WO2024033998A1 - Data processing method, measurement system, and program - Google Patents

Data processing method, measurement system, and program Download PDF

Info

Publication number
WO2024033998A1
WO2024033998A1 PCT/JP2022/030374 JP2022030374W WO2024033998A1 WO 2024033998 A1 WO2024033998 A1 WO 2024033998A1 JP 2022030374 W JP2022030374 W JP 2022030374W WO 2024033998 A1 WO2024033998 A1 WO 2024033998A1
Authority
WO
WIPO (PCT)
Prior art keywords
nyq
wave
equation
wave number
point
Prior art date
Application number
PCT/JP2022/030374
Other languages
French (fr)
Japanese (ja)
Inventor
康成 森
Original Assignee
株式会社三井E&S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井E&S filed Critical 株式会社三井E&S
Priority to JP2022571877A priority Critical patent/JP7230286B1/en
Priority to PCT/JP2022/030374 priority patent/WO2024033998A1/en
Publication of WO2024033998A1 publication Critical patent/WO2024033998A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Definitions

  • the present invention relates to a data processing method, a measurement system, and a program for using a computer to process wave measurement data whose value is determined by the frequency of waves such as electromagnetic waves generated in space and the spatial coordinates of space.
  • a conventional radar device has an array antenna in which a plurality of antennas are arranged on a plane.
  • the array antenna has, for example, a configuration in which antennas such as planar antennas are lined up in one direction, and a transmitting array antenna and a receiving array antenna are arranged close to each other.
  • the radar device measures the object to be measured using a wide band of frequencies while changing the frequency of electromagnetic waves at set frequency intervals.
  • a radar device having an array antenna for example, a radar device in which a transmitting array antenna and a receiving array antenna composed of a plurality of planar antennas are formed on a common dielectric substrate is known (Japanese Patent Laid-Open No. 2015-095840). (hereinafter referred to as "Patent Document 1").
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-095840.
  • the direction in which the planar antennas of the transmitting array antenna are arranged is parallel to the direction in which the planar antennas of the receiving array antenna are arranged.
  • the position of the receiving array antenna in the arrangement direction of the planar antennas is between the two positions of adjacent planar antennas of the transmitting array antenna.
  • Patent Document 2 Japanese Patent No. 6557747, hereinafter referred to as "Patent Document 2").
  • Synthetic aperture processing is used to visualize the inside of a structure from measured data.
  • addition methods such as the diffraction stacking method
  • methods that utilize Fourier transform such as the FK migration method.
  • synthetic aperture processing using Fourier transform is practical.
  • the spatial resolution of data obtained by radiation of waves having a frequency such as electromagnetic waves is determined by the fact that the distance between the structure to be measured and the measurement surfaces of the transmitting array antenna and the receiving array antenna is relatively close, In addition, when the measurement interval of the measurement data is small, it is determined by the wavelength of the center frequency of the wave.
  • the distance between the structure to be measured and the measurement surfaces of the transmitting array antenna and the receiving array antenna is, for example, one-fourth or less of the arrangement length of the array antenna.
  • the spatial resolution is the resolution within the plane in which each antenna of the array antenna is arranged.
  • the spatial resolution in actual measurements is the measurement interval.
  • An object of the present invention is to provide a data processing method, a measurement system, and a program that can improve the spatial resolution in measurement while maintaining a constant number of antennas.
  • the first aspect of the present invention is A data processing method for analyzing scattered waves of waves emitted to an object, radiating the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
  • the scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are received at a plurality of receiving points p 2 (x' 2 , receive the measured value s(x ' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) at y' 2 , z' 2 );
  • the measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) is subjected to triple Fourier transform using equation (1) to obtain S(k'
  • the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq
  • the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ⁇ k' y1 ⁇ k y1 , and , -k y2 ⁇ k' y2 ⁇ k y2 (however, k' y1,nyq ⁇ k y1 and k' y2,nyq ⁇ k y2 )
  • the reflectance f(x, y, z) is determined by triple inverse Fourier transform using equation (2). This is a data processing method.
  • k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z).
  • Components of the wave vector of a spherical wave, k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • the second aspect of the present invention is A measurement system that analyzes scattered waves of waves emitted to an object, A transmitting/receiving section, a transmitter that radiates the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
  • the scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are received at a plurality of receiving points p 2 (x' 2 , a receiving unit that receives the measured value s(x ' 1 , x' 2 , y' 1 , y' 2 , z ' 1 , z' 2 , k) at y' 2 , z' 2 );
  • a transmitting/receiving unit having;
  • a processing device The measured value s(x' 1 , x' 2 , y' 1 , y
  • Components of the wave vector of a spherical wave, k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • the third aspect of the present invention is A program that analyzes scattered waves of waves emitted to an object,
  • the measured value s ( x ' 1 , x2 , k' y1 , k' y2 , z' 1 , z' 2 , k); If the Nyquist wave number in the x direction determined by the measurement interval in the x direction is k x,nyq , then the variable substitution process in the x direction is performed in the range -k x1 ⁇ k x ⁇ k x1 (k x,nyq ⁇ k x1 ).
  • k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z).
  • Components of the wave vector of a spherical wave, k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • the fourth aspect of the present invention is A data processing method for analyzing scattered waves of waves emitted to an object, radiating the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged two-dimensionally on the xy plane,
  • the scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are transmitted to a plurality of receiving points p 2 (x ' 2 , y' 2 , z' 2 ) and receive the measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k),
  • the measured value s ( x ' 1 , ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k) Let k' x1,ny
  • k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z).
  • Components of the wave vector of a spherical wave, k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • the fifth aspect of the present invention is A measurement system that analyzes scattered waves of waves emitted to an object, A transmitting/receiving section, a transmitter that radiates the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged two-dimensionally on the xy plane;
  • the scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are transmitted to a plurality of receiving points p 2 (x a receiving unit that receives a measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z ' 1 , z' 2 , k) at ' 2 , y' 2 , z' 2 );
  • a transmitting/receiving unit having;
  • a processing device The measured value s ( x ' 1 , ' x2 ,
  • Components of the wave vector of a spherical wave, k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ).
  • the sixth aspect of the present invention is A program that analyzes scattered waves of waves emitted to an object,
  • the measured value s ( x ' 1 , x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);
  • k' x1,nyq be the Nyquist wave number in the x' 1 direction determined by the measurement interval in the x direction
  • k' x2 nyq be the Nyquist wave number in the x' 2 direction, then -k x1 ⁇ k' x1 ⁇ k x1 , and , -k x2 ⁇ k' x2 ⁇ k x2 (however, k' x1,nyq ⁇ k x1 and k' x2,nyq ⁇ k x2 ); If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,ny
  • k' x1 , k' y1 , k' z1 are the spherical waves of the wave propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z)
  • the components of the wave vector of k' x2 , k' y2 , k' z2 is the spherical surface of the wave propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) components of the wave vector of the wave
  • k x k' x1 + k' x2
  • u k' x1 - k' x2
  • k y k' y1 + k' y2
  • v k' y
  • a diagram showing the configuration of a radar device according to the first embodiment Diagram showing the configuration of the array antenna shown in Fig. 1 A diagram explaining the positional relationship between the array antenna and the measurement target of the first embodiment Flowchart showing the data processing method of the first embodiment Conceptual diagram of aliasing An example of the measurement waveform of the first embodiment Fourier transform regarding the x-axis in the first embodiment Fourier transform regarding the y-axis in the first embodiment A diagram explaining the positional relationship between the array antenna and the measurement target according to the second embodiment Flowchart showing the data processing method of the second embodiment Fourier transform regarding x' 1 axis and x' 2 axis in second embodiment Fourier transform regarding y' 1 axis and y' 2 axis in second embodiment A diagram explaining the positional relationship between the array antenna and the measurement target according to the third embodiment Flowchart showing the data processing method of the third embodiment Fourier transform regarding the x-axis in the third embodiment Fourier transform regarding y' 1 axis and y' 2 axes in the third
  • FIG. 1 shows the configuration of a radar device according to this embodiment.
  • FIG. 2 shows the configuration of the array antenna shown in FIG.
  • FIG. 3 is a diagram illustrating the positional relationship between the array antenna of this embodiment and the object to be measured.
  • electromagnetic waves will be described as waves that are radiated into space, but instead of electromagnetic waves, waves that propagate in space, such as X-rays and ultrasonic waves, may be used.
  • the measurement system 1 of this embodiment includes a transmitting/receiving section and a processing device.
  • the processing device may be provided integrally with the transmitting/receiving section, or may be provided at a separate location connected to the transmitting/receiving section via a network.
  • a processing device is provided integrally with a transmitting/receiving section.
  • the radar device 60 of this embodiment shown in FIG. 1 radiates electromagnetic waves from the transmitting antenna while sweeping the frequency of the electromagnetic waves using a transmitting array antenna and a receiving array antenna (transmitting/receiving section). Then, the radar device 60 receives the reflected wave from the object to be measured using a receiving antenna, and obtains measurement data s(x', y', z', k).
  • the measurement data s(x', y', z', k) is data whose variables are an x-coordinate component, a y-coordinate component, a z-coordinate component, and the frequency of electromagnetic waves.
  • the radar device 60 includes a measurement unit 61, a data processing unit (processing device) 66, and an image display unit 68.
  • the measurement unit 61 includes a transmitting array antenna 50, a receiving array antenna 52, high frequency switches 58 and 59, a high frequency circuit 62, and a system control circuit 64.
  • the radar device 60 emits electromagnetic waves of 10 MHz or more, for example, 10 to 20 GHz, but the frequency of the electromagnetic waves is not particularly limited.
  • the transmitting array antenna 50 has a plurality of transmitting antennas 10a arranged in one direction. Each transmitting antenna 10a radiates electromagnetic waves toward the object to be measured.
  • the reception array antenna 52 has a plurality of reception antennas 10b arranged along the arrangement direction of the transmission antennas 10a. Each receiving antenna 10b receives electromagnetic waves reflected from the object to be measured.
  • the transmitting antenna 10a of the transmitting array antenna 50 and the receiving antenna 10b of the receiving array antenna 52 are arranged on one plane.
  • a transmitting array antenna 50 and a receiving array antenna 52 are arranged so that the object to be measured faces this plane.
  • the data processing unit 66 processes a plurality of measurement data obtained by transmission toward the object to be measured by the plurality of transmitting antennas 10a and reception by the plurality of receiving antennas 10b, and calculates image data regarding the object to be measured.
  • the transmitting antenna 10a and the receiving antenna 10b of this embodiment are planar antennas in which an antenna pattern is formed in a plane on a substrate, they are not limited to planar antennas.
  • the transmitting array antenna 50 and the receiving array antenna 52 move parallel to the surface of the object to be measured. That is, the transmitting array antenna 50 and the receiving array antenna 52 measure while scanning along the surface of the object to be measured.
  • the system control circuit 64 controls the operation of the high frequency circuit 62. Specifically, the system control circuit 64 radiates electromagnetic waves while switching the transmitting antenna 10a using the high frequency switch 58 for each unit length of the moving distance of the transmitting array antenna 50 and the receiving array antenna 52. Controls the operation of the high frequency circuit 62.
  • Radar device 60 has an encoder 69.
  • Encoder 69 generates a pulse signal every fixed moving distance.
  • the encoder 69 senses movement of the transmitting array antenna 50 and the receiving array antenna 52.
  • the high frequency switch 59 sequentially switches the plurality of receiving antennas 10b to cause each receiving antenna 10b to receive the electromagnetic wave.
  • the frequency of the electromagnetic waves radiated from the transmitting array antenna 50 is swept at set frequency intervals within a range of 10 to 20 GHz at a certain time, and the electromagnetic waves are radiated. Therefore, the measurement data obtained from the high frequency circuit 62 is data whose value is determined by the position transmitted by the transmitting antenna 10a, the position received by the receiving antenna 10b, the frequency, and the position of the target.
  • the high frequency switch 59 is operated so that the receiving antenna 10b closest to the transmitting antenna 10a that radiated the electromagnetic wave receives the reflected wave of the electromagnetic wave when the electromagnetic wave radiated from the transmitting antenna 10a is reflected by the object to be measured. is controlled.
  • the receiving microwave amplifier may be set to change the gain for each pair of the transmitting antenna 10a for transmitting and the receiving antenna 10b for receiving.
  • the high frequency circuit 62 has a variable gain amplification function that switches the gain depending on the selection of the pair of transmitting antenna 10a and receiving antenna 10b. As a result, the depth at which defects and the like in the object to be measured can be inspected can be increased.
  • the arrangement direction of the transmitting antenna 10a and the receiving antenna 10b is parallel, and as shown in FIG. 2, the arrangement direction is the y direction.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 is assumed to be the x direction.
  • the direction in which the object to be measured is located is defined as the z direction.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction. That is, it may be moved (scanned) in the same direction as the arrangement direction of the transmitting antenna 10a and the receiving antenna 10b.
  • the transmitting array antenna 50 may have only one transmitting antenna 10a, and the receiving array antenna 52 may have a plurality of receiving antennas 10b.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be set to the y direction. That is, it may be moved (scanned) in the same direction as the arrangement direction of the receiving antennas 10b.
  • the data processing unit 66 processes the measurement data s(x', y', z', k) obtained by transmitting and receiving electromagnetic waves by the transmitting array antenna 50 and the receiving array antenna 52 to understand the inside of the measurement target. Create image data to represent.
  • the data processing unit 66 is configured by a computer, for example, and starts by calling a program stored in the storage section 66a. This allows the data processing unit 66 to perform its functions. That is, the data processing unit 66 is composed of software modules.
  • the image display unit 68 displays an image of the inside of the object to be measured using the created image data.
  • FIG. 2 schematically shows a transmitting array antenna 50 and a receiving array antenna 52.
  • the positions of the transmitting antenna 10a and the receiving antenna 10b in the x direction are shifted by ⁇ L, but in the following explanation, the positions of the transmitting antenna 10a and the receiving antenna 10b in the x direction are shifted from each other by ⁇ L between the transmitting antenna 10a and the receiving antenna 10b.
  • This circled point is called the transmitting/receiving point.
  • the positional relationship between the measurement object, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
  • the coordinates of the transmitting/receiving point are p(x', y', z').
  • f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured.
  • s (x', y', z', k) be the measurement data at the transmission/reception point p (x', y', z').
  • the propagation wavelength of electromagnetic waves in vacuum be ⁇ 0 .
  • the relative dielectric constant of the medium be ⁇ r .
  • k be the wave number of the propagating electromagnetic wave.
  • the measurement data s(x', y', z', k) at the transmitting/receiving point p(x', y', z') can be expressed by the following formula. however, It is.
  • equation (1-1) the electromagnetic wave is expressed as a spherical wave, and distance attenuation is omitted. This distance attenuation has been omitted because it has little effect on subsequent processing.
  • the exponent part of the integrand of the second stage equation in equation (1-1) is expressed in Fourier transform notation, it becomes the following equation. This is equivalent to decomposing the reciprocating spherical wave in equation (1-1) into a three-dimensional plane wave.
  • (k x , k y , k z ) is the wave number of the round trip spherical wave propagating between the transmitting/receiving point p (x', y', z') and the reflecting point (x, y, z). It is a component of a vector. however, satisfy.
  • Equation (1-3) is rearranged as follows.
  • the integral inside ⁇ ⁇ is a triple Fourier transform with respect to (x, y, z).
  • the integral inside [ ] is a double inverse Fourier transform regarding (k x , k y ). Therefore, double Fourier transform is performed on both sides of equation (1-5) regarding (x', y').
  • F(k x , k y , k z ) be the function f( x , y , z ) after triple Fourier transformation.
  • S(k x , k y , z', k) be a function after double Fourier transform of measurement data s ( x ', y ' , z', k).
  • equation (1-5) is expressed by the following equation.
  • the data processing unit 66 determines the reflectance f(x, y, z) based on the measurement data s(x', y', z', k).
  • FIG. 4 is a flowchart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s(x', y', 0, k) (step S1-1).
  • the data processing unit 66 performs Hilbert transformation on the measurement data s(x', y', 0, k) (step S1-2). Thereby, the imaginary component of the frequency data at each transmitting/receiving point is obtained.
  • the data processing unit 66 performs a double Fourier transform on (x', y') on the measurement data s(x', y', 0, k) (step S1-3). As a result, S(k x , k y , 0, k) is obtained as shown in equation (1-6).
  • the data processing unit 66 performs variable substitution on S(k x , k y , 0, k) (step S1-4). Specifically, using equation (1-4), the function of (k x , k y , k) is made into the function of (k x , k y , k z ). This yields S(k x , k y , k z ).
  • the data processing unit 66 performs triple inverse Fourier transform on S(k x , k y , k z ) and (k x , k y , k z ) (step S1-5). .
  • the reflectance f(x, y, z) is obtained as shown in equation (1-8).
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
  • alias data which is considered as aliasing noise in Fourier transform processing
  • aliasing will occur in the measured data unless the antenna size and scanning interval are below the Nyquist standard. Aliasing refers to the fact that continuous signals with different frequency components become indistinguishable after sampling.
  • FIG. 5 shows a conceptual diagram of aliasing.
  • the Nyquist wave number determined from the spatial sampling interval is defined as k nyq .
  • the Nyquist wave number k nyq is expressed by the following equation (1-10).
  • ⁇ x and ⁇ y are measurement intervals in the x-axis direction and y-axis direction, respectively.
  • Signals exceeding the Nyquist wave number k nyq are called aliases and are treated as aliasing noise during signal processing.
  • FIG. 6 shows an example of a measured waveform in the first embodiment.
  • the frequency of the electromagnetic wave is 15 GHz
  • the dielectric constant is 1
  • the measurement interval ⁇ y 7.5 mm
  • the measurement width is 562.5 mm
  • the depth of the point target is 120 mm directly below the origin.
  • the wave number ky of the waveform measured at a distance y from the origin is expressed by the following equation (1-11).
  • ⁇ ty is the angle between the line connecting the outermost transmitting/receiving antenna and the target and the z-axis.
  • the Nyquist wavenumber is expressed by the following equation (1-12).
  • the Nyquist criterion is expressed by the following equation (1-13).
  • the y-coordinate waveform that does not satisfy this condition that is, the data in the aliasing area in FIG. 6, all becomes alias data (aliasing noise).
  • alias data increases as the wavelength of the electromagnetic waves becomes shorter, the measurement interval becomes wider, or the target gets closer to the measurement surface.
  • alias data is also processed as aliasing noise during signal processing. Therefore, an increase in alias data causes a deterioration in image resolution, a decrease in image intensity of a shallow target, and a deterioration in the S/N ratio.
  • the measurement interval ⁇ x 10 mm
  • the measurement interval ⁇ y 19.25 mm
  • the wavelength of the highest frequency in the medium ⁇ fmax 21.24 mm.
  • the following equation (1-14) is obtained.
  • the Nyquist criterion is not satisfied, and aliasing occurs in both the x-axis direction and the y-axis direction.
  • the Nyquist wavenumber in this case is expressed by the following equation (1-15).
  • the maximum wave number determined from the maximum frequency is expressed by the following equation (1-16).
  • the Fourier transform regarding the x-axis in step S1-3 is shown in FIG. Furthermore, the Fourier transform regarding the y-axis in step S1-3 is shown in FIG. From FIG. 7, in the Fourier transform regarding the x-axis, the wave number with the upper limit of ⁇ k x, nyq is output to range A. Data with a wave number exceeding ⁇ k x, nyq appears as alias data with a period of 2k x, nyq . Therefore, in the variable replacement process in step S1-4, the variable replacement process is performed not in the range A but in the range A' having an upper limit of ⁇ k xmax .
  • variable replacement processing is similarly performed in range B' instead of range B, as shown in FIG.
  • the transmitting array antenna 50 and the receiving array antenna 52 of the first embodiment are arranged in one direction (the y direction in FIG. 3), but in this embodiment, the transmitting array antenna 50 and the receiving array antenna 52 are arranged in one direction (the y direction in FIG. 3). The arrangement is different.
  • the transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a plane.
  • the coordinates of the transmitting point and the receiving point are both p(x', y', z'), but in this embodiment, the coordinates of the transmitting point and the receiving point are different. In this embodiment , as shown in FIG . Arranged on a plane.
  • the reflectance at the reflection point (x, y, z) of the object to be measured is assumed to be f(x, y, z).
  • the measurement data at the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) are expressed as s(x' 1 , x' 2 , y ' 1 , y' 2 , z' 1 , z' 2 , k).
  • Let the relative dielectric constant of the medium be ⁇ r .
  • the measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) can be expressed by the following formula. however, It is.
  • the electromagnetic wave is expressed as a spherical wave, and distance attenuation is omitted. This distance attenuation has been omitted because it has little effect on subsequent processing.
  • the exponent part of the integrand in equation (2-1) is expressed in Fourier transform notation, it becomes the following equation. This is equivalent to decomposing the spherical wave in equation (2-1) into a three-dimensional plane wave.
  • (k' x1 , k' y1 , k' z1 ) is a component of the wave number vector of the spherical wave propagating from the transmission point to the reflection point.
  • (k' x2 , k' y2 , k' z2 ) is a component of the wave number vector of the spherical wave propagating between the reflection point and the reception point. however, satisfy.
  • Equation ( 2-3 ) the reflectance f ( x, y, z ) is derived.
  • quadruple Fourier transform is performed on both sides of equation (2-3) with respect to x' 1 , x' 2 , y' 1 , and y' 2 .
  • equation (2-5) Rewrite the left side of equation (2-5) as shown in equation (2-6) below. Then, equation (2-5) is expressed as equation (2-7).
  • equation (2-17) (k' z1 , k' z2 , k) is transformed into (k' x1 , k' x2 , k' y1 , k' y2 , k z ) or (k x , u, k y , v, k z ).
  • equation (2-17) can be expressed as follows.
  • the data processing unit 66 calculates the reflectance f ( x' , y, z).
  • FIG. 10 is a flowchart showing the data processing method of this embodiment.
  • the measurement unit 61 acquires measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S2-1).
  • the data processing unit 66 performs Hilbert transformation on the measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S2- 2). Thereby, the imaginary component of the frequency data at each measurement point is obtained.
  • the data processing unit 66 calculates (x' 1 , x ' 2 , y' 1 , y' 2 ) is performed (step S2-3). As a result, S(k' x1 , k' x2 , k' y1 , k' y2 , 0, 0, k) is obtained as shown in equation (2-6). Next, the data processing unit 66 performs variable substitution on S(k' x1 , k' x2 , k' y1 , k' y2 , 0, 0, k) (step S2-4).
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
  • the frequency of the electromagnetic wave is 4.46484 GHz
  • the relative permittivity is 10
  • the measurement interval ⁇ x' 1 38.5 mm
  • the measurement interval ⁇ x' 2 38.5 mm
  • the measurement interval ⁇ y' 1 38.5 mm
  • the measurement interval ⁇ y ' 2 38.5 mm
  • the measurement width is 616 mm
  • the wavelength of the highest frequency in the medium ⁇ fmax 21.24 mm.
  • the following equation (2-20) is obtained.
  • the Nyquist criterion is not satisfied, and aliasing occurs in each of the x' 1- axis direction, x' 2- axis direction, y' 1- axis direction, and y' 2- axis direction.
  • the Nyquist wave number in this case is expressed by the following equation (2-21).
  • the Fourier transform regarding the x' 1 axis and the x' 2 axes in step S2-3 is shown in FIG.
  • the Fourier transform regarding the y' 1- axis and the y' 2- axis in step S2-3 is shown in FIG. From FIG. 11, in the Fourier transform regarding the x' 1- axis and the x' 2- axis, wave numbers whose upper limits are ⁇ k' x1, nyq and ⁇ k' x2, nyq are output to range A, respectively.
  • variable replacement process in step S2-4, the variable replacement process is performed not in the range A but in the range A' whose upper limits are ⁇ k' x1max and ⁇ k' x2max , respectively.
  • the variable replacement process instead of discarding alias data as aliasing noise, it is added to the variable replacement process as actually meaningful data, improving the resolution in the x' 1- axis and x' 2- axis directions, and further improving the resolution of shallow targets. It becomes possible to further increase the image intensity.
  • the y'1 axis and the y'2 axis as shown in FIG. conduct.
  • the transmitting array antenna 50 and the receiving array antenna 52 are arranged in a plane, but in this embodiment, the transmitting array antenna 50 and the receiving array antenna 52 are arranged differently.
  • the transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a straight line.
  • the transmitting antenna 10a and the receiving antenna 10b are arranged in the y direction, as shown in FIG. 13.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 is assumed to be the x direction.
  • the direction in which the object to be measured is located is defined as the z direction.
  • the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction.
  • the positional relationship between the measurement object, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
  • the coordinates of the transmitting point are p 1 (x' 1 , y' 1 , z' 1 )
  • the coordinates of the receiving point are p 2 (x' 2 , y' 2 , z' 2 ).
  • f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured.
  • the measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) can be expressed by the following formula. however It is.
  • the electromagnetic wave is expressed as a spherical wave, and distance attenuation is omitted. This distance attenuation has been omitted because it has little effect on subsequent processing.
  • the exponent part of the integrand of the second-stage equation in equation (3-1) is expressed in Fourier transform notation, it becomes the following equation. This is equivalent to decomposing the spherical wave in equation (3-1) into a three-dimensional plane wave.
  • (k' x1 , k' y1 , k' z1 ) is a component of the wave number vector of the spherical wave propagating from the transmission point to the reflection point.
  • (k' x2 , k' y2 , k' z2 ) is a component of the wave number vector of the spherical wave propagating between the reflection point and the reception point. however, satisfy.
  • equation (3-10) is expressed by the following equation.
  • variable substitution is defined for (k' y1 , k' y2 ) and (k' z1 , k' z2 ).
  • equation (3-1), equation (3-15), and equation (3-17) By substituting equation (3-17), and equation (3-17) into equation (3-13) and performing variable substitution, the following equation is obtained.
  • equation (3-18) the integral with respect to v on the right side of the second line of equation (3-18) is omitted because it is a constant.
  • the reflectance f(x, y, z) is obtained as follows.
  • equation (3-20) In order to solve equation (3-20), it is necessary to express k as (k' y1 , k' y2 , k z ) or (k y , v, k z ). Solve the simultaneous equations of four equations: equation (3-4), equation (3-6), equation (3-15), and the following equation (3-21) obtained from the assumption.
  • k is expressed by the following formula.
  • the data processing unit 66 calculates the reflectance f ( x' , y, z).
  • FIG. 14 is a flowchart showing the data processing method of this embodiment.
  • the measurement unit 61 obtains measurement data s(x', y' 1 , y' 2 , 0, 0, k) (step S3-1).
  • the data processing unit 66 performs Hilbert transformation on the measurement data s(x', y' 1 , y' 2 , 0, 0, k) (step S3-2). Thereby, the imaginary component of the frequency data at each measurement point is obtained.
  • the data processing unit 66 processes the measurement data s (x', y' 1 , y' 2 , 0, 0, k) by performing triple Fourier processing on (x', y' 1 , y' 2 ). Conversion is performed (step S3-3). As a result, S(k x , k' y1 , k' y2 , 0, 0, k) is obtained as shown in equation (3-11). Next, the data processing unit 66 performs variable substitution on S(k x , k' y1 , k' y2 , 0, 0, k) (step S3-4).
  • the storage unit 66a stores a program for executing the data processing method of this embodiment.
  • the program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
  • the frequency of the electromagnetic wave is 4.46484 GHz
  • the relative dielectric constant is 10
  • the measurement interval ⁇ x 10 mm
  • the measurement interval ⁇ y' 1 38.5 mm
  • the measurement interval ⁇ y' 2 38.5 mm
  • the measurement width 616 mm 21.24 mm.
  • the following equation (3-23) is obtained.
  • the Nyquist criterion is not satisfied, and aliasing occurs in each of the x-axis direction, y' 1- axis direction, and y' 2- axis direction.
  • the Nyquist wave number in this case is expressed by the following equation (3-24).
  • the maximum wave number determined from the highest frequency is expressed by the following equation (3-25).
  • the Fourier transform regarding the x-axis in step S3-3 is shown in FIG. Furthermore, the Fourier transform regarding the y' 1- axis and the y' 2- axis in step S3-3 is shown in FIG. From FIG. 15, in the Fourier transform regarding the x-axis, wave numbers whose upper limits are ⁇ k x, nyq and ⁇ k' x2, nyq are output to range A, respectively. Data with a wave number exceeding ⁇ k x, nyq appears as alias data with a period of 2k x, nyq .
  • variable replacement processing in step S3-4 the variable replacement processing is performed not in the range A but in the range A' having the upper limit of ⁇ k xmax .
  • the alias data is not discarded as aliasing noise, but is actually added to the variable replacement process as meaningful data, improving the resolution in the x-axis direction and further increasing the image intensity of shallow targets. becomes possible.
  • the range B' similarly to the second embodiment, as shown in FIG. 16, instead of the range B, the range B' has the upper limit of ⁇ k' y1max and ⁇ k' y2max , respectively. Performs variable replacement processing.
  • simulation result The results of a computer simulation of the data processing method of the third embodiment will be described below.
  • the simulation conditions are as follows.
  • FIG. 17 shows an xz plane image of point target 1 simulated using the data processing method of comparative example 1.
  • FIG. 18 shows an xz plane image of point target 1 simulated using the data processing method of Example 1.
  • FIG. 19 shows a yz plane image of point target 1 simulated using the data processing method of comparative example 1.
  • FIG. 20 shows a yz plane image of point target 1 simulated using the data processing method of Example 1.
  • FIG. 21 shows waveforms of the point target 1 in the x-axis direction of Comparative Example 1 and Example 1.
  • FIG. 22 shows waveforms of the point target 1 in the y-axis direction of Comparative Example 1 and Example 1.
  • FIG. 23 shows waveforms of the point target 1 in the z-axis direction of Comparative Example 1 and Example 1. In each of FIGS. 21 to 23, Example 1 is shown by a solid line, and Comparative Example 1 is shown by a broken line.
  • FIG. 24 shows an xz plane image of point target 2 simulated using the data processing method of comparative example 1.
  • FIG. 25 shows an xz plane image of point target 2 simulated using the data processing method of Example 1.
  • FIG. 26 shows a yz plane image of point target 2 simulated using the data processing method of comparative example 1.
  • FIG. 27 shows a yz plane image of point target 2 simulated using the data processing method of Example 1.
  • FIG. 28 shows waveforms of the point target 2 in the x-axis direction of Comparative Example 1 and Example 1.
  • FIG. 29 shows waveforms in the y-axis direction of the point target 2 of Comparative Example 1 and Example 1.
  • FIG. 30 shows waveforms in the z-axis direction of the point target 2 of Comparative Example 1 and Example 1.
  • Example 1 is shown by a solid line
  • Comparative Example 1 is shown by a broken line.
  • variable replacement processing was performed in range A in the variable replacement processing in step S3-4 in the present embodiment.
  • the variable replacement process was performed not in the range A but in the range A' having the upper limit of ⁇ k xmax .
  • the variable replacement process in the range A' having ⁇ k xmax as the upper limit in Example 1 will be referred to as super-resolution process.
  • equation (4-3) is expressed as equation (4-5).
  • r 0 t 0 surrounded by a solid line is a signal component
  • the part surrounded by a broken line is a noise component.
  • equation (4-3) is expressed as equation (4-7).
  • r 0 t 1 surrounded by a solid line is a signal component
  • the part surrounded by a broken line is a noise component.
  • equation (4-8) when k' y2 falls into the twice-folding noise region during variable substitution, the condition of equation (4-8) is met, and equation (4-3) is expressed by equation (4-9).
  • r 2 t 1 surrounded by a solid line is a signal component
  • the part surrounded by a broken line is a noise component.
  • equation (4-11) is expressed as equation (4-12) below.
  • equation (4-12) the quadratic terms regarding t n and r n are relative to other terms. This results in data with a poor S/N ratio. Therefore, in order to improve the S/N ratio, the quadratic term regarding r n and t n may be selectively excluded in the variable replacement process of step S3-4.
  • equation (4-3) is expressed by equation (4-13) below.
  • FIG. 31 is a conceptual diagram of a cross-shaped k' y1 -k' y2 filter.
  • k xmax , k' y1max , and k' y2max shown in FIGS. 15 and 16 depend on the position of the target or the directivity of the antenna.
  • the maximum value may be determined by the antenna directivity ⁇ bx and ⁇ by as shown in equation (4-14). however, It is.
  • Simulation result 1 The results of a computer simulation of the data processing method of the fourth embodiment will be described below.
  • the effect of improving the image intensity of a shallow target will be verified under the same simulation conditions as in the third embodiment.
  • Super-resolution processing uses the missing alias data. Therefore, the target image intensity (image amplitude) increases compared to the case without super-resolution processing. This effect is larger for shallow targets with more alias data than for deep targets. That is, the image intensity of a shallow target, which had been reduced by aliasing, is greatly restored by super-resolution processing.
  • Figure 32 shows simulation results for four point targets.
  • the horizontal position of each point target is at the center of the measurement surface, and the depths are 20 mm, 200 mm, 400 mm, and 600 mm.
  • Example 1 in which super-resolution processing was performed is shown by a solid line
  • Comparative Example 1 in which super-resolution processing was not performed is shown in broken lines.
  • the magnitude of the three-dimensional image amplitude is normalized by setting the amplitude of a target with a depth of 20 mm without super-resolution processing to 1.
  • FIG. 33 shows the recovery rate for each point target. From FIG. 33, it can be seen that the shallower the target, the more alias data there is, so the recovery rate by super-resolution processing is higher. At a depth of 20 mm, the recovery rate reaches 6 times. On the other hand, the deeper the target, the less alias data and the smaller the recovery rate. At a depth of 600 mm, the recovery rate is about 1.2 times.
  • FIG. 34 shows the layout of the transmitting antenna and receiving antenna used for measurement.
  • the test specimen has a plurality of reinforcing bars with different z-coordinates inside.
  • FIG. 35 is a three-dimensional image of the test specimen without super-resolution processing.
  • FIG. 36 is a three-dimensional image of the specimen subjected to super-resolution processing. In FIGS. 35 and 36, the z-coordinates of a plurality of reinforcing bars are shown. Comparing FIG. 35 and FIG. 36, in which super-resolution processing was performed, the image of the reinforcing bars was thinner overall, and it was confirmed that the image resolution was improved.
  • FIG. 37 is a three-dimensional image of a test specimen subjected to super-resolution processing by applying a cross-shaped k' y1 -k' y2 filter.
  • Figure 36 is a three-dimensional image of the specimen subjected to super-resolution processing without applying the cross-shaped k' y1 - k' y2 filter, and the super-resolution processing performed by applying the cross-shaped k' y1 - k' y2 filter. Comparing Fig. 37 , which was performed with It could be confirmed.
  • FIG. 38 shows the waveforms of the point target 1 in the x-axis direction of Comparative Example 2 and Example 2.
  • FIG. 39 shows waveforms of the point target 1 in the y-axis direction of Comparative Example 2 and Example 2.
  • FIG. 40 shows waveforms in the z-axis direction of the point target 1 of Comparative Example 2 and Example 2.
  • FIG. 41 shows the waveforms of the point target 2 in the x-axis direction of Comparative Example 2 and Example 2.
  • FIG. 42 shows waveforms of the point target 2 in the y-axis direction of Comparative Example 2 and Example 2.
  • FIG. 43 shows waveforms in the z-axis direction of the point target 2 of Comparative Example 2 and Example 2.
  • Example 2 is shown by a solid line
  • Comparative Example 2 is shown by a broken line.
  • FIG. 44 is a conceptual diagram of a cross-shaped k' x1 -k' x2 filter. That is, in this embodiment, super-resolution is achieved by applying both the cross-shaped k' x1 -k' x2 filter shown in FIG. 44 and the cross-shaped k' y1 -k' y2 filter shown in FIG. 31 in the second embodiment. Perform processing.
  • k' x1max , k' x2max , k' y1max , and k' y2max depend on the position of the target or the directivity of the antenna.
  • the maximum value may be determined by the antenna directivity ⁇ bx and ⁇ by as shown in equation (5-1). however, It is.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This data processing method is for analyzing scattered waves from waves emitted to an object and involves: emitting the waves to an object from a plurality of transmission points p1(x'1, y'1, z'1) arrayed on a y-axis; receiving scattered waves, having reflected at a reflection point (x, y, z) on the object at a reflection factor f(x, y, z), at a plurality of reception points p2(x'2, y'2, z'2) arrayed on the y-axis, as measurement values s(x'1, x'2, y'1, y'2, z'1, z'2, k); subjecting the measurement values s(x'1, x'2, y'1, y'2, z'1, z'2, k) to triple Fourier transformation to obtain S(k'x1, k'x2, k'y1, k'y2, z'1, z'2, k); performing a variable substitution process in the x-direction in a range of -kx1≤kx≤kx1 (where kx,nyq≤kx1) when the Nyquist wavenumber in the x-direction determined by a measurement interval in the x-direction is kx,nyq; performing a variable substitution process in the y-direction in ranges of -ky1≤k'y1≤ky1 and -ky2≤k'y2≤ky2 (where k'y1,nyq≤ky1 and k'y2,nyq≤ky2) when the Nyquist wavenumber in a y'1-direction and the Nyquist wavenumber in a y'2-direction, which are determined by a measurement interval in the y-direction, are k'y1,nyq and k'y2,nyq, respectively; performing triple inverse Fourier transformation; and obtaining a reflection factor f(x, y, z).

Description

データ処理方法、計測システム、及び、プログラムData processing method, measurement system, and program
 本発明は、空間に生成する電磁波等の波動の周波数と空間の空間座標とによって値が定まる波動の計測データを、コンピュータを用いて処理するデータ処理方法、計測システム、及び、プログラムに関する。 The present invention relates to a data processing method, a measurement system, and a program for using a computer to process wave measurement data whose value is determined by the frequency of waves such as electromagnetic waves generated in space and the spatial coordinates of space.
 従来、コンクリートや木材等の非金属の構造物の内部を非破壊で検査するレーダ装置が知られている。従来のレーダ装置は、平面上に複数のアンテナが配置されたアレイアンテナを有する。アレイアンテナは、例えば、平面アンテナ等のアンテナが一方向に並んだ構成を有し、送信用アレイアンテナと受信用アレイアンテナが近接して配置される。また、レーダ装置は、構造物の内部を精度よく計測するために、電磁波の周波数を設定された周波数間隔で変更しながら、広帯域の周波数で測定対象物を計測する。 Radar devices that non-destructively inspect the inside of non-metallic structures such as concrete and wood have been known. A conventional radar device has an array antenna in which a plurality of antennas are arranged on a plane. The array antenna has, for example, a configuration in which antennas such as planar antennas are lined up in one direction, and a transmitting array antenna and a receiving array antenna are arranged close to each other. Furthermore, in order to accurately measure the inside of a structure, the radar device measures the object to be measured using a wide band of frequencies while changing the frequency of electromagnetic waves at set frequency intervals.
 アレイアンテナを有するレーダ装置に関して、例えば、複数の平面アンテナで構成された送信用アレイアンテナと受信用アレイアンテナが共通の誘電体基板に形成されたレーダ装置が知られている(特開2015-095840号公報、以下、「特許文献1」)。従来のレーダ装置では、送信用アレイアンテナの平面アンテナの配列方向は、受信用アレイアンテナの平面アンテナの配列方向と平行である。受信用アレイアンテナの平面アンテナの配列方向における位置は、送信用アレイアンテナの隣接する平面アンテナの2つの位置の中間にある。 Regarding a radar device having an array antenna, for example, a radar device in which a transmitting array antenna and a receiving array antenna composed of a plurality of planar antennas are formed on a common dielectric substrate is known (Japanese Patent Laid-Open No. 2015-095840). (hereinafter referred to as "Patent Document 1"). In a conventional radar device, the direction in which the planar antennas of the transmitting array antenna are arranged is parallel to the direction in which the planar antennas of the receiving array antenna are arranged. The position of the receiving array antenna in the arrangement direction of the planar antennas is between the two positions of adjacent planar antennas of the transmitting array antenna.
 また、逆問題の解析を汎用的かつ高速に行い、物体内部の情報を簡便に映像化することができる散乱トモグラフィ方法が知られている(特許第6557747号公報、以下、「特許文献2」)。 In addition, a scattering tomography method is known that can perform general and high-speed analysis of inverse problems and easily visualize information inside an object (Japanese Patent No. 6557747, hereinafter referred to as "Patent Document 2"). ).
 計測したデータから構造物の内部を映像化するために、合成開口処理が利用される。合成開口処理には、大きく、ディフラクションスタッキング法などの足し込み法と、F-Kマイグレーション法などのフーリエ変換を利用するものがある。
 実用的な演算時間を実現するためには、フーリエ変換を利用した合成開口処理が現実的である。
Synthetic aperture processing is used to visualize the inside of a structure from measured data. There are two main types of synthetic aperture processing: addition methods such as the diffraction stacking method, and methods that utilize Fourier transform such as the FK migration method.
In order to realize a practical calculation time, synthetic aperture processing using Fourier transform is practical.
 レーダ装置では、構造物の内部を正確に検査するために、計測における空間分解能が高いことが望まれる。一般に、電磁波等の周波数を有する波動の放射によって得られるデータの空間分解能は、計測対象の構造物と送信用アレイアンテナ及び受信用アレイアンテナの計測面との間の距離が相対的に近接し、かつ、計測データの計測間隔が小さい場合、波動の中心周波数の波長によって定まる。ここで、計測対象の構造物と送信用アレイアンテナ及び受信用アレイアンテナの計測面との間の距離は、例えば、アレイアンテナの配列長さの4分の1以下である。また、空間分解能は、アレイアンテナの各アンテナが配置される平面内の分解能である。 In order to accurately inspect the inside of a structure, radar equipment is desired to have high spatial resolution in measurement. In general, the spatial resolution of data obtained by radiation of waves having a frequency such as electromagnetic waves is determined by the fact that the distance between the structure to be measured and the measurement surfaces of the transmitting array antenna and the receiving array antenna is relatively close, In addition, when the measurement interval of the measurement data is small, it is determined by the wavelength of the center frequency of the wave. Here, the distance between the structure to be measured and the measurement surfaces of the transmitting array antenna and the receiving array antenna is, for example, one-fourth or less of the arrangement length of the array antenna. Moreover, the spatial resolution is the resolution within the plane in which each antenna of the array antenna is arranged.
 例えば、アレイアンテナの各アンテナが配置される平面に沿った計測データの計測間隔が十分に小さい場合の理論空間分解能は、電磁波の往復経路を考慮して、放射する波動の周波数が周波数帯域を持って掃引される場合、周波数帯域の中心周波数における波動の波長の4分の1になる。しかし、計測データの計測間隔が大きくなり、電磁波の最小波長の4分の1を超える場合、実際の計測における空間分解能は、理想空間分解能より大きくなる。場合によっては、実際の計測における空間分解能は、計測間隔になる。 For example, when the measurement interval of measurement data along the plane where each antenna of an array antenna is arranged is sufficiently small, the theoretical spatial resolution is determined by considering the round trip path of electromagnetic waves, and the frequency of the emitted waves has a frequency band. If the wave is swept at a frequency of 1/4, it will be one quarter of the wavelength of the wave at the center frequency of the frequency band. However, when the measurement interval of measurement data becomes large and exceeds one-fourth of the minimum wavelength of electromagnetic waves, the spatial resolution in actual measurement becomes larger than the ideal spatial resolution. In some cases, the spatial resolution in actual measurements is the measurement interval.
 従来のレーダ装置では、低い周波数から高い周波数まで広い周波数帯域で電磁波を計測するため、電磁波の最大波長は長くなる。このため、アレイアンテナを構成する各アンテナは大きくなり、アレイアンテナにおけるアンテナの配列方向の長さは長くなる。その結果、送受信用アレイアンテナにおけるアンテナの配置間隔は長くなり、計測データの計測間隔は、放射される電磁波の最小波長の4分の1を超え易く、空間分解能は理論分解能より低下し、しかも、計測データにはエイリアシング成分が生じ易い。空間分解能を、理想とする理論空間分解能、すなわち、中心周波数における電磁波の波長の4分の1にするには、送受信用アレイアンテナ内でアンテナの配置数を増やして、配置間隔を短くしなければならない。しかし、前述の通り、広帯域のアンテナの大きさを小さくすることは困難であるため、配置間隔を短くすることも困難である。 Since conventional radar equipment measures electromagnetic waves in a wide frequency band from low frequencies to high frequencies, the maximum wavelength of electromagnetic waves becomes long. For this reason, each antenna constituting the array antenna becomes large, and the length of the array antenna in the direction in which the antennas are arranged becomes long. As a result, the spacing between the antennas in the transmitting and receiving array antenna becomes longer, the measurement interval of the measured data tends to exceed one-fourth of the minimum wavelength of the electromagnetic waves emitted, and the spatial resolution is lower than the theoretical resolution. Aliasing components are likely to occur in measurement data. In order to reduce the spatial resolution to the ideal theoretical spatial resolution, that is, one quarter of the wavelength of the electromagnetic wave at the center frequency, we must increase the number of antennas in the transmitting/receiving array antenna and shorten the spacing between them. No. However, as described above, it is difficult to reduce the size of a broadband antenna, and therefore it is also difficult to shorten the arrangement interval.
 本発明は、アンテナの配置数を一定に維持したまま、計測における空間分解能を向上させることができるデータ処理方法、計測システム、及び、プログラムを提供することを目的とする。 An object of the present invention is to provide a data processing method, a measurement system, and a program that can improve the spatial resolution in measurement while maintaining a constant number of antennas.
 本発明の第1の観点は、
 物体に放射した波動の散乱波を解析するデータ処理方法であって、
 y軸上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
 前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信し、
 前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求め、

 x方向の計測間隔で定まるx方向のナイキスト波数をkx,nyqとすると、-kx1≦kx≦kx1(但し、kx,nyq≦kx1)の範囲でx方向の変数置換処理を行い、
 y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行い、
 式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、

 データ処理方法である。
但し、
x’ = x’1 = x’2
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
The first aspect of the present invention is
A data processing method for analyzing scattered waves of waves emitted to an object,
radiating the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
The scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are received at a plurality of receiving points p 2 (x' 2 , receive the measured value s(x ' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) at y' 2 , z' 2 );
The measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) is subjected to triple Fourier transform using equation (1) to obtain S(k' x1 , k ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k),

If the Nyquist wave number in the x direction determined by the measurement interval in the x direction is k x,nyq , then variable substitution processing in the x direction is performed in the range -k x1 ≦k x ≦k x1 (however, k x,nyq ≦k x1 ). conduct,
If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 ), perform variable substitution processing in the y direction,
The reflectance f(x, y, z) is determined by triple inverse Fourier transform using equation (2).

This is a data processing method.
however,
x' = x' 1 = x' 2
z' 1 = z' 2 = 0
k is the wave number of the propagating wave,
k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z). Components of the wave vector of a spherical wave,
k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). Components of the wave vector of a spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
It is.
 本発明の第2の観点は、
 物体に放射した波動の散乱波を解析する計測システムであって、
 送受信部であって、
  y軸上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
  前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信する受信部と、
 を有する送受信部と、
 処理装置であって、
  前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、

  x方向の計測間隔で定まるx方向のナイキスト波数をkx,nyqとすると、-kx1≦kx≦kx1(但し、kx,nyq≦kx1)の範囲でx方向の変数置換処理を行う手順と、
  y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行う手順と、
 式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、

 を実行する処理装置と、
 を有する、計測システムである。
但し、
x’ = x’1 = x’2
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
The second aspect of the present invention is
A measurement system that analyzes scattered waves of waves emitted to an object,
A transmitting/receiving section,
a transmitter that radiates the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
The scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are received at a plurality of receiving points p 2 (x' 2 , a receiving unit that receives the measured value s(x ' 1 , x' 2 , y' 1 , y' 2 , z ' 1 , z' 2 , k) at y' 2 , z' 2 );
a transmitting/receiving unit having;
A processing device,
The measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) is subjected to triple Fourier transform using equation (1) to obtain S(k' x1 , k ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);

If the Nyquist wave number in the x direction determined by the measurement interval in the x direction is k x,nyq , then the variable substitution process in the x direction is performed in the range -k x1 ≦k x ≦k x1 (k x,nyq ≦k x1 ). The steps to take and
If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 );
A step of calculating the reflectance f(x, y, z) by performing triple inverse Fourier transform from equation (2);

a processing device that executes;
It is a measurement system with
however,
x' = x' 1 = x' 2
z' 1 = z' 2 = 0
k is the wave number of the propagating wave,
k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z). Components of the wave vector of a spherical wave,
k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). Components of the wave vector of a spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
It is.
 本発明の第3の観点は、
 物体に放射した波動の散乱波を解析するプログラムであって、
 計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、

 x方向の計測間隔で定まるx方向のナイキスト波数をkx,nyqとすると、-kx1≦kx≦kx1(但し、kx,nyq≦kx1)の範囲でx方向の変数置換処理を行う手順と、
 y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行う手順と、
 式(2)より3重逆フーリエ変換して、反射率f(x, y, z)を求める手順と、

 をコンピュータに実行させるプログラムである。
但し、
x’ = x’1 = x’2
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
The third aspect of the present invention is
A program that analyzes scattered waves of waves emitted to an object,
The measured value s ( x ' 1 , x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);

If the Nyquist wave number in the x direction determined by the measurement interval in the x direction is k x,nyq , then the variable substitution process in the x direction is performed in the range -k x1 ≦k x ≦k x1 (k x,nyq ≦k x1 ). The steps to take and
If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 );
Steps to calculate the reflectance f(x, y, z) by performing triple inverse Fourier transform from equation (2);

This is a program that causes a computer to execute.
however,
x' = x' 1 = x' 2
z' 1 = z' 2 = 0
k is the wave number of the propagating wave,
k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z). Components of the wave vector of a spherical wave,
k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). Components of the wave vector of a spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
It is.
 本発明の第4の観点は、
 物体に放射した波動の散乱波を解析するデータ処理方法であって、
 xy平面上に2次元に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
 前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、xy平面上に2次元に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信し、
 前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より4重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求め、

 x方向の計測間隔で定まるx’1方向のナイキスト波数をk’x1,nyqとし、x’2方向のナイキスト波数をk’x2,nyqとすると、-kx1≦k’x1≦kx1、かつ、-kx2≦k’x2≦kx2(但し、k’x1,nyq≦kx1、かつ、k’x2,nyq≦kx2)の範囲でx方向の変数置換処理を行い、
 y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行い、
 式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、

 データ処理方法である。
但し、
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
The fourth aspect of the present invention is
A data processing method for analyzing scattered waves of waves emitted to an object,
radiating the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged two-dimensionally on the xy plane,
The scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are transmitted to a plurality of receiving points p 2 (x ' 2 , y' 2 , z' 2 ) and receive the measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k),
The measured value s ( x ' 1 , ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k),

Let k' x1,nyq be the Nyquist wave number in the x' 1 direction determined by the measurement interval in the x direction, and k' x2, nyq be the Nyquist wave number in the x' 2 direction, then -k x1 ≦k' x1 ≦k x1 , and , -k x2 ≦k' x2 ≦k x2 (however, k' x1,nyq ≦k x1 and k' x2,nyq ≦k x2 ) Perform variable substitution processing in the x direction,
If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 ), perform variable substitution processing in the y direction,
The reflectance f(x, y, z) is determined by triple inverse Fourier transform using equation (2).

This is a data processing method.
however,
z' 1 = z' 2 = 0
k is the wave number of the propagating wave,
k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z). Components of the wave vector of a spherical wave,
k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). Components of the wave vector of a spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
It is.
 本発明の第5の観点は、
 物体に放射した波動の散乱波を解析する計測システムであって、
 送受信部であって、
  xy平面上に2次元に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
  前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、xy平面上に2次元に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信する受信部と、
 を有する送受信部と、
 処理装置であって、
  前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より4重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、

 x方向の計測間隔で定まるx’1方向のナイキスト波数をk’x1,nyqとし、x’2方向のナイキスト波数をk’x2,nyqとすると、-kx1≦k’x1≦kx1、かつ、-kx2≦k’x2≦kx2(但し、k’x1,nyq≦kx1、かつ、k’x2,nyq≦kx2)の範囲でx方向の変数置換処理を行う手順と、
 y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行う手順と、
 式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、

 を実行する処理装置と、
 を有する、計測システムである。
但し、
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
The fifth aspect of the present invention is
A measurement system that analyzes scattered waves of waves emitted to an object,
A transmitting/receiving section,
a transmitter that radiates the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged two-dimensionally on the xy plane;
The scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are transmitted to a plurality of receiving points p 2 (x a receiving unit that receives a measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z ' 1 , z' 2 , k) at ' 2 , y' 2 , z' 2 );
a transmitting/receiving unit having;
A processing device,
The measured value s ( x ' 1 , ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);

Let k' x1,nyq be the Nyquist wave number in the x' 1 direction determined by the measurement interval in the x direction, and k' x2, nyq be the Nyquist wave number in the x' 2 direction, then -k x1 ≦k' x1 ≦k x1 , and , -k x2 ≦k' x2 ≦k x2 (however, k' x1,nyq ≦k x1 and k' x2,nyq ≦k x2 );
If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 );
A step of calculating the reflectance f(x, y, z) by performing triple inverse Fourier transform from equation (2);

a processing device that executes;
It is a measurement system with
however,
z' 1 = z' 2 = 0
k is the wave number of the propagating wave,
k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z). Components of the wave vector of a spherical wave,
k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). Components of the wave vector of a spherical wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
It is.
 本発明の第6の観点は、
 物体に放射した波動の散乱波を解析するプログラムであって、
 計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より4重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、

 x方向の計測間隔で定まるx’1方向のナイキスト波数をk’x1,nyqとし、x’2方向のナイキスト波数をk’x2,nyqとすると、-kx1≦k’x1≦kx1、かつ、-kx2≦k’x2≦kx2(但し、k’x1,nyq≦kx1、かつ、k’x2,nyq≦kx2)の範囲でx方向の変数置換処理を行う手順と、
 y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行う手順と、
 式(2)より3重逆フーリエ変換して、反射率f(x, y, z)を求める手順と、

 をコンピュータに実行させるプログラムである。
但し、
z’1= z’2 = 0
kは、伝播する前記波動の波数、
k’x1, k’y1, k’z1は、送信点p1(x’1, y’1, z’1)から反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
k’x2, k’y2, k’z2は、前記反射点(x, y, z)から受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
である。
The sixth aspect of the present invention is
A program that analyzes scattered waves of waves emitted to an object,
The measured value s ( x ' 1 , x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);

Let k' x1,nyq be the Nyquist wave number in the x' 1 direction determined by the measurement interval in the x direction, and k' x2, nyq be the Nyquist wave number in the x' 2 direction, then -k x1 ≦k' x1 ≦k x1 , and , -k x2 ≦k' x2 ≦k x2 (however, k' x1,nyq ≦k x1 and k' x2,nyq ≦k x2 );
If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 );
Steps to calculate the reflectance f(x, y, z) by performing triple inverse Fourier transform from equation (2);

This is a program that causes a computer to execute.
however,
z' 1 = z' 2 = 0
k is the wave number of the propagating wave,
k' x1 , k' y1 , k' z1 are the spherical waves of the wave propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z) The components of the wave vector of
k' x2 , k' y2 , k' z2 is the spherical surface of the wave propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) components of the wave vector of the wave,
k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
It is.
 本発明のデータ処理方法、計測システム、及び、プログラムによれば、アンテナの配置数を一定に維持したまま、計測における空間分解能を向上させることができる。 According to the data processing method, measurement system, and program of the present invention, it is possible to improve the spatial resolution in measurement while keeping the number of arranged antennas constant.
第1実施形態のレーダ装置の構成を示す図A diagram showing the configuration of a radar device according to the first embodiment 図1に示すアレイアンテナの構成を示す図Diagram showing the configuration of the array antenna shown in Fig. 1 第1実施形態のアレイアンテナと測定対象物との位置関係を説明する図A diagram explaining the positional relationship between the array antenna and the measurement target of the first embodiment 第1実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the first embodiment エイリアシングの概念図Conceptual diagram of aliasing 第1実施形態の計測波形の一例An example of the measurement waveform of the first embodiment 第1実施形態におけるx軸に関するフーリエ変換Fourier transform regarding the x-axis in the first embodiment 第1実施形態におけるy軸に関するフーリエ変換Fourier transform regarding the y-axis in the first embodiment 第2実施形態のアレイアンテナと測定対象物との位置関係を説明する図A diagram explaining the positional relationship between the array antenna and the measurement target according to the second embodiment 第2実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the second embodiment 第2実施形態におけるx’軸、x’軸に関するフーリエ変換Fourier transform regarding x' 1 axis and x' 2 axis in second embodiment 第2実施形態におけるy’軸、y’軸に関するフーリエ変換Fourier transform regarding y' 1 axis and y' 2 axis in second embodiment 第3実施形態のアレイアンテナと測定対象物との位置関係を説明する図A diagram explaining the positional relationship between the array antenna and the measurement target according to the third embodiment 第3実施形態のデータ処理方法を示すフローチャートFlowchart showing the data processing method of the third embodiment 第3実施形態におけるx軸に関するフーリエ変換Fourier transform regarding the x-axis in the third embodiment 第3実施形態におけるy’軸、y’軸に関するフーリエ変換Fourier transform regarding y' 1 axis and y' 2 axes in the third embodiment 比較例1のデータ処理方法でシミュレーションした点ターゲット1のxz平面画像xz plane image of point target 1 simulated using the data processing method of comparative example 1 実施例1のデータ処理方法でシミュレーションした点ターゲット1のxz平面画像xz plane image of point target 1 simulated using the data processing method of Example 1 比較例1のデータ処理方法でシミュレーションした点ターゲット1のyz平面画像YZ plane image of point target 1 simulated using the data processing method of Comparative Example 1 実施例1のデータ処理方法でシミュレーションした点ターゲット1のyz平面画像YZ plane image of point target 1 simulated using the data processing method of Example 1 比較例1と実施例1の点ターゲット1のx軸方向の波形Waveforms in the x-axis direction of point target 1 in Comparative Example 1 and Example 1 比較例1と実施例1の点ターゲット1のy軸方向の波形Waveforms in the y-axis direction of point target 1 in Comparative Example 1 and Example 1 比較例1と実施例1の点ターゲット1のz軸方向の波形Waveforms in the z-axis direction of point target 1 in Comparative Example 1 and Example 1 比較例1のデータ処理方法でシミュレーションした点ターゲット2のxz平面画像xz plane image of point target 2 simulated using the data processing method of comparative example 1 実施例1のデータ処理方法でシミュレーションした点ターゲット2のxz平面画像xz plane image of point target 2 simulated using the data processing method of Example 1 比較例1のデータ処理方法でシミュレーションした点ターゲット2のyz平面画像YZ plane image of point target 2 simulated using the data processing method of Comparative Example 1 実施例1のデータ処理方法でシミュレーションした点ターゲット2のyz平面画像YZ plane image of point target 2 simulated using the data processing method of Example 1 比較例1と実施例1の点ターゲット2のx軸方向の波形Waveforms in the x-axis direction of point target 2 in Comparative Example 1 and Example 1 比較例1と実施例1の点ターゲット2のy軸方向の波形Waveforms in the y-axis direction of point target 2 in Comparative Example 1 and Example 1 比較例1と実施例1の点ターゲット2のz軸方向の波形Waveforms in the z-axis direction of point target 2 in Comparative Example 1 and Example 1 十字型k’y1-k’y2フィルタの概念図Conceptual diagram of cross-shaped k' y1 -k' y2 filter 4つの点ターゲットのシミュレーション結果Simulation results for four point targets 点ターゲットの回復率Point target recovery rate 送信アンテナと受信アンテナのレイアウトTransmit and receive antenna layout 超分解能処理を行わない、試験体の3次元画像3D image of the specimen without super-resolution processing 超分解能処理を行った、試験体の3次元画像3D image of the specimen subjected to super-resolution processing 十字型k’y1-k’y2フィルタを適用して超分解能処理を行った、試験体の3次元画像Three-dimensional image of the specimen subjected to super-resolution processing by applying a cross-shaped k' y1 - k' y2 filter 比較例2と実施例2の点ターゲット1のx軸方向の波形Waveforms in the x-axis direction of point target 1 in Comparative Example 2 and Example 2 比較例2と実施例2の点ターゲット1のy軸方向の波形Waveforms in the y-axis direction of point target 1 in Comparative Example 2 and Example 2 比較例2と実施例2の点ターゲット1のz軸方向の波形Waveforms in the z-axis direction of point target 1 in Comparative Example 2 and Example 2 比較例2と実施例2の点ターゲット2のx軸方向の波形Waveforms in the x-axis direction of point target 2 in Comparative Example 2 and Example 2 比較例2と実施例2の点ターゲット2のy軸方向の波形Waveforms in the y-axis direction of point target 2 in Comparative Example 2 and Example 2 比較例2と実施例2の点ターゲット2のz軸方向の波形Waveforms in the z-axis direction of point target 2 in Comparative Example 2 and Example 2 十字型k’x1-k’x2フィルタの概念図Conceptual diagram of cross-shaped k' x1 - k' x2 filter
<第1実施形態>
 以下、第1実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。図1は、本実施形態のレーダ装置の構成を示す。図2は、図1に示すアレイアンテナの構成を示す。図3は、本実施形態のアレイアンテナと測定対象物との位置関係を説明する図である。本実施形態では、電磁波を空間に放射する波動として説明するが、電磁波の代わりにX線や超音波等の空間中に伝播する波動を用いてもよい。
<First embodiment>
The data processing method, measurement system, and program of the first embodiment will be described in detail below. FIG. 1 shows the configuration of a radar device according to this embodiment. FIG. 2 shows the configuration of the array antenna shown in FIG. FIG. 3 is a diagram illustrating the positional relationship between the array antenna of this embodiment and the object to be measured. In this embodiment, electromagnetic waves will be described as waves that are radiated into space, but instead of electromagnetic waves, waves that propagate in space, such as X-rays and ultrasonic waves, may be used.
 本実施形態の計測システム1は、送受信部と、処理装置と、を有する。処理装置は、送受信部と一体に設けられてもよいし、送受信部とネットワークで接続された別の場所に設けられてもよい。以下の実施形態では、処理装置が送受信部と一体に設けられる例を説明する。 The measurement system 1 of this embodiment includes a transmitting/receiving section and a processing device. The processing device may be provided integrally with the transmitting/receiving section, or may be provided at a separate location connected to the transmitting/receiving section via a network. In the following embodiments, an example will be described in which a processing device is provided integrally with a transmitting/receiving section.
 図1に示す本実施形態のレーダ装置60は、送信用アレイアンテナ及び受信用アレイアンテナ(送受信部)を用いて、電磁波の周波数を掃引しながら、電磁波を送信アンテナから放射する。そして、レーダ装置60は、測定対象物の反射波を受信アンテナで受信して、計測データs(x’,y’,z’,k)を得る。計測データs(x’,y’,z’,k)は、x座標成分、y座標成分、及びz座標成分と電磁波の周波数とを変数とするデータである。 The radar device 60 of this embodiment shown in FIG. 1 radiates electromagnetic waves from the transmitting antenna while sweeping the frequency of the electromagnetic waves using a transmitting array antenna and a receiving array antenna (transmitting/receiving section). Then, the radar device 60 receives the reflected wave from the object to be measured using a receiving antenna, and obtains measurement data s(x', y', z', k). The measurement data s(x', y', z', k) is data whose variables are an x-coordinate component, a y-coordinate component, a z-coordinate component, and the frequency of electromagnetic waves.
 レーダ装置60は、計測ユニット61と、データ処理ユニット(処理装置)66と、画像表示ユニット68とを有する。計測ユニット61は、送信用アレイアンテナ50と、受信用アレイアンテナ52と、高周波スイッチ58,59と、高周波回路62と、システム制御回路64とを有する。レーダ装置60は、10MHz以上、例えば10~20GHzの電磁波を放射するが、電磁波の周波数は、特に制限されない。 The radar device 60 includes a measurement unit 61, a data processing unit (processing device) 66, and an image display unit 68. The measurement unit 61 includes a transmitting array antenna 50, a receiving array antenna 52, high frequency switches 58 and 59, a high frequency circuit 62, and a system control circuit 64. The radar device 60 emits electromagnetic waves of 10 MHz or more, for example, 10 to 20 GHz, but the frequency of the electromagnetic waves is not particularly limited.
 図2に示されるように、送信用アレイアンテナ50は、一方向に配列された複数の送信アンテナ10aを有する。各送信アンテナ10aは、測定対象物に向けて電磁波を放射する。受信用アレイアンテナ52は、送信アンテナ10aの配列方向に沿って配列された複数の受信アンテナ10bを有する。各受信アンテナ10bは、測定対象物から反射した電磁波を受信する。
 送信用アレイアンテナ50の送信アンテナ10aと、受信用アレイアンテナ52の受信アンテナ10bは、一平面上に配置される。この平面に測定対象物が対向するように、送信用アレイアンテナ50と受信用アレイアンテナ52が配置される。
As shown in FIG. 2, the transmitting array antenna 50 has a plurality of transmitting antennas 10a arranged in one direction. Each transmitting antenna 10a radiates electromagnetic waves toward the object to be measured. The reception array antenna 52 has a plurality of reception antennas 10b arranged along the arrangement direction of the transmission antennas 10a. Each receiving antenna 10b receives electromagnetic waves reflected from the object to be measured.
The transmitting antenna 10a of the transmitting array antenna 50 and the receiving antenna 10b of the receiving array antenna 52 are arranged on one plane. A transmitting array antenna 50 and a receiving array antenna 52 are arranged so that the object to be measured faces this plane.
 データ処理ユニット66は、複数の送信アンテナ10aによる測定対象物に向けた送信と、複数の受信アンテナ10bによる受信とによって得られる複数の計測データを処理し、測定対象物に関する画像データを算出する。本実施形態の送信アンテナ10a及び受信アンテナ10bは、基板に平面的にアンテナパターンが形成された平面アンテナであるが、平面アンテナに制限されない。 The data processing unit 66 processes a plurality of measurement data obtained by transmission toward the object to be measured by the plurality of transmitting antennas 10a and reception by the plurality of receiving antennas 10b, and calculates image data regarding the object to be measured. Although the transmitting antenna 10a and the receiving antenna 10b of this embodiment are planar antennas in which an antenna pattern is formed in a plane on a substrate, they are not limited to planar antennas.
 送信用アレイアンテナ50と受信用アレイアンテナ52は、測定対象物の面に平行に移動する。すなわち、送信用アレイアンテナ50と受信用アレイアンテナ52は、測定対象物の表面に沿って走査しながら計測する。送信用アレイアンテナ50と受信用アレイアンテナ52が移動するとき、システム制御回路64は、高周波回路62の動作を制御する。具体的には、送信用アレイアンテナ50と受信用アレイアンテナ52の移動距離の単位長さ毎に、送信アンテナ10aを高周波スイッチ58により切り替えつつ、電磁波を放射するように、システム制御回路64は、高周波回路62の動作を制御する。 The transmitting array antenna 50 and the receiving array antenna 52 move parallel to the surface of the object to be measured. That is, the transmitting array antenna 50 and the receiving array antenna 52 measure while scanning along the surface of the object to be measured. When the transmitting array antenna 50 and the receiving array antenna 52 move, the system control circuit 64 controls the operation of the high frequency circuit 62. Specifically, the system control circuit 64 radiates electromagnetic waves while switching the transmitting antenna 10a using the high frequency switch 58 for each unit length of the moving distance of the transmitting array antenna 50 and the receiving array antenna 52. Controls the operation of the high frequency circuit 62.
 レーダ装置60は、エンコーダ69を有する。エンコーダ69は、一定の移動距離ごとにパルス信号を発生する。エンコーダ69は、送信用アレイアンテナ50及び受信用アレイアンテナ52の移動を感知する。
 このとき、個々の送信アンテナ10aから電磁波の放射が行われる度に、高周波スイッチ59は、複数の受信アンテナ10bを順次切り替えて、各受信アンテナ10bに受信させる。
Radar device 60 has an encoder 69. Encoder 69 generates a pulse signal every fixed moving distance. The encoder 69 senses movement of the transmitting array antenna 50 and the receiving array antenna 52.
At this time, each time an electromagnetic wave is radiated from each transmitting antenna 10a, the high frequency switch 59 sequentially switches the plurality of receiving antennas 10b to cause each receiving antenna 10b to receive the electromagnetic wave.
 なお、送信用アレイアンテナ50から放射される電磁波の周波数を、一定の時間に、例えば10~20GHzの範囲で、設定された周波数間隔で掃引して、電磁波が放射される。したがって、高周波回路62から得られる計測データは送信アンテナ10aの送信した位置と、受信アンテナ10bの受信した位置と、周波数と、ターゲットの位置とによって値が定まるデータである。
 このとき、送信アンテナ10aから放射された電磁波が測定対象物で反射したときの電磁波の反射波を、電磁波を放射した送信アンテナ10aに最も近い受信アンテナ10bで受信するように、高周波スイッチ59の動作が制御される。受信用マイクロ波増幅器(RFアンプ)は、送信する送信アンテナ10aと受信する受信アンテナ10bの対毎にゲインを変化させるように設定される場合がある。このとき、高周波回路62は、送信アンテナ10aと受信アンテナ10bの対の選択に応じてゲインを切り替える可変ゲイン増幅機能を有する。これにより、測定対象物中の欠陥等の検査可能な深度を大きくできる。
Note that the frequency of the electromagnetic waves radiated from the transmitting array antenna 50 is swept at set frequency intervals within a range of 10 to 20 GHz at a certain time, and the electromagnetic waves are radiated. Therefore, the measurement data obtained from the high frequency circuit 62 is data whose value is determined by the position transmitted by the transmitting antenna 10a, the position received by the receiving antenna 10b, the frequency, and the position of the target.
At this time, the high frequency switch 59 is operated so that the receiving antenna 10b closest to the transmitting antenna 10a that radiated the electromagnetic wave receives the reflected wave of the electromagnetic wave when the electromagnetic wave radiated from the transmitting antenna 10a is reflected by the object to be measured. is controlled. The receiving microwave amplifier (RF amplifier) may be set to change the gain for each pair of the transmitting antenna 10a for transmitting and the receiving antenna 10b for receiving. At this time, the high frequency circuit 62 has a variable gain amplification function that switches the gain depending on the selection of the pair of transmitting antenna 10a and receiving antenna 10b. As a result, the depth at which defects and the like in the object to be measured can be inspected can be increased.
 本実施形態では、送信アンテナ10aと受信アンテナ10bの配列方向は平行であり、図2に示すように、配列方向をy方向とする。一方、送信用アレイアンテナ50と受信用アレイアンテナ52の移動方向(走査方向)を、x方向とする。送信用アレイアンテナ50と受信用アレイアンテナ52からみて、測定対象物のある方向(電磁波の送信方向)をz方向とする。 In this embodiment, the arrangement direction of the transmitting antenna 10a and the receiving antenna 10b is parallel, and as shown in FIG. 2, the arrangement direction is the y direction. On the other hand, the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 is assumed to be the x direction. When viewed from the transmitting array antenna 50 and the receiving array antenna 52, the direction in which the object to be measured is located (the direction in which electromagnetic waves are transmitted) is defined as the z direction.
 なお、送信用アレイアンテナ50と受信用アレイアンテナ52の移動方向(走査方向)をy方向としてもよい。すなわち、送信アンテナ10aと受信アンテナ10bの配列方向と同じ方向に、移動(走査)してもよい。
 また、送信用アレイアンテナ50が1つの送信アンテナ10aのみを有し、受信用アレイアンテナ52が複数の受信アンテナ10bを有してもよい。この場合も、送信用アレイアンテナ50と受信用アレイアンテナ52の移動方向(走査方向)をy方向としてもよい。すなわち、受信アンテナ10bの配列方向と同じ方向に、移動(走査)してもよい。
Note that the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction. That is, it may be moved (scanned) in the same direction as the arrangement direction of the transmitting antenna 10a and the receiving antenna 10b.
Further, the transmitting array antenna 50 may have only one transmitting antenna 10a, and the receiving array antenna 52 may have a plurality of receiving antennas 10b. In this case as well, the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be set to the y direction. That is, it may be moved (scanned) in the same direction as the arrangement direction of the receiving antennas 10b.
 データ処理ユニット66は、送信用アレイアンテナ50及び受信用アレイアンテナ52による電磁波の送受信によって得られる計測データs(x’,y’,z’,k)を処理して、測定対象物の内部を表す画像データを作成する。データ処理ユニット66は、例えばコンピュータにより構成され、記憶部66aに記憶されているプログラムを呼び出して起動する。これにより、データ処理ユニット66の機能を発揮できる。すなわち、データ処理ユニット66は、ソフトウェアモジュールで構成される。画像表示ユニット68は、作成された画像データを用いて、測定対象物の内部の画像を表示する。 The data processing unit 66 processes the measurement data s(x', y', z', k) obtained by transmitting and receiving electromagnetic waves by the transmitting array antenna 50 and the receiving array antenna 52 to understand the inside of the measurement target. Create image data to represent. The data processing unit 66 is configured by a computer, for example, and starts by calling a program stored in the storage section 66a. This allows the data processing unit 66 to perform its functions. That is, the data processing unit 66 is composed of software modules. The image display unit 68 displays an image of the inside of the object to be measured using the created image data.
 図2は、送信用アレイアンテナ50と受信用アレイアンテナ52を模式的に示す。送信アンテナ10aと受信アンテナ10bは、x方向の位置がΔLだけずれているが、以降の説明では、送信アンテナ10aと受信アンテナ10bのx方向の位置は、送信アンテナ10aと受信アンテナ10bの間の中間の丸印の点にあるものする。この丸印の点を、送受信点と呼ぶ。
 なお、送信アンテナ10aと受信アンテナ10bのy方向のずれが無い場合もある。すなわち、Δy=0となる場合もある。また、送信アンテナ10aと受信アンテナ10bが共有される場合もある。すなわち、Δy=0、ΔL=0となる場合もある。
FIG. 2 schematically shows a transmitting array antenna 50 and a receiving array antenna 52. The positions of the transmitting antenna 10a and the receiving antenna 10b in the x direction are shifted by ΔL, but in the following explanation, the positions of the transmitting antenna 10a and the receiving antenna 10b in the x direction are shifted from each other by ΔL between the transmitting antenna 10a and the receiving antenna 10b. Do what is at the middle circle point. This circled point is called the transmitting/receiving point.
Note that there may be cases where there is no deviation in the y direction between the transmitting antenna 10a and the receiving antenna 10b. That is, there are cases where Δy=0. Furthermore, the transmitting antenna 10a and the receiving antenna 10b may be shared. That is, Δy=0 and ΔL=0 in some cases.
 したがって、測定対象物と送信用アレイアンテナ50と受信用アレイアンテナ52との位置関係は、図3に示すように表すことができる。
 ここで、送受信点の座標をp(x’,y’,z’)とする。測定対象物の反射点(x,y,z)における反射率をf(x,y,z)とする。送受信点p(x’,y’,z’)における計測データをs(x’,y’,z’,k)とする。真空中の電磁波の伝播波長をλとする。媒質の比誘電率をεとする。伝播する電磁波の波数をkとする。
Therefore, the positional relationship between the measurement object, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
Here, the coordinates of the transmitting/receiving point are p(x', y', z'). Let f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured. Let s (x', y', z', k) be the measurement data at the transmission/reception point p (x', y', z'). Let the propagation wavelength of electromagnetic waves in vacuum be λ 0 . Let the relative dielectric constant of the medium be ε r . Let k be the wave number of the propagating electromagnetic wave.
 このとき、送受信点p(x’,y’,z’)における計測データs(x’,y’,z’,k)は、以下の式で表せる。

 但し、

である。
At this time, the measurement data s(x', y', z', k) at the transmitting/receiving point p(x', y', z') can be expressed by the following formula.

however,

It is.
 式(1-1)では、電磁波を球面波で表しており、距離減衰は省略されている。この距離減衰は、以降の処理を行う上で影響が小さいため、省略されている。式(1-1)中の二段目の式の被積分関数の指数部をフーリエ変換の表記で表すと、以下の式となる。これは、式(1-1)の往復球面波を3次元の平面波に分解することに等しい。

 ここで、(k,k,k)は、送受信点p(x’,y’,z’)と反射点(x,y,z)の間で伝播する波動の往復球面波の波数ベクトルの成分である。但し、

 を満たす。
In equation (1-1), the electromagnetic wave is expressed as a spherical wave, and distance attenuation is omitted. This distance attenuation has been omitted because it has little effect on subsequent processing. When the exponent part of the integrand of the second stage equation in equation (1-1) is expressed in Fourier transform notation, it becomes the following equation. This is equivalent to decomposing the reciprocating spherical wave in equation (1-1) into a three-dimensional plane wave.

Here, (k x , k y , k z ) is the wave number of the round trip spherical wave propagating between the transmitting/receiving point p (x', y', z') and the reflecting point (x, y, z). It is a component of a vector. however,

satisfy.
 以下、式(1-3)に基づいて、計測データs(x’,y’,z’,k)から反射率f(x,y,z)を導出する。まず、式(1-3)を以下のように整理する。
Hereinafter, the reflectance f(x, y, z) is derived from the measurement data s(x', y', z', k) based on equation (1-3). First, equation (1-3) is rearranged as follows.
 ここで、{ }の内側の積分は、(x,y,z)に関する3重フーリエ変換である。また、[ ]の内側の積分は、(k,k)に関する2重逆フーリエ変換である。そこで、式(1-5)の両辺を(x’,y’)に関して2重フーリエ変換を行う。関数f(x,y,z)の3重フーリエ変換後の関数をF(k,k,k)とする。計測データs(x’,y’,z’,k)の2重フーリエ変換後の関数をS(k,k,z’,k)とする。このとき、式(1-5)は、以下の式で表される。
Here, the integral inside { } is a triple Fourier transform with respect to (x, y, z). Also, the integral inside [ ] is a double inverse Fourier transform regarding (k x , k y ). Therefore, double Fourier transform is performed on both sides of equation (1-5) regarding (x', y'). Let F(k x , k y , k z ) be the function f( x , y , z ) after triple Fourier transformation. Let S(k x , k y , z', k) be a function after double Fourier transform of measurement data s ( x ', y ' , z', k). At this time, equation (1-5) is expressed by the following equation.
 式(1-6)の2行目の式の両辺を(k,k,k)について3重逆フーリエ変換すると、反射率f(x,y,z)が以下のように得られる。
When both sides of the second line of equation (1-6) are subjected to triple inverse Fourier transform for (k x , k y , k z ), the reflectance f(x, y, z) is obtained as follows. .
 ここで、本実施形態では、図3に示すように、送受信点p(x’,y’,z’)をxy平面に配置し、z’=0となるため、式(1-7)は以下のように表せる。

Here, in this embodiment, as shown in FIG. 3, the transmitting/receiving point p (x', y', z') is arranged on the xy plane, and z'=0, so equation (1-7) is It can be expressed as follows.

 以上のように、データ処理ユニット66は、計測データs(x’,y’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above, the data processing unit 66 determines the reflectance f(x, y, z) based on the measurement data s(x', y', z', k).
 以下、図4を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図4は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,y’,0,k)を取得する(ステップS1-1)。そして、データ処理ユニット66は、計測データs(x’,y’,0,k)に対して、ヒルベルト変換を行う(ステップS1-2)。これにより、各送受信点における周波数データの虚数成分が得られる。
The data processing method and program of this embodiment will be described below with reference to FIG. FIG. 4 is a flowchart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s(x', y', 0, k) (step S1-1). Then, the data processing unit 66 performs Hilbert transformation on the measurement data s(x', y', 0, k) (step S1-2). Thereby, the imaginary component of the frequency data at each transmitting/receiving point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,y’,0,k)に対して、(x’,y’)に関する2重フーリエ変換を行う(ステップS1-3)。これにより、式(1-6)に示されるように、S(k,k,0,k)が得られる。
 次に、データ処理ユニット66は、S(k,k,0,k)に対して、変数置換を行う(ステップS1-4)。具体的には、式(1-4)を用いて、(k,k,k)の関数を(k,k,k)の関数にする。これにより、S(k,k,k)が得られる。
 次に、データ処理ユニット66は、S(k,k,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS1-5)。これにより、式(1-8)に示されるように、反射率f(x,y,z)が得られる。
Next, the data processing unit 66 performs a double Fourier transform on (x', y') on the measurement data s(x', y', 0, k) (step S1-3). As a result, S(k x , k y , 0, k) is obtained as shown in equation (1-6).
Next, the data processing unit 66 performs variable substitution on S(k x , k y , 0, k) (step S1-4). Specifically, using equation (1-4), the function of (k x , k y , k) is made into the function of (k x , k y , k z ). This yields S(k x , k y , k z ).
Next, the data processing unit 66 performs triple inverse Fourier transform on S(k x , k y , k z ) and (k x , k y , k z ) (step S1-5). . As a result, the reflectance f(x, y, z) is obtained as shown in equation (1-8).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
 ここで、フーリエ変換処理における折り返し雑音とされるエイリアスデータについて説明する。アレイアンテナで計測する場合、アンテナのサイズ、走査間隔をナイキスト基準以下にしなければ、計測データにエイリアシングが発生する。エイリアシングとは、異なる周波数成分の連続信号が標本化によって区別できなくなることをいう。 Here, alias data, which is considered as aliasing noise in Fourier transform processing, will be explained. When measuring with an array antenna, aliasing will occur in the measured data unless the antenna size and scanning interval are below the Nyquist standard. Aliasing refers to the fact that continuous signals with different frequency components become indistinguishable after sampling.
 図5は、エイリアシングの概念図を示す。空間的なサンプリング間隔から決定されるナイキスト波数をknyqと定義する。ナイキスト波数knyqは、以下の式(1-10)で表される。

 ここで、Δx、Δyは、それぞれx軸方向、y軸方向の計測間隔である。
 ナイキスト波数knyqを超える信号は、エイリアス(aliases)と呼ばれ、信号処理の中で折り返し雑音として扱われる。
FIG. 5 shows a conceptual diagram of aliasing. The Nyquist wave number determined from the spatial sampling interval is defined as k nyq . The Nyquist wave number k nyq is expressed by the following equation (1-10).

Here, Δx and Δy are measurement intervals in the x-axis direction and y-axis direction, respectively.
Signals exceeding the Nyquist wave number k nyq are called aliases and are treated as aliasing noise during signal processing.
 図6は、第1実施形態の計測波形の一例を示す。ここで、電磁波の周波数を15GHz、比誘電率を1、計測間隔Δy = 7.5mm、計測幅562.5mm、点ターゲットの深さを原点直下120mmとする。ここで、原点からの距離yの位置で測定される波形の波数kyは、以下の式(1-11)で表される。

 ここで、θtyは、最外縁送受信アンテナとターゲットを結ぶ線とz軸とのなす角度である。また、ナイキスト波数は、以下の式(1-12)で表される。
FIG. 6 shows an example of a measured waveform in the first embodiment. Here, the frequency of the electromagnetic wave is 15 GHz, the dielectric constant is 1, the measurement interval Δy = 7.5 mm, the measurement width is 562.5 mm, and the depth of the point target is 120 mm directly below the origin. Here, the wave number ky of the waveform measured at a distance y from the origin is expressed by the following equation (1-11).

Here, θ ty is the angle between the line connecting the outermost transmitting/receiving antenna and the target and the z-axis. Further, the Nyquist wavenumber is expressed by the following equation (1-12).
 これより、ナイキスト基準は、以下の式(1-13)で表される。

 この条件を満たさないy座標の波形、すなわち、図6におけるエイリアシング領域のデータは、全てエイリアスデータ(折り返し雑音)となる。
From this, the Nyquist criterion is expressed by the following equation (1-13).

The y-coordinate waveform that does not satisfy this condition, that is, the data in the aliasing area in FIG. 6, all becomes alias data (aliasing noise).
 上記の式から、電磁波の波長が短くなる、計測間隔が広がる、又は、ターゲットが計測面に近くなるほど、エイリアスデータが増加することが分かる。通常、エイリアスデータも信号処理の中で折り返し雑音として処理される。そのため、エイリアスデータの増加は、画像分解能の悪化、浅いターゲットの画像強度の低下、S/N比の悪化の原因となる。 From the above equation, it can be seen that the alias data increases as the wavelength of the electromagnetic waves becomes shorter, the measurement interval becomes wider, or the target gets closer to the measurement surface. Usually, alias data is also processed as aliasing noise during signal processing. Therefore, an increase in alias data causes a deterioration in image resolution, a decrease in image intensity of a shallow target, and a deterioration in the S/N ratio.
 以下、計測間隔Δx=10mm、計測間隔Δy=19.25mm、媒質中の最高周波数の波長λfmax=21.24mmとする。このとき、以下の式(1-14)が得られる。

 このとき、ナイキスト基準を満たさず、x軸方向、y軸方向共に、エイリアシングが発生する。この場合のナイキスト波数は、以下の式(1-15)で表される。
Hereinafter, the measurement interval Δx = 10 mm, the measurement interval Δy = 19.25 mm, and the wavelength of the highest frequency in the medium λ fmax = 21.24 mm. At this time, the following equation (1-14) is obtained.

At this time, the Nyquist criterion is not satisfied, and aliasing occurs in both the x-axis direction and the y-axis direction. The Nyquist wavenumber in this case is expressed by the following equation (1-15).
 最高周波数から求まる最大波数は、以下の式(1-16)で表される。
The maximum wave number determined from the maximum frequency is expressed by the following equation (1-16).
 ここで、ステップS1-3におけるx軸に関するフーリエ変換は、図7で表される。また、ステップS1-3におけるy軸に関するフーリエ変換は、図8で表される。
 図7より、x軸に関するフーリエ変換において、±kx,nyq上限とする波数が範囲Aに出力される。±kx,nyqを超える波数のデータは、エイリアスデータとして2kx,nyqを周期として折り返し現れる。よって、ステップS1-4の変数置換処理において、範囲Aではなく、±kxmaxを上限とする範囲A’で変数置換処理を行う。これにより、エイリアスデータを折り返し雑音として捨てるのではなく、実際に意味のあるデータとして変数置換処理に加えることにより、x軸方向の分解能を向上させ、更には浅いターゲットの画像強度をより強くさせることが可能になる。
 y軸に関しても、同様に、図8に示すように、範囲Bではなく範囲B’で変数置換処理を行う。
Here, the Fourier transform regarding the x-axis in step S1-3 is shown in FIG. Furthermore, the Fourier transform regarding the y-axis in step S1-3 is shown in FIG.
From FIG. 7, in the Fourier transform regarding the x-axis, the wave number with the upper limit of ±k x, nyq is output to range A. Data with a wave number exceeding ±k x, nyq appears as alias data with a period of 2k x, nyq . Therefore, in the variable replacement process in step S1-4, the variable replacement process is performed not in the range A but in the range A' having an upper limit of ±k xmax . As a result, the alias data is not discarded as aliasing noise, but is actually added to the variable replacement process as meaningful data, improving the resolution in the x-axis direction and further increasing the image intensity of shallow targets. becomes possible.
Regarding the y-axis, variable replacement processing is similarly performed in range B' instead of range B, as shown in FIG.
<第2実施形態>
 以下、第2実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。第1実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、一方向(図3ではy方向)に配列されるが、本実施形態は、送信用アレイアンテナ50及び受信用アレイアンテナ52の配列が異なる。本実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、平面状に配置される。
 また、第1実施形態では、送信点と受信点の座標をいずれもp(x’,y’,z’)としたが、本実施形態では、送信点と受信点の座標が異なる。本実施形態では、図9に示すように、送信点p(x’,y’,z’)、受信点p(x’,y’,z’)が、xy平面に配列される。
<Second embodiment>
The data processing method, measurement system, and program of the second embodiment will be described in detail below. The transmitting array antenna 50 and the receiving array antenna 52 of the first embodiment are arranged in one direction (the y direction in FIG. 3), but in this embodiment, the transmitting array antenna 50 and the receiving array antenna 52 are arranged in one direction (the y direction in FIG. 3). The arrangement is different. The transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a plane.
Furthermore, in the first embodiment, the coordinates of the transmitting point and the receiving point are both p(x', y', z'), but in this embodiment, the coordinates of the transmitting point and the receiving point are different. In this embodiment , as shown in FIG . Arranged on a plane.
 ここで、測定対象物の反射点(x,y,z)における反射率をf(x,y,z)とする。送信点p(x’,y’,z’)及び受信点p(x’,y’,z’)における計測データをs(x’,x’,y’,y’,z’,z’,k)とする。真空中の電磁波の伝播波長をλとする。媒質の比誘電率をεとする。伝播する電磁波の波数をkとする。 Here, the reflectance at the reflection point (x, y, z) of the object to be measured is assumed to be f(x, y, z). The measurement data at the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) are expressed as s(x' 1 , x' 2 , y ' 1 , y' 2 , z' 1 , z' 2 , k). Let the propagation wavelength of electromagnetic waves in vacuum be λ 0 . Let the relative dielectric constant of the medium be ε r . Let k be the wave number of the propagating electromagnetic wave.
 このとき、計測データs(x’,x’,y’,y’,z’,z’,k)は、以下の式で表せる。

 但し、

である。
At this time, the measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) can be expressed by the following formula.

however,

It is.
 式(2-1)では、電磁波を球面波で表しており、距離減衰は省略されている。この距離減衰は、以降の処理を行う上で影響が小さいため、省略されている。式(2-1)中の被積分関数の指数部をフーリエ変換の表記で表すと、以下の式となる。これは、式(2-1)の球面波を3次元の平面波に分解することに等しい。 In formula (2-1), the electromagnetic wave is expressed as a spherical wave, and distance attenuation is omitted. This distance attenuation has been omitted because it has little effect on subsequent processing. When the exponent part of the integrand in equation (2-1) is expressed in Fourier transform notation, it becomes the following equation. This is equivalent to decomposing the spherical wave in equation (2-1) into a three-dimensional plane wave.

 ここで、(k’x1,k’y1,k’z1)は、送信点から反射点までの間で伝搬する波動の球面波の波数ベクトルの成分である。また、(k’x2,k’y2,k’z2)は、反射点から受信点までの間で伝搬する波動の球面波の波数ベクトルの成分である。但し、

 を満たす。

Here, (k' x1 , k' y1 , k' z1 ) is a component of the wave number vector of the spherical wave propagating from the transmission point to the reflection point. Furthermore, (k' x2 , k' y2 , k' z2 ) is a component of the wave number vector of the spherical wave propagating between the reflection point and the reception point. however,

satisfy.
 以下、式(2-3)に基づいて、s(x’,x’,y’,y’,z’,z’,k)から反射率f(x,y,z)を導出する。まず、式(2-3)の両辺をx’,x’,y’,y’に関して4重フーリエ変換を行う。
Below , based on equation ( 2-3 ), the reflectance f ( x, y, z ) is derived. First, quadruple Fourier transform is performed on both sides of equation (2-3) with respect to x' 1 , x' 2 , y' 1 , and y' 2 .
 式(2-5)の左辺を以下の式(2-6)のように書き換えて整理する。

 すると、式(2-5)は、式(2-7)で表される。
Rewrite the left side of equation (2-5) as shown in equation (2-6) below.

Then, equation (2-5) is expressed as equation (2-7).
 式(2-7)の両辺に以下の積分を行う。
Perform the following integration on both sides of equation (2-7).
 ここで、以下の変数置換を行う。


Here, perform the following variable substitutions.


 ここで、式(2-9)、式(2-10)から、以下の式が得られる。

Here, the following equation can be obtained from equation (2-9) and equation (2-10).

 この変数置換でのヤコビアンの絶対値|J|は式(2-12)、式(2-13)より以下の式でそれぞれ与えられる。

The absolute value |J| of the Jacobian in this variable substitution is given by the following equations from equations (2-12) and (2-13), respectively.

 式(2-9)、式(2-10)、式(2-14)、式(2-15)を式(2-8)に代入して変数置換を行うと、以下の式が得られる。
By substituting formula (2-9), formula (2-10), formula (2-14), and formula (2-15) into formula (2-8) and performing variable substitution, the following formula is obtained. .
 ここで、式(2-16)の2行目右辺の(u,v)に関する積分は定数となるため、省略した。式(2-16)の両辺に(k,k,k)について3重逆フーリエ変換を行うと、反射率f(x,y,z)が以下のように得られる。
Here, the integral with respect to (u, v) on the right side of the second line of equation (2-16) is a constant, so it is omitted. When a triple inverse Fourier transform is performed on both sides of equation (2-16) for (k x , k y , k z ), the reflectance f(x, y, z) is obtained as follows.
 式(2-17)を解くために、(k’z1,k’z2,k)を(k’x1,k’x2,k’y1,k’y2,k)又は(k,u,k,v,k)で表す必要がある。
 式(2-4)、式(2-11)を用いて整理し、また、送信点と受信点がいずれも原点を通るxy平面上に位置する場合、z’=z’=0となるため、式(2-17)は以下のように表せる。

In order to solve equation (2-17), (k' z1 , k' z2 , k) is transformed into (k' x1 , k' x2 , k' y1 , k' y2 , k z ) or (k x , u, k y , v, k z ).
Organize using equations (2-4) and (2-11), and if both the transmitting point and receiving point are located on the xy plane passing through the origin, z' 1 = z' 2 = 0. Therefore, equation (2-17) can be expressed as follows.

 以上のように、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above , the data processing unit 66 calculates the reflectance f ( x' , y, z).
 以下、図10を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図10は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,x’,y’,y’,z’,z’,k)を取得する(ステップS2-1)。そして、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に対して、ヒルベルト変換を行う(ステップS2-2)。これにより、各計測点における周波数データの虚数成分が得られる。
The data processing method and program of this embodiment will be described below with reference to FIG. FIG. 10 is a flowchart showing the data processing method of this embodiment.
First, the measurement unit 61 acquires measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S2-1). Then, the data processing unit 66 performs Hilbert transformation on the measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) (step S2- 2). Thereby, the imaginary component of the frequency data at each measurement point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に対して、(x’,x’,y’,y’)に関する4重フーリエ変換を行う(ステップS2-3)。これにより、式(2-6)に示されるように、S(k’x1,k’x2,k’y1,k’y2,0,0,k)が得られる。
 次に、データ処理ユニット66は、S(k’x1,k’x2,k’y1,k’y2,0,0,k)に対して、変数置換を行う(ステップS2-4)。具体的には、式(2-9)、式(2-10)、式(2-14)、式(2-15)を用いて、(k’x1,k’x2,k’y1,k’y2,k)の関数を(k,k,k)の関数にする。これにより、S(k,k,k)が得られる。
 次に、データ処理ユニット66は、S(k,k,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS2-5)。これにより、式(2-18)に示されるように、反射率f(x,y,z)が得られる。
Next , the data processing unit 66 calculates (x' 1 , x ' 2 , y' 1 , y' 2 ) is performed (step S2-3). As a result, S(k' x1 , k' x2 , k' y1 , k' y2 , 0, 0, k) is obtained as shown in equation (2-6).
Next, the data processing unit 66 performs variable substitution on S(k' x1 , k' x2 , k' y1 , k' y2 , 0, 0, k) (step S2-4). Specifically, (k' x1 , k' x2 , k' y1 , k ' Make the function of y2 , k) a function of (k x , k y , k z ). This yields S(k x , k y , k z ).
Next, the data processing unit 66 performs triple inverse Fourier transform on S(k x , k y , k z ) and (k x , k y , k z ) (step S2-5). . As a result, the reflectance f(x, y, z) is obtained as shown in equation (2-18).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
 ここで、電磁波の周波数を4.46484GHz、比誘電率を10、計測間隔Δx’ = 38.5mm、計測間隔Δx’ = 38.5mm、計測間隔Δy’ = 38.5mm、計測間隔Δy’ = 38.5mm、計測幅616mm、媒質中の最高周波数の波長λfmax= 21.24mmとする。このとき、以下の式(2-20)が得られる。

 このとき、ナイキスト基準を満たさず、x’軸方向、x’軸方向、y’軸方向、y’軸方向のそれぞれに、エイリアシングが発生する。この場合のナイキスト波数は、以下の式(2-21)で表される。
Here, the frequency of the electromagnetic wave is 4.46484 GHz, the relative permittivity is 10, the measurement interval Δx' 1 = 38.5 mm, the measurement interval Δx' 2 = 38.5 mm, the measurement interval Δy' 1 = 38.5 mm, the measurement interval Δy ' 2 = 38.5 mm, the measurement width is 616 mm, and the wavelength of the highest frequency in the medium λ fmax = 21.24 mm. At this time, the following equation (2-20) is obtained.

At this time, the Nyquist criterion is not satisfied, and aliasing occurs in each of the x' 1- axis direction, x' 2- axis direction, y' 1- axis direction, and y' 2- axis direction. The Nyquist wave number in this case is expressed by the following equation (2-21).
 最高周波数から求まる最大波数は、以下の式(2-22)で表される。
The maximum wave number determined from the highest frequency is expressed by the following equation (2-22).
 ここで、ステップS2-3におけるx’軸、x’軸に関するフーリエ変換は、図11で表される。また、ステップS2-3におけるy’軸、y’軸に関するフーリエ変換は、図12で表される。
 図11より、x’軸、x’軸に関するフーリエ変換において、それぞれ、±k’x1,nyq、±k’x2,nyqを上限とする波数が範囲Aに出力される。±k’x1,nyq、±k’x2,nyqを超える波数のデータは、エイリアスデータとして、それぞれ、2k’x1,nyq、2k’x2,nyqを周期として折り返し現れる。よって、ステップS2-4の変数置換処理において、範囲Aではなく、それぞれ、±k’x1max、±k’x2maxを上限とする範囲A’で変数置換処理を行う。これにより、エイリアスデータを折り返し雑音として捨てるのではなく、実際に意味のあるデータとして変数置換処理に加えることにより、x’軸、x’軸方向の分解能を向上させ、更には浅いターゲットの画像強度をより強くさせることが可能になる。
 y’軸、y’軸に関しても、同様に、図12に示すように、範囲Bではなく、それぞれ、±k’y1max、±k’y2maxを上限とする範囲B’で変数置換処理を行う。
Here, the Fourier transform regarding the x' 1 axis and the x' 2 axes in step S2-3 is shown in FIG. Further, the Fourier transform regarding the y' 1- axis and the y' 2- axis in step S2-3 is shown in FIG.
From FIG. 11, in the Fourier transform regarding the x' 1- axis and the x' 2- axis, wave numbers whose upper limits are ±k' x1, nyq and ±k' x2, nyq are output to range A, respectively. Data with wave numbers exceeding ±k' x1, nyq and ±k' x2, nyq appear as alias data in cycles of 2k' x1, nyq and 2k' x2, nyq, respectively. Therefore, in the variable replacement process in step S2-4, the variable replacement process is performed not in the range A but in the range A' whose upper limits are ±k' x1max and ±k' x2max , respectively. As a result, instead of discarding alias data as aliasing noise, it is added to the variable replacement process as actually meaningful data, improving the resolution in the x' 1- axis and x' 2- axis directions, and further improving the resolution of shallow targets. It becomes possible to further increase the image intensity.
Similarly, for the y'1 axis and the y'2 axis, as shown in FIG. conduct.
<第3実施形態>
 以下、第3実施形態のデータ処理方法、計測システム、及び、プログラムについて、詳細に説明する。第2実施形態では、送信用アレイアンテナ50及び受信用アレイアンテナ52は、平面状に配置されるが、本実施形態は、送信用アレイアンテナ50及び受信用アレイアンテナ52の配列が異なる。本実施形態の送信用アレイアンテナ50及び受信用アレイアンテナ52は、直線状に配置される。
 具体的には、本実施形態では、送信アンテナ10a及び受信アンテナ10bは、図13に示すように、y方向に配列される。送信用アレイアンテナ50及び受信用アレイアンテナ52の移動方向(走査方向)を、x方向とする。送信用アレイアンテナ50と受信用アレイアンテナ52からみて、測定対象物のある方向(電磁波の送信方向)をz方向とする。
 なお、送信用アレイアンテナ50及び受信用アレイアンテナ52の移動方向(走査方向)をy方向としてもよい。
<Third embodiment>
The data processing method, measurement system, and program of the third embodiment will be described in detail below. In the second embodiment, the transmitting array antenna 50 and the receiving array antenna 52 are arranged in a plane, but in this embodiment, the transmitting array antenna 50 and the receiving array antenna 52 are arranged differently. The transmitting array antenna 50 and the receiving array antenna 52 of this embodiment are arranged in a straight line.
Specifically, in this embodiment, the transmitting antenna 10a and the receiving antenna 10b are arranged in the y direction, as shown in FIG. 13. The moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 is assumed to be the x direction. When viewed from the transmitting array antenna 50 and the receiving array antenna 52, the direction in which the object to be measured is located (the direction in which electromagnetic waves are transmitted) is defined as the z direction.
Note that the moving direction (scanning direction) of the transmitting array antenna 50 and the receiving array antenna 52 may be the y direction.
 したがって、測定対象物と送信用アレイアンテナ50と受信用アレイアンテナ52との位置関係は、図13に示すように表すことができる。
 ここで、送信点の座標をp(x’,y’,z’)、受信点の座標をp(x’,y’,z’)とする。測定対象物の反射点(x,y,z)における反射率をf(x,y,z)とする。p(x’,y’,z’)における計測データをs(x’,x’,y’,y’,z’,z’,k)とする。真空中の電磁波の伝播波長をλとする。媒質の比誘電率をεとする。伝播する電磁波の波数をkとする。
Therefore, the positional relationship between the measurement object, the transmitting array antenna 50, and the receiving array antenna 52 can be expressed as shown in FIG.
Here, the coordinates of the transmitting point are p 1 (x' 1 , y' 1 , z' 1 ), and the coordinates of the receiving point are p 2 (x' 2 , y' 2 , z' 2 ). Let f(x, y, z) be the reflectance at the reflection point (x, y, z) of the object to be measured. Let the measurement data at p 2 (x' 2 , y' 2 , z' 2 ) be s (x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k). Let the propagation wavelength of electromagnetic waves in vacuum be λ 0 . Let the relative dielectric constant of the medium be ε r . Let k be the wave number of the propagating electromagnetic wave.
 このとき、計測データs(x’,x’,y’,y’,z’,z’,k)は、以下の式で表せる。

 但し

である。
At this time, the measurement data s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) can be expressed by the following formula.

however

It is.
 式(3-1)では、電磁波を球面波で表しており、距離減衰は省略されている。この距離減衰は、以降の処理を行う上で影響が小さいため、省略されている。式(3-1)中の二段目の式の被積分関数の指数部をフーリエ変換の表記で表すと、以下の式となる。これは、式(3-1)の球面波を3次元の平面波に分解することに等しい。 In formula (3-1), the electromagnetic wave is expressed as a spherical wave, and distance attenuation is omitted. This distance attenuation has been omitted because it has little effect on subsequent processing. When the exponent part of the integrand of the second-stage equation in equation (3-1) is expressed in Fourier transform notation, it becomes the following equation. This is equivalent to decomposing the spherical wave in equation (3-1) into a three-dimensional plane wave.

 ここで、(k’x1,k’y1,k’z1)は、送信点から反射点までの間で伝搬する波動の球面波の波数ベクトルの成分である。また、(k’x2,k’y2,k’z2)は、反射点から受信点までの間で伝搬する波動の球面波の波数ベクトルの成分である。但し、

 を満たす。

Here, (k' x1 , k' y1 , k' z1 ) is a component of the wave number vector of the spherical wave propagating from the transmission point to the reflection point. Furthermore, (k' x2 , k' y2 , k' z2 ) is a component of the wave number vector of the spherical wave propagating between the reflection point and the reception point. however,

satisfy.
 ここで、送信点p(x’,y’,z’)と受信点p(x’,y’,z’)のx座標が等しいことから、x’=x’=x’とすると、式(3-3)は以下の式で表される。
Here, since the x coordinates of the transmitting point p 1 (x' 1 , y' 1 , z' 1 ) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ) are equal, x'=x When ' 1 =x' 2 , equation (3-3) is expressed by the following equation.
 ここで、以下の変数置換を行う。

 式(3-6)から以下の式が得られる。
Here, perform the following variable substitutions.

The following equation is obtained from equation (3-6).
 式(3-7)からヤコビアンの絶対値を計算すると、以下の式が得られる。
By calculating the absolute value of the Jacobian from equation (3-7), the following equation is obtained.
 式(3-6)、式(3-8)を式(3-5)に代入して変数置換を行うと、以下の式が得られる。
By substituting equations (3-6) and (3-8) into equation (3-5) and performing variable substitution, the following equation is obtained.
 ここで、式(3-9)の2行目のuに関する積分は、定数となるため省略した。式(3-9)の両辺に(x,y,y)について3重逆フーリエ変換を行うと、以下の式が得られる。
Here, the integral with respect to u in the second line of equation (3-9) is omitted because it is a constant. When triple inverse Fourier transform is performed on both sides of equation (3-9) for (x, y 1 , y 2 ), the following equation is obtained.
 式(3-10)の左辺を以下の式のように書き換えて整理する。

 すると、式(3-10)は、以下の式で表される。
Rewrite the left side of equation (3-10) as shown below.

Then, equation (3-10) is expressed by the following equation.
 式(3-12)の両辺に以下の積分を行うと、以下の式が得られる。
By performing the following integration on both sides of equation (3-12), the following equation is obtained.
 ここで、(k’y1,k’y2)、(k’z1,k’z2)に対して、以下の変数置換を定義する。

Here, the following variable substitution is defined for (k' y1 , k' y2 ) and (k' z1 , k' z2 ).

 ここで、式(3-14)から、以下の式が得られる。

 この変数置換でのヤコビアンの絶対値は、以下の式で与えられる。
Here, the following equation is obtained from equation (3-14).

The absolute value of the Jacobian in this variable substitution is given by the following formula.
 式(3-1)、式(3-15)、式(3-17)を式(3-13)に代入して、変数置換を行うと、以下の式が得られる。
By substituting equation (3-1), equation (3-15), and equation (3-17) into equation (3-13) and performing variable substitution, the following equation is obtained.
 ここで、式(3-18)の2行目右辺のvに関する積分は、定数となるため省略した。式(3-18)の両辺に(k,k,k)について3重逆フーリエ変換を行うと、反射率f(x,y,z)が以下のように得られる。

 ここで、原点を通るx’-y’平面に計測面を合わせるため、z’=0とすると、式(3-19)は、以下のように表される。
Here, the integral with respect to v on the right side of the second line of equation (3-18) is omitted because it is a constant. When triple inverse Fourier transform is performed on both sides of equation (3-18) for (k x , k y , k z ), the reflectance f(x, y, z) is obtained as follows.

Here, in order to align the measurement plane with the x'-y' plane passing through the origin, if z'=0, then equation (3-19) can be expressed as follows.
 式(3-20)を解くために、kを(k’y1,k’y2,k)又は(k,v,k)で表す必要がある。
 式(3-4)、式(3-6)、式(3-15)、及び、仮定より得られる以下の式(3-21)の4つの式の連立方程式を解く。
In order to solve equation (3-20), it is necessary to express k as (k' y1 , k' y2 , k z ) or (k y , v, k z ).
Solve the simultaneous equations of four equations: equation (3-4), equation (3-6), equation (3-15), and the following equation (3-21) obtained from the assumption.
 これより、kは以下の式で表される。
From this, k is expressed by the following formula.
 以上のように、データ処理ユニット66は、計測データs(x’,x’,y’,y’,z’,z’,k)に基づいて、反射率f(x,y,z)を求める。 As described above , the data processing unit 66 calculates the reflectance f ( x' , y, z).
 以下、図14を参照して、本実施形態のデータ処理方法、及び、プログラムについて説明する。図14は、本実施形態のデータ処理方法を示すフローチャートである。
 まず、計測ユニット61が計測データs(x’,y’,y’,0,0,k)を取得する(ステップS3-1)。そして、データ処理ユニット66は、計測データs(x’,y’,y’,0,0,k)に対して、ヒルベルト変換を行う(ステップS3-2)。これにより、各計測点における周波数データの虚数成分が得られる。
The data processing method and program of this embodiment will be described below with reference to FIG. FIG. 14 is a flowchart showing the data processing method of this embodiment.
First, the measurement unit 61 obtains measurement data s(x', y' 1 , y' 2 , 0, 0, k) (step S3-1). Then, the data processing unit 66 performs Hilbert transformation on the measurement data s(x', y' 1 , y' 2 , 0, 0, k) (step S3-2). Thereby, the imaginary component of the frequency data at each measurement point is obtained.
 次に、データ処理ユニット66は、計測データs(x’,y’,y’,0,0,k)に対して、(x’,y’,y’)に関する3重フーリエ変換を行う(ステップS3-3)。これにより、式(3-11)に示されるように、S(k,k’y1,k’y2,0,0,k)が得られる。
 次に、データ処理ユニット66は、S(k,k’y1,k’y2,0,0,k)に対して、変数置換を行う(ステップS3-4)。具体的には、式(3-14)、式(3-15)を用いて、(k,k’y1,k’y2,k)の関数を(k,k,v,k)の関数にする。これにより、S(k,k,v,0,0,k)が得られる。
 次に、データ処理ユニット66は、S(k,k,v,0,0,k)に対して、(k,k,k)に対して3重逆フーリエ変換を行う(ステップS3-5)。これにより、式(3-20)に示されるように、反射率f(x,y,z)が得られる。
Next, the data processing unit 66 processes the measurement data s (x', y' 1 , y' 2 , 0, 0, k) by performing triple Fourier processing on (x', y' 1 , y' 2 ). Conversion is performed (step S3-3). As a result, S(k x , k' y1 , k' y2 , 0, 0, k) is obtained as shown in equation (3-11).
Next, the data processing unit 66 performs variable substitution on S(k x , k' y1 , k' y2 , 0, 0, k) (step S3-4). Specifically, using equations (3-14) and (3-15), the function of (k x , k' y1 , k' y2 , k) is transformed into (k x , k y , v, k) Make it a function of This yields S(k x , k y , v, 0, 0, k).
Next, the data processing unit 66 performs a triple inverse Fourier transform on S(k x , k y , v, 0, 0, k) (k x , k y , k z ) ( Step S3-5). As a result, the reflectance f(x, y, z) is obtained as shown in equation (3-20).
 記憶部66aは、本実施形態のデータ処理方法を実行するためのプログラムを記憶する。記憶部66aに記憶されたプログラムは、データ処理ユニット66に、本実施形態のデータ処理方法を実行させる。 The storage unit 66a stores a program for executing the data processing method of this embodiment. The program stored in the storage section 66a causes the data processing unit 66 to execute the data processing method of this embodiment.
 ここで、電磁波の周波数を4.46484GHz、比誘電率を10、計測間隔Δx = 10mm、計測間隔Δy’ = 38.5mm、計測間隔Δy’ = 38.5mm、計測幅616mm、媒質中の最高周波数の波長λfmax= 21.24mmとする。このとき、以下の式(3-23)が得られる。

 このとき、ナイキスト基準を満たさず、x軸方向、y’軸方向、y’軸方向のそれぞれに、エイリアシングが発生する。この場合のナイキスト波数は、以下の式(3-24)で表される。
Here, the frequency of the electromagnetic wave is 4.46484 GHz, the relative dielectric constant is 10, the measurement interval Δx = 10 mm, the measurement interval Δy' 1 = 38.5 mm, the measurement interval Δy' 2 = 38.5 mm, the measurement width 616 mm, and the The wavelength of the highest frequency λ fmax = 21.24 mm. At this time, the following equation (3-23) is obtained.

At this time, the Nyquist criterion is not satisfied, and aliasing occurs in each of the x-axis direction, y' 1- axis direction, and y' 2- axis direction. The Nyquist wave number in this case is expressed by the following equation (3-24).
 最高周波数から求まる最大波数は、以下の式(3-25)で表される。
The maximum wave number determined from the highest frequency is expressed by the following equation (3-25).
 ここで、ステップS3-3におけるx軸に関するフーリエ変換は、図15で表される。また、ステップS3-3におけるy’軸、y’軸に関するフーリエ変換は、図16で表される。
 図15より、x軸に関するフーリエ変換において、それぞれ、±kx,nyq、±k’x2,nyqを上限とする波数が範囲Aに出力される。±kx,nyqを超える波数のデータは、エイリアスデータとして、2kx,nyqを周期として折り返し現れる。よって、ステップS3-4の変数置換処理において、範囲Aではなく、それぞれ、±kxmaxを上限とする範囲A’で変数置換処理を行う。これにより、エイリアスデータを折り返し雑音として捨てるのではなく、実際に意味のあるデータとして変数置換処理に加えることにより、x軸方向の分解能を向上させ、更には浅いターゲットの画像強度をより強くさせることが可能になる。
 y’軸、y’軸に関しても、第2実施形態と同様に、図16に示すように、範囲Bではなく、それぞれ、±k’y1max、±k’y2maxを上限とする範囲B’で変数置換処理を行う。
Here, the Fourier transform regarding the x-axis in step S3-3 is shown in FIG. Furthermore, the Fourier transform regarding the y' 1- axis and the y' 2- axis in step S3-3 is shown in FIG.
From FIG. 15, in the Fourier transform regarding the x-axis, wave numbers whose upper limits are ±k x, nyq and ±k' x2, nyq are output to range A, respectively. Data with a wave number exceeding ±k x, nyq appears as alias data with a period of 2k x, nyq . Therefore, in the variable replacement processing in step S3-4, the variable replacement processing is performed not in the range A but in the range A' having the upper limit of ±k xmax . As a result, the alias data is not discarded as aliasing noise, but is actually added to the variable replacement process as meaningful data, improving the resolution in the x-axis direction and further increasing the image intensity of shallow targets. becomes possible.
Regarding the y' 1- axis and the y' 2- axis, similarly to the second embodiment, as shown in FIG. 16, instead of the range B, the range B' has the upper limit of ±k' y1max and ±k' y2max , respectively. Performs variable replacement processing.
(シミュレーション結果)
 以下、第3実施形態のデータ処理方法をコンピュータシミュレーションした結果について説明する。シミュレーション条件は、以下の通りである。
(simulation result)
The results of a computer simulation of the data processing method of the third embodiment will be described below. The simulation conditions are as follows.
・使用周波数帯域fmin~fmax:DC~4.46484GHz
・中心周波数fc:2.23242GHz
・中心周波数の真空中の波長λ0c:134.38mm
・媒質の比誘電率ε:10
・媒質中の中心周波数の波長λc:42.50mm
・媒質中の最高周波数の波長λfmax:21.24mm
・計測数Nx:128pt
・計測間隔Δx:10mm
・計測幅:1280mm
・計測数Ny’1:16pt
・計測間隔Δy’1:38.5mm
・計測幅:616mm
・計測数Ny’2:16pt
・計測間隔Δy’2:38.5mm
・計測幅:616mm
・点ターゲット1の座標(単位:mm):(640,307,20)
・点ターゲット2の座標(単位:mm):(640,307,200)
・Used frequency band f min ~ f max : DC ~ 4.46484 GHz
・Center frequency fc: 2.23242GHz
・Wavelength in vacuum of center frequency λ 0c : 134.38mm
・Relative dielectric constant ε r of medium: 10
・Wavelength λc of center frequency in medium: 42.50 mm
・Wavelength of the highest frequency in the medium λ fmax : 21.24 mm
・Number of measurements Nx: 128pt
・Measurement interval Δx: 10mm
・Measurement width: 1280mm
・Number of measurements N y'1 : 16pt
・Measurement interval Δy'1: 38.5mm
・Measurement width: 616mm
・Number of measurements N y'2 : 16pt
・Measurement interval Δy'2: 38.5mm
・Measurement width: 616mm
・Coordinates of point target 1 (unit: mm): (640, 307, 20)
・Coordinates of point target 2 (unit: mm): (640, 307, 200)
 図17は、比較例1のデータ処理方法でシミュレーションした点ターゲット1のxz平面画像を示す。図18は、実施例1のデータ処理方法でシミュレーションした点ターゲット1のxz平面画像を示す。図19は、比較例1のデータ処理方法でシミュレーションした点ターゲット1のyz平面画像を示す。図20は、実施例1のデータ処理方法でシミュレーションした点ターゲット1のyz平面画像を示す。
 図21は、比較例1と実施例1の点ターゲット1のx軸方向の波形を示す。図22は、比較例1と実施例1の点ターゲット1のy軸方向の波形を示す。図23は、比較例1と実施例1の点ターゲット1のz軸方向の波形を示す。図21~図23において、いずれも実施例1は実線で示され、比較例1は破線で示される。
FIG. 17 shows an xz plane image of point target 1 simulated using the data processing method of comparative example 1. FIG. 18 shows an xz plane image of point target 1 simulated using the data processing method of Example 1. FIG. 19 shows a yz plane image of point target 1 simulated using the data processing method of comparative example 1. FIG. 20 shows a yz plane image of point target 1 simulated using the data processing method of Example 1.
FIG. 21 shows waveforms of the point target 1 in the x-axis direction of Comparative Example 1 and Example 1. FIG. 22 shows waveforms of the point target 1 in the y-axis direction of Comparative Example 1 and Example 1. FIG. 23 shows waveforms of the point target 1 in the z-axis direction of Comparative Example 1 and Example 1. In each of FIGS. 21 to 23, Example 1 is shown by a solid line, and Comparative Example 1 is shown by a broken line.
 図24は、比較例1のデータ処理方法でシミュレーションした点ターゲット2のxz平面画像を示す。図25は、実施例1のデータ処理方法でシミュレーションした点ターゲット2のxz平面画像を示す。図26は、比較例1のデータ処理方法でシミュレーションした点ターゲット2のyz平面画像を示す。図27は、実施例1のデータ処理方法でシミュレーションした点ターゲット2のyz平面画像を示す。
 図28は、比較例1と実施例1の点ターゲット2のx軸方向の波形を示す。図29は、比較例1と実施例1の点ターゲット2のy軸方向の波形を示す。図30は、比較例1と実施例1の点ターゲット2のz軸方向の波形を示す。図28~図30において、いずれも実施例1は実線で示され、比較例1は破線で示される。
FIG. 24 shows an xz plane image of point target 2 simulated using the data processing method of comparative example 1. FIG. 25 shows an xz plane image of point target 2 simulated using the data processing method of Example 1. FIG. 26 shows a yz plane image of point target 2 simulated using the data processing method of comparative example 1. FIG. 27 shows a yz plane image of point target 2 simulated using the data processing method of Example 1.
FIG. 28 shows waveforms of the point target 2 in the x-axis direction of Comparative Example 1 and Example 1. FIG. 29 shows waveforms in the y-axis direction of the point target 2 of Comparative Example 1 and Example 1. FIG. 30 shows waveforms in the z-axis direction of the point target 2 of Comparative Example 1 and Example 1. In each of FIGS. 28 to 30, Example 1 is shown by a solid line, and Comparative Example 1 is shown by a broken line.
 比較例1では、本実施形態におけるステップS3-4の変数置換処理において、範囲Aで変数置換処理を行った。実施例1では、本実施形態におけるステップS3-4の変数置換処理において、範囲Aではなく、それぞれ、±kxmaxを上限とする範囲A’で変数置換処理を行った。以下、実施例1における±kxmaxを上限とする範囲A’での変数置換処理を超分解能処理と呼ぶ。 In Comparative Example 1, variable replacement processing was performed in range A in the variable replacement processing in step S3-4 in the present embodiment. In Example 1, in the variable replacement process of step S3-4 in this embodiment, the variable replacement process was performed not in the range A but in the range A' having the upper limit of ±k xmax . Hereinafter, the variable replacement process in the range A' having ±k xmax as the upper limit in Example 1 will be referred to as super-resolution process.
 図17~図30より、比較例1に比べて、超分解能処理を行う実施例1によれば、点ターゲット1、2のいずれにおいても、x軸方向、y軸方向の分解能が向上することが確認された。 17 to 30, compared to Comparative Example 1, according to Example 1 which performs super-resolution processing, the resolution in the x-axis direction and the y-axis direction is improved for both point targets 1 and 2. confirmed.
<第4実施形態>
 本実施形態では、第3実施形態において生じ得るノイズを低減する。y軸方向に関する計測データsは、送信アンテナからターゲットまで伝播する電磁波の振幅をt、ターゲットの反射率を1、ターゲットから受信アンテナまで伝播する電磁波の振幅をrとすると、以下の式(4-1)で表される。
<Fourth embodiment>
In this embodiment, noise that may occur in the third embodiment is reduced. The measurement data s in the y-axis direction is expressed by the following formula (4- 1).
 このとき、ナイキスト周波数以下の振幅成分をt、rとし、n回の折り返し振幅成分(エイリアスデータ)をt、rとすると、tとrは、それぞれ以下の式(4-2)で表される。
At this time, if the amplitude components below the Nyquist frequency are t 0 and r 0 and the n folded amplitude components (alias data) are t n and r n , then t and r are respectively expressed by the following equations (4-2). It is expressed as
 式(4-2)を式(4-1)に代入すると、以下の式(4-3)が得られる。
By substituting equation (4-2) into equation (4-1), the following equation (4-3) is obtained.
 第3実施形態で示した超分解能処理は、例えば、ステップS3-4の変数置換時に、図16で示される(k’y1,k’y2)空間において、以下の式(4-4)で示されるように、送信アンテナの切替えに起因するk’y1と、受信アンテナに起因するk’y2がどちらもナイキスト波数以下の範囲内にある場合には、エイリアスデータ(折り返し雑音成分)を含む成分は、信号処理の中で全て雑音成分となる。
For example, in the super-resolution processing shown in the third embodiment, when replacing variables in step S3-4, in the (k' y1 , k' y2 ) space shown in FIG. As shown in the figure, if k' y1 caused by switching the transmitting antenna and k' y2 caused by the receiving antenna are both within the range of the Nyquist wave number or less, the component containing alias data (aliasing noise component) is , all become noise components in signal processing.
 このとき、式(4-3)は、式(4-5)のように表される。

 ここで、実線で囲んだrは信号成分であり、破線で囲んだ部分はノイズ成分である。
At this time, equation (4-3) is expressed as equation (4-5).

Here, r 0 t 0 surrounded by a solid line is a signal component, and the part surrounded by a broken line is a noise component.
 次に、変数置換時にk’y1のみが1回の折り返し雑音領域に入る場合には、式(4-6)の条件となり、式(4-3)は式(4-7)で表される。


 ここで、実線で囲んだrは信号成分であり、破線で囲んだ部分はノイズ成分である。
Next, when only k' y1 falls into the one-time aliasing noise region during variable substitution, the condition of equation (4-6) is met, and equation (4-3) is expressed as equation (4-7). .


Here, r 0 t 1 surrounded by a solid line is a signal component, and the part surrounded by a broken line is a noise component.
 次に、変数置換時にk’y2が2回の折り返し雑音領域に入る場合には、式(4-8)の条件となり、式(4-3)は式(4-9)で表される。


 ここで、実線で囲んだrは信号成分であり、破線で囲んだ部分はノイズ成分である。
Next, when k' y2 falls into the twice-folding noise region during variable substitution, the condition of equation (4-8) is met, and equation (4-3) is expressed by equation (4-9).


Here, r 2 t 1 surrounded by a solid line is a signal component, and the part surrounded by a broken line is a noise component.
 ここで、図5に示したのと同様、送信アンテナ計測点のy’1座標、受信アンテナ計測点のy’2座標が、ターゲットに近い場合、すなわち、ターゲットの直上付近にある場合、y’1、y’2軸方向の計測データの空間周波数は、それぞれ低くなる。反対に、y’1座標、y’2座標が、ターゲットから遠くなるに従い、y’1、y’2軸方向の計測データの空間周波数は、それぞれ高くなる。そして、その地点の波数がナイキスト波数を超えたときに、折り返し雑音(エイリアス)成分として計測データに含まれる。このように、エイリアスデータ成分(折り返し雑音成分)は、相対的にターゲットから遠い地点で発生する傾向がある。そのため、距離減衰によりナイキスト波数以下のデータ成分と比較して、振幅の大きさが小さくなる。そのため、以下の式(4-10)が一般的に成立する。
Here, as shown in FIG. 5, when the y' 1 coordinate of the transmitting antenna measurement point and the y' 2 coordinate of the receiving antenna measurement point are close to the target, that is, when they are near directly above the target, y' The spatial frequencies of the measurement data in the 1 and y' two- axis directions are respectively lower. Conversely, as the y' 1 and y' 2 coordinates become farther from the target, the spatial frequencies of the measurement data in the y' 1 and y' 2 axis directions become higher, respectively. Then, when the wave number at that point exceeds the Nyquist wave number, it is included in the measurement data as an aliasing noise (alias) component. In this way, alias data components (aliasing noise components) tend to occur at points relatively far from the target. Therefore, due to distance attenuation, the magnitude of the amplitude becomes smaller than that of data components below the Nyquist wave number. Therefore, the following equation (4-10) generally holds true.
 これより、rとtに関する2次の項の大きさは、r或いはt含む項に対して小さくなる。これは、以下の式(4-11)で表される。
From this, the magnitude of the quadratic term regarding r n and t n becomes smaller than the term including r 0 or t 0 . This is expressed by the following equation (4-11).
 更に、減衰率が小さな空中とは異なり、減衰率が大きなコンクリート内部や地中を電磁波が伝播する場合には、距離減衰に加えて媒質に起因する減衰率によりrとtの大きさは、より小さくなる。このとき、式(4-11)は、以下の式(4-12)のように表される。
Furthermore, unlike in the air where the attenuation rate is small, when electromagnetic waves propagate inside concrete or underground where the attenuation rate is large, the magnitudes of r n and t n are determined by the attenuation rate due to the medium in addition to the distance attenuation. , becomes smaller. At this time, equation (4-11) is expressed as equation (4-12) below.
 よって、式(4-5)、式(4-7)、式(4-9)、式(4-12)からtとrに関する2次の項は、それ以外の項に対して相対的にS/N比が悪いデータとなる。そのため、S/N比を改善するためには、rとtに関する2次の項を、ステップS3-4の変数置換処理において、選択的に除外すれば良い。このとき、式(4-3)は、以下の式(4-13)で表される。

 ここで、実線で囲んだ成分のみを変数置換処理で利用し、破線で囲んだ部分は変数置換処理で利用しない。
Therefore, from equation (4-5), equation (4-7), equation (4-9), and equation (4-12), the quadratic terms regarding t n and r n are relative to other terms. This results in data with a poor S/N ratio. Therefore, in order to improve the S/N ratio, the quadratic term regarding r n and t n may be selectively excluded in the variable replacement process of step S3-4. At this time, equation (4-3) is expressed by equation (4-13) below.

Here, only the components surrounded by solid lines are used in the variable replacement process, and the parts surrounded by broken lines are not used in the variable replacement process.
 このように、減衰率が大きな媒質を電磁波が伝播する場合には、変数置換処理時に式(4-13)で表されるフィルタを利用することにより、3次元画像のS/N比の劣化を抑制できる。これは(k’y1,k’y2)空間における「十字型k’y1-k’y2フィルタ」として表される。図31は、十字型k’y1-k’y2フィルタの概念図である。 In this way, when electromagnetic waves propagate through a medium with a large attenuation rate, the deterioration of the S/N ratio of a three-dimensional image can be prevented by using the filter expressed by equation (4-13) during variable replacement processing. It can be suppressed. This is expressed as a "cruciform k' y1 -k' y2 filter" in the (k' y1 , k' y2 ) space. FIG. 31 is a conceptual diagram of a cross-shaped k' y1 -k' y2 filter.
 図15、図16に示されるkxmax、k’y1max、k’y2maxは、ターゲットの位置あるいはアンテナの指向性に依存する。ここで、計測面近傍(z=0)のターゲットまで計測対象に含めば、式(4-14)で示すように、アンテナの指向性θbx,θbyによって最大値が決定されてもよい。

 但し、

である。
k xmax , k' y1max , and k' y2max shown in FIGS. 15 and 16 depend on the position of the target or the directivity of the antenna. Here, if targets near the measurement surface (z=0) are included in the measurement object, the maximum value may be determined by the antenna directivity θ bx and θ by as shown in equation (4-14).

however,

It is.
(シミュレーション結果1)
 以下、第4実施形態のデータ処理方法をコンピュータシミュレーションした結果について説明する。まず、第3実施形態と同じシミュレーション条件で、浅深度ターゲットの画像強度の改善効果を検証する。
 超分解能処理では、失われていたエイリアスデータを用いる。そのため、超分解能処理が無い場合と比較して、ターゲット画像強度(画像振幅)が増加する。この効果は、深深度ターゲットよりも、エイリアスデータの多い浅深度ターゲットの方が大きい。すなわち、エイリアシングによって低減していた浅深度ターゲットの画像強度は、超分解能処理によって大きく回復する。
(Simulation result 1)
The results of a computer simulation of the data processing method of the fourth embodiment will be described below. First, the effect of improving the image intensity of a shallow target will be verified under the same simulation conditions as in the third embodiment.
Super-resolution processing uses the missing alias data. Therefore, the target image intensity (image amplitude) increases compared to the case without super-resolution processing. This effect is larger for shallow targets with more alias data than for deep targets. That is, the image intensity of a shallow target, which had been reduced by aliasing, is greatly restored by super-resolution processing.
 図32は、4つの点ターゲットのシミュレーション結果を示す。各点ターゲットの水平位置は計測面中央で、深さは、20mm、200mm、400mm、600mmである。図32において、超分解能処理を行った実施例1は実線で示され、超分解能処理を行わない比較例1は破線で示される。3次元画像振幅の大きさは、深さ20mmのターゲットの超分解能処理を行わない振幅を1として正規化されている。 Figure 32 shows simulation results for four point targets. The horizontal position of each point target is at the center of the measurement surface, and the depths are 20 mm, 200 mm, 400 mm, and 600 mm. In FIG. 32, Example 1 in which super-resolution processing was performed is shown by a solid line, and Comparative Example 1 in which super-resolution processing was not performed is shown in broken lines. The magnitude of the three-dimensional image amplitude is normalized by setting the amplitude of a target with a depth of 20 mm without super-resolution processing to 1.
 ターゲットの深さが浅いほど、超分解能処理の効果でターゲットの画像振幅が強くなる。シミュレーションデータでは距離減衰を考慮しているため、深いターゲットの振幅が非常に小さくなり、回復効果を直接比較することが難しい。そのため、同じ深さのターゲットの振幅について、超分解能処理を行わない3次元画像振幅に対する超分解能処理を行った3次元画像振幅の比を回復率として定義する。図33は、各点ターゲットの回復率を示す。図33より、ターゲットが浅いほど、エイリアスデータが多いため、超分解能処理による回復率が大きいことが分かる。深さ20mmでは、回復率は6倍に達する。一方、ターゲットが深いほど、エイリアスデータは少なくなり、回復率は小さくなる。深さ600mmでは、回復率は1.2倍程度である。 The shallower the depth of the target, the stronger the image amplitude of the target becomes due to the effect of super-resolution processing. Because the simulation data takes into account distance attenuation, the amplitude of deep targets becomes very small, making it difficult to directly compare the recovery effects. Therefore, regarding the amplitude of a target at the same depth, the ratio of the three-dimensional image amplitude subjected to super-resolution processing to the three-dimensional image amplitude without super-resolution processing is defined as the recovery rate. FIG. 33 shows the recovery rate for each point target. From FIG. 33, it can be seen that the shallower the target, the more alias data there is, so the recovery rate by super-resolution processing is higher. At a depth of 20 mm, the recovery rate reaches 6 times. On the other hand, the deeper the target, the less alias data and the smaller the recovery rate. At a depth of 600 mm, the recovery rate is about 1.2 times.
 以上より、超分解能処理によってエイリアスデータを用いることにより、画像振幅強度が改善することが確認された。特に、エイリアスデータの多い浅いターゲットの画像において、顕著な改善が見られる。これは、主に、浅深度ターゲット画像のS/N比の改善として3次元画像に反映される。 From the above, it was confirmed that image amplitude intensity is improved by using alias data through super-resolution processing. Particularly noticeable improvements are seen in images of shallow targets with a lot of aliased data. This is mainly reflected in the three-dimensional image as an improvement in the S/N ratio of the shallow target image.
(シミュレーション結果2)
 以下、第3実施形態、第4実施形態のデータ処理方法をコンピュータシミュレーションした結果について説明する。シミュレーション条件は、以下の通りである。
・使用周波数帯域fmin~fmax:DC~4.46484GHz
・中心周波数fc:2.23242GHz
・中心周波数の真空中の波長λ0c:134.38mm
・媒質の比誘電率ε:5
・媒質中の中心周波数の波長λc:60.1mm
・媒質中の最高周波数の波長λfmax:30.05mm
・走査方向の計測間隔Δx:10mm
・計測数Nx:115pt
・計測幅:1150mm
・送信アンテナの計測間隔Δy1:38.5mm
・送信アンテナ数Ny1:12
・受信アンテナの計測間隔Δy2:38.5mm
・受信アンテナ数Ny2:12pt
・計測幅:481.25mm
(Simulation result 2)
Hereinafter, the results of computer simulation of the data processing methods of the third and fourth embodiments will be described. The simulation conditions are as follows.
・Used frequency band f min ~ f max : DC ~ 4.46484 GHz
・Center frequency fc: 2.23242GHz
・Wavelength in vacuum of center frequency λ 0c : 134.38mm
・Relative dielectric constant ε r of medium: 5
・Wavelength λc of center frequency in medium: 60.1 mm
・Wavelength of the highest frequency in the medium λ fmax : 30.05 mm
・Measurement interval Δx in scanning direction: 10mm
・Number of measurements Nx: 115pt
・Measurement width: 1150mm
・Measurement interval Δy1 of transmitting antenna: 38.5mm
・Number of transmitting antennas N y1 : 12
・Reception antenna measurement interval Δy2: 38.5mm
・Number of receiving antennas N y2 : 12pt
・Measurement width: 481.25mm
 以下、鉄筋コンクリート試験体を計測した結果を示す。計測に用いた送信アンテナと受信アンテナのレイアウトを、図34に示す。試験体は、z座標の異なる複数の鉄筋を内部に有する。図35は、超分解能処理を行わない、試験体の3次元画像である。図36は、超分解能処理を行った、試験体の3次元画像である。図35、図36において、複数の鉄筋のz座標が示されている。図35と図36を比較すると、超分解能処理を行った図36の方が、全体的に鉄筋の画像が細くなっており、画像分解能の向上が確認できた。また、深さ35mm、45mmの鉄筋の画像強度が強くなっており、浅深度ターゲットの画像振幅の回復効果も確認できた。一方、鉄筋と鉄筋の間に干渉縞のような不要なノイズ(エイリアシングノイズ)が新たに発生していることも確認できた。 The results of measuring the reinforced concrete test specimen are shown below. FIG. 34 shows the layout of the transmitting antenna and receiving antenna used for measurement. The test specimen has a plurality of reinforcing bars with different z-coordinates inside. FIG. 35 is a three-dimensional image of the test specimen without super-resolution processing. FIG. 36 is a three-dimensional image of the specimen subjected to super-resolution processing. In FIGS. 35 and 36, the z-coordinates of a plurality of reinforcing bars are shown. Comparing FIG. 35 and FIG. 36, in FIG. 36 in which super-resolution processing was performed, the image of the reinforcing bars was thinner overall, and it was confirmed that the image resolution was improved. In addition, the image intensity of reinforcing bars at depths of 35 mm and 45 mm became stronger, and the effect of restoring the image amplitude of shallow targets was also confirmed. On the other hand, it was also confirmed that unnecessary noise (aliasing noise) such as interference fringes was newly generated between reinforcing bars.
 次に、第4実施形態、図31で説明した十字型k’y1-k’y2フィルタを適用した。図37は、十字型k’y1-k’y2フィルタを適用して超分解能処理を行った、試験体の3次元画像である。十字型k’y1-k’y2フィルタを適用しないで超分解能処理を行った、試験体の3次元画像である図36と、十字型k’y1-k’y2フィルタを適用して超分解能処理を行った図37を比較すると、十字型k’y1-k’y2フィルタにより、鉄筋画像の分解能や浅深度鉄筋画像の強度の劣化を抑制しつつ、干渉縞ノイズ(エイリアシングノイズ)を低減できることが確認できた。 Next, the cross-shaped k' y1 -k' y2 filter described in the fourth embodiment and FIG. 31 was applied. FIG. 37 is a three-dimensional image of a test specimen subjected to super-resolution processing by applying a cross-shaped k' y1 -k' y2 filter. Figure 36 is a three-dimensional image of the specimen subjected to super-resolution processing without applying the cross-shaped k' y1 - k' y2 filter, and the super-resolution processing performed by applying the cross-shaped k' y1 - k' y2 filter. Comparing Fig. 37 , which was performed with It could be confirmed.
 続いて、十字型k’y1-k’y2フィルタが分解能に与える影響を、シミュレーションデータを用いて評価した。シミュレーションの条件は、第3実施形態と同様である。
 図38は、比較例2と実施例2の点ターゲット1のx軸方向の波形を示す。図39は、比較例2と実施例2の点ターゲット1のy軸方向の波形を示す。図40は、比較例2と実施例2の点ターゲット1のz軸方向の波形を示す。図41は、比較例2と実施例2の点ターゲット2のx軸方向の波形を示す。図42は、比較例2と実施例2の点ターゲット2のy軸方向の波形を示す。図43は、比較例2と実施例2の点ターゲット2のz軸方向の波形を示す。
 図38~図43において、いずれも実施例2は実線で示され、比較例2は破線で示される。
Next, the influence of the cross-shaped k' y1 -k' y2 filter on resolution was evaluated using simulation data. The simulation conditions are the same as in the third embodiment.
FIG. 38 shows the waveforms of the point target 1 in the x-axis direction of Comparative Example 2 and Example 2. FIG. 39 shows waveforms of the point target 1 in the y-axis direction of Comparative Example 2 and Example 2. FIG. 40 shows waveforms in the z-axis direction of the point target 1 of Comparative Example 2 and Example 2. FIG. 41 shows the waveforms of the point target 2 in the x-axis direction of Comparative Example 2 and Example 2. FIG. 42 shows waveforms of the point target 2 in the y-axis direction of Comparative Example 2 and Example 2. FIG. 43 shows waveforms in the z-axis direction of the point target 2 of Comparative Example 2 and Example 2.
In each of FIGS. 38 to 43, Example 2 is shown by a solid line, and Comparative Example 2 is shown by a broken line.
 比較例2では、第3実施形態におけるステップS3-4の変数置換処理において、十字型k’y1-k’y2フィルタを適用しないで、それぞれ、±kxmaxを上限とする範囲A’で変数置換処理を行った。実施例2では、第3実施形態におけるステップS3-4の変数置換処理において、十字型k’y1-k’y2フィルタを適用して、それぞれ、±kxmaxを上限とする範囲A’で変数置換処理を行った。
 図38~図43より、十字型k’y1-k’y2フィルタを適用して超分解能処理を行っても、x軸、y軸、z軸のいずれも画像分解能にほとんど影響を与えていないことが確認された。
In Comparative Example 2, in the variable replacement process of step S3-4 in the third embodiment, the cross-shaped k' y1 -k' y2 filter is not applied, and variable replacement is performed in the range A' with the upper limit of ±k xmax . processed. In Example 2, in the variable replacement process in step S3-4 in the third embodiment, a cross-shaped k' y1 -k' y2 filter is applied to perform variable replacement in a range A' whose upper limit is ±k xmax . processed.
From Figures 38 to 43, even when super-resolution processing is performed by applying a cross-shaped k' y1 - k' y2 filter, there is almost no effect on the image resolution on any of the x-, y-, and z-axes. was confirmed.
<第5実施形態>
 本実施形態では、第2実施形態において生じ得るノイズを低減する。第4実施形態では、第3実施形態において、十字型k’y1-k’y2フィルタを適用して超分解能処理を行った。本実施形態では、第2実施形態において、十字型k’x1-k’x2フィルタと十字型k’y1-k’y2フィルタを適用して、超分解能処理を行う。図44は、十字型k’x1-k’x2フィルタの概念図である。すなわち、本実施形態では、第2実施形態において、図44に示す十字型k’x1-k’x2フィルタと図31に示す十字型k’y1-k’y2フィルタの両方を適用して超分解能処理を行う。
<Fifth embodiment>
In this embodiment, noise that may occur in the second embodiment is reduced. In the fourth embodiment, super-resolution processing is performed by applying a cross-shaped k' y1 -k' y2 filter in the third embodiment. In this embodiment, super-resolution processing is performed by applying the cross-shaped k' x1 -k' x2 filter and the cross-shaped k' y1 -k' y2 filter in the second embodiment. FIG. 44 is a conceptual diagram of a cross-shaped k' x1 -k' x2 filter. That is, in this embodiment, super-resolution is achieved by applying both the cross-shaped k' x1 -k' x2 filter shown in FIG. 44 and the cross-shaped k' y1 -k' y2 filter shown in FIG. 31 in the second embodiment. Perform processing.
 k’x1max、k’x2max、k’y1max、k’y2maxは、ターゲットの位置あるいはアンテナの指向性に依存する。ここで、計測面近傍(z=0)のターゲットまで計測対象に含めば、式(5-1)で示すように、アンテナの指向性θbx,θbyによって最大値が決定されてもよい。

 但し、

である。
k' x1max , k' x2max , k' y1max , and k' y2max depend on the position of the target or the directivity of the antenna. Here, if targets near the measurement surface (z=0) are included in the measurement object, the maximum value may be determined by the antenna directivity θ bx and θ by as shown in equation (5-1).

however,

It is.
10a 送信アンテナ
10b 受信アンテナ
50 送信用アレイアンテナ
52 受信用アレイアンテナ
60 レーダ装置
61 計測ユニット
64 システム制御回路
66 データ処理ユニット
68 画像表示ユニット
58、59 高周波スイッチ
62 高周波回路
69 エンコーダ
 
10a Transmitting antenna 10b Receiving antenna 50 Transmitting array antenna 52 Receiving array antenna 60 Radar device 61 Measurement unit 64 System control circuit 66 Data processing unit 68 Image display units 58, 59 High frequency switch 62 High frequency circuit 69 Encoder

Claims (17)

  1.  物体に放射した波動の散乱波を解析するデータ処理方法であって、
     y軸上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、
     前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信し、
     前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求め、

     x方向の計測間隔で定まるx方向のナイキスト波数をkx,nyqとすると、-kx1≦kx≦kx1(但し、kx,nyq≦kx1)の範囲でx方向の変数置換処理を行い、
     y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行い、
     式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める、

     データ処理方法。
    但し、
    x’ = x’1 = x’2
    z’1= z’2 = 0
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A data processing method for analyzing scattered waves of waves emitted to an object,
    radiating the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
    The scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are received at a plurality of receiving points p 2 (x' 2 , receive the measured value s(x ' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) at y' 2 , z' 2 );
    The measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) is subjected to triple Fourier transform using equation (1) to obtain S(k' x1 , k ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k),

    If the Nyquist wave number in the x direction determined by the measurement interval in the x direction is k x,nyq , then variable substitution processing in the x direction is performed in the range -k x1 ≦k x ≦k x1 (however, k x,nyq ≦k x1 ). conduct,
    If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 ), perform variable substitution processing in the y direction,
    The reflectance f(x, y, z) is determined by triple inverse Fourier transform using equation (2).

    Data processing method.
    however,
    x' = x' 1 = x' 2
    z' 1 = z' 2 = 0
    k is the wave number of the propagating wave,
    k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z). Components of the wave vector of a spherical wave,
    k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). Components of the wave vector of a spherical wave,
    k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
    It is.
  2.  式(3)で定まるx方向の最大波数をkxmaxとすると、-kxmax≦kx≦kxmaxの範囲でx方向の変数置換処理を行い、

     式(4)で定まるy’1方向の最大波数をk’y1maxとし、y’2方向の最大波数をk’y2maxとすると、-k’y1max≦k’y1≦k’y1max、かつ、-k’y2max≦k’y2≦k’y2maxの範囲でy方向の変数置換処理を行う、

     請求項1に記載のデータ処理方法。
    If the maximum wave number in the x direction determined by equation (3) is k xmax , perform variable substitution processing in the x direction in the range -k xmax ≦k x ≦k xmax ,

    If the maximum wave number in the y' 1 direction determined by equation (4) is k' y1max , and the maximum wave number in the y' 2 direction is k' y2max , then -k' y1max ≦k' y1 ≦k' y1max and -k ' y2max ≦k' y2 ≦k' Perform variable substitution processing in the y direction within the range of y2max ,

    The data processing method according to claim 1.
  3.  前記y方向の変数置換処理において、k’y1,nyq≦|k’y1|≦k’y1max、かつ、k’y2,nyq≦|k’y2|≦k’y2maxの範囲を選択的に除外して、y方向の前記変数置換処理を行う、
     請求項2に記載のデータ処理方法。
    In the variable substitution process in the y direction, the range of k' y1,nyq ≦|k' y1 |≦k' y1max and k' y2,nyq ≦|k' y2 |≦k' y2max is selectively excluded. and perform the variable replacement process in the y direction.
    The data processing method according to claim 2.
  4.  前記複数の送信点p1(x’1, y’1, z’1)及び前記複数の受信点p2(x’2, y’2, z’2)は、x方向に移動する、
     請求項1~3のいずれかに記載のデータ処理方法。
    the plurality of transmitting points p 1 (x' 1 , y' 1 , z' 1 ) and the plurality of receiving points p 2 (x' 2 , y' 2 , z' 2 ) move in the x direction;
    The data processing method according to any one of claims 1 to 3.
  5.  前記複数の送信点p1(x’1, y’1, z’1)及び前記複数の受信点p2(x’2, y’2, z’2)は、y方向に移動する、
     請求項1~3のいずれかに記載のデータ処理方法。
    the plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) and the plurality of reception points p 2 (x' 2 , y' 2 , z' 2 ) move in the y direction;
    The data processing method according to any one of claims 1 to 3.
  6.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項1~5のいずれかに記載のデータ処理方法。
    The wave number of the wave and the component of the wave number vector satisfy equation (5),
    The data processing method according to any one of claims 1 to 5.
  7.  物体に放射した波動の散乱波を解析する計測システムであって、
     送受信部であって、
      y軸上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射する送信部と、
      前記物体上の反射点(x, y, z)において反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’2, y’2, z’2)で計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)として受信する受信部と、
     を有する送受信部と、
     処理装置であって、
      前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、

      x方向の計測間隔で定まるx方向のナイキスト波数をkx,nyqとすると、-kx1≦kx≦kx1(但し、kx,nyq≦kx1)の範囲でx方向の変数置換処理を行う手順と、
      y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行う手順と、
     式(2)より3重逆フーリエ変換して、前記反射率f(x, y, z)を求める手順と、

     を実行する処理装置と、
     を有する、計測システム。
    但し、
    x’ = x’1 = x’2
    z’1= z’2 = 0
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A measurement system that analyzes scattered waves of waves emitted to an object,
    A transmitting/receiving section,
    a transmitter that radiates the wave to the object from a plurality of transmission points p 1 (x' 1 , y' 1 , z' 1 ) arranged on the y-axis;
    The scattered waves reflected at the reflection point (x, y, z) on the object with a reflectance f(x, y, z) are received at a plurality of receiving points p 2 (x' 2 , a receiving unit that receives the measured value s(x ' 1 , x' 2 , y' 1 , y' 2 , z ' 1 , z' 2 , k) at y' 2 , z' 2 );
    a transmitting/receiving unit having;
    A processing device,
    The measured value s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) is subjected to triple Fourier transform using equation (1) to obtain S(k' x1 , k ' x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);

    If the Nyquist wave number in the x direction determined by the measurement interval in the x direction is k x,nyq , then variable substitution processing in the x direction is performed in the range -k x1 ≦k x ≦k x1 (however, k x,nyq ≦k x1 ). The steps to take and
    If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 );
    A step of calculating the reflectance f(x, y, z) by performing triple inverse Fourier transform from equation (2);

    a processing device that executes;
    A measurement system with
    however,
    x' = x' 1 = x' 2
    z' 1 = z' 2 = 0
    k is the wave number of the propagating wave,
    k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z). Components of the wave vector of a spherical wave,
    k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). Components of the wave vector of a spherical wave,
    k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
    It is.
  8.  前記処理装置は、
      式(3)で定まるx方向の最大波数をkxmaxとすると、-kxmax≦kx≦kxmaxの範囲でx方向の変数置換処理を行う手順と、

      式(4)で定まるy’1方向の最大波数をk’y1maxとし、y’2方向の最大波数をk’y2maxとすると、-k’y1max≦k’y1≦k’y1max、かつ、-k’y2max≦k’y2≦k’y2maxの範囲でy方向の変数置換処理を行う手順と、

     を実行する、
     請求項7に記載の計測システム。
    The processing device includes:
    If the maximum wave number in the x direction determined by equation (3) is k xmax , then the procedure for performing variable substitution processing in the x direction in the range -k xmax ≦k x ≦k xmax ,

    If the maximum wave number in the y' 1 direction determined by equation (4) is k' y1max , and the maximum wave number in the y' 2 direction is k' y2max , then -k' y1max ≦k' y1 ≦k' y1max and -k ' y2max ≦k' y2 ≦k' Procedure for performing variable substitution processing in the y direction within the range of y2max ,

    execute,
    The measurement system according to claim 7.
  9.  前記処理装置は、前記y方向の変数置換処理において、k’y1,nyq≦|k’y1|≦k’y1max、かつ、k’y2,nyq≦|k’y2|≦k’y2maxの範囲を選択的に除外して、y方向の前記変数置換処理を行う手順を実行する、
     請求項8に記載の計測システム。
    In the variable substitution process in the y direction, the processing device calculates a range of k' y1,nyq ≦|k' y1 |≦k' y1max and k' y2,nyq ≦|k' y2 |≦k' y2max . selectively excluding and performing a procedure for performing the variable replacement process in the y direction;
    The measurement system according to claim 8.
  10.  前記送受信部は、x方向に移動する、
     請求項7~9のいずれかに記載の計測システム。
    the transmitter/receiver moves in the x direction;
    The measurement system according to any one of claims 7 to 9.
  11.  前記送受信部は、y方向に移動する、
     請求項7~9のいずれかに記載の計測システム。
    the transmitting and receiving unit moves in the y direction;
    The measurement system according to any one of claims 7 to 9.
  12.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項7~11のいずれかに記載の計測システム。
    The wave number of the wave and the component of the wave number vector satisfy equation (5),
    The measurement system according to any one of claims 7 to 11.
  13.  物体に放射した波動の散乱波を解析するプログラムであって、
     計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)を式(1)より3重フーリエ変換してS(k’x1, k’x2, k’y1, k’y2, z’1, z’2, k)を求める手順と、

     x方向の計測間隔で定まるx方向のナイキスト波数をkx,nyqとすると、-kx1≦kx≦kx1(但し、kx,nyq≦kx1)の範囲でx方向の変数置換処理を行う手順と、
     y方向の計測間隔で定まるy’1方向のナイキスト波数をk’y1,nyqとし、y’2方向のナイキスト波数をk’y2,nyqとすると、-ky1≦k’y1≦ky1、かつ、-ky2≦k’y2≦ky2(但し、k’y1,nyq≦ky1、かつ、k’y2,nyq≦ky2)の範囲でy方向の変数置換処理を行う手順と、
     式(2)より3重逆フーリエ変換して、反射率f(x, y, z)を求める手順と、

     をコンピュータに実行させるプログラム。
    但し、
    x’ = x’1 = x’2
    z’1= z’2 = 0
    kは、伝播する前記波動の波数、
    k’x1, k’y1, k’z1は、前記送信点p1(x’1, y’1, z’1)から前記反射点(x, y, z)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    k’x2, k’y2, k’z2は、前記反射点(x, y, z)から前記受信点p2(x’2, y’2, z’2)の間で伝播する前記波動の球面波の波数ベクトルの成分、
    kx = k’x1 + k’x2, u = k’x1 - k’x2, ky = k’y1 + k’y2, v = k’y1 - k’y2
    である。
    A program that analyzes scattered waves of waves emitted to an object,
    The measured value s ( x ' 1 , x2 , k' y1 , k' y2 , z' 1 , z' 2 , k);

    If the Nyquist wave number in the x direction determined by the measurement interval in the x direction is k x,nyq , then the variable substitution process in the x direction is performed in the range -k x1 ≦k x ≦k x1 (k x,nyq ≦k x1 ). The steps to take and
    If the Nyquist wave number in the y' 1 direction determined by the measurement interval in the y direction is k' y1,nyq , and the Nyquist wave number in the y' 2 direction is k' y2,nyq , -k y1 ≦k' y1 ≦k y1 , and , -k y2 ≦k' y2 ≦k y2 (however, k' y1,nyq ≦k y1 and k' y2,nyq ≦k y2 );
    Steps to calculate the reflectance f(x, y, z) by performing triple inverse Fourier transform from equation (2);

    A program that causes a computer to execute.
    however,
    x' = x' 1 = x' 2
    z' 1 = z' 2 = 0
    k is the wave number of the propagating wave,
    k' x1 , k' y1 , k' z1 are the waves propagating between the transmission point p 1 (x' 1 , y' 1 , z' 1 ) and the reflection point (x, y, z). Components of the wave vector of a spherical wave,
    k' x2 , k' y2 , k' z2 are the waves propagating between the reflecting point (x, y, z) and the receiving point p 2 (x' 2 , y' 2 , z' 2 ). Components of the wave vector of a spherical wave,
    k x = k' x1 + k' x2 , u = k' x1 - k' x2 , k y = k' y1 + k' y2 , v = k' y1 - k' y2
    It is.
  14.  式(3)で定まるx方向の最大波数をkxmaxとすると、-kxmax≦kx≦kxmaxの範囲でx方向の変数置換処理を行う手順と、

     式(4)で定まるy’1方向の最大波数をk’y1maxとし、y’2方向の最大波数をk’y2maxとすると、-k’y1max≦k’y1≦k’y1max、かつ、-k’y2max≦k’y2≦k’y2maxの範囲でy方向の変数置換処理を行う手順と、

     をコンピュータに更に実行させる、請求項13に記載のプログラム。
    If the maximum wave number in the x direction determined by equation (3) is k xmax , then the procedure for performing variable substitution processing in the x direction in the range -k xmax ≦k x ≦k xmax ,

    If the maximum wave number in the y' 1 direction determined by equation (4) is k' y1max , and the maximum wave number in the y' 2 direction is k' y2max , then -k' y1max ≦k' y1 ≦k' y1max and -k ' y2max ≦k' y2 ≦k' Procedure for performing variable substitution processing in the y direction within the range of y2max ,

    The program according to claim 13, further causing a computer to execute.
  15.  前記y方向の変数置換処理において、k’y1,nyq≦|k’y1|≦k’y1max、かつ、k’y2,nyq≦|k’y2|≦k’y2maxの範囲を選択的に除外して、y方向の前記変数置換処理を行う手順をコンピュータに更に実行させる、
     請求項14に記載のプログラム。
    In the variable substitution process in the y direction, the range of k' y1,nyq ≦|k' y1 |≦k' y1max and k' y2,nyq ≦|k' y2 |≦k' y2max is selectively excluded. and causing the computer to further execute a procedure for performing the variable substitution process in the y direction,
    The program according to claim 14.
  16.  前記計測値s(x’1, x’2, y’1, y’2, z’1, z’2, k)は、y軸上に配列された複数の送信点p1(x’1, y’1, z’1)から、前記物体に前記波動を放射し、前記物体上の前記反射点(x, y, z)において前記反射率f(x, y, z)で反射した前記散乱波を、y軸上に配列された複数の受信点p2(x’2, y’2, z’2)で受信した値である、
     請求項13~15のいずれかに記載のプログラム。
    The measurement value s(x' 1 , x' 2 , y' 1 , y' 2 , z' 1 , z' 2 , k) is obtained from multiple transmission points p 1 (x' 1 , y' 1 , z' 1 ) to the object, and the wave is reflected at the reflection point (x, y, z) on the object with the reflectance f(x, y, z). This is the value of the scattered waves received at multiple reception points p 2 (x' 2 , y' 2 , z' 2 ) arranged on the y-axis.
    The program according to any one of claims 13 to 15.
  17.  前記波動の波数と波数ベクトルの成分は、式(5)を満たす、
     請求項13~16のいずれかに記載のプログラム。
    The wave number of the wave and the component of the wave number vector satisfy equation (5),
    The program according to any one of claims 13 to 16.
PCT/JP2022/030374 2022-08-09 2022-08-09 Data processing method, measurement system, and program WO2024033998A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022571877A JP7230286B1 (en) 2022-08-09 2022-08-09 DATA PROCESSING METHOD, MEASUREMENT SYSTEM AND PROGRAM
PCT/JP2022/030374 WO2024033998A1 (en) 2022-08-09 2022-08-09 Data processing method, measurement system, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/030374 WO2024033998A1 (en) 2022-08-09 2022-08-09 Data processing method, measurement system, and program

Publications (1)

Publication Number Publication Date
WO2024033998A1 true WO2024033998A1 (en) 2024-02-15

Family

ID=85330627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030374 WO2024033998A1 (en) 2022-08-09 2022-08-09 Data processing method, measurement system, and program

Country Status (2)

Country Link
JP (1) JP7230286B1 (en)
WO (1) WO2024033998A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193742A (en) * 1998-12-28 2000-07-14 Nec Corp Underground radar signal-processing device
WO2017149582A1 (en) * 2016-02-29 2017-09-08 三井造船株式会社 Data processing method and measurement device
JP2018138880A (en) * 2017-02-24 2018-09-06 株式会社三井E&Sホールディングス Data processing method and measuring device
WO2021020387A1 (en) * 2019-08-01 2021-02-04 株式会社 Integral Geometry Science Scattering tomography device and scattering tomography method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193742A (en) * 1998-12-28 2000-07-14 Nec Corp Underground radar signal-processing device
WO2017149582A1 (en) * 2016-02-29 2017-09-08 三井造船株式会社 Data processing method and measurement device
JP2018138880A (en) * 2017-02-24 2018-09-06 株式会社三井E&Sホールディングス Data processing method and measuring device
WO2021020387A1 (en) * 2019-08-01 2021-02-04 株式会社 Integral Geometry Science Scattering tomography device and scattering tomography method

Also Published As

Publication number Publication date
JPWO2024033998A1 (en) 2024-02-15
JP7230286B1 (en) 2023-02-28

Similar Documents

Publication Publication Date Title
JP2013036969A (en) Radar cross section (rcs) measurement system
WO2018147025A1 (en) Object detection device, object detection method and computer-readable recording medium
JP7464293B2 (en) Scattering tomography device and scattering tomography method
US10746765B2 (en) Data processing method and the measurement device
WO2015136936A1 (en) Scattering tomography method and scattering tomography device
WO2018025421A1 (en) Object detection apparatus and object detection method
EP3647826A1 (en) Multiple-transmitting multiple-receiving antenna array arrangement for active millimeter wave security inspection imaging, and human body security inspection device and method
JP6838658B2 (en) Object detection device, object detection method, and program
JP2014527625A (en) Systems, methods, apparatus, and handheld scanning devices and products for near field imaging (near field millimeter wave imaging)
CN113126175B (en) Multiple-transmit-multiple-receive antenna array arrangement, human body security inspection device and method for active millimeter wave security inspection imaging
CN109884627A (en) The short range millimeter wave rapid three dimensional imaging process of any linear array configuration
WO2017149582A1 (en) Data processing method and measurement device
WO2024033998A1 (en) Data processing method, measurement system, and program
WO2024034000A1 (en) Data processing method, measurement system, and program
JP6849100B2 (en) Object detection device, object detection method and program
JPWO2019180767A1 (en) Object detection device, object detection method, and program
EP2511717B1 (en) Propagation path estimation method, program, and device
Fallahpour et al. A Wiener filter-based synthetic aperture radar algorithm for microwave imaging of targets in layered media
CN117501112A (en) Imaging device and imaging method
WO2023119369A1 (en) Data processing method, measurement system, and program
WO2023119370A1 (en) Data processing method, measuring system, and program
WO2023119371A1 (en) Data processing method , measurement system, and program
López et al. A Backpropagation Imaging Technique for Subsampled Synthetic Apertures
WO2024154211A1 (en) Data processing method, measurement system, and program
WO2024154212A1 (en) Data processing method, measurement system, and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022571877

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22954920

Country of ref document: EP

Kind code of ref document: A1