対象回転部材Tの回転を許容する非ロック位置P2とに移動可能に構成されている。ロック部材4は、非回転部材NRに対して相対回転不能に支持されている。本実施形態では、ロック部材4は、ロータ12と同心の筒状に形成された筒状部41を備えている。 The locking member 4 has a locking position P1 in which it engages with the target rotating member T to restrict rotation of the target rotating member T, and a non-locking position P2 in which it is separated from the target rotating member T and allows rotation of the target rotating member T. It is configured to be movable. The locking member 4 is supported so as not to rotate relative to the non-rotating member NR. In this embodiment, the lock member 4 includes a cylindrical portion 41 that is concentric with the rotor 12 .
 筒状部41は、ケース9の第2筒状部92に対して径方向Rの外側に配置されている。筒状部41の内周面には、係合部411が形成されている。第2筒状部92の外周面には、被係合部921が形成されている。係合部411は、被係合部921に対して、軸方向Lに移動可能であって相対回転不能に係合されている。ここでは、係合部411は、筒状部41の内周面に周方向に沿って形成された凹凸であり、軸方向Lに沿って連続的に形成されている。そして、被係合部921は、第2筒状部92の外周面に周方向に沿って形成された凹凸であり、軸方向Lに沿って連続的に形成されている。 The cylindrical portion 41 is disposed on the outside of the second cylindrical portion 92 of the case 9 in the radial direction R. An engaging portion 411 is formed on the inner peripheral surface of the cylindrical portion 41 . An engaged portion 921 is formed on the outer peripheral surface of the second cylindrical portion 92 . The engaging portion 411 is movable in the axial direction L and is engaged with the engaged portion 921 so as not to be relatively rotatable. Here, the engaging portion 411 is an unevenness formed along the circumferential direction on the inner circumferential surface of the cylindrical portion 41, and is continuously formed along the axial direction L. The engaged portion 921 is a concavity and convexity formed along the circumferential direction on the outer circumferential surface of the second cylindrical portion 92, and is continuously formed along the axial direction L.
 本実施形態では、筒状部41の外周面における軸方向第2側L2の端部に、対象回転部材Tの被係止部Taに対して、軸方向第1側L1から係合し、対象回転部材Tの回転を規制する係止部412が形成されている。ここでは、係止部412は、筒状部41の外周面に周方向に沿って形成された凹凸であり、筒状部41の軸方向第2側L2の端面から軸方向第1側L1に向けて連続的に形成されている。そして、被係止部Taは、ロータ軸12bの内周面に周方向に沿って形成された凹凸であり、ロータ軸12bの軸方向第1側L1の端面から軸方向第2側L2に向けて連続的に形成されている。 In this embodiment, the end portion of the outer peripheral surface of the cylindrical portion 41 on the second axial side L2 is engaged with the locked portion Ta of the target rotating member T from the first axial side L1, and A locking portion 412 that restricts rotation of the rotating member T is formed. Here, the locking portion 412 is an unevenness formed along the circumferential direction on the outer peripheral surface of the cylindrical portion 41, and extends from the end surface of the axially second side L2 of the cylindrical portion 41 to the axially first side L1. It is formed continuously. The locked portion Ta is an unevenness formed along the circumferential direction on the inner peripheral surface of the rotor shaft 12b, and is directed from the end surface of the first axial side L1 of the rotor shaft 12b toward the second axial side L2. It is formed continuously.
 本実施形態では、ロック部材4が非ロック位置P2から軸方向第2側L2に移動してロック位置P1にある場合、筒状部41の係止部412が対象回転部材Tの被係止部Ta係合し、パーキングロック機構10がロック状態となる。一方、ロック部材4が非ロック位置P2にある場合、ロック部材4は対象回転部材Tに対して軸方向第1側L1に離間し、パーキングロック機構10が非ロック状態となる。なお、本実施形態では、ロック部材4の可動領域における最も軸方向第1側L1の位置だけでなく、当該位置よりも軸方向第2側L2の位置も、非ロック位置P2に該当する。つまり、本実施形態では、ロック部材4が可動領域における最も軸方向第1側L1の位置から軸方向第2側L2の所定の範囲内にある場合には、係止部412が被係止部Taに係合せず、ロック部材4がその範囲から軸方向第2側L2に移動した場合に、係止部412が被係止部Taに係合する。 In this embodiment, when the locking member 4 moves from the non-locking position P2 to the second axial side L2 and is at the locking position P1, the locking part 412 of the cylindrical part 41 is connected to the locked part of the target rotating member T. Ta is engaged, and the parking lock mechanism 10 becomes locked. On the other hand, when the lock member 4 is in the unlocked position P2, the lock member 4 is separated from the target rotating member T toward the first axial side L1, and the parking lock mechanism 10 is in the unlocked state. In this embodiment, not only the position closest to the first axial side L1 in the movable region of the lock member 4 but also the position on the second axial side L2 from this position corresponds to the unlocked position P2. That is, in this embodiment, when the locking member 4 is within a predetermined range from the position of the first axial side L1 to the second axial side L2 in the movable region, the locking part 412 is located at the locked part. When the locking member 4 moves from that range to the second axial side L2 without engaging with the locked portion Ta, the locking portion 412 engages with the locked portion Ta.
 駆動装置5は、ロック部材4を駆動する装置である。本実施形態では、駆動装置5は、位置保持部6と、電磁駆動部7と、を備えている。 The drive device 5 is a device that drives the lock member 4. In this embodiment, the drive device 5 includes a position holding section 6 and an electromagnetic drive section 7.
 位置保持部6は、ロック部材4に支持された永久磁石61を備えている。位置保持部6は、永久磁石61の磁力により、ロック部材4をロック位置P1と非ロック位置P2とのそれぞれの位置に保持する。なお、永久磁石61は、複数の分割磁石を接合して構成されていても良い。 The position holding section 6 includes a permanent magnet 61 supported by the locking member 4. The position holding section 6 holds the locking member 4 at each of the locked position P1 and the unlocked position P2 by the magnetic force of the permanent magnet 61. Note that the permanent magnet 61 may be configured by joining a plurality of divided magnets.
 永久磁石61は、N極及びS極を有する永久磁石である。本実施形態では、永久磁石61は、N極とS極とが軸方向Lに並ぶように配置されている。具体的には、永久磁石61は、電磁駆動部7の側(本実施形態では、径方向Rの外側)においてN極とS極とが軸方向Lに並ぶように配置される。例えば、1つの永久磁石61が、当該永久磁石61のN極とS極とが電磁駆動部7の側において軸方向Lに並ぶように配置され、或いは、2つの永久磁石6が、一方の永久磁石61のN極と他方の永久磁石61のS極とが電磁駆動部7の側において軸方向Lに並ぶように配置される。以下の説明では、永久磁石61のN極及びS極の一方を「第1極61A」とし、他方を「第2極61B」とする。永久磁石61は、軸方向第1側L1から軸方向第2側L2に向けて、第1極61A、第2極61Bの順に並ぶように配置されている。 The permanent magnet 61 is a permanent magnet having an N pole and an S pole. In this embodiment, the permanent magnet 61 is arranged so that the north pole and the south pole are lined up in the axial direction L. Specifically, the permanent magnet 61 is arranged so that its north pole and south pole are aligned in the axial direction L on the side of the electromagnetic drive unit 7 (in this embodiment, on the outside in the radial direction R). For example, one permanent magnet 61 is arranged such that the N pole and S pole of the permanent magnet 61 are aligned in the axial direction L on the side of the electromagnetic drive unit 7, or two permanent magnets 6 are arranged such that one permanent magnet 61 The north pole of the magnet 61 and the south pole of the other permanent magnet 61 are arranged so as to be lined up in the axial direction L on the electromagnetic drive unit 7 side. In the following description, one of the N and S poles of the permanent magnet 61 will be referred to as a "first pole 61A", and the other will be referred to as a "second pole 61B". The permanent magnets 61 are arranged so that the first pole 61A and the second pole 61B are lined up in this order from the first axial side L1 to the second axial side L2.
 本実施形態では、永久磁石61は、ロータ12と同心の筒状に形成されている。そして、永久磁石61は、ロック部材4の筒状部41に固定されている。図1に示す例では、永久磁石61は、筒状部41の外周面における係止部412よりも軸方向第1側L1の部分に固定されている。 In this embodiment, the permanent magnet 61 is formed into a cylindrical shape concentric with the rotor 12. The permanent magnet 61 is fixed to the cylindrical portion 41 of the lock member 4. In the example shown in FIG. 1, the permanent magnet 61 is fixed to a portion of the outer peripheral surface of the cylindrical portion 41 that is closer to the first axial side L1 than the locking portion 412.
 電磁駆動部7は、電源(図示を省略)からの電力により発生させた電磁力により、ロック部材4の非ロック位置P2からロック位置P1への移動、及び、ロック部材4のロック位置P1から非ロック位置P2への移動を行う。本実施形態では、電磁駆動部7は、永久磁石61と同心の円筒状に形成されている。また、本実施形態では、電磁駆動部7は、固定部70と、第1磁性体部71と、第2磁性体部72と、第3磁性体部73と、コイル74と、を備えている。 The electromagnetic drive unit 7 moves the locking member 4 from the unlocked position P2 to the locked position P1 and from the locked position P1 to the unlocked position by electromagnetic force generated by electric power from a power source (not shown). Move to lock position P2. In this embodiment, the electromagnetic drive unit 7 is formed in a cylindrical shape concentric with the permanent magnet 61. Further, in this embodiment, the electromagnetic drive section 7 includes a fixed section 70, a first magnetic section 71, a second magnetic section 72, a third magnetic section 73, and a coil 74. .
 固定部70は、非回転部材NRに固定されている。本実施形態では、固定部70は、ケース9の第1筒状部91と同心の筒状に形成されている。そして、固定部70は、第1筒状部91の内周面に固定されている。 The fixed part 70 is fixed to the non-rotating member NR. In this embodiment, the fixing part 70 is formed into a cylindrical shape concentric with the first cylindrical part 91 of the case 9 . The fixing part 70 is fixed to the inner circumferential surface of the first cylindrical part 91.
 第1磁性体部71、第2磁性体部72、及び第3磁性体部73のそれぞれは、磁性体で構成されている。第1磁性体部71、第2磁性体部72、及び第3磁性体部73は、軸方向Lに互いに間隔を空けて記載の順に並ぶように配置されている。本実施形態では、第1磁性体部71、第2磁性体部72、及び第3磁性体部73は、固定部70から径方向Rの内側に向けて突出するように形成されている。そして、第1磁性体部71、第2磁性体部72、及び第3磁性体部73は、軸方向第1側L1から軸方向第2側L2に向けて、記載の順に並ぶように配置されている。 Each of the first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 is made of a magnetic body. The first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 are arranged at intervals in the axial direction L in the stated order. In this embodiment, the first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 are formed to protrude inward in the radial direction R from the fixed part 70. The first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 are arranged in the stated order from the first axial side L1 to the second axial side L2. ing.
 コイル74は、通電により、第1磁性体部71、第2磁性体部72、及び第3磁性体部73を通る磁束を発生させるように構成されている。本実施形態では、コイル74は、固定部70の内周面における、第1磁性体部71と第2磁性体部72との軸方向Lの間、及び、第2磁性体部72と第3磁性体部73との軸方向Lの間のそれぞれに巻回されている。 The coil 74 is configured to generate magnetic flux passing through the first magnetic body part 71, the second magnetic body part 72, and the third magnetic body part 73 when energized. In the present embodiment, the coil 74 is located between the first magnetic body part 71 and the second magnetic body part 72 in the axial direction L on the inner circumferential surface of the fixed part 70, and between the second magnetic body part 72 and the third magnetic body part 72. It is wound in each direction between the magnetic body portion 73 and the axial direction L.
 図3に示すように、車両用駆動装置100は、回転電機1及びパーキングロック機構10を制御する制御装置20を備えている。 As shown in FIG. 3, the vehicle drive device 100 includes a control device 20 that controls the rotating electrical machine 1 and the parking lock mechanism 10.
 本実施形態では、車両用駆動装置100は、回転電機1のロータ12の回転位置を検出する回転位置センサ13を更に備えている。制御装置20は、回転位置センサ13により検出されるロータ12の回転位置に基づいて、回転電機1を制御する。回転位置センサ13としては、レゾルバを用いることができる。この場合、例えば、レゾルバの固定子をケース9に固定し、レゾルバの回転子をロータ軸12bに連結することができる。なお、回転位置センサ13としては、レゾルバに限らず、例えば、ホール素子センサ、エンコーダ、磁気式回転センサ等の各種センサを用いることができる。 In this embodiment, the vehicle drive device 100 further includes a rotational position sensor 13 that detects the rotational position of the rotor 12 of the rotating electric machine 1. The control device 20 controls the rotating electrical machine 1 based on the rotational position of the rotor 12 detected by the rotational position sensor 13. As the rotational position sensor 13, a resolver can be used. In this case, for example, the stator of the resolver can be fixed to the case 9, and the rotor of the resolver can be connected to the rotor shaft 12b. Note that the rotational position sensor 13 is not limited to a resolver, and various sensors such as a Hall element sensor, an encoder, and a magnetic rotation sensor can be used, for example.
 また、本実施形態では、パーキングロック機構10は、ロック部材4の位置(ここでは、軸方向Lの位置)を検出する位置検出装置8を更に備えている。位置検出装置8としては、例えば、変位センサ、ポテンショメータ等の各種センサを用いることができる。 In the present embodiment, the parking lock mechanism 10 further includes a position detection device 8 that detects the position of the lock member 4 (here, the position in the axial direction L). As the position detection device 8, various sensors such as a displacement sensor and a potentiometer can be used, for example.
 制御装置20は、位置検出装置8により検出されるロック部材4の位置に基づいて、パーキングロック機構10を制御する。本実施形態では、制御装置20は、コイル74に流す電流を制御することにより、ロック部材4の動作を制御する。説明を加えると、制御装置20がコイル74に電流を流さず、ロック部材4が非ロック位置P2にある場合、第1極61Aが第1磁性体部71を吸引し、第2極61Bが第2磁性体部72を吸引した状態となる。そして、制御装置20は、ロック部材4を非ロック位置P2からロック位置P1へ移動させる場合、第1磁性体部71が第1極61Aと反発する極となり、第2磁性体部72が第2極61Bと反発する極となり、第3磁性体部73が第2極61Bと引き合う極となるように、コイル74に電流を流す。また、制御装置20がコイル74に電流を流さず、ロック部材4がロック位置P1にある場合、第1極61Aが第2磁性体部72を吸引し、第2極61Bが第3磁性体部73を吸引した状態となる。そして、制御装置20は、ロック部材4をロック位置P1から非ロック位置P2へ移動させる場合、第2磁性体部72が第1極61Aと反発する極となり、第3磁性体部73が第2極61Bと反発する極となり、第1磁性体部71が第1極61Aと引き合う極となるように、コイル74に電流を流す。 The control device 20 controls the parking lock mechanism 10 based on the position of the lock member 4 detected by the position detection device 8. In this embodiment, the control device 20 controls the operation of the locking member 4 by controlling the current flowing through the coil 74. To explain, when the control device 20 does not apply current to the coil 74 and the locking member 4 is in the non-locking position P2, the first pole 61A attracts the first magnetic body part 71, and the second pole 61B attracts the first magnetic body part 71. 2 magnetic material portion 72 is attracted. Then, when the control device 20 moves the locking member 4 from the non-locking position P2 to the locking position P1, the first magnetic body part 71 becomes a pole that repels the first pole 61A, and the second magnetic body part 72 becomes a second pole. A current is passed through the coil 74 so that the third magnetic body portion 73 becomes a pole that repels the pole 61B and attracts the second pole 61B. Further, when the control device 20 does not apply current to the coil 74 and the lock member 4 is in the lock position P1, the first pole 61A attracts the second magnetic body part 72, and the second pole 61B attracts the third magnetic body part 73 is in a state of being sucked. When the control device 20 moves the lock member 4 from the lock position P1 to the unlocked position P2, the second magnetic body part 72 becomes a pole that repels the first pole 61A, and the third magnetic body part 73 becomes a second pole. A current is passed through the coil 74 so that the first magnetic body part 71 becomes a pole that repels the pole 61B and attracts the first pole 61A.
 ところで、車両用駆動装置100が搭載された車両が、傾斜した路面に停車している場合、当該車両の自重により車輪Wから対象回転部材T(ここでは、ロータ軸12b)にトルクが伝達される。そのため、図4に示すように、ロック部材4の係止部412と対象回転部材Tの被係止部Taとの係合力を強めるように、対象回転部材Tの被係止部Taが、ロック位置P1にあるロック部材4の係止部412に当接する。以下の説明では、対象回転部材Tに伝達されるトルクであって、係止部412と被係止部Taとの係合力を強めるように作用するトルクを「荷重トルク」とする。なお、荷重トルクの方向は、例えば、回転位置センサ13により検出されるロータ12の回転位置に基づいて判定することができる。車両に傾斜角センサが設けられている場合には、当該傾斜角センサにより荷重トルクの方向を判定しても良い。また、地図情報に基づく路面の勾配によって、荷重トルクの方向を判定しても良い。 By the way, when a vehicle equipped with the vehicle drive device 100 is stopped on an inclined road surface, torque is transmitted from the wheels W to the target rotating member T (here, the rotor shaft 12b) due to the vehicle's own weight. . Therefore, as shown in FIG. 4, the locked portion Ta of the target rotating member T is locked so as to strengthen the engagement force between the locking portion 412 of the locking member 4 and the locked portion Ta of the target rotating member T. It comes into contact with the locking portion 412 of the locking member 4 at position P1. In the following description, the torque transmitted to the target rotating member T, which acts to strengthen the engagement force between the locking portion 412 and the locked portion Ta, will be referred to as “load torque”. Note that the direction of the load torque can be determined based on the rotational position of the rotor 12 detected by the rotational position sensor 13, for example. If the vehicle is provided with a tilt angle sensor, the direction of the load torque may be determined by the tilt angle sensor. Alternatively, the direction of the load torque may be determined based on the slope of the road surface based on map information.
 荷重トルクの大きさによっては、駆動装置5の駆動力(ここでは、電磁力)では、被係止部Taに対する係止部412の係合を解除できない場合がある。そこで、車両用駆動装置100では、係止部412と被係止部Taとの係合力を弱めるように、つまり、荷重トルクを打ち消すように、回転電機1にトルクを出力させる。以下の説明では、荷重トルクを打ち消すように回転電機1が出力するトルクの絶対値を「荷重キャンセルトルク」とする。 Depending on the magnitude of the load torque, the driving force (here, electromagnetic force) of the drive device 5 may not be able to release the engagement of the locking portion 412 with the locked portion Ta. Therefore, in the vehicle drive device 100, the rotating electrical machine 1 is caused to output torque so as to weaken the engagement force between the locking portion 412 and the locked portion Ta, that is, to cancel the load torque. In the following description, the absolute value of the torque output by the rotating electrical machine 1 to cancel out the load torque will be referred to as "load cancellation torque."
 以下では、パーキングロック機構10のロック解除を行う場合における制御装置20の制御処理について、図5から図7を参照して説明する。 Hereinafter, the control processing of the control device 20 when unlocking the parking lock mechanism 10 will be explained with reference to FIGS. 5 to 7.
 図5は、制御装置20の制御処理の一例を示すフローチャートである。図5に示すように、まず、制御装置20は、車両の運転者によるパーキングロック機構10のロック解除の要求、つまり、パーキングレンジ(Pレンジ)からそれ以外のレンジ(例えば、前進走行レンジ(Dレンジ))へのシフト位置の変更が検知されたか否かを判断する(ステップ#1)。 FIG. 5 is a flowchart illustrating an example of control processing by the control device 20. As shown in FIG. 5, the control device 20 first responds to a request from the vehicle driver to unlock the parking lock mechanism 10, that is, from the parking range (P range) to the other ranges (for example, the forward driving range (D range). It is determined whether a change in the shift position to range)) has been detected (step #1).
 制御装置20は、車両の運転者によるパーキングロック機構10のロック解除の要求が検知されない場合(ステップ#1:No)、再度、上記のステップ#1を実行する。つまり、制御装置20は、車両の運転者によるパーキングロック機構10のロック解除の要求が検知されるまで、上記のステップ#1を実行する。 If the request to unlock the parking lock mechanism 10 by the vehicle driver is not detected (step #1: No), the control device 20 executes the above step #1 again. That is, the control device 20 executes step #1 described above until a request to unlock the parking lock mechanism 10 by the driver of the vehicle is detected.
 制御装置20は、車両の運転者によるパーキングロック機構10のロック解除の要求が検知された場合(ステップ#1:Yes)、ロック部材4をロック位置P1から非ロック位置P2に移動させるための駆動力を駆動装置5に発生させる(ステップ#2)。本実施形態では、制御装置20は、コイル74に電流を流して、ロック部材4をロック位置P1から非ロック位置P2へ移動させるための電磁力を駆動装置5に発生させる。 When a request to unlock the parking lock mechanism 10 by the vehicle driver is detected (step #1: Yes), the control device 20 controls a drive for moving the lock member 4 from the lock position P1 to the unlocked position P2. A force is generated in the drive device 5 (step #2). In the present embodiment, the control device 20 causes the drive device 5 to generate an electromagnetic force for moving the lock member 4 from the lock position P1 to the unlocked position P2 by passing a current through the coil 74.
 制御装置20は、駆動装置5の駆動力の発生に伴い、位置検出装置8によりロック部材4の移動が検出されたか否かを判断する(ステップ#3)。制御装置20は、駆動装置5の駆動力の発生に伴い、位置検出装置8によりロック部材4の移動が検出された場合(ステップ#3:Yes)、制御処理を終了する。 The control device 20 determines whether movement of the lock member 4 is detected by the position detection device 8 as the driving force of the drive device 5 is generated (step #3). When the position detection device 8 detects movement of the locking member 4 with the generation of the driving force of the drive device 5 (step #3: Yes), the control device 20 ends the control process.
 一方、制御装置20は、駆動装置5の駆動力の発生後、規定の時間が経過しても位置検出装置8によりロック部材4の移動が検出されない場合(ステップ#3:No)、荷重キャンセルトルクを次第に増加させる(ステップ#4)。そして、制御装置20は、荷重キャンセルトルクの増加に伴い、位置検出装置8によりロック部材4の移動が検出されたか否かを判断する(ステップ#5)。 On the other hand, if the position detection device 8 does not detect movement of the locking member 4 even after a predetermined period of time has passed after the drive force of the drive device 5 is generated (step #3: No), the control device 20 generates a load canceling torque. (Step #4). Then, the control device 20 determines whether movement of the locking member 4 is detected by the position detection device 8 as the load canceling torque increases (step #5).
 制御装置20は、荷重キャンセルトルクが増加しても、位置検出装置8によりロック部材4の移動が検出されない場合(ステップ#5:No)、上記のステップ#4に戻って制御処理を継続する。つまり、制御装置20は、荷重キャンセルトルクを次第に増加させた後、位置検出装置8によりロック部材4の移動が検出されるまで、上記のステップ#4,#5を実行する。 If the position detection device 8 does not detect movement of the locking member 4 even if the load canceling torque increases (step #5: No), the control device 20 returns to step #4 and continues the control process. That is, after the control device 20 gradually increases the load canceling torque, the control device 20 executes steps #4 and #5 described above until the movement of the locking member 4 is detected by the position detection device 8.
 制御装置20は、荷重キャンセルトルクの増加に伴い、位置検出装置8によりロック部材4の移動が検出された場合(ステップ#5:Yes)、荷重キャンセルトルクを一定に維持する(ステップ#6)。 When the position detection device 8 detects movement of the locking member 4 as the load canceling torque increases (Step #5: Yes), the control device 20 maintains the load canceling torque constant (Step #6).
 制御装置20は、荷重キャンセルトルクを一定に維持している間、位置検出装置8によりロック部材4の移動が検出されたか否かを判断する(ステップ#7)。 While maintaining the load canceling torque constant, the control device 20 determines whether movement of the locking member 4 is detected by the position detection device 8 (step #7).
 制御装置20は、荷重キャンセルトルクを一定に維持している間、位置検出装置8によりロック部材4の移動が検出されない場合(ステップ#7:No)、つまり、ロック位置P1から非ロック位置P2へ向けて移動していたロック部材4が停止したことが検出された場合、荷重キャンセルトルクを次第に増加させる(ステップ#8)。そして、制御装置20は、荷重キャンセルトルクの増加に伴い、位置検出装置8によりロック部材4の移動が検出されたか否かを判断する(ステップ#9)。 If the position detection device 8 does not detect movement of the locking member 4 while maintaining the load cancellation torque constant (step #7: No), that is, from the locking position P1 to the non-locking position P2, the control device 20 When it is detected that the lock member 4 that was moving towards the target has stopped, the load canceling torque is gradually increased (step #8). Then, the control device 20 determines whether movement of the locking member 4 is detected by the position detection device 8 as the load canceling torque increases (step #9).
 制御装置20は、荷重キャンセルトルクが増加しても、位置検出装置8によりロック部材4の移動が検出されない場合(ステップ#9:No)、上記のステップ#8に戻って制御処理を継続する。つまり、制御装置20は、荷重キャンセルトルクを次第に増加させた後、位置検出装置8によりロック部材4の移動が検出されるまで、上記のステップ#8,#9を実行する。 If the position detection device 8 does not detect movement of the locking member 4 even if the load canceling torque increases (step #9: No), the control device 20 returns to step #8 and continues the control process. That is, after the control device 20 gradually increases the load canceling torque, the control device 20 executes steps #8 and #9 described above until the movement of the locking member 4 is detected by the position detection device 8.
 制御装置20は、荷重キャンセルトルクの増加に伴い、位置検出装置8によりロック部材4の移動が検出された場合(ステップ#9:Yes)、荷重キャンセルトルクを一定に維持する(ステップ#10)。 When the position detection device 8 detects movement of the locking member 4 as the load canceling torque increases (Step #9: Yes), the control device 20 maintains the load canceling torque constant (Step #10).
 その後、制御装置20は、回転電機1(詳細には、ロータ12)の回転を検知したか否か、及び、位置検出装置8によりロック部材4が非ロック位置P2に到達したことが検出されたか否かを判断する(ステップ#11)。なお、本実施形態では、制御装置20は、回転電機1の回転を検知したか否かの判断は、回転位置センサ13により検出されるロータ12の回転位置に基づいて行われる。 Thereafter, the control device 20 determines whether rotation of the rotating electrical machine 1 (specifically, the rotor 12) has been detected, and whether the position detection device 8 has detected that the lock member 4 has reached the unlocked position P2. It is determined whether or not (step #11). In this embodiment, the control device 20 determines whether or not the rotation of the rotating electrical machine 1 is detected based on the rotational position of the rotor 12 detected by the rotational position sensor 13.
 制御装置20は、回転電機1の回転を検知した場合、又は、位置検出装置8によりロック部材4が非ロック位置P2に到達したことが検出された場合(ステップ#11:Yes)、荷重キャンセルトルクを次第に減少させ(ステップ#12)、制御処理を終了する。 When the control device 20 detects the rotation of the rotating electrical machine 1 or when the position detection device 8 detects that the locking member 4 has reached the unlocked position P2 (step #11: Yes), the control device 20 calculates the load cancel torque. is gradually decreased (step #12), and the control process is ended.
 一方、制御装置20は、回転電機1の回転が検知されない場合であって、位置検出装置8によりロック部材4が非ロック位置P2に到達したことも検出されない場合(ステップ#11:No)、上記のステップ#7に戻って制御処理を継続する。なお、上記のステップ#7において、位置検出装置8によりロック部材4の移動が検出された場合(ステップ#7:Yes)、上記のステップ#8~#10を実行せず、上記のステップ#11を実行する。 On the other hand, if the rotation of the rotating electric machine 1 is not detected and the position detection device 8 also does not detect that the locking member 4 has reached the unlocked position P2 (step #11: No), the control device 20 performs the above-mentioned The process returns to step #7 to continue the control process. In addition, in the above step #7, if the movement of the locking member 4 is detected by the position detection device 8 (step #7: Yes), the above steps #8 to #10 are not executed, and the above step #11 is executed. Execute.
 以上のように、車両用駆動装置100は、
 車輪Wの駆動力源としての回転電機1と、
 車輪Wと連動して回転する対象回転部材Tの回転を選択的に規制するパーキングロック機構10と、
 回転電機1及びパーキングロック機構10を制御する制御装置20と、を備えた車両用駆動装置100であって、
 パーキングロック機構10は、対象回転部材Tに係合して対象回転部材Tの回転を規制するロック位置P1と、対象回転部材Tから離間して対象回転部材Tの回転を許容する非ロック位置P2とに移動可能であるロック部材4と、当該ロック部材4を駆動する駆動装置5と、ロック部材4の位置を検出する位置検出装置8と、を備え、
 制御装置20は、駆動装置5がロック部材4をロック位置P1から非ロック位置P2に移動させるための駆動力を発生させている場合において、位置検出装置8によりロック部材4の移動が検出されない場合には、ロック部材4の移動が検出されるまでロック部材4と対象回転部材Tとの係合力を弱めるように回転電機1のトルクの絶対値を次第に増加させるロック解除補助処理を実行する。
 なお、図5に示すフローチャートでは、ステップ#3,#4がロック解除補助処理に相当する。
As described above, the vehicle drive device 100 is
A rotating electrical machine 1 as a driving force source for wheels W,
a parking lock mechanism 10 that selectively restricts rotation of a target rotating member T that rotates in conjunction with wheels W;
A vehicle drive device 100 including a control device 20 that controls a rotating electrical machine 1 and a parking lock mechanism 10,
The parking lock mechanism 10 has a lock position P1 where it engages with the target rotating member T to restrict rotation of the target rotating member T, and an unlocked position P2 where it is separated from the target rotating member T and allows rotation of the target rotating member T. A lock member 4 that is movable, a drive device 5 that drives the lock member 4, and a position detection device 8 that detects the position of the lock member 4,
The control device 20 determines whether movement of the lock member 4 is not detected by the position detection device 8 when the drive device 5 is generating a driving force for moving the lock member 4 from the lock position P1 to the unlocked position P2. In this step, a lock release assisting process is executed in which the absolute value of the torque of the rotating electric machine 1 is gradually increased so as to weaken the engagement force between the lock member 4 and the target rotating member T until the movement of the lock member 4 is detected.
Note that in the flowchart shown in FIG. 5, steps #3 and #4 correspond to the unlock assisting process.
 この構成によれば、駆動装置5の駆動力によってロック部材4をロック位置P1から非ロック位置P2の側へ移動させることができない場合であっても、回転電機1のトルクを用いてロック部材4と対象回転部材Tとの係合力を弱めることができるため、駆動装置5の駆動力によってパーキングロック機構10をロック解除状態とすることができる。このとき、ロック部材4の移動が検出されるまで回転電機1のトルクを次第に増加させるため、回転電機1のトルクをパーキングロック機構10のロック解除のための適切な値とすることが容易となる。これにより、ロック部材4と対象回転部材Tとの係合力を弱めるのに要する回転電機1のトルクを算出するための各種センサを不要とすることができる。したがって、パーキングロック機構10を備えた構成において、車両用駆動装置100の構成の簡素化、及び低コスト化を図り易い。 According to this configuration, even if the lock member 4 cannot be moved from the lock position P1 to the unlocked position P2 by the driving force of the drive device 5, the lock member 4 is moved using the torque of the rotating electric machine 1. Since the engagement force between the target rotating member T and the target rotating member T can be weakened, the parking lock mechanism 10 can be brought into the unlocked state by the driving force of the driving device 5. At this time, the torque of the rotating electric machine 1 is gradually increased until the movement of the locking member 4 is detected, so that it is easy to set the torque of the rotating electric machine 1 to an appropriate value for unlocking the parking lock mechanism 10. . This makes it possible to eliminate the need for various sensors for calculating the torque of the rotating electric machine 1 required to weaken the engagement force between the lock member 4 and the target rotating member T. Therefore, in a configuration including the parking lock mechanism 10, it is easy to simplify the configuration and reduce the cost of the vehicle drive device 100.
 また、本実施形態では、制御装置20は、
 ロック解除補助処理の実行中に、位置検出装置8によりロック部材4の移動が検出された場合には、回転電機1のトルクを一定に維持するトルク維持処理を実行し、
 トルク維持処理の実行中に、回転電機1の回転を検知した場合、又は、位置検出装置8によりロック部材4が非ロック位置P2に到達したことが検出された場合には、回転電機1のトルクの絶対値を次第に減少させる終了処理を実行する。
 なお、図5に示すフローチャートでは、ステップ#5,#6がトルク維持処理に相当する。また、ステップ#11,#12が終了処理に相当する。
Further, in this embodiment, the control device 20
If movement of the locking member 4 is detected by the position detection device 8 during execution of the lock release auxiliary process, a torque maintenance process is executed to maintain the torque of the rotating electric machine 1 constant,
When the rotation of the rotating electric machine 1 is detected during the execution of the torque maintenance process, or when the position detection device 8 detects that the locking member 4 has reached the unlocked position P2, the torque of the rotating electric machine 1 is Execute termination processing to gradually decrease the absolute value of .
Note that in the flowchart shown in FIG. 5, steps #5 and #6 correspond to torque maintenance processing. Furthermore, steps #11 and #12 correspond to termination processing.
 この構成によれば、ロック解除補助処理において回転電機1のトルクの絶対値が過剰に増加し、ロック部材4と対象回転部材Tとの係合力が却って大きくなることによって、ロック部材4の移動が妨げられることを回避できる。更に、パーキングロック機構10のロック解除後においても回転電機1のトルクの出力が継続されることによって、車輪Wに不要なトルクが伝達されることも回避できる。 According to this configuration, the absolute value of the torque of the rotating electrical machine 1 increases excessively in the lock release auxiliary process, and the engagement force between the locking member 4 and the target rotating member T increases, so that the movement of the locking member 4 is prevented. You can avoid being blocked. Furthermore, by continuing to output the torque of the rotating electric machine 1 even after the parking lock mechanism 10 is unlocked, it is possible to avoid transmitting unnecessary torque to the wheels W.
 また、本実施形態では、制御装置20は、トルク維持処理の実行中に、位置検出装置8によりロック部材4の移動が検出されなくなった場合には、ロック部材4の移動が検出されるまでロック部材4と対象回転部材Tとの係合力を弱めるように回転電機1のトルクの絶対値を次第に増加させる追加補助処理を実行する。
 なお、図5に示すフローチャートでは、ステップ#7,#8が追加補助処理に相当する。
Furthermore, in the present embodiment, if the movement of the locking member 4 is no longer detected by the position detection device 8 during execution of the torque maintenance process, the control device 20 locks the locking member 4 until the movement of the locking member 4 is detected. Additional auxiliary processing is performed to gradually increase the absolute value of the torque of the rotating electric machine 1 so as to weaken the engagement force between the member 4 and the target rotating member T.
Note that in the flowchart shown in FIG. 5, steps #7 and #8 correspond to additional auxiliary processing.
 この構成によれば、トルク維持処理において回転電機1のトルクが不足してロック部材4の移動が停止してしまった場合であっても、追加補助処理により、回転電機1のトルクをロック部材4の移動のための適切な値に設定することが容易となる。 According to this configuration, even if the torque of the rotating electric machine 1 is insufficient in the torque maintenance process and the movement of the locking member 4 is stopped, the torque of the rotating electric machine 1 is reduced to the locking member 4 by the additional auxiliary process. It becomes easy to set the appropriate value for the move.
 また、本実施形態では、駆動装置5は、電磁力によりロック部材4をロック位置P1から非ロック位置P2へ移動させるように構成されている。 Furthermore, in this embodiment, the drive device 5 is configured to move the lock member 4 from the lock position P1 to the unlocked position P2 by electromagnetic force.
 このように構成された駆動装置5は、電力消費を小さく抑えることができる一方で、ロック部材4を駆動する駆動力が十分でない場合が多い。しかしながら、上記の通り、駆動装置5の駆動力によってロック部材4をロック位置P1から非ロック位置P2の側へ移動させることができない場合であっても、回転電機1のトルクを用いてロック部材4と対象回転部材Tとの係合力を弱めることができるため、本構成の駆動装置5を用いることができる。 Although the drive device 5 configured in this way can suppress power consumption to a low level, the driving force for driving the lock member 4 is often insufficient. However, as described above, even if the lock member 4 cannot be moved from the lock position P1 to the unlocked position P2 by the driving force of the drive device 5, the lock member 4 is Since the engagement force between the target rotating member T and the target rotating member T can be weakened, the drive device 5 having this configuration can be used.
 図6は、パーキングロック機構10のロック解除を行う場合における制御装置20の制御処理の一例を示すタイムチャートである。 FIG. 6 is a time chart showing an example of the control process of the control device 20 when the parking lock mechanism 10 is unlocked.
 図6に示すように、制御装置20は、車両の運転者によるパーキングロック機構10のロック解除の要求を検知すると、時刻t1にコイル74に電流を流し、ロック部材4をロック位置P1から非ロック位置P2へ移動させるための電磁力を駆動装置5に発生させる。 As shown in FIG. 6, when the control device 20 detects a request to unlock the parking lock mechanism 10 by the driver of the vehicle, it supplies current to the coil 74 at time t1 to move the lock member 4 from the lock position P1 to the unlocked state. The drive device 5 generates an electromagnetic force for moving to the position P2.
 制御装置20は、時刻t1から規定の時間が経過した時刻t2において、ロック部材4がロック位置P1としての第1位置PAから移動しないことを検出し、回転電機1のトルクをゼロから次第に減少させる(ロック解除補助処理)。本例では、第1位置PAは、ロック部材4の可動領域における最も軸方向第2側L2の位置である。 At time t2, when a predetermined time has elapsed from time t1, the control device 20 detects that the lock member 4 does not move from the first position PA, which is the lock position P1, and gradually reduces the torque of the rotating electric machine 1 from zero. (Lock release auxiliary processing). In this example, the first position PA is the position closest to the second axial side L2 in the movable region of the locking member 4.
 本例では、ロック解除補助処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の増加速度は、回転電機の回転センサにより回転電機の回転を検出してすぐに回転電機の回転を停止させたと仮定した場合における車輪Wの回転を運転者が感知しない範囲内で最も高い速度に設定されていると好適である。これによれば、ロック解除補助処理の高速化と、運転者が感じる違和感の抑制との双方を実現できる。 In this example, the rate of increase in the absolute value of the torque (load canceling torque) of the rotating electrical machine 1 during the execution of the lock release auxiliary process is determined by the rotation of the rotating electrical machine immediately after the rotation of the rotating electrical machine is detected by the rotation sensor of the rotating electrical machine. Preferably, the speed is set to the highest within a range in which the driver does not sense the rotation of the wheels W when the wheels W are stopped. According to this, it is possible to both increase the speed of the unlock assistance process and suppress the discomfort felt by the driver.
 ロック解除補助処理により、時刻t3において回転電機1のトルクの値がT1(本例では、T1<0)となる。制御装置20は、時刻t3においてロック部材4の非ロック位置P2の側(軸方向第1側L1)への移動が検出されると、回転電機1のトルクを一定に維持する(トルク維持処理)。 Due to the unlock assist process, the torque value of the rotating electric machine 1 becomes T1 (T1<0 in this example) at time t3. When the movement of the lock member 4 toward the unlocked position P2 (first axial side L1) is detected at time t3, the control device 20 maintains the torque of the rotating electrical machine 1 constant (torque maintenance process). .
 ロック部材4は、時刻t4において非ロック位置P2としての第2位置PBに到達する。本例では、第2位置PBは、ロック部材4の可動領域における最も軸方向第1側L1の位置よりも軸方向第2側L2の位置である。また、θ1を維持していたロータ12の回転位置が、時刻t4においてθ2に到達する。 The locking member 4 reaches the second position PB as the unlocked position P2 at time t4. In this example, the second position PB is a position on the second axial side L2 of the movable region of the locking member 4, rather than the position furthest on the first axial side L1. Further, the rotational position of the rotor 12, which has been maintained at θ1, reaches θ2 at time t4.
 制御装置20は、時刻t4において、ロータ12の回転位置がθ2に到達したことを検知してロータ12が回転したと判断すると共に、ロック部材4が非ロック位置P2に到達したと判断し、回転電機1のトルクを次第に増加させる(終了処理)。そして、制御装置20は、時刻t5において、回転電機1のトルクをゼロとする。また、制御装置20は、時刻t5にコイル74への通電を停止する。本例では、終了処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の減少速度は、ロック解除補助処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の増加速度よりも高い。 At time t4, the control device 20 detects that the rotational position of the rotor 12 has reached θ2, determines that the rotor 12 has rotated, and determines that the locking member 4 has reached the unlocked position P2, and stops rotating. The torque of the electric machine 1 is gradually increased (termination process). Then, the control device 20 sets the torque of the rotating electrical machine 1 to zero at time t5. Furthermore, the control device 20 stops energizing the coil 74 at time t5. In this example, the rate of decrease in the absolute value of the torque of the rotating electrical machine 1 (load canceling torque) during the execution of the termination process is the same as the decreasing speed of the absolute value of the torque of the rotating electrical machine 1 (load canceling torque) during the execution of the lock release auxiliary process. higher than the rate of increase.
 図7は、パーキングロック機構10のロック解除を行う場合における制御装置20の制御処理の一例を示すタイムチャートである。図7のタイムチャートは、追加補助処理を実行する点で図6のものと異なっている。なお、図7のタイムチャートにおいて、図6と同じものについては説明を省略する。 FIG. 7 is a time chart showing an example of the control process of the control device 20 when the parking lock mechanism 10 is unlocked. The time chart in FIG. 7 differs from that in FIG. 6 in that additional auxiliary processing is executed. Note that in the time chart of FIG. 7, description of the same parts as in FIG. 6 will be omitted.
 図7に示すように、本例では、トルク維持処理の実行中における時刻t31に、ロック部材4が第3位置PCから移動しないことを検出し、回転電機1のトルクをT1から次第に減少させる(追加補助処理)。 As shown in FIG. 7, in this example, at time t31 during execution of the torque maintenance process, it is detected that the lock member 4 does not move from the third position PC, and the torque of the rotating electrical machine 1 is gradually decreased from T1 ( additional auxiliary processing).
 本例では、追加補助処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の増加速度は、ロック解除補助処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の増加速度よりも低い。 In this example, the rate of increase in the absolute value of the torque of the rotating electric machine 1 (load canceling torque) during the execution of the additional auxiliary process is the absolute value of the torque of the rotating electric machine 1 (load canceling torque) during the execution of the unlocking auxiliary process. is lower than the rate of increase.
 この構成によれば、追加補助処理において回転電機1のトルクの絶対値が過剰に増加し、ロック部材4と対象回転部材Tとの係合力が却って大きくなることによって、ロック部材4の移動が妨げられることを回避できる。 According to this configuration, the absolute value of the torque of the rotating electrical machine 1 increases excessively in the additional auxiliary processing, and the engagement force between the locking member 4 and the target rotating member T increases on the contrary, thereby hindering the movement of the locking member 4. You can avoid being caught.
 追加補助処理により、時刻t32において回転電機1のトルクの値がT2(本例では、T2<T1)となる。制御装置20は、時刻t32においてロック部材4の非ロック位置P2の側(軸方向第1側L1)への移動が検出されると、回転電機1のトルクを一定に維持する(トルク維持処理)。このように、本例では、制御装置20は、追加補助処理の実行中に、位置検出装置8によりロック部材4の移動が検出された場合においても、回転電機1のトルクを一定に維持するトルク維持処理を実行する。 Due to the additional auxiliary processing, the torque value of the rotating electric machine 1 becomes T2 (T2<T1 in this example) at time t32. When the movement of the lock member 4 toward the unlocked position P2 (first axial side L1) is detected at time t32, the control device 20 maintains the torque of the rotating electric machine 1 constant (torque maintenance process). . In this way, in this example, the control device 20 maintains the torque of the rotating electric machine 1 constant even when the position detection device 8 detects movement of the lock member 4 during execution of the additional auxiliary process. Execute maintenance processing.
〔その他の実施形態〕
(1)上記の実施形態では、上記の実施形態では、対象回転部材Tがロータ軸12bである構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、対象回転部材TがキャリヤCRであっても良い。或いは、回転電機1と車輪Wとを結ぶ動力伝達経路を構成する回転部材そのものではなく、当該回転部材に連結されたパーキングギヤが対象回転部材Tであっても良い。
[Other embodiments]
(1) In the above embodiments, a configuration in which the target rotating member T is the rotor shaft 12b has been described as an example. However, without being limited to such a configuration, for example, the target rotating member T may be a carrier CR. Alternatively, instead of the rotating member itself constituting the power transmission path connecting the rotating electric machine 1 and the wheels W, the target rotating member T may be a parking gear connected to the rotating member.
(2)上記の実施形態では、駆動装置5が電磁力によりロック部材4をロック位置P1から非ロック位置P2へ移動させる構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、電動モータの駆動力によりロック部材4をロック位置P1から非ロック位置P2へ移動させる構成としても良い。 (2) In the above embodiment, the configuration in which the drive device 5 uses electromagnetic force to move the lock member 4 from the lock position P1 to the unlocked position P2 has been described as an example. However, without being limited to such a configuration, for example, a configuration may be adopted in which the lock member 4 is moved from the lock position P1 to the unlocked position P2 by the driving force of an electric motor.
(3)上記の実施形態では、追加補助処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の増加速度は、ロック解除補助処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の増加速度よりも低い構成を例として説明した。しかし、そのような構成に限定されることなく、追加補助処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の増加速度は、ロック解除補助処理の実行中における回転電機1のトルクの絶対値(荷重キャンセルトルク)の増加速度以上であっても良い。 (3) In the above embodiment, the rate of increase in the absolute value of the torque of the rotating electrical machine 1 (load canceling torque) during the execution of the additional auxiliary process is the absolute value of the torque of the rotating electrical machine 1 during the execution of the unlocking auxiliary process. An example of a configuration that is lower than the increase rate of (load canceling torque) has been explained. However, without being limited to such a configuration, the rate of increase in the absolute value of the torque (load canceling torque) of the rotating electric machine 1 during execution of the additional auxiliary process is the same as the increase rate of the absolute value of the torque (load canceling torque) of the rotating electric machine 1 during the execution of the unlocking auxiliary process. It may be greater than or equal to the rate of increase in the absolute value of torque (load canceling torque).
(4)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。したがって、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。 (4) Note that the configurations disclosed in each of the embodiments described above can be applied in combination with the configurations disclosed in other embodiments as long as no contradiction occurs. Regarding other configurations, the embodiments disclosed herein are merely illustrative in all respects. Therefore, various modifications can be made as appropriate without departing from the spirit of the present disclosure.
〔本実施形態のまとめ〕
 以下では、上記において説明した車両用駆動装置(100)の概要について説明する。
[Summary of this embodiment]
Below, an overview of the vehicle drive system (100) described above will be described.
 車両用駆動装置(100)は、
 車輪(W)の駆動力源としての回転電機(1)と、
 前記車輪(W)と連動して回転する対象回転部材(T)の回転を選択的に規制するパーキングロック機構(10)と、
 前記回転電機(1)及び前記パーキングロック機構(10)を制御する制御装置(20)と、を備えた車両用駆動装置(100)であって、
 前記パーキングロック機構(10)は、前記対象回転部材(T)に係合して前記対象回転部材(T)の回転を規制するロック位置(P1)と、前記対象回転部材(T)から離間して前記対象回転部材(T)の回転を許容する非ロック位置(P2)とに移動可能であるロック部材(4)と、前記ロック部材(4)を駆動する駆動装置(5)と、前記ロック部材(4)の位置を検出する位置検出装置(8)と、を備え、
 前記制御装置(20)は、前記駆動装置(5)が前記ロック部材(4)を前記ロック位置(P1)から前記非ロック位置(P2)に移動させるための駆動力を発生させている場合において、前記位置検出装置(8)により前記ロック部材(4)の移動が検出されない場合には、前記ロック部材(4)の移動が検出されるまで前記ロック部材(4)と前記対象回転部材(T)との係合力を弱めるように前記回転電機(1)のトルクの絶対値を次第に増加させるロック解除補助処理を実行する。
The vehicle drive device (100) includes:
A rotating electric machine (1) as a driving force source for the wheels (W),
a parking lock mechanism (10) that selectively restricts rotation of a target rotating member (T) that rotates in conjunction with the wheel (W);
A vehicle drive device (100) comprising: a control device (20) that controls the rotating electric machine (1) and the parking lock mechanism (10);
The parking lock mechanism (10) has a lock position (P1) that engages with the target rotation member (T) to restrict rotation of the target rotation member (T), and a lock position (P1) that is spaced apart from the target rotation member (T). a locking member (4) movable to an unlocked position (P2) that allows rotation of the target rotating member (T); a drive device (5) for driving the locking member (4); and a drive device (5) for driving the locking member (4); A position detection device (8) that detects the position of the member (4),
The control device (20) is configured such that when the drive device (5) generates a driving force for moving the lock member (4) from the lock position (P1) to the unlocked position (P2), , when movement of the locking member (4) is not detected by the position detecting device (8), the locking member (4) and the target rotating member (T ) is executed to gradually increase the absolute value of the torque of the rotating electric machine (1) so as to weaken the engagement force with the rotary electric machine (1).
 この構成によれば、駆動装置(5)の駆動力によってロック部材(4)をロック位置(P1)から非ロック位置(P2)の側へ移動させることができない場合であっても、回転電機(1)のトルクを用いてロック部材(4)と対象回転部材(T)との係合力を弱めることができるため、駆動装置(5)の駆動力によってパーキングロック機構(10)をロック解除状態とすることができる。このとき、ロック部材(4)の移動が検出されるまで回転電機(1)のトルクを次第に増加させるため、回転電機(1)のトルクをパーキングロック機構(10)のロック解除のための適切な値とすることが容易となる。これにより、ロック部材(4)と対象回転部材(T)との係合力を弱めるのに要する回転電機(1)のトルクを算出するための各種センサを不要とすることができる。したがって、パーキングロック機構(10)を備えた構成において、車両用駆動装置(100)の構成の簡素化、及び低コスト化を図り易い。 According to this configuration, even if the lock member (4) cannot be moved from the lock position (P1) to the unlocked position (P2) by the driving force of the drive device (5), the rotating electric machine ( Since the engagement force between the locking member (4) and the target rotating member (T) can be weakened using the torque of 1), the parking lock mechanism (10) can be brought into the unlocked state by the driving force of the driving device (5). can do. At this time, in order to gradually increase the torque of the rotating electrical machine (1) until movement of the locking member (4) is detected, the torque of the rotating electrical machine (1) is adjusted to an appropriate level for unlocking the parking lock mechanism (10). It becomes easy to set it as a value. This makes it possible to eliminate the need for various sensors for calculating the torque of the rotating electric machine (1) required to weaken the engagement force between the lock member (4) and the target rotating member (T). Therefore, in the configuration including the parking lock mechanism (10), it is easy to simplify the configuration and reduce the cost of the vehicle drive device (100).
 ここで、前記制御装置(20)は、
 前記ロック解除補助処理の実行中に、前記位置検出装置(8)により前記ロック部材(4)の移動が検出された場合には、前記回転電機(1)のトルクを一定に維持するトルク維持処理を実行し、
 前記トルク維持処理の実行中に、前記回転電機(1)の回転を検知した場合、又は、前記位置検出装置(8)により前記ロック部材(4)が前記非ロック位置(P2)に到達したことが検出された場合には、前記回転電機(1)のトルクの絶対値を次第に減少させる終了処理を実行すると好適である。
Here, the control device (20)
If movement of the lock member (4) is detected by the position detection device (8) during execution of the lock release auxiliary process, a torque maintenance process of maintaining the torque of the rotating electric machine (1) constant; Run
When the rotation of the rotating electric machine (1) is detected during execution of the torque maintenance process, or when the locking member (4) reaches the unlocked position (P2) by the position detection device (8). If detected, it is preferable to execute a termination process in which the absolute value of the torque of the rotating electric machine (1) is gradually reduced.
 この構成によれば、ロック解除補助処理において回転電機(1)のトルクの絶対値が過剰に増加し、ロック部材(4)と対象回転部材(T)との係合力が却って大きくなることによって、ロック部材(4)の移動が妨げられることを回避できる。更に、パーキングロック機構(10)のロック解除後においても回転電機(1)のトルクの出力が継続されることによって、車輪(W)に不要なトルクが伝達されることも回避できる。 According to this configuration, the absolute value of the torque of the rotating electrical machine (1) increases excessively in the lock release assisting process, and the engagement force between the locking member (4) and the target rotating member (T) increases instead. It is possible to prevent the movement of the lock member (4) from being hindered. Furthermore, since the rotating electric machine (1) continues to output torque even after the parking lock mechanism (10) is unlocked, it is possible to avoid transmitting unnecessary torque to the wheels (W).
 前記制御装置(20)が前記トルク維持処理を実行可能な構成において、
 前記制御装置(20)は、前記トルク維持処理の実行中に、前記位置検出装置(8)により前記ロック部材(4)の移動が検出されなくなった場合には、前記ロック部材(4)の移動が検出されるまで前記ロック部材(4)と前記対象回転部材(T)との係合力を弱めるように前記回転電機(1)のトルクの絶対値を次第に増加させる追加補助処理を実行すると好適である。
In a configuration in which the control device (20) can execute the torque maintenance process,
The control device (20) controls the movement of the lock member (4) when the position detection device (8) no longer detects movement of the lock member (4) during execution of the torque maintenance process. It is preferable to perform an additional auxiliary process of gradually increasing the absolute value of the torque of the rotating electrical machine (1) so as to weaken the engagement force between the locking member (4) and the target rotating member (T) until the locking member (4) and the target rotating member (T) are detected. be.
 この構成によれば、トルク維持処理において回転電機(1)のトルクが不足してロック部材(4)の移動が停止してしまった場合であっても、追加補助処理により、回転電機(1)のトルクをロック部材(4)の移動のための適切な値に設定することが容易となる。 According to this configuration, even if the locking member (4) stops moving due to insufficient torque of the rotating electrical machine (1) during the torque maintenance process, the rotating electrical machine (1) can be It becomes easy to set the torque to an appropriate value for the movement of the locking member (4).
 前記制御装置(20)が前記追加補助処理を実行可能な構成において、
 前記追加補助処理の実行中における前記回転電機(1)のトルクの絶対値の増加速度は、前記ロック解除補助処理の実行中における前記回転電機(1)のトルクの絶対値の増加速度よりも低いと好適である。
In a configuration in which the control device (20) can execute the additional auxiliary processing,
The rate of increase in the absolute value of the torque of the rotating electrical machine (1) during the execution of the additional auxiliary process is lower than the rate of increase in the absolute value of the torque of the rotating electrical machine (1) during the execution of the unlocking auxiliary process. and is suitable.
 この構成によれば、追加補助処理において回転電機(1)のトルクの絶対値が過剰に増加し、ロック部材(4)と対象回転部材(T)との係合力が却って大きくなることによって、ロック部材(4)の移動が妨げられることを回避できる。 According to this configuration, the absolute value of the torque of the rotating electrical machine (1) increases excessively in the additional auxiliary process, and the engagement force between the locking member (4) and the target rotating member (T) increases, which causes the locking This prevents the movement of the member (4) from being hindered.
 また、前記駆動装置(5)は、
 前記ロック部材(4)に支持された永久磁石(61)を備え、前記永久磁石(61)の磁力により、前記ロック部材(4)を前記ロック位置(P1)と前記非ロック位置(P2)とのそれぞれの位置に保持する位置保持部(6)と、
 電源からの電力により発生させた電磁力により、前記ロック部材(4)の前記非ロック位置(P2)から前記ロック位置(P1)への移動、及び、前記ロック部材(4)の前記ロック位置(P1)から前記非ロック位置(P2)への移動を行う電磁駆動部(7)と、を備えると好適である。
Further, the drive device (5) includes:
A permanent magnet (61) supported by the locking member (4) is provided, and the locking member (4) is moved between the locked position (P1) and the unlocked position (P2) by the magnetic force of the permanent magnet (61). a position holding part (6) that holds the position in each position;
The electromagnetic force generated by the power from the power source causes the locking member (4) to move from the unlocked position (P2) to the locked position (P1), and to move the locking member (4) to the locked position ( It is preferable to include an electromagnetic drive unit (7) that moves from the unlocked position (P1) to the unlocked position (P2).
 このように構成された駆動装置(5)は、電力消費を小さく抑えることができる一方で、ロック部材(4)を駆動する駆動力が十分でない場合が多い。しかしながら、上記の通り、駆動装置(5)の駆動力によってロック部材(4)をロック位置(P1)から非ロック位置(P2)の側へ移動させることができない場合であっても、回転電機(1)のトルクを用いてロック部材(4)と対象回転部材(T)との係合力を弱めることができるため、本構成の駆動装置(5)を用いることができる。 Although the drive device (5) configured in this way can suppress power consumption to a low level, the driving force for driving the locking member (4) is often insufficient. However, as described above, even if the lock member (4) cannot be moved from the lock position (P1) to the unlocked position (P2) by the driving force of the drive device (5), the rotating electric machine ( Since the engagement force between the lock member (4) and the target rotating member (T) can be weakened using the torque of 1), the drive device (5) having this configuration can be used.
 本開示に係る技術は、車輪の駆動力源としての回転電機と、車輪と連動して回転する対象回転部材の回転を選択的に規制するパーキングロック機構と、を備えた車両用駆動装置に利用することができる。 The technology according to the present disclosure can be used in a vehicle drive device that includes a rotating electric machine as a driving force source for wheels and a parking lock mechanism that selectively restricts rotation of a target rotating member that rotates in conjunction with the wheels. can do.
100:車両用駆動装置、1:回転電機、4:ロック部材、5:駆動装置、6:位置保持部、61:永久磁石、7:電磁駆動部、8:位置検出装置、10:パーキングロック機構、20:制御装置、T:対象回転部材、W:車輪、P1:ロック位置、P2:非ロック位置 100: Vehicle drive device, 1: Rotating electric machine, 4: Lock member, 5: Drive device, 6: Position holding unit, 61: Permanent magnet, 7: Electromagnetic drive unit, 8: Position detection device, 10: Parking lock mechanism , 20: Control device, T: Target rotating member, W: Wheel, P1: Lock position, P2: Unlock position

Claims (5)

  1.  車輪の駆動力源としての回転電機と、
     前記車輪と連動して回転する対象回転部材の回転を選択的に規制するパーキングロック機構と、
     前記回転電機及び前記パーキングロック機構を制御する制御装置と、を備えた車両用駆動装置であって、
     前記パーキングロック機構は、前記対象回転部材に係合して前記対象回転部材の回転を規制するロック位置と、前記対象回転部材から離間して前記対象回転部材の回転を許容する非ロック位置とに移動可能であるロック部材と、前記ロック部材を駆動する駆動装置と、前記ロック部材の位置を検出する位置検出装置と、を備え、
     前記制御装置は、前記駆動装置が前記ロック部材を前記ロック位置から前記非ロック位置に移動させるための駆動力を発生させている場合において、前記位置検出装置により前記ロック部材の移動が検出されない場合には、前記ロック部材の移動が検出されるまで前記ロック部材と前記対象回転部材との係合力を弱めるように前記回転電機のトルクの絶対値を次第に増加させるロック解除補助処理を実行する、車両用駆動装置。
    A rotating electric machine as a driving force source for the wheels,
    a parking lock mechanism that selectively restricts rotation of a target rotating member that rotates in conjunction with the wheel;
    A vehicle drive device comprising: a control device for controlling the rotating electric machine and the parking lock mechanism;
    The parking lock mechanism has a lock position in which it engages with the target rotation member to restrict rotation of the target rotation member, and an unlocked position in which it is separated from the target rotation member and allows rotation of the target rotation member. comprising a movable lock member, a drive device that drives the lock member, and a position detection device that detects the position of the lock member,
    The control device is configured to detect a case where movement of the lock member is not detected by the position detection device when the drive device is generating a driving force for moving the lock member from the lock position to the unlocked position. The vehicle further comprises: executing an unlock assisting process of gradually increasing the absolute value of the torque of the rotating electrical machine so as to weaken the engagement force between the locking member and the target rotating member until movement of the locking member is detected; drive unit.
  2.  前記制御装置は、
     前記ロック解除補助処理の実行中に、前記位置検出装置により前記ロック部材の移動が検出された場合には、前記回転電機のトルクを一定に維持するトルク維持処理を実行し、
     前記トルク維持処理の実行中に、前記回転電機の回転を検知した場合、又は、前記位置検出装置により前記ロック部材が前記非ロック位置に到達したことが検出された場合には、前記回転電機のトルクの絶対値を次第に減少させる終了処理を実行する、請求項1に記載の車両用駆動装置。
    The control device includes:
    If movement of the locking member is detected by the position detection device during execution of the lock release assisting process, executing a torque maintenance process to maintain the torque of the rotating electric machine constant;
    When the rotation of the rotating electrical machine is detected during the execution of the torque maintenance process, or when the position detection device detects that the locking member has reached the unlocked position, the rotation of the rotating electrical machine is detected. The vehicle drive system according to claim 1, wherein the vehicle drive system executes a termination process that gradually reduces the absolute value of the torque.
  3.  前記制御装置は、前記トルク維持処理の実行中に、前記位置検出装置により前記ロック部材の移動が検出されなくなった場合には、前記ロック部材の移動が検出されるまで前記ロック部材と前記対象回転部材との係合力を弱めるように前記回転電機のトルクの絶対値を次第に増加させる追加補助処理を実行する、請求項2に記載の車両用駆動装置。 If movement of the locking member is no longer detected by the position detection device during execution of the torque maintenance process, the control device controls the locking member and the target rotation until movement of the locking member is detected. The vehicle drive device according to claim 2, wherein additional auxiliary processing is executed to gradually increase the absolute value of the torque of the rotating electric machine so as to weaken the engagement force with the member.
  4.  前記追加補助処理の実行中における前記回転電機のトルクの絶対値の増加速度は、前記ロック解除補助処理の実行中における前記回転電機のトルクの絶対値の増加速度よりも低い、請求項3に記載の車両用駆動装置。 According to claim 3, the rate of increase in the absolute value of the torque of the rotating electrical machine during execution of the additional auxiliary process is lower than the rate of increase in the absolute value of the torque of the rotating electrical machine during execution of the unlocking auxiliary process. drive unit for vehicles.
  5.  前記駆動装置は、
     前記ロック部材に支持された永久磁石を備え、前記永久磁石の磁力により、前記ロック部材を前記ロック位置と前記非ロック位置とのそれぞれの位置に保持する位置保持部と、
     電源からの電力により発生させた電磁力により、前記ロック部材の前記非ロック位置から前記ロック位置への移動、及び、前記ロック部材の前記ロック位置から前記非ロック位置への移動を行う電磁駆動部と、を備える、請求項1から4のいずれか一項に記載の車両用駆動装置。
    The drive device includes:
    a position holding part comprising a permanent magnet supported by the locking member, and holding the locking member in each of the locked position and the unlocked position by the magnetic force of the permanent magnet;
    an electromagnetic drive unit that moves the locking member from the unlocked position to the locked position and moves the locking member from the locked position to the unlocked position using electromagnetic force generated by electric power from a power source; The vehicle drive device according to any one of claims 1 to 4, comprising:
PCT/JP2023/027688 2022-08-08 2023-07-28 Vehicular drive device WO2024034427A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126192 2022-08-08
JP2022-126192 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034427A1 true WO2024034427A1 (en) 2024-02-15

Family

ID=89851608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/027688 WO2024034427A1 (en) 2022-08-08 2023-07-28 Vehicular drive device

Country Status (1)

Country Link
WO (1) WO2024034427A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216410A1 (en) * 2013-08-19 2015-02-19 Zf Friedrichshafen Ag locking device
JP2019122168A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 Control device of vehicle
JP2021025551A (en) * 2019-07-31 2021-02-22 いすゞ自動車株式会社 Control apparatus and control method
JP2022170363A (en) * 2021-04-28 2022-11-10 株式会社デンソー Vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013216410A1 (en) * 2013-08-19 2015-02-19 Zf Friedrichshafen Ag locking device
JP2019122168A (en) * 2018-01-09 2019-07-22 トヨタ自動車株式会社 Control device of vehicle
JP2021025551A (en) * 2019-07-31 2021-02-22 いすゞ自動車株式会社 Control apparatus and control method
JP2022170363A (en) * 2021-04-28 2022-11-10 株式会社デンソー Vehicle control device

Similar Documents

Publication Publication Date Title
JP6228929B2 (en) Power steering device
JP3553437B2 (en) Electric torque converter
JP6531861B2 (en) Electric vehicle drive system
US7770688B2 (en) Device for superimposing rotational speeds for a steering system
EP2090494B1 (en) Electric power steering device
JP2008505007A (en) Vehicle steering apparatus and method
JP5136842B2 (en) Vehicle steering system
JP5077785B2 (en) Steering control device
US20170279336A1 (en) Motor drive device
JP2009008153A (en) Shift range switching device
JP2003237550A (en) Parking device
JP4872229B2 (en) Vehicle steering system
JP2022091762A (en) Motor unit
WO2024034427A1 (en) Vehicular drive device
WO2016129436A1 (en) Rear wheel steering device
JP2000318473A (en) Front and rear wheel driving vehicle
US8066094B2 (en) Electric power steering device
WO2024070765A1 (en) Vehicle drive device
JP2007083848A (en) Steering system for vehicle
WO2024070764A1 (en) Parking lock mechanism
JP2004224096A (en) Electric power steering device
JP2006188202A (en) Steering device for vehicle
JP5195045B2 (en) Suspension control device
JP5614581B2 (en) Vehicle steering system
JP5435283B2 (en) Vehicle steering apparatus and transmission ratio determination method for vehicle steering apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852401

Country of ref document: EP

Kind code of ref document: A1