WO2024034231A1 - Charge relaxation system, device having same, and charge relaxation method - Google Patents

Charge relaxation system, device having same, and charge relaxation method Download PDF

Info

Publication number
WO2024034231A1
WO2024034231A1 PCT/JP2023/019827 JP2023019827W WO2024034231A1 WO 2024034231 A1 WO2024034231 A1 WO 2024034231A1 JP 2023019827 W JP2023019827 W JP 2023019827W WO 2024034231 A1 WO2024034231 A1 WO 2024034231A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
voltage
insulator
pulse
amount
Prior art date
Application number
PCT/JP2023/019827
Other languages
French (fr)
Japanese (ja)
Inventor
奈浦 寺尾
俊之 横須賀
裕 森田
秀幸 小辻
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2024034231A1 publication Critical patent/WO2024034231A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/248Components associated with high voltage supply
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/02Carrying-off electrostatic charges by means of earthing connections

Definitions

  • the present invention relates to charge mitigation of insulators, and particularly relates to a charge mitigation system using electric field control.
  • a processing apparatus is equipped with a mounting table for placing an object, and the mounting table generally includes an electrostatic chuck.
  • a voltage is applied to the electrostatic chuck, and the object is attracted to the electrostatic chuck by the Coulomb force generated by this voltage.
  • the object is an insulator, the surfaces of the object and the electrostatic chuck are charged, and this charge may not be eliminated even after the voltage application is stopped. If you remove the object from the electrostatic chuck while the surfaces of the object and the electrostatic chuck are charged, a load will be applied to the object, which may cause the object to bend or crack. It is necessary to remove the static charge.
  • Another method is to move charges through the insulator itself. Charge is alleviated by moving the charge inside or on the surface of the insulator. The charges accumulated in the insulator are diffused over time according to the electric field formed by the charges themselves, and the charge is relaxed. At this time, the speed of charge movement differs depending on the insulator material. Generally, it is said that the speed of charge transfer between the interior of an insulator and the surface of an insulator is two orders of magnitude faster at the surface, and charge relaxation through the surface of the insulator is considered. By applying an electric field in the direction in which the charges move, it is possible to control the speed at which the charges move, so by changing the electric field applied to the object, we believe that the charges accumulated in the insulator can be moved and removed.
  • Patent Document 1 describes a method for promoting the relaxation of accumulated charges on a sample, which is an observation target of an electron microscope, by reversing the polarity of a voltage applied to a surrounding structure, ie, an electrode. ing.
  • Patent Document 1 is based on the premise of reversing the polarity of the applied voltage, and polarity reversal poses challenges such as increasing the size of the power supply system and speeding up processing until the voltage settles down.
  • inspection throughput is an important product value, but the time required for charge relaxation each time is directly linked to a reduction in throughput.
  • the present invention provides a charge mitigation system and a charge mitigation method that are equipped with such systems and can eliminate charge easily and quickly.
  • the present invention is a charge mitigation system for controlling the amount of charge on a target insulator, which includes a pulse power source capable of applying a pulse voltage to the insulator or an electrode surrounding the insulator, and a pulse A pulse power supply control unit that controls the pulse power supply using a combination of the applied voltage width and the application time width as parameters; an ammeter that measures the amount of charge flowing through the insulator due to the pulse voltage applied by the pulse power supply;
  • the configuration includes a storage unit that stores the relationship between the combination of the applied voltage width and the applied time width of the pulse voltage applied to the surrounding electrodes and the amount of charge measured by the ammeter.
  • FIG. 1 is a schematic configuration diagram of a charge mitigation system in Example 1.
  • FIG. It is a conventional block diagram which applies a voltage to an electrostatic chuck.
  • FIG. 2 is a configuration diagram of applying voltage to the electrostatic chuck in Example 1.
  • FIG. 3 is another schematic configuration diagram of the charge mitigation system in Example 1.
  • FIG. 3 is a diagram showing changes in charge relaxation amount with respect to voltage application time in Example 1.
  • FIG. 3 is a diagram showing changes in charge relaxation amount with respect to applied electric field strength in Example 1.
  • 3 is an operation instruction screen for the charge mitigation system in Example 1.
  • FIG. 3 is a flowchart of charging relaxation processing in Example 1.
  • FIG. It is a block diagram of SEM in Example 2.
  • 3 is a configuration diagram of another SEM in Example 2.
  • FIG. FIG. 7 is a configuration diagram of applying a voltage to an object in a film winding process in Example 3.
  • FIG. 1 is a schematic configuration diagram of the charge mitigation system in this embodiment.
  • FIG. 1 shows the minimum configuration for realizing the effects of this embodiment, and when it is actually used, it is incorporated as a part of various products.
  • a pulse power source 130 is connected to an electrode 120 that contacts an object 110, which is an insulator, and a pulse voltage is applied. That is, FIG. 1 shows a configuration in which a pulse voltage is applied to an electrode in contact with an object to directly apply an electric field to the object. Pulse conditions such as applied voltage, application time, and pulse waveform are controlled by a pulse power supply controller 140. Further, an ammeter 150 is connected to the object 110 to measure the static elimination current. Then, the data of the measured static elimination current is integrated with the pulse conditions and stored in the storage unit 160.
  • electrode 120 corresponds to the electrostatic chuck.
  • the ammeter 150 measures the amount of charge flowing through the insulator using the applied voltage and application time as parameters, and records it in the storage unit 160 as the amount of charge relaxation. Since the effect of charge mitigation varies depending on the material and shape of the insulator, this evaluation is performed for each material. Conditions for charge relaxation are determined from a map of the obtained charge relaxation amount, which will be described later. Although it varies depending on the target, the user can set conditions such as increasing the voltage application time if the throughput of charging relaxation is important.
  • FIG. 2 shows a conventional configuration in which the electrode 120 in FIG. 1 is an electrostatic chuck 121. As shown in FIG. 2, a voltage 510 has already been applied to the electrostatic chuck 121 to charge the electrostatic chuck.
  • FIG. 3 shows a configuration when a constant potential is applied to the object in this embodiment.
  • a pulse power source 130 for static elimination is connected in series with a voltage 510.
  • FIG. 4 is another schematic configuration diagram of the charge mitigation system in this embodiment. 4 differs from FIG. 1 in that the electrode 120 is not in contact with the object 110. That is, FIG. 4 shows a configuration in which a pulse voltage is applied to an electrode that is not in contact with the object, and an electric field is indirectly applied to the object.
  • the electrode 120 may be a newly provided electrode for static elimination, or may be an existing electrode.
  • the existing electrode refers to a booster electrode installed in an objective lens to pull up secondary electrons.
  • FIG. 5 is a diagram showing the relationship between the amount of charge relaxation and the voltage application time, that is, the time width of the pulse, when a voltage is applied in pulses to the insulator in this example.
  • the applied electric field strength that is, the voltage width of the pulse
  • the amount of charge relaxation increases in proportion to the voltage application time, and increases as the applied electric field strength increases. For example, when an applied electric field strength of 20 kV/mm is applied for 1 second to SiO 2 of 1 cm x 1 cm x 1 ⁇ m, the charge relaxation amount is about 10 nC.
  • FIG. 6 is a diagram showing the relationship between the applied electric field strength and the amount of charge relaxation in this example.
  • the voltage application time is shown as a parameter, and the charge relaxation amount increases in proportion to the applied electric field strength, and increases as the voltage application time increases. Therefore, if you want to increase the throughput, you can set the voltage application time short and then adjust the applied electric field strength to achieve the desired amount of charge relaxation, or if there is a limit to the electric field that can be applied, The electric field strength may be fixed and adjusted by the voltage application time.
  • the electrode on the object is an electrostatic chuck
  • a charge relaxation amount Q 0 that eliminates the desorption abnormality exists for each object, and the voltage application conditions that satisfy Q 0 can be shown in a two-dimensional map of electric field and time.
  • the user can determine the voltage application conditions from there. Note that since the charges accumulated on the electrostatic chuck are expected to be positive charges, the electric field is applied in the direction from the electrostatic chuck toward the object. If the electrostatic chuck is charged under unusual conditions and negative charges are accumulated, a reverse electric field may be applied.
  • FIG. 7 is an operation instruction screen (GUI) of the charge mitigation system in this embodiment.
  • the charge mitigation system shown in FIGS. 1 and 4 operates under the control of a user by a control device (not shown). Further, the charge mitigation system includes a display device such as a touch panel for displaying an operation screen (not shown) for the user to input control details.
  • FIG. 7 is an example of an operation instruction screen (GUI) of the charge mitigation system in this display device.
  • the control device of the charge relaxation system displays a two-dimensional map of the amount of charge relaxation on the voltage application condition display section 440, with electric field [kV/mm] and time [sec] as axes.
  • the user selects the voltage application conditions (voltage application time and applied electric field strength) according to the desired charge relaxation amount, enters the applied electric field strength and voltage application time in the voltage application condition input section 450, and presses the apply button 460. By pressing , the voltage application conditions selected by the user are applied.
  • the name, material/shape, and static charge amount of the target object are linked in advance and stored as a database in the storage unit 160, and by simply entering the name of the material in the static neutralization target input unit 410, the material and the charge amount are automatically
  • the shape and the amount of charge to be removed may be output.
  • an electric field is applied to the object by the pulse power supply control unit 140 and the pulse power supply 130, the static elimination current is measured by the ammeter 150, and the amount of charge Q that is actually eliminated is displayed on the static elimination charge amount output unit 470. . If the amount of charge Q matches the amount of charge removed Q0 within the error range determined by the user, the user can press the end button 480 to complete the charge removal. Furthermore, if the amount of charge Q is significantly different from the amount of discharged charge Q0 , the voltage application conditions can be selected again by pressing the correction button 490.
  • FIG. 8 is a flowchart of the charging relaxation process in this embodiment.
  • a pulse voltage is applied to the insulator that is the object or the electrodes around it, and the amount of current flowing through the insulator is measured (S610).
  • the magnitude and time width of the applied pulse voltage which are pulse voltage conditions, are changed (S620), and S610 and S620 are repeated until measurement under all pulse voltage conditions determined by the user is completed (S630).
  • pulse voltage conditions magnitude and time width
  • a pulse voltage determined by the pulse power source is applied (S650), and if the amount of charge relaxation calculated from the amount of current flowing through the insulator is equal to or greater than the allowable value (S660), static elimination is completed. If it is below the allowable value, the process returns to S640 and the conditions for applying the pulse voltage are determined again.
  • results of the magnitude and time width of the pulse voltage obtained in S610 and S620 of the flowchart in FIG. 8 can be stored as a database for each sample, so that when actually eliminating static electricity, it is possible to start from S640 of the flowchart. is also possible.
  • FIG. 9 is a configuration diagram of the SEM in this example.
  • primary electrons 702 emitted from an electron source 701 are directed to a sample 706 on a stage 713 by a condenser lens 703, signal electron deflectors 711 and 707, a primary electron deflector 704, and an objective lens 705. imaged.
  • Primary electrons on the sample are scanned two-dimensionally by signal electron deflectors 711 and 707.
  • the sample 706 is irradiated with the primary electrons 702
  • electrons such as secondary electrons and backscattered electrons are emitted from the irradiated area.
  • the emitted electrons are accelerated toward the electron source by an acceleration effect based on the negative voltage applied to the sample, collide with the signal electron aperture 710, and generate secondary electrons.
  • the secondary electrons emitted from the signal electron aperture 710 are captured by the detector 709, and the output of the detector 709 changes depending on the amount of captured secondary electrons.
  • the brightness of a display device (not shown) changes in accordance with this output. For example, when forming a secondary electron image, the image of the scanning area is formed by synchronizing the deflection signals to the signal electron deflectors 711 and 707 with the output of the detector 709.
  • a pulse voltage is applied to the stage 713 on which the sample is placed. That is, in FIG. 9, a stage voltage from a stage power supply 715 for adjusting the incident energy of the electron beam is applied to a sample 706, and a pulsed voltage from a pulse power supply 130 is superimposed on this.
  • the pulse power supply control section 140, ammeter 150, and storage section 160 have the functions described in FIG. 1. At this time, there is no need to reverse the positive or negative polarity of the voltage applied to the sample, and it is sufficient to apply a voltage that changes the electric field with respect to the reference stage voltage.
  • FIG. 9 describes the application of voltage to the stage on which the sample is mounted, as shown in FIG. The same effect can be obtained.
  • the operation instruction screen (GUI) of the SEM in this embodiment is basically the same as in the first embodiment, as shown in FIG. 7, but in addition to this, it may be possible to select the timing of static elimination. Specifically, if the static elimination time exceeds 1 second, static elimination is performed for each image taken, and conversely, if static elimination can be done in a short time, such as less than 1 microsecond, electron beam Static electricity removal may be performed every time one line of scanning is completed.
  • the flowchart of the charge relaxation process is basically the same as that shown in FIG. 630), and from next time onwards, pulse conditions are specified from the database and used (S640 to 660).
  • pulse conditions are specified from the database and used (S640 to 660).
  • FIG. 11 is a configuration diagram of the film winding device in this example.
  • a film 901 is pulled out by a winding roller 903 from a roller 902 that has completed winding.
  • the film take-up roll is the final step in the film production and processing process, and there is a problem in that the electric charge caused by charging and discharging that occurs here is hardly processed and directly leads to a deterioration in the quality of the film product.
  • a static elimination electrode 904 is provided at a position that contacts the drawn-out film 901, and by applying a pulse voltage, the static electricity of the film can be eliminated.
  • the present invention makes it possible to easily and quickly eliminate the charging of an object, and solves the problem that the expected performance cannot be obtained due to charging. Therefore, the present invention contributes to achieving a high level of economic productivity through technological improvement and innovation, particularly in item 8 of "decent work and economic growth" to realize SDGs (Sustainable Development Goals).
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Abstract

Provided are a charge relaxation system, a device having the same, and a charge relaxation method capable of easily and quickly eliminating electric charges. In order to achieve the aforementioned purpose, this charge relaxation system for controlling the amount of electric charges on a target insulator is configured to include: a pulse power supply capable of applying a pulse voltage to the insulator or an electrode on the periphery thereof; a pulse power supply control unit for controlling the pulse power supply with a parameter indicating a combination of the applied voltage width and the applied time width of a pulse voltage; an ammeter for measuring the amount of electric charge flowing in the insulator due to the pulse voltage applied by the pulse power supply; and a storage unit for storing the relationship between the combination of the applied voltage width and the applied time width of the pulse voltage applied to the insulator or the electrode on the periphery thereof and the amount of electric charge measured by the ammeter.

Description

帯電緩和システムそれらを備える装置および帯電緩和方法Charge mitigation systems, devices including them, and charge mitigation methods
 本発明は、絶縁物の帯電緩和に係り、特に電界制御による帯電緩和システムに関する。 The present invention relates to charge mitigation of insulators, and particularly relates to a charge mitigation system using electric field control.
 電子デバイスの製造においては、対象物を載置するための載置台を処理装置内に備えており、載置台は一般的に静電チャックを含む。静電チャックには電圧が印加され、この電圧によって生じるクーロン力によって対象物は静電チャックに吸着される。対象物が絶縁物である場合には、対象物と静電チャックの表面に帯電が生じ、電圧の印加停止後にもこの帯電が解消されないことがある。対象物と静電チャックの表面が帯電した状態で、対象物を静電チャックから取り外すと、対象物に負荷が加わり、対象物が曲がったり割れが生じることがあるため、静電チャック及び対象物の帯電を除電する必要がある。 In the manufacture of electronic devices, a processing apparatus is equipped with a mounting table for placing an object, and the mounting table generally includes an electrostatic chuck. A voltage is applied to the electrostatic chuck, and the object is attracted to the electrostatic chuck by the Coulomb force generated by this voltage. When the object is an insulator, the surfaces of the object and the electrostatic chuck are charged, and this charge may not be eliminated even after the voltage application is stopped. If you remove the object from the electrostatic chuck while the surfaces of the object and the electrostatic chuck are charged, a load will be applied to the object, which may cause the object to bend or crack. It is necessary to remove the static charge.
 また、電子顕微鏡や収束イオンビーム加工装置、質量分析装置など、荷電粒子を扱う荷電粒子線装置では、荷電粒子の制御に影響するため、装置や観察対象の帯電が課題である。特に、半導体デバイスの製造過程では、歩留まり向上を目的として、走査型電子顕微鏡(SEM : Scanning Electron Microscope)によるインライン検査計測が重要な検査項目となっている。SEMにおいて、検査対象物の表面が絶縁体である場合には、対象物表面に帯電が生じることが課題になっている。具体的には、対象物の帯電により電界が歪み、荷電粒子の軌道が変化し、想定する性能が得られないケースが発生する。したがって、絶縁体に蓄積される帯電を除去もしくは緩和する必要がある。 Furthermore, in charged particle beam devices that handle charged particles, such as electron microscopes, focused ion beam processing devices, and mass spectrometers, charging of the device and the observation target is an issue as it affects the control of charged particles. In particular, in the manufacturing process of semiconductor devices, in-line inspection and measurement using a scanning electron microscope (SEM) has become an important inspection item for the purpose of improving yield. In SEM, when the surface of the object to be inspected is an insulator, there is a problem in that the surface of the object is charged. Specifically, the electric field is distorted due to the charging of the object, and the trajectory of the charged particles changes, resulting in cases where the expected performance cannot be obtained. Therefore, it is necessary to remove or reduce the charge accumulated in the insulator.
 また一般電機品においても、帯電により絶縁体劣化が加速され、絶縁不良の発生率が増加する。したがって、同様に、絶縁体に蓄積される帯電を除去もしくは緩和する必要がある。 Also, in general electrical appliances, charging accelerates insulation deterioration and increases the incidence of insulation defects. Therefore, it is also necessary to remove or reduce the charge accumulated on the insulator.
 絶縁体に蓄積された帯電の緩和(解消)を考える場合、その手法としては2通りが考えられる。1つは絶縁物とは別の媒体を通じて、絶縁体から電荷を引き抜く方法であり、光・ガス・荷電粒子(電子・イオン・プラズマ)などを介して帯電を解消させる方法である。別の媒体を介して帯電を緩和させることから、その媒体を発生させ、絶縁体まで誘導する装置構成と、放出させた電荷を適切に排除する構成が必要となる。例えば、荷電粒子を用いて帯電緩和をさせた場合は、帯電緩和のために導入した荷電粒子が別の箇所を帯電させないことが重要であり、装置構成としては複雑化することが想像できる。 When considering the relaxation (removal) of the charge accumulated on an insulator, there are two possible methods. One is a method of extracting electric charge from an insulator through a medium different from the insulator, and a method of eliminating the electric charge through light, gas, charged particles (electrons, ions, plasma), etc. Since charging is alleviated through another medium, a device configuration that generates the medium and guides it to the insulator, and a configuration that appropriately eliminates the discharged charge are required. For example, when charging is relaxed using charged particles, it is important that the charged particles introduced for charging relaxation do not charge other parts, and the device configuration can be imagined to become complicated.
 もう1つは、絶縁体そのものを通じて電荷を移動させる方法である。絶縁体の内部もしくは表面を伝って電荷を移動させることで帯電を緩和する。絶縁体に蓄積された電荷は、電荷自身が形成する電界に従い、時間の経過とともに拡散され、帯電が緩和する。この際、電荷の移動速度は絶縁体材料によって異なる。一般的に、絶縁体内部と絶縁体表面での電荷の移動速度は2桁ほど表面の方が高くなるといわれている、絶縁体表面を通じた帯電緩和が考えられる。電荷の移動方向に電界を加えることで、電荷の移動速度を制御可能であるため、対象物にかかる電界を変化させることで、絶縁体に溜まった電荷が動いて除電可能になると考える。 Another method is to move charges through the insulator itself. Charge is alleviated by moving the charge inside or on the surface of the insulator. The charges accumulated in the insulator are diffused over time according to the electric field formed by the charges themselves, and the charge is relaxed. At this time, the speed of charge movement differs depending on the insulator material. Generally, it is said that the speed of charge transfer between the interior of an insulator and the surface of an insulator is two orders of magnitude faster at the surface, and charge relaxation through the surface of the insulator is considered. By applying an electric field in the direction in which the charges move, it is possible to control the speed at which the charges move, so by changing the electric field applied to the object, we believe that the charges accumulated in the insulator can be moved and removed.
 本技術分野における先行技術文献として特許文献1がある。特許文献1では、電子顕微鏡の観察対象である試料に蓄積した電荷を、周囲の構造物である電極に印加する電圧の極性を反転させることで、蓄積された帯電緩和を促進する方法を記載している。 There is Patent Document 1 as a prior art document in this technical field. Patent Document 1 describes a method for promoting the relaxation of accumulated charges on a sample, which is an observation target of an electron microscope, by reversing the polarity of a voltage applied to a surrounding structure, ie, an electrode. ing.
国際公開第2018/134870号International Publication No. 2018/134870
 特許文献1では、印加する電圧の極性を反転させることが前提であり、極性反転には電源系の大型化や、電圧が落ち着くまでの高速化処理が課題となる。特に、検査装置において、検査のスループットは重要な製品価値であるが、その都度必要となる帯電緩和にかかる時間はスループットの低下に直結する。 Patent Document 1 is based on the premise of reversing the polarity of the applied voltage, and polarity reversal poses challenges such as increasing the size of the power supply system and speeding up processing until the voltage settles down. In particular, in an inspection device, inspection throughput is an important product value, but the time required for charge relaxation each time is directly linked to a reduction in throughput.
 本発明は、上記課題に鑑み、帯電を簡便かつ高速に解消することが可能な帯電緩和システムそれらを備える装置および帯電緩和方法を提供することである。 In view of the above-mentioned problems, the present invention provides a charge mitigation system and a charge mitigation method that are equipped with such systems and can eliminate charge easily and quickly.
 本発明は、その一例を挙げるならば、対象となる絶縁体の帯電量を制御する帯電緩和システムであって、絶縁体あるいはその周囲の電極に対してパルス電圧を印加可能なパルス電源と、パルス電圧の印加電圧幅および印加時間幅の組合せをパラメータとしてパルス電源を制御するパルス電源制御部と、パルス電源によって印加されたパルス電圧により絶縁体に流れる電荷量を計測する電流計と、絶縁体あるいはその周囲の電極に対して印加したパルス電圧の印加電圧幅および印加時間幅の組合せと電流計で計測した電荷量の関係を記憶する記憶部を備える構成とする。 To give one example, the present invention is a charge mitigation system for controlling the amount of charge on a target insulator, which includes a pulse power source capable of applying a pulse voltage to the insulator or an electrode surrounding the insulator, and a pulse A pulse power supply control unit that controls the pulse power supply using a combination of the applied voltage width and the application time width as parameters; an ammeter that measures the amount of charge flowing through the insulator due to the pulse voltage applied by the pulse power supply; The configuration includes a storage unit that stores the relationship between the combination of the applied voltage width and the applied time width of the pulse voltage applied to the surrounding electrodes and the amount of charge measured by the ammeter.
 本発明によれば、帯電を簡便かつ高速に解消することが可能な帯電緩和システムそれらを備える装置および帯電緩和方法を提供できる。 According to the present invention, it is possible to provide a charge mitigation system and a charge mitigation method that are equipped with a charge mitigation system that can easily and quickly eliminate charge.
実施例1における帯電緩和システムの概略構成図である。1 is a schematic configuration diagram of a charge mitigation system in Example 1. FIG. 静電チャックに対して電圧を印加する従来構成図である。It is a conventional block diagram which applies a voltage to an electrostatic chuck. 実施例1における静電チャックに対して電圧を印加する構成図である。FIG. 2 is a configuration diagram of applying voltage to the electrostatic chuck in Example 1. FIG. 実施例1における帯電緩和システムの他の概略構成図である。FIG. 3 is another schematic configuration diagram of the charge mitigation system in Example 1. FIG. 実施例1における電圧印加時間に対する帯電緩和量の変化を示す図である。FIG. 3 is a diagram showing changes in charge relaxation amount with respect to voltage application time in Example 1. 実施例1における印加電界強度に対する帯電緩和量の変化を示す図である。FIG. 3 is a diagram showing changes in charge relaxation amount with respect to applied electric field strength in Example 1. 実施例1における帯電緩和システムの操作指示画面である。3 is an operation instruction screen for the charge mitigation system in Example 1. FIG. 実施例1における帯電緩和処理のフローチャートである。3 is a flowchart of charging relaxation processing in Example 1. FIG. 実施例2におけるSEMの構成図であるIt is a block diagram of SEM in Example 2. 実施例2における他のSEMの構成図である。3 is a configuration diagram of another SEM in Example 2. FIG. 実施例3におけるフィルムの巻き取り工程で対象物に電圧を印加する構成図である。FIG. 7 is a configuration diagram of applying a voltage to an object in a film winding process in Example 3.
 以下、本発明の実施例について図面を用いて説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Embodiments of the present invention will be described below with reference to the drawings. Note that in each drawing, the same components are denoted by the same reference numerals, and detailed explanations of overlapping parts will be omitted.
 図1は、本実施例における帯電緩和システムの概略構成図である。図1は本実施例の効果を実現する最小限の構成であり、実際に活用する際には、各種製品の一部として組み込まれる。図1に示すように、絶縁体である対象物110に接触する電極120に、パルス電源130を接続し、パルス電圧を印加する。すなわち、図1は、対象物に接触した電極にパルス電圧を印加し、直接的に対象物に電界をかける構成を示している。印加電圧や印加時間、パルス波形といったパルス条件は、パルス電源制御部140で制御する。また、対象物110に電流計150を接続し、除電電流を計測する。そして、計測した除電電流のデータをパルス条件と統合して記憶部160に格納する。対象物110が静電チャックの場合、電極120が静電チャックに対応する。 FIG. 1 is a schematic configuration diagram of the charge mitigation system in this embodiment. FIG. 1 shows the minimum configuration for realizing the effects of this embodiment, and when it is actually used, it is incorporated as a part of various products. As shown in FIG. 1, a pulse power source 130 is connected to an electrode 120 that contacts an object 110, which is an insulator, and a pulse voltage is applied. That is, FIG. 1 shows a configuration in which a pulse voltage is applied to an electrode in contact with an object to directly apply an electric field to the object. Pulse conditions such as applied voltage, application time, and pulse waveform are controlled by a pulse power supply controller 140. Further, an ammeter 150 is connected to the object 110 to measure the static elimination current. Then, the data of the measured static elimination current is integrated with the pulse conditions and stored in the storage unit 160. When object 110 is an electrostatic chuck, electrode 120 corresponds to the electrostatic chuck.
 電流計150では、印加電圧と印加時間をパラメータとして、絶縁体を流れる電荷量を計測し、記憶部160で帯電緩和量として記録する。絶縁体の材料、形状によって帯電緩和の効果は異なるため、材料毎にこの評価を実施する。後述する、得られた帯電緩和量のマップから帯電緩和のための条件を決定する。対象によって異なるが、帯電緩和のスループットが重要な場合は、電圧印加時間を増加させるなど、ユーザが条件は設定することが可能である。 The ammeter 150 measures the amount of charge flowing through the insulator using the applied voltage and application time as parameters, and records it in the storage unit 160 as the amount of charge relaxation. Since the effect of charge mitigation varies depending on the material and shape of the insulator, this evaluation is performed for each material. Conditions for charge relaxation are determined from a map of the obtained charge relaxation amount, which will be described later. Although it varies depending on the target, the user can set conditions such as increasing the voltage application time if the throughput of charging relaxation is important.
 図1において、対象物に特定の電圧、すなわち一定電位が印加されている場合には、それに重畳して帯電緩和のためのパルス電圧を印加する。このため、本実施例では印加電圧の大きさが重要なのではなく、電界の変化幅をパラメータと考える。 In FIG. 1, when a specific voltage, that is, a constant potential is applied to the object, a pulse voltage is applied to relieve the charge in a superimposed manner. Therefore, in this embodiment, the magnitude of the applied voltage is not important, but the width of change in the electric field is considered as a parameter.
 図2は、図1における電極120が静電チャック121である場合の、従来の構成である。図2に示すように、静電チャック121には、既に静電チャックを帯電させるために電圧510が印加されている。 FIG. 2 shows a conventional configuration in which the electrode 120 in FIG. 1 is an electrostatic chuck 121. As shown in FIG. 2, a voltage 510 has already been applied to the electrostatic chuck 121 to charge the electrostatic chuck.
 図3は、本実施例における対象物に一定電位が印加されている場合の構成である。図3に示すように、対象物110および静電チャック121を除電するために、除電用のパルス電源130を電圧510と直列に接続する。 FIG. 3 shows a configuration when a constant potential is applied to the object in this embodiment. As shown in FIG. 3, in order to eliminate static electricity from the object 110 and the electrostatic chuck 121, a pulse power source 130 for static elimination is connected in series with a voltage 510.
 図4は、本実施例における帯電緩和システムの他の概略構成図である。図4において、図1と異なる点は、電極120が対象物110と非接触となっている点である。すなわち、図4は、対象物と非接触な電極にパルス電圧を印加し、間接的に対象物に電界をかける構成を示している。電極120は、新たに設けた除電用の電極としてもよいし、既存の電極を利用してもよい。既存の電極とは、例えばSEMの場合であれば、2次電子を引き上げるために対物レンズ内に設置されているブースター電極などを指す。 FIG. 4 is another schematic configuration diagram of the charge mitigation system in this embodiment. 4 differs from FIG. 1 in that the electrode 120 is not in contact with the object 110. That is, FIG. 4 shows a configuration in which a pulse voltage is applied to an electrode that is not in contact with the object, and an electric field is indirectly applied to the object. The electrode 120 may be a newly provided electrode for static elimination, or may be an existing electrode. For example, in the case of a SEM, the existing electrode refers to a booster electrode installed in an objective lens to pull up secondary electrons.
 図5は、本実施例における絶縁体にパルスで電圧を印加した際の帯電緩和量と電圧印加時間すなわちパルスの時間幅との関係を示す図である。図5においては、印加電界強度すなわちパルスの電圧幅をパラメータとして示しており、帯電緩和量は、電圧印加時間に比例して増加し、印加電界強度が大きいほど大きい。例えば1cm×1cm×1μmのSiOに対して20kV/mmの印加電界強度を電圧印加時間として1秒かけた時、帯電緩和量は10nC程度である。 FIG. 5 is a diagram showing the relationship between the amount of charge relaxation and the voltage application time, that is, the time width of the pulse, when a voltage is applied in pulses to the insulator in this example. In FIG. 5, the applied electric field strength, that is, the voltage width of the pulse, is shown as a parameter, and the amount of charge relaxation increases in proportion to the voltage application time, and increases as the applied electric field strength increases. For example, when an applied electric field strength of 20 kV/mm is applied for 1 second to SiO 2 of 1 cm x 1 cm x 1 μm, the charge relaxation amount is about 10 nC.
 図6は、本実施例における印加電界強度と帯電緩和量の関係を示す図である。図6においては、電圧印加時間をパラメータとして示しており、帯電緩和量は、印加電界強度に比例して増加し、電圧印加時間が大きいほど大きい。そのため、スループットを早くしたい場合には、電圧印加時間を短く設定したうえで所望の帯電緩和量になるよう印加電界強度を調節してもよいし、かけられる電界に限界がある場合などは、印加電界強度を固定して電圧印加時間で調節してもよい。 FIG. 6 is a diagram showing the relationship between the applied electric field strength and the amount of charge relaxation in this example. In FIG. 6, the voltage application time is shown as a parameter, and the charge relaxation amount increases in proportion to the applied electric field strength, and increases as the voltage application time increases. Therefore, if you want to increase the throughput, you can set the voltage application time short and then adjust the applied electric field strength to achieve the desired amount of charge relaxation, or if there is a limit to the electric field that can be applied, The electric field strength may be fixed and adjusted by the voltage application time.
 対象物における電極が静電チャックの場合、脱離異常のなくなる帯電緩和量Qが対象物ごとに存在し、Qを満たす電圧印加条件を電界、時間の2次元マップで示すことができる。ユーザはそこから電圧印加条件を決定することができる。なお、静電チャックに溜まる電荷は正電荷であることが予想されるため、印加する電界の向きとしては静電チャックから対象物に向かう方向に電界を印加する。通常と異なる条件で静電チャックを帯電させ負電荷が蓄積されている場合には、逆電界を印加すればよい。 When the electrode on the object is an electrostatic chuck, a charge relaxation amount Q 0 that eliminates the desorption abnormality exists for each object, and the voltage application conditions that satisfy Q 0 can be shown in a two-dimensional map of electric field and time. The user can determine the voltage application conditions from there. Note that since the charges accumulated on the electrostatic chuck are expected to be positive charges, the electric field is applied in the direction from the electrostatic chuck toward the object. If the electrostatic chuck is charged under unusual conditions and negative charges are accumulated, a reverse electric field may be applied.
 図7は、本実施例における帯電緩和システムの操作指示画面(GUI)である。図1、図4に示す帯電緩和システムは、図示しない制御装置によりユーザの制御を受けて動作する。また、帯電緩和システムは、ユーザが制御内容を入力するための図示しない操作画面等を表示するためのタッチパネル等の表示装置を有している。図7は、この表示装置における帯電緩和システムの操作指示画面(GUI)の一例である。 FIG. 7 is an operation instruction screen (GUI) of the charge mitigation system in this embodiment. The charge mitigation system shown in FIGS. 1 and 4 operates under the control of a user by a control device (not shown). Further, the charge mitigation system includes a display device such as a touch panel for displaying an operation screen (not shown) for the user to input control details. FIG. 7 is an example of an operation instruction screen (GUI) of the charge mitigation system in this display device.
 図7において、ユーザが、対象物の名称を除電対象物入力部410に、対象物の材料や形状を除電対象物条件入力部420に、除電に必要な除電電荷量Qを除電電荷量入力部430に入力すると、帯電緩和システムの制御装置は、電圧印加条件表示部440に電界[kV/mm]と時間[sec]を軸にした帯電緩和量の2次元マップを表示する。このマップ上で、ユーザは所望の帯電緩和量による電圧印加条件(電圧印加時間と印加電界強度)を選択して電圧印加条件入力部450に 印加電界強度と電圧印加時間を入力し、適用ボタン460を押すことでユーザが選択した電圧印加条件が適用される。 In FIG. 7, the user inputs the name of the object into the static elimination target input section 410, the material and shape of the object into the static elimination target object condition input section 420, and inputs the static elimination charge amount Q0 required for static elimination. When inputted to the section 430, the control device of the charge relaxation system displays a two-dimensional map of the amount of charge relaxation on the voltage application condition display section 440, with electric field [kV/mm] and time [sec] as axes. On this map, the user selects the voltage application conditions (voltage application time and applied electric field strength) according to the desired charge relaxation amount, enters the applied electric field strength and voltage application time in the voltage application condition input section 450, and presses the apply button 460. By pressing , the voltage application conditions selected by the user are applied.
 このとき、対象物の名称と材料・形状と除電電荷量はあらかじめ紐づけてデータベースとして記憶部160に記憶しておき、除電対象物入力部410に材料の名称を入れるだけで、自動で材料・形状と除電電荷量が出力されるようにしておいてもよい。 At this time, the name, material/shape, and static charge amount of the target object are linked in advance and stored as a database in the storage unit 160, and by simply entering the name of the material in the static neutralization target input unit 410, the material and the charge amount are automatically The shape and the amount of charge to be removed may be output.
 次に、パルス電源制御部140とパルス電源130により、対象物に電界がかかり、電流計150により除電電流を計測して、実際に除電された電荷量Qを除電電荷量出力部470に表示する。電荷量Qが除電電荷量Qとユーザが定める誤差の範囲内で一致すれば、終了ボタン480を押せば、除電完了とできる。また、電荷量Qが除電電荷量Qと大きく異なる場合には、修正ボタン490を押すことで、再度電圧印加条件を選びなおすことができる。 Next, an electric field is applied to the object by the pulse power supply control unit 140 and the pulse power supply 130, the static elimination current is measured by the ammeter 150, and the amount of charge Q that is actually eliminated is displayed on the static elimination charge amount output unit 470. . If the amount of charge Q matches the amount of charge removed Q0 within the error range determined by the user, the user can press the end button 480 to complete the charge removal. Furthermore, if the amount of charge Q is significantly different from the amount of discharged charge Q0 , the voltage application conditions can be selected again by pressing the correction button 490.
 図8は、本実施例における帯電緩和処理のフローチャートである。図8において、まず対象物である絶縁体、あるいはその周囲の電極に対してパルス電圧を印加し、絶縁体を通じて流れる電流量を計測する(S610)。次にパルス電圧条件である印加するパルス電圧の大きさと時間幅を変更し(S620)、ユーザが決めた全てのパルス電圧条件での測定が完了(S630)するまでS610とS620を繰り返す。すべてのパルス電圧条件での測定が完了すると、緩和する帯電量に応じて、絶縁体に印加するパルス電圧条件(大きさと時間幅)を決定する(S640)。次にパルス電源により決定したパルス電圧を印加して(S650)、絶縁体に流れる電流量から換算される帯電緩和量が許容値以上であれば(S660)除電終了とする。許容値以下である場合には、S640に戻ってパルス電圧の印加条件を決めなおす。 FIG. 8 is a flowchart of the charging relaxation process in this embodiment. In FIG. 8, first, a pulse voltage is applied to the insulator that is the object or the electrodes around it, and the amount of current flowing through the insulator is measured (S610). Next, the magnitude and time width of the applied pulse voltage, which are pulse voltage conditions, are changed (S620), and S610 and S620 are repeated until measurement under all pulse voltage conditions determined by the user is completed (S630). When measurements under all pulse voltage conditions are completed, pulse voltage conditions (magnitude and time width) to be applied to the insulator are determined according to the amount of charge to be relaxed (S640). Next, a pulse voltage determined by the pulse power source is applied (S650), and if the amount of charge relaxation calculated from the amount of current flowing through the insulator is equal to or greater than the allowable value (S660), static elimination is completed. If it is below the allowable value, the process returns to S640 and the conditions for applying the pulse voltage are determined again.
 なお、図8のフローチャートのS610とS620で得るパルス電圧の大きさと時間幅の結果は、試料ごとにデータベースとして記憶しておくことで、実際に除電する際には、フローチャートのS640からスタートすることも可能である。 Note that the results of the magnitude and time width of the pulse voltage obtained in S610 and S620 of the flowchart in FIG. 8 can be stored as a database for each sample, so that when actually eliminating static electricity, it is possible to start from S640 of the flowchart. is also possible.
 以上のように、本実施例によれば、絶縁物に応じて印加するパルス電圧の大きさと時間幅を制御することで、絶縁物の帯電緩和を促進することが可能となり、帯電を簡便かつ高速に解消することが可能な帯電緩和システム及び帯電緩和方法を提供できる。 As described above, according to this embodiment, by controlling the magnitude and time width of the pulse voltage applied depending on the insulator, it is possible to promote charge relaxation of the insulator, and charge can be easily and quickly. It is possible to provide a charge mitigation system and a charge mitigation method that can eliminate the problem.
 本実施例は、実施例1で示した帯電緩和システムの適用例の一つとして、荷電粒子線装置の一つである、SEMに適用した例について説明する。 In this embodiment, as one application example of the charge mitigation system shown in Embodiment 1, an example will be described in which it is applied to an SEM, which is one of the charged particle beam devices.
 図9は、本実施例におけるSEMの構成図である。図9において、SEM1000は、電子源701から放出された1次電子702は、コンデンサレンズ703、信号電子偏向器711、707、1次電子偏向器704、対物レンズ705によりステージ713上の試料706に結像される。試料上の1次電子は信号電子偏向器711、707により2次元に走査される。1次電子702が試料706に照射されると、当該照射個所から二次電子及び後方散乱電子のような電子が放出される。放出された電子は、試料に印加される負電圧に基づく加速作用によって、電子源方向に加速され、信号電子絞り710に衝突し、二次電子を生じさせる。信号電子絞り710から放出された二次電子は、検出器709によって捕捉され、捕捉された二次電子量によって検出器709の出力が変化する。この出力に応じて図示しない表示装置の輝度が変化する。例えば二次電子像を形成する場合には、信号電子偏向器711、707への偏向信号と、検出器709の出力との同期をとることで、走査領域の画像を形成する。 FIG. 9 is a configuration diagram of the SEM in this example. In FIG. 9, in the SEM 1000, primary electrons 702 emitted from an electron source 701 are directed to a sample 706 on a stage 713 by a condenser lens 703, signal electron deflectors 711 and 707, a primary electron deflector 704, and an objective lens 705. imaged. Primary electrons on the sample are scanned two-dimensionally by signal electron deflectors 711 and 707. When the sample 706 is irradiated with the primary electrons 702, electrons such as secondary electrons and backscattered electrons are emitted from the irradiated area. The emitted electrons are accelerated toward the electron source by an acceleration effect based on the negative voltage applied to the sample, collide with the signal electron aperture 710, and generate secondary electrons. The secondary electrons emitted from the signal electron aperture 710 are captured by the detector 709, and the output of the detector 709 changes depending on the amount of captured secondary electrons. The brightness of a display device (not shown) changes in accordance with this output. For example, when forming a secondary electron image, the image of the scanning area is formed by synchronizing the deflection signals to the signal electron deflectors 711 and 707 with the output of the detector 709.
 このように、SEMでは、試料を電子ビームで照射し、試料から放出された2次電子を検出して画像化している。このため、照射した電子ビームと放出された2次電子のバランスが崩れると試料は帯電する。試料が帯電すると試料上の電界が歪み、電子ビームの変更や試料から放出された2次電子の取りこぼしが発生する。これらは、画像の歪みや検出画像の輝度ムラとして現れ、計測精度を低下させる。 In this way, in the SEM, a sample is irradiated with an electron beam, and secondary electrons emitted from the sample are detected and imaged. Therefore, if the balance between the irradiated electron beam and the emitted secondary electrons is disrupted, the sample becomes electrically charged. When a sample is charged, the electric field on the sample is distorted, causing changes in the electron beam and failure to capture secondary electrons emitted from the sample. These appear as image distortion and brightness unevenness in the detected image, reducing measurement accuracy.
 このような課題に対し、本実施例では、試料の置かれるステージ713にパルス電圧を印加する。すなわち、図9において、試料706には電子ビームの入射エネルギーを調整するためのステージ電源715によるステージ電圧が印加されており、これにパルス電源130によるパルス状の電圧を重畳させる。なお、パルス電源制御部140、電流計150、記憶部160は、図1で説明した機能を有する。この際、試料に印加される電圧の正負の極性を反転させる必要は無く、基準となるステージ電圧に対して、電界を変化させるような電圧印加を行えばよい。パルスの印加時間幅としては、数十ミリ秒~数秒のオーダーで帯電緩和が進むため、計測スループットへの影響を最小限に帯電の影響を排除した計測が可能となる。なお、図9では、試料の搭載されるステージへの電圧印加を説明したが、図10に示すように、試料706の直上にある対物レンズ内の2次電子引き上げ電極801にパルス電圧を印加しても同様の効果が得られる。 To solve this problem, in this embodiment, a pulse voltage is applied to the stage 713 on which the sample is placed. That is, in FIG. 9, a stage voltage from a stage power supply 715 for adjusting the incident energy of the electron beam is applied to a sample 706, and a pulsed voltage from a pulse power supply 130 is superimposed on this. Note that the pulse power supply control section 140, ammeter 150, and storage section 160 have the functions described in FIG. 1. At this time, there is no need to reverse the positive or negative polarity of the voltage applied to the sample, and it is sufficient to apply a voltage that changes the electric field with respect to the reference stage voltage. As the pulse application time width is on the order of several tens of milliseconds to several seconds, charging relaxation progresses, making it possible to perform measurements that minimize the impact on measurement throughput and eliminate the effects of charging. Although FIG. 9 describes the application of voltage to the stage on which the sample is mounted, as shown in FIG. The same effect can be obtained.
 電子顕微鏡の場合、試料帯電のなくなる帯電緩和量Qが対象物ごとに存在し、Qを満たす電圧印加条件を電界、時間の2次元マップで示すことができる。ユーザはそこから電圧印加条件を決定することができる。 In the case of an electron microscope, there is a charge relaxation amount Q 0 for each object that eliminates sample charging, and the voltage application conditions that satisfy Q 0 can be shown in a two-dimensional map of electric field and time. The user can determine the voltage application conditions from there.
 本実施例におけるSEMの操作指示画面(GUI)も基本的には実施例1と同じで、図7に示した通りであるが、これに加えて除電のタイミングを選択できるようにしてもよい。具体的には、除電時間が1秒を超えるような場合には1枚の撮像ごとに除電を実施し、逆に1マイクロ秒を切るような短時間で除電可能な場合には、電子線の走査が1ライン終わるごとに除電を実施してもよい。 The operation instruction screen (GUI) of the SEM in this embodiment is basically the same as in the first embodiment, as shown in FIG. 7, but in addition to this, it may be possible to select the timing of static elimination. Specifically, if the static elimination time exceeds 1 second, static elimination is performed for each image taken, and conversely, if static elimination can be done in a short time, such as less than 1 microsecond, electron beam Static electricity removal may be performed every time one line of scanning is completed.
 また、本実施例におけるSEMの場合も、帯電緩和処理のフローチャートは図8に示したものと基本的に同じであり、初回測定時は、試料ごと/サンプルごとにパルス条件をデータベース化(S610~630)し、次回以降はデータベースよりパルス条件を特定して利用する(S640~660)。観察する対象物ごとに電圧印加条件と除電量をデータベース化しておくことで、スムーズな除電が可能になる。 Also, in the case of the SEM in this example, the flowchart of the charge relaxation process is basically the same as that shown in FIG. 630), and from next time onwards, pulse conditions are specified from the database and used (S640 to 660). By creating a database of voltage application conditions and amount of charge removal for each object to be observed, smooth charge removal becomes possible.
 このように、本実施例によれば、従来の構成のSEMに、パルス電源130、パルス電源制御部140、電流計150、記憶部160を追加し、ステージ713にパルス電圧を印加することで、実施例1と同様に、帯電を簡便かつ高速に解消することが可能な帯電緩和システムであるSEMを提供できる。 As described above, according to this embodiment, by adding the pulse power supply 130, pulse power supply control section 140, ammeter 150, and storage section 160 to the SEM having the conventional configuration, and applying a pulse voltage to the stage 713, Similar to the first embodiment, it is possible to provide an SEM which is a charge mitigation system that can easily and quickly eliminate charges.
 本実施例は、実施例1で示した帯電緩和システムの適用例の一つとして、フィルムの巻き取り装置に適用した例について説明する。 In this embodiment, as one application example of the charge mitigation system shown in Embodiment 1, an example in which the system is applied to a film winding device will be described.
 図11は、本実施例におけるフィルムの巻き取り装置の構成図である。図11において、フィルム901は、巻き取り完了したローラ902から巻き取り用ローラ903で引き出される。 FIG. 11 is a configuration diagram of the film winding device in this example. In FIG. 11, a film 901 is pulled out by a winding roller 903 from a roller 902 that has completed winding.
 フィルムに用いられている高分子材料のほとんどは優れた絶縁体であるため、その表面に電荷が蓄積しやすい。フィルムやローラ系における帯電は、静電気放電やフィルムの汚れ、加工不能などの障害を引き起こし、フィルムの品質を低下させる。特に、フィルム巻き取りロールは、フィルムの生産や加工プロセスの最終工程のものであり、ここで起きた帯電と放電による電荷はほとんど処理されず直接フィルム製品の品質低下につながる、という課題がある。 Most of the polymeric materials used in films are excellent insulators, so charges tend to accumulate on their surfaces. Electrification in the film or roller system causes problems such as electrostatic discharge, staining of the film, and inability to process, reducing the quality of the film. In particular, the film take-up roll is the final step in the film production and processing process, and there is a problem in that the electric charge caused by charging and discharging that occurs here is hardly processed and directly leads to a deterioration in the quality of the film product.
 これを解決するため、本実施例では、図11に示すように、引き出されたフィルム901に接触する位置に除電用電極904を設け、パルス電圧を印加することでフィルムの除電が可能である。 In order to solve this problem, in this embodiment, as shown in FIG. 11, a static elimination electrode 904 is provided at a position that contacts the drawn-out film 901, and by applying a pulse voltage, the static electricity of the film can be eliminated.
 フィルムの巻き取り工程の場合、フィルムの帯電が十分小さくなるための帯電緩和量Qが対象物ごとに存在し、Qを満たす電圧印加条件を電界、時間の2次元マップで示すことができる。ユーザはそこから電圧印加条件を決定することができる。操作指示画面(GUI)や帯電緩和処理のフローチャートは、実施例1で示したものと同じである。 In the film winding process, there is a charge relaxation amount Q 0 for each object in order to make the film's charge sufficiently small, and the voltage application conditions that satisfy Q 0 can be shown in a two-dimensional map of electric field and time. . The user can determine the voltage application conditions from there. The operation instruction screen (GUI) and the flowchart of the charging mitigation process are the same as those shown in the first embodiment.
 このように、本実施例によれば、フィルムの巻き取り装置においても、帯電を簡便かつ高速に解消することが可能な帯電緩和システムを提供できる。 As described above, according to this embodiment, it is possible to provide a charge mitigation system that can easily and quickly eliminate charge even in a film winding device.
 以上、本発明による実施例を示したが、本発明は、対象物の帯電を簡便かつ高速に解消することが可能となり、帯電により想定する性能が得られないという課題が解消される。
従って、本発明は、SDGs(Sustainable Development Goals)を実現するための特に項目8の“働きがいも経済成長も”における、技術向上及びイノベーションを通じた高いレベルの経済生産性を達成することに貢献する。
The embodiments according to the present invention have been described above, but the present invention makes it possible to easily and quickly eliminate the charging of an object, and solves the problem that the expected performance cannot be obtained due to charging.
Therefore, the present invention contributes to achieving a high level of economic productivity through technological improvement and innovation, particularly in item 8 of "decent work and economic growth" to realize SDGs (Sustainable Development Goals).
 また、本発明は、上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加、削除、置換をすることも可能である。 Further, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is also possible to add, delete, or replace a part of the configuration of each embodiment with other configurations.
110:対象物、120:電極、121:静電チャック、130:パルス電源、140:パルス電源制御部、150:電流計、160:記憶部、410:除電対象物入力部、420:除電対象物条件入力部、430:除電電荷量入力部、440:電圧印加条件表示部、450:電圧印加条件入力部、460:適用ボタン、470:除電電荷量出力部、480:終了ボタン、490:修正ボタン、510:電圧、701:電子源、702:1次電子、703、708:コンデンサレンズ、704:1次電子偏向器、705:対物レンズ、706:試料、707、711:信号電子偏向器、709:検出器、710:信号電子絞り、715:ステージ電源、801:2次電子引き上げ電極、904:除電用電極 110: Target object, 120: Electrode, 121: Electrostatic chuck, 130: Pulse power supply, 140: Pulse power supply control section, 150: Ammeter, 160: Storage section, 410: Static electricity removal object input section, 420: Static electricity removal object Condition input section, 430: Static elimination charge amount input section, 440: Voltage application condition display section, 450: Voltage application condition input section, 460: Apply button, 470: Static elimination charge amount output section, 480: End button, 490: Modify button , 510: Voltage, 701: Electron source, 702: Primary electron, 703, 708: Condenser lens, 704: Primary electron deflector, 705: Objective lens, 706: Sample, 707, 711: Signal electron deflector, 709 : Detector, 710: Signal electronic aperture, 715: Stage power supply, 801: Secondary electron pulling electrode, 904: Static elimination electrode

Claims (9)

  1.  対象となる絶縁体の帯電量を制御する帯電緩和システムであって、
     前記絶縁体あるいはその周囲の電極に対してパルス電圧を印加可能なパルス電源と、
     前記パルス電圧の印加電圧幅および印加時間幅の組合せをパラメータとして前記パルス電源を制御するパルス電源制御部と、
     前記パルス電源によって印加されたパルス電圧により前記絶縁体に流れる電荷量を計測する電流計と、
     前記絶縁体あるいはその周囲の電極に対して印加したパルス電圧の印加電圧幅および印加時間幅の組合せと前記電流計で計測した電荷量の関係を記憶する記憶部を備えることを特徴とする帯電緩和システム。
    A charge mitigation system that controls the amount of charge on a target insulator,
    a pulse power source capable of applying a pulse voltage to the insulator or the electrodes surrounding it;
    a pulse power supply control unit that controls the pulse power supply using a combination of an applied voltage width and an application time width of the pulse voltage as parameters;
    an ammeter that measures the amount of charge flowing through the insulator due to the pulse voltage applied by the pulse power source;
    Charge relaxation characterized by comprising a memory unit that stores the relationship between the combination of the applied voltage width and the applied time width of the pulse voltage applied to the insulator or the electrodes surrounding the insulator and the amount of charge measured by the ammeter. system.
  2.  請求項1に記載の帯電緩和システムにおいて、
     前記パルス電源制御部は、前記絶縁体あるいはその周囲の電極に対して印加したパルス電圧の印加電圧幅および印加時間幅により前記絶縁体を通じて流れる電荷量を計測した値と、緩和する帯電量に応じて、前記印加するパルス電圧の印加条件である印加電圧幅および印加時間幅を決定し、前記パルス電源を制御して前記印加条件のパルス電圧を印加させることを特徴とする帯電緩和システム。
    The charging mitigation system according to claim 1,
    The pulse power supply control unit calculates a voltage according to the amount of charge flowing through the insulator based on the applied voltage width and application time width of the pulse voltage applied to the insulator or the electrodes surrounding the insulator, and the amount of charge to be relaxed. A charge mitigation system characterized in that: an applied voltage width and an applied time width are determined as application conditions of the pulse voltage to be applied, and the pulse voltage is controlled to apply the pulse voltage under the application conditions.
  3.  請求項2に記載の帯電緩和システムにおいて、
     前記計測した電荷量により、パルス電圧の印加電圧幅および印加時間幅に対する電荷量の大きさを2軸のマップとし表示する表示部を有し、
     前記マップを前記記憶部に記憶し、
     前記表示部の情報に基づきユーザがパルス電圧の印加条件を設定する入力部を有することを特徴とする帯電緩和システム。
    The charging mitigation system according to claim 2,
    a display unit that displays the magnitude of the charge amount with respect to the applied voltage width and application time width of the pulse voltage as a two-axis map based on the measured amount of charge;
    storing the map in the storage unit;
    A charge mitigation system comprising an input section through which a user sets conditions for applying a pulse voltage based on information on the display section.
  4.  請求項1に記載の帯電緩和システムにおいて、
     前記パルス電源は、前記絶縁体あるいはその周囲の電極に対して特定の電圧があらかじめ印加されている際には、前記特定の電圧に重畳してパルス電圧を印加可能な構成とし、 前記パルス電源制御部は、前記パルス電源を制御して、前記特定の電圧に重畳して前記パルス電圧を印加し、前記絶縁体あるいはその周囲の電極に加わる電界を制御することを特徴とする帯電緩和システム。
    The charging mitigation system according to claim 1,
    The pulse power source is configured to be capable of applying a pulse voltage superimposed on the specific voltage when a specific voltage is applied to the insulator or the electrodes surrounding it in advance, and the pulse power source control The charging mitigation system is characterized in that the part controls the pulsed power supply, applies the pulsed voltage superimposed on the specific voltage, and controls the electric field applied to the insulator or an electrode around the insulator.
  5.  請求項1に記載の帯電緩和システムにおいて、
     前記パルス電源制御部は、前記絶縁体に応じて、前記印加するパルス電圧の印加条件である印加電圧幅および印加時間幅を変更することを特徴とする帯電緩和システム。
    The charging mitigation system according to claim 1,
    The charging mitigation system is characterized in that the pulse power control unit changes an applied voltage width and an application time width, which are application conditions of the applied pulse voltage, depending on the insulator.
  6.  請求項1に記載の帯電緩和システムにおいて、
     前記記憶部は、前記絶縁体ごとに、前記印加するパルス電圧の印加条件である印加電圧幅および印加時間幅を記憶し、
     前記パルス電源制御部は、前記絶縁体の情報に従って、前記記憶部に記憶されたパルス電圧の印加条件を読出し設定し、前記パルス電源を制御することを特徴とする帯電緩和システム。
    The charging mitigation system according to claim 1,
    The storage unit stores, for each insulator, an applied voltage width and an applied time width that are application conditions of the applied pulse voltage,
    The charging mitigation system is characterized in that the pulse power supply control section reads and sets application conditions of the pulse voltage stored in the storage section according to information on the insulator, and controls the pulse power supply.
  7.  請求項1から6のいずれか1項に記載の帯電緩和システムを備える荷電粒子線装置であって、
     前記対象となる絶縁体は、前記荷電粒子線装置の対象となる試料であり、
     前記電極は、前記試料の置かれるステージまたは前記荷電粒子線装置の電極であり、
     前記試料の置かれるステージまたは前記荷電粒子線装置の電極に前記パルス電源によりパルス電圧を印加することを特徴とする荷電粒子線装置。
    A charged particle beam device comprising the charged relaxation system according to any one of claims 1 to 6,
    The target insulator is a target sample of the charged particle beam device,
    The electrode is a stage on which the sample is placed or an electrode of the charged particle beam device,
    A charged particle beam device characterized in that a pulse voltage is applied by the pulse power source to a stage on which the sample is placed or to an electrode of the charged particle beam device.
  8.  請求項1から6のいずれか1項に記載の帯電緩和システムを備えるフィルムの巻き取り装置であって、
     前記対象となる絶縁体は、フィルムであり、
     前記電極は、前記フィルムに接触する位置に設けられた除電用電極であり、
     前記除電用電極に前記パルス電源によりパルス電圧を印加することを特徴とするフィルムの巻き取り装置。
    A film winding device comprising the charge mitigation system according to any one of claims 1 to 6,
    The target insulator is a film,
    The electrode is a static elimination electrode provided at a position in contact with the film,
    A film winding device characterized in that a pulse voltage is applied to the static elimination electrode by the pulse power source.
  9.  対象となる絶縁体の帯電量を制御する帯電緩和方法であって、
     前記絶縁体あるいはその周囲の電極に対してパルス電圧を印加可能なパルス電源を有し、
    前記パルス電源によって印加されたパルス電圧により前記絶縁体に流れる電荷量と、前記パルス電圧の印加電圧幅および印加時間幅の組合せをパラメータとして前記パルス電源を制御することを特徴とする帯電緩和方法。
    A charge mitigation method for controlling the amount of charge on a target insulator,
    It has a pulse power source capable of applying a pulse voltage to the insulator or the electrodes surrounding it,
    A charge mitigation method comprising controlling the pulse power source using a combination of the amount of charge flowing through the insulator due to the pulse voltage applied by the pulse power source, and the applied voltage width and application time width of the pulse voltage as parameters.
PCT/JP2023/019827 2022-08-08 2023-05-29 Charge relaxation system, device having same, and charge relaxation method WO2024034231A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126332A JP2024022892A (en) 2022-08-08 2022-08-08 Charge mitigation systems, devices including them, and charge mitigation methods
JP2022-126332 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034231A1 true WO2024034231A1 (en) 2024-02-15

Family

ID=89851309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019827 WO2024034231A1 (en) 2022-08-08 2023-05-29 Charge relaxation system, device having same, and charge relaxation method

Country Status (2)

Country Link
JP (1) JP2024022892A (en)
WO (1) WO2024034231A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225942A (en) * 1992-02-14 1993-09-03 Jeol Ltd Scanning electron microscope
JPH076728A (en) * 1993-05-07 1995-01-10 Varian Assoc Inc Charge monitor intended for equipment and method for measuring dose quantity of high-voltage pulse stream
KR20060064214A (en) * 2004-12-08 2006-06-13 한국전기연구원 Apparatus for shielding secondary electrons during plasma ion implantation
JP2009246012A (en) * 2008-03-28 2009-10-22 Hitachi High-Technologies Corp Charged potential measuring method, and charged particle microscope
JP2010118564A (en) * 2008-11-14 2010-05-27 Hitachi High-Technologies Corp Apparatus and method for inspecting pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05225942A (en) * 1992-02-14 1993-09-03 Jeol Ltd Scanning electron microscope
JPH076728A (en) * 1993-05-07 1995-01-10 Varian Assoc Inc Charge monitor intended for equipment and method for measuring dose quantity of high-voltage pulse stream
KR20060064214A (en) * 2004-12-08 2006-06-13 한국전기연구원 Apparatus for shielding secondary electrons during plasma ion implantation
JP2009246012A (en) * 2008-03-28 2009-10-22 Hitachi High-Technologies Corp Charged potential measuring method, and charged particle microscope
JP2010118564A (en) * 2008-11-14 2010-05-27 Hitachi High-Technologies Corp Apparatus and method for inspecting pattern

Also Published As

Publication number Publication date
JP2024022892A (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP4920385B2 (en) Charged particle beam apparatus, scanning electron microscope, and sample observation method
CN102315066B (en) Charged particle beam apparatus and sample processing method
WO2011016208A1 (en) Scanning electron microscope and sample observation method
JP3932894B2 (en) Electron beam equipment
JP2007265931A (en) Inspection device and inspection method
JPH11132975A (en) Inspection method and device using electron beam
US20140027635A1 (en) Charged particle beam apparatus
JP2006054094A (en) Scanning electron microscope
US11011348B2 (en) Scanning electron microscope and sample observation method using scanning electron microscope
TW557469B (en) Method of observing secondary ion image by focused ion beam
WO2024034231A1 (en) Charge relaxation system, device having same, and charge relaxation method
JP2007194126A (en) Scanning electron microscope
JP3330382B2 (en) Test and repair equipment for integrated circuits
JPH08195181A (en) Scanning electron microscope
US10256068B2 (en) Charged particle beam apparatus
US9077264B2 (en) Charged particle beam apparatus and electrostatic chuck apparatus
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP5094612B2 (en) Sample holding device and charged particle beam device
JP3711244B2 (en) Wafer inspection system
JP7240525B2 (en) Charged particle beam device and aberration correction method
KR100906030B1 (en) Electron-beam size measuring apparatus and size measuring method with electron beams
US8692197B2 (en) Scanning electron microscope optical condition setting method and scanning electron microscope
JP2007285966A (en) Flaw inspection device and method
JP6920539B2 (en) Scanning electron microscope and its imaging method
JP2019061915A (en) Charged particle beam apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852215

Country of ref document: EP

Kind code of ref document: A1