WO2024034080A1 - Gas supply system, ship, and gas supply method - Google Patents

Gas supply system, ship, and gas supply method Download PDF

Info

Publication number
WO2024034080A1
WO2024034080A1 PCT/JP2022/030633 JP2022030633W WO2024034080A1 WO 2024034080 A1 WO2024034080 A1 WO 2024034080A1 JP 2022030633 W JP2022030633 W JP 2022030633W WO 2024034080 A1 WO2024034080 A1 WO 2024034080A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
tank
compressor
hydrogen
consumer
Prior art date
Application number
PCT/JP2022/030633
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 武田
晴彦 冨永
英司 田本
祐紀 木村
宏輔 関
悠平 小島
梨花子 後藤
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to PCT/JP2022/030633 priority Critical patent/WO2024034080A1/en
Publication of WO2024034080A1 publication Critical patent/WO2024034080A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels

Definitions

  • the present disclosure relates to a gas supply system for supplying gas from a tank to a gas consumer, a ship equipped with the gas supply system, and a gas supply method for supplying gas from a tank to a gas consumer.
  • Patent Document 1 In recent years, development of systems for storing and transporting liquefied hydrogen has been progressing (for example, Patent Document 1).
  • An object of the present disclosure is to provide a gas supply system, a ship, and a gas supply method that make it possible to efficiently replace gas in a tank.
  • a gas supply system includes a gas consumer capable of consuming hydrogen gas, a tank that accommodates hydrogen gas, and a connection between the tank and the gas consumer. a first supply line disposed in the first supply line discharged from the tank and configured to be able to compress hydrogen gas led by the first supply line to a pressure higher than the required pressure of the gas consumer.
  • a compressor an inert gas line for guiding inert gas to the tank, connected to a portion upstream of the first compressor in the first supply line, and downstream of the first compressor in the first supply line; a second supply line connected to the side part; a second supply line disposed in the second supply line, the inert gas and the and a second compressor configured to be able to compress the mixed gas mixed with hydrogen gas to a pressure higher than the required pressure of the gas consumer.
  • a gas supply system includes a first gas consumer that can consume hydrogen gas, a tank that accommodates hydrogen gas, and a first supply that connects the tank and the first gas consumer.
  • a first compressor disposed in the first supply line and configured to be able to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure higher than the required pressure of the first gas consumer.
  • an inert gas line that guides an inert gas to the tank; a second gas consumer capable of consuming a mixed gas of the inert gas and the hydrogen gas; and the first gas consumer in the first supply line.
  • a second supply line connected to an upstream portion of the compressor and connected to the second gas consumer; and a second supply line that compresses the mixed gas to a pressure higher than the required pressure of the second gas consumer. and a second compressor configured to allow the compressor to operate.
  • a ship according to one aspect of the present disclosure includes any of the above gas supply systems.
  • a gas supply method is a gas supply method for supplying gas discharged from a tank, and when hydrogen gas is discharged from the tank containing hydrogen gas, the gas supply method is a gas supply method for supplying gas discharged from a tank.
  • Hydrogen gas discharged from the tank is guided to a first compressor and compressed, the compressed hydrogen gas is consumed by a first gas consumer, and a mixed gas of inert gas and hydrogen gas is produced from the tank.
  • the mixed gas discharged from the tank is guided to a second compressor of a different type from the first compressor and compressed, and the compressed mixed gas is transferred to the first gas consumer, or , consumed by a second gas consumer of a different type from the first gas consumer.
  • FIG. 1 is a schematic configuration diagram of a gas supply system according to a first embodiment.
  • FIG. 2 is a schematic configuration diagram of a gas supply system according to a second embodiment.
  • FIG. 3 is a schematic configuration diagram of a gas supply system according to a third embodiment. It is a schematic block diagram of the gas supply system based on 4th Embodiment.
  • FIG. 2 is a schematic configuration diagram of a gas supply system according to Modification 1.
  • FIG. 7 is a schematic configuration diagram of a gas supply system according to modification 2.
  • FIG. 1 shows a schematic configuration diagram of a gas supply system 1A according to the first embodiment.
  • a gas supply system 1A described in this embodiment is mounted on a ship.
  • the ship is a hydrogen carrier that transports liquefied hydrogen, and is equipped with a tank 2 that stores liquefied hydrogen as cargo. Although one tank 2 is shown in FIG. 1, the ship may include a plurality of tanks 2.
  • a main engine 3 is mounted on the hull of the ship.
  • the main engine 3 is a combination of two boilers 4 and one steam turbine 5.
  • the boiler 4 uses hydrogen gas as fuel.
  • the boiler 4 uses one or both of hydrogen gas and fuel oil as fuel. Therefore, even if hydrogen gas is not supplied to the boiler 4, or even if the hydrogen gas supplied to the boiler 4 does not reach the required amount of the boiler 4, by supplying fuel oil to the boiler 4, Boiler 4 can be operated. Boiler 4 may also be referred to as a gas consumer or a first gas consumer.
  • the steam turbine 5 uses the steam generated by the two boilers 4 to drive the propulsion shaft of the propulsion device 6.
  • the propulsion device 6 is, for example, a propeller. Note that the number of boilers 4 and the number of steam turbines 5 mounted on the hull as the main engine 3 are not limited to these. For example, the number of turbines 5 may be plural.
  • the main engine 3 uses boil-off gas generated by evaporation of liquefied hydrogen in the tank 2 as fuel for propulsion.
  • the gas supply system 1A supplies hydrogen gas in the tank 2 to the main engine 3 for propulsion.
  • Tank 2 and boiler 4 are connected by a first supply line 10.
  • the first supply line 10 leads gas discharged from the tank 2 to the boiler 4 .
  • a first compressor 7 is arranged in the first supply line 10 . Note that the lines described below, including the first supply line 10, are flow paths for guiding fluid, and are composed of piping and the like.
  • the tank 2 is a tank for storing liquefied hydrogen.
  • a gas layer which is a space above the liquid level of the liquefied hydrogen in the tank 2, is filled with hydrogen gas.
  • the gas layer includes boil-off gas produced by vaporizing liquefied hydrogen in the tank 2.
  • the upstream end of the first supply line 10 is located in the upper part of the tank 2 .
  • the tank 2 is provided with a pressure gauge 8.
  • the pressure gauge 8 detects the pressure of the air layer within the tank 2. That is, from the pressure measured by the pressure gauge 8, a pressure increase due to the generation of boil-off gas can be detected.
  • the tank 2 is connected to an inert gas generator 31 via an inert gas line 32. More specifically, the upstream end of the inert gas line 32 is connected to the inert gas generator 31, and the downstream end of the inert gas line 32 is arranged at the lower part (for example, the bottom) of the tank 2. . However, the downstream end of the inert gas line 32 does not necessarily have to be located at the lower part of the tank 2. An on-off valve 33 that can open and close the flow path is arranged in the inert gas line 32.
  • the inert gas generator 31 generates inert gas.
  • the inert gas include nitrogen, argon, and carbon dioxide.
  • the inert gas generator 31 is used to replace hydrogen gas in the tank 2 with inert gas.
  • the inert gas generator 31 is operated, for example, by an operator's manual operation before performing gas replacement.
  • the on-off valve 33 and operating the inert gas generator 31 the inert gas generated by the inert gas generator 31 is guided into the tank 2 via the inert gas line 32.
  • a mixed gas of inert gas and hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10.
  • a gas concentration meter 18 is disposed in a portion of the first supply line 10 upstream of the first compressor 7 (more specifically, in the first common flow path 11 to be described later).
  • Gas concentration meter 18 measures hydrogen concentration. For example, during gas replacement, the proportion of hydrogen gas in the mixed gas discharged from the tank 2 is measured. That is, from the hydrogen concentration measured by the gas concentration meter 18, it is possible to grasp, for example, the progress of gas replacement.
  • the gas concentration meter 18 does not need to be in the first supply line 10 and may be placed in the tank 2, for example.
  • the first compressor 7 is a compressor for compressing hydrogen gas.
  • the first compressor 7 is configured to be able to compress the hydrogen gas led through the first supply line 10 to a pressure higher than the required pressure of the boiler 4, which is the first gas consumer. Further, for example, the maximum discharge amount of the first compressor 7 is greater than or equal to the required flow rate of the boiler 4, which is the first gas consumer.
  • the first compressor 7 is used, for example, when a ship equipped with the gas supply system 1A supplies hydrogen from a hydrogen supply location (hereinafter also referred to as a loading port) such as a hydrogen production base to a hydrogen demand location (hereinafter also referred to as an unloading port). used when transporting.
  • a loading port such as a hydrogen production base to a hydrogen demand location
  • Boil-off gas is discharged from the tank 2 in order to suppress the pressure increase within the tank 2.
  • Hydrogen gas which is the discharged boil-off gas, is compressed by the first compressor 7 to a pressure equal to or higher than the required pressure of the boiler 4, so that it can be used in the boiler 4 as a propulsion fuel.
  • the first supply line 10 includes a first common channel 11, two first branch channels 12, a second common channel 13, and two second branch channels 14.
  • the first common channel 11, the two first branch channels 12, the second common channel 13, and the two second branch channels 14 are connected in this order from the upstream side to the downstream side. There is.
  • the first common flow path 11 extends from the tank 2.
  • An on-off valve 17 that can open and close the flow path is arranged in the first common flow path 11 .
  • the two first branch channels 12 are bifurcated at a branch point 10a, which is the downstream end of the first common channel 11.
  • the gas supply system 1A includes two first compressors 7 arranged in parallel to each other to ensure redundancy.
  • the two first compressors 7 are arranged in the two first branch channels 12, respectively.
  • the number of first compressors 7 included in the gas supply system 1A may be one, or may be three or more. Depending on the number of first compressors 7, the number of first branch channels 12 may also change.
  • the first compressor 7 is, for example, a turbo type or a reciprocating type.
  • the two first compressors 7 may be of the same type or may be of different types.
  • the first compressor 7 may be a type of compressor other than a turbo type or a reciprocating type.
  • An on-off valve 15 that can open and close the flow path is provided at the upstream side of the first compressor 7 in each first branch flow path 12.
  • a second common flow path 13 extends from the merging point 10b of the two first branch flow paths 12.
  • the two second branch channels 14 are bifurcated at a branch point 10c, which is the downstream end of the second common channel 13.
  • the downstream ends of the two second branch channels 14 are connected to the two boilers 4, respectively.
  • Each second branch flow path 14 is provided with an on-off valve 16 that can open and close the second branch flow path 14 .
  • the gas supply system 1A includes a second supply line 20, a second compressor 9 disposed on the second supply line 20, and a gas engine 41 for power generation.
  • the second supply line 20 branches and extends from a portion of the first supply line 10 upstream of the first compressor 7. More specifically, the upstream end 20a of the second supply line 20 is connected to the first common flow path 11.
  • the second supply line 20 includes a common flow path 21 , a first branch flow path 22 , and a second branch flow path 23 .
  • the upstream end 20a of the common flow path 21 extends from a portion of the first supply line 10 upstream of the first compressor 7.
  • the first branch channel 22 and the second branch channel 23 are bifurcated at a branch point 20b that is the downstream end of the common channel 21. That is, the second supply line 20 has two downstream ends, specifically, a downstream end 20c of the first branch channel 22 and a downstream end 20d of the second branch channel 23.
  • the downstream end 20c of the first branch flow path 22 is connected to the first supply line 10 (more specifically, the second common flow path 13). That is, the line extending from the upstream end 20a to the downstream end 20c in the second supply line 20 constitutes a bypass line that bypasses the first compressor 7.
  • a downstream end 20d of the second branch flow path 23 is connected to the gas engine 41.
  • the second compressor 9 is arranged in the common flow path 21 in the second supply line 20.
  • the second compressor 9 is basically a compressor used when replacing the gas in the tank 2.
  • liquefied hydrogen is taken out from the tank 2 to create a state in which the tank 2 is filled with hydrogen gas (that is, a hydrogen gas atmosphere).
  • inert gas is supplied into the tank 2 through the inert gas line 32 in order to purge the tank 2 of hydrogen gas.
  • a mixed gas of inert gas and hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10.
  • the second compressor 9 is used to compress the mixed gas discharged at this time.
  • the second compressor 9 is configured to be able to compress the mixed gas to a pressure higher than the pressure required by the boiler 4 .
  • the mixed gas discharged from the tank 2 is compressed by the second compressor 9 to a pressure higher than the required pressure of the boiler 4, and then consumed by the boiler 4.
  • the air inside the tank 2 is replaced with an inert gas.
  • hydrogen gas is supplied into the tank 2 through a hydrogen line 60 (described later) or the like.
  • a mixed gas of inert gas and hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10.
  • the second compressor 9 can also be used to compress the mixed gas discharged at this time.
  • the first compressor 7 is suitable for pumping hydrogen gas having an extremely low specific gravity.
  • the first compressor 7 is capable of compressing hydrogen gas to a pressure higher than the pressure required by the boiler 4, which is the first gas consumer. Therefore, for example, hydrogen gas, which is boil-off gas discharged from the tank 2, is compressed by the first compressor 7 and used as propulsion fuel by the boiler 4.
  • the first compressor 7 is for pressure-feeding hydrogen gas, even if an attempt is made to use the first compressor 7 to force-feed the mixed gas, the hydrogen gas in the mixed gas discharged from the tank 2 will be transferred to the first compressor 7.
  • the mixed gas cannot be consumed in the boiler 4, which is the first gas consumer, or even if the first compressor 7 can be used to compress the mixed gas, the mixed gas will be lower than when the second compressor 9 is used. Pumping may take too long.
  • this embodiment includes a second compressor 9 to forcefully feed the mixed gas discharged from the tank 2 during gas replacement to the gas consumer.
  • the second compressor 9 can compress the mixed gas to a pressure higher than the pressure required by the boiler 4, which is the first gas consumer. Further, the second compressor 9 can compress the mixed gas to a pressure higher than the required pressure of the gas engine 41, which is the second gas consumer.
  • the maximum amount of hydrogen gas discharged by the second compressor 9 is smaller than the maximum amount of hydrogen gas discharged by the first compressor 7. For this reason, for example, when the amount of boil-off gas generated per unit time is large, the second compressor 9 may not be able to sufficiently pump hydrogen gas, and the pressure increase within the tank 2 may not be suppressed.
  • the gas supply system 1A includes the first compressor 7 suitable for pumping a gas with a low specific gravity, and the second compressor 9 suitable for pumping a gas with a large specific gravity. . Therefore, it is possible to use different compressors depending on the application, and it is possible to reliably suppress the pressure increase in the tank 2, and also to efficiently replace the hydrogen gas in the tank 2 during gas replacement.
  • the second compressor 9 is a different type of compressor from the two first compressors 7.
  • the second compressor 9 is, for example, a rotary type.
  • the second compressor 9 may be a type of compressor other than a rotary type.
  • the second compressor 9 is capable of compressing the mixed gas to a pressure higher than either the required pressure of the boiler 4, which is the first gas consumer, or the required pressure of the gas engine 41, which is the second gas consumer. Good too.
  • An on-off valve 24 that can open and close the flow path is disposed at a portion of the second supply line 20 upstream of the second compressor 9. Further, an on-off valve 25 that can open and close the flow path is arranged in the first branch flow path 22 . Furthermore, an on-off valve 26 that can open and close the flow path is arranged in the second branch flow path 23 .
  • the gas engine 41 uses hydrogen gas as fuel to drive the generator 42.
  • the gas engine 41 is a dual fuel engine that burns one or both of hydrogen gas and fuel oil as fuel gas.
  • Gas engine 41 may also be referred to as a second gas consumer.
  • Hydrogen gas used as fuel is guided to the gas engine 41 through the second branch flow path 23.
  • the required pressure of the gas engine 41 may be the same as the required pressure of the boiler 4, or may be different.
  • hydrogen gas compressed by the first compressor 7 or mixed gas compressed by the second compressor 9 may be guided to the gas engine 41 depending on the situation.
  • the hydrogen gas compressed by the first compressor 7 flows from the downstream end 20c of the second supply line 20 toward the branch point 20b. That is, in the portion between the downstream end 20c and the branch point 20b in the second supply line 20, the direction of gas flow may change depending on the situation.
  • the discharge amount of each of the first compressor 7 and the second compressor 9 is variable.
  • the discharge amount of each compressor is controlled by a control device 50.
  • the control device 50 is a so-called computer, and includes an arithmetic processing unit such as a CPU, and a storage unit such as a ROM and a RAM (none of which are shown).
  • the storage unit stores programs executed by the arithmetic processing unit, various fixed data, and the like.
  • the control device 50 controls the first compressor 7 to change the amount of gas supplied to the boiler 4. For example, when there is a change in gas consumption in the main engine 3, such as switching from operating two boilers 4 to operating only one boiler 4, the control device 50 controls the first compressor 7.
  • the first compressor 7 is controlled to reduce the discharge amount.
  • the above-mentioned on-off valves 15, 16, 17, 24, 25, 26, 33, 64, 65, 66, 72 are all manually operated valves; Some or all of 25, 26, 33, 64, 65, 66, and 72 may be automatic control valves controlled by the control device 50.
  • the gas supply system 1A further includes a hydrogen line 60.
  • the hydrogen line 60 is a flow path for supplying hydrogen gas or liquefied hydrogen to the tank 2 or discharging hydrogen gas or liquefied hydrogen from the tank 2.
  • the hydrogen line 60 is connected to the first supply line 10 and the inert gas line 32. That is, a part of the first supply line 10 and a part of the inert gas line 32 are flow paths for supplying hydrogen gas or liquefied hydrogen to the tank 2 or discharging hydrogen gas or liquefied hydrogen from the tank 2. It is also used as
  • the hydrogen line 60 includes a common flow path 61, a first branch flow path 62, and a second branch flow path 63.
  • One end of the common channel 61 is configured to be connectable to a supply source of hydrogen gas or liquefied hydrogen, or a supply destination of hydrogen gas or liquefied hydrogen.
  • a coupler connectable to a loading arm installed at a loading port or unloading port is provided at one end of the common flow path 61.
  • a branch point 60a which is the other end of the common channel 61, a first branch channel 62 and a second branch channel 63 are bifurcated.
  • One end of the first branch flow path 62 is connected to the common flow path 61 at the branch point 60a, and the other end of the first branch flow path 62 is connected to the tank 2 in the common flow path 11 of the first supply line 10. and the on-off valve 17.
  • One end of the second branch flow path 63 is connected to the common flow path 61 at the branch point 60a, and the other end of the second branch flow path 63 is connected to the tank 2 and the on-off valve 33 in the inert gas line 32. connected to the part in between.
  • An on-off valve 64 that can open and close the common flow path is arranged in the common flow path 61.
  • An on-off valve 65 that can open and close the flow path is arranged in the first branch flow path 62 .
  • An on-off valve 66 that can open and close the flow path is arranged in the second branch flow path 63.
  • the gas supply system 1A further includes a connection line 71 that connects the first common flow path 11 and the inert gas line 32.
  • the connection line 71 is used when replacing inert gas in the tank 2 with hydrogen gas, as will be described later.
  • An on-off valve 72 that can open and close the flow path is arranged in the connection line 71.
  • connection line 71 is connected to a portion of the first common flow path 11 between the connection point with the upstream end 20a of the second supply line 20 and the on-off valve 17.
  • the other end of the connection line 71 is connected to a portion of the inert gas line 32 between the tank 2 and the on-off valve 33.
  • one end of the connection line 71 may be connected to the second supply line 20 instead of the first common flow path 11.
  • one end of the connection line 71 may be connected to a portion of the second supply line 20 between the upstream end 20a and the on-off valve 24.
  • the other end of the connection line 71 may be connected to a portion of the second branch flow path 63 closer to the inert gas line 32 than the on-off valve 66 .
  • the on-off valves 15, 16, and 17 are opened, the on-off valves 24, 25, 26, 33, 64, 65, 66, and 72 are closed, and the first compressor 7 is operated. Hydrogen gas is fed under pressure from the tank 2 to the boiler 4 by the first compressor 7 .
  • the amount of boil-off gas generated in the tank 2 may increase.
  • the amount of gas supplied to the boiler 4 by the first compressor 7 an increase in tank pressure due to an increase in the amount of boil-off gas can be suppressed.
  • the amount of gas supplied to the boiler 4 exceeds the amount of gas consumed by the boiler 4.
  • the timing of introducing hydrogen gas to the gas engine 41 is an indicator that can directly or indirectly determine that the amount of gas supplied to the boiler 4 exceeds the amount of gas consumed by the boiler 4. It can be determined using For example, when the measured value of the pressure gauge 8 exceeds a predetermined value, the on-off valves 25 and 26 may be opened, or when the discharge amount of the first compressor 7 exceeds a predetermined value, The on-off valves 25 and 26 may be opened.
  • the electricity generated by the generator 42 driven by the gas engine 41 is distributed to electrical equipment inside the ship.
  • the electricity generated by the generator 42 may be stored in a battery or the like.
  • Gas supply performed during gas replacement before maintenance Next, gas supply performed during gas replacement before maintenance of the tank 2 will be explained. Maintenance is performed, for example, at a predetermined dock, but in this embodiment, gas replacement is started before arriving at the dock, rather than after arriving at the dock.
  • the liquefied hydrogen in tank 2 is unloaded.
  • the tank 2 changes from a fully loaded state to an empty state where there is no or little liquefied hydrogen in the space inside the tank 2.
  • the inside of the tank 2 is filled with hydrogen gas.
  • Ships typically require maintenance on a regular basis, such as every 2.5 years or every 5 years. If maintenance is required, once unloading is complete, the vessel will not proceed to the next loading port, but instead will proceed to the dock for maintenance.
  • gas replacement is performed while the ship is sailing towards the dock. Specifically, the on-off valves 15, 26, 64, 65, 66, 72 are closed, the on-off valves 16, 17, 24, 25, 33 are opened, and then the inert gas generator 31 and the second compressor 9 are opened. put it into operation. Thereby, inert gas is supplied from the inert gas generator 31 to the tank 2 containing hydrogen gas. As a result, a mixed gas of inert gas and hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10.
  • the mixed gas discharged from the tank 2 is guided to the second compressor 9 through the common flow path 21 of the second supply line 20, and hydrogen gas is pressure-fed from the tank 2 to the boiler 4 through the first branch flow path 22.
  • hydrogen gas is used as fuel gas for the boiler 4, and the mixed gas is combusted.
  • the inert gas which basically has a higher specific gravity than hydrogen gas, accumulates at the bottom of the tank 2. Therefore, immediately after starting the supply of inert gas to the tank 2, the concentration of hydrogen gas discharged from the tank 2 is high. As the inert gas continues to be supplied, the concentration of hydrogen gas discharged from the tank 2 decreases. Even in this case, the process can be carried out smoothly by supplying fuel oil to the boiler 4.
  • the maximum amount of hydrogen gas discharged by the second compressor 9 is smaller than the maximum amount of hydrogen gas discharged by each first compressor 7.
  • the flow rate for discharging hydrogen gas from the tank 2 may be smaller than when the tank 2 is fully loaded, and even the second compressor 9 is sufficient. meet the requirements.
  • the amount of hydrogen gas supplied to the boiler 4 is not sufficient, smooth navigation is possible by supplying fuel oil to the boiler 4.
  • the hydrogen gas in the tank 2 can be replaced with inert gas on the way to the dock. Thereafter, the inert gas in the tank 2 is replaced with air so that maintenance of the tank 2 can be performed.
  • Gas replacement after maintenance is performed to store liquefied hydrogen in the tank 2.
  • the air in the tank 2 is replaced with inert gas.
  • the air in the tank 2 is replaced with inert gas while the ship is being navigated from the dock to the loading port.
  • the inert gas filled in tank 2 is replaced with hydrogen gas.
  • a hydrogen gas supply source for example, a hydrogen gas generator
  • the on-off valves 15, 17, 33, 66, etc. are closed, the on-off valves 24, 64, 65, 72 are opened, and hydrogen gas is supplied through the common flow path 61, the first branch flow path 62, and the first common flow path 11. Hydrogen gas is supplied from the source to tank 2.
  • the mixed gas discharged from the tank 2 is guided to the second compressor 9 through the inert gas line 32, the connection line 71, the first common flow path 11, and the common flow path 21.
  • the mixed gas compressed by the second compressor 9 may be guided to the gas engine 41 and consumed by the gas engine 41, for example, by opening the on-off valve 26.
  • the mixed gas compressed by the second compressor 9 may be led to a gas combustion unit (GCU; see FIG. 4) not shown in FIG. 1 and consumed.
  • GCU gas combustion unit
  • the on-off valve 26 is opened and the mixed gas is consumed in the gas engine 41, so that the hydrogen concentration If the concentration is less than the required concentration of No. 41, the on-off valve 26 may be closed and processing may be performed in the GCU.
  • hydrogen gas By supplying liquefied hydrogen into the tank 2, hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10. The discharged hydrogen gas is guided to the first compressor 7 through the first supply line 10.
  • the hydrogen gas compressed by the first compressor 7 may be led to the gas engine 41 and consumed by the gas engine 41, for example, by opening the on-off valves 25 and 26.
  • the hydrogen gas compressed by the first compressor 7 may be led to a GCU (not shown in FIG. 1) and consumed.
  • a mixed gas of inert gas and hydrogen gas is supplied to the boiler 4 at a pressure higher than the required pressure, separately from the first compressor 7 for pressure-feeding boil-off gas.
  • a second compressor 9 capable of compressing the air is provided. Therefore, it is possible to use a different compressor depending on the application, and it is possible to reliably suppress the pressure increase in the tank 2, and also to efficiently replace the hydrogen gas in the tank 2 during gas replacement.
  • the ship Since the ship is equipped with a second compressor 9 for pressurizing mixed gas in addition to the first compressor 7 for pressurizing boil-off gas, when the ship sails toward a dock for maintenance work, for example, Gas replacement can be performed to replace the hydrogen gas in the tank 2 with an inert gas. Further, a mixed gas of inert gas and hydrogen gas can be effectively used in the propulsion boiler 4.
  • inert gas has an extremely high specific gravity compared to hydrogen gas. For this reason, even if an attempt is made to force-feed the mixed gas using the first compressor 7 for pressure-feeding hydrogen gas, the hydrogen gas in the mixed gas discharged from the tank 2 is transferred to the boiler 4, which is the first gas consumer. Or, even if the first compressor 7 can be used to compress the mixed gas, it may take too much time to pump the mixed gas compared to when the second compressor 9 is used. be.
  • a second compressor 9 capable of compressing the mixed gas to a pressure higher than the required pressure of the boiler 4 is provided.
  • Different compressors can be used depending on whether the compressor is used to compress hydrogen gas or to compress the mixed gas discharged from the tank 2 during gas replacement on the way to the dock. Therefore, it is possible to avoid an increase in the performance required of the first compressor 7 or an excessive load on the first compressor 7 due to compressing the mixed gas.
  • the mixed gas cannot be consumed unless the proportion of hydrogen gas in the mixed gas is above a certain level, but in this embodiment, the gas consumer of the main engine 3 is the boiler 4. Therefore, the mixed gas can be consumed regardless of the mixing ratio of hydrogen gas and inert gas.
  • FIG. 2 is a schematic configuration diagram of a gas supply system 1B according to the second embodiment.
  • the second supply line 20 does not include the second branch flow path 23, unlike the gas supply system 1A according to the first embodiment. That is, both the gas compressed by the first compressor 7 and the gas compressed by the second compressor 9 are guided to the boiler 4.
  • the second compressor 9 can compress the mixed gas to a pressure higher than the pressure required by the boiler 4, which is the first gas consumer.
  • the second compressor 9 does not need to be able to compress the mixed gas to a pressure higher than the pressure required by the gas engine 41, which is the second gas consumer.
  • This embodiment also provides the same effects as the first embodiment.
  • FIG. 3 is a schematic configuration diagram of a gas supply system 1C according to the third embodiment.
  • the second supply line 20 does not include the first branch flow path 22, unlike the gas supply system 1A according to the first embodiment. That is, the gas compressed by the first compressor 7 is guided to the boiler 4, and the gas compressed by the second compressor 9 is guided to the gas engine 41.
  • the second compressor 9 is capable of compressing the mixed gas to a pressure higher than the pressure required by the gas engine 41, which is the second gas consumer.
  • the second compressor 9 does not need to be able to compress the mixed gas to a pressure higher than the pressure required by the boiler 4, which is the first gas consumer.
  • This embodiment also provides the same effects as the first embodiment.
  • FIG. 4 is a schematic configuration diagram of a gas supply system 1D according to the fourth embodiment.
  • gas is supplied regardless of whether or not it is compressed. It is equipped with a GCU 81 that can consume the generated gas.
  • the second supply line 20 includes, in addition to a common flow path 21, a first branch flow path 22, and a second branch flow path 23.
  • the first branch channel 22, the second branch channel 23, and the third branch channel 82 are branched at a branch point 20b, which is the downstream end of the common channel 21.
  • a downstream end 20e of the third branch flow path 82 is connected to the gas combustion device 81.
  • an on-off valve 83 that can open and close the flow path is arranged in the third branch flow path 82 .
  • the gas supply system 1D also includes a bypass line 84 that guides the gas discharged from the tank 2 to the GCU 81, bypassing the first compressor 7 and the second compressor 9.
  • the upstream end of the bypass line 84 is connected to the upstream side of the on-off valve 24 in the common flow path 21, and the downstream end of the bypass line 84 is connected to the part between the on-off valve 83 and the GCU 81 in the third branch flow path 82. connected to the parts.
  • This embodiment also provides the same effects as the first embodiment. Further, in the present embodiment, when the total amount of hydrogen gas supplied to both the boiler 4 and the gas engine 41 exceeds the total amount of hydrogen gas consumed by both the boiler 4 and the gas engine 41, the third branch Excess hydrogen gas can be supplied to the GCU 81 through the flow path 82. Moreover, in this embodiment, the gas discharged from the tank 2 can be guided to the GCU 81 through the bypass line 84 without passing through the first compressor 7 or the second compressor 9.
  • a hydrogen carrier that transports liquefied hydrogen as cargo is exemplified as an example of a ship, but the ship is not limited to this.
  • the vessel may be a hydrogen-fueled vessel that uses hydrogen gas as a propulsion fuel.
  • the hydrogen fueled ship may be a cargo ship that carries cargo other than liquefied hydrogen, or a passenger ship.
  • the ship may be an offshore floating facility.
  • the gas supply system of the above embodiment is installed on a ship, the gas supply system may be installed on land equipment.
  • the gas supply system may be installed in a liquefied hydrogen production plant, liquefied hydrogen storage facility, liquefied hydrogen transportation facility, liquefied hydrogen loading terminal, etc., which are provided on land.
  • the shape of the tank is also not particularly limited, and may be spherical, horizontally cylindrical, or rectangular.
  • the type of tank is not particularly limited, such as a membrane type, a self-supporting sphere type, etc.
  • each of the first gas consumer and the second gas consumer may be used for propulsion or power generation, or may be used for another purpose.
  • the boiler 4 was described as the gas consumer or the first gas consumer, but the gas consumer or the first gas consumer does not need to be a boiler and can use hydrogen gas as a fuel gas. It may also be a gas engine.
  • the gas engine does not have to be a dual-fuel engine, and may be a gas-only engine that uses only fuel gas as fuel.
  • the gas consumer or the first gas consumer does not have to be the main machine, and may be an auxiliary machine.
  • the gas consumer or the first gas consumer may be an installation for power generation.
  • the gas engine 41 for power generation has been described as the second gas consumer, but the second gas consumer does not need to be a gas engine for power generation.
  • the second gas consumer may be a boiler that can use hydrogen gas as fuel gas.
  • the gas supply system may include a plurality of second gas consumers.
  • the types of the plurality of second gas consumers may be different from each other.
  • the opening and closing timings of the valves 15, 16, 17, 24, 25, 26, 33, 64, 65, 66, and 72 during gas replacement are not limited to those described in the above embodiment.
  • the on-off valves 24 and 26 were closed during navigation from the loading port to the unloading port, but the on-off valves 24 and 26 were opened while the on-off valve 25 was kept closed. It's okay.
  • the hydrogen gas may be introduced to the second compressor 9 and pressurized above the pressure required by the second gas consumer 41, and the hydrogen gas may be consumed by the second gas consumer 41.
  • valves 15, 16, 17, 24, 25, 26, 33, 64, 65, 66, and 72 described in the above embodiments were all described as on-off valves, but valves provided in each flow path is not limited to on-off valves.
  • Each flow path provided with each valve 15, 16, 17, 24, 25, 26, 33, 64, 65, 66, 72 is provided with a pressure regulating valve instead of or in addition to an on-off valve.
  • a flow control valve may also be provided.
  • the valve provided in the second gas consuming device may be a valve that can adjust the pressure of the hydrogen gas supplied to the second gas consuming device to the required pressure of the second gas consuming device, which is reduced from the required pressure of the first gas consuming device.
  • connection mode of the second supply line to the first supply line is not limited to that described in the above embodiment.
  • the second supply line bypasses the first compressor and leads gas from the tank to the second compressor, and the second supply line bypasses the first compressor and leads the gas compressed by the second compressor to the gas consumer (first It may be of any type as long as it leads to the gas consumer or the second gas consumer.
  • the second supply line may be composed of a plurality of flow paths separated from each other.
  • the second supply line is a line that branches from a portion of the first supply line upstream of the first compressor and joins a portion of the first supply line downstream of the first compressor, that is,
  • the supply line may include a bypass line to be bypassed, and a line in which a second compressor is arranged, which branches off from the first supply line at a location different from the connection location with the bypass line. That is, the second compressor does not need to be arranged in the bypass line that bypasses the first compressor.
  • FIGS. 5 and 6 show examples of gas supply systems in which the second supply line is constituted by a plurality of flow paths separated from each other as Modifications 1 and 2, respectively.
  • a gas supply system 1E shown in FIG. 5 includes a gas consumer 101 that can consume hydrogen gas, a tank 102 that accommodates hydrogen gas, a first supply line 103 that connects the tank 102 and the gas consumer 101, and a first supply line 103 that connects the tank 102 and the gas consumer 101.
  • 1 supply line 103 and configured to be able to compress the hydrogen gas discharged from the tank 102 to a pressure higher than the required pressure of the gas consumer 103; and an inert gas that guides the inert gas to the tank 102.
  • the inert gas is introduced into the tank 102 by the line 105, the second supply line 106, and the inert gas line 105, and the mixed gas of the inert gas and hydrogen gas discharged from the tank 102 is A second compressor 107 configured to be capable of compressing at a pressure higher than the required pressure of the consumer 101 is provided.
  • the second supply line 106 includes a first subline 106a and a second subline 106b.
  • the first subline 106a branches from a portion of the first supply line 103 upstream of the first compressor 104 and connects to a portion of the first supply line 103 downstream of the first compressor 104. That is, the first subline 106a is a line that bypasses the first compressor 104.
  • the second sub-line 106b branches at a downstream portion of the first supply line 103 from the connection point with the first sub-line 106a, and joins the first supply line 103 further downstream.
  • the second sub-line 106b may be connected (branched and merged) with the first supply line 103 at a portion upstream from two connection points with the first sub-line 106a.
  • the second compressor 107 is arranged in the second subline 106b. In this example as well, it is possible to use different compressors depending on the purpose.
  • the gas supply system 1F shown in FIG. 6 includes a first gas consumer 201 that can consume hydrogen gas, a tank 202 that accommodates hydrogen gas, and a first supply line that connects the tank 202 and the first gas consumer 201.
  • a first compressor 204 arranged in the first supply line 203 and configured to be able to compress the hydrogen gas discharged from the tank 202 to a pressure higher than the required pressure of the first gas consumer 203;
  • 202 , a second gas consumer 208 that can consume a mixed gas of inert gas and hydrogen gas, a second supply line 206 , and an inert gas line 205 that supplies inert gas to the inert gas line 205 .
  • a second compressor configured to be able to compress a mixed gas of an inert gas and hydrogen gas, which is discharged from the tank 202 by being led to the tank 202, to a pressure higher than the required pressure of the first gas consumer 201. 207.
  • the second supply line 206 includes a first subline 206a and a second subline 206b.
  • the first subline 206a branches from a portion of the first supply line 203 upstream of the first compressor 204 and joins a portion of the first supply line 203 downstream of the first compressor 204.
  • the second subline 206b branches from the junction of the first subline 206a in the first supply line 203 and connects to the second gas consumer 208.
  • the first subline 206a is a line that bypasses the first compressor 204.
  • the second compressor 207 is arranged in the second subline 206b. In this example as well, it is possible to use different compressors depending on the purpose.
  • the hydrogen line 60 was connected to the first supply line 10 and the inert gas line 32, but the hydrogen line 60 is not limited to such a configuration.
  • the first branch flow path 62 of the hydrogen line 60 may be directly connected to the tank 2 without going through the first supply line 10. That is, one end of the first branch flow path 62 may be arranged at the upper part of the tank 2.
  • the second branch flow path 63 of the hydrogen line 60 may be directly connected to the tank 2 without going through the inert gas line 32. That is, one end of the second branch flow path 63 may be arranged at the lower part of the tank 2.
  • the hydrogen line 60 was used both when supplying hydrogen gas to the tank 2 and when supplying liquefied hydrogen to the tank 2; A gas line that supplies the tank 2 and a liquid line that supplies liquefied hydrogen to the tank 2 may be provided separately.
  • the first to fourth embodiments, other embodiments, and Modifications 1 and 2 can be combined as appropriate.
  • the second supply line shown in Modifications 1 and 2 may be applied to each of the first to fourth embodiments.
  • circuits may be implemented using general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits, and/or those configured or programmed to perform the disclosed functions.
  • Processors are considered processing circuits or circuits because they include transistors and other circuits.
  • a circuit, unit, or means is hardware that performs the recited functions or is hardware that is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, where the software is used to configure the hardware and/or the processor.
  • a gas consumer capable of consuming hydrogen gas; a tank containing hydrogen gas; a first supply line connecting the tank and the gas consumer; a first compressor disposed in the first supply line and configured to be able to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure higher than the pressure required by the gas consumer; an inert gas line that leads inert gas to the tank; a second supply line connected to a portion of the first supply line upstream of the first compressor and connected to a portion of the first supply line downstream of the first compressor;
  • the mixed gas which is a mixture of the inert gas and the hydrogen gas, is disposed in the second supply line and is discharged from the tank by introducing the inert gas into the tank through the inert gas line.
  • a second compressor configured to be able to compress at a pressure higher than the pressure required by the consumer; gas supply system.
  • a second compressor in addition to the first compressor for pressure-feeding boil-off gas, there is provided a second compressor that can compress a mixed gas of inert gas and hydrogen gas to a pressure higher than the required pressure of the boiler. Therefore, it is possible to use a different compressor depending on the application, and it is possible to reliably suppress the pressure increase in the tank, and also to efficiently replace the hydrogen gas in the tank during gas replacement.
  • a second gas consumer of a different type from the first gas consumer which is capable of consuming the mixed gas; Branching from a portion of the second supply line downstream of the second compressor, or branching from a portion of the first supply line downstream of the first compressor, and leading to the second gas consumer.
  • a first gas consumer capable of consuming hydrogen gas; a tank containing hydrogen gas; a first supply line connecting the tank and the first gas consumer; a first compressor disposed in the first supply line and configured to be able to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure higher than the required pressure of the first gas consumer; an inert gas line that leads inert gas to the tank; a second gas consumer capable of consuming a mixed gas of the inert gas and the hydrogen gas; a second supply line connected to a portion of the first supply line upstream of the first compressor and connected to the second gas consumer; Disposed in the second supply line, the inert gas is guided to the tank by the inert gas line, so that the mixed gas discharged from the tank can be compressed to a pressure higher than the pressure required by the second gas consumer.
  • a second compressor configured; gas supply system.
  • a second compressor in addition to the first compressor for pressure-feeding boil-off gas, a second compressor is provided that can compress a mixed gas of an inert gas and hydrogen gas to a pressure higher than the required pressure of the boiler. For this reason, it is possible to use different compressors depending on the application, and it is possible to reliably suppress the pressure increase in the tank, and also to efficiently replace the hydrogen gas in the tank during gas replacement.
  • a ship comprising the gas supply system according to any one of items 1 to 4 above.
  • ships are equipped with a second compressor for compressing mixed gas.
  • Gas replacement can be performed to replace hydrogen gas with an inert gas.
  • a mixed gas of inert gas and hydrogen gas can be effectively used in a propulsion boiler.
  • a gas supply method for supplying gas discharged from a tank comprising: When discharging hydrogen gas from the tank containing hydrogen gas, The hydrogen gas discharged from the tank is guided to a first compressor and compressed, consuming the compressed hydrogen gas by a first gas consumer; When discharging a mixed gas of inert gas and hydrogen gas from the tank, The mixed gas discharged from the tank is guided to a second compressor of a different type from the first compressor and compressed, A gas supply method, wherein the compressed mixed gas is consumed by the first gas consumer or a second gas consumer of a different type from the first gas consumer. Inert gas has a much higher specific gravity than hydrogen gas.
  • a compressor for hydrogen gas is also used to compress a mixed gas during gas replacement, the performance required for the compressor for hydrogen gas may become too high, or the hydrogen gas may be compressed by compressing the mixed gas. There is a risk that the compressor used will be overloaded.
  • different compressors are used for compressing hydrogen gas discharged from the tank and for compressing mixed gas discharged from the tank during gas replacement. Therefore, it is possible to avoid an increase in the performance required of the hydrogen gas compressor or an excessive load on the hydrogen gas compressor due to compressing the mixed gas.
  • Discharging hydrogen gas from the tank containing hydrogen gas includes discharging hydrogen gas from the tank without supplying an inert gas to the tank containing hydrogen gas, The gas according to item 6, wherein discharging the mixed gas from the tank includes discharging the mixed gas from the tank by supplying an inert gas to the tank containing hydrogen gas.
  • Supply method There are two cases: when compressing the gas discharged from the tank when performing gas replacement, which replaces hydrogen gas in the tank with inert gas, and when compressing the gas discharged from the tank when gas replacement is not performed. You can use different compressors.
  • Discharging hydrogen gas from the tank containing hydrogen gas means discharging the liquefied hydrogen in the tank while the ship is sailing toward the unloading port for unloading the liquefied hydrogen stored in the tank.
  • discharging hydrogen gas, which is a boil-off gas generated by evaporation from the tank
  • Discharging the mixed gas from the tank in order to perform the gas replacement may be performed while the vessel is anchored at the unloading port after unloading the liquefied hydrogen in the tank at the unloading port, or , the gas supply method according to item 7, which is carried out while the ship is sailing from the discharge port.
  • Discharging hydrogen gas from the tank containing hydrogen gas includes discharging hydrogen gas from the tank without supplying an inert gas to the tank containing hydrogen gas, Any of items 6 to 8, wherein discharging the mixed gas from the tank includes discharging the mixed gas from the tank by supplying hydrogen gas to the tank containing an inert gas.
  • the gas supply method described in There are two cases: when compressing the gas discharged from the tank when performing gas replacement, which replaces inert gas in the tank with hydrogen gas, and when compressing the gas discharged from the tank when gas replacement is not performed. You can use different compressors.

Abstract

A gas supply system according to an embodiment of the present invention comprises: a gas consumption device that can consume hydrogen gas; a tank for housing hydrogen gas; a first supply line that connects the tank to the gas consumption device; a first compressor that is disposed in the first supply line, and that is configured to be able to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure equal to or greater than a required pressure for the gas consumption device; an inert gas line through which inert gas is guided to the tank; a second supply line that is connected to a portion, of the first supply line, upstream of the first compressor, and is connected to a portion, of the first supply line, downstream of the first compressor; and a second compressor that is disposed in the second supply line, and that is configured to be able to compress a mixed gas that is a mixture of the inert gas and the hydrogen gas and that is discharged from the tank by the inert gas being guided to the tank through the inert gas line, to a pressure equal to or greater than the required pressure for the gas consumption device.

Description

ガス供給システム、船舶およびガス供給方法Gas supply systems, ships and gas supply methods
 本開示は、タンクからガス消費器にガスを供給するためのガス供給システム、当該ガス供給システムを備えた船舶、およびタンクからガス消費器にガスを供給するためのガス供給方法に関する。 The present disclosure relates to a gas supply system for supplying gas from a tank to a gas consumer, a ship equipped with the gas supply system, and a gas supply method for supplying gas from a tank to a gas consumer.
 近年、液化水素を貯蔵したり運搬したりするシステムの開発が進められている(例えば特許文献1)。 In recent years, development of systems for storing and transporting liquefied hydrogen has been progressing (for example, Patent Document 1).
特開2021-177088号公報JP2021-177088A
 液化水素貯蔵タンクについてメンテナンスを行うためには、まず当該タンクから液化水素を取り出すことによってタンク内を水素ガスが充填された状態にした後に、タンク内の水素ガスを不活性ガスに置換し、その後、タンク内に充填された不活性ガスを空気に置換する作業が必要となる。また、逆に、メンテナンス後にタンクに液化水素を貯蔵するためには、タンクに液化水素を供給する前に、タンク内の空気を不活性ガスに置換し、その後、さらにタンク内の不活性ガスを水素ガスに置換する作業が必要となる。タンク内のガスの置換作業を効率よく進めることが望まれる。 To perform maintenance on a liquefied hydrogen storage tank, first remove the liquefied hydrogen from the tank to fill it with hydrogen gas, then replace the hydrogen gas in the tank with an inert gas, and then , it is necessary to replace the inert gas filled in the tank with air. Conversely, in order to store liquefied hydrogen in a tank after maintenance, replace the air in the tank with inert gas before supplying liquefied hydrogen to the tank, and then replace the air in the tank with inert gas. Replacement work with hydrogen gas is required. It is desirable to efficiently replace the gas in the tank.
 本開示は、タンク内のガスを置換する作業を効率よく進めることを可能にするガス供給システム、船舶およびガス供給方法を提供することを目的とする。 An object of the present disclosure is to provide a gas supply system, a ship, and a gas supply method that make it possible to efficiently replace gas in a tank.
 上記の課題を解決するために、本開示の一態様に係るガス供給システムは、水素ガスを消費可能なガス消費器と、水素ガスを収容するタンクと、前記タンクと前記ガス消費器とを接続する第1供給ラインと、前記タンクから排出され前記第1供給ラインに配置され、前記第1供給ラインにより導かれた水素ガスを前記ガス消費器の要求圧以上に圧縮可能に構成された第1圧縮機と、不活性ガスを前記タンクに導く不活性ガスラインと、前記第1供給ラインにおける前記第1圧縮機より上流側部分と接続し、前記第1供給ラインにおける前記第1圧縮機より下流側部分と接続する第2供給ラインと、前記第2供給ラインに配置され、前記不活性ガスラインにより不活性ガスが前記タンクに導かれることにより前記タンクから排出された、前記不活性ガスと前記水素ガスとが混合した混合ガスを前記ガス消費器の要求圧以上に圧縮可能に構成された第2圧縮機と、を備える。 In order to solve the above problems, a gas supply system according to one aspect of the present disclosure includes a gas consumer capable of consuming hydrogen gas, a tank that accommodates hydrogen gas, and a connection between the tank and the gas consumer. a first supply line disposed in the first supply line discharged from the tank and configured to be able to compress hydrogen gas led by the first supply line to a pressure higher than the required pressure of the gas consumer. a compressor, an inert gas line for guiding inert gas to the tank, connected to a portion upstream of the first compressor in the first supply line, and downstream of the first compressor in the first supply line; a second supply line connected to the side part; a second supply line disposed in the second supply line, the inert gas and the and a second compressor configured to be able to compress the mixed gas mixed with hydrogen gas to a pressure higher than the required pressure of the gas consumer.
 本開示の別の態様に係るガス供給システムは、水素ガスを消費可能な第1ガス消費器と、水素ガスを収容するタンクと、前記タンクと前記第1ガス消費器とを接続する第1供給ラインと、前記第1供給ラインに配置され、前記タンクから排出され前記第1供給ラインにより導かれた水素ガスを前記第1ガス消費器の要求圧以上に圧縮可能に構成された第1圧縮機と、不活性ガスを前記タンクに導く不活性ガスラインと、前記不活性ガスと前記水素ガスとが混合した混合ガスを消費可能な第2ガス消費器と、前記第1供給ラインにおける前記第1圧縮機より上流側部分と接続し、前記第2ガス消費器と接続する第2供給ラインと、前記第2供給ラインに配置され、前記混合ガスを前記第2ガス消費器の要求圧以上に圧縮可能に構成された第2圧縮機と、を備える。 A gas supply system according to another aspect of the present disclosure includes a first gas consumer that can consume hydrogen gas, a tank that accommodates hydrogen gas, and a first supply that connects the tank and the first gas consumer. a first compressor disposed in the first supply line and configured to be able to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure higher than the required pressure of the first gas consumer. an inert gas line that guides an inert gas to the tank; a second gas consumer capable of consuming a mixed gas of the inert gas and the hydrogen gas; and the first gas consumer in the first supply line. a second supply line connected to an upstream portion of the compressor and connected to the second gas consumer; and a second supply line that compresses the mixed gas to a pressure higher than the required pressure of the second gas consumer. and a second compressor configured to allow the compressor to operate.
 本開示の一態様に係る船舶は、上記のいずれかガス供給システムを備える。 A ship according to one aspect of the present disclosure includes any of the above gas supply systems.
 本開示の一態様に係るガス供給方法は、タンクから排出されたガスを供給するためのガス供給方法であって、水素ガスを収容した状態の前記タンクから水素ガスを排出する場合には、前記タンクから排出した水素ガスを、第1圧縮機に導いて圧縮し、圧縮した前記水素ガスを第1ガス消費器により消費し、前記タンクから、不活性ガスと水素ガスとが混合した混合ガスを排出する場合には、前記タンクから排出された混合ガスを、前記第1圧縮機とは異なる種類の第2圧縮機に導いて圧縮し、圧縮した前記混合ガスを前記第1ガス消費器、または、前記第1ガス消費器とは異なる種類の第2ガス消費器により消費する。 A gas supply method according to one aspect of the present disclosure is a gas supply method for supplying gas discharged from a tank, and when hydrogen gas is discharged from the tank containing hydrogen gas, the gas supply method is a gas supply method for supplying gas discharged from a tank. Hydrogen gas discharged from the tank is guided to a first compressor and compressed, the compressed hydrogen gas is consumed by a first gas consumer, and a mixed gas of inert gas and hydrogen gas is produced from the tank. When discharging, the mixed gas discharged from the tank is guided to a second compressor of a different type from the first compressor and compressed, and the compressed mixed gas is transferred to the first gas consumer, or , consumed by a second gas consumer of a different type from the first gas consumer.
 本開示によれば、タンク内のガスを置換する作業を効率よく進めることを可能にするガス供給システム、船舶およびガス供給方法を提供することができる。 According to the present disclosure, it is possible to provide a gas supply system, a ship, and a gas supply method that make it possible to efficiently replace gas in a tank.
第1実施形態に係るガス供給システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a gas supply system according to a first embodiment. 第2実施形態に係るガス供給システムの概略構成図である。FIG. 2 is a schematic configuration diagram of a gas supply system according to a second embodiment. 第3実施形態に係るガス供給システムの概略構成図である。FIG. 3 is a schematic configuration diagram of a gas supply system according to a third embodiment. 第4実施形態に係るガス供給システムの概略構成図である。It is a schematic block diagram of the gas supply system based on 4th Embodiment. 変形例1に係るガス供給システムの概略構成図である。FIG. 2 is a schematic configuration diagram of a gas supply system according to Modification 1. FIG. 変形例2に係るガス供給システムの概略構成図である。7 is a schematic configuration diagram of a gas supply system according to modification 2. FIG.
 以下、実施形態に係るガス供給システムについて、図面を参照しながら説明する。なお、以下では、全ての図面を通じて同一または相当する要素には同じ符号を付して、重複する説明は省略する。 Hereinafter, a gas supply system according to an embodiment will be described with reference to the drawings. In addition, below, the same code|symbol is attached|subjected to the same or equivalent element throughout all drawings, and overlapping description is abbreviate|omitted.
 <第1実施形態>
 図1には、第1実施形態に係るガス供給システム1Aの概略構成図が示されている。本実施形態で説明されるガス供給システム1Aは、船舶に搭載されている。船舶は、液化水素を運搬する水素運搬船であり、貨物である液化水素を貯蔵するタンク2を備える。図1では、1つのタンク2を示しているが、船舶は、複数のタンク2を備えてもよい。
<First embodiment>
FIG. 1 shows a schematic configuration diagram of a gas supply system 1A according to the first embodiment. A gas supply system 1A described in this embodiment is mounted on a ship. The ship is a hydrogen carrier that transports liquefied hydrogen, and is equipped with a tank 2 that stores liquefied hydrogen as cargo. Although one tank 2 is shown in FIG. 1, the ship may include a plurality of tanks 2.
 また、船舶の船体には、主機3が搭載されている。本実施形態では、主機3は、2つのボイラ4と1つの蒸気タービン5との組合せである。 Furthermore, a main engine 3 is mounted on the hull of the ship. In this embodiment, the main engine 3 is a combination of two boilers 4 and one steam turbine 5.
 ボイラ4は、水素ガスを燃料とする。本実施形態では、ボイラ4は、燃料ガスとしての水素ガスと燃料油の一方または双方を燃料とする。このため、ボイラ4に水素ガスが供給されない場合、または、ボイラ4に供給される水素ガスがボイラ4の要求量に達していない場合であっても、ボイラ4に燃料油を供給することにより、ボイラ4の運転が可能である。ボイラ4は、ガス消費器または第1ガス消費器とも称し得る。蒸気タービン5は、2つのボイラ4で生成された蒸気を利用して、推進器6の推進軸を駆動する。推進器6は、例えばプロペラである。なお、船体に主機3として搭載されたボイラ4の数および蒸気タービン5の数は、これに限定されない。例えば、タービン5の数は複数であってもよい。 The boiler 4 uses hydrogen gas as fuel. In this embodiment, the boiler 4 uses one or both of hydrogen gas and fuel oil as fuel. Therefore, even if hydrogen gas is not supplied to the boiler 4, or even if the hydrogen gas supplied to the boiler 4 does not reach the required amount of the boiler 4, by supplying fuel oil to the boiler 4, Boiler 4 can be operated. Boiler 4 may also be referred to as a gas consumer or a first gas consumer. The steam turbine 5 uses the steam generated by the two boilers 4 to drive the propulsion shaft of the propulsion device 6. The propulsion device 6 is, for example, a propeller. Note that the number of boilers 4 and the number of steam turbines 5 mounted on the hull as the main engine 3 are not limited to these. For example, the number of turbines 5 may be plural.
 主機3は、タンク2内で液化水素が蒸発することにより発生したボイルオフガスを、推進用の燃料として使用する。本実施形態において、ガス供給システム1Aは、タンク2内の水素ガスを推進用の主機3に供給する。タンク2とボイラ4とは、第1供給ライン10により接続されている。第1供給ライン10は、タンク2から排出されたガスをボイラ4に導く。第1供給ライン10には、第1圧縮機7が配置されている。なお、第1供給ライン10を含め、以下に説明するラインは、流体を導く流路であり、配管などにより構成される。 The main engine 3 uses boil-off gas generated by evaporation of liquefied hydrogen in the tank 2 as fuel for propulsion. In this embodiment, the gas supply system 1A supplies hydrogen gas in the tank 2 to the main engine 3 for propulsion. Tank 2 and boiler 4 are connected by a first supply line 10. The first supply line 10 leads gas discharged from the tank 2 to the boiler 4 . A first compressor 7 is arranged in the first supply line 10 . Note that the lines described below, including the first supply line 10, are flow paths for guiding fluid, and are composed of piping and the like.
 本実施形態では、タンク2は、液化水素を収容するためのタンクである。タンク2内に液化水素が収容された状態において、タンク2内の液化水素の液面より上側の空間である気層は、水素ガスで満たされている。気層には、タンク2内で液化水素が気化したボイルオフガスが含まれる。第1供給ライン10の上流端は、タンク2内の上部に配置されている。 In this embodiment, the tank 2 is a tank for storing liquefied hydrogen. When liquefied hydrogen is contained in the tank 2, a gas layer, which is a space above the liquid level of the liquefied hydrogen in the tank 2, is filled with hydrogen gas. The gas layer includes boil-off gas produced by vaporizing liquefied hydrogen in the tank 2. The upstream end of the first supply line 10 is located in the upper part of the tank 2 .
 また、タンク2には、圧力計8が設けられている。圧力計8は、タンク2内の気層の圧力を検知する。すなわち、圧力計8に計測される圧力から、ボイルオフガスの発生による圧力上昇を検知できる。 Additionally, the tank 2 is provided with a pressure gauge 8. The pressure gauge 8 detects the pressure of the air layer within the tank 2. That is, from the pressure measured by the pressure gauge 8, a pressure increase due to the generation of boil-off gas can be detected.
 また、タンク2は、不活性ガスライン32により不活性ガス発生装置31と接続されている。より詳しくは、不活性ガスライン32の上流端が、不活性ガス発生装置31に接続されており、不活性ガスライン32の下流端が、タンク2内の下部(例えば底部)に配置されている。ただし、不活性ガスライン32の下流端が、必ずしもタンク2内の下部に配置されていなくてもよい。不活性ガスライン32には、当該流路を開閉可能な開閉弁33が配置されている。 Additionally, the tank 2 is connected to an inert gas generator 31 via an inert gas line 32. More specifically, the upstream end of the inert gas line 32 is connected to the inert gas generator 31, and the downstream end of the inert gas line 32 is arranged at the lower part (for example, the bottom) of the tank 2. . However, the downstream end of the inert gas line 32 does not necessarily have to be located at the lower part of the tank 2. An on-off valve 33 that can open and close the flow path is arranged in the inert gas line 32.
 不活性ガス発生装置31は、不活性ガスを発生させる。不活性ガスとしては、例えば窒素、アルゴン、二酸化炭素などが例示される。不活性ガス発生装置31は、タンク2内の水素ガスを不活性ガスに置換するために用いられる。不活性ガス発生装置31は、ガス置換を行う前に、例えばオペレータの手動操作により稼働される。開閉弁33を開き、不活性ガス発生装置31を稼働することで、不活性ガス発生装置31で発生した不活性ガスは、不活性ガスライン32によりタンク2内に導かれる。その結果、タンク2から、第1供給ライン10の上流端を通じて、不活性ガスと水素ガスとの混合ガスが排出される。 The inert gas generator 31 generates inert gas. Examples of the inert gas include nitrogen, argon, and carbon dioxide. The inert gas generator 31 is used to replace hydrogen gas in the tank 2 with inert gas. The inert gas generator 31 is operated, for example, by an operator's manual operation before performing gas replacement. By opening the on-off valve 33 and operating the inert gas generator 31, the inert gas generated by the inert gas generator 31 is guided into the tank 2 via the inert gas line 32. As a result, a mixed gas of inert gas and hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10.
 本実施形態では、第1供給ライン10における第1圧縮機7より上流側部分(より詳しくは、後述の第1共通流路11)に、ガス濃度計18が配置されている。ガス濃度計18は、水素濃度を計測する。例えばガス置換時には、タンク2から排出される混合ガスに占める水素ガスの割合を計測する。すなわち、ガス濃度計18に計測される水素濃度から、例えばガス置換の進捗などを把握可能となっている。ガス濃度計18は、第1供給ライン10になくてもよく、例えばタンク2に配置されてもよい。 In this embodiment, a gas concentration meter 18 is disposed in a portion of the first supply line 10 upstream of the first compressor 7 (more specifically, in the first common flow path 11 to be described later). Gas concentration meter 18 measures hydrogen concentration. For example, during gas replacement, the proportion of hydrogen gas in the mixed gas discharged from the tank 2 is measured. That is, from the hydrogen concentration measured by the gas concentration meter 18, it is possible to grasp, for example, the progress of gas replacement. The gas concentration meter 18 does not need to be in the first supply line 10 and may be placed in the tank 2, for example.
 第1圧縮機7は、水素ガス圧縮用の圧縮機である。第1圧縮機7は、第1供給ライン10により導かれた水素ガスを、第1ガス消費器であるボイラ4の要求圧以上に圧縮可能に構成されている。また、例えば第1圧縮機7の最大吐出量は、第1ガス消費器であるボイラ4の要求流量以上である。第1圧縮機7は、例えば、ガス供給システム1Aを備える船舶が、例えば水素製造基地などの水素供給地(以下、積地とも称する)から水素需要地(以下、揚地とも称する)へ水素を輸送するときに使用される。例えば、船舶が積地から揚地へ航行中、タンク2内では、ボイルオフガスの発生によりタンク2内の圧力が上昇する。タンク2内の圧力上昇を抑制するために、タンク2からボイルオフガスが排出される。排出されたボイルオフガスである水素ガスは、第1圧縮機7によりボイラ4の要求圧以上に圧縮されることで、推進用燃料としてボイラ4で利用可能となる。 The first compressor 7 is a compressor for compressing hydrogen gas. The first compressor 7 is configured to be able to compress the hydrogen gas led through the first supply line 10 to a pressure higher than the required pressure of the boiler 4, which is the first gas consumer. Further, for example, the maximum discharge amount of the first compressor 7 is greater than or equal to the required flow rate of the boiler 4, which is the first gas consumer. The first compressor 7 is used, for example, when a ship equipped with the gas supply system 1A supplies hydrogen from a hydrogen supply location (hereinafter also referred to as a loading port) such as a hydrogen production base to a hydrogen demand location (hereinafter also referred to as an unloading port). used when transporting. For example, while a ship is sailing from a loading port to a discharging port, the pressure within the tank 2 increases due to the generation of boil-off gas. Boil-off gas is discharged from the tank 2 in order to suppress the pressure increase within the tank 2. Hydrogen gas, which is the discharged boil-off gas, is compressed by the first compressor 7 to a pressure equal to or higher than the required pressure of the boiler 4, so that it can be used in the boiler 4 as a propulsion fuel.
 第1供給ライン10は、第1共通流路11と、2つの第1分岐流路12と、第2共通流路13と、2つの第2分岐流路14とを含む。第1共通流路11と、2つの第1分岐流路12と、第2共通流路13と、2つの第2分岐流路14とは、上流側から下流側に向かってこの順に接続されている。 The first supply line 10 includes a first common channel 11, two first branch channels 12, a second common channel 13, and two second branch channels 14. The first common channel 11, the two first branch channels 12, the second common channel 13, and the two second branch channels 14 are connected in this order from the upstream side to the downstream side. There is.
 第1共通流路11は、タンク2から延びている。第1共通流路11には、当該流路を開閉可能な開閉弁17が配置されている。2つの第1分岐流路12は、第1共通流路11の下流端である分岐箇所10aにおいて二股に分岐している。本実施形態では、ガス供給システム1Aは、冗長性確保のために、互いに並列に配置された2つの第1圧縮機7を備えている。2つの第1圧縮機7は、それぞれ、2つの第1分岐流路12に配置されている。なお、ガス供給システム1Aが備える第1圧縮機7の数は1つでもよいし、3つ以上でもよい。第1圧縮機7の数に応じて、第1分岐流路12の数も変わり得る。 The first common flow path 11 extends from the tank 2. An on-off valve 17 that can open and close the flow path is arranged in the first common flow path 11 . The two first branch channels 12 are bifurcated at a branch point 10a, which is the downstream end of the first common channel 11. In this embodiment, the gas supply system 1A includes two first compressors 7 arranged in parallel to each other to ensure redundancy. The two first compressors 7 are arranged in the two first branch channels 12, respectively. Note that the number of first compressors 7 included in the gas supply system 1A may be one, or may be three or more. Depending on the number of first compressors 7, the number of first branch channels 12 may also change.
 本実施形態では、第1圧縮機7は、例えばターボ式またはレシプロ式である。2つの第1圧縮機7が互いに同じ種類であってもよいし、互いに異なる種類であってもよい。第1圧縮機7は、ターボ式やレシプロ式以外の種類の圧縮機であってもよい。 In this embodiment, the first compressor 7 is, for example, a turbo type or a reciprocating type. The two first compressors 7 may be of the same type or may be of different types. The first compressor 7 may be a type of compressor other than a turbo type or a reciprocating type.
 各第1分岐流路12における第1圧縮機7より上流側部分には、当該流路を開閉可能な開閉弁15が設けられている。 An on-off valve 15 that can open and close the flow path is provided at the upstream side of the first compressor 7 in each first branch flow path 12.
 2つの第1分岐流路12の合流箇所10bから、第2共通流路13が延びている。2つの第2分岐流路14は、第2共通流路13の下流端である分岐箇所10cにおいて二股に分岐している。2つの第2分岐流路14の下流端は、それぞれ、2つのボイラ4に接続されている。各第2分岐流路14には、当該第2分岐流路14を開閉可能な開閉弁16が設けられている。 A second common flow path 13 extends from the merging point 10b of the two first branch flow paths 12. The two second branch channels 14 are bifurcated at a branch point 10c, which is the downstream end of the second common channel 13. The downstream ends of the two second branch channels 14 are connected to the two boilers 4, respectively. Each second branch flow path 14 is provided with an on-off valve 16 that can open and close the second branch flow path 14 .
 また、ガス供給システム1Aは、第2供給ライン20と、当該第2供給ライン20に配置された第2圧縮機9と、発電用のガスエンジン41を備えている。 Further, the gas supply system 1A includes a second supply line 20, a second compressor 9 disposed on the second supply line 20, and a gas engine 41 for power generation.
 第2供給ライン20は、第1供給ライン10における第1圧縮機7より上流側部分から分岐して延びる。より詳しくは、第2供給ライン20の上流端20aが、第1共通流路11に接続されている。 The second supply line 20 branches and extends from a portion of the first supply line 10 upstream of the first compressor 7. More specifically, the upstream end 20a of the second supply line 20 is connected to the first common flow path 11.
 第2供給ライン20は、共通流路21と、第1分岐流路22と、第2分岐流路23とを含む。共通流路21の上流端20aは、第1供給ライン10における第1圧縮機7より上流側部分から延びている。第1分岐流路22および第2分岐流路23は、共通流路21の下流端である分岐箇所20bにおいて二股に分岐している。すなわち、第2供給ライン20は、2つの下流端、具体的には、第1分岐流路22の下流端20cおよび第2分岐流路23の下流端20dを有する。 The second supply line 20 includes a common flow path 21 , a first branch flow path 22 , and a second branch flow path 23 . The upstream end 20a of the common flow path 21 extends from a portion of the first supply line 10 upstream of the first compressor 7. The first branch channel 22 and the second branch channel 23 are bifurcated at a branch point 20b that is the downstream end of the common channel 21. That is, the second supply line 20 has two downstream ends, specifically, a downstream end 20c of the first branch channel 22 and a downstream end 20d of the second branch channel 23.
 第1分岐流路22の下流端20cが、第1供給ライン10(より詳しくは第2共通流路13)に接続されている。すなわち、第2供給ライン20における上流端20aから下流端20cへ延びるラインは、第1圧縮機7をバイパスするバイパスラインを構成する。第2分岐流路23の下流端20dが、ガスエンジン41に接続されている。 The downstream end 20c of the first branch flow path 22 is connected to the first supply line 10 (more specifically, the second common flow path 13). That is, the line extending from the upstream end 20a to the downstream end 20c in the second supply line 20 constitutes a bypass line that bypasses the first compressor 7. A downstream end 20d of the second branch flow path 23 is connected to the gas engine 41.
 第2圧縮機9は、第2供給ライン20における共通流路21に配置されている。第2圧縮機9は、基本的に、タンク2内のガスを置換する際に使用される圧縮機である。 The second compressor 9 is arranged in the common flow path 21 in the second supply line 20. The second compressor 9 is basically a compressor used when replacing the gas in the tank 2.
 例えば、タンク2についてメンテナンスを行う場合、まず当該タンク2から液化水素を取り出すことによってタンク2内を水素ガスが充填された状態(すなわち水素ガス雰囲気)にする。その後に、タンク2から水素ガスをパージするために、不活性ガスライン32を通じて不活性ガスをタンク2内に供給する。これにより、タンク2からは、第1供給ライン10の上流端を通じて、不活性ガスと水素ガスとの混合ガスが排出される。このときに排出される混合ガスの圧縮に、第2圧縮機9は用いられる。第2圧縮機9は、混合ガスをボイラ4の要求圧以上に圧縮可能に構成されている。ガス置換を行う間、タンク2から排出された混合ガスは、第2圧縮機9によりボイラ4の要求圧以上に圧縮され、その後、ボイラ4で消費される。 For example, when performing maintenance on the tank 2, first, liquefied hydrogen is taken out from the tank 2 to create a state in which the tank 2 is filled with hydrogen gas (that is, a hydrogen gas atmosphere). Thereafter, inert gas is supplied into the tank 2 through the inert gas line 32 in order to purge the tank 2 of hydrogen gas. As a result, a mixed gas of inert gas and hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10. The second compressor 9 is used to compress the mixed gas discharged at this time. The second compressor 9 is configured to be able to compress the mixed gas to a pressure higher than the pressure required by the boiler 4 . During gas replacement, the mixed gas discharged from the tank 2 is compressed by the second compressor 9 to a pressure higher than the required pressure of the boiler 4, and then consumed by the boiler 4.
 また、例えば、タンク2のメンテナンス後に、タンク2内を空気から不活性ガスに置換する。その後、水素ガスが供給される基地(例えば積地)で、タンク2から不活性ガスをパージするために、後述の水素ライン60などを通じて水素ガスをタンク2内に供給する。これにより、タンク2からは、第1供給ライン10の上流端を通じて、不活性ガスと水素ガスとの混合ガスが排出される。このときに排出される混合ガスの圧縮にも、第2圧縮機9は用いられ得る。 Also, for example, after maintenance of the tank 2, the air inside the tank 2 is replaced with an inert gas. Thereafter, in order to purge inert gas from the tank 2 at a base (for example, a loading dock) where hydrogen gas is supplied, hydrogen gas is supplied into the tank 2 through a hydrogen line 60 (described later) or the like. As a result, a mixed gas of inert gas and hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10. The second compressor 9 can also be used to compress the mixed gas discharged at this time.
 上記第1圧縮機7と第2圧縮機9との使い分けについて、より詳しく説明する。第1圧縮機7は、比重が極めて小さい水素ガスを圧送するのに適する。第1圧縮機7は、水素ガスを第1ガス消費器であるボイラ4の要求圧以上に圧縮可能である。このため、例えばタンク2から排出されたボイルオフガスである水素ガスは、第1圧縮機7により圧縮し、ボイラ4で推進用燃料として利用する。ただし、第1圧縮機7が水素ガス圧送用であることから、第1圧縮機7を用いて混合ガスを圧送することを試みたとしても、タンク2から排出した混合ガス中の水素ガスを第1ガス消費器であるボイラ4で消費できない可能性がある、あるいは、混合ガスの圧縮に第1圧縮機7を使用できたとしても、第2圧縮機9を用いた場合と比べて混合ガスの圧送に時間がかかりすぎる可能性がある。 The proper use of the first compressor 7 and the second compressor 9 will be explained in more detail. The first compressor 7 is suitable for pumping hydrogen gas having an extremely low specific gravity. The first compressor 7 is capable of compressing hydrogen gas to a pressure higher than the pressure required by the boiler 4, which is the first gas consumer. Therefore, for example, hydrogen gas, which is boil-off gas discharged from the tank 2, is compressed by the first compressor 7 and used as propulsion fuel by the boiler 4. However, since the first compressor 7 is for pressure-feeding hydrogen gas, even if an attempt is made to use the first compressor 7 to force-feed the mixed gas, the hydrogen gas in the mixed gas discharged from the tank 2 will be transferred to the first compressor 7. There is a possibility that the mixed gas cannot be consumed in the boiler 4, which is the first gas consumer, or even if the first compressor 7 can be used to compress the mixed gas, the mixed gas will be lower than when the second compressor 9 is used. Pumping may take too long.
 そこで、本実施形態は、ガス置換の際にタンク2から排出される混合ガスをガス消費器に圧送するために第2圧縮機9を備えている。第2圧縮機9は、混合ガスを第1ガス消費器であるボイラ4の要求圧以上に圧縮可能である。また、第2圧縮機9は、混合ガスを第2ガス消費器であるガスエンジン41の要求圧以上に圧縮可能である。 Therefore, this embodiment includes a second compressor 9 to forcefully feed the mixed gas discharged from the tank 2 during gas replacement to the gas consumer. The second compressor 9 can compress the mixed gas to a pressure higher than the pressure required by the boiler 4, which is the first gas consumer. Further, the second compressor 9 can compress the mixed gas to a pressure higher than the required pressure of the gas engine 41, which is the second gas consumer.
 例えば、第2圧縮機9による水素ガスの最大吐出量は、第1圧縮機7による水素ガスの最大吐出量に比べて小さい。このため、例えば単位時間当たりのボイルオフガスの発生量が大きい場合には、第2圧縮機9では十分に水素ガスを圧送できず、タンク2内の圧力上昇を抑制できない可能性がある。 For example, the maximum amount of hydrogen gas discharged by the second compressor 9 is smaller than the maximum amount of hydrogen gas discharged by the first compressor 7. For this reason, for example, when the amount of boil-off gas generated per unit time is large, the second compressor 9 may not be able to sufficiently pump hydrogen gas, and the pressure increase within the tank 2 may not be suppressed.
 このように、本実施形態では、ガス供給システム1Aが、比重が小さいガスを圧送するのに適する第1圧縮機7と、比重が大きいガスを圧送するのに適する第2圧縮機9とを備える。このため、用途に応じて圧縮機を使い分けることが可能であり、タンク2内の圧力上昇を確実に抑制できるとともに、ガス置換の際に、タンク2内の水素ガスの置換を効率よく実施できる。 As described above, in the present embodiment, the gas supply system 1A includes the first compressor 7 suitable for pumping a gas with a low specific gravity, and the second compressor 9 suitable for pumping a gas with a large specific gravity. . Therefore, it is possible to use different compressors depending on the application, and it is possible to reliably suppress the pressure increase in the tank 2, and also to efficiently replace the hydrogen gas in the tank 2 during gas replacement.
 本実施形態では、第2圧縮機9は、2つの第1圧縮機7とは異なる種類の圧縮機である。第2圧縮機9は、例えばロータリー式である。第2圧縮機9は、ロータリー式以外の種類の圧縮機であってもよい。なお、第2圧縮機9は、混合ガスを第1ガス消費器であるボイラ4の要求圧または第2ガス消費器であるガスエンジン41の要求圧のいずれかの圧力以上に圧縮可能であってもよい。 In this embodiment, the second compressor 9 is a different type of compressor from the two first compressors 7. The second compressor 9 is, for example, a rotary type. The second compressor 9 may be a type of compressor other than a rotary type. The second compressor 9 is capable of compressing the mixed gas to a pressure higher than either the required pressure of the boiler 4, which is the first gas consumer, or the required pressure of the gas engine 41, which is the second gas consumer. Good too.
 第2供給ライン20における第2圧縮機9より上流側部分には、当該流路を開閉可能な開閉弁24が配置されている。また、第1分岐流路22には、当該流路を開閉可能な開閉弁25が配置されている。また、第2分岐流路23には、当該流路を開閉可能な開閉弁26が配置されている。 An on-off valve 24 that can open and close the flow path is disposed at a portion of the second supply line 20 upstream of the second compressor 9. Further, an on-off valve 25 that can open and close the flow path is arranged in the first branch flow path 22 . Furthermore, an on-off valve 26 that can open and close the flow path is arranged in the second branch flow path 23 .
 ガスエンジン41は、水素ガスを燃料として使用し、発電機42を駆動する。本実施形態では、ガスエンジン41は、燃料ガスとしての水素ガスと燃料油の一方または双方を燃焼させる二元燃料エンジンである。ガスエンジン41は、第2ガス消費器とも称し得る。 The gas engine 41 uses hydrogen gas as fuel to drive the generator 42. In this embodiment, the gas engine 41 is a dual fuel engine that burns one or both of hydrogen gas and fuel oil as fuel gas. Gas engine 41 may also be referred to as a second gas consumer.
 ガスエンジン41には、第2分岐流路23を通じて、燃料として使用する水素ガスが導かれる。また、ガスエンジン41の要求圧は、ボイラ4の要求圧と同じでもよいし、異なってもよい。例えばガスエンジン41には、状況に応じて、第1圧縮機7により圧縮した水素ガスが導かれたり、第2圧縮機9により圧縮した混合ガスが導かれたりする。 Hydrogen gas used as fuel is guided to the gas engine 41 through the second branch flow path 23. Moreover, the required pressure of the gas engine 41 may be the same as the required pressure of the boiler 4, or may be different. For example, hydrogen gas compressed by the first compressor 7 or mixed gas compressed by the second compressor 9 may be guided to the gas engine 41 depending on the situation.
 なお、ガスエンジン41に第1圧縮機7により圧縮した水素ガスを導く場合、第1圧縮機7により圧縮した水素ガスは、第2供給ライン20における下流端20cから分岐箇所20bに向かって流れる。すなわち、第2供給ライン20における下流端20cと分岐箇所20bとの間の部分は、状況に応じてガスの流れの向きが変わり得る。 Note that when introducing the hydrogen gas compressed by the first compressor 7 to the gas engine 41, the hydrogen gas compressed by the first compressor 7 flows from the downstream end 20c of the second supply line 20 toward the branch point 20b. That is, in the portion between the downstream end 20c and the branch point 20b in the second supply line 20, the direction of gas flow may change depending on the situation.
 第1圧縮機7および第2圧縮機9の各圧縮機は、吐出量が可変である。各圧縮機の吐出量は制御装置50により制御される。制御装置50は、いわゆるコンピュータであって、CPU等の演算処理部、ROM、RAM等の記憶部を有している(いずれも図示せず)。記憶部には、演算処理部が実行するプログラム、各種固定データ等が記憶されている。 The discharge amount of each of the first compressor 7 and the second compressor 9 is variable. The discharge amount of each compressor is controlled by a control device 50. The control device 50 is a so-called computer, and includes an arithmetic processing unit such as a CPU, and a storage unit such as a ROM and a RAM (none of which are shown). The storage unit stores programs executed by the arithmetic processing unit, various fixed data, and the like.
 例えば制御装置50は、ボイラ4へのガス供給量を変更するよう第1圧縮機7を制御する。例えば、2つのボイラ4を運転する状態から1つのボイラ4のみを運転する状態に切り替わるなど、主機3でのガス消費量に変化が生じた場合には、制御装置50は第1圧縮機7の吐出量を低減するよう第1圧縮機7を制御する。なお、上記の開閉弁15,16,17,24,25,26,33,64,65,66,72は、いずれも手動操作弁であるが、上記の開閉弁15,16,17,24,25,26,33,64,65,66,72の一部または全部は、制御装置50により制御される自動制御弁でもよい。 For example, the control device 50 controls the first compressor 7 to change the amount of gas supplied to the boiler 4. For example, when there is a change in gas consumption in the main engine 3, such as switching from operating two boilers 4 to operating only one boiler 4, the control device 50 controls the first compressor 7. The first compressor 7 is controlled to reduce the discharge amount. Note that the above-mentioned on-off valves 15, 16, 17, 24, 25, 26, 33, 64, 65, 66, 72 are all manually operated valves; Some or all of 25, 26, 33, 64, 65, 66, and 72 may be automatic control valves controlled by the control device 50.
 ガス供給システム1Aは、水素ライン60を更に備える。水素ライン60は、タンク2に水素ガスまたは液化水素を供給したり、タンク2から水素ガスまたは液化水素を排出したりするための流路である。本実施形態では、水素ライン60は、第1供給ライン10と不活性ガスライン32とに接続されている。すなわち、第1供給ライン10の一部および不活性ガスライン32の一部が、タンク2に水素ガスまたは液化水素を供給したり、タンク2から水素ガスまたは液化水素を排出したりするため流路として兼用される。 The gas supply system 1A further includes a hydrogen line 60. The hydrogen line 60 is a flow path for supplying hydrogen gas or liquefied hydrogen to the tank 2 or discharging hydrogen gas or liquefied hydrogen from the tank 2. In this embodiment, the hydrogen line 60 is connected to the first supply line 10 and the inert gas line 32. That is, a part of the first supply line 10 and a part of the inert gas line 32 are flow paths for supplying hydrogen gas or liquefied hydrogen to the tank 2 or discharging hydrogen gas or liquefied hydrogen from the tank 2. It is also used as
 具体的には、水素ライン60は、共通流路61と、第1分岐流路62と、第2分岐流路63とを含む。共通流路61の一端部は、水素ガスまたは液化水素の供給源、あるいは、水素ガスまたは液化水素の供給先と接続可能に構成されている。例えば、共通流路61の一端部に、積地や揚地に設置されたローディングアームに接続可能な連結器が設けられている。共通流路61の他端部である分岐箇所60aにおいて、第1分岐流路62および第2分岐流路63が二股に分岐している。 Specifically, the hydrogen line 60 includes a common flow path 61, a first branch flow path 62, and a second branch flow path 63. One end of the common channel 61 is configured to be connectable to a supply source of hydrogen gas or liquefied hydrogen, or a supply destination of hydrogen gas or liquefied hydrogen. For example, a coupler connectable to a loading arm installed at a loading port or unloading port is provided at one end of the common flow path 61. At a branch point 60a, which is the other end of the common channel 61, a first branch channel 62 and a second branch channel 63 are bifurcated.
 第1分岐流路62の一端部は、分岐箇所60aにおいて共通流路61と接続されており、第1分岐流路62の他端部は、第1供給ライン10の共通流路11におけるタンク2と開閉弁17の間の部分に接続されている。第2分岐流路63の一端部は、分岐箇所60aにおいて共通流路61と接続されており、第2分岐流路63の他端部は、不活性ガスライン32におけるタンク2と開閉弁33の間の部分に接続されている。 One end of the first branch flow path 62 is connected to the common flow path 61 at the branch point 60a, and the other end of the first branch flow path 62 is connected to the tank 2 in the common flow path 11 of the first supply line 10. and the on-off valve 17. One end of the second branch flow path 63 is connected to the common flow path 61 at the branch point 60a, and the other end of the second branch flow path 63 is connected to the tank 2 and the on-off valve 33 in the inert gas line 32. connected to the part in between.
 共通流路61には、当該流路を開閉可能な開閉弁64が配置されている。第1分岐流路62には、当該流路を開閉可能な開閉弁65が配置されている。第2分岐流路63には、当該流路を開閉可能な開閉弁66が配置されている。 An on-off valve 64 that can open and close the common flow path is arranged in the common flow path 61. An on-off valve 65 that can open and close the flow path is arranged in the first branch flow path 62 . An on-off valve 66 that can open and close the flow path is arranged in the second branch flow path 63.
 また、ガス供給システム1Aは、第1共通流路11と不活性ガスライン32とを接続する接続ライン71を更に備える。例えば接続ライン71は、後述のように、タンク2内の不活性ガスを水素ガスに置換する際に用いられる。接続ライン71には、当該流路を開閉可能な開閉弁72が配置されている。 Furthermore, the gas supply system 1A further includes a connection line 71 that connects the first common flow path 11 and the inert gas line 32. For example, the connection line 71 is used when replacing inert gas in the tank 2 with hydrogen gas, as will be described later. An on-off valve 72 that can open and close the flow path is arranged in the connection line 71.
 接続ライン71の一端部は、第1共通流路11における第2供給ライン20の上流端20aとの接続箇所と開閉弁17との間の部分に接続されている。接続ライン71の他端部は、不活性ガスライン32におけるタンク2と開閉弁33の間の部分に接続されている。なお、接続ライン71の一端部は、第1共通流路11の代わりに、第2供給ライン20に接続されてもよい。例えば、接続ライン71の一端部は、第2供給ライン20における上流端20aと開閉弁24との間の部分に接続されてもよい。また、接続ライン71の他端部は、第2分岐流路63における開閉弁66より不活性ガスライン32側の部分に接続されてもよい。 One end of the connection line 71 is connected to a portion of the first common flow path 11 between the connection point with the upstream end 20a of the second supply line 20 and the on-off valve 17. The other end of the connection line 71 is connected to a portion of the inert gas line 32 between the tank 2 and the on-off valve 33. Note that one end of the connection line 71 may be connected to the second supply line 20 instead of the first common flow path 11. For example, one end of the connection line 71 may be connected to a portion of the second supply line 20 between the upstream end 20a and the on-off valve 24. Further, the other end of the connection line 71 may be connected to a portion of the second branch flow path 63 closer to the inert gas line 32 than the on-off valve 66 .
 次に、本実施形態のガス供給システム1Aにより実施されるガス供給方法について説明する。以下の説明では、液化水素を貯蔵したタンク2からボイラ4へボイルオフガスを供給する方法と、タンク2内のガスを別のガスに置換するガス置換の際に行うガス供給方法について説明する。 Next, a gas supply method implemented by the gas supply system 1A of this embodiment will be described. In the following description, a method for supplying boil-off gas from the tank 2 storing liquefied hydrogen to the boiler 4 and a gas supply method performed during gas replacement in which the gas in the tank 2 is replaced with another gas will be described.
 (ボイルオフガスの供給)
 船舶を積地から揚地に向けて航行させているとき、タンク2内の空間の大部分を液化水素で占めた満載状態にある。航行中、タンク2内では、液化水素が蒸発することにより水素ガスが発生する。船舶は、この水素ガスを推進用の燃料ガスとして使用する。
(Supply of boil-off gas)
When the ship is sailing from the loading port to the unloading port, the tank 2 is fully loaded with most of the space occupied by liquefied hydrogen. During navigation, hydrogen gas is generated in the tank 2 as liquefied hydrogen evaporates. Ships use this hydrogen gas as fuel gas for propulsion.
 具体的には、開閉弁15,16,17を開き、開閉弁24,25,26,33,64,65,66,72を閉じ、第1圧縮機7を稼働させる。第1圧縮機7により、タンク2からボイラ4に水素ガスが圧送される。 Specifically, the on-off valves 15, 16, and 17 are opened, the on-off valves 24, 25, 26, 33, 64, 65, 66, and 72 are closed, and the first compressor 7 is operated. Hydrogen gas is fed under pressure from the tank 2 to the boiler 4 by the first compressor 7 .
 航行中、急な荒天などにより船体の動揺の変化が生じると、タンク2でのボイルオフガスの発生量が増加することがある。この場合、第1圧縮機7によるボイラ4へのガス供給量を増加させることによって、ボイルオフガス量の増加に伴うタンク圧力の上昇は抑えられる。しかしながら、蒸気タービン5は即座に負荷を変動させることが難しいため、ボイラ4へのガス供給量がボイラ4のガス消費量を上回ることになる。 During navigation, if the ship's motion changes due to sudden rough weather, etc., the amount of boil-off gas generated in the tank 2 may increase. In this case, by increasing the amount of gas supplied to the boiler 4 by the first compressor 7, an increase in tank pressure due to an increase in the amount of boil-off gas can be suppressed. However, since it is difficult to change the load of the steam turbine 5 instantly, the amount of gas supplied to the boiler 4 exceeds the amount of gas consumed by the boiler 4.
 本実施形態では、ボイラ4へのガス供給量がボイラ4のガス消費量を上回ることによって、第1供給ライン10における第1圧縮機7とボイラ4との間で余剰となったボイルオフガスを、第2ガス消費器であるガスエンジン41で有効利用する。具体的には、開閉弁25および26を開き、第1分岐流路22、および、第2分岐流路23を通じて、ガスエンジン41に水素ガスを導き、ガスエンジン41にて消費する。 In this embodiment, when the amount of gas supplied to the boiler 4 exceeds the amount of gas consumed by the boiler 4, surplus boil-off gas between the first compressor 7 and the boiler 4 in the first supply line 10 is It is effectively used in the gas engine 41, which is the second gas consumer. Specifically, the on-off valves 25 and 26 are opened, hydrogen gas is introduced to the gas engine 41 through the first branch flow path 22 and the second branch flow path 23, and is consumed by the gas engine 41.
 ガスエンジン41に水素ガスを導くタイミング、すなわち、開閉弁25,26を開くタイミングは、ボイラ4へのガス供給量がボイラ4のガス消費量を上回ることを直接または間接的に判断可能な指標を用いて決定できる。例えば、圧力計8の計測値が所定の値以上になった場合に、開閉弁25,26を開いてもよいし、第1圧縮機7の吐出量が所定の値以上になった場合に、開閉弁25,26を開いてもよい。 The timing of introducing hydrogen gas to the gas engine 41, that is, the timing of opening the on-off valves 25 and 26, is an indicator that can directly or indirectly determine that the amount of gas supplied to the boiler 4 exceeds the amount of gas consumed by the boiler 4. It can be determined using For example, when the measured value of the pressure gauge 8 exceeds a predetermined value, the on-off valves 25 and 26 may be opened, or when the discharge amount of the first compressor 7 exceeds a predetermined value, The on-off valves 25 and 26 may be opened.
 なお、ガスエンジン41により駆動されて発電機42で発生した電気は、船内の電気設備に配電される。発電機42で発生した電気は、バッテリなどに蓄積されてもよい。 Note that the electricity generated by the generator 42 driven by the gas engine 41 is distributed to electrical equipment inside the ship. The electricity generated by the generator 42 may be stored in a battery or the like.
 (メンテナンス前のガス置換の際に行うガス供給)
 次に、タンク2のメンテナンス前のガス置換の際に行うガス供給について説明する。メンテナンスは、例えば所定のドックにて実施されるが、本実施形態では、ガス置換を、ドックに着いてからではなく、ドックに到着する前に開始する。
(Gas supply performed during gas replacement before maintenance)
Next, gas supply performed during gas replacement before maintenance of the tank 2 will be explained. Maintenance is performed, for example, at a predetermined dock, but in this embodiment, gas replacement is started before arriving at the dock, rather than after arriving at the dock.
 例えばタンク2に液化水素が収容された状態で船舶が揚地に着くと、タンク2内の液化水素が荷揚げされる。これにより、タンク2は、満載状態から、タンク2内の空間には液化水素がないまたは少ない空載状態となる。タンク2の空載状態では、タンク2内は水素ガスに満たされた状態となる。船舶は、通常、2.5年周期や5年周期など、定期的にメンテナンスが必要になる。メンテナンスが必要な場合、荷揚げが完了すると、船舶を次の積地に向けて航行させず、メンテナンスのためにドックに向けて航行させる。 For example, when a ship arrives at an unloading port with liquefied hydrogen stored in tank 2, the liquefied hydrogen in tank 2 is unloaded. As a result, the tank 2 changes from a fully loaded state to an empty state where there is no or little liquefied hydrogen in the space inside the tank 2. When the tank 2 is empty, the inside of the tank 2 is filled with hydrogen gas. Ships typically require maintenance on a regular basis, such as every 2.5 years or every 5 years. If maintenance is required, once unloading is complete, the vessel will not proceed to the next loading port, but instead will proceed to the dock for maintenance.
 本実施形態では、船舶をドックに向けて航行させているときにガス置換を行う。具体的には、開閉弁15,26,64,65,66,72を閉じ、開閉弁16,17,24,25,33を開き、その後、不活性ガス発生装置31および第2圧縮機9を稼働させる。これにより、不活性ガス発生装置31から、水素ガスが収容された状態のタンク2に不活性ガスが供給される。その結果、タンク2からは、第1供給ライン10の上流端を通じて不活性ガスと水素ガスとが混合した混合ガスが排出される。 In this embodiment, gas replacement is performed while the ship is sailing towards the dock. Specifically, the on-off valves 15, 26, 64, 65, 66, 72 are closed, the on-off valves 16, 17, 24, 25, 33 are opened, and then the inert gas generator 31 and the second compressor 9 are opened. put it into operation. Thereby, inert gas is supplied from the inert gas generator 31 to the tank 2 containing hydrogen gas. As a result, a mixed gas of inert gas and hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10.
 タンク2から排出された混合ガスは、第2供給ライン20の共通流路21を通じて第2圧縮機9に導かれ、第1分岐流路22を通じてタンク2からボイラ4に水素ガスが圧送される。ボイラ4に導かれた混合ガスのうち水素ガスは、ボイラ4の燃料ガスとして使用され、混合ガスは燃焼される。 The mixed gas discharged from the tank 2 is guided to the second compressor 9 through the common flow path 21 of the second supply line 20, and hydrogen gas is pressure-fed from the tank 2 to the boiler 4 through the first branch flow path 22. Of the mixed gas introduced to the boiler 4, hydrogen gas is used as fuel gas for the boiler 4, and the mixed gas is combusted.
 なお、ボイラ4に供給される混合ガスに占める水素ガスの量が、ボイラ4の燃料ガスとして十分な量でない場合、ボイラ4に燃料油を供給する。不活性ガスが、タンク2の底部に送られると、基本的には水素ガスより比重の大きい不活性ガスは、タンク2の底部にたまっていく。このため、不活性ガスのタンク2への供給を開始した直後は、タンク2から排出される水素ガスの濃度が高い。不活性ガスの供給を続けるうちに、タンク2から排出される水素ガスの濃度は低減する。この場合でも、ボイラ4に燃料油を供給することで滞りなく処理できる。 Note that if the amount of hydrogen gas in the mixed gas supplied to the boiler 4 is not a sufficient amount as fuel gas for the boiler 4, fuel oil is supplied to the boiler 4. When the inert gas is sent to the bottom of the tank 2, the inert gas, which basically has a higher specific gravity than hydrogen gas, accumulates at the bottom of the tank 2. Therefore, immediately after starting the supply of inert gas to the tank 2, the concentration of hydrogen gas discharged from the tank 2 is high. As the inert gas continues to be supplied, the concentration of hydrogen gas discharged from the tank 2 decreases. Even in this case, the process can be carried out smoothly by supplying fuel oil to the boiler 4.
 また、第2圧縮機9による水素ガスの最大吐出量は、各第1圧縮機7による水素ガスの最大吐出量より小さい。しかしながら、揚地からドックへ向けての航行する際、タンク2が空載状態であるため、ボイルオフガスによるタンク圧が上昇する虞がない。このため、タンク2が空載状態である場合は、タンク2が満載状態である場合に比べてタンク2から水素ガスを排出する流量は小さくてよく、第2圧縮機9であっても十分に要求を満たす。また、ボイラ4に供給される水素ガスの量が十分でない場合でも、ボイラ4に燃料油を供給することで滞りなく航行できる。 Further, the maximum amount of hydrogen gas discharged by the second compressor 9 is smaller than the maximum amount of hydrogen gas discharged by each first compressor 7. However, since the tank 2 is empty when sailing from the unloading port to the dock, there is no possibility that the tank pressure will increase due to boil-off gas. Therefore, when the tank 2 is empty, the flow rate for discharging hydrogen gas from the tank 2 may be smaller than when the tank 2 is fully loaded, and even the second compressor 9 is sufficient. meet the requirements. Furthermore, even if the amount of hydrogen gas supplied to the boiler 4 is not sufficient, smooth navigation is possible by supplying fuel oil to the boiler 4.
 こうして、ドックに向かう途中で、タンク2内の水素ガスを不活性ガスに置換できる。その後、タンク2内の不活性ガスは、タンク2のメンテナンスができるように、空気に置換される。 In this way, the hydrogen gas in the tank 2 can be replaced with inert gas on the way to the dock. Thereafter, the inert gas in the tank 2 is replaced with air so that maintenance of the tank 2 can be performed.
 (メンテナンス後のガス置換の際に行うガス供給)
 次に、タンク2のメンテナンス後のガス置換の際に行うガス供給について説明する。メンテナンス後のガス置換は、タンク2内に液化水素を貯留するために実施される。
(Gas supply performed during gas replacement after maintenance)
Next, gas supply performed during gas replacement after maintenance of the tank 2 will be explained. Gas replacement after maintenance is performed to store liquefied hydrogen in the tank 2.
 すなわち、ドックにてメンテナンスが完了した後、タンク2内の空気を不活性ガスで置換する。本実施形態では、ドックから積地に船舶を航行させながら、タンク2内の空気を不活性ガスに置換する作業を行う。 That is, after maintenance is completed at the dock, the air in the tank 2 is replaced with inert gas. In this embodiment, the air in the tank 2 is replaced with inert gas while the ship is being navigated from the dock to the loading port.
 積地に到着後、タンク2内に充填された不活性ガスを水素ガスに置換する。具体的には、積地に設置されたローディングアームを共通流路61の一端部に接続することにより、タンク2と水素ガスの供給源(例えば水素ガス生成装置)とを接続する。その後、開閉弁15,17,33,66などを閉じ、開閉弁24,64,65,72を開き、共通流路61、第1分岐流路62および第1共通流路11を通じて、水素ガス供給源からタンク2に水素ガスを供給する。 After arriving at the loading port, the inert gas filled in tank 2 is replaced with hydrogen gas. Specifically, by connecting a loading arm installed at a loading dock to one end of the common flow path 61, the tank 2 and a hydrogen gas supply source (for example, a hydrogen gas generator) are connected. Thereafter, the on-off valves 15, 17, 33, 66, etc. are closed, the on-off valves 24, 64, 65, 72 are opened, and hydrogen gas is supplied through the common flow path 61, the first branch flow path 62, and the first common flow path 11. Hydrogen gas is supplied from the source to tank 2.
 不活性ガスより比重の小さい水素ガスがタンク2内の上部に溜まっていくことで、タンク2から、不活性ガスライン32の端部を通じて、不活性ガスと水素ガスとの混合ガスが排出される。なお、タンク2への水素ガスの供給を開始した直後は、タンク2から排出される水素ガスの濃度が低い。水素ガスの供給を続けるうちに、タンク2から排出される水素ガスの濃度は上昇する。 As hydrogen gas, which has a lower specific gravity than inert gas, accumulates in the upper part of tank 2, a mixed gas of inert gas and hydrogen gas is discharged from tank 2 through the end of inert gas line 32. . Note that immediately after starting the supply of hydrogen gas to the tank 2, the concentration of hydrogen gas discharged from the tank 2 is low. As the supply of hydrogen gas continues, the concentration of hydrogen gas discharged from the tank 2 increases.
 タンク2から排出された混合ガスは、不活性ガスライン32、接続ライン71、第1共通流路11、および共通流路21を通じて第2圧縮機9に導かれる。第2圧縮機9にて圧縮された混合ガスは、例えば開閉弁26を開くことで、ガスエンジン41に導いて当該ガスエンジン41にて消費してもよい。あるいは、第2圧縮機9にて圧縮された混合ガスは、図1で図示しないガス燃焼装置(GCU;Gas Combustion Unit;図4参照)に導いて消費してもよい。例えば、ガス濃度計18により計測された水素濃度が、ガスエンジン41の要求濃度以上の場合には、開閉弁26を開いて、ガスエンジン41にて混合ガスを消費し、水素濃度が、ガスエンジン41の要求濃度未満である場合には、開閉弁26を閉じ、GCUにて処理してもよい。 The mixed gas discharged from the tank 2 is guided to the second compressor 9 through the inert gas line 32, the connection line 71, the first common flow path 11, and the common flow path 21. The mixed gas compressed by the second compressor 9 may be guided to the gas engine 41 and consumed by the gas engine 41, for example, by opening the on-off valve 26. Alternatively, the mixed gas compressed by the second compressor 9 may be led to a gas combustion unit (GCU; see FIG. 4) not shown in FIG. 1 and consumed. For example, when the hydrogen concentration measured by the gas concentration meter 18 is equal to or higher than the required concentration of the gas engine 41, the on-off valve 26 is opened and the mixed gas is consumed in the gas engine 41, so that the hydrogen concentration If the concentration is less than the required concentration of No. 41, the on-off valve 26 may be closed and processing may be performed in the GCU.
 不活性ガスから水素ガスへのガス置換が完了した後、開閉弁24,33,65,72などを閉じ、開閉弁15,17,32,64,72などを開いて、タンク2内に液化水素を導入する。不活性ガスから水素ガスへのガス置換が完了したか否かは、例えばガス濃度計18により計測された水素濃度が基準値を上回ったか否かで判断し得る。共通流路61、第2分岐流路63および不活性ガスライン32を通じて、液化水素供給源からタンク2に液化水素を供給する。 After completing the gas replacement from inert gas to hydrogen gas, close the on-off valves 24, 33, 65, 72, etc., open the on-off valves 15, 17, 32, 64, 72, etc., and fill the tank 2 with liquefied hydrogen. will be introduced. Whether or not the gas replacement from inert gas to hydrogen gas has been completed can be determined by, for example, whether the hydrogen concentration measured by the gas concentration meter 18 exceeds a reference value. Liquefied hydrogen is supplied from the liquefied hydrogen supply source to the tank 2 through the common channel 61, the second branch channel 63, and the inert gas line 32.
 液化水素をタンク2内に供給することで、タンク2から、第1供給ライン10の上流端を通じて、水素ガスが排出される。排出された水素ガスは、第1供給ライン10を通じて第1圧縮機7に導かれる。第1圧縮機7にて圧縮された水素ガスは、例えば開閉弁25,26を開くことで、ガスエンジン41に導いて当該ガスエンジン41にて消費してもよい。あるいは、第1圧縮機7にて圧縮された水素ガスは、図1で図示しないGCUに導いて消費してもよい。 By supplying liquefied hydrogen into the tank 2, hydrogen gas is discharged from the tank 2 through the upstream end of the first supply line 10. The discharged hydrogen gas is guided to the first compressor 7 through the first supply line 10. The hydrogen gas compressed by the first compressor 7 may be led to the gas engine 41 and consumed by the gas engine 41, for example, by opening the on-off valves 25 and 26. Alternatively, the hydrogen gas compressed by the first compressor 7 may be led to a GCU (not shown in FIG. 1) and consumed.
 以上に説明したように、本実施形態のガス供給システム1Aでは、ボイルオフガス圧送用の第1圧縮機7とは別に、不活性ガスと水素ガスとが混合した混合ガスをボイラ4の要求圧以上に圧縮できる第2圧縮機9を備える。このため、用途に応じて圧縮機を使い分けることが可能であり、タンク2内の圧力上昇を確実に抑制できるとともに、ガス置換の際に、タンク2内の水素ガスの置換を効率よく実施できる。 As explained above, in the gas supply system 1A of the present embodiment, a mixed gas of inert gas and hydrogen gas is supplied to the boiler 4 at a pressure higher than the required pressure, separately from the first compressor 7 for pressure-feeding boil-off gas. A second compressor 9 capable of compressing the air is provided. Therefore, it is possible to use a different compressor depending on the application, and it is possible to reliably suppress the pressure increase in the tank 2, and also to efficiently replace the hydrogen gas in the tank 2 during gas replacement.
 船舶にボイルオフガス圧送用の第1圧縮機7とは別に混合ガス圧送用の第2圧縮機9が搭載されているため、例えばメンテナンス作業を行うために船舶がドックに向かって航行するときに、タンク2内の水素ガスを不活性ガスに置換するガス置換を行うことができる。また、不活性ガスと水素ガスとが混合した混合ガスを推進用のボイラ4で有効利用できる。 Since the ship is equipped with a second compressor 9 for pressurizing mixed gas in addition to the first compressor 7 for pressurizing boil-off gas, when the ship sails toward a dock for maintenance work, for example, Gas replacement can be performed to replace the hydrogen gas in the tank 2 with an inert gas. Further, a mixed gas of inert gas and hydrogen gas can be effectively used in the propulsion boiler 4.
 船上でのガス置換作業ができない船舶では、着岸後に陸上へ混合ガスを返送する必要があり、メンテナンス作業にスムーズに移行できない。これに対し、本実施形態では、不活性ガスにより置換されるタンク2内の水素ガスを有効利用しつつ、航行中にタンク2内のガス置換を進めて、メンテナンス作業にスムーズに移行することが可能となる。 For ships that cannot perform gas replacement work on board, it is necessary to return the mixed gas to shore after berthing, making it difficult to smoothly transition to maintenance work. On the other hand, in this embodiment, while effectively utilizing the hydrogen gas in the tank 2 which is replaced with inert gas, the gas replacement in the tank 2 can be proceeded during the voyage to smoothly transition to maintenance work. It becomes possible.
 ところで、不活性ガスは、水素ガスと比べて比重が極めて大きい。このため、水素ガス圧送用の第1圧縮機7を用いて混合ガスを圧送することを試みたとしても、タンク2から排出した混合ガス中の水素ガスを第1ガス消費器であるボイラ4で消費できない可能性がある、あるいは、混合ガスの圧縮に第1圧縮機7を使用できたとしても、第2圧縮機9を用いた場合と比べて混合ガスの圧送に時間がかかりすぎる可能性がある。しかしながら、本実施形態では、水素ガスを圧縮する水素ガス用の第1圧縮機7とは別に、混合ガスをボイラ4の要求圧以上に圧縮可能な第2圧縮機9を備えるため、通常の航行時に水素ガスを圧縮する場合と、ドックに向かう途中にガス置換する際にタンク2から排出される混合ガスを圧縮する場合とで、使用する圧縮機を使い分けることができる。このため、第1圧縮機7に対して要求される性能が高くなったり、混合ガスを圧縮することによって第1圧縮機7に負荷がかかりすぎたりすることを回避できる。 Incidentally, inert gas has an extremely high specific gravity compared to hydrogen gas. For this reason, even if an attempt is made to force-feed the mixed gas using the first compressor 7 for pressure-feeding hydrogen gas, the hydrogen gas in the mixed gas discharged from the tank 2 is transferred to the boiler 4, which is the first gas consumer. Or, even if the first compressor 7 can be used to compress the mixed gas, it may take too much time to pump the mixed gas compared to when the second compressor 9 is used. be. However, in this embodiment, in addition to the first compressor 7 for hydrogen gas that compresses hydrogen gas, a second compressor 9 capable of compressing the mixed gas to a pressure higher than the required pressure of the boiler 4 is provided. Different compressors can be used depending on whether the compressor is used to compress hydrogen gas or to compress the mixed gas discharged from the tank 2 during gas replacement on the way to the dock. Therefore, it is possible to avoid an increase in the performance required of the first compressor 7 or an excessive load on the first compressor 7 due to compressing the mixed gas.
 ところで、ガス消費器の種類によっては、混合ガスにおける水素ガスが占める割合が一定以上でなければ混合ガスを消費できないものがあるが、本実施形態では、主機3のガス消費器がボイラ4であるため、水素ガスと不活性ガスとの混合比率に関係なく、混合ガスを消費できる。 By the way, depending on the type of gas consumer, the mixed gas cannot be consumed unless the proportion of hydrogen gas in the mixed gas is above a certain level, but in this embodiment, the gas consumer of the main engine 3 is the boiler 4. Therefore, the mixed gas can be consumed regardless of the mixing ratio of hydrogen gas and inert gas.
 <第2実施形態>
 図2は、第2実施形態に係るガス供給システム1Bの概略構成図である。第2実施形態に係るガス供給システム1Bでは、第1実施形態に係るガス供給システム1Aと異なり、第2供給ライン20が、第2分岐流路23を含まない。すなわち、第1圧縮機7で圧縮されたガスも、第2圧縮機9で圧縮されたガスも、ボイラ4へ導かれる。第2圧縮機9は、混合ガスを第1ガス消費器であるボイラ4の要求圧以上に圧縮可能である。第2圧縮機9は、混合ガスを第2ガス消費器であるガスエンジン41の要求圧以上に圧縮可能でなくてもよい。
<Second embodiment>
FIG. 2 is a schematic configuration diagram of a gas supply system 1B according to the second embodiment. In the gas supply system 1B according to the second embodiment, the second supply line 20 does not include the second branch flow path 23, unlike the gas supply system 1A according to the first embodiment. That is, both the gas compressed by the first compressor 7 and the gas compressed by the second compressor 9 are guided to the boiler 4. The second compressor 9 can compress the mixed gas to a pressure higher than the pressure required by the boiler 4, which is the first gas consumer. The second compressor 9 does not need to be able to compress the mixed gas to a pressure higher than the pressure required by the gas engine 41, which is the second gas consumer.
 本実施形態でも、第1実施形態と同様の効果が得られる。 This embodiment also provides the same effects as the first embodiment.
 <第3実施形態>
 図3は、第3実施形態に係るガス供給システム1Cの概略構成図である。第3実施形態に係るガス供給システム1Cでは、第1実施形態に係るガス供給システム1Aと異なり、第2供給ライン20が、第1分岐流路22を含まない。すなわち、第1圧縮機7で圧縮されたガスは、ボイラ4へ導かれ、第2圧縮機9で圧縮されたガスは、ガスエンジン41へ導かれる。第2圧縮機9は、混合ガスを第2ガス消費器であるガスエンジン41の要求圧以上に圧縮可能である。第2圧縮機9は、混合ガスを第1ガス消費器であるボイラ4の要求圧以上に圧縮可能でなくてもよい。
<Third embodiment>
FIG. 3 is a schematic configuration diagram of a gas supply system 1C according to the third embodiment. In the gas supply system 1C according to the third embodiment, the second supply line 20 does not include the first branch flow path 22, unlike the gas supply system 1A according to the first embodiment. That is, the gas compressed by the first compressor 7 is guided to the boiler 4, and the gas compressed by the second compressor 9 is guided to the gas engine 41. The second compressor 9 is capable of compressing the mixed gas to a pressure higher than the pressure required by the gas engine 41, which is the second gas consumer. The second compressor 9 does not need to be able to compress the mixed gas to a pressure higher than the pressure required by the boiler 4, which is the first gas consumer.
 本実施形態でも、第1実施形態と同様の効果が得られる。 This embodiment also provides the same effects as the first embodiment.
 <第4実施形態>
 図4は、第4実施形態に係るガス供給システム1Dの概略構成図である。第4実施形態に係るガス供給システム1Dでは、第1実施形態に係るガス供給システム1Aと異なり、第2ガス消費器であるガスエンジン41に加え、ガスが圧縮されているか否かに関わらず供給されたガスを消費可能なGCU81を備える。
<Fourth embodiment>
FIG. 4 is a schematic configuration diagram of a gas supply system 1D according to the fourth embodiment. In the gas supply system 1D according to the fourth embodiment, unlike the gas supply system 1A according to the first embodiment, in addition to the gas engine 41 which is the second gas consumer, gas is supplied regardless of whether or not it is compressed. It is equipped with a GCU 81 that can consume the generated gas.
 第2供給ライン20は、共通流路21、第1分岐流路22、第2分岐流路23に加え、を含む。第1分岐流路22、第2分岐流路23および第3分岐流路82は、共通流路21の下流端である分岐箇所20bにおいて分岐している。第3分岐流路82の下流端20eが、ガス燃焼装置81に接続されている。また、第3分岐流路82には、当該流路を開閉可能な開閉弁83が配置されている。 The second supply line 20 includes, in addition to a common flow path 21, a first branch flow path 22, and a second branch flow path 23. The first branch channel 22, the second branch channel 23, and the third branch channel 82 are branched at a branch point 20b, which is the downstream end of the common channel 21. A downstream end 20e of the third branch flow path 82 is connected to the gas combustion device 81. Furthermore, an on-off valve 83 that can open and close the flow path is arranged in the third branch flow path 82 .
 また、ガス供給システム1Dは、タンク2から排出されたガスを、第1圧縮機7および第2圧縮機9をバイパスしてGCU81に導くバイパスライン84を備える。バイパスライン84の上流端は、共通流路21における開閉弁24より上流側部分に接続されており、バイパスライン84の下流端は、第3分岐流路82における開閉弁83とGCU81との間の部分に接続されている。 The gas supply system 1D also includes a bypass line 84 that guides the gas discharged from the tank 2 to the GCU 81, bypassing the first compressor 7 and the second compressor 9. The upstream end of the bypass line 84 is connected to the upstream side of the on-off valve 24 in the common flow path 21, and the downstream end of the bypass line 84 is connected to the part between the on-off valve 83 and the GCU 81 in the third branch flow path 82. connected to the parts.
 本実施形態でも、第1実施形態と同様の効果が得られる。また、本実施形態では、ボイラ4およびガスエンジン41の双方への水素ガスの供給の合計が、ボイラ4およびガスエンジン41の双方の水素ガスの消費量の合計を上回った場合に、第3分岐流路82を通じてGCU81に余剰の水素ガスを供給できる。また、本実施形態では、タンク2から排出されたガスを、第1圧縮機7または第2圧縮機9を通過させることなくバイパスライン84を通じてGCU81に導くことができる。 This embodiment also provides the same effects as the first embodiment. Further, in the present embodiment, when the total amount of hydrogen gas supplied to both the boiler 4 and the gas engine 41 exceeds the total amount of hydrogen gas consumed by both the boiler 4 and the gas engine 41, the third branch Excess hydrogen gas can be supplied to the GCU 81 through the flow path 82. Moreover, in this embodiment, the gas discharged from the tank 2 can be guided to the GCU 81 through the bypass line 84 without passing through the first compressor 7 or the second compressor 9.
 <その他の実施形態>
 本開示は上記の実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の変形が可能である。
<Other embodiments>
The present disclosure is not limited to the embodiments described above, and various modifications can be made without departing from the gist of the present disclosure.
 例えば上記実施形態では、船舶の一例として貨物としての液化水素を運搬する水素運搬船が例示されたが、船舶はこれに限定されない。例えば、船舶は、水素ガスを推進用燃料として使用する水素燃料船であってもよい。この場合、水素燃料船は、液化水素以外の貨物を運搬する貨物船でもよいし、旅客船でもよい。また、船舶は、洋上浮体設備であってもよい。 For example, in the above embodiment, a hydrogen carrier that transports liquefied hydrogen as cargo is exemplified as an example of a ship, but the ship is not limited to this. For example, the vessel may be a hydrogen-fueled vessel that uses hydrogen gas as a propulsion fuel. In this case, the hydrogen fueled ship may be a cargo ship that carries cargo other than liquefied hydrogen, or a passenger ship. Further, the ship may be an offshore floating facility.
 また、上記実施形態のガス供給システムは、船舶に搭載されていたが、ガス供給システムは、陸上設備に設けられてもよい。例えばガス供給システムは、陸上に設けられた、液化水素製造プラント、液化水素貯蔵設備、液化水素輸送設備、液化水素積荷基地などに設けられてもよい。 Further, although the gas supply system of the above embodiment is installed on a ship, the gas supply system may be installed on land equipment. For example, the gas supply system may be installed in a liquefied hydrogen production plant, liquefied hydrogen storage facility, liquefied hydrogen transportation facility, liquefied hydrogen loading terminal, etc., which are provided on land.
 タンクの形状も特に限定されず、球状であってもよいし、横置き円筒状であってもよいし、方形状であってもよい。また、タンクのタイプも、例えば、メンブレン方式、自立球方式等、特に限定されない。 The shape of the tank is also not particularly limited, and may be spherical, horizontally cylindrical, or rectangular. Furthermore, the type of tank is not particularly limited, such as a membrane type, a self-supporting sphere type, etc.
 上記実施形態では、第1ガス消費器および第2ガス消費器の各々は、推進用または発電用であってもよいし、別の用途であってもよい。上記実施形態では、ガス消費器または第1ガス消費器としてボイラ4が説明されたが、ガス消費器または第1ガス消費器は、ボイラでなくてもよく、水素ガスを燃料ガスとして利用可能なガスエンジンであってもよい。ガスエンジンは、二元燃料エンジンでなくてもよく、燃料ガスのみを燃料として利用するガス専焼エンジンでもよい。ガス消費器または第1ガス消費器は、主機でなくてもよく補機でもよい。ガス消費器または第1ガス消費器は、発電用の設備であってもよい。 In the above embodiment, each of the first gas consumer and the second gas consumer may be used for propulsion or power generation, or may be used for another purpose. In the above embodiment, the boiler 4 was described as the gas consumer or the first gas consumer, but the gas consumer or the first gas consumer does not need to be a boiler and can use hydrogen gas as a fuel gas. It may also be a gas engine. The gas engine does not have to be a dual-fuel engine, and may be a gas-only engine that uses only fuel gas as fuel. The gas consumer or the first gas consumer does not have to be the main machine, and may be an auxiliary machine. The gas consumer or the first gas consumer may be an installation for power generation.
 上記実施形態では、第2ガス消費器として発電用のガスエンジン41が説明されたが、第2ガス消費器は、発電用のガスエンジンでなくてもよい。例えば第2ガス消費器は、水素ガスを燃料ガスとして利用可能なボイラでもよい。 In the above embodiment, the gas engine 41 for power generation has been described as the second gas consumer, but the second gas consumer does not need to be a gas engine for power generation. For example, the second gas consumer may be a boiler that can use hydrogen gas as fuel gas.
 ガス供給システムは、第2ガス消費器を複数備えてもよい。この場合、複数の第2ガス消費器の種類が互いに異なってもよい。 The gas supply system may include a plurality of second gas consumers. In this case, the types of the plurality of second gas consumers may be different from each other.
 また、ガス置換における弁15,16,17,24,25,26,33,64,65,66,72の開閉タイミングも、上記実施形態で説明されたものに限定されない。例えば、上記実施形態では、積地から揚地へ向けての航行において、開閉弁24,26は閉じられていたが、開閉弁25を閉じた状態を維持しつつ、開閉弁24,26を開いてもよい。この場合、第2圧縮機9に水素ガスを導き、第2ガス消費器41の要求圧以上に水素ガスを昇圧して、第2ガス消費器41で水素ガスを消費してもよい。 Furthermore, the opening and closing timings of the valves 15, 16, 17, 24, 25, 26, 33, 64, 65, 66, and 72 during gas replacement are not limited to those described in the above embodiment. For example, in the above embodiment, the on-off valves 24 and 26 were closed during navigation from the loading port to the unloading port, but the on-off valves 24 and 26 were opened while the on-off valve 25 was kept closed. It's okay. In this case, the hydrogen gas may be introduced to the second compressor 9 and pressurized above the pressure required by the second gas consumer 41, and the hydrogen gas may be consumed by the second gas consumer 41.
 上記の実施形態で説明された弁15,16,17,24,25,26,33,64,65,66,72は、いずれも開閉弁として説明されたが、各流路に設けられた弁は、開閉弁に限定されない。各流路に設けられる各弁15,16,17,24,25,26,33,64,65,66,72が設けられた流路には、開閉弁の代わりにまたは加えて圧力調整弁や流量制御弁が設けられていてもよい。例えば、第2ガス消費器の要求圧が、第1ガス消費器の要求圧と異なる場合、第2供給ライン20における下流端20cと分岐箇所20bとの間の部分(第1分岐流路22)に設けられる弁は、第2ガス消費器に供給される水素ガスの圧力を、第1ガス消費器の要求圧から減圧した第2ガス消費器の要求圧に調整できる弁であってもよい。 The valves 15, 16, 17, 24, 25, 26, 33, 64, 65, 66, and 72 described in the above embodiments were all described as on-off valves, but valves provided in each flow path is not limited to on-off valves. Each flow path provided with each valve 15, 16, 17, 24, 25, 26, 33, 64, 65, 66, 72 is provided with a pressure regulating valve instead of or in addition to an on-off valve. A flow control valve may also be provided. For example, if the required pressure of the second gas consumer is different from the required pressure of the first gas consumer, the portion between the downstream end 20c and the branch point 20b in the second supply line 20 (first branch flow path 22) The valve provided in the second gas consuming device may be a valve that can adjust the pressure of the hydrogen gas supplied to the second gas consuming device to the required pressure of the second gas consuming device, which is reduced from the required pressure of the first gas consuming device.
 第1供給ラインに対する第2供給ラインの接続態様は、上記実施形態で説明されたものに限定されない。第2供給ラインは、第1圧縮機を迂回して第2圧縮機にタンクからガスを導き、第2圧縮機にて圧縮したガスを、第1圧縮機を迂回してガス消費器(第1ガス消費器または第2ガス消費器)に導くものであればよい。 The connection mode of the second supply line to the first supply line is not limited to that described in the above embodiment. The second supply line bypasses the first compressor and leads gas from the tank to the second compressor, and the second supply line bypasses the first compressor and leads the gas compressed by the second compressor to the gas consumer (first It may be of any type as long as it leads to the gas consumer or the second gas consumer.
 例えば第2供給ラインは、互いに分離した複数の流路により構成されてもよい。例えば第2供給ラインは、第1供給ラインにおける第1圧縮機より上流側部分から分岐して、第1供給ラインにおける第1圧縮機より下流側部分に合流するライン、すなわち、第1圧縮機をバイパスするバイパスラインと、当該バイパスラインとの接続箇所とは別の箇所で第1供給ラインから分岐する、第2圧縮機が配置されたラインとを含んでもよい。すなわち、第1圧縮機をバイパスするバイパスラインに第2圧縮機が配置されていなくてもよい。図5および6に、それぞれ、変形例1,2として、第2供給ラインが互いに分離した複数の流路により構成されているガス供給システムの例を示す。 For example, the second supply line may be composed of a plurality of flow paths separated from each other. For example, the second supply line is a line that branches from a portion of the first supply line upstream of the first compressor and joins a portion of the first supply line downstream of the first compressor, that is, The supply line may include a bypass line to be bypassed, and a line in which a second compressor is arranged, which branches off from the first supply line at a location different from the connection location with the bypass line. That is, the second compressor does not need to be arranged in the bypass line that bypasses the first compressor. FIGS. 5 and 6 show examples of gas supply systems in which the second supply line is constituted by a plurality of flow paths separated from each other as Modifications 1 and 2, respectively.
 図5に示すガス供給システム1Eは、水素ガスを消費可能なガス消費器101と、水素ガスを収容するタンク102と、タンク102とガス消費器101とを接続する第1供給ライン103と、第1供給ライン103に配置され、タンク102から排出された水素ガスをガス消費器103の要求圧以上に圧縮可能に構成された第1圧縮機104と、不活性ガスをタンク102に導く不活性ガスライン105と、第2供給ライン106と、不活性ガスライン105により不活性ガスがタンク102に導かれることによりタンク102から排出された、不活性ガスと水素ガスとが混合した混合ガスを、ガス消費器101の要求圧以上に圧縮可能に構成された第2圧縮機107と、を備える。図5に示すように、第2供給ライン106は、第1サブライン106aおよび第2サブライン106bを含む。第1サブライン106aは、第1供給ライン103における第1圧縮機104より上流側部分から分岐して、第1供給ライン103における第1圧縮機104より下流側部分につながる。すなわち、第1サブライン106aは、第1圧縮機104をバイパスするラインである。第2サブライン106bは、第1供給ライン103における第1サブライン106aとの接続箇所より下流側部分において分岐して、さらに下流側で第1供給ライン103に合流する。第2サブライン106bは、第1サブライン106aとの2つの接続箇所より上流側部分において第1供給ライン103と接続(分岐および合流)していてもよい。第2圧縮機107は、第2サブライン106bに配置されている。本例でも、用途に応じて圧縮機を使い分けることが可能である。 A gas supply system 1E shown in FIG. 5 includes a gas consumer 101 that can consume hydrogen gas, a tank 102 that accommodates hydrogen gas, a first supply line 103 that connects the tank 102 and the gas consumer 101, and a first supply line 103 that connects the tank 102 and the gas consumer 101. 1 supply line 103 and configured to be able to compress the hydrogen gas discharged from the tank 102 to a pressure higher than the required pressure of the gas consumer 103; and an inert gas that guides the inert gas to the tank 102. The inert gas is introduced into the tank 102 by the line 105, the second supply line 106, and the inert gas line 105, and the mixed gas of the inert gas and hydrogen gas discharged from the tank 102 is A second compressor 107 configured to be capable of compressing at a pressure higher than the required pressure of the consumer 101 is provided. As shown in FIG. 5, the second supply line 106 includes a first subline 106a and a second subline 106b. The first subline 106a branches from a portion of the first supply line 103 upstream of the first compressor 104 and connects to a portion of the first supply line 103 downstream of the first compressor 104. That is, the first subline 106a is a line that bypasses the first compressor 104. The second sub-line 106b branches at a downstream portion of the first supply line 103 from the connection point with the first sub-line 106a, and joins the first supply line 103 further downstream. The second sub-line 106b may be connected (branched and merged) with the first supply line 103 at a portion upstream from two connection points with the first sub-line 106a. The second compressor 107 is arranged in the second subline 106b. In this example as well, it is possible to use different compressors depending on the purpose.
 図6に示すガス供給システム1Fは、水素ガスを消費可能な第1ガス消費器201と、水素ガスを収容するタンク202と、タンク202と第1ガス消費器201とを接続する第1供給ライン203と、第1供給ライン203に配置され、タンク202から排出された水素ガスを第1ガス消費器203の要求圧以上に圧縮可能に構成された第1圧縮機204と、不活性ガスをタンク202に導く不活性ガスライン205と、不活性ガスと水素ガスとが混合した混合ガスを消費可能な第2ガス消費器208と、第2供給ライン206と、不活性ガスライン205により不活性ガスがタンク202に導かれることによりタンク202から排出された、不活性ガスと水素ガスとが混合した混合ガスを、第1ガス消費器201の要求圧以上に圧縮可能に構成された第2圧縮機207と、を備える。図6に示すように、第2供給ライン206は、第1サブライン206aおよび第2サブライン206bを含む。第1サブライン206aは、第1供給ライン203における第1圧縮機204より上流側部分から分岐して、第1供給ライン203における第1圧縮機204より下流側部分に合流する。第2サブライン206bは、第1供給ライン203における第1サブライン206aの合流箇所から分岐して第2ガス消費器208につながる。第1サブライン206aは、第1圧縮機204をバイパスするラインである。第2圧縮機207は、第2サブライン206bに配置されている。本例でも、用途に応じて圧縮機を使い分けることが可能である。 The gas supply system 1F shown in FIG. 6 includes a first gas consumer 201 that can consume hydrogen gas, a tank 202 that accommodates hydrogen gas, and a first supply line that connects the tank 202 and the first gas consumer 201. 203, a first compressor 204 arranged in the first supply line 203 and configured to be able to compress the hydrogen gas discharged from the tank 202 to a pressure higher than the required pressure of the first gas consumer 203; 202 , a second gas consumer 208 that can consume a mixed gas of inert gas and hydrogen gas, a second supply line 206 , and an inert gas line 205 that supplies inert gas to the inert gas line 205 . A second compressor configured to be able to compress a mixed gas of an inert gas and hydrogen gas, which is discharged from the tank 202 by being led to the tank 202, to a pressure higher than the required pressure of the first gas consumer 201. 207. As shown in FIG. 6, the second supply line 206 includes a first subline 206a and a second subline 206b. The first subline 206a branches from a portion of the first supply line 203 upstream of the first compressor 204 and joins a portion of the first supply line 203 downstream of the first compressor 204. The second subline 206b branches from the junction of the first subline 206a in the first supply line 203 and connects to the second gas consumer 208. The first subline 206a is a line that bypasses the first compressor 204. The second compressor 207 is arranged in the second subline 206b. In this example as well, it is possible to use different compressors depending on the purpose.
 上記の実施形態では、水素ライン60は、第1供給ライン10と不活性ガスライン32とに接続されていたが、水素ライン60はこのような構成に限定されない。例えば、水素ライン60の第1分岐流路62は、第1供給ライン10を介さずにタンク2に直接接続されてもよい。すなわち、第1分岐流路62の一端部は、タンク2の上部に配置されてもよい。また、例えば、水素ライン60の第2分岐流路63は、不活性ガスライン32を介さずにタンク2に直接接続されてもよい。すなわち、第2分岐流路63の一端部は、タンク2の下部に配置されてもよい。また、水素ライン60は、水素ガスをタンク2に供給する場合と、液化水素をタンク2に供給する場合のどちらの場合にも使用されるラインであったが、水素ライン60は、水素ガスをタンク2に供給するガスラインと、液化水素をタンク2に供給する液体ラインとを別々に備えてもよい。 In the above embodiment, the hydrogen line 60 was connected to the first supply line 10 and the inert gas line 32, but the hydrogen line 60 is not limited to such a configuration. For example, the first branch flow path 62 of the hydrogen line 60 may be directly connected to the tank 2 without going through the first supply line 10. That is, one end of the first branch flow path 62 may be arranged at the upper part of the tank 2. Further, for example, the second branch flow path 63 of the hydrogen line 60 may be directly connected to the tank 2 without going through the inert gas line 32. That is, one end of the second branch flow path 63 may be arranged at the lower part of the tank 2. Furthermore, the hydrogen line 60 was used both when supplying hydrogen gas to the tank 2 and when supplying liquefied hydrogen to the tank 2; A gas line that supplies the tank 2 and a liquid line that supplies liquefied hydrogen to the tank 2 may be provided separately.
 上記第1~第4実施形態、その他の実施形態および変形例1,2は、適宜組み合わせ可能である。例えば変形例1,2に示した第2供給ラインを、上記第1~第4実施形態の各実施形態に適用してもよい。 The first to fourth embodiments, other embodiments, and Modifications 1 and 2 can be combined as appropriate. For example, the second supply line shown in Modifications 1 and 2 may be applied to each of the first to fourth embodiments.
 本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウェアであるか、または、列挙された機能を実行するようにプログラムされたハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェアおよび/またはプロセッサの構成に使用される。 The functionality of the elements disclosed herein may be implemented using general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits, and/or those configured or programmed to perform the disclosed functions. can be implemented using circuitry or processing circuitry that includes a combination of . Processors are considered processing circuits or circuits because they include transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs the recited functions or is hardware that is programmed to perform the recited functions. The hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, where the software is used to configure the hardware and/or the processor.
 [開示項目]
 以下の項目のそれぞれは、好ましい実施形態の開示である。
[Disclosure items]
Each of the following items is a disclosure of a preferred embodiment.
 [項目1]
 水素ガスを消費可能なガス消費器と、
 水素ガスを収容するタンクと、
 前記タンクと前記ガス消費器とを接続する第1供給ラインと、
 前記第1供給ラインに配置され、前記タンクから排出され前記第1供給ラインにより導かれた水素ガスを前記ガス消費器の要求圧以上に圧縮可能に構成された第1圧縮機と、
 不活性ガスを前記タンクに導く不活性ガスラインと、
 前記第1供給ラインにおける前記第1圧縮機より上流側部分と接続し、前記第1供給ラインにおける前記第1圧縮機より下流側部分と接続する第2供給ラインと、
 前記第2供給ラインに配置され、前記不活性ガスラインにより不活性ガスが前記タンクに導かれることにより前記タンクから排出された、前記不活性ガスと前記水素ガスとが混合した混合ガスを前記ガス消費器の要求圧以上に圧縮可能に構成された第2圧縮機と、
を備える、ガス供給システム。
 項目1によれば、ボイルオフガス圧送用の第1圧縮機とは別に、不活性ガスと水素ガスとが混合した混合ガスをボイラの要求圧以上に圧縮できる第2圧縮機を備える。このため、用途に応じて圧縮機を使い分けることが可能であり、タンク内の圧力上昇を確実に抑制できるとともに、ガス置換の際に、タンク内の水素ガスの置換を効率よく実施できる。
[Item 1]
a gas consumer capable of consuming hydrogen gas;
a tank containing hydrogen gas;
a first supply line connecting the tank and the gas consumer;
a first compressor disposed in the first supply line and configured to be able to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure higher than the pressure required by the gas consumer;
an inert gas line that leads inert gas to the tank;
a second supply line connected to a portion of the first supply line upstream of the first compressor and connected to a portion of the first supply line downstream of the first compressor;
The mixed gas, which is a mixture of the inert gas and the hydrogen gas, is disposed in the second supply line and is discharged from the tank by introducing the inert gas into the tank through the inert gas line. a second compressor configured to be able to compress at a pressure higher than the pressure required by the consumer;
gas supply system.
According to item 1, in addition to the first compressor for pressure-feeding boil-off gas, there is provided a second compressor that can compress a mixed gas of inert gas and hydrogen gas to a pressure higher than the required pressure of the boiler. Therefore, it is possible to use a different compressor depending on the application, and it is possible to reliably suppress the pressure increase in the tank, and also to efficiently replace the hydrogen gas in the tank during gas replacement.
 [項目2]
 前記ガス消費器は、ボイラである、項目1に記載のガス供給システム。
 ガス消費器の種類によっては、混合ガスにおける水素ガスが占める割合が一定以上でなければ混合ガスを消費できないものがあるが、項目2によれば、ガス消費器がボイラであるため、水素ガスと不活性ガスとの混合比率に関係なく、混合ガスを消費できる。
[Item 2]
The gas supply system according to item 1, wherein the gas consumer is a boiler.
Depending on the type of gas consumer, the mixed gas cannot be consumed unless the proportion of hydrogen gas in the mixed gas is above a certain level, but according to item 2, since the gas consumer is a boiler, hydrogen gas and Mixed gas can be consumed regardless of the mixing ratio with inert gas.
 [項目3]
 前記混合ガスを消費可能な、前記ガス消費器である第1ガス消費器とは異なる種類の第2ガス消費器と、
 前記第2供給ラインにおける前記第2圧縮機より下流側部分から分岐して、または、前記第1供給ラインにおける前記第1圧縮機より下流側部分から分岐して、前記第2ガス消費器につながる分岐流路と、を更に備える、項目1または2に記載のガス供給システム。
 項目3によれば、第1圧縮機により圧縮され第1ガス消費器へ供給される水素ガスの供給量が、第1ガス消費器での水素ガスの消費量を上回った場合であっても、第1供給ラインにおける第1圧縮機と第1ガス消費器との間の余剰の水素ガスを、分岐流路により第2ガス消費器に導き、第2ガス消費器により水素ガスを有効利用できる。
[Item 3]
a second gas consumer of a different type from the first gas consumer, which is capable of consuming the mixed gas;
Branching from a portion of the second supply line downstream of the second compressor, or branching from a portion of the first supply line downstream of the first compressor, and leading to the second gas consumer. The gas supply system according to item 1 or 2, further comprising a branch flow path.
According to item 3, even if the amount of hydrogen gas compressed by the first compressor and supplied to the first gas consumer exceeds the amount of hydrogen gas consumed by the first gas consumer, Excess hydrogen gas between the first compressor and the first gas consumer in the first supply line is guided to the second gas consumer through the branch flow path, and the hydrogen gas can be effectively utilized by the second gas consumer.
 [項目4]
 水素ガスを消費可能な第1ガス消費器と、
 水素ガスを収容するタンクと、
 前記タンクと前記第1ガス消費器とを接続する第1供給ラインと、
 前記第1供給ラインに配置され、前記タンクから排出され前記第1供給ラインにより導かれた水素ガスを前記第1ガス消費器の要求圧以上に圧縮可能に構成された第1圧縮機と、
 不活性ガスを前記タンクに導く不活性ガスラインと、
 前記不活性ガスと前記水素ガスとが混合した混合ガスを消費可能な第2ガス消費器と、
 前記第1供給ラインにおける前記第1圧縮機より上流側部分と接続し、前記第2ガス消費器と接続する第2供給ラインと、
 前記第2供給ラインに配置され、前記不活性ガスラインにより不活性ガスが前記タンクに導かれることにより前記タンクから排出された前記混合ガスを前記第2ガス消費器の要求圧以上に圧縮可能に構成された第2圧縮機と、
を備える、ガス供給システム。
 項目4によれば、ボイルオフガス圧送用の第1圧縮機とは別に、不活性ガスと水素ガスとが混合した混合ガスをボイラの要求圧以上に圧縮できる第2圧縮機を備える。このため、用途に応じて圧縮機を使い分けることが可能であり、タンク内の圧力上昇を確実に抑制できるとともに、ガス置換の際に、タンク内の水素ガスの置換を効率よく実施できる。
[Item 4]
a first gas consumer capable of consuming hydrogen gas;
a tank containing hydrogen gas;
a first supply line connecting the tank and the first gas consumer;
a first compressor disposed in the first supply line and configured to be able to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure higher than the required pressure of the first gas consumer;
an inert gas line that leads inert gas to the tank;
a second gas consumer capable of consuming a mixed gas of the inert gas and the hydrogen gas;
a second supply line connected to a portion of the first supply line upstream of the first compressor and connected to the second gas consumer;
Disposed in the second supply line, the inert gas is guided to the tank by the inert gas line, so that the mixed gas discharged from the tank can be compressed to a pressure higher than the pressure required by the second gas consumer. a second compressor configured;
gas supply system.
According to item 4, in addition to the first compressor for pressure-feeding boil-off gas, a second compressor is provided that can compress a mixed gas of an inert gas and hydrogen gas to a pressure higher than the required pressure of the boiler. For this reason, it is possible to use different compressors depending on the application, and it is possible to reliably suppress the pressure increase in the tank, and also to efficiently replace the hydrogen gas in the tank during gas replacement.
 [項目5]
 前記項目1乃至4のいずれかに記載のガス供給システムを備える、船舶。
 船舶にボイルオフガス圧送用の第1圧縮機とは別に混合ガス圧送用の第2圧縮機が搭載されているため、例えばメンテナンス作業を行うために船舶がドックに向かって航行するときに、タンク内の水素ガスを不活性ガスに置換するガス置換を行うことができる。また、不活性ガスと水素ガスとが混合した混合ガスを推進用のボイラで有効利用できる。
[Item 5]
A ship comprising the gas supply system according to any one of items 1 to 4 above.
In addition to the first compressor for compressing boil-off gas, ships are equipped with a second compressor for compressing mixed gas. Gas replacement can be performed to replace hydrogen gas with an inert gas. Furthermore, a mixed gas of inert gas and hydrogen gas can be effectively used in a propulsion boiler.
 [項目6]
 タンクから排出されたガスを供給するためのガス供給方法であって、
 水素ガスを収容した状態の前記タンクから水素ガスを排出する場合には、
  前記タンクから排出した水素ガスを、第1圧縮機に導いて圧縮し、
  圧縮した前記水素ガスを第1ガス消費器により消費し、
 前記タンクから、不活性ガスと水素ガスとが混合した混合ガスを排出する場合には、
  前記タンクから排出された混合ガスを、前記第1圧縮機とは異なる種類の第2圧縮機に導いて圧縮し、
 圧縮した前記混合ガスを前記第1ガス消費器、または、前記第1ガス消費器とは異なる種類の第2ガス消費器により消費する、ガス供給方法。
 不活性ガスは、水素ガスと比べて比重が極めて大きい。水素ガス用の圧縮機を、ガス置換時の混合ガスの圧縮にも使用する場合、水素ガス用の圧縮機に対して要求される性能が高くなりすぎたり、混合ガスを圧縮することにより水素ガス用の圧縮機に負荷がかかりすぎてしまったりする虞がある。しかしながら、項目6の方法によれば、タンクから排出される水素ガスを圧縮する場合と、ガス置換する際にタンクから排出される混合ガスを圧縮する場合とで、使用する圧縮機を使い分ける。このため、水素ガス用圧縮機に対して要求される性能が高くなったり、混合ガスを圧縮することによって水素ガス用圧縮機に負荷がかかりすぎたりすることを回避できる。
[Item 6]
A gas supply method for supplying gas discharged from a tank, the method comprising:
When discharging hydrogen gas from the tank containing hydrogen gas,
The hydrogen gas discharged from the tank is guided to a first compressor and compressed,
consuming the compressed hydrogen gas by a first gas consumer;
When discharging a mixed gas of inert gas and hydrogen gas from the tank,
The mixed gas discharged from the tank is guided to a second compressor of a different type from the first compressor and compressed,
A gas supply method, wherein the compressed mixed gas is consumed by the first gas consumer or a second gas consumer of a different type from the first gas consumer.
Inert gas has a much higher specific gravity than hydrogen gas. If a compressor for hydrogen gas is also used to compress a mixed gas during gas replacement, the performance required for the compressor for hydrogen gas may become too high, or the hydrogen gas may be compressed by compressing the mixed gas. There is a risk that the compressor used will be overloaded. However, according to the method in Item 6, different compressors are used for compressing hydrogen gas discharged from the tank and for compressing mixed gas discharged from the tank during gas replacement. Therefore, it is possible to avoid an increase in the performance required of the hydrogen gas compressor or an excessive load on the hydrogen gas compressor due to compressing the mixed gas.
 [項目7]
 水素ガスを収容した状態の前記タンクから水素ガスを排出することは、水素ガスを収容した状態の前記タンクに不活性ガスを供給しないで、前記タンクから水素ガスを排出することを含み、
 前記タンクから前記混合ガスを排出することは、水素ガスを収容した状態の前記タンクに不活性ガスを供給することにより、前記タンクから前記混合ガスを排出することを含む、項目6に記載のガス供給方法。
 タンク内の水素ガスを不活性ガスに置換するガス置換を行うときにタンクから排出されるガスを圧縮する場合と、ガス置換を行わないときにタンクから排出されるガスを圧縮する場合とで、使用する圧縮機を使い分けることができる。
[Item 7]
Discharging hydrogen gas from the tank containing hydrogen gas includes discharging hydrogen gas from the tank without supplying an inert gas to the tank containing hydrogen gas,
The gas according to item 6, wherein discharging the mixed gas from the tank includes discharging the mixed gas from the tank by supplying an inert gas to the tank containing hydrogen gas. Supply method.
There are two cases: when compressing the gas discharged from the tank when performing gas replacement, which replaces hydrogen gas in the tank with inert gas, and when compressing the gas discharged from the tank when gas replacement is not performed. You can use different compressors.
 [項目8]
 前記タンク、前記第1圧縮機、前記第1ガス消費器、前記第2圧縮機、および前記第2ガス消費器は、船舶に搭載されており、
 水素ガスを収容した状態の前記タンクから水素ガスを排出することは、前記タンクに貯蔵された液化水素を荷揚げするための揚地に向けて前記船舶を航行させる間、前記タンク内にて液化水素が蒸発することにより発生したボイルオフガスである水素ガスを、前記タンクから排出することを含み、
 前記ガス置換を行うため前記タンクから前記混合ガスを排出することは、前記揚地にて前記タンク内の液化水素の荷揚げを行った後、前記船舶を前記揚地に停泊させている間、または、前記船舶を前記揚地からの航行中に行う、項目7に記載のガス供給方法。
 船上でのガス置換作業ができない船舶では、着岸後に陸上へ混合ガスを返送する必要があり、メンテナンス作業にスムーズに移行できない。これに対し、項目8によれば、不活性ガスにより置換されるタンク内の水素ガスを有効利用しつつ、航行中にガス置換を進めて、メンテナンス作業にスムーズに移行することが可能となる。
[Item 8]
The tank, the first compressor, the first gas consumer, the second compressor, and the second gas consumer are mounted on a ship,
Discharging hydrogen gas from the tank containing hydrogen gas means discharging the liquefied hydrogen in the tank while the ship is sailing toward the unloading port for unloading the liquefied hydrogen stored in the tank. including discharging hydrogen gas, which is a boil-off gas generated by evaporation, from the tank,
Discharging the mixed gas from the tank in order to perform the gas replacement may be performed while the vessel is anchored at the unloading port after unloading the liquefied hydrogen in the tank at the unloading port, or , the gas supply method according to item 7, which is carried out while the ship is sailing from the discharge port.
For ships that cannot carry out gas replacement work on board, it is necessary to return the mixed gas to land after berthing, which prevents a smooth transition to maintenance work. On the other hand, according to item 8, while effectively utilizing the hydrogen gas in the tank that is replaced with inert gas, it is possible to proceed with gas replacement during navigation and smoothly transition to maintenance work.
 [項目9]
 水素ガスを収容した状態の前記タンクから水素ガスを排出することは、水素ガスを収容した状態の前記タンクに不活性ガスを供給しないで、前記タンクから水素ガスを排出することを含み、
 前記タンクから前記混合ガスを排出することは、不活性ガスを収容した状態の前記タンクに水素ガスを供給することにより、前記タンクから前記混合ガスを排出することを含む、項目6乃至8のいずれかに記載のガス供給方法。
 タンク内の不活性ガスを水素ガスに置換するガス置換を行うときにタンクから排出されるガスを圧縮する場合と、ガス置換を行わないときにタンクから排出されるガスを圧縮する場合とで、使用する圧縮機を使い分けることができる。
 
 
[Item 9]
Discharging hydrogen gas from the tank containing hydrogen gas includes discharging hydrogen gas from the tank without supplying an inert gas to the tank containing hydrogen gas,
Any of items 6 to 8, wherein discharging the mixed gas from the tank includes discharging the mixed gas from the tank by supplying hydrogen gas to the tank containing an inert gas. The gas supply method described in .
There are two cases: when compressing the gas discharged from the tank when performing gas replacement, which replaces inert gas in the tank with hydrogen gas, and when compressing the gas discharged from the tank when gas replacement is not performed. You can use different compressors.

Claims (9)

  1.  水素ガスを消費可能なガス消費器と、
     水素ガスを収容するタンクと、
     前記タンクと前記ガス消費器とを接続する第1供給ラインと、
     前記第1供給ラインに配置され、前記タンクから排出され前記第1供給ラインにより導かれた水素ガスを前記ガス消費器の要求圧以上に圧縮可能に構成された第1圧縮機と、
     不活性ガスを前記タンクに導く不活性ガスラインと、
     前記第1供給ラインにおける前記第1圧縮機より上流側部分と接続し、前記第1供給ラインにおける前記第1圧縮機より下流側部分と接続する第2供給ラインと、
     前記第2供給ラインに配置され、前記不活性ガスラインにより不活性ガスが前記タンクに導かれることにより前記タンクから排出された、前記不活性ガスと前記水素ガスとが混合した混合ガスを、前記ガス消費器の要求圧以上に圧縮可能に構成された第2圧縮機と、
    を備える、ガス供給システム。
    a gas consumer capable of consuming hydrogen gas;
    a tank containing hydrogen gas;
    a first supply line connecting the tank and the gas consumer;
    a first compressor disposed in the first supply line and configured to be able to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure higher than the pressure required by the gas consumer;
    an inert gas line that leads inert gas to the tank;
    a second supply line connected to a portion of the first supply line upstream of the first compressor and connected to a portion of the first supply line downstream of the first compressor;
    The mixed gas, which is a mixture of the inert gas and the hydrogen gas, is disposed in the second supply line and is discharged from the tank by introducing the inert gas into the tank through the inert gas line. a second compressor configured to be capable of compressing at a pressure higher than the required pressure of the gas consumer;
    gas supply system.
  2.  前記ガス消費器は、ボイラである、請求項1に記載のガス供給システム。 The gas supply system according to claim 1, wherein the gas consumer is a boiler.
  3.  前記混合ガスを消費可能な、前記ガス消費器である第1ガス消費器とは異なる種類の第2ガス消費器と、
     前記第2供給ラインにおける前記第2圧縮機より下流側部分から分岐して、または、前記第1供給ラインにおける前記第1圧縮機より下流側部分から分岐して、前記第2ガス消費器につながる分岐流路と、を更に備える、請求項1または2に記載のガス供給システム。
    a second gas consumer of a different type from the first gas consumer, which is capable of consuming the mixed gas;
    Branching from a portion of the second supply line downstream of the second compressor, or branching from a portion of the first supply line downstream of the first compressor, and leading to the second gas consumer. The gas supply system according to claim 1 or 2, further comprising a branch flow path.
  4.  水素ガスを消費可能な第1ガス消費器と、
     水素ガスを収容するタンクと、
     前記タンクと前記第1ガス消費器とを接続する第1供給ラインと、
     前記第1供給ラインに配置され、前記タンクから排出され前記第1供給ラインにより導かれた水素ガスを前記第1ガス消費器の要求圧以上に圧縮可能に構成された第1圧縮機と、
     不活性ガスを前記タンクに導く不活性ガスラインと、
     前記不活性ガスと前記水素ガスとが混合した混合ガスを消費可能な第2ガス消費器と、
     前記第1供給ラインにおける前記第1圧縮機より上流側部分と接続し、前記第2ガス消費器と接続する第2供給ラインと、
     前記第2供給ラインに配置され、前記不活性ガスラインにより不活性ガスが前記タンクに導かれることにより前記タンクから排出された前記混合ガスを、前記第2ガス消費器の要求圧以上に圧縮可能に構成された第2圧縮機と、
    を備える、ガス供給システム。
    a first gas consumer capable of consuming hydrogen gas;
    a tank containing hydrogen gas;
    a first supply line connecting the tank and the first gas consumer;
    a first compressor disposed in the first supply line and configured to compress hydrogen gas discharged from the tank and guided through the first supply line to a pressure higher than the required pressure of the first gas consumer;
    an inert gas line that leads inert gas to the tank;
    a second gas consumer capable of consuming a mixed gas of the inert gas and the hydrogen gas;
    a second supply line connected to a portion of the first supply line upstream of the first compressor and connected to the second gas consumer;
    Disposed in the second supply line, the inert gas is guided to the tank by the inert gas line, so that the mixed gas discharged from the tank can be compressed to a pressure higher than the pressure required by the second gas consumer. a second compressor configured to;
    gas supply system.
  5.  前記請求項1または4に記載のガス供給システムを備える、船舶。 A ship comprising the gas supply system according to claim 1 or 4.
  6.  タンクから排出されたガスを供給するためのガス供給方法であって、
     水素ガスを収容した状態の前記タンクから水素ガスを排出する場合には、
      前記タンクから排出した水素ガスを、第1圧縮機に導いて圧縮し、
      圧縮した前記水素ガスを第1ガス消費器により消費し、
     前記タンクから、不活性ガスと水素ガスとが混合した混合ガスを排出する場合には、
      前記タンクから排出された混合ガスを、前記第1圧縮機とは異なる種類の第2圧縮機に導いて圧縮し、
     圧縮した前記混合ガスを前記第1ガス消費器、または、前記第1ガス消費器とは異なる種類の第2ガス消費器により消費する、ガス供給方法。
    A gas supply method for supplying gas discharged from a tank, the method comprising:
    When discharging hydrogen gas from the tank containing hydrogen gas,
    The hydrogen gas discharged from the tank is guided to a first compressor and compressed,
    consuming the compressed hydrogen gas by a first gas consumer;
    When discharging a mixed gas of inert gas and hydrogen gas from the tank,
    The mixed gas discharged from the tank is guided to a second compressor of a different type from the first compressor and compressed,
    A gas supply method, wherein the compressed mixed gas is consumed by the first gas consumer or a second gas consumer of a different type from the first gas consumer.
  7.  水素ガスを収容した状態の前記タンクから水素ガスを排出することは、水素ガスを収容した状態の前記タンクに不活性ガスを供給しないで、前記タンクから水素ガスを排出することを含み、
     前記タンクから前記混合ガスを排出することは、水素ガスを収容した状態の前記タンクに不活性ガスを供給することにより、前記タンクから前記混合ガスを排出することを含む、請求項6に記載のガス供給方法。
    Discharging hydrogen gas from the tank containing hydrogen gas includes discharging hydrogen gas from the tank without supplying an inert gas to the tank containing hydrogen gas,
    7. Discharging the mixed gas from the tank includes discharging the mixed gas from the tank by supplying an inert gas to the tank containing hydrogen gas. Gas supply method.
  8.  前記タンク、前記第1圧縮機、前記第1ガス消費器、前記第2圧縮機、および前記第2ガス消費器は、船舶に搭載されており、
     水素ガスを収容した状態の前記タンクから水素ガスを排出することは、前記タンクに貯蔵された液化水素を荷揚げするための揚地に向けて前記船舶を航行させる間、前記タンク内にて液化水素が蒸発することにより発生したボイルオフガスである水素ガスを、前記タンクから排出することを含み、
     前記ガス置換を行うため前記タンクから前記混合ガスを排出することは、前記揚地にて前記タンク内の液化水素の荷揚げを行った後、前記船舶を前記揚地に停泊させている間、または、前記船舶を前記揚地からの航行中に行う、請求項7に記載のガス供給方法。
    The tank, the first compressor, the first gas consumer, the second compressor, and the second gas consumer are mounted on a ship,
    Discharging hydrogen gas from the tank containing hydrogen gas means discharging the liquefied hydrogen in the tank while the ship is sailing toward the unloading port for unloading the liquefied hydrogen stored in the tank. including discharging hydrogen gas, which is a boil-off gas generated by evaporation, from the tank,
    Discharging the mixed gas from the tank in order to perform the gas replacement may be performed while the vessel is anchored at the unloading port after unloading the liquefied hydrogen in the tank at the unloading port, or 8. The gas supply method according to claim 7, wherein the method is carried out while the ship is sailing from the discharge port.
  9.  水素ガスを収容した状態の前記タンクから水素ガスを排出することは、水素ガスを収容した状態の前記タンクに不活性ガスを供給しないで、前記タンクから水素ガスを排出することを含み、
     前記タンクから前記混合ガスを排出することは、不活性ガスを収容した状態の前記タンクに水素ガスを供給することにより、前記タンクから前記混合ガスを排出することを含む、請求項6または7に記載のガス供給方法。
     
     
    Discharging hydrogen gas from the tank containing hydrogen gas includes discharging hydrogen gas from the tank without supplying an inert gas to the tank containing hydrogen gas,
    According to claim 6 or 7, discharging the mixed gas from the tank includes discharging the mixed gas from the tank by supplying hydrogen gas to the tank containing an inert gas. Gas supply method described.

PCT/JP2022/030633 2022-08-10 2022-08-10 Gas supply system, ship, and gas supply method WO2024034080A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030633 WO2024034080A1 (en) 2022-08-10 2022-08-10 Gas supply system, ship, and gas supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030633 WO2024034080A1 (en) 2022-08-10 2022-08-10 Gas supply system, ship, and gas supply method

Publications (1)

Publication Number Publication Date
WO2024034080A1 true WO2024034080A1 (en) 2024-02-15

Family

ID=89851265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030633 WO2024034080A1 (en) 2022-08-10 2022-08-10 Gas supply system, ship, and gas supply method

Country Status (1)

Country Link
WO (1) WO2024034080A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130043760A (en) * 2011-10-21 2013-05-02 삼성중공업 주식회사 Hydrogen-mixed fuel supplying apparatus and vessel having the same
JP2016079998A (en) * 2014-10-10 2016-05-16 川崎重工業株式会社 Liquefaction hydrogen transfer system
JP2017020594A (en) * 2015-07-13 2017-01-26 川崎重工業株式会社 Liquid hydrogen transferring method
JP2017122481A (en) * 2016-01-07 2017-07-13 株式会社神戸製鋼所 Boil-off gas supply device
JP2018096450A (en) * 2016-12-13 2018-06-21 三菱重工業株式会社 Gas treating system
JP2020133828A (en) * 2019-02-22 2020-08-31 東京瓦斯株式会社 Method for opening low temperature tank and opening system thereof
CN211600219U (en) * 2019-12-16 2020-09-29 上海浦江特种气体有限公司 Gas filling system
JP2021177088A (en) * 2020-05-08 2021-11-11 川崎重工業株式会社 Liquefied hydrogen storage method and liquefied hydrogen storage system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130043760A (en) * 2011-10-21 2013-05-02 삼성중공업 주식회사 Hydrogen-mixed fuel supplying apparatus and vessel having the same
JP2016079998A (en) * 2014-10-10 2016-05-16 川崎重工業株式会社 Liquefaction hydrogen transfer system
JP2017020594A (en) * 2015-07-13 2017-01-26 川崎重工業株式会社 Liquid hydrogen transferring method
JP2017122481A (en) * 2016-01-07 2017-07-13 株式会社神戸製鋼所 Boil-off gas supply device
JP2018096450A (en) * 2016-12-13 2018-06-21 三菱重工業株式会社 Gas treating system
JP2020133828A (en) * 2019-02-22 2020-08-31 東京瓦斯株式会社 Method for opening low temperature tank and opening system thereof
CN211600219U (en) * 2019-12-16 2020-09-29 上海浦江特种气体有限公司 Gas filling system
JP2021177088A (en) * 2020-05-08 2021-11-11 川崎重工業株式会社 Liquefied hydrogen storage method and liquefied hydrogen storage system

Similar Documents

Publication Publication Date Title
EP2540611B1 (en) Floating type lng station
KR101563024B1 (en) Natural gas supply method and apparatus
US20090266086A1 (en) Floating marine structure having lng circulating device
CN110475714B (en) Fuel tank inerting method and float
KR101291246B1 (en) Ship using bog for dynamic positioning system
US11840320B2 (en) Use of hydrogen and liquid natural gas hybrid fuel in marine applications to reduce carbon footprint
KR102200365B1 (en) Volatile organic compounds treatment system and ship having the same
KR20160091784A (en) Boil-off gas management system of the lng-fpso and the lng-fpso with the same
WO2024034080A1 (en) Gas supply system, ship, and gas supply method
KR101707509B1 (en) System and method for treating boil-off gas for a ship
KR102559318B1 (en) A Convertible Vessel
KR20210014246A (en) Liquefied gas carrier
KR20190060743A (en) method and Apparatus for transferring liquid cargo
CN116710725A (en) Gas supply system for high-pressure and low-pressure gas consumers
KR20220012468A (en) Fuel gas supply system of ship
KR20210072185A (en) Method of Operating a Ship
KR20210132783A (en) Fuel supply system for vessel
RU2815414C1 (en) System for supplying gas to at least one gas consuming equipment with which ship is equipped
KR101973112B1 (en) Marine structure
RU2546050C1 (en) Feed of fuel gas to compressed natural gas tanker power plants
JP6423652B2 (en) Ship
KR102542464B1 (en) Boil-Off Gas Treatment System and Method for Electric Propulsion Ship
KR102469960B1 (en) Bunkering Vessel
WO2024048730A1 (en) Floating body for bunker, and method for supplying liquefied gas
KR20240029679A (en) System and Method for Controlling Pressure of Liquefied Gas Carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954996

Country of ref document: EP

Kind code of ref document: A1