WO2024034252A1 - Storage battery system, railway vehicle, data server, and storage battery system control method - Google Patents

Storage battery system, railway vehicle, data server, and storage battery system control method Download PDF

Info

Publication number
WO2024034252A1
WO2024034252A1 PCT/JP2023/021901 JP2023021901W WO2024034252A1 WO 2024034252 A1 WO2024034252 A1 WO 2024034252A1 JP 2023021901 W JP2023021901 W JP 2023021901W WO 2024034252 A1 WO2024034252 A1 WO 2024034252A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
battery
information
charging rate
current value
Prior art date
Application number
PCT/JP2023/021901
Other languages
French (fr)
Japanese (ja)
Inventor
穂南 坂口
雅浩 米元
克 上田
健志 篠宮
貴志 金子
智晃 高橋
駿弥 内藤
拓矢 円子
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024034252A1 publication Critical patent/WO2024034252A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/12Preparing schedules
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/20Information sensed or collected by the things relating to the thing itself
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/30Control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices

Definitions

  • the present invention relates to a storage battery system, a railway vehicle, a data server, and a method for controlling a storage battery system.
  • Patent Document 1 discloses that the temperature rise of the storage battery is predicted based on the battery temperature and the amount of charging/discharging current, and the temperature rise prediction result is used to set a plurality of upper limit charging/discharging currents so as not to exceed the upper limit temperature of the storage battery.
  • a method is disclosed in which one upper limit charging/discharging current value is selected from among the values to limit the charging/discharging current.
  • Patent Document 1 The technology described in Patent Document 1 is a method of controlling current to prevent temperature deviation based on real-time battery temperature and charging/discharging current amount. Therefore, even if the operation plan has been determined, it is not possible to change the current control plan immediately before operation to minimize the impact on operation, such as power outages and deterioration of electricity costs.
  • An object of the present invention is to provide a technology that minimizes the impact on operation, such as power shortages and deterioration of electricity costs, due to charging/discharging current limitations.
  • one of the typical storage battery systems of the present invention includes a battery temperature and charging rate prediction unit that predicts battery temperature and charging rate from operation information, storage battery information, and weather information; An overtemperature determination unit that determines whether the battery temperature predicted by the charging rate prediction unit is within the battery usable temperature range; and whether the charging rate predicted by the battery temperature and charging rate prediction unit is a charging rate that allows driving.
  • the upper limit at which the battery temperature is determined to be within the battery usable temperature range by the power shortage determination unit and the overtemperature determination unit, and the charging rate is determined to be a charging rate that allows driving.
  • an upper limit charging current value determining section that outputs a charging current value.
  • the storage battery system of the present invention it is possible to minimize the effects on operation such as power shortages and deterioration of electricity costs due to charge/discharge current limitations.
  • FIG. 1 is a system configuration diagram showing a storage battery system of this embodiment.
  • FIG. 2 is a diagram showing the operations of the battery temperature and charging rate prediction section, the overtemperature determination section, and the power shortage determination section of this embodiment.
  • FIG. 3 is a diagram showing a method for varying the upper limit charging current value according to the present embodiment.
  • FIG. 4 is a diagram showing a processing flow of the method for varying the upper limit charging current value of this embodiment.
  • FIG. 5 is a diagram showing an example of a case where the upper limit charging current value of this embodiment is varied for each station and reflected in the railway operation plan and the battery charging/discharging control plan.
  • FIG. 6 is a diagram showing an example of a case where the upper limit charging current value of this embodiment is varied for each station and for each station, and is reflected in the railway operation plan and battery charge/discharge control plan.
  • FIG. 1 is a system configuration diagram showing the storage battery system of this embodiment.
  • a storage battery system 10 includes a railway vehicle 20 and a data server 30.
  • the railway vehicle 20 includes a railway vehicle storage battery 21, a storage battery control device 22 that controls the storage battery 21, a storage battery information recording unit 23 that records the storage battery status output from the storage battery control device 22, and an operation system that records the railway operation plan and vehicle information.
  • An information recording unit 24 a data acquisition device 25 that acquires storage battery information from the storage battery information recording unit 23 and operation information from the operation information recording unit 24 , and communication that is connected to the data acquisition device 25 and sends and receives data to and from the data server 30
  • a device 26 is provided.
  • the data server 30 includes an operation information and storage battery information storage unit 31 that stores operation information and storage battery information provided in the railway vehicle 20, a weather information acquisition unit 32 that acquires weather information on the day of railway operation, and an operation information and storage battery information storage unit 31.
  • the battery temperature and charging rate prediction unit 33 predicts the battery temperature and charging rate on the day of railway operation from the data and the weather information of the weather information acquisition unit 32. The battery temperature predicted by the battery temperature and charging rate prediction unit 33 indicates the battery usage.
  • An overtemperature determining unit 34 that determines whether the temperature is within the possible temperature range
  • a power shortage determining unit 35 that determines whether the charging rate predicted by the battery temperature and charging rate predicting unit 33 is a charging rate that allows driving
  • an overtemperature determining unit an upper limit charging current value determination unit that outputs an upper limit charging current value at which the battery temperature is determined to be within the battery usable temperature range and the charging rate is determined to be a charging rate at which driving is possible by the battery temperature determination unit 34 and the power shortage determination unit 35; It is equipped with 36.
  • the storage battery 21 can store and supply electricity necessary for running a railway vehicle such as a storage battery train.
  • the storage battery control device 22 can acquire storage battery information from the storage battery 21 and control the storage battery 21 on a cell-by-cell or module-by-module basis based on the storage battery information.
  • As storage battery information current, voltage, charging rate, and temperature are output for each cell or module.
  • power, temperature, capacity maintenance rate, and resistance increase rate may be output.
  • vehicle speed, rotor frequency (of the motor that drives the railway vehicle 20), and cooling flow rate (driving rate of the fan for cooling the storage battery 21) may be output. .
  • the storage battery information recording unit 23 can record the storage battery information output from the storage battery control device 22.
  • the operation information recording unit 24 can record a diagram of a railway vehicle as a railway operation plan. Further, as vehicle information, occupancy rate, vehicle weight, vehicle position information, and number of passengers may be recorded. Alternatively, the station code (number assigned to the station) may be recorded.
  • the data acquisition device 25 can acquire storage battery information from the storage battery information recording section 23 and operation information from the operation information recording section 24.
  • the communication device 26 can transmit various information acquired by the data acquisition device 25 to the external data server 30.
  • a method for transmitting to the data server 30 a method using close proximity wireless communication (wireless LAN) at a station, a method using an LTE line, etc. may be used.
  • the communication device 26 may be a communication device of a storage battery system or a communication device of a TCMS (vehicle information control system).
  • the operation information and storage battery information storage unit 31 of the data server 30 can store storage battery information and operation information acquired from the communication device 26 on the railway vehicle 20.
  • the weather information acquisition unit 32 can acquire weather information on the day of railway operation. As weather information, outside temperature is acquired. In addition, humidity, cloud cover, rainfall, date and time, amount of solar radiation, month and day, amount of snowfall, wind speed, atmospheric pressure, and sea level may be acquired.
  • the battery temperature and charging rate prediction unit 33 calculates a train operation plan according to a railway operation plan and a railway operation plan based on the operation information and storage battery information accumulated in the operation information and storage battery information storage unit 31 and the weather information acquired by the weather information acquisition unit 32. It is possible to predict the temperature transition and charge rate transition of the storage battery 21 in the battery charge/discharge control plan.
  • the overtemperature determination unit 34 can determine whether the battery temperature predicted by the battery temperature and charging rate prediction unit 33 is within the battery usable temperature range.
  • the power shortage determining unit 35 can determine whether the charging rate predicted by the battery temperature and charging rate predicting unit 33 is a charging rate that allows the vehicle to run.
  • the upper limit charging current value determining unit 36 determines that the battery temperature is within the battery usable temperature range and the charging rate is at a charging rate that allows driving by the overtemperature determining unit 34 and the power shortage determining unit 35.
  • the upper limit charging current value can be output.
  • the data server 30 changes the upper limit charging current value to ensure that the battery temperature is within the battery usable temperature range and that the charging rate is sufficient for driving. It is possible to output an upper limit charging current value that is a rate.
  • the output upper limit charging current value is reflected in the railway operation plan and battery charge/discharge control plan.
  • the method for reflecting the information in the railway operation plan and the battery charging/discharging control plan may be a method of manually changing the control on-site, a method of changing the control remotely from an external data server, or the like.
  • FIG. 2 is a diagram showing the operations of the battery temperature and charging rate prediction unit, overtemperature determination unit, and power shortage determination unit of this embodiment.
  • the operation information obtained from the operation information and storage battery information storage section in Figure 1 and the temperature prediction information of the weather information obtained from the weather information acquisition section are input into the battery model that calculates the time-series changes in battery temperature and charging rate.
  • the results of time-series changes in battery temperature and charging rate are input to an overtemperature determining unit that determines whether the battery temperature is within the usable temperature range, and a power shortage determining unit that determines whether the charging rate is sufficient for driving.
  • the battery charge information of the operation information input to the battery model is The upper limit charging current value of the discharge control plan is varied and input into the battery model that calculates the time-series changes in battery temperature and charging rate.
  • the above-described upper limit charging current value is repeatedly varied to output an upper limit charging current value at which the battery temperature is within the battery usable temperature range and the charging rate is a charging rate at which driving is possible.
  • FIG. 3 is a diagram showing a method of varying the upper limit charging current value according to the present embodiment.
  • the upper limit charging current value variable range is within the diagonally lined range where the battery temperature is less than the upper limit temperature, which is the battery usable temperature range out-of-range threshold, and the charging rate exceeds the lower limit charging rate, which is the charging rate threshold for driving.
  • the upper limit charging current value is set to a value within the above upper limit charging current value variable range where the battery temperature does not exceed the battery usable temperature range. If no solution is found within the upper limit charging current value variable range, an upper limit charging current value that is less than the upper limit temperature is set, and the charging time required to reach the lower limit charging rate is output.
  • the driver when extending the station stop time according to the required charging time, the driver is notified of the extension of the station stop time by a display device (not shown) connected to the communication device 26.
  • FIG. 4 is a diagram showing the processing flow of the method for varying the upper limit charging current value of this embodiment. The processing steps will be explained below.
  • S401 Obtain operation information and storage battery information from the railway vehicle through communication, and obtain weather information from the outside.
  • S402 Set the upper limit charging current value determined by the railway operation plan and battery charging/discharging control plan.
  • S403 Predict the time series transition of battery temperature and charging rate from the operation information, storage battery information, and weather information acquired in S401 and the upper limit charging current value set in S402.
  • the upper limit charging current value determined by the railway operation plan and the battery charging/discharging control plan is varied by an arbitrary value.
  • the upper limit charging current value may be varied for each charging station, or may be varied all at once regardless of the charging station. Further, the upper limit charging current value may be varied depending on the travel section, travel distance, or travel time. Further, the upper limit charging current value may be varied according to operation information, storage battery information, or weather information.
  • S407 Predict the time-series changes in battery temperature and charging rate from the battery information and weather information acquired in S401 and the railway operation plan and battery charge/discharge control plan based on the upper limit charging current value changed in S406.
  • the process advances to S409, and if the above conditions are not met, the process advances to S405.
  • the lower limit charging rate shall be a value that allows the vehicle to reach the next electrified section or chargeable section even in the event of an emergency stop.
  • S409 The upper limit charging current value changed in S406 is reflected in the railway operation plan and battery charge/discharge control plan.
  • S410 Based on the upper limit charging current value set in S409, the required charging time is calculated and set, and the set required charging time is reflected in the railway operation plan and battery charge/discharge control plan.
  • FIG. 5 is a diagram showing an example in which the upper limit charging current value of this embodiment is varied for each station (each electrified section) and reflected in the railway operation plan and battery charge/discharge control plan.
  • Electrified sections are sections where charging is possible from overhead wires. Since the electrified section A and the electrified section D have a short charging time, the upper limit charging current value is not varied. Since electrified section B and electrified section C have a long chargeable time, the upper limit charging current value is varied and reflected in the railway operation plan and battery charge/discharge control plan.
  • the battery temperature changes in the reflected railway operation plan and battery charge/discharge control plan are such that the upper limit charging current value is suppressed in electrified section B and electrified section C, and battery heat generation is suppressed, so the battery temperature is within the battery usable temperature range. It can be suppressed within.
  • Electrified section B and electrified section C have a long charging time, so even if the upper limit charging current value is suppressed, the charging rate in the reflected railway operation plan and battery charge/discharge control plan will be suppressed to the upper limit charging current value. It is the same as if it were not done.
  • the upper limit charging current value for the electrified section B and the electrified section C is the same, but the upper limit charging current value may be varied for each electrified section.
  • Figure 6 is a diagram showing an example in which the upper limit charging current value is varied for each station (each electrified section) and between stations (each non-electrified section) and reflected in the railway operation plan and battery charge/discharge control plan. be. Since the electrified section A and the electrified section D have a short charging time, the upper limit charging current value is not varied. Since electrified section B and electrified section C have a long chargeable time, the upper limit charging current value is varied and reflected in the railway operation plan and battery charge/discharge control plan.
  • the upper limit charging current value for electrified sections When changing the upper limit charging current value for electrified sections, if the battery temperature is within the battery usable temperature range and the charging rate does not meet the conditions that the charging rate can be driven, the upper limit charging current value for each non-electrified section will be changed. This will be reflected in the railway operation plan and battery charging/discharging control plan.
  • the upper limit charging current value is suppressed in electrified section B and electrified section C, and in addition, the upper limit charging current value is suppressed in each non-electrified section, Since battery heat generation is suppressed, the battery temperature can be kept within the usable temperature range.
  • the charging rate in the reflected railway operation plan and battery charging/discharging control plan is determined by suppressing the upper limit charging current value in each non-electrified section, so that some regenerative power is not recovered, and the upper limit charging current value in the electrified section As the charging rate is suppressed, the charging rate will be lower than when the upper limit charging current value is not varied.
  • the charging rate will be maintained at or above the level that allows the train to run, so power shortages will not occur.
  • the upper limit charging current value is the same for the electrified section B, the electrified section C, and each non-electrified section, but the upper limit charging current value may be varied for each electrified section or for each non-electrified section.
  • the upper limit charging current value such that the battery temperature is within the battery usable temperature range and the charging rate is a charging rate that allows driving, there is no possibility of power shortages due to charging/discharging current limitations, and worsening of electricity costs. The impact on operations such as these can be minimized.
  • the upper limit charging current value determination unit can change the current control plan immediately before operation when the operation plan has been decided, thereby preventing power shortages and worsening electricity costs. It is possible to minimize the impact on operations such as
  • the upper limit charging current value can correspond to the quick charging current or the regenerative current by being the quick charging current value or the regenerative current value.
  • the quick charging current value can be set in detail.
  • the battery temperature can be adjusted to the battery usable temperature by outputting the required charging time. It is possible to cope with the case where there is no upper limit charging current value that is within the range and the charging rate is a charging rate that allows driving.
  • the required charging time can be secured by extending the station stop time depending on the required charging time.
  • the battery temperature and charging rate prediction unit predicts the battery temperature and charging rate by taking into account fluctuations in auxiliary power due to operation information, storage battery information, or weather information, so that the battery temperature and charging rate can be determined more accurately. Can be predicted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computing Systems (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

The purpose of the present invention is to provide a technology for minimizing an influence on operation, such as power consumption degradation or power deficiency caused by charge/discharge current limitation. Accordingly, this storage battery system is provided with: a battery temperature and charge rate prediction unit that predicts a battery temperature and a charge rate from operation information, storage battery information, and weather information; an overtemperature determination unit that determines whether the battery temperature predicted by the battery temperature and charge rate prediction unit is within a battery usable temperature range; a power deficiency determination unit that determines whether the charge rate predicted by the battery temperature and charge rate prediction unit is a charge rate at which travel is possible; and an upper limit charge current value decision unit that outputs an upper limit charge current value at which the battery temperature is determined to be within the battery usable temperature range by the overtemperature determination unit and at which the charge rate is determined to be the charge rate at which travel is possible by the power deficiency determination unit.

Description

蓄電池システム、鉄道車両、データサーバ及び蓄電池システムの制御方法Storage battery system, railway vehicle, data server, and storage battery system control method
 本発明は、蓄電池システム、鉄道車両、データサーバ及び蓄電池システムの制御方法に関する。 The present invention relates to a storage battery system, a railway vehicle, a data server, and a method for controlling a storage battery system.
 鉄道車両用蓄電池システムに用いられるリチウムイオン電池等の蓄電池においては、安全保護や劣化防止のため、電池の使用可能温度範囲(例:-30~60℃)を逸脱しないよう充放電電流を制限する必要がある。 For storage batteries such as lithium-ion batteries used in storage battery systems for railway vehicles, charging and discharging currents are limited so as not to deviate from the battery's usable temperature range (e.g. -30 to 60°C) for safety protection and prevention of deterioration. There is a need.
 充放電電流制限により、架線区間にいる間に次の架線区間まで走行するのに必要な電力を貯め切れずに電欠が発生するリスクや、減速時の回生電力を蓄電池で吸収しきれずに電費が悪化する恐れがある。 Due to charging/discharging current limitations, there is a risk of power shortages due to not being able to store enough power to travel to the next overhead line section while on an overhead line section, and a reduction in electricity costs due to the storage battery not being able to fully absorb regenerated power during deceleration. may worsen.
 特許文献1には、電池温度、及び充放電電流量に基づいて、蓄電池の温度上昇を予測し、温度上昇の予測結果を用いて蓄電池の上限温度を超えないように複数の上限充放電電流の値から1つの上限充放電電流の値を選択して充放電電流を制限する手法が開示されている。 Patent Document 1 discloses that the temperature rise of the storage battery is predicted based on the battery temperature and the amount of charging/discharging current, and the temperature rise prediction result is used to set a plurality of upper limit charging/discharging currents so as not to exceed the upper limit temperature of the storage battery. A method is disclosed in which one upper limit charging/discharging current value is selected from among the values to limit the charging/discharging current.
特開2018―170904号公報Unexamined Japanese Patent Publication No. 2018-170904
 特許文献1に記載の技術は、リアルタイムの電池温度、充放電電流量に基づいて温度逸脱をしないよう電流制御する手法である。よって、運行計画が決まっている場合において、運行直前に電流制御計画を変更して、電欠や電費悪化等の運行への影響を最小限に抑えるようなことができない。 The technology described in Patent Document 1 is a method of controlling current to prevent temperature deviation based on real-time battery temperature and charging/discharging current amount. Therefore, even if the operation plan has been determined, it is not possible to change the current control plan immediately before operation to minimize the impact on operation, such as power outages and deterioration of electricity costs.
 本発明の目的は、充放電電流制限による電欠や電費悪化等の運行への影響を最小限に抑える技術を提供することである。 An object of the present invention is to provide a technology that minimizes the impact on operation, such as power shortages and deterioration of electricity costs, due to charging/discharging current limitations.
 上記課題を解決するために、代表的な本発明の蓄電池システムの一つは、運行情報、蓄電池情報及び気象情報から電池温度及び充電率を予測する電池温度及び充電率予測部と、電池温度及び充電率予測部で予測された電池温度が電池使用可能温度範囲内であるか判定する過温度判定部と、電池温度及び充電率予測部で予測された充電率が走行可能な充電率であるか判定する電欠判定部と、過温度判定部で電池温度が電池使用可能温度範囲内であると判定され、かつ、電欠判定部で充電率が走行可能な充電率であると判定される上限充電電流値を出力する上限充電電流値決定部とを備える。 In order to solve the above problems, one of the typical storage battery systems of the present invention includes a battery temperature and charging rate prediction unit that predicts battery temperature and charging rate from operation information, storage battery information, and weather information; An overtemperature determination unit that determines whether the battery temperature predicted by the charging rate prediction unit is within the battery usable temperature range; and whether the charging rate predicted by the battery temperature and charging rate prediction unit is a charging rate that allows driving. The upper limit at which the battery temperature is determined to be within the battery usable temperature range by the power shortage determination unit and the overtemperature determination unit, and the charging rate is determined to be a charging rate that allows driving. and an upper limit charging current value determining section that outputs a charging current value.
 本発明の蓄電池システムによれば、充放電電流制限による電欠や電費悪化等の運行への影響を最小限に抑えることができる。 According to the storage battery system of the present invention, it is possible to minimize the effects on operation such as power shortages and deterioration of electricity costs due to charge/discharge current limitations.
 上記した以外の課題、構成及び効果は、以下の発明を実施するための形態における説明により明らかにされる。 Problems, configurations, and effects other than those described above will be made clear by the description in the detailed description below.
図1は、本実施形態の蓄電池システムを示すシステム構成図である。FIG. 1 is a system configuration diagram showing a storage battery system of this embodiment. 図2は、本実施形態の電池温度及び充電率予測部と過温度判定部及び電欠判定部の動作を示した図である。FIG. 2 is a diagram showing the operations of the battery temperature and charging rate prediction section, the overtemperature determination section, and the power shortage determination section of this embodiment. 図3は、本実施形態の上限充電電流値の可変方法を示した図である。FIG. 3 is a diagram showing a method for varying the upper limit charging current value according to the present embodiment. 図4は、本実施形態の上限充電電流値可変方法の処理フローを示した図である。FIG. 4 is a diagram showing a processing flow of the method for varying the upper limit charging current value of this embodiment. 図5は、本実施形態の上限充電電流値を駅毎に可変し、鉄道運行計画及び電池充放電制御計画に反映した場合の一例を示した図である。FIG. 5 is a diagram showing an example of a case where the upper limit charging current value of this embodiment is varied for each station and reflected in the railway operation plan and the battery charging/discharging control plan. 図6は、本実施形態の上限充電電流値を駅毎及び駅間毎に可変し、鉄道運行計画及び電池充放電制御計画に反映した場合の一例を示した図である。FIG. 6 is a diagram showing an example of a case where the upper limit charging current value of this embodiment is varied for each station and for each station, and is reflected in the railway operation plan and battery charge/discharge control plan.
 以下、図を参照して本発明を実施するための形態について説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は、本実施形態の蓄電池システムを示すシステム構成図である。同図において、蓄電池システム10は、鉄道車両20とデータサーバ30を備える。鉄道車両20は、鉄道車両用蓄電池21、蓄電池21を制御する蓄電池制御装置22、蓄電池制御装置22から出力された蓄電池状態を記録する蓄電池情報記録部23、鉄道運行計画及び車両情報を記録する運行情報記録部24、蓄電池情報記録部23の蓄電池情報と運行情報記録部24の運行情報を取得するデータ取得装置25、及びデータ取得装置25と接続されておりデータサーバ30とデータの送受信を行う通信装置26を備えている。 FIG. 1 is a system configuration diagram showing the storage battery system of this embodiment. In the figure, a storage battery system 10 includes a railway vehicle 20 and a data server 30. The railway vehicle 20 includes a railway vehicle storage battery 21, a storage battery control device 22 that controls the storage battery 21, a storage battery information recording unit 23 that records the storage battery status output from the storage battery control device 22, and an operation system that records the railway operation plan and vehicle information. An information recording unit 24 , a data acquisition device 25 that acquires storage battery information from the storage battery information recording unit 23 and operation information from the operation information recording unit 24 , and communication that is connected to the data acquisition device 25 and sends and receives data to and from the data server 30 A device 26 is provided.
 データサーバ30は、鉄道車両20に備わる運行情報と蓄電池情報を蓄積する運行情報及び蓄電池情報蓄積部31、鉄道運行日の気象情報を取得する気象情報取得部32、運行情報及び蓄電池情報蓄積部31のデータと気象情報取得部32の気象情報から鉄道運行日における電池温度と充電率を予測する電池温度及び充電率予測部33、電池温度及び充電率予測部33で予測された電池温度が電池使用可能温度範囲内であるか判定する過温度判定部34、電池温度及び充電率予測部33で予測された充電率が走行可能な充電率であるか判定する電欠判定部35、過温度判定部34及び電欠判定部35にて電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率であると判定される上限充電電流値を出力する上限充電電流値決定部36を備えている。 The data server 30 includes an operation information and storage battery information storage unit 31 that stores operation information and storage battery information provided in the railway vehicle 20, a weather information acquisition unit 32 that acquires weather information on the day of railway operation, and an operation information and storage battery information storage unit 31. The battery temperature and charging rate prediction unit 33 predicts the battery temperature and charging rate on the day of railway operation from the data and the weather information of the weather information acquisition unit 32.The battery temperature predicted by the battery temperature and charging rate prediction unit 33 indicates the battery usage. An overtemperature determining unit 34 that determines whether the temperature is within the possible temperature range, a power shortage determining unit 35 that determines whether the charging rate predicted by the battery temperature and charging rate predicting unit 33 is a charging rate that allows driving, and an overtemperature determining unit an upper limit charging current value determination unit that outputs an upper limit charging current value at which the battery temperature is determined to be within the battery usable temperature range and the charging rate is determined to be a charging rate at which driving is possible by the battery temperature determination unit 34 and the power shortage determination unit 35; It is equipped with 36.
 図1を用いて、蓄電池システム10が上限充電電流値を出力する処理とデータの流れについて説明する。 The process by which the storage battery system 10 outputs the upper limit charging current value and the flow of data will be described using FIG. 1.
 蓄電池21は、蓄電池電車などの鉄道車両の走行に必要な電力の貯蔵・供給を担うことができる。 The storage battery 21 can store and supply electricity necessary for running a railway vehicle such as a storage battery train.
 蓄電池制御装置22は、蓄電池21から蓄電池情報を取得し、蓄電池情報に基づき蓄電池21をセル単位またはモジュール単位で制御することができる。蓄電池情報としては、セル単位またはモジュール単位で、電流、電圧、充電率、温度を出力する。このほか、電力、気温、容量維持率、抵抗上昇率を出力してもよい。また、蓄電池21に当たる風量に関連するものとして、車両速度、(鉄道車両20を駆動するモータの)ロータ周波数、冷却通流率(蓄電池21を冷やすためのファンの駆動率)を出力してもよい。 The storage battery control device 22 can acquire storage battery information from the storage battery 21 and control the storage battery 21 on a cell-by-cell or module-by-module basis based on the storage battery information. As storage battery information, current, voltage, charging rate, and temperature are output for each cell or module. In addition, power, temperature, capacity maintenance rate, and resistance increase rate may be output. Further, as information related to the amount of air hitting the storage battery 21, vehicle speed, rotor frequency (of the motor that drives the railway vehicle 20), and cooling flow rate (driving rate of the fan for cooling the storage battery 21) may be output. .
 蓄電池情報記録部23は、蓄電池制御装置22から出力された蓄電池情報を記録することができる。 The storage battery information recording unit 23 can record the storage battery information output from the storage battery control device 22.
 運行情報記録部24は、鉄道運行計画として、鉄道車両のダイヤグラムを記録することができる。また、車両情報として、乗車率、車両重量、車両位置情報、乗車人員を記録してもよい。また、駅コード(駅に振られた番号)を記録してもよい。 The operation information recording unit 24 can record a diagram of a railway vehicle as a railway operation plan. Further, as vehicle information, occupancy rate, vehicle weight, vehicle position information, and number of passengers may be recorded. Alternatively, the station code (number assigned to the station) may be recorded.
 データ取得装置25は、蓄電池情報記録部23の蓄電池情報及び運行情報記録部24の運行情報を取得することができる。 The data acquisition device 25 can acquire storage battery information from the storage battery information recording section 23 and operation information from the operation information recording section 24.
 通信装置26は、データ取得装置25で取得した各種情報を外部のデータサーバ30に送信することができる。データサーバ30への送信方法は、駅における近接無線(無線LAN)による方法、LTE回線による方法等を用いればよい。また、通信装置26は、蓄電池システムの通信装置を用いてもよいし、TCMS(車両情報制御装置)の通信装置を用いてもよい。 The communication device 26 can transmit various information acquired by the data acquisition device 25 to the external data server 30. As a method for transmitting to the data server 30, a method using close proximity wireless communication (wireless LAN) at a station, a method using an LTE line, etc. may be used. Further, the communication device 26 may be a communication device of a storage battery system or a communication device of a TCMS (vehicle information control system).
 データサーバ30の運行情報及び蓄電池情報蓄積部31は、鉄道車両20上の通信装置26から取得した蓄電池情報と運行情報を蓄積することができる。 The operation information and storage battery information storage unit 31 of the data server 30 can store storage battery information and operation information acquired from the communication device 26 on the railway vehicle 20.
 気象情報取得部32は、鉄道運行日の気象情報を取得することができる。気象情報としては、外気温を取得する。このほか、湿度、雲量、雨量、日時、日射量、月日、降雪量、風速、気圧、海面水位を取得してもよい。 The weather information acquisition unit 32 can acquire weather information on the day of railway operation. As weather information, outside temperature is acquired. In addition, humidity, cloud cover, rainfall, date and time, amount of solar radiation, month and day, amount of snowfall, wind speed, atmospheric pressure, and sea level may be acquired.
 電池温度及び充電率予測部33は、運行情報及び蓄電池情報蓄積部31に蓄積された蓄電池情報と運行情報及び気象情報取得部32で取得した気象情報から、鉄道運行計画及び鉄道運行計画に沿った電池充放電制御計画における蓄電池21の温度推移及び充電率推移を予測することができる。 The battery temperature and charging rate prediction unit 33 calculates a train operation plan according to a railway operation plan and a railway operation plan based on the operation information and storage battery information accumulated in the operation information and storage battery information storage unit 31 and the weather information acquired by the weather information acquisition unit 32. It is possible to predict the temperature transition and charge rate transition of the storage battery 21 in the battery charge/discharge control plan.
 過温度判定部34は、電池温度及び充電率予測部33で予測された電池温度が電池使用可能温度範囲内であるか判定することができる。 The overtemperature determination unit 34 can determine whether the battery temperature predicted by the battery temperature and charging rate prediction unit 33 is within the battery usable temperature range.
 電欠判定部35は、電池温度及び充電率予測部33で予測された充電率が走行可能な充電率であるか判定することができる。 The power shortage determining unit 35 can determine whether the charging rate predicted by the battery temperature and charging rate predicting unit 33 is a charging rate that allows the vehicle to run.
 上限充電電流値決定部36は、過温度判定部34及び電欠判定部35にて電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率であると判定される上限充電電流値を出力することができる。 The upper limit charging current value determining unit 36 determines that the battery temperature is within the battery usable temperature range and the charging rate is at a charging rate that allows driving by the overtemperature determining unit 34 and the power shortage determining unit 35. The upper limit charging current value can be output.
 データサーバ30は、蓄電池21の温度推移が電池使用可能温度範囲外である場合は、上限充電電流値を可変し電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率である上限充電電流値を出力することができる。出力された上限充電電流値は、鉄道運行計画及び電池充放電制御計画に反映する。鉄道運行計画及び電池充放電制御計画への反映方法は、現地で人手により制御を変更する方法、外部データサーバから遠隔で制御を変更する方法等を用いればよい。 When the temperature change of the storage battery 21 is outside the battery usable temperature range, the data server 30 changes the upper limit charging current value to ensure that the battery temperature is within the battery usable temperature range and that the charging rate is sufficient for driving. It is possible to output an upper limit charging current value that is a rate. The output upper limit charging current value is reflected in the railway operation plan and battery charge/discharge control plan. The method for reflecting the information in the railway operation plan and the battery charging/discharging control plan may be a method of manually changing the control on-site, a method of changing the control remotely from an external data server, or the like.
 図2は、本実施形態の電池温度及び充電率予測部と過温度判定部及び電欠判定部の動作を示した図である。図1の運行情報及び蓄電池情報蓄積部から取得した運行情報及び気象情報取得部から取得した気象情報の気温予測情報を電池温度と充電率の時系列推移を算出する電池モデルに入力し、算出された電池温度と充電率の時系列推移結果が電池使用可能温度範囲内であるか判定する過温度判定部と走行可能な充電率であるか判定する電欠判定部に入力される。過温度判定部及び電欠判定部の判定結果が、電池使用可能温度範囲外であるか、または電欠を引き起こす可能性がある充電率である場合、電池モデルに入力される運行情報の電池充放電制御計画の上限充電電流値を可変し、電池温度と充電率の時系列推移を算出する電池モデルに入力する。上記、上限充電電流値を繰り返し可変し、電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率である上限充電電流値を出力する。 FIG. 2 is a diagram showing the operations of the battery temperature and charging rate prediction unit, overtemperature determination unit, and power shortage determination unit of this embodiment. The operation information obtained from the operation information and storage battery information storage section in Figure 1 and the temperature prediction information of the weather information obtained from the weather information acquisition section are input into the battery model that calculates the time-series changes in battery temperature and charging rate. The results of time-series changes in battery temperature and charging rate are input to an overtemperature determining unit that determines whether the battery temperature is within the usable temperature range, and a power shortage determining unit that determines whether the charging rate is sufficient for driving. If the judgment results of the over-temperature judgment unit and the power shortage judgment unit are outside the battery usable temperature range or the charging rate is likely to cause a power shortage, the battery charge information of the operation information input to the battery model is The upper limit charging current value of the discharge control plan is varied and input into the battery model that calculates the time-series changes in battery temperature and charging rate. The above-described upper limit charging current value is repeatedly varied to output an upper limit charging current value at which the battery temperature is within the battery usable temperature range and the charging rate is a charging rate at which driving is possible.
 図3は、本実施形態の上限充電電流値の可変方法を示した図である。上限充電電流値を可変すると、電池温度と充電率も可変される。電池温度が電池使用可能温度範囲外閾値である上限温度未満かつ充電率が走行可能な充電率閾値である下限充電率を超える斜線の範囲内が上限充電電流値可変範囲である。電池温度が電池使用可能温度範囲を超えない、上記、上限充電電流値可変範囲内の値に上限充電電流値を設定する。上限充電電流値可変範囲内の値に解が見つからなかった場合は、上限温度未満を満たす上限充電電流値を設定し、下限充電率に到達するまでに必要な充電時間を出力する。 FIG. 3 is a diagram showing a method of varying the upper limit charging current value according to the present embodiment. When the upper limit charging current value is varied, the battery temperature and charging rate are also varied. The upper limit charging current value variable range is within the diagonally lined range where the battery temperature is less than the upper limit temperature, which is the battery usable temperature range out-of-range threshold, and the charging rate exceeds the lower limit charging rate, which is the charging rate threshold for driving. The upper limit charging current value is set to a value within the above upper limit charging current value variable range where the battery temperature does not exceed the battery usable temperature range. If no solution is found within the upper limit charging current value variable range, an upper limit charging current value that is less than the upper limit temperature is set, and the charging time required to reach the lower limit charging rate is output.
 なお、必要な充電時間に応じて、駅停車時間を延長する場合は、通信装置26に接続された図示しない表示装置により、駅停車時間の延長を運転士に伝える。 In addition, when extending the station stop time according to the required charging time, the driver is notified of the extension of the station stop time by a display device (not shown) connected to the communication device 26.
 図4は、本実施形態の上限充電電流値可変方法の処理フローを示した図である。以下、処理ステップに従い説明する。 FIG. 4 is a diagram showing the processing flow of the method for varying the upper limit charging current value of this embodiment. The processing steps will be explained below.
 S400:本実施形態に関する制御処理を開始する。 S400: Control processing related to this embodiment is started.
 S401:鉄道車両から通信により運行情報及び蓄電池情報を取得し、気象情報を外部から取得する。 S401: Obtain operation information and storage battery information from the railway vehicle through communication, and obtain weather information from the outside.
 S402:鉄道運行計画及び電池充放電制御計画により定められる上限充電電流値を設定する。 S402: Set the upper limit charging current value determined by the railway operation plan and battery charging/discharging control plan.
 S403:S401で取得した運行情報、蓄電池情報、及び気象情報とS402で設定した上限充電電流値から電池温度と充電率の時系列推移を予測する。 S403: Predict the time series transition of battery temperature and charging rate from the operation information, storage battery information, and weather information acquired in S401 and the upper limit charging current value set in S402.
 S404:S403で予測した電池温度が電池使用可能温度範囲外閾値である上限温度以上である場合はS405に進み、上限温度未満である場合はS411に進む。 S404: If the battery temperature predicted in S403 is equal to or higher than the upper limit temperature that is the battery usable temperature range outside threshold, the process proceeds to S405, and if it is less than the upper limit temperature, the process proceeds to S411.
 S405:上限充電電流値を小さくしても上限充電電流値可変範囲内である場合はS406に進み、これ以上小さくすると可変範囲外となる場合はS409に進む。 S405: If the upper limit charging current value is still within the variable range even if the upper limit charging current value is made smaller, the process proceeds to S406, and if the upper limit charging current value is decreased further, it will be outside the variable range, the process proceeds to S409.
 S406:鉄道運行計画及び電池充放電制御計画により定められる上限充電電流値を任意の値だけ小さく可変する。上限充電電流値は充電駅毎に可変してもよいし、充電駅に関わらず一括で可変してもよい。また、上限充電電流値は走行区間、走行距離、または走行時間に応じて可変してもよい。また、上限充電電流値は運行情報、蓄電池情報、または気象情報に応じて可変してもよい。 S406: The upper limit charging current value determined by the railway operation plan and the battery charging/discharging control plan is varied by an arbitrary value. The upper limit charging current value may be varied for each charging station, or may be varied all at once regardless of the charging station. Further, the upper limit charging current value may be varied depending on the travel section, travel distance, or travel time. Further, the upper limit charging current value may be varied according to operation information, storage battery information, or weather information.
 S407:S401で取得した蓄電池情報及び気象情報とS406で可変した上限充電電流値に基づく鉄道運行計画及び電池充放電制御計画から電池温度と充電率の時系列推移を予測する。 S407: Predict the time-series changes in battery temperature and charging rate from the battery information and weather information acquired in S401 and the railway operation plan and battery charge/discharge control plan based on the upper limit charging current value changed in S406.
 S408:S407で予測した予測電池温度が電池使用可能温度範囲外閾値である上限温度未満であり、かつ、S407で予測した予測充電率が走行可能な充電率閾値である下限充電率を超える場合はS409に進み、上記条件を満たさない場合はS405に進む。下限充電率は非常停止した場合でも次の電化区間または充電可能区間に到達可能な値とする。 S408: If the predicted battery temperature predicted in S407 is less than the upper limit temperature which is the battery usable temperature range out-of-range threshold, and the predicted charging rate predicted in S407 exceeds the lower limit charging rate which is the charging rate threshold for driving. The process advances to S409, and if the above conditions are not met, the process advances to S405. The lower limit charging rate shall be a value that allows the vehicle to reach the next electrified section or chargeable section even in the event of an emergency stop.
 S409:S406で可変した上限充電電流値を鉄道運行計画及び電池充放電制御計画に反映する。 S409: The upper limit charging current value changed in S406 is reflected in the railway operation plan and battery charge/discharge control plan.
 S410:S409で設定した上限充電電流値に基づき、必要充電時間を算出及び設定し、設定した必要充電時間を鉄道運行計画及び電池充放電制御計画に反映する。 S410: Based on the upper limit charging current value set in S409, the required charging time is calculated and set, and the set required charging time is reflected in the railway operation plan and battery charge/discharge control plan.
 S411:本実施形態に関する制御処理を終了する。 S411: The control process related to this embodiment ends.
 図5は、本実施形態の上限充電電流値を駅毎(電化区間毎)に可変し、鉄道運行計画及び電池充放電制御計画に反映した場合の一例を示した図である。電化区間は架線から充電可能な区間である。電化区間Aと電化区間Dは充電可能時間が少ないため、上限充電電流値を可変しない。電化区間Bと電化区間Cは充電可能時間が長いため、上限充電電流値を可変し、鉄道運行計画及び電池充放電制御計画に反映する。反映された鉄道運行計画及び電池充放電制御計画での電池温度推移は、電化区間Bと電化区間Cで上限充電電流値が抑制され、電池発熱が抑制されるため電池温度は電池使用可能温度範囲内に抑えられる。電化区間Bと電化区間Cは充電可能時間が長いため、上限充電電流値を抑制した場合においても、反映された鉄道運行計画及び電池充放電制御計画での充電率は、上限充電電流値を抑制しない場合と同様となる。本例では、電化区間Bと電化区間Cの上限充電電流値は同じとしたが、電化区間毎に上限充電電流値を可変してもよい。 FIG. 5 is a diagram showing an example in which the upper limit charging current value of this embodiment is varied for each station (each electrified section) and reflected in the railway operation plan and battery charge/discharge control plan. Electrified sections are sections where charging is possible from overhead wires. Since the electrified section A and the electrified section D have a short charging time, the upper limit charging current value is not varied. Since electrified section B and electrified section C have a long chargeable time, the upper limit charging current value is varied and reflected in the railway operation plan and battery charge/discharge control plan. The battery temperature changes in the reflected railway operation plan and battery charge/discharge control plan are such that the upper limit charging current value is suppressed in electrified section B and electrified section C, and battery heat generation is suppressed, so the battery temperature is within the battery usable temperature range. It can be suppressed within. Electrified section B and electrified section C have a long charging time, so even if the upper limit charging current value is suppressed, the charging rate in the reflected railway operation plan and battery charge/discharge control plan will be suppressed to the upper limit charging current value. It is the same as if it were not done. In this example, the upper limit charging current value for the electrified section B and the electrified section C is the same, but the upper limit charging current value may be varied for each electrified section.
 図6は、上限充電電流値を駅毎(電化区間毎)及び駅間毎(非電化区間毎)に可変し、鉄道運行計画及び電池充放電制御計画に反映した場合の一例を示した図である。電化区間Aと電化区間Dは充電可能時間が少ないため、上限充電電流値を可変しない。電化区間Bと電化区間Cは充電可能時間が長いため、上限充電電流値を可変し、鉄道運行計画及び電池充放電制御計画に反映する。電化区間の上限充電電流値の可変では電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率である条件を満たさない場合は、各非電化区間の上限充電電流値を可変し、鉄道運行計画及び電池充放電制御計画に反映する。 Figure 6 is a diagram showing an example in which the upper limit charging current value is varied for each station (each electrified section) and between stations (each non-electrified section) and reflected in the railway operation plan and battery charge/discharge control plan. be. Since the electrified section A and the electrified section D have a short charging time, the upper limit charging current value is not varied. Since electrified section B and electrified section C have a long chargeable time, the upper limit charging current value is varied and reflected in the railway operation plan and battery charge/discharge control plan. When changing the upper limit charging current value for electrified sections, if the battery temperature is within the battery usable temperature range and the charging rate does not meet the conditions that the charging rate can be driven, the upper limit charging current value for each non-electrified section will be changed. This will be reflected in the railway operation plan and battery charging/discharging control plan.
 反映された鉄道運行計画及び電池充放電制御計画での電池温度推移は、電化区間Bと電化区間Cで上限充電電流値が抑制され、加えて各非電化区間で上限充電電流値が抑制され、電池発熱が抑制されるため、電池使用可能温度範囲内に抑えられる。反映された鉄道運行計画及び電池充放電制御計画での充電率は、各非電化区間での上限充電電流値抑制により、回生電力を一部回収せず、また、電化区間での上限充電電流値が抑制されるため、充電率が上限充電電流値を可変しない場合と比べて低下するが、鉄道運行計画及び電池充放電制御計画上では走行可能な充電率以上を維持するため電欠は発生しない。本例では、電化区間B、電化区間C及び各非電化区間の上限充電電流値は同じとしたが、電化区間毎または非電化区間毎に上限充電電流値を可変してもよい。 Regarding battery temperature trends in the reflected railway operation plan and battery charge/discharge control plan, the upper limit charging current value is suppressed in electrified section B and electrified section C, and in addition, the upper limit charging current value is suppressed in each non-electrified section, Since battery heat generation is suppressed, the battery temperature can be kept within the usable temperature range. The charging rate in the reflected railway operation plan and battery charging/discharging control plan is determined by suppressing the upper limit charging current value in each non-electrified section, so that some regenerative power is not recovered, and the upper limit charging current value in the electrified section As the charging rate is suppressed, the charging rate will be lower than when the upper limit charging current value is not varied. However, according to the railway operation plan and battery charging/discharging control plan, the charging rate will be maintained at or above the level that allows the train to run, so power shortages will not occur. . In this example, the upper limit charging current value is the same for the electrified section B, the electrified section C, and each non-electrified section, but the upper limit charging current value may be varied for each electrified section or for each non-electrified section.
 なお、図5および図6では、理解を容易にするため、非電化区間の充電率の変化を直線的に示した。 Note that in FIGS. 5 and 6, changes in the charging rate in non-electrified sections are shown linearly for easy understanding.
 本実施例によれば、電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率である上限充電電流値とすることにより、充放電電流制限による電欠や電費悪化等の運行への影響を最小限に抑えられる。 According to this embodiment, by setting the upper limit charging current value such that the battery temperature is within the battery usable temperature range and the charging rate is a charging rate that allows driving, there is no possibility of power shortages due to charging/discharging current limitations, and worsening of electricity costs. The impact on operations such as these can be minimized.
 また、上限充電電流値決定部は、運行開始前に、上限充電電流値を出力することにより、運行計画が決まっている場合において、運行直前に電流制御計画を変更して、電欠や電費悪化等の運行への影響を最小限に抑えることができる。 In addition, by outputting the upper limit charging current value before the start of operation, the upper limit charging current value determination unit can change the current control plan immediately before operation when the operation plan has been decided, thereby preventing power shortages and worsening electricity costs. It is possible to minimize the impact on operations such as
 また、上限充電電流値は、急速充電電流値または回生電流値であることにより、急速充電電流または回生電流に対応することができる。 Moreover, the upper limit charging current value can correspond to the quick charging current or the regenerative current by being the quick charging current value or the regenerative current value.
 また、急速充電電流値は、駅毎または充電可能な電化区間毎に設定することにより、急速充電電流値をきめ細かく設定することができる。 Furthermore, by setting the quick charging current value for each station or for each chargeable electrified section, the quick charging current value can be set in detail.
 また、回生電流値は、駅間毎または非電化区間毎に設定することにより、回収する回生電流値をきめ細かく設定することができる。 Furthermore, by setting the regenerative current value for each station or for each non-electrified section, it is possible to finely set the regenerative current value to be collected.
 また、電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率である上限充電電流値がない場合、必要充電時間を出力することにより、電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率である上限充電電流値がない場合に対応することができる。 In addition, if the battery temperature is within the battery usable temperature range and there is no upper limit charging current value at which the charging rate is at a charging rate that allows driving, the battery temperature can be adjusted to the battery usable temperature by outputting the required charging time. It is possible to cope with the case where there is no upper limit charging current value that is within the range and the charging rate is a charging rate that allows driving.
 また、必要充電時間に応じて、駅停車時間を延長することにより、必要充電時間を確保することができる。 Additionally, the required charging time can be secured by extending the station stop time depending on the required charging time.
 また、電池温度及び充電率予測部は、運行情報、蓄電池情報または気象情報による補機電力の変動を加味して、電池温度及び充電率を予測することにより、電池温度及び充電率をより正確に予測することができる。 In addition, the battery temperature and charging rate prediction unit predicts the battery temperature and charging rate by taking into account fluctuations in auxiliary power due to operation information, storage battery information, or weather information, so that the battery temperature and charging rate can be determined more accurately. Can be predicted.
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。 The present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included within the scope of the present invention, as long as they do not impair the characteristics of the present invention. .
10…蓄電池システム、20…鉄道車両、21…蓄電池、22…蓄電池制御装置、23…蓄電池情報記録部、24…運行情報記録部、25…データ取得装置、26…通信装置、30…データサーバ、31…運行情報及び蓄電池情報蓄積部、32…気象情報取得部、33…電池温度及び充電率予測部、34…過温度判定部、35…電欠判定部、36…上限充電電流値決定部。 10...Storage battery system, 20...Railway vehicle, 21...Storage battery, 22...Storage battery control device, 23...Storage battery information recording unit, 24...Operation information recording unit, 25...Data acquisition device, 26...Communication device, 30...Data server, 31... Operation information and storage battery information storage section, 32... Weather information acquisition section, 33... Battery temperature and charging rate prediction section, 34... Overtemperature determination section, 35... Power shortage determination section, 36... Upper limit charging current value determination section.

Claims (12)

  1.  蓄電池システムであって、
     運行情報、蓄電池情報及び気象情報から電池温度及び充電率を予測する電池温度及び充電率予測部と、
     前記電池温度及び充電率予測部で予測された前記電池温度が電池使用可能温度範囲内であるか判定する過温度判定部と、
     前記電池温度及び充電率予測部で予測された前記充電率が走行可能な充電率であるか判定する電欠判定部と、
     前記過温度判定部で前記電池温度が電池使用可能温度範囲内であると判定され、かつ、前記電欠判定部で前記充電率が走行可能な充電率であると判定される上限充電電流値を出力する上限充電電流値決定部と、
     を備える蓄電池システム。
    A storage battery system,
    a battery temperature and charging rate prediction unit that predicts battery temperature and charging rate from operation information, storage battery information, and weather information;
    an overtemperature determination unit that determines whether the battery temperature predicted by the battery temperature and charging rate prediction unit is within a battery usable temperature range;
    a power shortage determination unit that determines whether the charging rate predicted by the battery temperature and charging rate prediction unit is a charging rate that allows driving;
    An upper limit charging current value at which the battery temperature is determined to be within a battery usable temperature range by the overtemperature determining section and the charging rate is determined to be a charging rate at which driving is possible by the power shortage determining section. an upper limit charging current value determination unit to output;
    A storage battery system equipped with
  2.  請求項1に記載の蓄電池システムであって、
     前記上限充電電流値決定部は、運行開始前に、前記上限充電電流値を出力する蓄電池システム。
    The storage battery system according to claim 1,
    The upper limit charging current value determination unit is a storage battery system that outputs the upper limit charging current value before the start of operation.
  3.  請求項1または請求項2に記載の蓄電池システムであって、
     前記上限充電電流値は、急速充電電流値または回生電流値である蓄電池システム。
    The storage battery system according to claim 1 or claim 2,
    The storage battery system wherein the upper limit charging current value is a quick charging current value or a regenerative current value.
  4.  請求項3に記載の蓄電池システムであって、
     前記急速充電電流値は、駅毎または充電可能な電化区間毎に設定する蓄電池システム。
    The storage battery system according to claim 3,
    In the storage battery system, the quick charging current value is set for each station or for each chargeable electrified section.
  5.  請求項3に記載の蓄電池システムであって、
     前記回生電流値は、駅間毎または非電化区間毎に設定する蓄電池システム。
    The storage battery system according to claim 3,
    In the storage battery system, the regenerative current value is set for each station or for each non-electrified section.
  6.  請求項1ないし請求項5のいずれか一項に記載の蓄電池システムであって、
     前記電池温度が電池使用可能温度範囲内であり、かつ、前記充電率が走行可能な充電率である前記上限充電電流値がない場合、必要充電時間を出力する蓄電池システム。
    The storage battery system according to any one of claims 1 to 5,
    A storage battery system that outputs a required charging time when the battery temperature is within a battery usable temperature range and the charging rate does not have the upper limit charging current value that is a charging rate that allows running.
  7.  請求項6に記載の蓄電池システムであって、
     前記必要充電時間に応じて、駅停車時間を延長する蓄電池システム。
    The storage battery system according to claim 6,
    A storage battery system that extends station stop time according to the required charging time.
  8.  請求項1ないし請求項7のいずれか一項に記載の蓄電池システムであって、
     前記電池温度及び充電率予測部は、前記運行情報、前記蓄電池情報または前記気象情報による補機電力の変動を加味して、前記電池温度及び前記充電率を予測する蓄電池システム。
    The storage battery system according to any one of claims 1 to 7,
    The battery temperature and charging rate prediction unit is a storage battery system that predicts the battery temperature and the charging rate by taking into account fluctuations in auxiliary power due to the operation information, the storage battery information, or the weather information.
  9.  請求項1ないし請求項8のいずれか一項に記載の蓄電池システムであって、
     鉄道車両とデータサーバとを備え、
     前記鉄道車両は、
     蓄電池と、
     前記蓄電池を制御する蓄電池制御装置と、
     前記蓄電池制御装置から出力された前記蓄電池情報を記録する蓄電池情報記録部と、
     前記運行情報を記録する運行情報記録部と、
     前記蓄電池情報記録部の前記蓄電池情報と前記運行情報記録部の前記運行情報とを取得するデータ取得装置と、
     前記データ取得装置に接続され、前記データサーバとデータの送受信を行う通信装置と、
     を備え、
     前記データサーバは、
     前記運行情報と前記蓄電池情報とを蓄積する運行情報及び蓄電池情報蓄積部と、
     前記気象情報を取得する気象情報取得部と、
     前記運行情報及び蓄電池情報蓄積部の前記運行情報及び前記蓄電池情報と前記気象情報取得部の前記気象情報とから前記電池温度及び前記充電率を予測する前記電池温度及び充電率予測部と、
     前記電池温度及び充電率予測部で予測された前記電池温度が電池使用可能温度範囲内であるか判定する前記過温度判定部と、
     前記電池温度及び充電率予測部で予測された前記充電率が走行可能な充電率であるか判定する前記電欠判定部と、
     前記過温度判定部で前記電池温度が電池使用可能温度範囲内であると判定され、かつ、前記電欠判定部で前記充電率が走行可能な充電率であると判定される前記上限充電電流値を出力する前記上限充電電流値決定部と、
     を備える蓄電池システム。
    The storage battery system according to any one of claims 1 to 8,
    Equipped with a railway vehicle and a data server,
    The railway vehicle is
    storage battery and
    a storage battery control device that controls the storage battery;
    a storage battery information recording unit that records the storage battery information output from the storage battery control device;
    an operation information recording unit that records the operation information;
    a data acquisition device that acquires the storage battery information of the storage battery information recording section and the operation information of the operation information recording section;
    a communication device connected to the data acquisition device and configured to send and receive data to and from the data server;
    Equipped with
    The data server is
    an operation information and storage battery information storage unit that stores the operation information and the storage battery information;
    a weather information acquisition unit that acquires the weather information;
    the battery temperature and charging rate prediction unit that predicts the battery temperature and the charging rate from the operation information and storage battery information of the operation information and storage battery information storage unit and the weather information of the weather information acquisition unit;
    the overtemperature determination unit that determines whether the battery temperature predicted by the battery temperature and charging rate prediction unit is within a battery usable temperature range;
    the power shortage determination unit that determines whether the charging rate predicted by the battery temperature and charging rate prediction unit is a charging rate that allows driving;
    The upper limit charging current value at which the overtemperature determining section determines that the battery temperature is within a battery usable temperature range, and the power shortage determining section determines that the charging rate is a charging rate that allows driving. the upper limit charging current value determination unit that outputs;
    A storage battery system equipped with
  10.  鉄道車両であって、
     蓄電池と、
     前記蓄電池を制御する蓄電池制御装置と、
     前記蓄電池制御装置から出力された蓄電池情報を記録する蓄電池情報記録部と、
     運行情報を記録する運行情報記録部と、
     前記蓄電池情報記録部の前記蓄電池情報と前記運行情報記録部の前記運行情報とを取得するデータ取得装置と、
     前記データ取得装置に接続され、データサーバとデータの送受信を行う通信装置と、
     を備える鉄道車両。
    A railway vehicle,
    storage battery and
    a storage battery control device that controls the storage battery;
    a storage battery information recording unit that records storage battery information output from the storage battery control device;
    an operation information recording section that records operation information;
    a data acquisition device that acquires the storage battery information of the storage battery information recording section and the operation information of the operation information recording section;
    a communication device connected to the data acquisition device and configured to send and receive data to and from the data server;
    A railway vehicle equipped with
  11.  データサーバであって、
     運行情報と蓄電池情報とを蓄積する運行情報及び蓄電池情報蓄積部と、
     気象情報を取得する気象情報取得部と、
     前記運行情報及び蓄電池情報蓄積部の前記運行情報及び前記蓄電池情報と前記気象情報取得部の前記気象情報とから電池温度及び充電率を予測する電池温度及び充電率予測部と、
     前記電池温度及び充電率予測部で予測された前記電池温度が電池使用可能温度範囲内であるか判定する過温度判定部と、
     前記電池温度及び充電率予測部で予測された前記充電率が走行可能な充電率であるか判定する電欠判定部と、
     前記過温度判定部で前記電池温度が電池使用可能温度範囲内であると判定され、かつ、前記電欠判定部で前記充電率が走行可能な充電率であると判定される上限充電電流値を出力する上限充電電流値決定部と、
     を備えるデータサーバ。
    A data server,
    an operation information and storage battery information storage unit that stores operation information and storage battery information;
    a weather information acquisition unit that acquires weather information;
    a battery temperature and charging rate prediction unit that predicts a battery temperature and charging rate from the operation information and storage battery information of the operation information and storage battery information storage unit and the weather information of the weather information acquisition unit;
    an overtemperature determination unit that determines whether the battery temperature predicted by the battery temperature and charging rate prediction unit is within a battery usable temperature range;
    a power shortage determination unit that determines whether the charging rate predicted by the battery temperature and charging rate prediction unit is a charging rate that allows driving;
    An upper limit charging current value at which the battery temperature is determined to be within a battery usable temperature range by the overtemperature determining section and the charging rate is determined to be a charging rate at which driving is possible by the power shortage determining section. an upper limit charging current value determination unit to output;
    A data server equipped with
  12.  蓄電池システムの制御方法であって、
     運行情報、蓄電池情報及び気象情報から電池温度を予測し、前記電池温度の予測結果が電池使用可能温度範囲を逸脱する場合、前記電池温度が電池使用可能温度範囲内であり、かつ、充電率が走行可能な充電率である上限充電電流値を出力する蓄電池システムの制御方法。
    A method for controlling a storage battery system, the method comprising:
    The battery temperature is predicted from operation information, storage battery information, and weather information, and if the predicted battery temperature deviates from the battery usable temperature range, the battery temperature is within the battery usable temperature range and the charging rate is A method for controlling a storage battery system that outputs an upper limit charging current value that is a charging rate at which driving is possible.
PCT/JP2023/021901 2022-08-09 2023-06-13 Storage battery system, railway vehicle, data server, and storage battery system control method WO2024034252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022127199A JP2024024400A (en) 2022-08-09 2022-08-09 Storage battery system, railway vehicle, data server, and storage battery system control method
JP2022-127199 2022-08-09

Publications (1)

Publication Number Publication Date
WO2024034252A1 true WO2024034252A1 (en) 2024-02-15

Family

ID=89851296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021901 WO2024034252A1 (en) 2022-08-09 2023-06-13 Storage battery system, railway vehicle, data server, and storage battery system control method

Country Status (2)

Country Link
JP (1) JP2024024400A (en)
WO (1) WO2024034252A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273198A (en) * 2008-04-30 2009-11-19 Kawasaki Heavy Ind Ltd Power flow control method and control device of battery-driven vehicle
JP2018038120A (en) * 2016-08-29 2018-03-08 株式会社東芝 Electric vehicle control device
JP2018102047A (en) * 2016-12-20 2018-06-28 株式会社東芝 Charging plan creation system
JP2020013379A (en) * 2018-07-19 2020-01-23 株式会社日立製作所 Vehicle operation system
JP2020013726A (en) * 2018-07-19 2020-01-23 株式会社デンソー Power supply control system for mobile object
JP2021027797A (en) * 2019-08-07 2021-02-22 株式会社デンソー Battery management device, battery management method and battery management program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009273198A (en) * 2008-04-30 2009-11-19 Kawasaki Heavy Ind Ltd Power flow control method and control device of battery-driven vehicle
JP2018038120A (en) * 2016-08-29 2018-03-08 株式会社東芝 Electric vehicle control device
JP2018102047A (en) * 2016-12-20 2018-06-28 株式会社東芝 Charging plan creation system
JP2020013379A (en) * 2018-07-19 2020-01-23 株式会社日立製作所 Vehicle operation system
JP2020013726A (en) * 2018-07-19 2020-01-23 株式会社デンソー Power supply control system for mobile object
JP2021027797A (en) * 2019-08-07 2021-02-22 株式会社デンソー Battery management device, battery management method and battery management program

Also Published As

Publication number Publication date
JP2024024400A (en) 2024-02-22

Similar Documents

Publication Publication Date Title
US11447034B2 (en) Vehicle control system and method
EP2307227B1 (en) Method and system for control of a vehicle energy storage device
EP2307226B1 (en) Method and system for extending life of a vehicle energy storage device
JP5714073B2 (en) Smart grid system and in-vehicle device
JP5268853B2 (en) Hybrid cruise control system
EP1953058B1 (en) Hybrid cruising control system
EP4046859A1 (en) Battery management system
EP4269158A1 (en) Power storage system and power storage method
JP2019057455A (en) Control apparatus of secondary battery and control method
WO2024034252A1 (en) Storage battery system, railway vehicle, data server, and storage battery system control method
JP6016738B2 (en) Terrestrial storage battery control device and control method therefor, railroad storage battery control system
CN112060944B (en) Dynamic wireless charging road section optimal configuration method, system, device and storage medium
CN105739412B (en) Has the power scheduling device based on technology of Internet of things of remote monitoring function
JP4856219B2 (en) Mobile control device
JP2016090485A (en) Power storage controller and vehicle drive system carrying the same
WO2024034326A1 (en) Storage battery system, rail vehicle, data server, and storage battery system control method
KR102567582B1 (en) Eco-Driving system of electric railway using battery and regenerative energy
EP4282694A1 (en) Charge transfer timing system and method
EP4265470A1 (en) Vehicle charging system and method
WO2020049773A1 (en) Rail vehicle
US20230382266A1 (en) Charge transfer timing system and method
WO2023107514A1 (en) System and method for analyzing temperature changes in supercapacitor battery storage for electric vehicle
KR20230160424A (en) Energy management system for hybrid electric tram driven by multi-set hybrid power source
AU2014202139B2 (en) Method and system for control of a vehicle energy storage device
JP2020132004A (en) Control method and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852236

Country of ref document: EP

Kind code of ref document: A1